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ABSTRACT

Freezing, freeze-drying and crystallization are central to the manufacture
of pharmaceuticals and fine chemicals. They all involve a phase transition
from the liquid to the solid, and it is the inherent complexity of this transition
that renders process design challenging. This thesis aims to deepen the
mechanistic understanding of the liquid–solid phase transition and to utilize
the knowledge gained for rational process design. It has been motivated
by unexpected challenges encountered in the commercial freezing process
of the Janssen COVID-19 vaccine, where no ice formed in vials filled with
the drug product despite being stored at −20°C for multiple days. This
observation served as the starting point for extensive studies on freezing,
aimed both at elucidating the role of fundamental phenomena such as crystal
nucleation and growth as reported in Part I, and at understanding the process
at industrially-relevant scales as reported in Part II. The ensuing insights
inspired investigations into complex systems in crystallization from solution,
which are reported in Part III of this thesis.

Part I focuses on the phenomenon of ice nucleation, which denotes the
onset of the phase transition. Its slow kinetics were the main reason for the
aforementioned issue related to the Janssen COVID-19 vaccine. To study ice
nucleation, I first developed a methodology for measuring its rate in aqueous
solutions filled in vials. I then used this method to assess the effects of solution
composition and of particulate impurities on the nucleation rate. A key finding
was that ice nucleation is slower in samples prepared under particulate-free
conditions compared to less clean conditions, because it is driven by the
availability of so-called heterogeneous nucleation sites. To further assess the
effect of volume on ice nucleation, I studied the freezing process of aqueous
solutions in micro-droplets in collaboration with the research groups of Prof.
Dr. Andrew deMello and of Prof. Dr. Ulrike Lohmann.

Part II discusses the development of mechanistic models for freezing pro-
cesses and their validation with experimental data. In particular, I developed
a suite of three freezing models that all consider the stochastic nature of
nucleation, and I made them openly available in the form of a Python package
termed SNOW: Stochastic Nucleation Of Water. The first model simulates the
freezing stage in a freeze-drying process, where a large number of vials is
densely packed in two dimensions on a shelf. The predictions of this model
have been validated experimentally with a newly developed experimental
setup for the batch-scale online monitoring of freeze-drying using infrared
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thermography. The second model simulates the commercial freezing process
of the Janssen COVID-19 vaccines, where tens of thousands of vials have been
stacked in three dimensions on a pallet; the model correctly predicted all
relevant experimental trends that were observed in engineering runs. The
third model simulates freezing in a single container with spatial resolution.
It was validated using the data generated in Part I and revealed that thermal
gradients within a vessel may affect the time at which ice nucleation happens.

Inspired by the experimental studies on ice nucleation in Part I and the
modeling efforts in Part II, I investigated three complex systems in crystal-
lization from solution, as reported in Part III. Crystallization is characterized
by the occurrence of two types of nucleation, called primary and secondary
nucleation, whereby the latter refers to the nucleation of new crystals pro-
moted by existing crystals. I theoretically assessed two challenges related to
secondary nucleation: first I studied the interplay of primary and secondary
nucleation and how it affects the accuracy of methods for the measurement
of nucleation rates. Second, I analyzed the stability of the steady state in a
continuous crystallizer in which crystal growth and secondary nucleation
take place. The resulting mathematical framework is particularly useful for
describing the crystallization of systems with multiple solid forms – such
as polymorphic or chiral compounds. A specific crystallization process of
chiral compounds – solid-state deracemization – has been assessed in more
detail, whereby I could elucidate its governing mechanism through a rigorous
theoretical analysis supported by experiments.

In conclusion, the results obtained in this thesis have aided the understand-
ing and design of industrially relevant processes that involve liquid–solid
phase transitions. The quantitative description of the ice nucleation rate, the
suite of openly available mechanistic freezing models, and the theoretical
results achieved in describing complex crystallization systems promise to
be of broad interest both to fundamental scientists and to practitioners in
industry.



ZUSAMMENFASSUNG

Das Einfrieren, die Gefriertrocknung und die Kristallisation spielen eine zen-
trale Rolle bei der Herstellung von Arzneimitteln und Feinchemikalien. Diese
drei Prozesse beinhalten einen Phasenübergang vom flüssigen in den festen
Aggregatzustand, und es ist die inhärente Komplexität dieses Übergangs, die
zu Herausforderungen bei der Prozessgestaltung führt. Ziel dieser Arbeit ist
es, das mechanistische Verständnis dieses Phasenübergangs zu vertiefen und
die gewonnenen Erkenntnisse für die Prozessgestaltung zu nutzen. Sie wurde
motiviert durch eine Beobachtung beim Gefrierprozess des Janssen COVID-19

Impfstoffs: in vielen mit dem Arzneimittel gefüllten Fläschchen bildete sich
kein Eis, obwohl sie mehrere Tage lang bei −20°C gelagert wurden. Dieses
Verhalten diente als Ausgangspunkt für umfangreiche Studien zum Gefrieren,
die sowohl die Rolle grundlegender Phänomene wie Kristallkeimbildung und
-wachstum (siehe Teil I) als auch das Prozessverhalten in industriell relevanten
Grössenordnungen (siehe Teil II) aufklären sollten. Die sich daraus ergeben-
den Erkenntnisse inspirierten weitere Untersuchungen komplexer Systeme im
Kontext der Kristallisation, die in Teil III dieser Arbeit beschrieben werden.

Teil I befasst sich mit dem Phänomen der Eiskeimbildung, die den Beginn
der Eisbildung beim Gefrieren darstellt. Seine langsame Kinetik ist der Haupt-
grund für das oben erwähnte Einfrierverhalten des COVID-19 Impfstoffs. Um
die Eiskeimbildung quantitativ zu untersuchen, entwickelte ich eine Methode
zur Messung ihrer Rate in wässrigen Lösungen. Diese Methode ermöglich-
te detaillierte Studien zu den Effekten von Lösungszusammensetzung und
Verunreinigungen auf die Keimbildungsrate. Eine wichtige Erkenntnis dieser
Studien ist, dass die Eiskeimbildung in Proben, die unter partikelfreien Be-
dingungen hergestellt wurden, langsamer ist als in Proben hergestellt unter
weniger sauberen Bedingungen. Das kommt daher, dass die Keimbildungs-
rate durch die Verfügbarkeit so genannter heterogener Keimbildungsstellen
bestimmt wird. Um den Einfluss des Volumens auf die Keimbildung zu
untersuchen, habe ich in Kollaboration mit den Forschungsgruppen von Prof.
Dr. Andrew deMello und Prof. Dr. Ulrike Lohmann das Gefrieren wässriger
Lösungen in mikroskopisch kleinen Tröpfchen untersucht.

Teil II beschreibt die Entwicklung mechanistischer Modelle für Gefrierpro-
zesse und deren Validierung mit experimentellen Daten. Im Rahmen dieser
Arbeit entwickelte ich drei solcher Modelle und veröffentlichte sie als Python-
Paket unter dem Namen SNOW: Stochastic Nucleation Of Water. Das erste
Modell simuliert die Gefrierphase in einem Gefriertrocknungsprozess, bei
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dem eine grosse Anzahl an Fläschchen dicht gepackt auf einer gekühlten
Metallplatte stehen. Die Vorhersagen dieses Modells wurden experimentell
mit einem neu entwickelten Versuchsaufbau für die Echtzeitbeobachtung der
Gefriertrocknung mittels Infrarot-Thermografie validiert. Das zweite Modell
simuliert den kommerziellen Gefrierprozess des COVID-19-Impfstoffs von
Janssen, bei dem zehntausende Fläschchen dreidimensional auf einer Palette
gestapelt wurden; das Modell sagte alle relevanten experimentellen Trends
korrekt voraus. Das dritte Modell simuliert das Einfrieren in einem einzelnen
Behälter mit räumlicher Auflösung. Es wurde anhand der in Teil I gewonne-
nen Daten validiert und zeigte, dass Temperaturgradienten innerhalb eines
Behälters den Zeitpunkt der Keimbildung beeinflussen.

Die Studien zur Eiskeimbildung in Teil I und den Prozessmodellen in Teil
II inspirierten weitere Arbeiten im Bereich der Kristallisation organischer
Moleküle, die in Teil III erörtert werden. Kristallisation unterschiedet sich
vom Gefrieren dadurch, dass zwei Arten der Keimbildung auftreten, nämlich
primäre und sekundäre Keimbildung. Letztere bezeichnet das Phänomenon,
dass neu Kristalle schneller gebildet werden, wenn bereits andere Kristalle
in der Lösung vorliegen. Ich bearbeitete zwei Fragestellungen im Zusam-
menhang mit der sekundären Keimbildung: Zunächst untersuchte ich das
Zusammenspiel von primärer und sekundärer Keimbildung und quantifi-
zierte die Genauigkeit von Methoden zur Messung der Keimbildungsraten.
Weiterhin analysierte ich die Stabilität der stationären Zustände in einem
kontinuierlichen Kristallisator, in dem Kristallwachstum und sekundäre Keim-
bildung stattfinden. Die sich daraus ergebenden mathematischen Werkzeuge
sind besonders nützlich, um die Kristallisation von Systemen mit mehreren
festen Phasen – wie polymorphe oder chirale Verbindungen – zu beschrei-
ben. Ein spezifischer Kristallisationsprozess chiraler Verbindungen – die
Festphasenderacemisierung – wurde genauer untersucht, wobei ich den zu-
grunde liegenden Mechanismus durch eine theoretische Analyse, die durch
Experimente unterstützt wurde, aufklären konnte.

Abschliessend ist festzuhalten, dass die in dieser Arbeit erzielten Ergebnisse
beigetragen haben zum Verständnis und zur Gestaltung industrieller Prozesse,
in denen flüssig–fest Phasenübergänge stattfinden. Die quantitative Beschrei-
bung der Eiskeimbildungsrate, die öffentlich verfügbaren mechanistischen
Gefriermodelle und die theoretischen Ergebnisse, die bei der Beschreibung
komplexer Kristallisationssysteme erzielt wurden, versprechen, von grossem
Interesse für Wissenschaft und Industrie zu sein.
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1 INTRODUCT ION

1.1 motivation and aim of the thesis

In 2020, people all over the world stayed in isolation to slow down the
spread of the COVID-19 pandemic, while scientists and engineers at pharma
companies and research institutes joined the race to develop vaccines against
the virus. Even though the development of new drug products traditionally
takes multiple years, multiple companies succeeded in developing vaccines
and assessing their performance in clinical trials within less than one year.
This tremendous speed represents a truly extraordinary and unprecedented
achievement in the history of pharmaceuticals.

Such an accelerated timeline posed major challenges for the manufacture
and distribution of the COVID-19 vaccines.[1,2] In particular, there was little
time for stability studies that in normal circumstances are carried out to
identify optimal storage conditions, so that the COVID-19 vaccines were
distributed in the frozen state following conservative best-practices. The
requirement for ultra-cold storage capabilities at −80°C for the vaccines based
on mRNA heavily impacted the distribution of the vaccines of Pfizer/BioNtech
and Moderna, particularly in developing countries.[3–5] In contrast, earlier
vaccines based on adenoviral vectors developed by The Janssen Pharmaceutical
Companies of Johnson & Johnson (Janssen in short) had been shown to
be stable in the long-term when frozen at higher temperatures and even
as refrigerated liquid at 2–8°C,[6,7] so that their COVID-19 vaccine initially
was distributed in the frozen state at −20°C. While such a higher storage
temperature simplified the distribution of the vaccine, it also caused an
unexpected issue: when freezing vials filled with the drug product at −20°C
for several days, in many of them no ice formed. This had to be accounted for
in the design of the freezing process, and initially led to the loss of vaccine
doses. And it was this behavior that became the starting point for this thesis.

The freezing process of a vaccine, like of any aqueous solution, involves a
liquid–solid phase transition where the newly-formed solid phase comprises
pure ice crystals. The research group of my doctoral advisor, Prof. Dr. Marco
Mazzotti, at ETH Zurich studied liquid–solid phase transitions in the context of
pharmaceuticals since the early 2000’s, however with a focus on crystallization

1



2 introduction

from solution, not on freezing. In Fall 2020, Janssen and ETH Zurich initiated
a collaboration to expand these research activities to the freezing process
of vaccines, with the objective to elucidate the issues encountered in the
commercial freezing process. During the past three and a half years, I have
been leading this research project at ETH Zurich, with close support from
several senior scientists at Janssen.

As I quickly realized, understanding the behavior of such a complex man-
ufacturing process is rather challenging. On the one hand, there were no
quantitative information available on the relevant physical phenomena that
happen during freezing – in particular, on ice nucleation, which denotes the
onset of ice formation in a solution, and which apparently occurred at a
rate slow enough that no ice would form in some vials during the freezing
process. On the other hand, the freezing process was designed in an empirical
manner, using a large number of experimental engineering runs. There was
no mechanistic model available that could have guided process design.

To tackle these challenges, I carried out fundamental studies to elucidate
the phenomenon of ice nucleation and utilized the ensuing insights to develop
mechanistic process-scale models of freezing. Realizing the similarities in the
underlying phenomena of freezing and of crystallization, I further expanded
my research to the study of complex crystallization systems. Similar to
freezing, crystallization is widely employed in the pharmaceutical industry,
yet the mechanistic understanding of the associated industrial processes is
rather limited, which severely impacts their design and optimization. In
Section 1.4, I discuss the structure of this thesis in more detail. In Sections 1.2
and 1.3, I introduce relevant concepts regarding freezing and crystallization
processes in the pharmaceutical industry, and regarding the fundamentals of
the liquid–solid phase transition.

1.2 freezing and crystallization of pharmaceuticals

Most biopharmaceutical drug products, including vaccines, are distributed
as so-called parenteral formulations, which are aqueous solutions or suspen-
sions that are delivered by injection. To facilitate their handling, a single dose
or a few doses of the drug product are stored in a vial with a fill volume
on the order of a few milli-liters. Generally, bio-pharmaceuticals comprise
water, a number of excipients (additives such as sugars or salts), and the active
pharmaceutical ingredient (for example a protein, an RNA molecule, or a
viral vector). As many active ingredients exhibit limited stability in aqueous
solution, two processes are commonly employed to extend the shelf life of
these products: freezing, as discussed in Section 1.2.1, and freeze-drying,



1.2 freezing and crystallization of pharmaceuticals 3

where freezing is followed by drying under vacuum to remove water from the
drug product by sublimation and desorption, as discussed in Section 1.2.2.

Drug products where the active ingredient is a small organic molecule,
in contrast, are predominantly administered as tablets that contain a com-
pressed powder. Such powder comprises numerous (e.g., billions of) typically
micrometer-sized crystalline particles, and many of the powder’s practically-
relevant properties such as bio-availability or compressibility depend on the
particle size and its distribution. For this reason, the design of crystallization
processes that provide products with well-controlled particle size distributions
is a long-standing topic of great interest not only to the pharmaceutical indus-
try, but also to related fields such as agro-chemicals and food. Crystallization
is discussed in detail in Section 1.2.3.

1.2.1 Freezing

Freezing is well-known to enhance the stability of active pharmaceutical
ingredients and hence to extend the shelf life of biopharmaceuticals compared
to storage in the liquid state.[8–13] The prediction and quantification of this
effect, and therefore the selection of optimal freezing process conditions and
long-term storage conditions, is not trivial.[14,15] Both the formulation, i.e.,
the composition of the drug product, and the freezing process conditions
are known to affect the shelf life.[9,14,16–18] This thesis focuses on the freezing
process itself because the rational design of various industrial processes is a
core area of expertise of my doctoral advisor’s research group, and hence I
could greatly benefit from this experience. Identifying optimal formulations
for freezing represents a very interesting (and active) avenue of research in its
own right, however, it is outside the scope of the thesis.

A freezing process in the most general sense comprises two stages, namely a
cooling stage, during which the formulation is in the liquid, and a solidification
stage, during which ice is formed.[19–21] At the onset of solidification, an
ice nucleus forms, which is a stochastic phenomenon.[19,20,22–27] This is of
practical relevance because when multiple vials are frozen together, nucleation
takes place at different times, even when they contain identical formulations
and experience similar heat transfer.[19,21,25,27–29] This implies that certain
quantities linked to freezing such as the temperature at which nucleation
happens, or the time required between nucleation and complete freezing, vary
among the vials in a batch. These quantities have been linked to numerous
degradation mechanisms, so that a broad distribution in these quantities may
translate into a distribution in the residual activity of a drug product. For
example, the solidification time is connected to the phenomenon of freeze-
concentration, which denotes the spatial transfer of material from regions
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in a vessel that are frozen early toward those that freeze later. This affects
buffer concentrations and thus the stability of the active pharmaceutical
ingredient.[30–33] The nucleation temperature, in contrast, is widely interpreted
as a predictor for the ice crystal morphology in the frozen product,[21,34]

which in turn controls the rate of deactivation mechanisms at the ice-water
interface, as observed for a number of proteins.[12] Therefore, the freezing
process of pharmaceuticals should be designed such that all vials in a batch
meet qualified target ranges for nucleation and solidification with sufficient
probability.

1.0: Freezing stage in freeze-drying

1.1: Pallet-scale freezing of a vaccine

2.0: Freezing in vials with spatial resolution

Figure 1.1 Schematic of the three types of freezing processes studied in this thesis. The
models have been made available in the form of the Python package SNOW: Stochastic
Nucleation Of Water. Version 1.0: Model of the freezing-stage in freeze-drying. Version
1.1: Model of the pallet freezing process as used in the manufacture of the Janssen
COVID-19 vaccine. Version 2.0: Model of freezing within a single container with spatial
resolution.

Doing so is challenging for several reasons. At the scale of commercial
manufacturing, there are very few means for process control, as tens of
thousands of vials are typically packed together in a pallet and frozen by
storing the pallet in a cold storage room. Such a setup is shown in the bottom
left panel of Figure 1.1. Because heat transfer depends on the position of
a vial within the pallet, it is not realistic to expect that all vials nucleate
and solidify similarly. The inherent stochasticity of ice nucleation further
enhances this batch heterogeneity. Even worse, there are only few means for
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process monitoring, which relies on the insertion of thermocouples into the
pallet and on manual visual inspection to detect frozen and non-frozen vials.
Therefore, it is a major objective of this thesis to enhance the understanding
of such a commercial freezing process, in line with the general trend in
the pharmaceutical industry to move towards more more rational process
design.[35,36]

Freezing has been a topic of intense research in the past.[19,28,37–40] Studies
reported in the literature have established links between properties of the
frozen drug product, such as its mean ice crystal size or the extent of freeze
concentration, and the process conditions during freezing. Yet, the design
of commercial freezing processes still is performed mostly in an empirical
fashion, which is largely because the literature predominantly focuses on
the single-vial scale. This observation has motivated me to model freezing
specifically on the process-scale.

To do so, I developed a suite of three freezing models targeted not only at
the simulation of pallet freezing, but also at the freezing stage in freeze-drying
(see Section 1.2.2), and at the spatial evolution of freezing in a single vessel (for
the validation of the process-scale models). A main feature of these models is
that they describe nucleation as a stochastic phenomenon (see Section 1.3.2).
In contrast, existing freezing models used in the field consider nucleation in a
simplified manner in the sense that they assume that ice starts to form either
as soon as the solution reaches its melting point or as soon as it reaches a pre-
determined deterministic nucleation temperature.[19,28,40] Motivated by the
success in the application of the model to explain experimental trends of the
freezing process of the Janssen COVID-19 vaccine, I decided in collaboration
with Dr. David Ochsenbein from Janssen to provide open source access to
these models in the form of a Python package, as shown in Figure 1.1. This
package is termed SNOW: Stochastic Nucleation Of Water, and comprises the
aforementioned three models as versions 1.0, 1.1, and 2.0.

1.2.2 Freeze-drying

Freezing not only extends the shelf life of drug products, but also causes
substantial logistical challenges due to the required cold chain. Another
process that enables the stable long-term storage of biopharmaceuticals is
freeze-drying, also called lyophilization. Freeze-dried products can be stored
at higher temperatures than frozen ones, sometimes even at ambient tem-
peratures.[1,41] As of 2020, about 650 drug products were distributed in the
freeze-dried state, with hundreds more in development,[8] which corresponds
to about 40-50% of all biopharmaceuticals.
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A freeze-drying process consists of three stages, namely freezing, primary
drying, and secondary drying.[41] During freezing, most of the liquid water in
the product turns into ice crystals, while the solutes and the remaining water
form either an amorphous (vitrified) freeze-concentrate or a crystalline phase
engulfed among the ice crystals. During primary drying, the ice crystals are
removed via sublimation under vacuum at low temperature, which typically
requires multiple days and is the most time-consuming stage. What is left
at the end of sublimation is the highly porous vitrified or crystalline micro-
structure, as shown in Figure 1.2; the water that is still part of this structure is
removed by means of desorption at elevated temperature under vacuum. This
is called secondary drying.[21,41]

Figure 1.2 Photo of a tray packed with vials that is loaded into the chamber of a
laboratory-scale freeze-dryer. The zoom-in shows a scanning electron microscopy (SEM)
image of the micro-structure of a freeze-dried product.

Freeze-drying is a batch process whereby a single batch may comprise
hundreds of thousands of vials that are densely packed on a temperature-
controlled shelf. When designing such a process, the objective is to identify
suitable process conditions that yield dry and acceptable products in the short-
est time possible. The definition of what is acceptable is not straightforward
and is an active area of research (see Patel et al.[42] for a comprehensive
recent review on quality guidelines regarding freeze-dried products). The
main parameters for process design are the thermal evolution of the shelf on
which the vials are placed and the pressure levels during the drying stages.
A higher temperature of the shelf during drying increases the rates of both
sublimation and of desorption.[41] It also increases the temperature in the
product itself, which may result in its structural collapse, an outcome that is
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not acceptable. Therefore, the drying temperature must be chosen high enough
to allow for fast drying, but low enough to prevent collapse. Such collapse is
linked to the glass transition temperature of the freeze-concentrated phase in
the product, because if this temperature is surpassed, the viscosity decreases
by orders of magnitude, which affects the mechanical stability. The measure-
ment of this temperature therefore is a routine step in process design, and
is typically carried out using differential scanning calorimetry or freeze-dry
microscopy;[20,21] in Chapter 5, I introduce a new measurement technique
based on droplet microfluidics that may complement the existing ones.

Given that the physical properties of the freeze-concentrate are defined by
the formulation, there are only limited opportunities for process optimization
during drying. Instead, in a seminal paper published about twenty years
ago, Searles et al.[43] suggested that the ice nucleation temperature during
freezing indirectly governs the rate of drying, whereby higher nucleation
temperatures allow for faster drying. This effect has been traced back to
the observation that high nucleation temperatures promote the formation of
micro-structures with large ice crystals that are beneficial for fast sublimation.
In contrast, low nucleation temperatures result in micro-structures with a large
number of small ice crystals, which provide a relevant mass transfer resistance
for sublimation, hence slowing down sublimation.[19,20] For this reason, the
identification of the optimal freezing protocol that minimizes the duration
of the drying stages has become a major theme in the current freeze-drying
literature.[20,44]

The link between freezing conditions, micro-structure formation, and drying
rates is not entirely understood (yet) in the sense that it is currently not possi-
ble to predict with quantitative accuracy how a change in freezing conditions
affects the drying rates. On a higher level, one can however postulate the
following: if properties related to freezing – such as the nucleation tempera-
ture or the solidification time – affect drying, then it is beneficial that these
properties are similar in all vials, because broad distributions would result
in batch heterogeneity in the dried product. This raises two questions, both
of which I aim to address within this thesis. The first one is this: how does
one measure or monitor the freezing and drying behavior of a large number
of individual vials in a batch inside a freeze-dryer? This is not trivial, and
I have developed a new shelf-scale monitoring technique based on infrared
thermography (see Chapter 4) for this purpose. The second question is how
to predict or simulate the freezing behavior of densely packed vials on a shelf,
to identify suitable freezing process conditions that minimize batch hetero-
geneity. I have developed such a shelf-scale mechanistic freezing model (see
Chapter 6), as mentioned in the earlier discussion on freezing, and confirmed
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its predictive capabilities using laboratory-scale freeze-drying experiments
monitored with the infrared thermography setup.

1.2.3 Crystallization

This section introduces concepts in crystallization that are relevant to this
thesis. Even though freezing also represents a crystallization process, there are
major differences between freezing, where water – the solvent – crystallizes,
and processes where a solute crystallizes, as outlined in the following.

The product of a crystallization process typically is a powder that consists of
billions of crystalline particles, and many of its practically-relevant properties
such as bio-availability or compressibility depend on the particle size and its
distribution.[45,46] These particulate products must therefore be manufactured
such that they have a specific particle size distribution. This is challenging
due to the complex interplay of, on the one hand, several poorly understood
phenomena such as nucleation and crystal growth, and on the other hand,
transport phenomena at the scale of the crystallizer. Additional complexity
arises because crystals exhibit multiple facets each of which has its own
growth kinetics.[47] For this reason, not only the size but also the shape of
crystals depends on the operating conditions of the process, which renders its
design even more challenging. Crystallization process design in the industry
therefore largely relies on trial and error, and it involves extensive experimental
campaigns.

A key topic of interest to the pharmaceutical industry is the crystallization
of compounds with multiple solid forms, such as polymorphic or chiral
species. Polymorphism denotes the phenomenon that a compound forms
several solid phases, each of which with a distinct crystal lattice, and therefore,
distinct thermodynamic and kinetic properties. This means that different
polymorphs exhibit differences in properties relevant to pharmaceuticals,
such as mechanical properties linked to flowability and compressibility, or
the dissolution rate linked to bio-availability.[48] Given that a majority of
active ingredients used in pharmaceuticals are polymorphic,[49] it is a key
aspect of crystallization process design to ensure that only a single polymorph
forms, and that this outcome is robust. To this end, Chapter 11 introduces
a general mathematical framework to predict the polymorphic outcome in
crystallization processes that are operated continuously. It is worth noting
that the manufacture of pharmaceuticals still predominantly relies on batch
operation, and that the understanding and design of continuous crystallization
processes is a focus of current research.[50]
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Figure 1.3 Schematic of the three types of solid forms into which chiral species crystal-
lize.

The majority of small molecules used as active pharmaceutical ingredients
are chiral species.[51] This means that they occur in two enantiomeric forms,
which may differ in their pharmacological effects, as is exemplified in the dis-
astrous case of Thalidomide, where the desired effect of preventing morning
sickness in pregnant women was attributed to one enantiomer, whereas the
second one was found to cause birth defects.[52] The resolution, i.e., the sepa-
ration, of the two enantiomers of a chiral compound therefore is of paramount
interest, but it is practically challenging, because enantiomers exhibit identical
physical and chemical properties in non-chiral environments.[53]

A peculiar property of chiral species is that they crystallize in three different
ways, as shown in Figure 1.3: they may form a conglomerate of enantiopure
crystals (about 10% to 20% of cases), a solid solution with irregular crystal lat-
tice (rare), or racemic crystals that comprise both enantiomers in a 1:1 ratio in
a regular lattice (about 80% to 90% of cases).[53] In a landmark contribution in
1848, Pasteur [54] demonstrated the chiral resolution of conglomerate crystals
by mechanically separating those made up of one enantiomer from the others
using tweezers. This experiment forms the basis for a large family of chiral
resolution methods based on crystallization that resolve conglomerate crystals
by various technical means including grinding and temperature-cycling.[55–57]

The mechanism of one such process, called solid-state deracemization, is
elucidated in Chapter 12 through a combination of theory, simulations, and
experiments.

1.3 fundamentals of the liquid–solid phase transition

This section introduces fundamental concepts related to liquid–solid phase
transitions. A phase in its most general sense is defined as a region in
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space with uniform physical and chemical properties (such as density and
composition). The stability of a phase j is quantified by its chemical potential
µj, which is a function of the state of the system, i.e., of temperature, pressure
and composition. A transition from one phase into another may proceed if
the chemical potential of the new phase is lower than that of the old phase.
This is discussed in more detail in Section 1.3.1. Section 1.3.2 explains the
phenomenon of nucleation, i.e., the onset of the formation of a new phase.

1.3.1 Thermodynamics

The driving force of a phase transition is quantified by the difference in
chemical potential between the old phase and the new phase. The driving
force of freezing, for instance, is the difference in chemical potential between
ice and the water in solution, termed ∆µ:

∆µ = RTln
(

aw

aeq
w

)
(1.1)

where R denotes the universal gas constant. Water activity is a convenient
quantity to express the driving force of freezing, because it is experimentally
accessible and because it provides a general means to account for the effect of
solution composition.[58–60] It is defined through the Schröder van Laar (SvL)
equation, which gives the equilibrium water activity aeq

w (T) as a function of
temperature, or conversely, the equilibrium freezing temperature Teq(aw) as
a function of the solution’s water activity aw:[61]

ln
(

aeq
w

)
=

∆H
R

(
1

Tm − 1
T

)
− ∆cp

R

(
ln
(

Tm

T

)
+ 1 − Tm

T

)
(1.2)

where ∆H is the latent heat of fusion of pure ice, ∆cp is the difference in heat
capacity between liquid water and ice, and Tm is the freezing point of pure
water, all to be evaluated at the relevant pressure level.

While the chemical potential difference provides the exact value of the
driving force, it is beneficial for practical applications to work with estimates
that are simpler to compute. Intuitively, the distance of the solution’s state
to the equilibrium can be expressed either (i) as difference of the activities,
i.e., ∆aw = aw − aeq

w (T), as typically used in the atmospheric sciences;[58–60]

or (ii) as difference of temperatures, i.e., ∆T = Teq − T, which is also called
degree of supercooling and is preferred in pharmaceutical applications.[19,62]

The expression for the chemical potential can be rewritten in terms of these
quantities when taking the appropriate simplifications:

∆µ = RTln
(

aw

aeq
w

)
≈ RT

aeq
w
(aw − aeq

w ) = α(T)∆a (1.3)
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∆µ = RTln
(

aw

aeq
w

)
≈ ∆H

Teq (T
eq − T) = β∆T (1.4)

As it can be seen, interpreting ∆µ as a function solely of ∆a requires (i) lin-
earization of the logarithm, and (2) neglecting the temperature-dependency of
the pre-factor α. In contrast, to arrive at the expression for ∆T, no linearization
is required, but the ∆cp term in the Schröder van Laar equation is neglected.
Hence, neither ∆T nor ∆a provide an exact quantification of the driving force,
however, their use may be justified by the fact that the temperature of a system
and the water activity in a solution can be easily measured.

Notably, the derivation carried out so far applies not only to freezing, but
also to crystallization from solution, if one replaces the properties of water
with those of the solute. A key concept used in crystallization is that of the
saturation ratio S, defined as the ratio of the solute’s activity in solution, a, and
the equilibrium value, aeq:[45,46]

S =
a

aeq =
cγ

ceqγeq ≈ c
ceq (1.5)

whereby the second equality relies on the concept that an activity can be
written as product of an activity coefficient γ, and of a concentration c. The
quantity ceq denotes the concentration at equilibrium, also called solubility.
The last equality follows when assuming that the ratio of the activity coef-
ficients at the solution’s state and at equilibrium is about one. If S > 1, the
solution is super-saturated and the crystalline phase is stable, so that crystal
nucleation and growth take place. If S < 1, the solution is under-saturated and
the crystalline phase dissolves over time.

From a process perspective, it is important to keep in mind that the chemical
potential difference must be generated by technical means – in the case of
freezing this typically requires cooling. In the case of crystallization, cooling
is just one out of many options, and indeed not always the preferred one, be-
cause the solubility of some compounds depends only weakly on temperature
(consider e.g., sodium chloride).[63] Alternative means to generate supersatu-
rated solutions are evaporation of the solvent (increasing the concentration
of the solute), or the addition of an anti-solvent (decreasing the solubility of
the solute).[45,46] This thesis, however, focuses on freezing and crystallization
processes that involve phase transitions by cooling.

1.3.2 Kinetics of nucleation

Nucleation denotes the onset of the formation of a new phase from a parent
phase. It is an activated process, which means that an energy barrier must
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be overcome to form a nucleus.[45,64] As a consequence, nucleation is an
intrinsically stochastic phenomenon, and this stochastic nature represents a
major theme in this thesis. The expected number of nuclei that form per unit
time in a system of finite size is given by the nucleation frequency, which can
be written as the product of three terms

K =

(
number of

sites

)(
frequency of

attempts per site

)(
probability of success

per attempt

)
(1.6)

whereby the first term, the number of sites, scales with the size of the system.
The other two terms are defined by the state of the system, i.e., temperature,
pressure, and composition. In particular, they are strong functions of the
thermodynamic driving force. To decouple the effects of system size and state,
one defines a nucleation rate J, which quantifies the expected number of nuclei
that form per unit time and per unit volume

K =
∫

V
J(x) d3x ≈ JV (1.7)

where one integrates the value of J over all positions x in the volume of interest
V to obtain K, which in case of a homogeneous system simplifies to K = JV.
In reality, where systems never are perfectly homogeneous, K = JV is only an
approximation, the accuracy of which has been studied in detail in Chapter 9

in the context of freezing. The Classical Nucleation Theory (CNT) provides a
family of kinetic rate expressions for J(S, T) as a function of super-saturation
and temperature based on the notion that nuclei are formed by the attachment
and detachment of molecules to molecular clusters, namely

J(S, T) = A(T)S exp
{
− B(T)

ln(S)2

}
(1.8)

where A and B are temperature-dependent parameters with physical meaning
as discussed elsewhere.[45,65] In practice, the values of these parameters are
challenging to predict and therefore often fitted to experimental data. It is
worth noting that CNT is deterministic, i.e., it does not consider the stochastic
nature of nucleation, and scale-independent, i.e., it does not consider that
nuclei form as discrete entities. The latter is important, because intuitively, a
system can only contain an integer number of crystals/nuclei; for instance, it
may contain zero, one, or two nuclei, but not a fraction of one.

To account for these properties in a physically consistent manner, nucleation
is interpreted as a stochastic process, where the expected number of nuclei
E(N) formed in a time interval [t, t + ∆t] is given as[22,66]

E(N) =
∫ t+∆t

t
K(t′)dt′. (1.9)
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If a set of conditions hold (see Chapter 10 for a detailed discussion), the
probability that k nuclei form during the time interval follows a Poisson
distribution and is given as

P(k) =
E(N)k

k!
exp {−E(N)} . (1.10)

This equation applies independent of the choice of rate expression for J in the
computation of K and E(N). In this thesis, I use the expression predicted by
CNT in studies on crystallization from solution. In the context of freezing I
instead rely on power law expressions of the thermodynamic driving force.
As demonstrated in Chapters 2 and 3, these expressions accurately describe
all relevant experimental trends, but come with lower computational costs,
which is useful for the process-scale freezing models described in Chapters 6

and 8.

In some scenarios, e.g., when freezing in vials or when measuring crystal
nucleation rates, one is particularly interested in the formation of the first
nucleus during an experiment. Such nucleus forms at the time tn1, which is
a continuous random variable. Its cumulative distribution function F(tn1) is
obtained as

F(tn1) = 1 − exp
{
−
∫ tn1

0
K(t′)dt′

}
= 1 − exp {−Ktn1} (1.11)

where the second equality applies for stationary conditions, i.e., for constant
temperature and supersaturation. In physical terms, F(t) denotes the fraction
of experiments in which the first nucleation event has happened between
the beginning of the experiment and a time t. If the first nucleation time is
measured in a large number of experiments, an empirical distribution can be
constructed and be used to estimate the value of K at the given experimental
conditions.[67,68] This approach relies on the notion that the formation of the
first nucleus is immediately detected, which is true in the case of freezing
in vials or in smaller volumes, where the ensuing ice crystal growth after
nucleation is rapid.[69]

For crystallization from solution, the situation is more complex, and it
was found beneficial to account for a delay between first nucleation and
detection.[67,68] This is done by introducing the detection time tdet as the sum
of the first nucleation time tn1 and of a growth time tg, as shown in Figure 1.4.
Hence, one obtains for stationary conditions (T, S)

F(tdet) = 1 − exp
{
− K(tdet − tg)

}
. (1.12)
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Figure 1.4 Schematic of the steps from a clear solution to the detection of a crystalline
suspension.

In this case both K and tg have to be estimated from experimental data. It
is important to note that only the value of K can be estimated using such a
method, but one does not obtain any direct information on the nucleation rate
J. While one may choose to use the relation K = JV, this may not be accurate,
as discussed before.

I conclude this section with a comment on the different types of nucleation
phenomena. Up to this point, nucleation was characterized by a nucleation
frequency that scales with the volume of a system. This holds for homoge-
neous primary nucleation, and for heterogeneous primary nucleation where the
nucleation sites are distributed evenly in the system. The term homogeneous
indicates that nucleation takes place in the absence of external surfaces such
as dust particles, whereas the term heterogeneous implies that nucleation sites
are located on external surfaces. Under standard laboratory conditions (i.e.,
not particulate-free), heterogeneous nucleation is considered to be dominant
at the milli-liter scale and above, with some ambiguity in smaller volumes.[70]

Because in principle all types of surfaces may promote heterogeneous nu-
cleation, including the walls of the crystallizer, it is difficult to predict how
sensitive the nucleation frequency is to changes in volume.[70] Furthermore,
one distinguishes between primary and secondary nucleation, whereby primary
nucleation describes the formation of nuclei from clear solution, which is what
was discussed until now.[71] Secondary nucleation, in contrast, denotes the
formation of new nuclei promoted by existing crystals, i.e., due to their attri-
tion or due to interparticle energies.[72] Such secondary nucleation plays a key
role in crystallization from solution, particularly in continuous crystallization
processes, where the supersaturation level is too low for primary nucleation
to take place.[45,50] Chapter 11 discusses in detail how secondary nucleation
in continuous crystallizers can be described mathematically.
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1.4 structure of the thesis

This thesis aims to deepen the mechanistic understanding of complex
manufacturing processes in the pharmaceutical industry that involve liquid–
solid phase transitions. It is divided into three parts, which represent three
lines of research that are closely linked to each other. Part I: Nucleation
of ice consists of four chapters that contain detailed investigations on the
rate of ice nucleation in the context of the freezing of aqueous solutions.
The findings from these studies are used to inform mechanistic models of
pharmaceutical freezing processes. The development of these models as well
as their validation with experimental data is outlined in Part II: Freezing
of pharmaceuticals, which also consists of four chapters. While these two
parts are centered on freezing and have been the focus during the early stages
of my doctorate, the underlying fundamental phenomena and modeling
methodology are of immediate relevance to crystallization from solution as
well. Part III: Crystallization systems hence reports three contributions
related to the design and understanding of crystallization processes that I
made throughout of my doctorate.

Part I: Nucleation of ice, comprises Chapters 2–5 that focus on the phe-
nomenon of ice nucleation. In Chapter 2, I report a methodology for measuring
the rate of ice nucleation in aqueous solutions on the milli-liter scale, which
was applied in Chapters 3 and 4 to elucidate the effects of solution composition
and of particulate impurities on the nucleation rate. The key accomplishment
of these three chapters lies in the validation of the first quantitative and mech-
anistic model that predicts the rate of ice nucleation in milli-liter volumes as a
function of both solution composition and temperature. To further elucidate
the effect of volume on ice nucleation, I initiated a collaboration with the
research groups of Prof. Andrew deMello and Prof. Ulrike Lohmann, both
at ETH Zurich, where we assessed the freezing process of aqueous solutions
using droplet microfluidics; the results of this collaboration are reported in
Chapter 5. Intriguingly, droplet microfluidics enabled the measurement not
only of nucleation temperatures, but also of melting points, glass transition
temperatures, and crystal growth rates, all of which are properties of interest
to the freezing of pharmaceuticals.

Part II: Freezing of pharmaceuticals, comprises Chapters 6–9, in which
I studied freezing and freeze-drying at process-scale. In particular, I have
developed a suite of mechanistic freezing models that consider both heat
transfer and the stochastic nature of ice nucleation. These models have been
made available to the public in the form of a python package termed SNOW,
short for Stochastic Nucleation of Water.[73] SNOW comprises three distinct
models. The first, presented in Chapter 6 is dedicated to shelf-scale simulations
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of the freezing stage in freeze-drying. The second model enables simulations
of vials stacked in three dimensions on a pallet and was used to investigate
the commercial freezing process of the Janssen COVID-19 vaccine, as reported
in Chapter 8. The third model, reported in Chapter 9, enables simulations
of the freezing process within a single container with spatial resolution; its
predictions were validated experimentally using the nucleation data reported
in Chapter 2. This model was used to identify process conditions under which
thermal gradients are negligible, hence verifying key assumptions made in
deriving the first two models. In addition to these models, I developed an
experimental setup to monitor a freeze-drying process on the shelf-scale using
an infrared camera, as outlined in Chapter 7; this setup was used to confirm
the predictive capabilities of the shelf-scale freezing model.

Part III: Crystallization systems, comprises Chapters 10–12 that report
three contributions related to crystallization. Inspired by the studies on ice
nucleation reported in Part I, I assessed the accuracy of two classes of ex-
perimental methods for the estimation of crystal nucleation rates through
the means of a novel modeling methodology, as discussed in Chapter 10.
Knowledge of nucleation rates is a prerequisite for the mechanistic design
of industrial crystallization processes: in Chapter 11, I conceived and for-
mulated a mathematical framework to describe the stability of steady states
in a continuous crystallizer based on a compound’s crystal growth, nucle-
ation, and withdrawal behavior. This framework is particularly useful to
describe the crystallization of systems with multiple solid forms – such as
polymorphic or chiral compounds, which are of great relevance to the manu-
facture of pharmaceuticals. Chapter 12, finally, provides a detailed analysis
of a specific chiral crystallization process. This process, termed solid-state
deracemization, describes the phenomenon that a crystalline suspension of
a chiral molecule experiences an increase in enantiomeric excess over time
up to an enantiopure final state, caused by various technical means such as
stirring or temperature fluctuations. Through a rigorous theoretical analysis
supported by experiments I could prove an exact condition for deracemization;
suspensions deracemize when the kinetics of crystal dissolution are faster
than those of crystal growth, which is true in general terms, hence explaining
the ubiquitous nature of this process.

The research presented in Parts I and II was carried out in the framework
of an industrial collaboration with The Janssen Pharmaceutical Companies of
Johnson & Johnson, as mentioned in Chapter 1.1. The industrial collaborators
provided me with engineering run data from the freezing process of the
Janssen COVID-19 vaccine, which supported the development the model
presented in Chapter 8. They further contributed to the study reported in
Chapter 4 by providing me with more than one thousand vials containing
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solutions of various compositions that were prepared under particulate-free
conditions. The research on crystallization presented in Part III has been
funded through the ERC Advanced Grant SNICC: Secondary Nucleation for the
Intensification of Continuous Crystallization that aims to elucidate the role of
nucleation phenomena in industrial crystallization processes.

The results reported in Chapters 2–12 have been published in peer-reviewed
journals,[74–81] with the exceptions of Chapter 4, where the associated article
is currently in preparation, and of Chapter 7, where the article is currently
under review and where a pre-print is available. A footnote at the begin-
ning of each chapter provides additional information on the corresponding
publications. The individual chapters are written as standalone works, i.e.,
they comprise distinct introduction, methodology, results, discussion, and
conclusion sections. Chapter 13 closes this thesis with a summary of the main
research findings and an indication of potential avenues for future work.





Part I

NUCLEAT ION OF ICE





2 CHARACTER IZ ING AND MEASUR ING
THE ICE NUCLEAT ION K INET ICS OF
AQUEOUS SOLUT IONS IN V IALS

The stochastic nature of ice nucleation presents a major challenge in freezing
and freeze-drying processes of biopharmaceuticals in vials. During freezing,
nucleation events occur in the vials of a batch at different times and tempera-
ture, which has to be accounted for in process design. This work paves the
way towards model-based freezing process design, by presenting a method
to estimate nucleation kinetic parameters and their uncertainty from exper-
imental data generated in a parallelized mid-throughput batch-crystallizer.
The methodology extends the conventional stochastic description of ice nu-
cleation by considering both the inherent stochasticity, and the variability
in heterogeneous nucleation sites among vials. Model validation revealed
a nearly quantitative agreement for the predictions of the extended model
with experimental data, and only a qualitative one for the conventional model.
While this work focuses on ice nucleation kinetics, the rigorous analysis of the
experimental uncertainty may also be of relevance for nucleation studies in
related fields, such as industrial crystallization.

2.1 introduction

Biopharmaceuticals commonly exhibit limited stability in aqueous solution
and require freezing or freeze-drying to meet shelf life targets.[41] Pharmaceu-
tical freezing and freeze-drying at commercial scale is carried out following
good manufacturing practice (GMP) in batches of vials that contain a single
or up to a few doses of a drug product.[20,41,74] A typical example for such
manufacturing process is the freezing of the Janssen COVID-19 vaccine, which
is carried out in pallets comprising tens of thousands of vials.[75]. Under these
conditions – low particulate content and vial fill volume on the millilitre scale

The work presented in this chapter has been reported in: Deck, L.-T.; Mazzotti, M. Characterizing
and measuring the ice nucleation kinetics of aqueous solutions in vials. Chem. Eng. Sci.. 2023, 272,
118531.
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– aqueous solutions generally experience pronounced supercooling before the
onset of ice formation.[19,21,41,43,75]

Freezing generally comprises two phases; first a cooling phase, during
which the material is liquid, and second a solidification phase, during which
ice is formed.[19–21,74] The first ice is formed via nucleation, which initiates
the ensuing solidification process within the entire vial. Ice nucleation is a
stochastic process,[19,25,26,82,83] implying that nucleation occurs at different
times and temperatures (i.e., levels of supercooling) when the freezing process
is repeated under identical conditions. The nucleation behavior of a drug
product is of great interest, since it affects both process and product design as
follows.

First, the ice crystal morphology in the frozen product is related to the nu-
cleation temperature, whereby lower nucleation temperatures lead to smaller
mean ice crystal sizes.[21,28,34,43] This is of importance in the case of pharma-
ceutical freeze-drying, where the drying kinetics depends on the ice crystal
morphology; smaller ice crystals lead to slower sublimation, thus prolonging
the process duration.[20,21,28,43] Since vials of the same batch may nucleate
at different temperatures, drying times vary across the batch as well; the
process duration, however, has to be chosen to ensure sufficient drying in all
vials.[28,41]

Similarly, the ice nucleation kinetics governs both process duration and
batch heterogeneity in the case of pallet freezing,[75] i.e., the freezing of a large
number of vials packed together in a pallet. If nucleation occurs at lower
temperatures, the process requires more time and may even fail to complete
at all for certain process temperatures.[75]

Finally, the stochastic occurrence of nucleation in a batch induces variability
in the thermal evolution of the vials in the neighborhood of the nucleation
event, due to the release of heat upon nucleation. This implies that the freezing
behavior of a vial depends on the random sequence of nucleation events of
other vials in the batch; a batch-scale modeling framework that takes into
account both the nucleation kinetics and the interaction among vials is thus
required to fully understand such a process.[74,75,84] The relevant modeling
approaches have recently been developed by us.[73–75]

Stochastic nucleation has been studied intensely in several research fields; of
special relevance for pharmaceutical freezing are works in the field of primary
nucleation of solutes and of melts in the context of crystallization,[66,68,85]

works on ice nucleation in microdroplets in the context of atmospheric
physics,[27,86,87] and works on ice nucleation in cryopreservation.[88,89] In
crystallization research, commercial devices are available for mid-throughput
measurements of nucleation kinetics in vials.[23,68] A customized version of
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such device is used in this work, building on our experience in the field of
crystallization.[22–24,90]

In the field of pharmaceutical freezing and freeze-drying, however, a quan-
titative characterization of ice nucleation kinetics in vials has not yet been
achieved, and only few works are dedicated to this topic.[40,62] This is likely
due to the large number of nucleation events that must be monitored for
such endeavor - in the field of primary crystallization of solutes a standard
of about one hundred data points has been established.[23,24,91] Furthermore,
it has to be ensured that the heat transfer in all monitored vials is identical
and reproducible across repetitions, which is inherently challenging in typical
freezing and freeze-drying equipment.[84,92]

In this work, we address the knowledge gap in pharmaceutical freezing
with respect to ice nucleation. We develop a novel approach to experimentally
measure nucleation temperatures in vials and to estimate kinetic parameters
based on the generated data. In Section 2.2, we present the experimental
methodology as well as the statistical approach towards parameter estimation.
In Section 2.3, we present our results. Finally, in Section 2.4, we discuss and
generalize our findings, and we draw the relevant conclusions.

2.2 methods

2.2.1 Phenomenology of stochastic ice nucleation

The stochastic nature of nucleation is widely acknowledged in the literature,
and of relevance for a variety of research fields and applications. In the context
of freezing in vials, one observes a rapid rise in temperature at the end of the
cooling phase, which is due to the latent heat released by ice formation upon
nucleation.[20,93] The time and temperature, at which this rise occurs, vary
upon repetitions of the process at identical conditions within the same vial,
and among different vials, indicating stochasticity.

Figure 2.1 reports a representative temperature curve from a cooling experi-
ment carried out in this work: the black line denotes the thermal evolution
measured by a thermocouple, while the blue line indicates the set-point
temperature. The nucleation event is identified through the sharp rise in tem-
perature. After nucleation, the temperature remains for some time close to the
equilibrium freezing temperature Teq

ℓ . This denotes the period of solidification,
during which most of the liquid water turns into ice, thus releasing latent
heat.[74,75] Under the given experimental conditions, i.e., for a vial containing
1 mL of 20 wt.% sucrose solution, the temperature rise was observed to take
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place in 1–2 s. This is in line with literature that reports growth rates of super-
cooled pure water on the order of 0.1 ms−1 at the typical range of nucleation
temperatures.[69] The experimental behavior is interpreted as single, primary
ice nucleation event followed by rapid crystal growth. This directly follows
from the observation that the vial spends several minutes (about 20 min for
the vial shown here) in a supercooled state, before crystal growth depletes
the supercooling within about a second. It is unlikely that further nucleation
events happen during the very short growth phase; the same holds for the
longer solidification phase, which takes place close to the equilibrium freezing
temperature. This phenomenon may also be verified visually: direct imaging
shows that freezing is initiated from a single point within the vial, from which
a cloud of rapidly growing ice expands.[20,28] The stochastic formation of the
first and single nucleus thus is responsible for the subsequent depletion of
supercooling via rapid growth, and for the observed variability in nucleation
time and temperature among vials and repetitions.
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Figure 2.1 Thermal evolution during cooling of a single vial containing 1 mL of 20

wt.% sucrose solution. Thermocouple readout is presented in black, the setpoint
temperature in blue. Equilibrium freezing temperature (magenta) and nucleation event
(red) are indicated. The nucleation event is followed by a rapid rise in temperature to its
equilibrium value, which corresponds to the release of latent heat during solidification.

Importantly, this manifestation of nucleation, where only a single nucleus
is formed, is a prerequisite to explain the observed stochasticity: the stochas-
tic nature of nucleation only induces an observable variability in process
attributes in case nucleation is a rare event.[68] Thus, whenever variability in
connection with stochastic nucleation is reported in literature, the underlying
mechanism involves either the formation of a single nucleus, or of a few nuclei;
such behavior was observed independently in the fields of solute nucleation
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in crystallization, in ice nucleation in microdroplets, in melt crystallization,
and eventually, in pharmaceutical freezing.[23,25,68,82,83,86,94]

2.2.2 Quantifying the frequency of nucleation events

Nucleation is characterized by the nucleation frequency K, which denotes
the expected number of nuclei formed per unit time in the system of inter-
est,[22,74] in this case a vial containing an aqueous solution. While we refer
in this work generally to aqueous solutions, the methodology is agnostic to
the type of mixture studied. The approach presented here may be applied to
suspensions and emulsions as well. The cumulative probability F(t) that a
vial in the liquid state experiences nucleation in a time interval [0, t] follows
an inhomogeneous Poisson distribution and is defined as

F(t) = 1 − exp
{
−
∫ t

0
K(t′)dt′

}
(2.1)

whereby K varies over time: K depends on temperature, which is set to
decrease during freezing. Since nucleation is an activated process,[22,82,83] i.e.,
an energy barrier has to be overcome to form a nucleus, the expression for K
comprises three contributions, namely

K =

(
number of

sites

)(
frequency of

attempts per site

)(
probability of success

per attempt

)
(2.2)

The number of nucleation sites depends on the type of nucleation that domi-
nates the process. Nucleation may be either homogeneous, where nuclei are
formed without interaction with any surface, or heterogeneous, i.e., induced
by the presence of surfaces. In the case of homogeneous nucleation, the
number of sites scales with volume, since every water molecule conceptually
represents a site.[83] For heterogeneous nucleation, the relevant type of sur-
face is not known a priori. In case of solute crystallization, it is commonly
found that in vials at the millilitre scale nucleation is slowed down when
filtering.[95,96] This indicates that under these conditions nucleation occurs
heterogeneously, specifically on surfaces provided by impurities within the
solution. Similarly, Searles et al.[43] reported lower ice nucleation tempera-
tures for solutions prepared in a laminar flow hood, compared to standard
laboratory conditions. Assuming a uniform spatial distribution of impurities
within the fill volume, the number of nucleation sites scales with volume also
for heterogeneous nucleation.[74,95,96]

The frequency of attempts per site corresponds to a kinetic factor that scales
with the diffusivity of the molecules of the substance that nucleates.[83] The
probability of success, on the other hand is a function of the thermodynamic
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driving force Teq − T. The term Teq − T is commonly referred to as supercool-
ing, whereby Teq denotes the equilibrium freezing temperature of the solution
to be frozen.

Nucleation is commonly described in the framework of the classical nu-
cleation theory (CNT), which links the aforementioned terms with physico-
chemical properties of the solution, such as the interfacial tension between
the nuclei to be formed and the solution.[82,83] In the field of pharmaceutical
freezing, however, power law expressions are commonly applied.[40,62,74] We
thus use a power law expression in this work as well, and we note that the
presented methodology is applicable to any arbitrary functional form for K. K
is defined as

K(t) = V J(t) = Vkb(T
eq − T(t))b (2.3)

where kb and b are two empirical and temperature-independent parameters,
which have to be inferred from experimental data. Eq. 2.3 assumes a uniform
temperature within the entire vial. If thermal gradients are present, they locally
affect the nucleation frequency. Given that solutions in freezing processes
are not stirred, such gradients are likely to form and potentially to affect the
observed nucleation temperatures. In case the temperature field T(x, t) at all
positions x within the vial is known, the value of K(t) may be obtained by
integrating the nucleation rate per unit volume J(x, t) over the fill volume:

K(t) =
∫

V
J(x, t)d3x =

∫
V

kb(T
eq − T(x, t))b d3x (2.4)

2.2.3 Experimental setup

In the field of crystallization, stochastic nucleation is commonly studied
in parallelized batch crystallizers.[23,70,95,97] These devices enable highly au-
tomated mid-throughput measurements under comparably consistent and
reproducible process conditions. A commercial device used in the literature
for such studies is the Crystal16 (Technobis Crystallization Systems); the ex-
periments presented in this work were carried out in such instrument, which
was customized to our specifications. Photos of the experimental setup are
provided in Section 2.5.1. The device comprises 16 reactors arranged in four
blocks (labeled A,B,C,D), whereby each reactor may hold a vial of 11.6 mm
outer diameter that allows for fill volumes of up to 1.5 mL. Each reactor
block comprises an internal temperature sensor that is used to control the
temperature profile during experiments. The temperature sensors were re-
calibrated by the manufacturer before the start of the experimental work. In
addition, each vial is independently equipped with a thermocouple (K-type,
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Inconel 600, certified by Picolog, sampling interval 1s) and a transmissivity
sensor. For a more detailed description of the sensing equipment, we refer
to earlier work of the group.[23] Here, we emphasize that both thermocouple
and transmissivity sensor enable the detection of nucleation events. While the
thermocouple data is used throughout the main body of the work, the use of
transmissivity sensors as non-invasive alternative is discussed in Section 2.3.5.

The customizations of the Crystal16 device include the integration of a
chilled cooling system. The cooling system enables operation down to −25°C
in all four reactor blocks in parallel. To do so, a thermostat (Huber unistat 430,
set to −10°C) has been directly connected to the Crystal16. A lower setpoint
temperature in the thermostat would enable a lower minimum temperature in
the Crystal16, however this was not required for the experimental campaign
presented in this work. An important feature of the chilled cooling system
is that its cooling capacity is sufficiently large to remove the latent heat of
ice formation without heating up the neighboring vials. It is worth noting
that preliminary experiments without additional cooling system revealed that
freezing in one vial of the reactor block would heat up the neighboring vials,
since the standard cooling system was unable to sufficiently remove the latent
heat of solidification. This phenomenon was studied recently,[74] and it was
found to significantly affect the thermal evolution profiles under a broad range
of conditions. The capability to remove the latent heat of solidification in short
time thus must be considered a necessary prerequisite of any parallelized
experimental setup for ice nucleation studies.

2.2.4 Experimental campaign

The experimental campaign aims to establish and to assess a methodology
for the estimation of ice nucleation kinetics in the context of pharmaceuti-
cal freezing and freeze-drying. In line with typical solutions used in the
field,[40,74,93]

1 mL aqueous sucrose solution was selected as model system.
Preliminary experiments revealed that the concentration range from pure
water to 40 wt.% sucrose is experimentally accessible, so we focus here on
the center of this range, i.e., on 20 wt.% sucrose solution. All experiments
comprise freeze-thaw cycles, whereby the temperature is firstly decreased
from +20°C to −25°C at a constant cooling rate, and then increased again to
+20°C as fast as possible. Before initiating a new cycle, the temperature is
held at +20°C for 10 minutes. Each experiment comprises twelve freeze-thaw
cycles and sixteen vials, of which fifteen (Vials A1 to D3) are equipped with
thermocouples. The remaining thermocouple was used to record the ambient
temperature. We note that preliminary experiments revealed the minimum
achievable temperature to be a function of the ambient temperature. Measure-
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ments of the ambient temperature thus were used to rationalize variabilities
in minimum temperature. For the experiments reported in this work, the
cooling capacity was set sufficiently high to ensure that this variability does
not affect the nucleation temperature measurements. The chosen number
of cycles ensures that every experiment comprises enough nucleation events
to be statistically relevant, in line with typical data set sizes in the crystal-
lization literature.[23,24,91] Every experiment was carried out at least three
times, whereby we refer to a single repetition of an experiment as Series. The
campaign comprises the following experiments:

1. Series 1–4: Cooling rate of 0.6 Kmin−1; discussed in Sections 2.3.1, 2.3.2,
2.3.3 and 2.3.5 .

2. Series 5–7: Alternating cycles (12 each) with cooling rates of 0.6 Kmin−1

and of 0.2 Kmin−1; discussed in Section 2.3.4.

3. Series 8–10: Cooling rate of 0.6 Kmin−1, without thermocouples inserted;
discussed in Section 2.5.3.

4. Series 11–13: Cooling rate of 0.6 Kmin−1, without thermocouples in-
serted and with plastic vials instead of glass vials; discussed in Section
2.5.3.

The cooling rate of 0.6 Kmin−1 was chosen to reflect typical values in phar-
maceutical freeze-drying, which are in the range of 0.1-1.0 Kmin−1.[41] For
all experiments, the same experimental protocol was applied: before use, all
glassware and thermocouples were cleaned with deionized water (Millipore,
Milli-Q Advantage A10 system), then with acetone, then three times again
with deionized water. Fresh sucrose stock solutions were prepared for every
experiment by weighing 10 g of sucrose (Sigma-Aldrich, BioXtra grade, >
99.5% purity) and filling with deionized water to a total mass of 50 g. The
stock solution was filtered (0.22 µm hydrophilic PTFE syringe filter) and
filled into glass vials (Lab Logistics Group GmbH, 1.5 mL) via a 100-1000

µL pipette (Socorex Acura 825). In some experiments, plastic vials (Thermo
Fischer Scientific, 1.5 mL, polypropylene) were used instead of glass vials. All
sample preparation steps were carried out under standard laboratory condi-
tions, i.e., not under sterile conditions. This is important, because preliminary
experiments indicated that aged sucrose solutions exhibit higher nucleation
temperatures. We attribute this to the formation of biomass following bacte-
rial growth. After overnight resting at ambient temperature, sucrose solution
contained visible biomass. Thus, freshly prepared solutions were used in
all experiments. If sterile conditions are required, one may carry out the
sample preparation in a laminar flow hood, which may affect the nucleation
behavior.[43]
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2.2.5 Parameter estimation and statistical data analysis

A main objective of this work is the estimation of nucleation parameters
using the method described in this section. The relationship for the nucle-
ation frequency provided in Eqn. 2.3 is used as starting point for parameter
estimation. A more complex version of Eqn. 2.3 that considers a variability
in heterogeneous nucleation sites among vials will be derived as well. With
respect to the temperature evolution within the vials, we assume that the tem-
perature profile in the supercooled regime follows precisely the predefined
cooling rate γ:

T(t) = Teq − γt (2.5)

whereby Teq denotes the equilibrium freezing temperature of the solution,
which may be computed using the expression derived by Blagden in 1788:[98]

Teq = Tm − kf
Ms

(
ms

mw

)
(2.6)

where Ms is the molar mass of the solute, ms its mass in solution, kf the
cryoscopic constant of water, Tm its melting point, and mw its mass in solution.
This equation provides a value Teq = −1.35°C for the studied 20 wt.% sucrose
solution. For the thermal evolution given by Eqn. 2.5, the integral in Eqn. 2.1
can be calculated explicitly as

F(T) = 1 − exp
{
− kbV

γ(b + 1)
(Teq − T)b+1

}
(2.7)

where F(T) denotes the cumulative probability (CDF) that a vial nucleates
between the equilibrium freezing temperature and an arbitrary temperature
T during cooling. Equation 2.7 links the set of kinetic parameters (b, kb)
with the distribution of nucleation temperatures. It may be applied in a
stochastic manner to simulate random sets of nucleation temperatures for
comparison with the experimental data. To do so, stochastic values of F(T)
are generated by drawing random numbers from the uniform distribution
in [0,1]. The corresponding nucleation temperatures may then be computed
via Eqn. 2.7. Similar approaches were recently implemented by Maggioni
and Mazzotti[22] to simulate the stochastic formation of primary nuclei in
crystallization processes, and by Deck et al.[74,75] to simulate the freezing
process of biopharmaceuticals. With respect to the experimental data, we
define an empirical cumulative distribution function (eCDF) F∗(T) as follows

F∗(T) =
N̂tot(T)
Ntot + 1

(2.8)
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for an experimental data set that comprises Ntot nucleation temperatures. We
note that Ntot = NcNv, since the chosen experimental strategy ensures that
nucleation occurs in all Nv vials in all Nc cycles. N̂tot(T) denotes the number
of nucleation events that experimentally occurred within the temperature
interval [Teq, T] out of the Ntot measured events. We underline that this
definition of F∗(T) differs from those provided in literature in one aspect,
i.e., it contains a division by Ntot + 1, while literature expressions generally
involve a division by Ntot.[23,24,68,97] To appreciate the difference between the
two approaches, let us consider an eCDF comprising just one data point. The
definition in Eqn. 2.8 attributes this data point a probability of 0.5, while
the literature approach results in a probability of 1. Considering Eqn. 2.7, a
probability of 1 is only achievable in case the exponential term approaches zero,
which corresponds to an infinitely low value of the nucleation temperature.
To avoid this non-physical behavior, we rely on the definition provided in
Eqn. 2.8. It should be noted that this consideration is of general validity; we
recommend to use this definition also in works related to nucleation of solutes
in crystallization, for both isothermal and polythermal experiments.[78] Given
the large data sets applied in these literature studies,[23,24,68,97] we posit that
this non-physical behavior simply has been overlooked so far.

Parameter estimation in the context of stochastic nucleation is typically car-
ried out by minimizing the difference between theoretical CDF and eCDF,[23,24]

i.e., by identifying the set of parameters (b,kb) that minimizes an objective
function of the form

min
b,kb

Ntot

∑
j=1

(F∗(Tj)− F(Tj))
2. (2.9)

where Tj indicates the temperature at which the j-th nucleation event has
been measured when arranging all experimental nucleation temperatures in
descending order. This approach is based on the Glivenko-Cantelli theorem
which states that the eCDF approaches the theoretical CDF in the limit of an
infinitely large sample size:[99]

lim
Ntot→∞

(
sup

1≤j≤Ntot

(F∗(Tj)− F(Tj))

)
= 0 (2.10)

Consequently, one expects an ideal agreement between model predictions
and experimental data, if Ntot is sufficiently large. In previous works of
our research group, this approach was applied to estimate the number of
experiments that are required to compute the nucleation kinetics with a
certain accuracy.[23,24] Here, we emphasize one of the underlying assumptions
of this approach, namely that the Ntot measured nucleation temperatures are
identically and independently distributed. As discussed in Sections 2.3.2 and
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2.3.3, this assumption was found to be invalid in this work, since the measured
nucleation temperatures exhibited a statistically significant variability among
vials. When the eCDF is subject to such additional variability, which is not
caused by the inherent stochasticity of nucleation, the agreement between
CDF and eCDF is no useful criterion for parameter estimation. For this
reason, an alternative approach to parameter estimation was developed in
this work, derived from the method of moments estimator. For a model
with M parameters to optimize, we define an objective function based on
M characteristic quantities of the distribution. For the 2-parameter model
described here, we base the optimization on the mean nucleation temperature
T̄tot and the total variance σ2

tot, which is defined as

σ2
tot =

1
Ntot − 1

Ntot

∑
j=1

(Tj − T̄tot)
2 (2.11)

The objective function then is

min
a,b

( T̄tot,exp − T̄tot,sim

T̄tot,exp

)2

+

(
σ2

tot,exp − σ2
tot,sim

σ2
tot,exp

)2
 (2.12)

whereby a and b are the chosen response variables, with a = − log10(kb).
Building on previous experience,[22] we apply the derivative-free MATLAB
routine fminsearch to minimize the objective function; fminsearch is based on
the Nelder-Mead Simplex method.[100]

When estimating model parameters from experimental data, an assessment
of their uncertainty is of utmost interest in order to ensure that conclusions are
drawn with statistical significance. Literature works on ice nucleation in the
context of pharmaceutical freezing do not yet provide such information,[40,62]

thus necessitating the development of a novel method to do so. We developed
the following procedure to infer confidence intervals of the parameters subject
to a significance level α via stochastic simulations:

1. Computation of the optimal parameter values for an experimental data
set with Nv times Nc data points.

2. Stochastic simulation of a large number of data sets (i.e., 1,000 times)
with Nv times Nc data points.

3. Computation of the value of the objective function for these data sets.

4. Exclusion of the fraction α of data sets that correspond to the highest
values of the objective function.

5. Computation of the optimal parameter values for the remaining data
sets.
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6. Identification of the smallest and largest values for each parameters;
these values correspond to the boundaries of the confidence interval.

In this work, a significance level of α = 0.1 is used. In general, a smaller
value of α leads to broader confidence intervals. Values of 0.05 and 0.2 were
considered as well, but are not shown explicitly, since they did not affect any
of the conclusions.

2.2.6 Accounting for additional experimental variability

Experimental variability that goes beyond the one induced by the inherent
stochasticity of nucleation is commonly observed in studies on nucleation rate
measurements. However, it is rarely investigated in detail due to numerous
potential sources of experimental error.[23,24,97] One may classify the main
sources of experimental variability as follows:

1. Variability in operating conditions: This comprises variability in temper-
ature and concentration among vials and among repetitions.

2. Variability in growth time (period between nucleation and detection)
among vials and among repetitions.

3. Variability in nucleation frequency: K is governed by both volume and
nucleation rate, thus differences in these two quantities may contribute
to variability in nucleation temperatures among vials.

Their relevance is discussed in the following for freezing in vials. Regarding
variability in operating conditions, some differences in absolute temperatures
were indeed observed among vials during cooling, as illustrated in Figure
2.2(b). These differences were on the order of 1 K, and they were found
not to affect the effective cooling rate in the supercooled region; this is, all
vials precisely followed the pre-defined cooling profile, but they did so with
different lag times. A variability among vials in temperature only impacts
nucleation if the effective cooling rate differs among vials (see e.g., Equation
2.7), whereas a mere delay of the cooling ramp is irrelevant. Hence, the
observed temperature differences are of no concern for this study, as long
as the temperature is measured accurately. We thus consider the accuracy
of the thermocouples: when comparing the maximum temperature in a vial
after nucleation, which is considered deterministic, all fifteen thermocouples
reported values within a range of 0.3 K. This is smaller than the observed
differences among vials, indicating that alternative factors such as minor
position-dependencies in heat transfer contribute to them.

With respect to concentration, no relevant effects on the nucleation behavior
are expected; solute concentration affects the ice nucleation behavior via its
effect on the equilibrium freezing temperature. For the studied solution,
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a deviation of for example 0.1 wt.% would be connected to a change in
equilibrium temperature on the order of 0.01 K, i.e., it is of no practical
relevance.

Regarding variability in growth time, the post-nucleation temperature rise
was found to take place for the model system over the course of 1–2 s; the
contribution of the growth rate towards the observed variability thus is to be
considered negligible. This is in contrast to studies on solute nucleation in the
field of crystallization, where growth may be considerably slower.[22,24,68,95]

What remains is the variability in nucleation kinetics among vials. Vials
were filled with a pipette with a precision of ± 0.5 µL, amounting to a
relative error in fill volume of 0.05%. Variability in fill volume thus may
be considered negligible as well. For smaller volumes, as typically used
in microfluidic crystallizers, such contribution may be more relevant. The
theoretical framework to take into account such variability in volume was
derived recently.[90,101]

In this work, we apply a similar approach to a variability in the nucleation
rate. Such variability may stem from a variability in number and in activity of
heterogeneous nucleation sites among vials; it is widely reported with respect
to ice nucleation in the literature, however, mainly for freezing experiments in
micro-droplets.[25,82,86,94] To the best of our knowledge, such effect has not yet
been investigated in detail at the vial-scale, neither with respect to freezing,
nor in the context of solute nucleation in crystallization.

We rely on the following assumptions to model the variability in nucleation
rate, in line with the relevant literature:[25,43,82,86,94–96]

1. Ice nucleation occurs heterogeneously in all vials for all repetitions.

2. All nucleation sites have the same activity. Their number may vary
among vials, but not among freeze-thaw cycles.

3. The nucleation frequency of a vial comprises the contributions of all its
nucleation sites.

Let us apply these assumptions to the selected functional form of K (Eqn.
2.3): the pre-factor kb is expected to vary among vials due to the variability in
number of sites. The power parameter b, however, is vial-independent, since
it depends only on the activity of the individual nucleation sites. Following
literature on ice nucleation in microdroplets,[82,86] we impose a log-norm
distribution for the pre-factor:

log10(kb,v) = −(a + ξvc) (2.13)

whereby kb,v is the vial-dependent pre-factor, which comprises a part that is
independent of the vial, characterized by parameter a, and a vial-dependent
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one, given by c; ξv is a number randomly drawn from the standard normal
distribution. Note that the previously discussed vial-independent model is
obtained by setting ξvc = 0. The vial-dependent model thus may be interpreted
as the generalized form of the vial-independent model. Indeed, in case only a
single vial is studied, the two models are equivalent.

The more complex functional form of the vial-dependent model necessitates
an adjustment to the parameter estimation approach. To quantify both the
inherent stochasticity and the vial-to-vial variability, we interpret the total
variance as combination of two contributions: the internal variance σ2

int (i.e.
variability within a vial) and the external variance σ2

ext (i.e. variability among
vials). The objective function for the parameter estimation thus is given as

min
a,b,c

( T̄tot,exp − T̄tot,sim

T̄tot,exp

)2

+

(
σ2

ext,exp − σ2
ext,sim

σ2
ext,exp

)2

+

(
σ2

int,exp − σ2
int,sim

σ2
int,exp

)2
(2.14)

whereby the internal variance σ2
int,v for an individual vial v is defined as:

σ2
int,v =

1
Nc − 1

Nc

∑
j=1

(Tv,j − T̄v)
2 (2.15)

The internal variance for the entire data set is then obtained via

σ2
int =

1
Ntot − 1

Nv

∑
v=1

Nc

∑
j=1

(Tv,j − T̄v)
2. (2.16)

The external variance σ2
ext, on the other hand, denotes the variance in the vial

mean nucleation temperatures T̄v across the set of Nv vials in an experiment.
It is thus defined accordingly as

σ2
ext =

1
Nv − 1

Nv

∑
v=1

(T̄v − T̄tot)
2. (2.17)

2.3 results

We present experimental results for freeze-thaw cycling of 1 mL 20 wt.%
sucrose solutions as well as for the related nucleation parameter estimation. In
Section 2.3.1 we study the phenomenology of the observed thermal evolution
profiles, and of the obtained nucleation temperatures. We estimate kinetic
parameters from the experimental data in Section 2.3.2 based on the vial-
independent model and in Section 2.3.3 based on the vial-dependent model;
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for both models we critically assess the validity of the underlying assump-
tions. The models are further validated by comparing their predictions for
experiments at various cooling rates with experimental data in Section 2.3.4.
Finally, Section 2.3.5 presents and discusses an alternative method to detect
nucleation events in a non-invasive manner via transmissivity measurements.
This method is used to conduct a root cause analysis into the dominant type
of the heterogeneous nucleation sites.

2.3.1 Phenomenology of freezing

Figure 2.2 presents the results for one out of four experimental series
(i.e., Series 4) at a cooling rate of 0.6 K min−1 involving 15 vials and 12

cycles. Panel (a) shows the thermal evolution of the vial in position A1

during the experiment; the magenta line indicates the equilibrium freezing
temperature and the red markers visualize the time and temperature of the
nucleation events. Nucleation is identified based on the thermal spikes up to
the equilibrium freezing temperature. This is shown in more detail in panel
(b), which highlights the thermal evolution of the four vials in the A-block
during the first cycle: upon nucleation, the temperature remains close to the
equilibrium value for several minutes, until most of the water is solidified.
Furthermore, nucleation occurred at different times and temperatures for the
four vials, thus illustrating the variability of the process.

With respect to variability, panels (c,d) present scatter plots of all nucle-
ation events (i.e., of all 15 vials and of all 12 cycles) measured during the
experimental Series 4; they are shown in panel (c) grouped by vial, and in
panel (d) grouped by cycle. As seen in panel (c), significant variability in
nucleation temperatures is observed among vials. The vial in position A1, for
example, nucleated consistently at lower temperatures than vial B3. When
analyzing a larger body of experimental data, this variability among vials
was found to be independent of reactor block, and of vial position in general.
Such finding is of great relevance, since the conventional, vial-independent
modeling framework does not consider such variability (cf. Section 2.2). With
respect to variability among cycles (panel (d)), no significant cycle-to-cycle
variability could be observed. This was found for all experiments carried out
in this work. The absence of cycle-to-cycle variability implies that the number
and activity of heterogeneous nucleation sites remains constant over time,
which is a prerequisite for applying the stochastic models. Keeping in mind
potential issues and limitations due to vial-to-vial variability, we proceed with
parameter estimation.
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Figure 2.2 Experiment with constant cooling rate (Series 4). (a) Thermal evolution for
the vial in position A1 during the entire experiment comprising 12 freeze-thaw cycles.
(b) Zoom-in into the first cycle. The thermal evolution of the four vials in reactor block
A is shown. (c) Scatter plot of nucleation temperatures (red), sorted by vial. The green
letters indicate the reactor block. In each block, vials are sorted in ascending order, i.e.,
starting with the vial in position 1. Note that the vial in position D4 was not equipped
with a thermocouple. (d) Scatter plot of nucleation temperatures, sorted by cycle.

2.3.2 Vial-independent parameter estimation

Parameter estimation is based on four repetitions of the experiment at 0.6
Kmin−1, referred to as Series 1–4. Figure 2.3 presents the empirical cumulative
distributions, both for the individual series (panel (a)), and for the combined
set (panel (b)). Nucleation parameters were estimated (cf. top part of Table
2.1), and the simulated CDF for the combined data set is shown in panel
(b); simulation and experiments are in quantitative agreement. A similar
agreement was observed when fitting the individual Series (not explicitly
shown).
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Figure 2.3 Empirical and simulated cumulative distributions for the studied sucrose
solution. (a) Cumulative distributions of the individual Series. Each experiment
comprises 15 vials with 12 cycles. Series 4, indicated in red, is presented in detail in
Figure 2.2. (b) Combined data set comprising the four series, i.e., a total of 60 vials with
12 cycles. The black line indicates the experimental data, while the orange line shows
the model predictions for the optimized set of parameters.

A closer investigation of Figure 2.3(a) reveals some variability among the
individual series that may warrant further analysis. This is especially true
for Series 2 (violet), for which nucleation events in average occurred earlier.
Figure 2.4 presents all experimentally measured nucleation temperatures of
the four series, and it shows that Series 2 experienced fewer nucleation events
at extreme temperatures than the other series. Series 4, on the other hand,
contains both the vial with the highest mean nucleation temperature, and
the one with the lowest. In general, and in line with the observations in
Section 2.3.1, statistically significant variability among vials is observed in the
experimental data.

Consequently, further analysis is required to determine whether this vari-
ability among vials goes beyond the inherent stochasticity of nucleation. We
do this in two ways. First, we consider the uncertainty in the optimized
parameter values for the four individual series (see top part of Table 2.1); the
confidence intervals for three of the four experimental series overlap, however,
this is not the case for Series 2 (violet, cf. Figures 2.3(a) and 2.4). This implies
that the empirical distribution of this experiment is statistically unlikely to
be drawn from the same underlying distribution as the other series. This
implies either that the experimental measures to ensure reproducibility were
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insufficient, or that there is an additional source of variability that is not (yet)
considered in the stochastic model.

Figure 2.4 Experimental nucleation temperature data for Series 1–4, grouped by vial.
The color-coding refers to the individual experimental Series. Series 4, in red, is
presented in detail in Figure 2.2.

To test the latter hypothesis, we quantified the internal (within-vial) and
external (vial-to-vial) variabilities of the entire data set, as introduced in
Section 2.2.6. To this end, Figure 2.5 reports three distributions for both model
predictions (red and blue) and experimental data (black). Panel (a) shows
the distribution of nucleation temperatures, while panel (b) illustrates the
distributions of vial mean nucleation temperatures, as a measure of variability
among vials. Panel (c) reports the within-vial variance, as a measure of
variability within vials.

Let us first consider the external variability in panel (b). As it can be seen, the
vial-independent model considered here predicts a more narrow distribution
compared to the experimental data. In fact, the experimental distribution is
significantly broader than the simulated one: a total of one million vials with
12 cycles were simulated to generate the curve for the vial-independent model,
whereby the highest simulated vial mean nucleation temperature was −12.4°C;
however, 3 out of 60 vials in the experiments nucleated in average at even
higher temperatures. This implies that an additional source of experimental
variability is present that induces vial-to-vial variability, independent of and
in addition to the inherent stochasticity of nucleation.
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Figure 2.5 Agreement between experimental data (black) and the vial-independent
(red) as well as vial-dependent (blue) model predictions. (a) Total variability, i.e., the
cumulative distributions. (b) External variability, i.e., variability in mean nucleation tem-
perature among vials. (c) Internal variability, i.e., variability in nucleation temperatures
within individual vials.

Next, we consider the internal variability in panel (c). The simulated within-
vial variance is significantly larger than the experimental one: 47% of the
simulated vials exhibit a variability larger than the highest experimentally
measured value. This again implies that the vial-independent stochastic model
is unable to describe the variability observed in the experimental data. To this
end, we introduce the notion of vial-dependency in Section 2.3.3.

2.3.3 Vial-dependent parameter estimation

The vial-independent model was found to over-predict the within-vial
variance, while under-predicting the variability among vials. This implies
that part of the total variability in nucleation temperatures stems from a vial-
dependence of the nucleation frequency. To quantify such effect, we apply the
vial-dependent modeling framework that was proposed in Section 2.2.6. The
computed kinetic parameters and their uncertainty are provided in the top
part of Table 2.1.
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Series & Method a b c
1 (TC, green), indep. 10.4 (8.5, 12.7) 12.7 (11.1, 14.8) -
1 (TC, green), dep. 22.1 (16.6, 27.8) 23.5 (18.5, 28.5) 0.80 (0.43, 1.22)
2 (TC, violet), indep. 16.6 (13.9, 20.0) 18.6 (16.3, 21.7) -
2 (TC, violet), dep. 29.4 (23.1, 36.8) 30.5 (24.9, 36.9) 0.69 (0.35, 1.06)
3 (TC, blue), indep. 8.2 (6.6, 10.2) 9.3 (10.7, 12.5) -
3 (TC, blue), dep. 20.9 (15.7, 27.3) 22.4 (17.8, 27.8) 0.93 (0.51, 1.37)
4 (TC, red), indep. 6.8 (5.4, 8.5) 9.4 (8.2, 10.9) -
4 (TC, red), dep. 26.9 (20.7, 34.7) 27.8 (22.6, 34.2) 1.39 (0.67, 2.28)
1–4 (TC), indep. 9.5 (8.6, 10.5) 12.0 (11.2, 12.8) -
1–4 (TC), dep. 24.2 (21.2, 28.0) 25.5 (23.0, 28.8) 0.96 (0.67, 1.24)
1–4 (TM), indep. 10.3 (9.4, 11.4) 12.1 (11.3, 13.0) -
1–4 (TM), dep. 29.0 (25.7, 33.4) 28.6 (25.8, 32.4) 1.08 (0.77, 1.43)
1–4 (TM, corr), indep. 8.2 (7.4, 9.1) 10.8 (10.0, 11.5) -
1–4 (TM, corr), dep. 24.3 (21.3, 28.2) 25.6 (23.0, 28.9) 1.08 (0.80, 1.36)
5–7 (TC, fast), indep. 10.3 (9.3, 11.6) 12.7 (11.8, 13.8) -
5–7 (TC, fast), dep. 23.0 (18.5, 26.5) 24.3 (20.3, 27.4) 0.83 (0.53, 1.11)
5–7 (TC, slow), indep. 11.5 (10.4, 12.8) 13.3 (12.4, 14.5) -
5–7 (TC, slow), dep. 29.0 (25.2, 33.2) 29.3 (25.9, 33.2) 1.00 (0.64, 1.37)

Table 2.1 Computed model parameters for the seven experimental series discussed in the main body
of this work. Parameters were estimated for both vial-independent (indep.) and vial-dependent
(dep.) modeling methodologies. They correspond to the power law provided in Equation 2.3, i.e.
K = Vkb(Teq − T)b . We note that log10(kb,v) = −(a+ ξvc), as discussed in Equation 2.13. Nucleation
was detected either via thermocouples (TC) or via transmissivity sensor (TM). All experiments
involved a cooling rate of γ = 0.6 Kmin−1, except for Series 5–7 with slow cooling (γ = 0.2 Kmin−1).
All confidence intervals are based on 1000 stochastic simulations and a significance level of 10%.

Let us first consider Figure 2.5, where the blue lines show the predictions of
the vial-dependent model. When considering only the total variability (panel
(a)), both the vial-dependent and the vial-independent modeling approaches
provide a quantitative agreement. This implies that the cumulative distribu-
tion of nucleation temperatures alone is not a proper measure to validate
the stochastic model and to estimate kinetic parameters, since the values of
the optimized parameters are very different for the two models. While the
vial-independent model fails to describe both external and internal variabil-
ity (panels (b,c)), the vial-dependent model quantitatively agrees with the
experimental data in terms of external variability. With respect to internal
variability, we find a rather satisfactory agreement, which represents a signifi-
cant improvement compared to the vial-independent model. These findings
confirm that the vial-dependent model provides a superior description of the
experimental variability.
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Figure 2.6 Comparison of experimental and simulated nucleation temperatures. Vials
are sorted in the order of ascending mean nucleation temperature. (a) Experimental
observation. (b) Stochastic simulation using the vial-dependent approach. The vial-
dependency was simulated by sampling equidistant quantiles from the standard normal
distribution when computing ξv. (c) Stochastic simulation using the vial-independent
approach.

To appreciate the differences between the two models, let us directly com-
pare the experimentally measured nucleation temperatures with simulated
data. Figure 2.6 reports the combined experimental data of Series 1–4 (black)
and stochastic simulations based on the optimized parameters for both vial-
dependent (blue) and vial-independent (red) models. For the stochastic
simulations, a data set of 60 vials with 12 cycles was simulated with both mod-
els, corresponding to the size of the experimental data set. The data sets are
grouped by vials and arranged in the order of ascending vial mean nucleation
temperature. As it can be observed with the naked eye, the vial-dependent ap-
proach (panel (b)) agrees more closely with the experimental data (panel (a)):
it accurately captures the presence of both internal and external variabilities.
The simulations by means of the vial-independent model (panel (c)), however,
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only exhibit very little variability among vials, and overestimate the internal
variability; this is in line with the findings reported in Figure 2.5.

While the analysis so far has been focused on the combined data set of
Series 1–4, it is worth highlighting that the vial-dependent model also provides
additional insights with respect to the individual experimental series. When
considering the value of parameter c (cf. Table 2.1), which quantifies the
extent of the vial-to-vial variability, we observe the largest value for Series
4 and the smallest one for Series 2. This is in line with visual observation
of Figure 2.4 and indicates that the parameter c is physically meaningful.
Furthermore, the vial-independent model discussed in Section 2.3.2 predicted
with statistical significance that the four series are unlikely to exhibit the same
nucleation kinetics. For the vial-dependent model, however, the confidence
intervals of the optimized parameter values overlap for all series (cf. Table
2.1). This indicates that the observed variability among Series 1-4 indeed
can be explained via the description provided by the vial-dependent model.
Since the vial-dependent model considers two sources of uncertainty, the
confidence intervals are naturally broader compared to the vial-independent
model. We interpret this behavior as another indicator of the consistency and
of the accuracy of the vial-dependent model.

2.3.4 Validation based on alternating cooling rates

As discussed in Section 2.3.3, accounting for a variability in nucleation sites
among vials leads to a closer agreement between stochastic model predictions
and experimental data. In order to understand the applicability of the com-
puted parameters, it is essential not only to fit them to experimental data, but
also to assess the predictive power of the model. Such validation is generally
carried out by generating experimental data under different sets of operating
conditions: the data from one set of conditions is used to compute parameter
values, which then are applied to predict the outcome of the experiment
carried out at the second set of conditions. To do so, we carried out a set of
experiments (i.e., Series 5–7) with alternating cycles at cooling rates of 0.2 K
min−1 and of 0.6 K min−1. In this way, two sets of nucleation temperatures
are obtained per experiment, namely one per cooling rate. Given that both
cooling rates are studied within the same experiment, i.e., with the same
vials, the number of nucleation sites is expected to be independent of cooling
rate. Three series were carried out, and the computed parameter values of
the combined data set (i.e. 3 × 15 × 12 nucleation events per cooling rate) are
reported in the lower part of Table 2.1. Figure 2.7 illustrates the outcome of
experimental Series 5: it presents the applied thermal evolution profile (panel



2.3 results 43

(a)); the measured nucleation temperatures, grouped by vial (panel (b)); and
the corresponding eCDFs of the nucleation temperatures (panel (c)).
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Figure 2.7 Experiment with alternating cooling rate (series 5). (a) Thermal evolution for
twelve freeze-thaw cycles. The nucleation events are indicated with a colored cross; red
indicates the faster cooling rate of 0.6 Kmin−1, and blue the slower rate of 0.2 Kmin−1.
(b) Observed nucleation temperatures, shown per vial. (c) Corresponding empirical
cumulative distributions.

Figure 2.7(b,c) shows that the nucleation temperature distributions are
essentially independent of the cooling rate. To be precise, vials experiencing
the slower cooling rate nucleated in average at 0.1 K lower temperatures. Such
behavior appears counter-intuitive at first sight, given that literature generally
indicates that slower cooling is correlated to higher nucleation temperatures,
for both ice nucleation and for solute nucleation in crystallization.[22,74] In any
case, we investigate whether the two models can predict this behavior. To
this end, Figure 2.8 presents the empirical cumulative distributions for both
cooling rates and compares them with model predictions. In panel (a), model
parameters were computed from the nucleation temperatures at 0.2 K min−1

and the model then was applied to predict the behavior at a cooling rate of
0.6 K min−1; panel (b) illustrates the outcome of the opposite procedure.
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Figure 2.8 Comparison between experiments and model predictions for alternating
cooling rates. Experimental distributions comprise the entire data set, i.e. three repeti-
tions with 15 vials each. (a) Model predictions for 0.6 Kmin−1 after training with the
0.2 Kmin−1 experimental data. (b) Model predictions for 0.2 Kmin−1 after training with
the 0.6 Kmin−1 experimental data. The used kinetic parameter values are summarized
in Table 2.1.

Considering panel (a), both models predict too high a median nucleation
temperature for the cooling rate of 0.2 K min−1; 0.7 K too high in the case of the
vial-dependent model, and 1.0 K too high in the case of the vial-independent
model. Still, in terms of absolute numbers, both fits are sufficiently accurate
for the use of the model in practical applications. The same view emerges
from panel (b). Here, both models predict too low nucleation temperatures
for the cooling rate of 0.6 K min−1; too low by 0.5 K in the case of the vial-
dependent model, and too low by 1.1 K in the case of the vial-independent
one. Importantly, in both cases the vial-dependent model provides a superior
predictive performance, which confirms that the vial-to-vial variability in
nucleation sites is an essential element of the experimental variability.

We attribute the remaining, minor difference between experimental ob-
servation and vial-dependent model predictions to the presence of thermal
gradients. Since vials are not stirred, thermal gradients within the vial form
during cooling, and their extent depends on the cooling rate. As discussed
in Section 2.2, spatial differences in temperature directly affect the nucleation
frequency, whereby nucleation is more likely in colder regions of the vial. The
thermocouples are positioned in the center of the vial’s cross-section, close
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to the top of the liquid. They measure the temperature at the warmest spot
in the vial; this measurement becomes less representative for the entire vial
volume in the case of larger gradients.

To quantify this effect, we derived an analytical expression for the steady-
state temperature temperature profile during cooling with a constant cooling
rate. The derivation is presented in Section 2.5.2. The predicted temperature
differences between vial wall and thermocouple were of the same order of
magnitude as the difference between the vial-dependent model predictions
and the experimental validation data set. This implies that the vial-dependent
model may indeed provide a quantitatively accurate description of the system,
if one were to account for the thermal gradients.

With respect to the experimental methodology, we thus postulate that
nucleation kinetics should be computed from experiments with slow cooling
rates, where thermal gradients are negligible. For this work, this implies that
the kinetic parameters computed from the 0.2 K min−1 data are more accurate
than those obtained from the 0.6 K min−1 data. With respect to future work,
we recommend choosing suitable cooling rates based on both accuracy and
throughput considerations: while being more accurate, slow cooling rates
are also linked to longer processing times, thus reducing the experimental
throughput and increasing the risk of cycle-to-cycle variability.

2.3.5 Non-invasive sensing as alternative detection method

The methodology presented so far relied on invasive sensing, i.e., on the
measurement of the thermal evolution by means of thermocouples (TC) placed
within the vials. Such insertion may be counter-indicated in some settings; for
example, in sterile manufacturing conditions in industry, where the content
of a vial may be contaminated due to the insertion of a thermocouple.[43,102]

Furthermore, the presence of thermocouples may affect the heat transfer
within the vials, potentially leading to differences in process behavior among
vials with thermocouples inserted and those without thermocouples; thus,
process monitoring in the context of pharmaceutical freeze-drying in vials
increasingly employs non-invasive sensing methods.[103]

For these reasons we developed a second method to detect nucleation
events based on non-invasive transmissivity sensors (TM). The Crystal16

instrument is equipped with one transmissivity sensor per reactor, i.e., per
vial. When nucleation occurs, ice grows rapidly and the solution turns into
a non-transparent suspension; the TM sensor thus is capable to detect the
time of the nucleation event in a non-invasive manner. However, it does not
provide information regarding the temperature at the time of the nucleation
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event. This temperature has to be inferred from readouts of the instrument’s
internal temperature probes, of which there is only one per reactor block,
i.e. one per four vials. As shown for experimental Series 4 in Figure 2.2(b)
in Section 2.3.1, these four vials may experience minor position-dependent
temperature differences, which may affect the accuracy of the measurements.
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Figure 2.9 Comparison between invasive (thermocouple within vial, TC) and non-
invasive (transmissivity) sensing. (a) Evolution of temperature and of transmissivity
for a single vial (A1) during the entire experiment comprising 12 freeze-thaw cycles.
(b) Measured nucleation temperatures, computed via thermocouple readouts and via
transmissivity measurements. (c-e) Statistical analysis of the observed variability in nu-
cleation temperatures. (c) Total variability. (d) Variability among vials, quantified based
on vial mean nucleation temperatures. (e) Variability within vials, quantified based
on the within-vial variance. Note that vial D4 was excluded from both measurements,
since no thermocouple was inserted into this vial.

Figure 2.9(a) presents the thermal and trasmissivity evolution for Series
4 (see also Figure 2.2 for comparison with TC readouts). In each cycle, the
transmissivity remains constant at 100 %, until a sharp drop occurs when ice



2.3 results 47

grows upon nucleation. We note that thermocouples were inserted during this
experiment, which enables a direct comparison of both methods. Figure 2.9(b)
shows the nucleation temperatures obtained from transmissivity readouts
(violet) as well as those obtained from thermocouple readouts (red): the mean
nucleation temperature for the transmissivity readouts is about 1.5 K colder,
and the entire nucleation temperature distribution is shifted towards colder
values, as indicated by Figure 2.9(c). Considering the external variability
(panel (d)), both methods provide a similar shape for the profile of the vial
mean nucleation temperature. The measured internal variabilities (panel (e))
for both methods were practically identical. Such behavior is expected: the
temperature sensors used together with the transmissivity readouts measure
not the temperature within the vials, but that of the surrounding reactor
block. During cooling, there is a temperature gradient between the probe’s
position and the interior of the vial (where the thermocouple is). At the
time of nucleation, the reactor block is slightly colder than the interior of the
vials, which explains the lower nucleation temperatures obtained through
the transmissivity method. Since internal and external variabilities are nearly
unaffected by this effect, only minor differences in the computed kinetic
parameters are observed between the two methods, as shown in Table 2.1(TC
and TM). If the TM nucleation temperatures are corrected for the temperature
gradient (TM, corr), the nucleation parameters (a, b) quantitatively match
those obtained from the thermocouple readouts for the vial-dependent model.
This is of great relevance, as it indicates that the parameter values are robust
towards the choice of measurement method; hence, both methods may be
used for parameter estimation.

For parameter c, both methods provide similar values as well, although not
identical ones (0.96 for TC and 1.08 for both TM and TM,corr). The reason for
this is that the TM method uses one temperature sensor per four vials; since
the actual temperatures of these four vials may differ slightly (see Figure 2.2),
this leads to additional uncertainty. While this effect is of minor relevance
for the setup we use here, we recommend that future transmissivity-based
methods rely on more temperature sensors, ideally one per vial.

As a final note, we applied the transmissivity method in this work to study
the effect of thermocouple presence and of vial material on nucleation. This
study is presented in Section 2.5.3; for the given model system, neither for the
presence of a thermocouple nor for the material of the vial was the collected
evidence strong enough to indicate a dominant role of the corresponding
surfaces in nucleation. We conclude that the dominant nucleation sites likely
are neither located on the thermocouple surface nor on the vial wall. Im-
purities within the solution thus are the most plausible candidate for the
dominant nucleation sites. This is in line with findings in the literature, in the
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context of ice nucleation in microdroplets,[94] of primary nucleation of solutes
in vials,[95,96] and of ice nucleation in pharmaceutical freezing.[34,43]

2.4 discussion and conclusions

In the following, the implications of this work will be discussed in detail.
First, we discuss the applicability of the presented method for pharmaceu-
tical freezing and freeze-drying in Section 2.4.1. We further generalize this
work and elaborate on its relevance for nucleation studies in the context of
crystallization in Section 2.4.2, before drawing concluding remarks in Section
2.4.3.

2.4.1 Applications in pharmaceutical freezing and freeze-drying

This section highlights potential use cases for computed ice nucleation
parameters in pharmaceutical manufacturing. We recently developed mech-
anistic models for the vial freezing process at commercial scale.[73–75] If the
nucleation kinetics of the formulation to be frozen is known, these models
predict the nucleation and solidification behavior of all vials in the batch and
enable an estimate of the process duration and variability; the information
provided by these models may be used as well to infer the subsequent drying
rates in case of freeze-drying.[19,28,43,74]

An in-depth study of ice nucleation is useful to validate some theories
commonly employed in the freeze-drying literature. For example, the literature
reports that faster cooling leads to a smaller mean ice crystal size in the frozen
product, which is hypothesized to be because nucleation temperatures are
lower when cooling faster.[20,21] However, in this work we find that the cooling
rate has little effect on nucleation under conditions relevant to pharmaceutical
freeze-drying. Hence, there is a need to revisit how the nucleation temperature
is linked to the mean ice crystal size (this is also discussed in our earlier
work[74]).

2.4.2 Relevance for nucleation studies in the context of crystallization

While the presented parameter estimation approach has been developed
specifically for freezing, the underlying principles are applicable to the field of
crystallization and, specifically, to solute nucleation. Importantly, variability
in nucleation sites among vials to our knowledge has not yet been considered
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in solute nucleation studies. As we show in this work, the pre-factor kb of the
nucleation rate expression may differ by 10–20 orders of magnitude between
vial-dependent and vial-independent stochastic models. Given that both
solute nucleation and ice nucleation are generally considered to occur het-
erogeneously, we see merits in generalizing this concept to solute nucleation.
Indeed, a variety of works on solute nucleation report significant disagree-
ments between the stochastic predictions and the observed experimental data
when using the conventional vial-independent modeling approach.[70,97]

It is unclear if heterogeneous nucleation inherently implies the presence of
vial-to-vial variability, in which case it should be considered as an essential
part of any stochastic description, or if it is of relevance only to specific
systems. We thus deem a detailed statistical analysis of vial-to-vial variability
in the context of solute nucleation to be an important avenue for future work.
The modeling framework presented here may form the basis for such analysis.

As our findings indicate, quantifying vial-to-vial variability requires experi-
ments involving both a large number of vials, and a large number of cycles.
Being unaware of vial-to-vial variability, crystallization studies typically focus
on the total number of experimental data points to characterize the inherent
uncertainty,[23,68] and commonly employ experimental protocols with a large
number of vials, and only few cycles. Indeed, a number of studies involve
only a single experimental cycle per vial,[104,105] in which case no assessment
of vial-to-vial variability is possible.

2.4.3 Concluding remarks

To conclude, we have developed and validated a novel methodology to
measure the ice nucleation kinetics of aqueous solutions in vials based on
parallelized experiments at mid-throughput and on a refined stochastic mod-
eling framework. The study revealed two additional sources of experimental
variability which induce variability in nucleation temperatures beyond the
one created by the inherent stochasticity of nucleation. These are, first, the
variability in nucleation sites among vials, and second, the occurrence of
temperature gradients during cooling. We discussed the role of nucleation
sites in detail and integrated it into a multi-component stochastic description
of nucleation with vial-dependent nucleation parameters. Doing so led to a
closer agreement between experimental data and model predictions, as was
validated in experiments with alternating cooling rates. Importantly, this
vial-dependent model predicted the experimental behavior significantly better
than the vial-independent model. Similarly, the magnitude of the thermal
gradients during cooling was computed and it was found to be large enough
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to explain the remaining, minor difference between experiments and model
prediction.

In order to suit the needs of the pharmaceutical industry, where sterile
manufacturing conditions may not allow for invasive sensing, we developed
a second experimental method to detect nucleation events. This method
relies on transmissivity sensors that were found to reliably detect the time
of nucleation; the corresponding temperature at this time is to be inferred
from external temperature sensors. In this work, we have used this non-
invasive method to investigate whether the presence of a thermocouple in
the vial or the vial material affects nucleation. In both cases no statistically
significant effect could be identified, likely due to the high particulate content
in standard laboratory conditions. Furthermore, we confirmed that invasive
and non-invasive methods predict similar nucleation parameters.

Finally, we envision that the ice nucleation kinetics is explicitly taken into
account in the process and formulation design for a variety of biopharma-
ceuticals in the long-term. This ultimately may enable more efficient freezing
process design, with potential positive implications for residual drug activ-
ity. The methodology presented in this work may form the basis for such
endeavor.

2.5 supplementary information

2.5.1 Photos of the experimental setup

This section aims to visualize the used experimental setup. Figure 2.10

shows the entire setup, comprising Crystal16 instrument (left), desktop com-
puter (center) and thermostat (right). Figure 2.11 shows a zoom-in into the
Crystal16 instrument. The Crystal16 is connected with the thermostat via the
black, insulated tubing at the bottom right of the device. Internally, the tubing
is linked to a heat exchanger, which dissipates heat from the heat sink of the
instrument.
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Figure 2.10 Ice nucleation setup, comprising Crystal16 instrument (left), desktop
computer (center) and thermostat (right).

Furthermore, the sixteen thermocouples can be seen, fifteen of which are
inserted into the device. The black aluminum blocks ensure that the position
of the vials and thermocouples stays constant during the experiment; this
addition is necessary, since the caps of the reactor blocks (blue, behind the
thermocouple wires) cannot be closed when the thermocouples are inserted.
The final thermocouple is found in the back, on the left side, measuring
the ambient temperature. Note that while reactor D4 does not contain a
thermocouple, it is filled with a vial containing the same solution as the other
fifteen; this ensures that the heat transfer conditions in all four blocks are as
similar as possible.
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Figure 2.11 Crystal16 instrument during an experimental run with all vials loaded.

2.5.2 Modeling thermal gradients

In order to quantify the thermal gradients within a vial during cooling, we
may formulate an enthalpy balance subject to the following assumptions:

1. The vial is of cylindrical geometry with radial coordinate r and radius
R.

2. All positions within the vial cool down with the same, constant cooling
rate γ.

3. Thermal gradients are dominated by the radial direction, neglecting
vertical contributions.

The balance then reads

ρcp

λ

∂T
∂t

=
∂2T
∂r2 +

1
r

∂T
∂r

(2.18)

Considering that
∂T
∂t

= −γ, the balance simplifies to

−γρcp

λ
=

∂2T
∂r2 +

1
r

∂T
∂r

(2.19)

This balance is subject to the boundary conditions ∂T
∂r (r = 0, t) = 0 and

T(r = R, t) = T0(t), where T0(t) is the temperature at the walls of the vial;
during cooling this corresponds to the coldest point. Note that the absolute
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value of T0(t) is not of interest, given that this analysis solely focuses on
quantifying the temperature differences within the vial. Solving the differential
equation subject to the presented boundary conditions yields

T(r)− T0 = (R2 − r2)
ρcpγ

4λv
(2.20)

Let us apply this equation to compute the difference in temperature between
the thermocouple positioned in the center (at r = 0) and the vial walls. The
vial has an inner radius of R = 5.0 mm, while the physicochemical parameters
of the solution are assumed to be linear combinations of those for pure water
and pure sucrose. Densities, heat capacities and thermal conductivities for the
pure substances were sourced from the literature.[40] Cooling rates of 0.6 K
min−1 and of 0.2 K min−1 yield temperature differences between vial wall
and center of 0.46 K and of 0.16 K, respectively. These differences should be
interpreted as lower bound for thermal gradients within the vial, as we do
not consider vertical gradients here.

2.5.3 Investigating the dominant type of heterogeneous nucleation sites

The results presented in Sections 2.3.3 and 2.3.4 indicate that the observed
vial-to-vial variability in nucleation behavior stems from a difference in het-
erogeneous nucleation sites among vials. This finding motivates the question
which type of surface is dominating the nucleation rate in the studied sys-
tem. This section addresses this question by comparing the results of three
experimental studies:

1. Glass vials with thermocouples inserted (i.e., Series 1–4)

2. Glass vials without thermocouples (i.e., Series 8–10)

3. Plastic (polypropylene) vials without thermocouples (i.e., Series 11–13)

This comparison enables the quantification of effects of thermocouples and of
vial material on nucleation. Thermocouple effects, for example, are commonly
reported in the literature related to pharmaceutical freeze-drying, as discussed
in the main body of this work. Figure 2.12 presents the experimental results
for three experimental series, i.e. glass vials with thermocouples inserted (blue
and violet), glass vials without thermocouple (green) and plastic vials without
thermocouple (red).
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Figure 2.12 Single cooling rate experiments for various measurement and preparation
methods. (a) Combined eCDFs for the experiments in glass vials with thermocouples (4
experiments with 15 vials each), without thermocouples (3 experiments with 16 vials
each), as well as in plastic vials without thermocouples (3 experiments with 16 vials
each). TM indicates that the measurement was carried out via the transmissivity sensor.
Due to the limited thermal resolution of the internal sensors used for the transmissivity
method (0.1 K), the corresponding eCDFs appear more step-like than those generated
directly from thermocouple readouts (resolution 0.01 K). (b) Corresponding comparison
of mean nucleation temperatures and their variability across the experiments. The error
bars indicate one standard deviation.

With respect to the experiments in glass vials with thermocouples, all mea-
surements via transmissivity are linearly shifted towards lower temperatures,
compared to the thermocouple readouts; this is in line with the findings dis-
cussed before. When comparing the three sets of transmissivity measurements,
the glass vials with inserted nucleation temperatures nucleate in average at
slightly higher temperatures than those without thermocouple. However,
only a single experiment is responsible for this difference, making it hardly
statistically significant. Plastic vials were found to nucleate at even lower
temperatures in average, with two out of three series having the lowest mean
nucleation temperatures across all presented studies. It must be noted, how-
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ever, that it was observed experimentally that the plastic vials were of slightly
smaller diameter than the glass vials, despite specifications indicating the
same outer diameter. This minor difference in geometry led to the forma-
tion of a small air gap between plastic vial and reactor. This gap may slow
down heat transfer and thus increases the external temperature gradient. In
consequence, the lower nucleation temperatures may be caused either by the
change in nucleation sites on the vial surface, or by the change in external
temperature gradient.

Given this additional uncertainty (and the high nucleation temperatures in
the second experiment), we may not conclude that plastic vials statistically
lead to lower nucleation kinetics. To enable such statement, a more precise
characterization of the transmissivity method would be required for the
plastic vials, i.e. a direct comparison with the invasive method. However,
this could not be carried out within this work, since the neck type of the
plastic vials did not allow for connection with the thermocouples. Here,
we conclude that the transmissivity method provides a useful alternative
method to measure nucleation temperatures, that is especially beneficial in
order to understand the effects of heterogeneous nucleation sites. It may
be used for measurements under realistic, sterile manufacturing conditions
in the pharmaceutical industry. However, the technical specifications of the
setup have to be studied in detail in order to characterize the accuracy of the
method. Based on the presented experimental studies, neither the presence
of thermocouples, nor the vial material could be confirmed to influence the
mean nucleation temperatures significantly.





3 THERMODYNAMICS EXPLA INS HOW
SOLUT ION COMPOS IT ION AFFECTS
THE K INET ICS OF STOCHAST IC ICE
NUCLEAT ION

The freezing of aqueous solutions is of great relevance to multiple fields, yet
the kinetics of ice nucleation, its first step, remains poorly understood. The lit-
erature focuses on the freezing of micrometer-sized droplets, and it is unclear
if those findings can be generalized and extended to larger volumes, such as
those used in the freezing of biopharmaceuticals. To this end, we study ice
nucleation from aqueous solutions of ten different compositions in vials at the
millilitre scale. The statistical analysis of the about 6,000 measured nucleation
events reveals that the stochastic ice nucleation kinetics is independent of the
nature and concentration of the solute. We demonstrate this by estimating
the values of the kinetic parameters in the nucleation rate expression for the
selected solution compositions, and we find that a single set of parameters is
able to describe quantitatively the nucleation behavior in all solutions. This
holds regardless of whether the nucleation rate is expressed as a function of
the chemical potential difference, of the water activity difference or of the su-
percooling. While the chemical potential difference is the thermodynamically
correct driving force for nucleation and hence more accurate from a theoretical
point of view, the other two expressions allow for an easier implementation in
mechanistic freezing models in pharmaceutical manufacturing.

3.1 main section

Despite a long history of research on the freezing of aqueous solutions, the
nature of some underlying phenomena remains elusive. This is especially true
for ice nucleation, which denotes the formation of the first ice crystal from a
clear solution.[20,45,64] Its kinetics is of great relevance to multiple fields, from

The work presented in this chapter has been reported in: Deck, L.-T.; Wittenberg, L.; Mazzotti,
M. Thermodynamics Explains How Solution Composition Affects the Kinetics of Stochastic Ice
Nucleation. J. Phys. Chem. Lett. 2023, 14, 26, 5993–6000.
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cloud microphysics[27,86,106], to cryobiology[88,107], to pharmaceutical manu-
facturing[20,21]. The formation of a nucleus is a stochastic event,[66,94] so that
solutions of identical composition that are stored under identical conditions
nucleate at different, randomly distributed times.[19,74] Such behavior is highly
undesirable in pharmaceutical manufacturing, because of its strict quality
control regulations for the freezing of biopharmaceutical drug products.[62,108]

The majority of biopharmaceuticals, including most commercially available
vaccines against COVID-19, is formulated and distributed in a frozen or freeze-
dried state in vials of millilitre scale.[1,4,75] Still, mechanistic descriptions of ice
nucleation in models for the freezing of these products have become available
only recently.[74–76]

This is largely because research on ice nucleation has traditionally been
driven by the atmospheric sciences.[58,60,82,83] To mimic the properties of
cloud droplets, freezing experiments have been predominantly carried out
in micro-droplets.[27,109–111] In such small volumes, ice nucleation may occur
homogeneously, i.e., independent of the so-called heterogeneous nucleation
sites;[27,58] this is because these sites are located for instance on dust particles,
whose concentration is low enough that a sufficiently small droplet contains
none of them. For the freezing of biopharmaceuticals in vials, however,
nucleation has been shown to be governed by heterogeneous nucleation
sites.[43,76,102] Heterogeneous nucleation has been studied at the micro-scale
as well, by inserting ice-nucleation agents such as mineral dust particles in
a controlled manner.[59,112–114] Such insertion of foreign materials to control
the nucleation rate, however, is unlikely to find acceptance in pharmaceutical
manufacturing due to product quality considerations.[43,102] For these reasons,
the large body of literature on ice nucleation has received little attention
from researchers and practitioners working on the design and optimization of
pharmaceutical freezing processes.

In this contribution, we address this gap by studying ice nucleation in aque-
ous solutions in vials of millilitre scale, that is, under conditions relevant to
pharmaceutical manufacturing. We carried out a large experimental campaign
comprising about 6,000 freezing events to accurately capture the stochastic
nature of ice nucleation by exploiting a methodology developed recently.[76]

In short, vials were filled with 1 mL of solution and were cooled down at a
constant cooling rate of 0.6 K min−1 to a temperature of −25°C. The time and
temperature when ice nucleation occurred were measured by means of ther-
mocouples inserted into each vial. To generate data sets of statistical relevance,
three to four experiments were carried out, each comprising twelve freeze-
thaw cycles and fifteen vials; this yields 540 to 720 nucleation temperatures
for each solution composition (further information about the methodology is
provided in Section 3.2). Ten different solutions were studied, which contain
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sucrose, trehalose and sodium chloride at different concentrations. The three
solutes represent commonly used excipients in biopharmaceutical formula-
tions,[21,41] and their physicochemical properties are sufficiently different to
allow contending that the findings presented here are of general relevance.
That is, we show first that the solution composition affects the nucleation
behavior predominantly through the solution’s thermodynamic properties.
Second, we demonstrate that the nucleation rate can be expressed with com-
parable quantitative accuracy through a driving force given in terms of a
difference either in chemical potential, in water activity, or in temperature.
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Figure 3.1 Cumulative distributions of the experimentally measured nucleation temper-
atures, i.e., the fraction of instances where nucleation has occurred when cooling down
the solution to a specific temperature. The colored lines represent the experimental data,
while the black lines show the optimal model fit for the supercooling-based parameteri-
zation of nucleation. (a) Sucrose solutions of four concentration levels. (b) Trehalose
solutions of three concentration levels. 40 wt.% solutions were not studied due to the
lower solubility of trehalose compared to sucrose. (c) Sodium chloride solutions of three
concentration levels.
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Figure 3.1 shows all the measurements of nucleation temperatures during a
cooling ramp for the ten aqueous solutions considered. Each colored symbol
(point) gives the fraction of vials (vertical coordinate) already nucleated at the
corresponding temperature (horizontal coordinate); obviously, such fraction
increases monotonically as the temperature decreases, until it reaches one at a
temperature low enough where all vials have nucleated. The resulting curve
is called the empirical cumulative distribution function (the CDF of nucleation
temperatures in this case), and can also be calculated using a nucleation model
(these are the black solid lines in Figure 3.1 that will be discussed below).
Considering that the nucleation temperature is measured with an accuracy
of ± 0.15 K, that the experimental conditions are the same for all points on
a curve (same solute concentration and cooling rate), and that the first and
the last nucleation temperature differ in all ten cases by 5–7 K, one can safely
conclude that nucleation is the main source of the observed variability.

However, Figure 3.1 does not show how nucleation induces this variability,
i.e., whether it is due to its inherent stochasticity or it is due to random differ-
ences in heterogeneous nucleation sites among vials. In earlier work we have
observed that both effects are relevant,[76] and this is the case here as well.
To demonstrate this, we plot in Figure 3.2 all the 6,000 measured nucleation
temperatures. Each panel reports the data for one solution composition; the
twelve nucleation temperatures measured per vial are arranged in columns
sorted by ascending vial mean nucleation temperature. The horizontal lines
indicate the equilibrium freezing temperature, i.e., the melting point. Indepen-
dent of solution composition, the nucleation temperatures within most vials
vary by 2–3 K. As no significant variability among cycles has been observed
(not shown explicitly), it is safe to assume that the nucleation sites within each
vial remain unchanged throughout an experiment. Hence, the variability in
nucleation temperatures within vials is due to the inherent stochasticity of
nucleation. In addition to this inherent stochasticity, the vials with the lowest
nucleation temperatures (on the left of each panel), nucleate in average at
about 5 K lower temperature levels than those with the highest nucleation
temperatures (on the right of each panel). This phenomenon is due to differ-
ences in the nucleation sites among vials: the vials that nucleate earlier must
contain either more numerous or more active sites than the late-nucleating
ones.

Further, it is worth noting that for the same solute, increasing concentration
shifts nucleation towards lower temperatures, which is consistent with the fact
that the equilibrium freezing temperature Teq of the solution also decreases
with increasing solute concentration (see Figure 3.2).[98,115,116]
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Figure 3.2 Overview over all measured nucleation temperatures. Each panel shows
the data for one solution composition: the twelve nucleation temperatures measured
per vial are arranged in columns sorted by ascending mean nucleation temperature.
The horizontal lines indicate the equilibrium freezing temperature. Top row: sucrose.
Center row: trehalose. Bottom row: sodium chloride.

Figure 3.3(a) illustrates a nucleation experiment within the binary water-
solute phase diagram, with coordinates water activity, aw, and temperature,
T. Water activity is a convenient quantity to express the driving force for
nucleation, because - though it depends on the solute concentration - its
temperature-dependence is negligible.[58–60] The black solid line denotes the
solid-liquid equilibrium between ice and solution. It is defined through the
Schröder van Laar (SvL) equation, which gives the equilibrium water activity
aeq

w (T) as a function of temperature, or conversely, the equilibrium freezing
temperature Teq(a0

w) as a function of the solution’s water activity a0
w:[61]

ln
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aeq
w

)
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R

(
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T

)
− ∆cp

R

(
ln
(
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T

)
+ 1 − Tm

T

)
(3.1)

where ∆H = 6002 J mol−1 is the latent heat of fusion of pure ice, ∆cp = 38.03 J
mol−1 K−1 is the difference in heat capacity between liquid water and ice, and
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Tm = 273.15 K is the freezing point of pure water, all evaluated at ambient
pressure. Thus, with reference to Figure 3.3(a), the cooling experiment starts
from a point of coordinates (a0

w, T0), and the solution’s state evolves along a
vertical line, whose points have coordinates (a0

w, T). For T > Teq, the solution
is in a thermodynamically stable state; for T < Teq it enters a metastable state
that persists until the phase transition is triggered by nucleation.
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Figure 3.3 (a) Temperature-water activity diagram for the freezing process of aqueous
solutions. The black line indicates the solution’s equilibrium properties, while the
blue line shows the change in temperature during the process. (b,c) Mean nucleation
temperatures T̄nuc and mean nucleation activities āeq

w (Tnuc) for the ten studied solution
compositions. The data points are arranged by equilibrium freezing point or by the
corresponding water activity of the solution. The black line indicates the linear relation-
ships between the solution’s equilibrium properties and the mean nucleation behavior.
The dashed lines denote the iso-supercooling (blue) or the iso-activity difference (red)
curves. Red indicates the activity difference ∆a to the equilibrium. (d,e,f) Rescaled
nucleation temperature distributions in terms of chemical potential difference ∆µnuc,
of supercooling ∆Tnuc and of water activity difference ∆anuc. The color-coding for the
solution compositions is the same as the one used in Figure 3.1.
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The thermodynamic driving force for nucleation is the difference in chemical
potential between ice and the solution, termed ∆µ:

∆µ = RTln
(

fℓ
fi

)
= RTln

(
fℓ

f eq
ℓ

)
= RTln

(
aw

aeq
w

)
(3.2)

where fi and fℓ are the fugacities of ice and of water in solution, respectively,
and fi equals the fugacity of water in solution when at equilibrium with ice
crystals, i.e., f eq

ℓ . The last expression follows when considering that fugacity is
the product of a reference fugacity and the activity of water. With reference to
the schematic in Figure 3.3(a), we note that the distance of the solution’s state
to the equilibirum can be expressed either (i) as difference of the activities,
i.e., ∆aw = a0

w − aeq
w (T), as typically used in the atmospheric sciences;[58–60]

or (ii) as difference of temperatures, i.e., ∆T = Teq − T, which is also called
degree of supercooling and is preferred in pharmaceutical applications due to
its experimental accessibility.[19,62,75] The expression for the chemical potential
can be rewritten in terms of these quantities when taking the appropriate
simplifications:

∆µ = RTln
(

aw

aeq
w

)
≈ RT

aeq
w
(aw − aeq

w ) = α(T)∆a (3.3)

∆µ = RTln
(

aw

aeq
w

)
≈ ∆H

Teq (T
eq − T) = β∆T (3.4)

As it can be seen, interpreting ∆µ as a function solely of ∆a requires (i) lin-
earization of the logarithm, and (2) neglecting the temperature-dependency of
the pre-factor α. In contrast, to arrive at the expression for ∆T, no lineariza-
tion is required, however, the ∆cp term in the Schröder-van Laar equation is
neglected.

Our working hypothesis is that ∆µ, ∆a and ∆T can all quantify the driving
force for nucleation, even though likely with different accuracy. Moreover, we
conjecture that the nucleation rate is given by a power law expression, and
that it can be calculated using either of the three, once the relevant parameters
are estimated from experimental measurements:

Jµ(T) = kµ(∆µ(T))bµ (3.5)

Ja(T) = ka(∆a(T))ba (3.6)

JT(T) = kT(∆T(T))bT (3.7)

where Jµ, Ja and JT denote the expected number of nucleation events per
unit time and unit volume, and bµ, ba and bT are constant exponents. The
temperature-independent pre-factors kµ, ka and kT are vial-specific constants
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with values that are log-norm distributed across vials; their negative decadic
logarithm assumes a mean value of aµ, aa, or aT, and a standard deviation
of cµ,ca, or cT, respectively. Such distributed parameter is required to ac-
count for the experimentally observed variability in nucleation sites among
vials.[76,82,86,94,117]. To keep the notation simple, subscripts for J and the as-
sociated kinetic parameters are only used when referring to a specific rate
expression. While more complex rate expressions could be used to describe
the nucleation kinetics, such as those based on the classical nucleation theory
(CNT),[45,60,118] we refrained from doing so: as we discuss below, all three
power law expressions well describe the experimental data, so that more
complex models would provide little benefit. To describe the variability in
nucleation temperatures, we introduce the cumulative distribution function
(CDF), Fv(t), which denotes the probability that nucleation occurs in a specific
vial v with fill volume V in the time interval [0, t]. The CDF is obtained by
assuming that nucleation occurs through an inhomogeneous Poisson process
(it would be homogeneous, if temperature were constant) in terms of the
nucleation rate defined above, i.e., of the rate J(T):[22,66,106]

Fv(t) = 1 − exp
{
−
∫ t

0
V J(t′)dt′

}
(3.8)

The cumulative probability for nucleation to occur within the interval [0, t] for
a set of N vials, termed F(t), is the mean of the CDFs of the individual vials:

F(t) =
1
N

N

∑
v=1

Fv(t) (3.9)

When computing F(t), we consider the log-norm distribution of the pre-factor
k in the expressions for J(T): every vial v is assigned a unique value of
k, namely −log10(k) = a + ξvc with ξv = probit( v

N+1 ), whereby the probit
function denotes the quantile function of the standard normal distribution.

The link among (i) the CDF F(t) as a function of time, (ii) the temperature-
dependent nucleation rate J(T), and (iii) the distributions shown in Figure
3.1, follows from the nature of the freezing process: it is the temperature that
changes over time during freezing, in our case in a pre-determined manner,
and it is this change that eventually triggers nucleation. To analyse whether
∆µ, ∆a and ∆T allow for an accurate quantitative description of nucleation, we
follow a two-pronged approach: (i) first, the re-evaluation of the experimental
results shown in Figure 3.1; (ii) second, the estimation of the model parameters
in Equations 3.5, 3.6 and 3.7, and the assessment of the quality of the fit thus
obtained between experimental measurements and model results.

First, with reference to Figure 3.3(a), we notice that when a vial nucleates at
Tnuc, then the driving forces for nucleation, to be used in Equations 3.6 and 3.7,
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can be either ∆Tnuc = Teq − Tnuc or ∆anuc = a0
w − aeq

w (Tnuc). When plotting
the CDFs for the ten different solution compositions (originally shown in
Figure 3.1) as a function either of ∆µnuc in Figure 3.3(d), or of ∆Tnuc in Figure
3.3(e) or of ∆anuc in Figure 3.3(f), the ten curves overlap almost perfectly.
They exhibit an average ∆µnuc of 278 J mol−1, an average ∆Tnuc of 13.3 K
and an average ∆anuc of 0.119. This demonstrates that the three quantities
indeed represent the driving force for nucleation, irrespective of the absolute
temperature level, of the water activity (i.e., of solute concentration), and even
of the nature of the solute. Furthermore, from the ten empirical cumulative
distribution functions of the nucleation temperatures one can calculate the
average nucleation temperature, and at that temperature the corresponding
equilibrium water activity. These two quantities are plotted as a function of
the equilibrium temperature (Figure 3.3(b)) and of the initial water activity
(Figure 3.3(c)), respectively. In these panels, isolines of the driving force are
plotted as blue and red dotted lines (the equilibrium isolines are solid). The
black solid lines were obtained through linear regression of the experimental
data (symbols). For the temperature-based driving force the slope of the
regression line is λT = 1.10, whereas it is λa = 0.98 in the case of the activity-
based driving force. A slope of one would imply that the mean value of the
driving force is independent of solution composition, so that the driving force
quantitatively captures the effect of solution composition on nucleation. We
hence conclude that both expressions accurately describe nucleation across
the ten compositions investigated in this study, and that the activity-based
driving force is slightly more accurate than the temperature-based one. This
is also suggested by the fact that the overlap of the cumulative distribution
functions in Figure 3.3(f) is visually better than in Figure 3.3(e).

Second, by optimally fitting each empirical cumulative distribution with
that calculated by Equation 3.9 using the methodology developed recently,[76]

we have estimated the three model parameters, namely a, b, c, in the three nu-
cleation rate expressions (Equations 3.5, 3.6 and 3.7). Their values are shown
for all ten solution compositions in Figure 3.4 (symbols; the rows correspond
to the three rate expressions, respectively), together with their confidence
intervals (error bars, significance level α = 0.05, obtained by carrying out 500

Monte Carlo simulations each). In addition, we have estimated the nucleation
parameters for the concatenated data set comprising all compositions; these
parameter values are shown as thin black lines, with their confidence inter-
vals given by the grey-shaded band. The cumulative distribution functions
measured experimentally have been simulated with the estimated param-
eters, and plotted as black solid lines in Figure 3.1 (where for the sake of
clarity, only the lines calculated using JT are shown, as those obtained using
Ja and Jµ mostly overlap); the agreement is rather satisfactory, in both average
nucleation temperature and shape of the distribution.
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Figure 3.4 Estimated values for the three kinetic parameters a, b, c as well as their confi-
dence intervals (error bars) for the three expressions of the nucleation rate: temperature-
based (top row), activity-based (center row), and chemical potential-based (bottom row).
The black line surrounded by the grey region denotes the optimum parameter values
and their confidence interval estimated from a concatenated data set comprising all ten
solution compositions. The colors indicate the three different solutes used.

When comparing the estimated parameter values for the three rate expres-
sions in Figure 3.4, we notice that bµ ≈ ba ≈ bT and cµ ≈ ca ≈ cT, whereas
aa ≪ aT ≪ aµ. The similarity in the parameters b and c reflects the fact that
they determine the shape of the nucleation temperature distributions, whereas
parameter a acts as a scaling factor. Its order of magnitude is determined by
the ratio between average values of the nucleation rate and of the driving
force, the latter being very different when expressed as ∆µnuc, ∆Tnuc or as
∆anuc, since ∆µnuc ≫ ∆Tnuc ≫ ∆anuc. When comparing the estimated values
across compositions, we do not observe any significant trend; the confidence
intervals are similar in size in all cases, and for all ten solution compositions,
they overlap with those of the concatenated set. These observations lead to
the conclusion that all three descriptions are sufficiently accurate to describe
nucleation from millilitre-scale solution, and that a single set of parameters
accurately quantifies the nucleation rate across solution compositions. This is
a finding of great interest for both researchers and practitioners in this field.
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Let us contextualize this finding. Experimental studies on ice nucleation in
small volumes have established that the effect of solution composition on mean
nucleation temperature quantitatively matches the one on the solution’s water
activity.[58,59,112,113] Our study complements and extends this observation in
multiple ways.

First, we extend it to larger volumes at the millilitre-scale, where we gener-
ated an extensive data set of 6,000 nucleation events. Second, we show that not
only water activity, but also supercooling and chemical potential quantitatively
describe the effect of solution composition on nucleation; for the chemical po-
tential, to the best of our knowledge, this has not yet been shown. Concerning
supercooling, the literature reports that the mean nucleation temperature de-
creases more strongly with solute concentration than the equilibrium freezing
temperature (i.e., λT > 1).[112,119,120] Our value of λT = 1.10 is smaller than
most of those reported in the literature, which typically rely on experiments in
micro-droplets, but it quantitatively agrees with a recent study that considered
millilitre-scale solutions.[88] This suggests that the supercooling provides an
accurate description of the nucleation rate in sufficiently large volumes; for
smaller volumes, the use of either water activity or chemical potential may be
more appropriate. Third, we underline that the nucleation rate is expressed
as a power law of the thermodynamic driving force in this study. Alternative
rate expressions such as those based on the classical nucleation theory, which
consider additional kinetic effects, are commonly used in the literature.[60,86]

As our experimental data shows, however, the rate is accurately quantified
by considering thermodynamic effects only: more complex models are not
required to describe ice nucleation at the millilitre-scale. Fourth and finally, we
emphasize that the statistical analysis goes beyond assessing trends about the
dependence of the mean nucleation temperature on solution composition: we
explicitly studied whether there are significant effects of solution composition
on the parameters in the nucleation rate expression. Despite carrying out
large numbers of experiments, hence obtaining small confidence intervals, no
significant differences were observed. The underlying modeling approach
considers both the inherent stochasticity of nucleation (a Poisson process)
and the variability in nucleation sites among vials (a log-norm distribution).
This has been possible, because the experimental data comprises multiple
nucleation temperatures per vial, so that one can distinguish between the
variability in nucleation temperatures within vials and the one among vials.
To conclude, the analysis presented here provides a deeper understanding of
ice nucleation and of its controlling driving force, which can be of immediate
value to the different fields where freezing processes play a major role.



68 on the effect of solution composition on nucleation

3.2 methodology

The experimental methodology used to generate the nucleation temperature
data reported in this contribution has been developed and explained in detail
in our earlier work.[76] Here, we provide a summary focusing on those aspects
that are relevant to this work. All experiments were carried out in a second
generation Crystal16 instrument (Technobis Crystallization Systems) that
was customized to extend the attainable temperature range down to −30°C.
To ensure a sufficient cooling capacity, the instrument was connected to a
thermostat (Huber unistat 430, set to −10°C). For the solutions comprising
10 wt.%, 20 wt.% and 40 wt.% sucrose, four experiments were conducted,
and for the remaining ones three; the data for 20 wt.% sucrose was already
analysed earlier (see Series 1 − 4 in Deck and Mazzotti[76]). Each experiment
comprised twelve freeze-thaw cycles in fifteen vials, amounting to a total of
540 or 720 nucleation events per solution composition, and a total number of
495 monitored vials, i.e., 5940 nucleation events, across compositions.

All experiments were carried out using the same experimental protocol:
during each cycle, the temperature was decreased from +20°C to −25°C with
a constant cooling rate of 0.6 K min−1. The vials with 11.6 mm outer diameter
were filled with 1 mL of aqueous solution using a micropipette (Socorex Acura
825). For each experiment, a fresh stock solution was prepared using deionized
water (Millipore, Milli-Q Advantage A10 system) and solute. Sucrose (Sigma-
Aldrich, BioXtra grade, > 99.5% purity), trehalose (Sigma-Aldrich, dihydrate,
from starch, > 99% purity), and sodium chloride (Sigma-Aldrich, puriss. p.a.
> 99.5%) were used as solutes in this work. All stock solutions were filtered
(0.22 µm hydrophilic PTFE syringe filter) before insertion into the glass vials
(Lab Logistics Group GmbH, 1.5 mL). The time and temperature of nucleation
in a vial was detected based on the rapid rise in temperature due to the fast
crystal growth that follows nucleation. A thermocouple (K-type, Inconel 600,
certified by Picolog, sampling interval 1s) was inserted into each vial for online
temperature monitoring.

It is worth underlining two experimental challenges that are associated to the
measurement of the nucleation kinetics. First, freezing experiments have to be
carried out under well-controlled conditions to ensure that the experimentally
observed variability in nucleation temperatures is indeed dominated by the
stochastic nature of nucleation, and not by experimental error. Doing so is
challenging at all scales;[27,76] the instrument we use here allows for highly-
automated, long-term freeze-thaw experiments in fifteen vials in parallel. We
achieve a temperature accuracy of about ± 0.15 K that we consider sufficient
compared to the width of the measured nucleation temperature distributions,
which is on the order of 5–7 K. Second, the experimental data set must
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comprise nucleation temperatures both from a large number of vials, and from
a large number of freeze-thaw cycles: a single experiment hence comprises
twelve freeze-thaw cycles in fifteen vials, amounting to 180 nucleation events.
Such a large data set is essential, because different types of variabilities may
be observed when considering the distributions of nucleation temperatures
within vials, across vials, and across experiments; the stochastic description
of ice nucleation has to account for this, as in the methodology we presented
earlier,[76] and as it has been done with respect to micro-droplets in the
atmospheric sciences.[82,86,94]

To estimate the parameters in the rate expressions as well as their uncer-
tainty, we have utilized the approach presented in our earlier work.[76] When
analysing the thermal evolution curves of the 495 vials that were monitored,
we encountered technical issues with the inserted thermocouples in four vials.
Hence, these four vials were excluded from the data analysis (1 vial each for
3 wt.% NaCl and 10 wt.% sucrose, 2 for 40 wt.% sucrose). The equilibrium
freezing point data required for the computation of the supercooling has
been obtained from experimental contributions in the literature for sodium
chloride,[116] and for sucrose and trehalose.[115] Relevant properties for all
solution compositions are summarized in Table 3.1.

Composition Teq [°C] a0
w ∆̄Tnuc [K] ∆̄anuc ∆̄µ

nuc[Jmol−1]
Suc., 10 wt.% –0.6 0.994 13.1 0.119 275

Suc., 20 wt.% –1.5 0.986 12.8 0.116 269

Suc., 30 wt.% –2.65 0.974 13.0 0.117 273

Suc., 40 wt.% –4.4 0.958 13.4 0.118 278

Tre., 10 wt.% –0.6 0.994 13.1 0.119 276

Tre., 20 wt.% –1.5 0.986 13.4 0.121 281

Tre., 30 wt.% –2.65 0.974 13.7 0.122 285

NaCl, 3 wt.% –1.75 0.983 13.5 0.121 283

NaCl, 5 wt.% –3.0 0.971 13.4 0.120 280

NaCl, 10 wt.% –6.6 0.938 13.7 0.119 284

Table 3.1 Relevant data for the ten selected solution compositions. Suc: Sucrose. Tre: Trehalose. The
equilibrium freezing temperatures Teq have been sourced from the literature, with a precision of
0.05 K.[115,116] The corresponding water activity aw(Teq) was computed through Eq. 3.1. The mean
values of the thermodynamic driving force, namely ∆̄Tnuc, ∆̄anuc and ∆̄µ

nuc, were computed from
the experimental data set generated in this work.





4 FROM THE DIRTY LAB TO THE CLEAN
MANUFACTUR ING OF
PHARMACEUT ICALS : HOW
PART ICULATE IMPUR IT IES AFFECT
ICE NUCLEAT ION

Numerous commercially available biopharmaceuticals are frozen or freeze-
dried in vials. The temperature at which ice nucleates and its distribution
across vials in a batch is critical to the design of both freezing and freeze-
drying processes. This work reports a large data set of nucleation temperatures
measured in vials filled with different concentrations of sucrose and prepared
with different levels of particulate impurities. Independent of sucrose con-
centration, the spiking of solutions with silver iodide resulted in significantly
higher and less variable nucleation temperatures compared to the reference
solutions. Samples prepared under particulate-free conditions, in contrast,
nucleated at significantly lower temperatures and with more variability among
vials. These findings confirm that the level of particulates has a significant
effect on the distribution of nucleation temperatures under conditions of
industrial relevance.

The work reported in this chapter is in preparation for submission to a peer-reviewed journal: Deck,
L.-T.; Gusev, N.; Deligianni, V.; Mazzotti, M. From the dirty lab to the clean manufacturing of
pharmaceuticals: how particulate impurities affect ice nucleation.
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4.1 main section

Ice nucleation denotes the onset of ice formation and is of immediate rele-
vance to various fields, including cryobiology,[88,107] food preservation,[121,122]

cloud formation and precipitation,[27,106] and the manufacture of biopharma-
ceuticals[21,43]. The formation of a nucleus is a stochastic event, whereby an
accurate description of this stochasticity is essential to predict how long a
solution remains in a metastable state below its melting point before ice is
formed.[20,45,64,94] In biopharmaceutical manufacturing, drug products com-
monly are filled into vials with fill volumes of a few milli-liters and are frozen
or freeze-dried in batches containing tens of thousands of vials.[41,75] The time
and temperature of nucleation and their distribution across vials are relevant
in this context because they affect both the dynamics of the freezing/freeze-
drying process and the properties of the drug products.[1,14,28,123] Understand-
ing how to quantify the stochasticity of nucleation and how it contributes to
heterogeneity among vials hence is a topic of recent research.[74,84,124]

In large volumes such as vials, ice nucleates in a heterogeneous manner, which
means that its rate is controlled by the availability of surfaces such as vial walls
and particulate impurities.[59,76,102,114,125] Homogeneous nucleation, in contrast,
occurs in the absence of surfaces and its rate is too low to explain nucleation
events at the temperatures observed in vials; it is observed mainly in suffi-
ciently small micro-droplets that are free of impurities.[27,43,83,126] While both
types of nucleation are stochastic, the dependence on particulate impurities
represents an additional source of variability for heterogeneous nucleation.
For example, different samples (i.e., vials) in a batch may contain different
numbers and types of particulates, and hence nucleate at a different rate,
resulting in a broader distribution of nucleation temperatures.[76,88] Further,
samples prepared under particulate-free conditions require lower tempera-
tures to nucleate compared to those prepared under less clean conditions,
which represents a major challenge when scaling-up pharmaceutical freezing
and freeze-drying processes from lab to manufacturing conditions.[20,41,43,127]

This contribution aims to deepen the understanding of heterogeneous ice
nucleation in vials with a focus on the two aspects mentioned above. The
nucleation behavior of aqueous sucrose solutions that were prepared un-
der three different conditions, as schematized in Figure 4.1, was assessed
in an extensive experimental campaign. First, nucleation temperatures were
measured in vials prepared under standard laboratory conditions, i.e., with-
out any means of lowering the concentration of particulate impurities, and
following the method developed earlier.[76,79] Second, samples were spiked
with silver iodide (50.0 ± 0.1 mg per vial), which is known for its ability to
promote ice nucleation.[128–130] Therefore, when adding AgI particles to a
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vial, nucleation is expected to predominantly takes place on their surface.
Third, particulate-free samples prepared by our industrial collaborators at The
Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen in short)
were studied to quantify the effect of clean conditions on nucleation. To assess
effects of solution composition on nucleation, solutions containing 10 wt%, 20

wt%, 30 wt%, and 40 wt% sucrose were investigated.

Figure 4.1 Schematic of the three sample preparation conditions studied. Left:
Particulate-free samples that were filled at Janssen. Center: Samples prepared un-
der standard laboratory conditions. Right: Samples prepared under standard laboratory
conditions that were spiked with 50.0 mg silver iodide (AgI) each.

In all experiments, vials filled with 1 mL solution were cooled down at
a constant cooling rate of 0.6 K min−1 from ambient temperature to a tem-
perature low enough that nucleation happened in all vials. Nucleation times
were identified using non-invasive transmissivity sensors and converted into
nucleation temperatures using the temperature measurements of the jacket
that surrounds the vials (precision of ±0.05 K), as explained in an earlier
contribution.[76] A detailed description of the experimental methodology is
provided in Section 4.2. 576 nucleation events were monitored per solution
composition and level of particulates. This corresponds to three experiments
that each comprise twelve freeze-thaw cycles and sixteen vials. Fewer data
points (i.e., 384 nucleation events) were obtained for the particulate-free 10

wt% sucrose samples, where only two experiments could be carried out due to
vial breakage during transport. Such large data sets are required to accurately
characterize the statistics of nucleation, considering both its inherent stochas-
ticity and the phenomenon that it may occur at different rates in different
vials.
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Figure 4.2 Cumulative distributions of the experimentally measured nucleation temper-
atures, i.e., the fraction of instances where nucleation has occurred when cooling down
the solution to a specific temperature. The colored lines represent the experimental data,
whereby each line represent a total of 576 measured nucleation temperatures. Darker
lines correspond to more concentrated solutions. Sucrose concentrations of 10 wt%, 20

wt%, 30 wt%, and 40 wt% were studied.

Figure 4.2 reports all measured nucleation temperatures in the form of cu-
mulative distribution functions (CDFs), which denote the fraction of instances
in which nucleation happened between the beginning of the cooling ramp
and cooling to a given temperature. To facilitate the comparison between
solutions of different compositions, the distributions are plotted in terms of
the supercooling at nucleation, ∆Tnuc, which is the difference between the
solution’s nucleation temperature and its melting point. The colors represent
the three sample preparation conditions, and their shades the concentration
level, whereby darker lines correspond to more concentrated solutions.

Several trends are worth discussing. First, the nucleation temperatures
are distributed at all conditions, which is in line with the notion that nucle-
ation is stochastic. Second, the nucleation temperatures are lower (i.e., the
supercooling is larger) the cleaner the samples: the median supercooling at
nucleation is about 7 K for the AgI samples, about 14 K for the standard ones,
and about 22 K for the particulate-free ones. This confirms that the rate of
heterogeneous nucleation scales with the availability of particulates. Third,
no major differences in supercooling at nucleation are observed among the
different concentrations of sucrose studied here. This absence of relevant
concentration effects on the supercooling at nucleation is in line with recent
literature on freezing in milli-liter volumes.[79,88] Fourth and finally, the nucle-
ation temperatures are more variable the cleaner the samples are. They vary
by about 3–4 K for the AgI samples, by about 6–8 K for the standard ones,
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and by about 10–11 K for the particulate-free ones. Understanding this trend
requires a more detailed analysis of the experimental data.

To this end, Figure 4.3 reports all 3× 576 nucleation temperatures measured
for the 20 wt% sucrose solution. Panel (a) shows the nucleation temperatures
grouped by vial, and arranged in order of ascending mean vial nucleation
temperature, whereas panel (b) shows the same data grouped by freeze-thaw
cycles. The trends discussed in the following apply to all concentration levels,
and similar figures for the other levels are provided in the SI.

As is evident from Figure 4.3(a), the variability in the nucleation temper-
atures within a vial is similar, i.e., 2–3 K, for all three conditions of sample
preparation. What is different is the variability among the vials: the mean
nucleation temperatures of the lowest and the highest nucleating vial differ by
2.5 K for the AgI samples, by 6.3 K for standard ones, and by 10.9 K for the
particulate-free ones. While there is no direct control over the ubiquitous dust
particles that may enter the vials during sample preparation, spiking vials
with similar amounts of AgI (50.0 ± 0.1 mg per vial) is expected to ensure
that all vials nucleate at similar temperatures. This is indeed confirmed by
the experiments. When decreasing the number of dust particles by preparing
samples under particulate-free conditions, the nucleation rate decreases as
well and it becomes even more variable among vials.

Figure 4.3 Experimental nucleation temperature results for 20 wt% sucrose solutions.
The colors denote the conditions of sample preparation and their shades the three
independent series per experimental conditions. Blue: Samples spiked with silver
iodide. Orange: Samples prepared under standard laboratory conditions. Green:
Samples prepared under particulate-free conditions. (a) Scatter plot of nucleation
temperatures, sorted by vial in the order of ascending mean nucleation temperature. (b)
Scatter plot of nucleation temperatures, sorted by cycles in order of completion.

On another note, Figure 4.3(b) indicates that there are little to no long-term
trends of the nucleation temperature with freeze–thaw cycles, at least for sam-
ples prepared under standard and particulate-free conditions. This implies
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that the nucleation rate does not depend on the history of a solution, which
is in line with the relevant literature, and which facilitates the mathematical
modeling of nucleation.[66,76,126] In contrast, the samples spiked with silver
iodide exhibit a minor decrease in nucleation temperatures over the first few
cycles, which is more prominent in higher concentrations (see the comple-
mentary figures in the SI); this may be because silver iodide particles slowly
sediment over the course of several freeze–thaw cycles and form a densely
packed layer at the vial bottom. The water-AgI interfacial area is expected
to decrease due to this process, hence lowering the nucleation rate. While
such an effect qualitatively explains the observed behavior, a quantitative
assessment is outside the scope of this work.

In conclusion, this work highlights the importance of particulates for ice
nucleation under conditions of relevance to the manufacturing of pharmaceu-
ticals. The finding that samples prepared under cleaner conditions nucleate
with more variability presents a dilemma to the design of pharmaceutical
freezing processes, because particulate-free conditions are necessary to avoid
contamination of drug products with undesired substances. However, both
low absolute values of the nucleation temperature as well as a broad variabil-
ity are undesired.[19,20,28,43] To clarify the role of vial-to-vial variability when
freezing drug products and to account for it in process design, we recommend
to integrate nucleation measurements into standard operating procedures. The
effort to do so is rather modest because these measurements can be carried out
using the methodology we report here, that is, with commercially available
equipment, and with little amount of sample. Experimental nucleation tem-
peratures provide practically useful insights into the dynamics of freezing and
may be used to estimate nucleation rates.[76,79] The knowledge of nucleation
rates enables the informed use of mechanistic freezing models in process
design and optimization.[74,75,77]

4.2 methodology

This section explains the experimental methodology used to measure nucle-
ation temperatures in vials. In earlier work, this methodology was applied to
measure the nucleation behavior of samples prepared under standard labora-
tory conditions and was explained in detail,[76,79] hence this section is limited
to a summary of the main elements. All experiments were conducted in a
second generation Crystal16 instrument (Technobis Crystallization Systems).
The hardware of this instrument had been modified earlier[76] to extend its
attainable temperature range down to −35°C, and it is connected to a ther-
mostat (Huber unistat 430, set to −10°C). For each solution, that is for each
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composition and particulate level, three experiments were carried out, each
of which consists of twelve freeze-thaw cycles and sixteen vials, amounting
to a total of 576 detected nucleation events each. For particulate-free 10 wt%
sucrose solution, only two experiments were carried out because some vials
broke during transport and hence had to be discarded. Each experiment in-
volves cooling down from ambient temperature to a temperature low enough
that nucleation happened in all vials at a constant cooling rate of 0.6 K min−1.

The samples that were prepared under standard conditions as well as those
that were spiked with silver iodide (AgI) were prepared at ETH Zurich; those
prepared under particulate-free conditions were prepared at Janssen, frozen,
and shipped on dry ice to ETH Zurich for measurement. Given geometrical
constraints of the Crystal16 apparatus, all samples were filled into vials with
11.6 mm outer diameter to a volume of 1 mL. The sample preparation at
ETH Zurich included the following steps: for each experiment, a fresh stock
solution was prepared using deionized water (Millipore, Milli-Q Advantage
A10 system) and solute. Sucrose (Sigma-Aldrich, BioXtra grade, > 99.5%
purity), trehalose (Sigma-Aldrich, dihydrate, from starch, > 99% purity), and
sodium chloride (Sigma-Aldrich, puriss. p.a. > 99.5%) were used as solutes
in this work. All stock solutions were filtered (0.22 µm hydrophilic PTFE
syringe filter) before insertion into the glass vials (Lab Logistics Group GmbH,
1.5 mL). For the samples spiked with silver iodide, 50.0 mg of silver iodide
was weighted using a precision balance and inserted into each vial before
filling it with the solution. The time of nucleation in a vial was detected
based on the readout of pre-installed transmissivity sensors that detect the
transition from a transparent state to a non-transparent state of the vial upon
nucleation. The nucleation times were converted into temperatures using the
temperature measurements of the jacket that surrounds the vials (one sensor
per set of four vials, precision of ±0.05 K). A thermocouple (K-type, Inconel
600, certified by Picolog, sampling interval 1s) was inserted into each vial for
online temperature monitoring (but not used to detect the time of nucleation).
Note that the experimental data corresponding to the sucrose experiments
under standard conditions has been reported earlier.[79]

The preparation of the particulate-free samples at Janssen included the fol-
lowing step: washing and autoclaving of the glass vials, which were provided
by ETH Zurich to ensure that the same type of vials is used in all studies. The
vials were filled with 1 mL sucrose solution in a laminar flow hood, sealed,
and frozen on dry ice. They were shipped to ETH Zurich on dry ice, and
stored in the frozen state until their measurement in the Crystal16 apparatus.
Note that no thermocouples were inserted for the measurements to avoid
contamination: the vials remained closed at all time between filling and the
end of the experiment.
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When computing the supercooling at nucleation, melting points of the
sucrose solutions were taken from the literature.[115]

4.3 supplementary figures

This section contains additional figures that show all experimental nucle-
ation temperature data that were generated within this chapter. Similar to
Figure 4.3, which reported the data for the 20 wt% sucrose solution, Figures
4.4, 4.5, and 4.6 report the data for sucrose solutions of 10 wt%, 30 wt%, and
40 wt%, respectively. For the 10 wt% sucrose solution, only two independent
experimental series were carried out, instead of three, as done for all other
conditions. This is because a large number of vials broke during the transport
from Janssen to ETH Zurich and hence were not suitable for experimental
measurements.

Figure 4.4 Experimental nucleation temperature results for 10 wt% sucrose solutions.
The colors denote the conditions of sample preparation and their shades the three
independent series per experimental conditions. Blue: Samples spiked with silver
iodide. Orange: Samples prepared under standard laboratory conditions. Green:
Samples prepared under particulate-free conditions. (a) Scatter plot of nucleation
temperatures, sorted by vial in the order of ascending mean nucleation temperature. (b)
Scatter plot of nucleation temperatures, sorted by cycles in order of completion.

Considering the sucrose samples, the experimental trends discussed in
the main body apply to all concentration levels: that is, cleaner samples
nucleate at lower temperatures and with more variability. The variability in
nucleation temperatures among cycles is similar for the three conditions of
sample preparation, however, the variability among vials increases the cleaner
the samples are. The samples spiked with AgI and a concentration of at least
20 wt% sucrose exhibit a decrease in nucleation temperature over time; this
effect is not evident in the 10 wt% sucrose samples.
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Figure 4.5 Experimental nucleation temperature results for 30 wt% sucrose solutions.
The colors denote the conditions of sample preparation and their shades the three
independent series per experimental conditions. Blue: Samples spiked with silver
iodide. Orange: Samples prepared under standard laboratory conditions. Green:
Samples prepared under particulate-free conditions. (a) Scatter plot of nucleation
temperatures, sorted by vial in the order of ascending mean nucleation temperature. (b)
Scatter plot of nucleation temperatures, sorted by cycles in order of completion.

Figure 4.6 Experimental nucleation temperature results for 40 wt% sucrose solutions.
The colors denote the conditions of sample preparation and their shades the three
independent series per experimental conditions. Blue: Samples spiked with silver
iodide. Orange: Samples prepared under standard laboratory conditions. Green:
Samples prepared under particulate-free conditions. (a) Scatter plot of nucleation
temperatures, sorted by vial in the order of ascending mean nucleation temperature. (b)
Scatter plot of nucleation temperatures, sorted by cycles in order of completion.





5 MONITOR ING AQUEOUS SUCROSE
SOLUT IONS US ING DROPLET
MICROFLU ID ICS : I CE NUCLEAT ION ,
GROWTH , GLASS TRANS IT ION , AND
MELT ING

Freezing and freeze-drying processes are commonly used to extend the
shelf life of drug products and to ensure their safety and efficacy upon use.
When designing a freezing process, it is beneficial to characterize multiple
physicochemical properties of the formulation, such as nucleation rate, crystal
growth rate, temperature and concentration of the maximally freeze concen-
trated solution, and melting point. Differential scanning calorimetry has
predominantly been used in this context, but it can have practical challenges
and is unable to quantify the kinetics of crystal growth and nucleation. In
this work, we introduce a microfluidic technique capable of quantifying the
properties of interest, and we use it to investigate aqueous sucrose solutions of
varying concentration. Three freeze–thaw cycles were performed on droplets
with 75-µm diameters at cooling and warming rates of 1 °C/min. During
each cycle, the visual appearance of the droplets was optically monitored as
they experienced nucleation, crystal growth, the formation of the maximally
freeze-concentrated solution, and melting. Nucleation and crystal growth
manifested as increases in droplet brightness during the cooling phase. Heat-
ing was associated with a further increase as the temperature associated with
the maximally freeze concentrated solution was approached. Heating beyond
the melting point corresponded to a decrease in brightness. Comparison with
the literature confirmed the accuracy of the new technique, while offering
new visual data on the freeze concentrate. Thus, the microfluidic technique
presented here may serve as a complement to differential scanning calorimetry
in the context of freeze-drying. In the future, it could be applied to a plethora
of mixtures that undergo such processing, whether in pharmaceutics or food
production or beyond.

The work presented in this chapter has been reported in: Deck∗ , L.-T.; Shardt∗ , N.; El-Bakouri, I.;
Isenrich, F.N.; Marcolli, C.; deMello, A.J.; Mazzotti, M. Monitoring aqueous sucrose solutions using
droplet microfluidics: ice nucleation, growth, glass transition, and melting. Langmuir 2024, 40, 12,
6304–6316. This article has been published with a shared first authorship between Nadia Shardt and
myself.
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5.1 introduction

The freezing behavior of aqueous solutions is of broad interest to multiple
disciplines, ranging from the atmospheric sciences[58,60,82,131–134] and cryobiol-
ogy[107,135–139] to the manufacturing of pharmaceuticals[21,41] and food.[121,122]

In all these fields, it is important to measure and predict the equilibrium state
expected at certain conditions (temperature, pressure, composition, etc.) and
to assimilate this information in the form of a phase diagram.[140] Due to the
energy barrier required to form an ice nucleus,[20,64] metastable supercooled
water may persist for prolonged periods of time under relevant conditions, e.g.,
in cloud droplets in the atmosphere[82,86,141] or in vials filled with ultra-pure,
particulate-free aqueous solutions of biopharmaceutical formulations.[43,74]

The temperature at which nucleation is actually observed depends on parame-
ters such as the volume of the bulk solution, the cooling rate, and the mode of
nucleation (whether homogeneous or heterogeneous). Thus, knowledge about
the relevant kinetic parameters is required, including the rates at which ice
crystals nucleate and grow, to understand and design processes of relevance
to, for example, the pharmaceutical industry.

For the storage and distribution of biopharmaceuticals, processes such as
freezing and freeze-drying are implemented to remove the water from the
active ingredients to extend the shelf life of the drug product.[21,41] Designing
such processes necessitates detailed knowledge of how the solution containing
the active ingredients undergoes phase transitions. For instance, the size and
morphology of the ice crystals that form influences the drying rate and, in
the end, the physical characteristics of the freeze-dried formulation.[19,20,43,142]

Empirical guidelines suggest that larger ice crystals enable faster drying times
and that higher nucleation temperatures are correlated to larger crystals.[19,43]

Hence, process conditions are chosen to promote higher nucleation temper-
atures, e.g., by using slow cooling rates.[21,41] After freezing is completed,
the drying stage in freeze-drying must be designed such that the frozen
drug product remains below a certain critical temperature, so as to avoid the
collapse of its delicate micro-structure.[21,41]

Differential scanning calorimetry (DSC) is used to detect key thermal events
(and temperatures) across the liquid–solid phase diagram. That is, DSC
detects phase changes, including glass transitions, one of which is related to
the critical temperature in freeze-drying. For some solutions, such as those
containing proteins,[143] the accurate identification of glass transitions can be
practically challenging due to weak signal strength.[144,145] For this reason,
alternative technologies such as freeze-dry microscopy have been developed
which enable the screening of process conditions for collapse phenomena in a
microscopic sample.[146,147] However, neither DSC nor freeze-dry microscopy
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allow for the measurement of kinetic parameters such as nucleation rate and
crystal growth rate.

Herein, we demonstrate the use of microdroplets to access important phase
transitions and temperatures on the isobaric phase diagram of sucrose–water
mixtures that have not otherwise been possible to quantify using bulk volumes
(µL–mL). Specifically, populations of microdroplets were generated in a mi-
crofluidic device and stored in perfluoroalkoxy alkane (PFA) tubing using an
instrument named the Microfluidic Ice Nuclei Counter Zurich (MINCZ).[27,87]

The droplets then were cooled and warmed, during which changes in droplet
brightness were observed, corresponding to changes in the phase(s) present.
This experimental tool could be used in the future for other mixtures that
undergo detectable changes in brightness as the temperature range between
freezing and melting is traversed. In addition, for highly concentrated sucrose
solutions, we quantified the linear crystal growth rate at significantly lower
temperatures than previously reported.[148] Thus, both thermodynamic and
kinetic properties of a solution could be determined in a single experimental
setup.

5.2 qualitative trends in droplet brightness

Fig. 5.1 outlines a qualitative extended phase diagram as a function of tem-
perature and sucrose mass fraction. It is an extended phase diagram, because it
shows features in addition to those derived from equilibrium thermodynamics
that are relevant to the freezing process. First, the equilibrium melting line is
extended beyond the eutectic concentration (shown as a dashed line), where
the solution is supersaturated with respect to the solute, sucrose. This is
because during freezing, pure ice crystals are formed, increasing the solute
concentration in the unfrozen solution, and this increase continues beyond
the eutectic point, at which point crystallization of the solute may eventually
occur. Some solutes such as mannitol commonly nucleate during the freezing
process.[41,149] For sucrose, however, such behavior has neither been reported
nor been observed here.

Fig. 5.1 features two pieces of information related to glass transitions. The
first is the glass transition temperature of the metastable solution in which
neither ice nor sucrose has nucleated. This temperature depends on solution
composition, and it is referred to as Tg. The second is a point highlighted by
the coordinates (w′, T′

g), which represents the glass transition temperature of
the maximally freeze-concentrated solution at a sucrose mass fraction of w′.
Freeze-concentration refers to the increase in concentration of the solute in
solution as pure ice crystals form during the freezing process. As a result of
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this concentration process, the viscosity of the solution gradually increases
until it becomes high enough to inhibit further crystal growth.

Figure 5.1 A qualitative, extended phase diagram of sucrose–water mixtures showing
the melting temperature Tm, the composition-dependent glass transition temperature
Tg, and the temperature of the maximally freeze concentrated solution T′

m with corre-
sponding composition w′. The point (w′, T′

m) lies on an iso-viscosity line at which the
viscosity is sufficiently high to arrest further ice growth from the highly-concentrated
solution. The glass transition temperature at the composition w′ is denoted by T′

g.

While Tg is associated with the ultra-high viscosity of a glassy state (1 ×
1012 Pa s),[150] there is a higher temperature where ice growth in the sucrose
– water freeze-concentrate is inhibited – at a lower viscosity (approx. 1 ×
108 Pa s)[150], shown by the iso-viscosity line in Fig. 5.1. Qualitatively, this iso-
viscosity line is a vertical translation of the Tg curve. The point (w′, T′

m) is
the intersection of the iso-viscosity line and the melting line. w′ represents
the highest concentration level attainable in the freeze-concentrate, and the
solution with this concentration is referred to as maximally freeze-concentrated.
The value of w′ is independent of the solution’s initial composition, which
only determines the relative amounts of the two phases that form upon
freezing, i.e., the pure ice crystals and the freeze-concentrate. Both the physical
interpretation and the name of the temperature associated with the point (w′,
T′

m) are inconsistently used in the literature (see Sacha and Nail[151] for a
comprehensive discussion), with the terms glass transition temperature of the
freeze-concentrate[143,152] and antemelting temperature[153] both in use.
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The maximally freeze-concentrated solution (w′, T′
m) is of immediate interest

to the freezing and freeze-drying of biopharmaceuticals, whereas T′
g is not.

This is because the primary drying stage of the freeze-drying process must be
designed such that the frozen product remains at a temperature below a critical
value (termed Tc) to avoid the collapse of the delicate micro-structure. A large
number of studies have revealed that for formulations where the solutes do
not crystallize during freezing (as is the case for sucrose-based formulations)
this critical temperature lies close to the value of T′

m, so that the measurement
of T′

m has become a standard practice in the field.[20,21,143,154] The associated
concentration w′ is of relevance to the storage of frozen biopharmaceutical
drug products, as it governs the long-term stability of the active ingredients
in the freeze-concentrated solution.[8,154] For the case of sucrose solutions,
T′

m is reported to lie at about −33 °C independent of concentration, whereas
T′

g lies between −49 °C to −45 °C, as measured by DSC.[143,151] While DSC
can be used to provide both temperatures,[153,154] the microfluidic technique
introduced here allows for the measurement of T′

m only.

Figure 5.2 Sequence of images during the first cycle of the series depicted in Figs. 5.3
and 5.5 (triangle) for the 30 wt%(Tm = −3.1°C) and 50 wt% (Tm = −7.2°C) sucrose
mixtures corresponding to the processes depicted by arrows in the schematic on the left.
(1) to (2) shows the progression of droplets freezing as temperature decreased below the
droplet nucleation temperatures Tnuc; (3) to (4) shows the onset and end of the region
associated with T′

m that lies at about −33°C; and (5) to (6) shows the onset and end of
melting (Tm). All images are cropped areas of size 2.4×2.4 mm at the center of the full
image. Onsets and ends of the T′

m and Tm region are the temperatures at which vertical
bars are drawn in Fig. 5.5(b).
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Phase transitions in droplets upon temperature change can be observed
optically by changes in how the droplet interacts with light, as illustrated in
Fig. 5.2 for droplets of two aqueous sucrose concentrations (30 wt% upper row,
and 50 wt% lower row). Aqueous sucrose solutions are optically transparent
to visible light, as seen for the majority of droplets in panel (1). When ice
formation occurs, the crystals reflect and scatter light, increasing the brightness
of the phase against the dark background (bright spots in column (1)). The
temperature at which ice is first detected, is called the nucleation temperature,
Tnuc, and it varies among droplets due to the stochastic nature of nucleation.
Upon further cooling, ice forms in more and more droplets, as can be seen in
column (2), and intriguingly, frozen droplets differ in their brightness. As we
will see later, this effect is related to the temperature at which nucleation in the
droplets takes place. After reaching the pre-defined minimum temperature,
the droplets were heated back to the initial temperature, as shown in columns
(3) to (6). As long as the droplet temperature remained significantly below
T′

m (around −33°C, column (3)), droplet brightness did not change. As T
approached T′

m (column (4)), droplet brightness visibly increased, and all
droplets eventually exhibited a similar level of brightness.

Upon further heating, the temperature eventually approaches the melting
point where the brightness of the frozen droplets decreased (columns (5) to (6))
as the proportion of ice in the droplets decreased. The pixel intensity continued
to decrease until the melting point was surpassed, at which fully liquid
droplets were again observed (column (6)). Experiments were conducted for
multiple sucrose concentrations between 1 wt% and 60 wt%, hence covering
the entire concentration range below the eutectic composition.

5.3 quantitative analysis of freezing

5.3.1 Nucleation temperatures

Nucleation is a stochastic process;[64,94] hence, a quantitative analysis of a
solution’s nucleation behavior requires the measurement of a large number
of nucleation events. Given that only a single nucleation event takes place
in each droplet (see the Section 5.3.5), a large number of droplets must be
observed to generate statistically-relevant nucleation data sets. We evaluate
such data by computing the cumulative distribution function, i.e., the fraction
of droplets frozen as a function of time over the course of an experiment.
Since the thermal evolution during the experiment is recorded, it is possible to
express such a distribution in terms of temperature. In general, the addition
of a solute is expected to lower the temperature at which nucleation occurs.
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Figure 5.3 Frozen fraction of droplets (nfrozen/ntotal) as a function of temperature and
sucrose concentration observed in MINCZ. In panel (a), one droplet population (75

µ in diameter) was generated from a stock solution at each listed concentration and
underwent three consecutive freeze–thaw cycles at a rate of 1 K min−1. Each cycle
is depicted with a different symbol (cycle 1: triangle; 2: square; 3: diamond). The
thermocouple accuracy is estimated to be ± 0.2°C.[87] In panels (b) and (d), results from
(a) and (b) are repeated for concentrations of 10 wt% and 30 wt% (labelled as run 1)
with results from two additional independent droplet populations undergoing three
freeze–thaw cycles (labelled as runs 2 and 3).
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This is because a solute lowers the water activity, and hence lower absolute
temperatures are required to achieve the same value of the thermodynamic
driving force for ice nucleation to occur.[45,58,64] We have studied this effect
recently for aqueous solutions containing sucrose, trehalose, and sodium
chloride at different concentrations at the millilitre scale,[79] and here we aim
to assess how such an effect manifests at the micro-scale. Fig. 5.3 depicts the
cumulative fraction of droplets frozen at each temperature for each studied
sucrose concentration, summarized in two panels ((a) and (c)) to facilitate
the visual analysis. As was observed for the larger volumes in our earlier
study,[79] nucleation temperatures decrease with increasing concentration for
high sucrose concentrations above 20 wt%, as shown in panel (c).

For the lower concentrations shown in panel (a), namely 1 wt%, 10 wt%,
and 20 wt%, the nucleation temperatures partially lie above those measured
for pure water, contrary to expectation. All three distributions are bimodal,
i.e., they exhibit a turning point (an abrupt change in the slope of the frozen
fraction), at a frozen fraction of about 10 % for the 1 wt% solution, at 30 % for
the 10 wt% solution and at about 90 % for the 20 wt% solution. The fraction at
which the turning point is positioned is reproducible across the three freeze–
thaw cycles (different symbols) for all concentrations. In addition, Fig. 5.3(b)
shows that for three independent droplet populations each undergoing freeze–
thaw cycles, the turning point also remains at the same temperature, and only
the fraction of droplets freezing varies. At the higher concentration levels
shown in panel (c), in contrast, the distributions are generally unimodal, with
only slight variation in nucleation temperatures between different droplet pop-
ulations and between consecutive freeze–thaw cycles within the same droplet
population. At the highest studied concentration (60 wt%), the distribution
becomes bimodal again, with almost 10 % of droplets freezing prior to the
steepest increase in frozen fraction.

We propose the following explanation for these observations based on the
concept that nucleation may occur either homogeneously (i.e., in the bulk vol-
ume) or heterogeneously (i.e., on surfaces of, e.g., impurities). The experiment
for pure water is considered to feature homogeneous nucleation, supported
by the fact that a large number of studies have observed similar nucleation
temperatures for micrometer-sized droplets of ultra-pure water in different se-
tups.[155,156] The increase in nucleation temperature in sucrose solutions with
low concentration levels compared to pure water hence must be due to the
presence of heterogeneous nucleation sites. If the number of heterogeneous
nucleation sites is small, they are randomly distributed across droplets, and
some droplets are expected to contain none, i.e., they nucleate homogeneously.
This therefore explains the bimodal shape of the distributions. Given that
the only difference between the experiments involving pure water and those
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involving sucrose solutions is the presence of sucrose, one must conclude that
the heterogeneous nucleation sites are located on impurity particles present in
the sucrose used in the experiments. Hence, a higher sucrose concentration im-
plies that more nucleation sites are present, so that eventually heterogeneous
nucleation takes place in virtually all droplets for concentrations of 30 wt%
and higher. Similarly, the bimodal distribution of the 60 wt% solution may be
due to heterogeneous nucleation sites not present at the lower concentrations;
to confirm this conjecture, experiments at higher concentration levels are
required, which were not carried out due to the experimental challenges in
dealing with highly viscous solutions. An experimental approach to directly
investigate whether heterogeneous nucleation is present would be to measure
nucleation temperatures in droplets of different sizes, since smaller droplets
are less likely to contain an impurity particle on which nucleation sites may be
located. Doing so is indeed feasible with the microfluidic setup used here,[87]

but outside the scope of the work. Considering the literature, Miyata and
Kanno[157] reported only homogeneous nucleation of sucrose solutions using
an emulsion-based DSC, in which the emulsion comprises microdroplets with
diameters of a few µm,[26] i.e., volumes more than three orders of magnitude
smaller than the droplets measured here.

The presence of heterogeneous nucleation further explains the broadness
of the measured nucleation temperature distributions on the order of 10 K,
which is significantly wider than those for pure water of less than 3 K[87].
Heterogeneous nucleation sites vary in the characteristic temperature at which
they catalyse nucleation,[158] leading to a droplet-to-droplet variability in
nucleation temperature in addition to the inherent stochasticity. Such addi-
tional variability has been widely reported in the literature, both in micro-
droplets[26,82,86] and at the millilitre scale.[76,79,159] Its quantitative study would
require knowledge of droplet-specific mean nucleation temperatures, obtained
by consecutively measuring nucleation temperatures for individual droplets
over multiple freeze–thaw cycles. Given that our experiments comprise only
three freeze–thaw cycles, we refrain from doing such an analysis; however, we
point out that the setup presented here may indeed be capable of carrying
out experiments with additional freeze–thaw cycles dedicated to the study of
droplet-to-droplet variability.

Finally, it is worth comparing the monitored nucleation temperatures with
those measured previously in vials filled with 1 mL sucrose solution prepared
under the same condition;[76,79] in these studies, nucleation was found to take
place at an average supercooling of 13 K, with no significant dependence on
sucrose concentration. That nucleation in the micro-droplets takes place at
significantly lower temperatures is explained by their smaller volume, which
implies that each individual droplet contains only a few or no impurity
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particles, as discussed before, whereas volumes at the scale of vials contain
many more impurities.

5.3.2 Interplay between nucleation temperature and the freeze-concentrate

The visual appearance of the droplets after nucleation warrants further
study, as their brightness was found to depend on the nucleation temperature.
As an example, Fig. 5.4(a) shows a cropped image of each droplet after nucle-
ation as a function of temperature, binned in intervals of 0.5 °C for the first
freezing ramp of the 30 wt% sucrose droplets. Qualitatively, the pixel intensity
of droplets that nucleated at higher temperatures was significantly greater
than those that nucleated at lower temperatures. Quantitatively, Fig. 5.4(b)
shows that the ratio between the intensities of the brightest and dimmest
droplets is on the order of a factor of two. Let us further recall from Fig. 5.2
that upon reheating all droplets brighten to the same value of the pixel inten-
sity. Physically, this behavior is due to the interplay between the temperature
of ice nucleation (and the ensuing crystal growth) and whether the maximally
freeze-concentrated solution is attained.

To elucidate this effect, one must consider the physical processes that take
place during freezing within the droplets. We recall that the point (w′, T′

m)
is defined by the magnitude of viscosity that inhibits the kinetic process of
crystal growth (cf. Fig. 5.1). Viscosity, in turn, is a function of temperature and
composition, and the intersection of the melting curve with the iso-viscosity
line yields the point (w′, T′

m). If freezing is carried out in sufficiently large
volumes (consider e.g., vials at the millilitre scale) where nucleation occurs
above T′

m, the composition of the solution after nucleation follows the melting
line until it approaches a concentration of w′ corresponding to the temperature
T′

m. This process is visualized by the blue line in Fig. 5.4(c).

In the micro-droplets studied here, however, nucleation occurs predomi-
nantly at temperatures below T′

m. In this case (the red line in Fig. 5.4(c)), the
freeze-concentrated solution cannot attain the concentration level w′, as the
viscosity of the hypothetical state (w′ , Tnuc) is greater than the viscosity at
which ice crystal growth is inhibited (see light blue iso-viscosity line). The
droplet instead attains the final state (w(Tnuc), Tnuc) that correspond to the
viscosity level at which crystal growth is inhibited. Since viscosity increases
with decreasing temperature, it must hold that w(Tnuc) < w′ when Tnuc < T′

m.
A smaller sucrose concentration in the freeze-concentrate implies that less
water is turned into ice, which may be linked to differences in brightness
of the frozen droplets. Naturally, when the droplets are heated, viscosity
decreases, and the differences between the droplets vanish as all droplets
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assume states on the melting line. We use this optical effect in the following
section to quantify the value of T′

m.

Figure 5.4 (a) Cropped images of frozen droplets with a sucrose concentration of 30 wt%
as a function of their nucleation temperature binned in intervals of 0.5 °C for the first
freeze–thaw cycle shown in Fig. 5.3(c). (b) Pixel intensity (monochrome scale between 0

(black) and 255 (white)) of a circle with 9-pixel radius at the center of each identified
droplet averaged over all droplets in the same bin for all three freeze–thaw cycles of
30 wt% droplets (cycle 1: triangle; 2: square; 3: diamond) in Fig. 5.3(c). (c) Schematic
phase diagram illustrating the hypothesis for the change in droplet intensity when
Tnuc < T′

m: it is not possible to reach (w′, Tnuc), because as ice grows, the iso-viscosity
line is intersected at a lower concentration, and further ice growth ceases. T′

m is obtained
from the analysis shown in Figs. 5.5 and 5.6.

5.3.3 Freeze-concentrate and melting temperatures

While nucleation is a stochastic process and each droplet experiences a
distinct nucleation event, both T′

m and Tm are deterministic and therefore
experienced simultaneously by all droplets. As a result, to facilitate image
analysis, the region of interest for the image analysis was expanded from
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individual droplets to the columns of the image that contained PFA tubing (the
exact procedure for identifying the tubing is explained in the Methods5.5.2).
Variability between droplets was confirmed to be less than the accuracy of the
thermocouple (0.2 °C), and therefore the columns of pixels where PFA tubing
was present was considered to be a suitable region of interest for quantitative
analyses of pixel intensity.

Fig. 5.5(a) illustrates an example of the procedure for identifying important
features of the normalized average intensity (In) of pixel columns as a function
of temperature for the warming portion of the first freeze–thaw cycle for
30 wt% sucrose droplets (warming rate of 1 °C/min). As previously shown in
Fig. 5.2, heating beyond T′

m is accompanied by an increase in brightness, and
heating beyond Tm by a decrease in brightness. For a quantitative analysis
it is beneficial to consider the derivatives as well: pertinent features of the
intensity evolution were extracted from corresponding extrema in the first
and second derivatives (I′n and I′′n , respectively). The midpoint temperature
of the transition was defined as the one where the maximum in the first
derivative was reached (shown by the triangle symbols in Fig. 5.5(a)); the
onset temperature as the first extremum in the second derivative before the
midpoint; and the endpoint temperature as the first extremum in the second
derivative after the midpoint. In Fig. 5.5(b), the normalized intensity evolution
is shown for all concentrations and all freeze–thaw cycles, with the midpoints
identified by symbols outlined in black, and onset and endpoint temperatures
indicated by vertical segments. To reduce the size of the ensuing data sets,
not all images taken during the warming period were saved, but only those
around the expected glass transition and melting points, hence leading to
gaps in the plotted thermal intensity evolution.

It is worth mentioning that T′
m (but not Tm) may also be obtained by

monitoring the droplet brightness after nucleation during the freezing ramp,
as demonstrated in Fig. 5.4. We chose the method described here (intensity
change upon warming) for the quantitative analysis, because it allows for the
measurement of both T′

m and Tm.

Fig. 5.6 and Table 5.1 summarize the observed values for Tm (gold symbols)
and T′

m (green symbols) of sucrose solutions as a function of composition
obtained from the analysis of Fig. 5.5. The melting point was defined as the
midpoint of the decrease in the pixel intensity averaged over the columns
of pixels where tubing was present, and the obtained values are in close
agreement with other measurements reported in the literature.[115,153,160] T′

m
was taken to be the midpoint of the identified temperature range over which
an increase in average pixel intensity was observed. This choice of midpoint is
similar to the methodology for interpreting differential scanning calorimetry
experiments, where the midpoint temperature of a change in heat flow is taken
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Figure 5.5 (a) Normalized average column pixel intensity (In ∈ [0, 1]) as a function of
temperature for the warming portion of the first freeze–thaw cycle of 30 wt% droplets.
In the first row, purple triangles are raw data, and the black line is the smoothed
data. The midpoint (denoted by a filled triangle) is defined as the temperature at
which the first derivative of intensity (I′n, as shown in the second row) reached its
maximum (steepest change). (b) Summary of intensity as a function of temperature
for all concentrations. Symbols outlined in black indicate the temperatures at the
midpoint of the two transitions, corresponding to T′

m and Tm. For a single experiment,
moving upwards on the y-axis indicates an increase in intensity after cooling, and
all experiments are simply offset from each other on the y-axis to clearly show the
individual trends.
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Sucrose concentration (wt%) T′
m (°C) Tm (°C)

0 — 0.7 ± 0.02
1 — 0.2 ± 0.04
10 −30.7 ± 0.4 −1.1 ± 0.1
20 −32.3 ± 0.8 −2.0 ± 0.3
30 −32.8 ± 0.2 −3.1 ± 0.3
40 −33.5 ± 0.1 −5.1 ± 0.2
50 −33.3 ± 0.04 −7.2 ± 0.1
55 −33.0 ± 0.2 −9.3 ± 0.05
60 −33.3 ± 0.6 −13.3 ± 0.4

Table 5.1 Summary of the midpoint of the freeze-concentrated glass transition tem-
perature (T′

m) and the midpoint melting temperature (Tm) as a function of sucrose
concentration obtained from the data shown in Fig. 5.5. Each value is the average (±
two standard deviations) of the three freeze–thaw cycles at that concentration. Thermo-
couple accuracy is ±0.2 K.[87]

to be the value of T′
m.[143,145] It can be seen that at the lowest sucrose mass

fractions (10–20 wt%), the identified T′
m values are higher than those obtained

at higher sucrose mass fractions. This may be attributed to the high nucleation
temperatures observed for these solutions (see Fig. 5.3), where a large number
of droplets nucleates at or above T′

m, and hence experiences only little or no
increase in brightness upon heating. It is worth noting that DSC, the standard
method for the measurement of T′

m, similarly suffers from weak signals in
low-concentrated solutions.[143,145] In Fig. 5.5, the average grid intensity is
seen to slowly increase at a temperature lower than the identified midpoint.
This observation could suggest that the onset of the intensity increase may be a
more consistent feature to extract T′

m from the intensity evolution at the lower
sucrose mass fractions. For all concentrations greater than 30 wt%, however,
the observed T′

m values are in close agreement within the standard deviation
between freeze–thaw cycles at each concentration. Taking the average of T′

m
across all concentrations excluding 10 wt% and 20 wt% yields a value of
(−33.2 ± 0.2) °C, where the uncertainty is the standard deviation. This value
is in agreement with the average of (−33.5± 0.5) °C calculated from the values
reported by Seifert et al.[154] over the concentrations studied therein using
DSC (shown by upside-down triangles in Fig. 5.6).
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Figure 5.6 Temperatures in the maximally-freeze-concentrated region (T′
m) and the melt-

ing region (Tm) as a function of sucrose mass fraction. Each gold symbol corresponds to
the average temperature over the three cycles for the midpoint of melting (Fig. 5.5), while
each green symbol corresponds to the average temperature at the midpoint of the T′

m
transition (Fig. 5.5). The error bars show two standard deviations over the three cycles.
The horizontal dashed green line depicts this study’s average T′

m = −33.2 °C. The solid
lines are fits to this study’s Tm values using two forms of the osmotic virial equation
(OVE)[161] and the Chen model[162]. Open symbols are experimental measurements
of melting point from three literature sources[115,154,160] and a set of T′

m measurements
from Seifert et al.[154]

5.3.4 Concentration of the freeze-concentrated solution

The concentration of sucrose in the maximally freeze-concentrated solution
(w′ , T′

m) can be obtained by extrapolating the melting line beyond the mea-
sured melting points down to the temperature T′

m.[143,154] For fitting to the
measured melting points, we investigate three theoretical models.

First, we combine the Gibbs–Duhem equation with a model that can de-
scribe the non-ideal solution behavior. We select the osmotic virial equation
(OVE) due to its accuracy and rigorous derivation from principles in statisti-
cal mechanics[161,163,164], as well as for the possibility of using its regressed
coefficients to accurately predict properties of solutions with three or more
components in relevant applications.[138,161,165] There are two forms of the
osmotic virial equation, yielding two distinct approaches for relating the
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melting point to the solution composition when each is combined with the
Gibbs–Duhem equation. One is based on the osmolality of the solution, π:[161]

T◦
m − Tm =

RT◦
mπMw/∆s◦f

1 + RπMw/∆s◦f
(5.1)

where T◦
m is the melting point of pure water (273.15 K), R is the universal gas

constant (8.314 J mol−1), Mw is the molar mass of water (18.02 g mol−1), and
∆s◦f is the standard molar entropy change of fusion of water (22.00 J mol−1 K−1).
We truncate osmolality, π, to a polynomial of second-order: π = mi + Biim2

i
where mi is the molality of solute i and Bii is the molality-based second os-
motic virial coefficient. The second approach is based on the osmole fraction,
π̃:[161]

T◦
m − Tm =

RT◦
mπ̃/∆s◦f

1 + Rπ̃/∆s◦f
(5.2)

where we truncate the osmole fraction to a second-order polynomial: π̃ =
xi + B∗

iix
2
i where xi is the mole fraction and B∗

ii is the mole-fraction-based
second osmotic virial coefficient. Fitting Eq. 5.1 and Eq. 5.2 to the melting
points reported in Table 5.1 yields values of Bii = 0.15 ± 0.01 molal−1 (brown
line in Fig. 5.6) and B∗

ii = 10.6 ± 0.7 (purple line in Fig. 5.6), respectively.

A commonly-used semi-empirical model in the literature on freeze-drying
is the Chen model[162], which has the following form:

T◦
m − Tm =

Kw

Mw
ln
(

1 − wi − bwi
1 − wi − bwi + Ewi

)
(5.3)

where b is a fitting parameter, Kw = 1.86 kg K−1 mol−1 for water, Mw is the
molar mass of water, wi is the mass fraction of the solute (sucrose), and
E = Mw/Mi where Mi is the molar mass of the solute. Fitting to our data of
Tm in Table 5.1 yields b = 0.30 ± 0.01 and the orange line in Fig. 5.6.

Finally, we set Tm = T′
m in the obtained fitted models (Eqs. 5.1–5.3) to

the temperature of T′
m to solve for the corresponding value of w′ for the

maximally freeze-concentrated solution. From the osmolality-based OVE
model, we obtain a value of (75.0 ± 0.1)wt%, and from the osmole-fraction-
based OVE, we obtain (76.3 ± 0.1)wt%. Both of these results are in close
agreement with literature values that range between 72 wt% and 77 wt%.[166]

On the other hand, the Chen et al.[162] fit to our measured data yields a value
of (70.5 ± 0.1)wt%. The significant difference between the Gibbs–Duhem–
OVE model and the Chen model highlights the sensitivity of the obtained
value of w′ to the model chosen for extrapolation.
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Ice detection (𝑇nuc = −42.88	°C) Growth completed (𝑡 = 𝑡nuc+ 	60s) 

Δ𝐿

time

Figure 5.7 Observation of ice formation in a single slug containing 55 wt% sucrose
solution. The slug is about 445 µm long, 75 µm in width, and crystal growth requires
about 60 s to encompass its entire volume. A yellow outline representing the extent
of complete crystal growth is overlaid at the same position in each frame to facilitate
visual comparison. The nucleation time, tnuc, is defined as the first point in time, i.e., the
first image, where ice is detected; the nucleation temperature, Tnuc, is the temperature
measured by the thermocouples at this time.

5.3.5 Ice crystal growth

Crystal growth is relevant in the scope of this work for at least the following
two reasons. First, a nucleus upon its formation is extremely small and
cannot be detected immediately. The new ice phase requires some time to
grow to a detectable size; this detection delay must be considered when
analysing nucleation data, as is commonly done in studies on nucleation from
solution.[68,78] Second, when interpreting and modeling freezing processes,
it is of importance to hypothesize how many nuclei form within a volume
of interest. It is typically assumed that a single nucleus initiates growth
that encompasses the entire volume before a second nucleus can form (this
is plausible if crystal growth is very fast and the volume is small), which
is consistent with the description of nucleation as a rare event. Such an
assumption is commonly made when analysing the freezing behavior in
microdroplets.[27,86] It has also been applied in previous studies focusing on
larger volumes relevant to pharmaceutical applications,[76,79] where it was
verified through visual observation that freezing in vials starts from a single
point of origin, i.e., from a single nucleus.

These previous studies motivated us to carry out a detailed crystal growth
analysis. Fig. 5.7 illustrates ice formation in a single slug (75 µm × 445 µm,
yellow outline) containing 55 wt% sucrose solution; the use of elongated
slugs instead of droplets allows for a monitoring of crystal growth over a
longer period of time (see Methods for details on slug generation). The figure
consists of a total of eleven cropped images of the same slug, taken every six
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seconds, hence representing the evolution of the droplet over a total period
of one minute. The leftmost image is the first image in which ice can be
visually detected (bright spot); the rightmost image shows a slug that is nearly
completely frozen, i.e., its entire volume appears bright.

Assuming that the maximally freeze-concentrated solution contains 75 wt%
sucrose, this phase comprises 73.3 % of the slug’s total mass, whereas the
ice crystals comprise the remaining 26.7 %. Hence, even after ice formation
is complete, ice crystals encompass only a minor mass (or volume) fraction
of the slug. Even though the estimated amount of ice crystals is relatively
minor, the rightmost image in Fig. 5.7 shows an evenly bright slug indicating
the presence of ice throughout its entire volume. This is because there is
no macroscopic separation of the two phases, and instead the ice phase and
the freeze-concentrate form an intertwined network with contiguous regions
having a length-scale on the order of micro-meters or below (see e.g., Först
et al.[167] for images of such a crystalline network). The formation of such a
network during freezing is in fact the reason why aqueous solutions can be
freeze-dried. After the freezing phase of the process is complete, ice crystals
sublimate during the primary drying phase under vacuum, leaving behind
the highly porous network of the freeze-concentrated phase, which due to
its large surface area, allows for a fast desorption of the water in the freeze-
concentrate.[20,21] Given the resolution of 6.8 µm per pixel it is not possible to
observe individual pockets of ice or freeze-concentrate, and instead the entire
frozen region appears bright.

An image sequence as the one shown in Fig. 5.7 can be used to compute the
velocity of the freezing front, i.e., of the interface between the region in which
ice has already formed, and that where it has not. Because crystal growth
is the only phenomenon that takes place in the slugs after nucleation (as in
most cases only a single nucleus forms per slug), such velocity represents the
crystal growth rate under the given conditions. The growth rate G is obtained
by measuring the difference in length of the frozen region (∆L) between two
images and considering the time elapsed between them (∆t) as G = ∆L/∆t.

The growth rate is a function of temperature and solution composition. To
investigate this relationship, we report in Fig. 5.8 the growth rates measured in
ten slugs each for three sucrose concentrations at different temperatures. Panel
(a) shows the growth of ice as function of time in three slugs containing 55 wt%
sucrose solution that represent the fastest-growing, the slowest-growing and
an average-growing slug out of the ten measured in total. The markers denote
experimental measurements, and lines the best fit for the growth rate obtained
through linear regression. As can be seen, all slugs show a linear evolution
of length grown with time, and the growth rate in the fastest-growing slug is
about 20% higher than in the slowest-growing one.
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Figure 5.8 Growth rate estimates for slugs containing 50 wt%, 55 wt%, and 60 wt%
sucrose solution. (a) Growth of ice in three slugs containing 55 wt% sucrose solution;
they represent the fastest-growing, the slowest-growing and an average-growing slug
out of the ten measured in total. The markers denote experimental measurements, and
lines the best fit obtained through linear regression. (b) Growth rate measurements in
ten slugs per solution composition, sorted by nucleation temperature. Error bars denote
two standard deviations.

Panel (b) illustrates the regressed values of the growth rates and their
uncertainty for all measured slugs, plotted in terms of their nucleation tem-
perature. Average growth rates of (33.4 ± 4.4)µm s−1, (5.7 ± 0.8)µm s−1, and
(3.3 ± 0.6)µm s−1 were measured for 50 wt%, 55 wt%, and 60 wt%, respec-
tively. Both the error bars and the uncertainty in the growth rates correspond
to two standard deviations. A number of remarks are worth making.

First, the growth rate decreases significantly with increasing sucrose con-
centration. This is because with increasing sucrose concentration the viscosity
level of the solution increases, and hence the molecular mobility of the water
molecules decreases. In fact, at concentration levels below 50 wt%, crystal
growth was too fast for it to be monitored adequately: the time elapsed be-
tween two images suffices for ice to grow into the entire volume of the slug.
Hence, this analysis is limited to highly concentrated solutions where crystal
growth is slow.

Second, at all concentration levels, growth is fast enough that there is no
relevant delay in detection of nucleation, i.e., the time to grow to a detectable
size is shorter than the time elapsed between two images (3 s). Third, the
growth rate decreases with decreasing temperature, particularly for the 50 wt%
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sucrose solution. The temperature-dependency of the growth rate stems from
both the thermodynamic driving force (larger at lower temperature) and from
kinetic effects related to the molecular mobility in the solution (lower at lower
temperature). Hence, the growth rate is dominated by kinetic effects for the
systems studied here.

Fourth and finally, all thirty slugs analysed in this study experienced only
one single nucleation event. For 55 wt% and 60 wt% sucrose solutions, how-
ever, some slugs not included in the growth rate analysis exhibited a different
freezing behavior; that is, two separate frozen regions were observed to form
that eventually grew together. Such a scenario is expected for slugs in which
two distinct nucleation events take place. It can be explained by considering
Fig. 5.7 again, which shows that the time scale for growth in a 55 wt% slug
is on the order of one minute. Slugs of this composition nucleate within a
temperature interval of about 4 °C, as illustrated in Fig. 5.8(b), corresponding
to a time interval of 4 min. Given that both times are on the same order
of magnitude, it is indeed statistically reasonable to expect more than one
nucleus to form in some slugs. For the droplets analysed in the nucleation
temperature study, which are six times shorter in length than the slugs—
and hence experience a six- times-shorter growth time—the single nucleus
assumption is reasonable.

To conclude this section, we compare the estimated growth rates with lit-
erature values. It is worth noting that conventional growth rate experiments
are typically carried out by monitoring seeded ice crystals at small supercool-
ing (order of 1 °C), whereas the method presented here naturally operates
at large supercooling, namely at that connected to the stochastic occurrence
of nucleation. For example, Blanshard et al.[148] reported a growth rate of
(6.5± 0.3)µm s−1 for a 58.6 wt% sucrose solution at a temperature of −16.2 °C.
This value is of the same order of magnitude as those measured here for the
55 wt% and 60 wt% sucrose solutions, and it agrees well with the observation
of a weak temperature-dependence. Since growth rates can be measured at
relatively low temperature (high supercooling), the method presented here
promises to complement existing techniques applicable to higher temperature
(lower supercooling). For high supercooling levels, growth rates for droplets
of pure water have been reported by Schremb et al.[168], which are signifi-
cantly higher, namely on the order of 15 cm s−1 for a supercooling of 20 °C.
The same study reported an increase in crystal growth rate with increasing
supercooling, i.e., the opposite trend that we observed here for concentrated
sucrose solutions. This is not surprising, given the significant differences in
viscosity and hence molecular mobility between pure water and concentrated
sucrose solution.
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5.4 concluding remarks

The importance of phase equilibrium predictions and of the kinetics of phase
transitions is evident in the design and control of freezing and freeze-drying
processes. Motivated by this, we investigated and demonstrated the use of
droplet microfluidics to aid in mapping out the solid–liquid phase boundaries
and the associated kinetics for a sucrose–water system at concentrations
below the eutectic point. As a function of sucrose composition, three key
temperatures were extracted based on an analysis of temporal changes in pixel
intensity: the nucleation temperature distribution, the melting temperature
(Tm), and the temperature of the maximally freeze-concentrated solution
at (w′, T′

m). Knowledge of the last two enabled the computation of the
sucrose concentration in the maximally freeze-concentrated solution, another
important design parameter for biopharmaceutical formulations.

Additionally, slugs (elongated droplets) were generated in separate experi-
ments comprising highly-concentrated sucrose solutions, and the growth rate
of ice crystals was quantified to yield insights into its dependence on both
composition and temperature. The growth rate was observed to decrease at
higher concentrations and lower temperatures likely due to the reduction in
molecular mobility. Further, we assessed the commonly-made assumption that
a single nucleating event occurs, confirming that it is valid for the spherical
droplets, while occasionally two nuclei were observed for the slugs with the
highest sucrose concentration.

Overall, we showed the ability of droplet microfluidics to characterize and
quantify the freezing behaviour of aqueous sucrose solutions, both thermody-
namically and kinetically. Future work can be pursued for other mixtures of
interest to the broad range of applications in which controlling or understand-
ing freezing is relevant—in industry (food, pharmaceutics, and cryobiology)
and in the environment (the atmosphere).

5.5 methodology

5.5.1 Experimental methods

The Microfluidic Ice Nuclei Counter Zurich (MINCZ) was used to gen-
erate and control the temperature of monodisperse populations of 75-µm
droplets. The operating principle of MINCZ is described in detail by Isen-
rich et al.[87] First, microchannels were patterned onto an SU-8 coated silicon
wafer, followed by standard soft lithography to transfer the channels to a
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polydimethylsiloxane (PDMS, Elastosil RT 601 A/B, Ameba AG, Switzer-
land; mass ratio of 10:1 between the base and curing agent) device bonded
to a glass slide (Menzler-Glaser, Germany) via plasma treatment. Second,
immediately prior to droplet generation, a fresh sucrose solution with the de-
sired concentration was prepared. Solution preparation entailed: (i) cleaning
glassware with deionized water (Millipore, Milli-Q Advantage A10 system),
acetone, and an additional three times with deionized water; (ii) weighing
the desired mass of sucrose (Sigma-Aldrich, BioXtra grade, > 99.5 % pu-
rity) and fully dissolving it in deionized water for a total solution mass of
50 g; (iii) filtering the sucrose solution (0.22 µm hydrophilic PTFE syringe
filter); and (iv) transferring the solution to a glass vial (Lab Logistics Group
GmbH, 1.5 mL) using a 100–1000 µL pipette (Socorex Acura 825). Third, to
generate microfluidic droplets, three glass syringes (1 mL, Hamilton® syringe,
Sigma-Aldrich) were placed in syringe pumps (Aladdin AL1000-220Z, World
Precision Instruments, USA) to control the flowrates of the sucrose solution,
fluorosurfactant (2 % v/v 008-FluoroSurfactant in HFE-7500 (RAN Biotech-
nologies, USA)), and fluorinated HFE-7500 oil (3M™ Novec™ 7500, Interelec
Electronics AG, Switzerland) into the microfluidic device. Depending on the
target droplet size, a different channel geometry was used: for small droplets
of approx. 75 µm in diameter, the same channel geometry as described in
Isenrich et al.[87]; and for elongated droplets (slugs), a T-junction channel
geometry. Generated droplets exited the microfluidic device through an outlet
connected to high-purity perfluoroalkoxy alkane (PFA) tubing (up to 50 cm in
length; 360 µm o.d., 75 µm i.d.; IDEX Health & Science LLC, USA) held in a
custom-milled polyether ether ketone (PEEK) structure. After droplets were
generated, the PFA tubing was cut at the outlet of the microfluidic device
with scissors, and the ends of the tubing were mechanically clogged with
serrated forceps. Finally, the PFA tubing was placed in an ethanol bath, the
temperature of which was regulated using a Peltier element (PKE 128A 0020

HR 150, Peltron GmbH, Germany) and recirculating chiller (Huber KISS K6,
Huber Kältemaschinenbau AG, Germany) with a working fluid of aqueous
55 % v/v ethylene glycol (98 % technical grade, Sigma-Aldrich, USA). The
polarity of the Peltier element was set by an Arduino UNO R3 (Arduino)
with two single-pole double-throw (SPDT) switches (Grove 2-Channel SPDT
Relay, Seeed Technology Co., Ltd) wired to create a double-pole double-throw
(DPDT) switch. Temperature was measured with two K-type thermocouples
(0.5 mm o.d., RS Components GmbH, Germany, and TC Direct, Germany)
placed horizontally in the same plane as the droplets (see Isenrich et al.[87] and
Shardt et al.[27] for more details). During both droplet generation and cooling,
a stereoscope (Nikon SMZ1270 (0.5× objective lens) equipped with a fibre ring
illuminator with LED light source) and CMOS camera (iDS UI-3060CP-M-GL
Rev. 2) were used to observe the droplets.



5.5 methodology 103

Aqueous sucrose solutions with concentration levels of 0 wt%, 1 wt%, 10 wt%,
20 wt%, 30 wt%, 40 wt%, 50 wt%, 55 wt% and 60 wt% were studied with
monodisperse droplet populations. Each droplet population underwent three
freeze–thaw cycles that traversed three temperature regions of interest: the
nucleation, maximally freeze-concentrated glass transition, and melting tem-
peratures. The cycles were implemented with the recirculating chiller at
either: (i) a constant setpoint temperature of −17 °C with the Peltier ele-
ment controlling the ethanol bath temperature (necessitating a reversal of the
Peltier element’s polarity to reach the solutions’ melting temperatures) or (ii)
a dynamic temperature setpoint with an unchanged polarity for the Peltier
element. A constant chiller temperature permits experiments that rapidly scan
through the temperatures of interest. On the other hand, a dynamic chiller
temperature permits constant cooling and warming rates to be maintained
for all temperatures. Droplet size and cooling rate were selected to match
the conditions used in an earlier study that focused on the monitoring of
homogeneous ice nucleation in water droplets.[27]

5.5.2 Image analysis

Nucleation, maximal freeze-concentration, and melting temperatures were
identified based on changes in the pixel intensity of the region of interest (im-
plemented with OpenCV and SciPy in Python). For nucleation temperatures,
the region of interest was each individual droplet, because nucleation is a
stochastic process and each droplet nucleates at a different temperature. For
the maximally freeze-concentrated and melting temperatures, the region of
interest was the columns of pixels where PFA tubing was present, because
these processes are deterministic, thus lending themselves to a simplified
image processing approach.

Identifying which pixels contain tubing: To reduce computational time for
image processing, only the regions of each image that contained tubing were
used for further image analysis. These regions were found with the following
procedure performed on the first image saved in the experiment: equalizing
the histogram, applying Otsu’s thresholding, calculating the mean pixel value
of each pixel column in the image, smoothing the mean pixel value with a
Savitzky–Golay filter, and identifying the regions with peaks in pixel intensity.
The identified peaks in pixel intensity corresponded to the presence of a piece
of tubing in the image.

Droplet nucleation temperature, Tnuc: Due to the stochasticity of nucle-
ation, the average intensity of each droplet was tracked. To determine the
droplets’ locations, the following procedure was followed. The last image
in the saved sequence was binarized and then morphological opening was
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applied to remove extraneous bright pixels. The Hough circle transform was
applied to find circular shapes (i.e., the droplets), and the average intensity of
a 9-pixel radius circle at the identified center coordinate was calculated for
each saved image.

To determine the temperature at which a droplet increased in brightness,
the observed temporal evolution of the droplet intensity was analyzed. A
Savitzky–Golay filter was applied to smooth the time series of average intensity,
and the first derivative of intensity was calculated with respect to time for
each consecutive pair of images. The temperature at which the first derivative
reached its maximum was taken to be the temperature at the midpoint of the
transition between liquid and solid. Next, the second derivative was calculated,
and the temperatures where the second derivative reached extrema were
identified (corresponding to the beginning and end of the phase transition,
respectively). In Fig. 5.3, the temperature plotted on the x-axis is the one at
the beginning of the transition. The results were reviewed manually to remove
from consideration any droplets that were exceptionally large or had merged
between freeze–thaw cycles.

T′
m and Tm: The average pixel value of the regions with tubing was calcu-

lated for each image. For both T′
m and Tm, the first and second derivatives

were calculated. A maximum in the absolute value of the first derivative was
assigned to be the midpoint of the transition in brightness. The extrema in
the second derivative corresponded to the beginning and end of the transi-
tion regions. An increase in pixel intensity was observed as the temperature
increased above the maximally freeze-concentrated temperature, while a de-
crease in pixel intensity was observed during melting (the solid-to-liquid
phase transition).

Slug generation and crystal growth rate: For each experiment, ten slugs
were selected for growth rate measurement based on the following criteria:
(i) only a single nucleus formed in the slugs, (ii) the nucleus forms close to
the top or bottom to allow for more time until growth is complete, (iii) the
set of slugs represents the entire range of nucleation temperature. The grown
length was measured in all images after nucleation based on the pixel intensity
profile. A single pixel corresponded to a distance of 6.8 µm.
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6 STOCHAST IC SHELF-SCALE
MODEL ING FRAMEWORK FOR THE
FREEZ ING STAGE IN FREEZE-DRY ING
PROCESSES

Freezing and freeze-drying processes are commonly used to improve the
stability and thus shelf life of pharmaceutical formulations. Despite strict
product quality requirements, batch heterogeneity is widely observed in frozen
products, thus potentially causing process failure. Such heterogeneity is the
result of the stochasticity of ice nucleation and the variability in heat transfer
among vials, which lead to unique freezing histories of individual vials.
We present for the first time a modeling framework for large-scale freezing
processes of vials on a shelf. The model is based on first principles and couples
heat transfer with ice nucleation kinetics, thus enabling studies on batch
heterogeneity. Ice nucleation is assumed to be an inhomogeneous Poisson
process and it is simulated using a Monte Carlo approach. We applied the
model to understand the individual pathways leading to batch heterogeneity.
Our simulations revealed a novel mechanism how ice nucleation leads to
heterogeneity based on thermal interaction among vials. We investigated the
effect of various cooling protocols, namely shelf-ramped cooling, holding steps
and controlled nucleation, on the nucleation and solidification behavior across
the shelf. We found that under rather general conditions holding schemes
lead to similar solidification times, as in the case of controlled nucleation, thus
identifying a potential pathway for freezing process optimization.

6.1 introduction

Freezing and freeze-drying are widely used processes to improve the stabil-
ity and thus the shelf life of pharmaceutical formulations.[21] The freeze-drying
process of biopharmaceuticals is carried out in vials at large scale; a single

The work presented in this chapter has been reported in: Deck, L.-T.; Ochsenbein, D.R.; Mazzotti, M.
Stochastic shelf-scale modeling framework for the freezing stage in freeze-drying processes. Int. J.
Pharm. 2022, 613, 121276.
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batch may comprise ten to hundred thousands of vials. Freeze-drying con-
sists of three stages, namely freezing, primary drying, and secondary drying.
During freezing, most of the liquid water in the product transitions into ice
crystals, while the solutes and the remaining water form either an amorphous
or a crystalline phase engulfed among the ice crystals.[41] The ice crystal mor-
phology of such a frozen product depends both on the formulation and on
the freezing process itself and it has a profound impact on the duration of the
subsequent drying steps.[34] Heterogeneity in morphology between vials will
lead to heterogeneity in drying behavior, possible poor product quality and
potential process failure.[169,170] Freezing process design and optimization is
thus of great relevance for the overall process development and optimization
in lyophilization.[44]

The freezing stage itself consists of at least three parts, namely ice nucleation,
rapid unstable crystal growth upon nucleation, and directional solidification.
Despite various experimental and theoretical studies in this field, predicting
the ice crystal size distribution in the frozen product from process parameters
remains challenging. A consensus exists about certain trends, e.g. that an
increase in solute concentration generally results in smaller ice crystals.[43,167]

Other trends are not accepted and considered general: Nakagawa et al.[19]

found that higher cooling rates, too, lead to smaller particle size, but this
could not be reproduced by others in a study with a lyo-microscope on a
system where the fill height was lower.[167]

With observable phenomena in dispute, it is no surprise that also their ratio-
nalization remains a topic of intense research. Searles et al.[43] identified the
ice nucleation temperature as the main predictor of the ice crystal morphology
in a vial. Moreover, a number of empirical and semi-empirical models were
developed that relate the average ice crystal size in a frozen product to freezing
process parameters, i.e. to the rate of solidification and to the temperature
gradient within the frozen zone.[19,28,171] Recently, Colucci et al.[40] developed
a more mechanistic model based on a 1D population balance equation to
describe the evolution of not only the mean, but also of the distribution of ice
crystal sizes during freezing for the first time.

While all those studies focused on the freezing of individual vials, stud-
ies on batch heterogeneity and its causes are scarce. Such heterogeneity is
undesired and of great practical relevance since operating conditions are
generally chosen to accommodate the worst-performing vials.[41] Common
explanations qualitatively depend on the stochasticity of ice nucleation and on
the heterogeneity of heat transfer across the shelf. Mitigation tactics therefore
revolve around addressing these sources of variation.[44,172,173] For example, to
address the issue of ice nucleation stochasticity, controlled nucleation methods
have been developed aiming at artificially triggering nucleation in all vials
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at the same time. Such efforts are based on a number of physical mecha-
nisms that promote nucleation; they include the ice-fog technique based on
seeding all vials with small ice crystals from the air,[174] the vacuum-induced
surface freezing mechanism based on evaporative cooling of the product sur-
face,[175,176] and the depressurization method based on the formation of gas
nuclei in the product.[177,178]

While these techniques have been shown to have positive effects,[175,179]

a thorough analysis of the pros and cons of such approaches has not been
carried out yet, also because of its difficulty. On the one hand, experimen-
tally determining product attributes in a statistically significant number of
vials to measure the improvements is difficult. On the other hand, the use
of controlled nucleation adds significant complexity to the process design,
which is intrinsically hard to quantify. For all these reasons, a shelf-scale
model of the freezing process is required to deepen the understanding of
batch heterogeneity and to optimize the process design. To the best of our
knowledge, such model is not available in the literature, whose focus has been
on single vials only.[19,28,40]

6.2 methods

We model the freezing process of vials on a shelf in a mechanistic way and
take into account batch size and arrangement, heat transfer, composition of
the formulation, and ice nucleation. We use a lumped capacitance approach,
where each vial is considered as a lump. While spatial variability within a vial,
i.e. in terms of temperature, may be present in practice, the lumped model
is based on the mean values of the properties within the vial’s volume. For
the studied systems, i.e. vials with fill height of not more than 1 cm and heat
transfer coefficients in the range of 20–60

W
m2K , the accuracy of the approach

allows for a qualitative understanding of freezing on the batch scale. During
a simulation of the freezing process, each vial evolves from a liquid to an ice
growth state. The governing equations account for the vial’s physical state.
Ice nucleation is described as an inhomogeneous Poisson process following
existing literature on primary nucleation of solutes[22] and is simulated using
a Monte Carlo approach.
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6.2.1 Modeling framework

Balance equations

We start the model derivation with the balance equations for the freezing
process in a single vial. As to the material balance, we can safely assume that
the mass of the formulation in the vial, i.e. mv, the mass of the solute, i.e.
ms, plus the total mass of water, i.e. mw, remain constant during the freezing
process:

mv = ms + mw = ms + mℓ + mi (6.1a)

dmv

dt
=

dms

dt
= 0 (6.1b)

dmi
dt

= −dmℓ

dt
(6.1c)

The decrease in mass of liquid water, mℓ, during freezing equals the increase
in mass of solid ice, mi.

The total enthalpy of the formulation in a vial, Hv, is given by:

Hv = mshs + mℓhℓ + mihi (6.2a)

= mshs + mwhℓ − miλw (6.2b)

The latent heat of fusion λw is defined as λw = hℓ − hi, whereas the specific
enthalpy hk for component k is:

hk =
∫ T

Tref

cp,k(T
′)dT′ (6.3)

Here, cp,k denotes the specific heat capacity of component k, which generally
depends on temperature. For the sake of simplicity, we neglect this temper-
ature dependency in this work. Combining equations (6.1), (6.2), and (6.3)
enables us to model the time evolution of the vial’s enthalpy:

dHv

dt
=
(

mscp,s + mℓcp,ℓ + micp,i

) dT
dt

− λw
dmi
dt

= Q̇ (6.4)

where Q̇ corresponds to the heat flow between the vial and its environment, i.e.
the effect of the external cooling that is applied during the freezing process.

In the next step of model development, we consider the events that happen
during freezing at the micro-scale, namely nucleation and growth of ice
crystals. The rates of nucleation, J, and growth, G, which ultimately determine

the rate of change of the ice mass,
dmi
dt

, may be expressed as power laws of the
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thermodynamic driving force, which is defined as the temperature difference
Teq − T, i.e. between the equilibrium and the actual temperature:

J = kb(T
eq − T)b (6.5a)

G = kg(Teq − T)g (6.5b)

where kb and kg are temperature dependent coefficients and b and g are
empirical constants. Importantly, the expression for the nucleation rate J is
agnostic to the actual mechanism of primary nucleation, which may occur
either homogeneously or heterogeneously, i.e. on the surface of dust particles
in the solution. When estimating the nucleation parameters, one thus needs
to consider the effect of the setup: It might be that values estimated under
standard lab conditions are not applicable to describe nucleation under dust-
free GxP conditions.

Let us consider freezing experiments in vials, whereby it is well known
that the formation of the first ice nucleus initiates ice formation via rapid, re-
calescent growth in the entire volume of the system. In fact, a post-nucleation
temperature rise from a supercooled state to the equilibrium freezing tem-
perature is observed taking place in a matter of seconds or less.[20,180] Since
primary nucleation is a rare event, we make the assumption that kg → ∞ to
simulate quantitatively such post-nucleation temperature rise. It follows that

Teq − T → 0 for t ∈ [tnuc, ∞) (6.6)

where tnuc is the nucleation time, since the unstable, rapid growth of the first
ice nucleus is assumed to instantly bring T to Teq. Additional consequences
of this assumption include first the fact that the first primary nucleus remains
the only primary nucleus in the system, since the nucleation rate, too, drops to
virtually zero. Secondly, the system enters a quasi-equilibrium-state, whereby
the rate-limiting step of ice formation is the external removal of the heat of
crystallization from the vial. Since heat transfer is the rate-limiting step, we
may describe the subsequent evolution of the system without considering
the micro-structure within the vial. In order to quantitatively predict this
structure, i.e. the distribution of crystal sizes, in a mechanistic way, more
knowledge on the rapid growth phase upon nucleation would be required.
However, this phase remains the least understood part of the freezing process,
which is why we do not consider it in detail within this model.

Freezing can thus be split into two distinct regimes, starting with a liquid
state that lasts until the formation of the first primary nucleus, followed by an
ice growth state. The energy balance for a vial in position (m, n) on a shelf
with (M × N) vials in the former regime, where no ice is present, is then:

Q̇(m,n) =
(

mscp,s + mwcp,ℓ

) dT(m,n)

dt
= mvcp

dT(m,n)

dt
(6.7)
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for t ∈ [t0, tnuc
(m,n)) and where cp is defined as the heat capacity of the solution.

In the second regime, the ice growth phase, the thermal evolution is governed
by Teq

(m,n), which equals the temperature of the vial T(m,n):

Q̇(m,n) =
(

mscp,s + mℓ,(m,n)cp,ℓ + mi,(m,n)cp,i

) dTeq
(m,n)

dt
− λw

dmi,(m,n)

dt
(6.8)

for t ∈ (tnuc
(m,n) , ∞). Note that we require a constitutive equation to describe

Teq
(m,n) as a function of the composition of the solution. We may consider for

example the Schröder van Laar equation or the simplified law for freezing
point depression given by Blagden.[98] In this work, the latter will be used,
since it finds broad use in the general freezing literature:[181,182]

Teq
(m,n) = Tm − kfbs,(m,n) = Tm − kf

Ms

(
ms

mw − mi,(m,n)

)
(6.9)

Here, bs is the molality of the solute in the solution, Ms its molar mass, kf
its cryoscopic constant and Tm the melting point of water; we also introduce
Teq
ℓ as the equilibrium freezing temperature of the solution before the onset

of ice formation, i.e. when mi,(m,n) = 0. We note that the thermal evolution
of the system is coupled with the evolution of the ice mass; the increase in
mass of ice crystals is connected with an increase in solute concentration
in the remaining solution that leads to a depression of the freezing point.
Such concentration of the solution upon freezing is commonly referred to as
freeze-concentration.

A direct consequence of it is that mi approaches mw only asymptotically.
When mi is small, at the beginning of the ice growth state, most of the heat that
is removed from the vial is due to the growth of ice; if mi is close to mw, heat
removal primarily leads to a decrease in temperature, theoretically towards
infinitely low values. In practice, at very low temperatures, vitrification of the
remaining water and solute or crystallization of the solute will occur, thus
leading to a completely solidified product.[183] For the sake of simplicity and
because these two phenomena occur at low temperatures, the model does not
cover them and we assume that solidification is completed when mi

mw
= 0.9

in order to compare solidification times between vials. The choice of such
threshold is arbitrary; we tested values in the range of 0.9-0.95 and found
no qualitative difference. Alternatively, one could define the endpoint of
solidification based on temperature instead of formed ice and assume that
solidification is complete when the formulation is cooled down to its glass
transition temperature.

At the time of the nucleation event, it is necessary to identify the initial state
of the vial in the ice growth state, i.e. the mass of ice formed immediately
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after the unique nucleation event, mi,(m,n)(t
nuc), that led to the instantaneous

depletion of the existing supercooling, and the corresponding temperature
Teq
(m,n)(t

nuc). We assume that the heat released upon nucleation equals the
sensible heat associated to the rise in temperature from the nucleation tem-
perature, Tnuc

(m,n), to the equilibrium freezing temperature of the now partially

frozen solution, Teq
(m,n):(

Teq
(m,n) − Tnuc

(m,n)

)
cpmv = λwmi,(m,n) for t = tnuc

(m,n) (6.10)

Eqn. 6.10 and the constitutive equation for the equilibrium freezing temper-
ature, i.e. eqn. 6.9, form a system of two equations in two unknowns, namely
mi,(m,n) and Teq

(m,n), and are solved together.

Heat transfer for vials on a shelf

As derived in section 6.2.1, the rate of change of the enthalpy of a vial equals
the heat flow with its surroundings, i.e. Q̇(m,n). The computation of this heat
flow requires knowledge of the system’s heat transfer and geometry. For the
sake of simplicity, we assume a cubic shape for the vials and a rectangular
arrangement, so that each vial in the center of the batch has four neighbors
and that the contact area between vial and shelf equals the area of one side
of the vial, i.e. Ash = Aside = A. In general the model may be applied to
any arbitrary shape and arrangement, such as hexagonal arrangements which
are also commonly used in practice. The heat flow Q̇(m,n) comprises two
contributions, firstly the heat transfer between vial bottom and shelf and the
one through the vial top, Ashqsh

(m,n) and secondly the heat transfer through the

sides of the vial, Asideqside
(m,n):

Q̇(m,n) = Ashqsh
(m,n) + Asideqside

(m,n) = A
(

qsh
(m,n) + qside

(m,n)

)
(6.11)

Heat transfer within freezing and freeze-drying chambers is complex. It was
shown that already for the shelf-to-vial heat transfer several mechanisms play
a role, namely ranging from solid conduction, to radiation, to both gas conduc-
tion and convection.[92] We aim for a high-level understanding; investigations
on the contributions of individual heat transfer mechanisms are beyond the
scope of this work. We perform sensitivity analyses by modeling the freez-
ing processes with a wide range of parameter values for the heat transfer
coefficients to understand the process behavior under different conditions.

To ensure a qualitatively accurate description we use a 4-parameter ap-
proach: We define the vial-to-vial heat transfer coefficient kint to model the
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thermal interaction among vials, a vial-to-environment coefficient kext, and an
(average) vial-to-shelf coefficient, ksh. It has been shown in the literature[173]

that the latter is not the same for all vials, but depends on their exact geometry.
To account for this, we define a standard deviation for the vial-to-shelf heat
transfer, ssh, which can be used to add an isotropic source of variability via

ksh,(m,n) = ksh,0 + sshϵ(m,n). (6.12)

In equation (6.12), ϵ(m,n) is a random scalar drawn from the standard normal
distribution, and ksh,0 should be interpreted as a lumped coefficient for all
related contributions, including radiative heat transfer from the top shelf.
Similarly, kint characterizes the totality of thermal interaction between the vials
in this system. From a physical point of view, thermal interaction occurs
both via direct heat transfer between the vials and indirectly via heat transfer
with the base the vials are standing on, i.e. the shelf or the tray. A sudden
temperature rise of one vial, as observed after nucleation, will heat up the
immediate vicinity of said shelf and thus affect the heat transfer and the
thermal evolution of the neighboring vials. These considerations lead to the
following expressions for the heat fluxes:

qsh
(m,n) = ksh,(m,n)

(
Tsh − T(m,n)

)
(6.13a)

qside
(m,n) = q(m+1,n,m,n) + q(m−1,n,m,n) + q(m,n+1,m,n) + q(m,n−1,m,n) (6.13b)

where

q(m′ , n′ , m, n) =

kext

(
Text − T(m,n)

)
if m′ ∈ {0, M + 1} ∨ n′ ∈ {0, N + 1}

kint

(
T(m′ ,n′) − T(m,n)

)
otherwise

(6.14)
The heat flux qsh

(m,n) depends on the temperature of the shelf Tsh, while the

quantity qside
(m,n) depends on the temperatures of the neighboring vials and/or

of the environment, and thus on the vial’s position. As eqn. (6.14) illustrates,
we need to specify Text. We will focus in this work on the case where it
equals the temperature of the shelf, i.e. Text = Tsh. In experimental works, the
temperature distribution of the environment is often anisotropic. Especially
in laboratory freeze-dryers, one commonly observes higher temperatures
towards the chamber door due to limited thermal insulation. We could take
into account such effect by introducing a position-dependency of Text or kext.
Such approach would add another degree of freedom to the description of
heat transfer and may be useful in validating the model in experimental
studies. We also consider the case without any external heat transfer, i.e.
where kext = 0 for all vials.
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Transition from the liquid to the partially frozen state

During freezing, each vial transitions from the liquid state to a partially
frozen state when the sole primary ice nucleus is formed. Since ice nucleation
is stochastic, we expect the nucleation times tnuc

(m,n) to vary between vials on
the shelf even in case they contain the same formulation and experience the
same heat transfer.

We model ice nucleation as a Poisson process, i.e. the probability of nucle-
ation depends on the current state of the vial, but not on its history.[22,23,66]

The Poisson process provides an accurate description of primary nucleation,
only requiring that nucleation is an activated process, i.e. that there is an
energy barrier to overcome when forming a nucleus. This is the case not only
for homogeneous nucleation, but also for heterogeneous nucleation, which is
generally considered as the dominant mechanism of nucleation for freezing
processes. The hypothetical effect of the thermal history of an aqueous solu-
tion on the freezing process is referred to as Mpemba effect in the crystallization
literature. Despite extensive research on this effect over the past decades, no
conclusive evidence for its existence has ever been found.[184] Indeed, such
memory effects were only identified for the crystallization of a small number
of components, which are prone to the formation of molecular assemblies
upon dissolution, such as Fenoxycarb.[185] In the context of freezing, the as-
sumption that ice nucleation only depends on the vial’s temperature, thus
may be considered as valid.

For a vial in position (m, n) on a shelf we define probabilities for being in

the ice growth state, i.e. P(1)
(m,n), and in the liquid state, i.e. P(0)

(m,n). It must hold

that P(0)
(m,n) + P(1)

(m,n) = 1 and P(0)
(m,n)(t0) = 1, i.e. the initial state of the vial is

liquid. The rate constant of the Poisson process, K(m,n), corresponds to the
nucleation frequency in the vial, in units of nucleation events per unit time.
Note that K(m,n) = J(m,n)V for a lumped vial. K(m,n) is called homogeneous
when it is time independent, e.g. because the temperature is kept constant,
and inhomogeneous otherwise, e.g. because of cooling. We use the master
equations to describe the time evolution of the probability that a vial is in the
liquid state:

dP(0)
(m,n)

dt
= −K(m,n)(t)P(0)

(m,n) (6.15)

the solution of which is:

P(0)
(m,n)(t) = exp

{
−
∫ t

t0

K(m,n)(t
′)dt′

}
(6.16)
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hence:

P(1)
(m,n)(t) = 1 − P(0)

(m,n)(t) (6.17)

As outlined in section 6.2.1, the thermal evolution of a vial, and thus its
nucleation rate, may depend on the thermal evolution of the neighboring
vials and in consequence also on the sequence of nucleation events across
the shelf. The value of K(m,n) in such a system therefore depends not only
on time, but also on the stochastic occurrence of prior nucleation events on
the shelf. The type of stochastic process, where past stochastic events effect
the future, is known as self-exciting point process, and may be interpreted as a
step-wise inhomogeneous Poisson process.[22] We may express the probability

P(0)→(1)
(m,n) (t, t + ∆t) that a nucleus is formed in a vial in the liquid state in the

time interval [t, t + ∆t] as:

P(0)→(1)
(m,n) (t, t + ∆t) = 1 − exp

{
−
∫ t+∆t

t
K(m,n)(t

′)dt′
}

(6.18a)

≈ K(m,n)(t)∆t = V J(m,n)(t)∆t (6.18b)

We thus compute P(0)→(1)
(m,n) step wise until nucleation occurred in all vials on

the shelf. We use the power law outlined in equation 6.5a to compute J(m,n).

The nucleation rate parameters kb and b were recently estimated by Colucci
et al.[40] for 5 wt.% sucrose solution; we therefore investigate the same formula-
tion in this work to make use of their estimations. However, it should be noted
that their approach to model nucleation is different, i.e. they assumed the
formation of multiple primary nuclei for the ice growth state. We accounted
for this by adjusting the value of kb. Due to the scarcity of literature data on
ice nucleation kinetics in this liquid volume range we also conducted our own
freezing experiments in a batch crystallizer to estimate the kinetic parameters
for sucrose solutions. The detailed experimental study will be reported else-
where, but the nucleation temperatures are in qualitative agreement with our
simulations and literature results, which report nucleation events commonly
in the range of -10°C to -15°C in laboratory freeze-dryers.[40] Given that ice
nucleation is dominated by heterogeneous effects, the value of the nucleation
parameters may depend on the specific setup of the process. For example, we
expect slower nucleation under GxP conditions, where fewer dust particles
are present that may drive heterogeneous nucleation compared to the lab.

In addition to primary ice nucleation we also study controlled ice nucle-
ation. We model this technique by initiating nucleation in all non-nucleated,
supercooled vials at a predefined time tnuc

cont.
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Numerical solution approach

In order to solve the coupled system of energy balances and stochastic
ice nucleation equations described above, we have developed the following
numerical algorithm. We discretize the balance equations in time and compute
for each time step the thermal evolution of all vials, as well as the nucleation
probability for those vials that are in a liquid, supercooled state. To identify
nucleation events, we use a Monte Carlo approach: we compare the computed

nucleation probabilities P(0)→(1)
(m,n) with randomly generated numbers sampled

from a uniform distribution in (0,1). We draw one number for each vial in
the liquid, supercooled step per time step. By doing so, we ensure that the
nucleation process is indeed stochastic; the randomly generated number for a
specific vial at a given time step is independent of the numbers generated for
other vials and for prior and later time steps.

The stochasticity of ice nucleation necessitates repetitive runs of the model
to capture the variability of the process. The individual runs are completely
independent from each other, thus enabling parallelization of the computa-
tions. To avoid obtaining repeated behavior in the parallelized program, we
seed the random number generator for each run individually.

While the results generated for this work were computed using MATLAB,
we have opted to provide an equivalent, open source implementation of our
model in the form of a python package that we publish on pypi under the MIT
license.[186] We have called this package ”Stochastic Nucleation of Water”, or
SNOW for short.[73] It is our intention to integrate upcoming developments
and potential contributions by third parties into future releases, hoping to
foster a spirit of open collaboration among researchers in this field.

6.2.2 Cooling protocol

The control and reduction of batch heterogeneity is of special interest in
process design and optimization. The number of process parameters in the
freezing step of freeze-drying is small and optimization commonly reduces
to the choice of a suitable cooling protocol. We investigate three aspects of
it: the cooling rate, the holding steps, and the application of a controlled
nucleation scheme. Figure 6.1 illustrates the thermal evolution of the shelf for
four different cooling policies that will be analyzed and characterized in the
following sections 6.2.2 and 6.2.2.
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Figure 6.1 Temperature profiles of the shelf for (α) uncontrolled freezing without
holding step, also known as shelf-ramped freezing, (β) uncontrolled freezing with
ad-nucleation holding scheme, (γ) controlled nucleation without post nucleation hold
and (δ) controlled nucleation with post-nucleation hold. The magenta arrow indicates
the controlled nucleation event.

Cooling rate and holding step policies

Traditionally, freezing in lyophilization processes is carried out via shelf-
ramped cooling, where the shelf temperature is reduced with a constant
cooling rate γ from ambient temperature to a minimum temperature com-
monly around -50°C, as shown in figure 6.1(α). In such a setup, γ is the
sole process parameter and is typically chosen in the range from 0.1 to 1.0
K min−1.[41] Higher cooling rates are inaccessible in industrial freeze-dryers
due to technical limitations; smaller cooling rates would lead to too long an
overall process time.

Common strategies to reduce batch heterogeneity include the integration of
holding steps at constant temperature into the cooling profile to equilibrate
the temperatures of the vials across the shelf. In this study, we distinguish
three types of holding steps that may be applied in cooling protocols:

1. Pre-Nucleation holding step (Figure 6.1(γ)): Holding at low temperature
before the onset of nucleation, i.e. around 0°C, or in the supercooled
region. The objective of such a step is to equilibrate the temperatures
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across the batch in order to reduce heterogeneity, both within a vial and
among vials before nucleation is triggered via either further cooling or
controlled nucleation.[41,187]

2. Ad-Nucleation holding step (Figure 6.1 (β)): Holding at a temperature
at which nucleation may occur in a viable timescale. This step aims at
nucleating all vials close to the holding temperature, so as to achieve
a narrower nucleation temperature distribution compared to cooling
protocols without holding step.

3. Post-Nucleation holding step (Figure 6.1(δ)): This holding policy is im-
plemented after nucleation occurred either randomly or in a controlled
way. It typically is applied together with a pre-nucleation holding step in
controlled nucleation schemes. It aims at steering the solidification time
distribution towards higher values compared to cooling protocols with
immediate cooling-down after the nucleation event and thus promotes
the formation of larger ice crystals.[142]

For the design of both pre- and ad-nucleation holding steps, knowledge of
the number of vials that nucleate spontaneously during the holding period is
essential. Let us assume that all vials experience identical temperature profiles
until nucleation and that the vials do not thermally interact with each other.
This implies that K(m,n) = K, hence one may express the expected number of

non-nucleated vials N(0) and of nucleated vials N(1) on a shelf comprising nv
vials as:

N(0)(t) = nvP(0)(t) = nv exp
{
−
∫ t

t0

K(t′)dt′
}

(6.19a)

N(1)(t) = nvP(1)(t) = nv

(
1 − exp

{
−
∫ t

t0

K(t′)dt′
})

(6.19b)

In the case of an isothermal system, which is the situation attained for the
holding step after the vials reached the holding temperature, the nucleation
frequency K is constant and eqn. 6.19 simplifies to:

N(0)(t) = nv exp {−Kt} . (6.20a)

N(1)(t) = nv (1 − exp {−Kt}) . (6.20b)

We may use equation 6.20 to construct the design space for both types of
holding steps. The main design parameter for both holding policies is the
number of nucleated vials: During the pre-nucleation hold, virtually no
vials should nucleate (i.e. N(1) ≪ 1), while virtually no non-nucleated vials
should remain after completion of the ad-nucleation hold (i.e. N(0) ≪ 1). We

thus introduce the design parameters N(0)
crit for the ad-nucleation hold and

N(1)
crit for the pre-nucleation hold, that correspond to the expected value of
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the number of vials in the undesired state at the end of the holding step.
Importantly, these parameters denote an absolute number of (non)-nucleated
vials and not a probability of nucleation; this definition may be appreciated
by lyophilization practitioners aiming for processes that achieve complete
nucleation independently of scale. While the nucleation process by itself does
not depend on the scale of the system, ensuring that all vials without exception
are nucleated becomes more challenging when more vials are present. By
rearranging equation 6.20, we may express the duration of the holding steps
tad
h as a function of the design parameter and of the holding step temperature

Tad
h for the ad-nucleation hold:

tad
h (Tad

h ) ≥ 1
K(Tad

h )
ln

(
nv

N(0)
crit

)
(6.21)

and similarly for the pre-nucleation hold:

tpre
h (Tpre

h ) ≤ 1
K(Tpre

h )
ln

(
nv

nv − N(1)
crit

)
(6.22)

It follows from equations 6.21 and 6.22 that the holding times depend on
the ratio between number of vials and design parameter. For a given value
of the design parameter, a larger number of vials makes the design more
restrictive, i.e. shifts the pre-nucleation hold towards shorter times and higher
temperatures and the ad-nucleation hold towards longer times and lower

temperatures. To provide an example, when we set N(0)
crit = 0.1, we demand

that only in approximately 10% of the runs a non-nucleated vial remains at
the end of the ad-nucleation holding step; in reality where we always have an
integer number of nucleation events, one would find 0 non-nucleated vials in
most batches, and 1 or more in a few. Eqn. 6.21 thus allows us to calculate the
minimum time tad

h that fulfils the design criterion; it clearly follows from the
equation that this time becomes longer when the number of vials increases.

Figure 6.2 shows the design curves for both pre-nucleation and ad-nucleation
holding steps of the system with 7 × 7 vials; we use these curves as starting
point for the design of the two holding schemes and the subsequent evaluation
of their impact on the characteristic freezing quantities, as shown in Sections
6.3.4 and 6.3.4. The design curves idealize the holding scheme by assuming
that the vials stay exactly at the holding temperature for the entire duration
of the holding periods and by neglecting the time required for thermal equili-
bration. In order to understand the real behavior of the system, we have to
compare the prediction of the design curves with the detailed simulations
based on the freezing model derived in Section 6.2.1.
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Figure 6.2 Holding step design curves for both the pre- (a) and ad-nucleation (b)
approaches and a shelf size of 7 × 7 vials. For pre-nucleation, the numbers on the

contour lines correspond to N(1)
crit. For ad-nucleation, the numbers indicate N(0)

crit, the
number of vials that did not nucleate during the hold. The horizontal line indicates a
holding time of one hour.

Controlled nucleation

Controlled nucleation, in which nucleation is initiated in all vials at the same
predefined time, is used in freeze-dryers to reduce vial-to-vial variability and
to increase the mean ice crystal size. Such process commonly involves holding
steps, both before and after the forced nucleation event. The duration and
temperature of these holds have been shown to greatly impact the performance
of controlled nucleation strategies.[175] An important performance indicator of
controlled nucleation techniques is the nucleation efficiency, i.e. the fraction
of vials that actually nucleate at the predefined time. Vials that do not
nucleate in a controlled way may nucleate later in a conventional manner,
thus possibly generating heterogeneity between the two groups of vials[188].
Achieving close to 100% nucleation efficiency independent of the specific
formulation is therefore one of the main requirements for effective controlled
nucleation techniques. Due to limited research available on the dependence
of the nucleation efficiency on process and formulation parameters, we will
assume 100% efficiency in all simulations. However, we consider the effect
of spontaneous nucleation occurring in individual vials before the controlled
nucleation trigger, which may also lead to heterogeneity.[188]
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6.2.3 Quantifying batch heterogeneity

A key motivation for the development of the model is its use for the
quantification of batch heterogeneity. Heterogeneity in general poses one of
the main design challenges of freezing and freeze-drying processes. Based
on available works in literature and our own experience in crystallization, we
classify three types of heterogeneity related to the freezing process. These
include local heterogeneity, spatial heterogeneity (also referred to as intra-
vial heterogeneity) and batch heterogeneity (also referred to as vial-to-vial
variability and inter-vial heterogeneity).

The focus in literature has been on spatial heterogeneity,[19,171] with only
one work available on local heterogeneity.[40] The aspect of batch heterogene-
ity remains the least studied, although literature[28] indeed confirmed the
relationship between nucleation temperature of a vial and its mean pore size
via experiments and modeling. However, as of today, we are not aware of
any systematic model-guided assessment on the two main sources of batch
heterogeneity, namely the stochasticity of primary ice nucleation and the
variability in heat transfer among vials.

Experimental studies on batch heterogeneity are commonly based on mea-
suring certain attributes in a large number of vials, including the morphology
in frozen products,[189] the average pore size and the residual moisture in dried
products,[188] or the estimated cake resistance during primary drying[190]. Al-
ternatively, it may also be estimated from overall (integral) properties, e.g.
via the time difference between the onset and offset of the Pirani-Baratron
pressure ratio during primary drying.[175]

A variety of limitations for experimental quantification of batch heterogene-
ity persist, however. The most crucial of which is the difficulty in obtaining
significantly large sample sizes to decouple the effects of different potential
root causes of variability. To address this, we have developed a novel, system-
atic approach to quantify batch heterogeneity in silico. We define it based on
three characteristic quantities of the process, namely the nucleation time tnuc,
the nucleation temperature Tnuc, and the solidification time tsol as illustrated
in Figure 6.3. We measure the nucleation time tnuc and the freezing time
tfr from the beginning of the process. The solidification time tsol then is the
difference between these two quantities, i.e. it is the time the vial spends in a
partially frozen ice growth state.
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Figure 6.3 Thermal evolution of a single vial during the freezing process. The position
of the nucleation event and the time when the vial is frozen, which corresponds to the
predefined threshold for the ice mass formed, are indicated.

It follows from the stochasticity of ice nucleation that the values of these
characteristic quantities are distributed across the vials, and for each vial
across different realizations of the same freezing process. We compute these
distributions by running the model repetitively and determining the cor-
responding probability density functions fnt(t), fnT(T) and fsol(t). Conse-
quently, fnt(tnuc)dt provides the fraction of nucleation events that take place
between tnuc and tnuc + dt; fnT(Tnuc)dT the fraction that nucleates at tem-
peratures between Tnuc and Tnuc + dT; fsol(tsol)dt is the fraction of freezing
processes with solidification times between tsol and tsol + dt. In the same way
we also define multivariate distributions of those characteristic quantities.

In general, batch heterogeneity in terms of product attributes such as the
crystal size or product activity may only arise from variability in the freezing
process among vials, assuming that all vials contain the same formulation.
We express this variability as variability in nucleation time, in nucleation
temperature and in solidification time and postulate that vials that nucleate
and solidify identically, will also exhibit similar product attributes. The shape
and especially the broadness of the three distributions may be interpreted as
a measure of heterogeneity, where each characteristic quantity is related to
different product attributes as outlined in the following.

Empirical models relate the local mean crystal diameter of frozen products
dp with the freezing front velocity and thus the solidification time tsol such as
the empirical relationship dp ∝ (tsol)0.5.[191] By analyzing fsol, we thus infer
information about the variability of the mean ice crystal size. tsol also plays a
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role in deactivation mechanisms of biomolecules based on freeze concentration.
The increase in solute concentration within the liquid phase may accelerate
deactivation and denaturation reactions of molecules such as proteins.[192]

Consequently, we may also expect heterogeneity in product activity in case
fsol is broad.

Nucleation temperatures, captured by fnT, are of broad interest due to their
relation to crystal morphology: Nakagawa et al.[19] presented a model that
correlates lower nucleation temperatures with smaller crystal diameters. A
similar model was applied later to quantify variability in mean crystal size
among vials based on experimentally measured nucleation temperatures.[28]

It must be noted that these works do not explicitly distinguish between nucle-
ation and solidification effects on crystal morphology: they use the nucleation
temperature together with heat transfer coefficients as input parameters to
simulate the freezing process including solidification. In doing so, they are
unable to provide insight into the dependence of the nucleation temperature
distribution on the heat transfer and its variability. However, such knowledge
is required to understand whether differences either in heat transfer or in
nucleation temperature are the main source of batch heterogeneity. Our model
does not require the nucleation temperature as input parameter, and only
relies on formulation-dependent nucleation kinetics. In this way we can study
for the first time the effects of different cooling schemes and of heat transfer
variability on both nucleation temperatures and solidification times. Such
study may also improve the knowledge about to which extent nucleation
temperatures and solidification times may be interpreted as predictors for the
mean ice crystal size.

The nucleation time distribution, fnt, finally, provides us with the time
vials spend in the liquid state. Broad distributions may be indicative of
heterogeneity in for example denaturation effects caused by the liquid state.
However, the time scale of freezing in freeze-drying is rather short compared
to, e.g. freezing processes for the purpose of storage, where some vials
may spend an extended period of time in a liquid, supercooled state due to
slow heat transfer and slow ice nucleation kinetics. We thus expect that the
nucleation time by itself has a minor effect on heterogeneity.

6.3 results

In this section the results of our study are reported and discussed. We
present the simulation results for the freezing process of a shelf comprising
7 × 7 vials; 5000 simulations were carried out to capture the variability of the
process. By studying a system comprising 70x70 vials, we have confirmed that
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our conclusions are independent of shelf size. Since the computation time
for the solution of the model equations scales linearly with the number of
vials, the model is also suitable for the simulation of production-scale systems.
If not stated otherwise, all simulations comprise vials containing 1 mL of 5

wt.% sucrose solution and follow a cooling protocol starting at 20°C, which is
ramped down with a cooling rate of 0.5 Kmin−1 to -50°C (the overall duration
of cooling is therefore 2 hours and 20 minutes). We have chosen a time step of
∆t = 2 s in all simulations.

6.3.1 Thermally independent vials

We simulated the freezing process of vials that neither interact with their
neighbors nor with the environment. Heat transfer in this case solely occurs
via the shelf, i.e. via a constant value of ksh in the range of 20 to 60

W
m2K , while

kext and kint were set to zero. All vials evolve identically until nucleation
occurs; the only variability lies in the stochasticity of the nucleation event as
can be seen in Figure 6.4.

Figure 6.4 Thermal evolution of the simulated system, where all heat transfer coefficients
except ksh are set to zero. Left: Thermal evolution for the entire freezing process. Right:
Focus on nucleation event. For each value of ksh, the figure presents 50 randomly chosen
temperature profiles out of the total 245’000 that were simulated.

The thermal evolution depends on the shelf-to-vial heat transfer; Figure
6.4 clearly demonstrates the connection between high values of ksh and short
nucleation and solidification times. However, for the nucleation temperatures
we do not observe any dependency on ksh. We confirm this observation by
analysing the distributions of the characteristic quantities in Figure 6.5; they
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provide us with the statistics of the freezing process, since they comprise all
245’000 (49 vials times 5000 simulations) freezing events.
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Figure 6.5 Marginal distributions of the three characteristic quantities for the system
studied in figure 6.4: (a) Nucleation temperature distribution fnT, (b) solidification
time distribution fsol, (c) nucleation time distribution fnt. The figure summarizes the
outcome of 5000 simulations for the system of 7 × 7 vials.

Figure 6.5 (a) confirms that the nucleation temperature distribution is indeed
independent of ksh. This behavior is a direct consequence of the fact that
the nucleation rate J, as modeled, depends directly on temperature but not
on the vial’s history. As long as the thermal profile in the supercooled state
is the same, we will observe the same nucleation temperature distribution.
The temperature curves in Figure 6.4 are indeed equivalent, since they follow
the shelf with different lags, but not different rates. The zoom-in of Figure
6.4 shows that the effective cooling rates of the vials are similar for the three
studied values of ksh in the relevant temperature range, where nucleation
occurs. Only the temperature difference between shelf and vial is affected by
ksh; it decreases for increasing ksh.

The distributions of nucleation times and of solidification times, on the
other hand, are affected by the shelf-to-vial heat transfer. Vials that experience
a higher value of ksh nucleate earlier. In the limit of an infinitely fast heat
transfer the temperature gradient between vial and shelf vanishes and the
nucleation times are only governed by the thermal evolution of the shelf.
As this situation is approached with increasing ksh, the distributions tend
to converge. The solidification times exhibit the strongest dependency on
ksh; we can observe a nearly inversely proportional relationship, because the
removal of heat is the limiting step in the ice growth state. This implies
that vials undergoing heat transfer with different ksh, e.g. because they are
frozen in different devices or due to variability across the shelf, may exhibit
different product properties despite having experienced similar nucleation
temperatures.
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6.3.2 Thermally interacting vials

As second step, we studied the effect of thermal interaction among vials
on the freezing process by running simulations with varying values of kint,
while keeping kext = 0. While Figure 6.6 shows the thermal evolution of
such system, Figure 6.7 presents the univariate distributions of the three
characteristic quantities and Figure 6.8 the bivariate distributions, which allow
us to study the interaction effects in detail. Such interaction adds complexity
to the freezing process, since the thermal evolution of a vial depends on the
thermal evolution of the neighboring vials, as illustrated in Figure 6.6.

Figure 6.6 Thermal evolution of the simulated system for ksh=kint= 20
W

m2K . Left:
Thermal evolution for the entire freezing process. Right: Zoom-in on the nucleation
event. For each vial position, i.e. center, edge and corner, the figure presents 5 randomly
chosen simulated temperature curves.

Early nucleating vials act as local hot spots on the shelf during their solidifi-
cation process. They dissipate heat into their neighbors and thus slow down
their neighbors’ further cooling process until they themselves are completely
frozen and cool down again. We observe this effect also in the distributions of
the characteristic quantities of freezing; thermal interaction leads to a broaden-
ing of the nucleation time distributions and, for sufficiently strong interaction,
even to a bimodal distribution, as shown in Figure 6.7 (a-c).

Thermal interaction also broadens the distribution of solidification times
and is thus a potential mechanism for batch heterogeneity. The formation of
a bimodal nucleation time distribution in the presence of strong interaction
among vials is connected to the formation of a broad, multi-modal solidifi-
cation time distribution. This multi-modality is a consequence of multiple
coupled effects. Thermally interacting neighbors accelerate solidification when
they act as heat sinks for a solidifying vial or when they delay nucleation long
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enough by dissipating their own heat of solidification that the shelf, now at a
much lower temperature, allows for fast heat transfer. The result is a complex
distribution whose characteristic attribute is a very large, highly undesirable
broadness.
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Figure 6.7 Marginal distributions of the three characteristic quantities for systems with
varying strength of thermal interaction among vials and ksh = 20

W
m2K : (a) Nucleation

temperature distribution fnT, (b) solidification time distribution fsol, (c) nucleation time
distribution fnt. The figure summarizes the outcome of 5000 simulations for the system
of 7 × 7 vials.

The effect of thermal interaction on the nucleation temperature distribution
was smaller than for the other two quantities; we only identified a weak trend
towards higher temperatures for increasing interaction as shown in Figure
6.7 (a). This trend is caused by the early nucleating vials that dissipate heat
into their neighbors. The neighboring vials spend more time in a moderately
supercooled state compared to the case without thermal interaction, leading
to higher nucleation temperatures.

In summary, adding thermal interaction between vials yields a much more
complex system than the one studied previously in Section 6.3.1. To better
understand this complexity, we analyzed the bivariate distributions of the
characteristic quantities, as shown in Figure 6.8. We first note that in the case,
where kint = 0, i.e. the system shown in Figures 6.4 and 6.5, the bivariate
distributions assume the shape of lines as illustrated in the left column in
Figure 6.8. These lines indicate that the three quantities are strongly correlated:
lower nucleation temperatures correlate with longer nucleation times and
shorter solidification times; the slopes of these lines depend on the applied
cooling rate (not shown). Such strong correlation is expected, since the only
variability in the freezing process is the nucleation event of the individual
vial; this single event determines all three quantities as outlined in Section
6.3.1. The correlations become weaker when thermal interaction is present,
where we observe more complex shapes of the bivariate distributions. This



6.3 results 129

again is expected, since it follows from thermal interaction that not only the
nucleation event of an individual vial affects its freezing process, but also the
nucleation events of its neighbors. In the case of strong thermal interaction,
i.e. the right column of Figure 6.8, we observe the formation of individual
populations of vials, corresponding to vials that nucleate during the initial
cooling-down and those that nucleate delayed due to neighboring nucleation
events. The early nucleating population is split further in sub-populations,
since the solidification time of a vial depends on the number of its neighbors
that nucleated earlier.

Figure 6.8 Bi-variate distributions of the three characteristic quantities of the freezing
process. The color coding reflects the probability density of the marginal distribution.
The figure summarizes the outcome of 5000 simulations for the system of 7 × 7 vials. A
value of ksh = 20

W
m2K was used in all simulations.

The observation that the three characteristic quantities behave differently
is of particular importance in the context of process monitoring. In a recent
study,[28] the distributions of nucleation times and nucleation temperatures
were used interchangeably; nucleation times were detected with a camera
and converted into temperatures using reference temperature measurements.
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Based on our simulation results, we hypothesize that such approach may not
be generally applicable. The direct measurement of both quantities, e.g. via
infrared thermography, might be more appropriate.

In general, our simulations indicate that heterogeneity in nucleation and
solidification times is not necessarily reflected in the distribution of nucleation
temperatures. This clearly limits the applicability of the nucleation tempera-
ture distribution as indicator for batch heterogeneity. To accurately capture
batch heterogeneity, e.g. in order to estimate heterogeneity in mean ice crystal
sizes across the shelf, one requires direct knowledge of the solidification time
distribution.

The effect of thermal interaction between vials during freezing is not yet
well studied. A recent experimental study demonstrated that the presence of
neighboring vials and their number affect the rate of drying during freeze-
drying;[84] it was argued that this phenomenon may explain the difference in
drying behavior between edge and center vials. This is in line with the out-
come of our simulations that show similar trends for the freezing step. For the
freezing step itself, we are not aware of any study that investigated the effect
of thermal interaction on the nucleation and solidification behavior of vials.
Another study recently investigated the thermal evolution of neighboring vials
with an infrared camera during freezing and indeed observed ”humps” in
these profiles due to neighboring nucleation events similar to those we found
in our simulations.[93] We thus recommend further experimental studies on
interaction effects during freezing to better understand to what extent such
interaction occurs in practice and how it depends on the setup.

6.3.3 Position-dependency

In this section we present the results on the position-dependency of the
freezing process. We have identified both thermal interaction among vials
and additional heat transfer with the environment as root causes for such
dependency. To visualize these effects, we have generated tri-variate scatter
plots comprising all three characteristic quantities, as shown in Figure 6.9. To
simulate the heat transfer with the environment we varied the value of kext
for freezing processes with and without thermal interaction among vials. The
thermal evolution of the environment follows the cooling profile of the shelf,
i.e. Text = Tsh; this means that vials in contact with the environment experience
an additional cooling effect. Without thermal interaction between vials, this
additional heat transfer affects only the outermost layer of vials. Corner, edge
and center vials therefore freeze differently, forming three distinct populations.
The nucleation temperatures, once again, are found to be independent of
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position, for the same reasons that were outlined in section 6.3.1. Note that
we may observe different effects in the case where Text ̸= Tsh.

The case where thermal interaction among vials is present, but no addi-
tional heat transfer with the environment is illustrated in Figure 6.9(a). Vials
in the interior of the system exhibit a bimodal distribution corresponding
to populations of vials that nucleate either early or late because of delays
induced by the nucleation of neighboring vials. The solidification times of the
delayed population are the shortest overall; however, even the early nucleating
inner vials solidify faster than most edge and corner vials. This is a direct
consequence of the larger number of neighbors they have and thus of the
higher capability to dissipate heat into their surroundings. Consequently, we
observe higher solidification times for edge vials, and the highest for corner
vials. The lower number of neighbors also prevent or reduce the formation
of a population of delayed-nucleating vials for the corner and edge positions,
respectively.

The case where both thermal interaction among vials and additional heat
transfer with the environment are present, is illustrated in Figure 6.9(b).
The additional heat removal from the environment leads to overall shorter
nucleation and solidification times for all vials and especially for edge and
corner vials, reversing the order for early-nucleating vials: edge and corner
vials solidify faster than non-delayed center vials. For vials in the interior of
the shelf we have observed a position-dependency, whereby vials nucleate in
average the earlier the closer they are to the edge of the system.

We conclude that both thermal interaction between vials and additional
heat transfer with the environment may play a relevant role in vial-to-vial
variability. While thermal interaction affects the bulk of the system, heat
transfer with the environment only occurs at the boundaries of the system
and its relevance thus depends on the shelf size. The fraction of non-center
vials decreases with increasing shelf size so that bulk effects based on thermal
interaction may be more relevant at production scale. Still, it is generally
desirable to have no or limited heat flow with the environment to reduce the
heterogeneity between corner, edge and center vials.
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Figure 6.9 Position-dependent freezing behavior of the simulated system. (a) Thermal
interaction between vials occurs, i.e. kint = 20 W

m2K , but not with the environment, i.e.
kext = 0 W

m2K . (b) Heat transfer occurs both between vials and with the environment, i.e.
kint = kext = 20 W

m2K . (c) Color-coding relative to shelf grid.
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6.3.4 Cooling protocol

Cooling rate

In this section we present the results on the effect of the choice of the
cooling rate on the freezing process. We simulated the freezing process for
cooling rates γ in the range from 0.1 K min−1 to 2.0 K min−1. Figure 6.10

shows the nucleation temperatures and solidification times obtained in the
corresponding simulations.

Figure 6.10 Dependency of (left) nucleation temperatures and (right) solidification
times on cooling rate. The figure summarizes the outcome of 5000 model runs for the
system of 7 × 7 vials. Values of ksh = 20

W
m2K and ksh = 0 were used.

We observe significantly longer process times in the case of smaller cooling
rates; the median nucleation time decreases from 337.0 min to 40.0 min
when increasing the cooling rate from 0.1 Kmin−1 to 2.0 Kmin−1 in the case
of thermally independent vials (not shown). Faster cooling leads to lower
nucleation temperatures on average; the difference in median nucleation
temperatures between the cooling rates of 0.1 Kmin−1 and 2.0 Kmin−1 was
only about 2°C, while the broadness of the distribution was not affected
significantly. This is in line with the state of research suggesting that a
change of cooling rate within the commonly applied range has only a weak
impact on the nucleation temperature distribution.[43] It has to be noted, that
as consequence of the lumped capacitance approach, the effect of thermal
gradients within the vial on the nucleation frequency is not captured. Such
gradients become more relevant for higher cooling rates and may affect
the nucleation behavior especially for the highest rates studied, namely 1.0
Kmin−1 and 2.0 Kmin−1.



134 modeling the freezing stage in freeze-drying

We have observed a stronger sensitivity of the solidification time on the
cooling rate: Not only did smaller cooling rates lead to slower solidification,
but they also broadened the distribution. Slow cooling rates were also found
to be more sensitive to thermal interaction, i.e. significant nucleation delay
was already obtained for kint = 10 W

m2K when using cooling rates smaller than
0.5 Kmin−1. Such behavior is in line with expectations, since slower cooling
provides more time for thermal interaction effects to play a role. For faster
cooling, on the other hand, the solidification time approaches a lower limit;
the simulated values for 1.0 Kmin−1 (42.1 min) and 2.0 Kmin−1 (40.9 min)
were nearly identical. This behavior is a consequence of the limited heat
transfer within the system; for fast cooling, the lower boundary of the shelf
temperature, i.e. -50°C, is reached early enough that most of the solidification
process occurs at this constant temperature. A further increase in cooling rate
thus does not affect the solidification process anymore.

The simulations confirm that faster cooling leads to faster solidification,
which may result in smaller average crystal sizes. Larger ice crystals are
generally preferred in freeze-drying, thus favoring slower cooling. Slow
cooling, however, is also connected to broader solidification time distributions,
thus leading to a more pronounced batch heterogeneity. As a consequence,
the choice of the cooling rate should be based on a trade-off between the mean
crystal size and the corresponding variability. To the best of our knowledge,
the effect of increasing heterogeneity for slow cooling had not yet been studied
in the literature.

Pre-nucleation holding step

In this section, we study the effect of integrating a pre-nucleation holding
step in the cooling protocol on the freezing outcome. We have applied the
approach outlined in section 6.2.2 for the design of such holding step and have
investigated a pre-nucleation hold at -5°C with varying holding times. Figure
6.11 shows the thermal evolution of such system as well as the distributions
of vial temperatures at the end of the holding step and of the nucleation
temperature. In practice, there is a lower bound for the holding step duration,
which is due to the requirement of thermal equilibration.

We present in detail four scenarios comprising different heat transfer
regimes. The number of nucleated vials during the holding steps per simula-
tion, N(1), has been found to correspond well with the expected number of

nucleated vials N(1)
crit, that was calculated based on eqn. 6.22. In fact, we have

observed slightly fewer nucleation events in the simulations than predicted
analytically, since the analytical expression does not take into account the
time that is required for the vials to reach the holding temperature. We have
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thus been able to confirm the usefulness of eqn. 6.22 to conservatively design
pre-nucleation holding steps when nucleation kinetics are known, at least
approximately. The findings for the scenario in which there is strong thermal
interaction and a variable shelf-to-vial heat transfer coefficient, are illustrated
in Figure 6.11.
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Figure 6.11 (a) Thermal evolution of a vial for a cooling profile including a 180 min
pre-nucleation holding step at -5°C. A value of ksh = 20 W

Km2 was used and the dashed
lines indicate the temperature profiles obtained with ksh 10% smaller and larger to
illustrate the effect of heat transfer on the profile. (b) Temperature distributions of the
vials at the end of the holding step for various holding times at -5°C, corresponding to
fcT in the case of controlled nucleation. (c) Nucleation temperature distributions fnT for
various holding times at -5°C. Heat transfer coefficients of ksh,0 = 20 W

Km2 , ssh = 2 W
Km2

and kint = 20 W
Km2 were used.

The simulations have revealed only minor effects of the holding step on
fnT as shown in Figure 6.11 (c), irrespective of heat transfer parameters
and holding time; as long as no nucleation events occur during the hold, the
presence of the hold cannot have a major impact on the nucleation temperature
distribution. We have also assessed the impact of the pre-nucleation holding
step on the solidification time, and we have not found any significant effect
either (not shown). We thus conclude that such a holding step is only of
limited use in reducing batch heterogeneity resulting from ice nucleation and
from the different types of heat transfer scenarios considered in this work.
This is in contrast to practical guidelines on the freezing process design[41]

that recommend such a step in order to improve homogeneity both within the
batch and within the individual vials. Note that due to the lumped capacitance
approach, the model is unable to investigate intra-vial heterogeneity and the
effect of holding on this property; such a study would require the spatial
freezing model reported in Chapter 9.
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In the case of controlled nucleation, the situation changes. The forced nucle-
ation event at the end of the holding step transforms the actual distribution of
vial temperatures into the controlled nucleation temperature distribution fcT.
The broadness of fcT decreases with increasing holding time in all studies, as
is shown in Figure 6.11 (b). Additionally, for short holding times, the tempera-
tures of the vials are significantly higher than the shelf temperature. In the
case presented in Figure 6.11, more than 30 min of holding were required to en-
sure that all vials reached temperatures below Teq

ℓ . If individual vials should
experience temperatures above Teq

ℓ at the time of the nucleation event, there
may be a risk of failure, depending on the implemented method of nucleation.
For example, we may hypothesize that an ice-fog method may be affected,
because the seeded ice particles might melt when they reach vials that are
not yet supercooled. Recently, nucleation efficiencies for the ice-fog technique
were measured by means of frequency modulated spectroscopy, whereby a
reduced efficiency at -3°C (87%) compared to -10°C (99.7%) was found.[188]

Consequently, a controlled nucleation process requires a pre-nucleation hold-
ing step designed according to three criteria: (1) the holding temperature must
be low enough so that all vials are (sufficiently) supercooled at the time of
nucleation, (2) the holding step must be long enough to allow for equilibration
of the vials, (3) it must be short enough so as the number of spontaneous
nucleation events is low.

Ad-nucleation holding step

In this section, we study the effect of integrating an ad-nucleation holding
step in the cooling protocol on the freezing outcome. Figure 6.12 (β) shows
the thermal evolution of 25 vials during a cooling protocol whereby such
holding step is simulated both with and without thermal interaction between
vials. Figure 6.13 shows the bivariate distributions of nucleation temperatures
and solidification times for six cooling protocols, showing both successful and
unsuccessful holding steps. Figure 6.14 compares the complete nucleation
times and complete freezing times for the studied system in the cases with
and without thermal interaction with the analytical solution.

Following again the rationale outlined in Section 6.2.2, we have investigated
the behavior for a 540 min holding step at -12°C, expecting it to be sufficient
for complete freezing of all vials on the shelf, as shown in Figure 6.12 (β).
Without thermal interaction, nucleation occurs in a narrow time window
during the initial cooling-down towards the holding temperature; then a slow
solidification process follows. With thermal interaction, the nucleation events
occupy a longer time window, i.e. they are more distributed in time, whilst
solidification is significantly faster. This behavior is a result of the dissipation
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of heat from early nucleating vials towards their neighbors as discussed in
Section 6.3.2. Thermal interaction thus increases the required holding time for
complete nucleation, as also shown in Figure 6.14.

Figure 6.12 Temperature profiles for (α) uncontrolled freezing without holding step,
(β) uncontrolled freezing with ad-nucleation holding step, (γ) controlled nucleation
without post nucleation hold and (δ) controlled nucleation with post-nucleation hold.
The magenta arrow indicates the controlled nucleation event. Heat transfer with the
environment and variability in shelf-to-vial heat transfer were set to zero and the
thermal interaction between vials is given by kint = 0

W
m2K or kint = 20

W
m2K .

To understand the effects of holding time and holding temperature on the
freezing outcome, in Figure 6.13 we compare six different policies, including
one without any holding step (Figure 6.13(a)). The step design with -12°C and
540 min (Figure 6.13(d)) is just sufficient for all vials to nucleate during the
hold; increasing the temperature slightly to -8°C (Figure 6.13(c)) or decreasing
the holding time to 180 min (Figure 6.13(b)) leads to a situation where some
vials nucleate during the hold and some afterwards. We observe distinct
behaviors for the two groups, with the vials that nucleate after the hold
exhibiting lower nucleation temperatures and solidification times and an
increased overall variability. If the holding step is successful, i.e. cases (d)
to (f), where all vials nucleate and solidify during the hold, the obtained
solidification times are in average larger than for freezing without holding
step, i.e. case (a). In the context of freeze-drying, this may be translated into
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larger mean ice crystal size and thus shorter drying times. Consequently, such
a holding step may provide a path for process optimization.

Figure 6.13 Simulated bi-variate distributions of nucleation temperatures and solidifica-
tion times for five ad-nucleation holding policies (b to f) and freezing without holding
step (a). The color coding represents the probability density of freezing outcomes
for individual vials. A thermal interaction of kint = 20 W

m2K was used for these six
simulations. kext and ssh were set to zero.

To implement such holding scheme in practice, we need to estimate the
times required for complete nucleation tnuc

c , i.e. when all vials on the shelf are
nucleated, and for complete freezing tfr

c , i.e. when all vials on the shelf are
nucleated and solidified. We have obtained the distributions of these times,
i.e. f c

nt and f c
fr, by simulating an ad-nucleation holding step of 200 hrs at

temperatures ranging from -7°C to -15°C. Figure 6.14 illustrates the outcome;
the curves correspond to the 50% quantiles of the distributions, while the error
bars indicate the 10% and 90% quantiles. The analytical solution is based on

eqn. 6.21 and was calculated for N(0)
crit = 0.5, i.e. expecting 0.5 non-nucleated

vials per batch at the end of the holding step. The error bars for the analytical

solution correspond to the holding step times calculated for N(0)
crit = 0.1 and

N(0)
crit = 0.9.
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Figure 6.14 Simulated complete nucleation times tnuc
c and complete freezing times tfr

c
in dependence of holding temperatures.

For both tnuc
c and tfr

c , we observe a non-linear dependency of the required
holding times on temperature. Above around -10°C, the analytical solution
becomes a good proxy for the simulations at kint = 0 W

m2K , as in these cases
nucleation takes place primarily during the hold and not during the ramped
cooling period towards the holding temperature. For lower holding tempera-
tures, the analytical solution drastically underestimates the necessary holding
times compared to the simulations, since it does not consider the time required
to reach the holding temperature. The formation of the two freezing regimes is
a direct consequence of the ice nucleation kinetics: At low shelf temperatures,
nucleation would occur very fast, so that the nucleation times are governed by
the time the vials need to reach the holding temperature. At higher shelf tem-
peratures, nucleation rates are very low and nucleation requires a long time
to take place in all vials. Consequently, the variability in complete nucleation
and complete freezing times is higher in the nucleation-limited regime than in
the heat-transfer-limited regime. In order to achieve complete freezing in a
reasonable time frame and to avoid high variability one should not operate in
the nucleation-limited regime.

On the other hand, the effect of the holding step on the nucleation tempera-
ture distribution will be less pronounced for lower holding temperatures. This
behavior is visualized in Figures 6.13 (d) to (f), where a decrease in holding
temperature from -12°C to -20°C strongly shifted the bi-variate distribution
of nucleation temperatures and solidification times towards lower values, i.e.
towards the behavior of the system without holding step. We thus recom-
mend an ad-nucleation holding temperature close to the upper limit of the
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heat-transfer-limited regime. For the studied system, this corresponds to the
range between -12°C and -10°C.

We again observe that thermal interaction between vials slows down the
freezing process. Compared to shelf-ramped cooling, such effect is more
pronounced during a holding step, since each nucleation event slightly heats
up the neighboring vials above the holding temperature and thus reduces
their nucleation rate significantly. The analytical solution does not account for
this effect; we recommend its use therefore especially in systems with weak or
no thermal interaction between vials.

To conclude, an ad-nucleation hold is capable of shifting nucleation tem-
peratures and solidification times towards more advantageous values in the
context of freeze-drying. The model developed here and the simulations
presented may aid lyophilization practitioners in designing such a cooling
protocol in practice.

Controlled vs. uncontrolled nucleation

In this section, we compare freezing processes involving controlled nu-
cleation with those relying on uncontrolled nucleation. Figure 6.12 (γ) and
(δ) illustrate the thermal evolution of processes with controlled nucleation,
while Figure 6.15 shows the simulated solidification time distributions for
different heat transfer regimes. Freezing processes involving controlled nu-
cleation commonly comprise two holding steps; namely a pre-nucleation and
a post-nucleation holding step. Figure 6.12 (γ) illustrates a cooling protocol,
where only a pre-nucleation hold is applied, while Figure 6.12 (δ) refers to a
protocol with both holding steps. We have discussed the role of pre-nucleation
holding steps and their importance for controlled nucleation in Section 6.3.4;
nucleation-related heterogeneity in controlled nucleation is solely governed
by the pre-nucleation holding scheme.

The second quantity of interest, i.e. the solidification time distribution
and therefore the average crystal size, depends on the cooling protocol after
nucleation. A post-nucleation holding step steers the system towards longer
solidification times. We have compared the solidification time distributions
for controlled nucleation with and without a post-nucleation holding step,
as illustrated in Figures 6.15(d) and (c), respectively. As expected, the post-
nucleation holding step leads to longer solidification times compared to the
protocol without it. However, even in the absence of a post-nucleation holding
step, controlled nucleation schemes always result in longer solidification times
than uncontrolled shelf-ramped freezing, i.e. profile α, as is evident in all
panels of Figure 6.15.



6.3 results 141

0

0.1

0.2

0.3

0

0.05

0.1

0 100 200 300
0

0.05

0.1

0 100 200 300
0

0.05

0.1

Figure 6.15 Simulated solidification time distributions for four different cooling pro-
tocols (shown in Figure 6.12) with and without thermal interaction between vials and
with and without variability in shelf-to-vial heat transfer: (α) uncontrolled shelf-ramped
freezing, (β) uncontrolled freezing with ad-nucleation hold, (γ) controlled nucleation
without post nucleation hold and (δ) controlled nucleation with post-nucleation hold.
Heat transfer with the environment was set to zero and the shelf-to-vial heat transfer is
given by ksh,0 = 20

W
m2K .

We also note that with controlled nucleation, all vials require essentially
the same time to solidify as long as they experience the same heat transfer
(Figure 6.15(a) and (b)). However, for a variability in shelf-to-vial heat transfer
of ssh = 2

W
m2K , we already found a solidification time distribution of similar

broadness as with conventional nucleation (cf. panels α & γ in Figures 6.15(c)
and (d)). The fact that minor differences in heat transfer among vials lead
to pronounced variability in solidification time may explain why controlled
nucleation schemes in practice only reduce, but not eliminate vial-to-vial
variability.

We also find that controlled nucleation schemes are less affected by ther-
mal interaction between vials than uncontrolled ones. Since nucleation is
initiated in all vials at the same time, thermal interaction between vials is
ineffective; therefore during solidification, there are no major temperature
gradients between the vials on the shelf. This finding is in line with a recent
experimental study,[93] which identified humps in the temperature profiles
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of vials undergoing stochastic nucleation, but not of those experiencing con-
trolled nucleation. For the uncontrolled freezing processes (α and β in Figure
6.15), thermal interaction leads to faster solidification and more vial-to-vial
variability, particularly for the policy using the ad-nucleation step β.

Compared to the ad-nucleation holding scheme, controlled nucleation with
post-nucleation hold δ provides comparable solidification times when no
thermal interaction between vials is present. We thus hypothesize that such
ad-nucleation holding schemes may be a potentially useful path for process
optimization leading to frozen products with attributes between those of tra-
ditional shelf-ramped cooling and controlled nucleation. It may be especially
advantageous in the case of weak or no thermal interaction among vials, i.e.
in settings where kint is kept low, either by choice of material or by adding
insulating materials between vials.

6.4 concluding remarks

In this work, we have presented a modeling framework for the simulation
of the freezing stage in freeze-drying processes. It is the first model that
mechanistically covers the entire freezing process for an arbitrary number of
vials on a shelf starting from a liquid. We model several aspects of the freezing
process together for the first time, namely the stochasticity of ice nucleation,
the variability in heat transfer with the shelf, and thermal interaction among
vials. An important application lies in guiding the process design and opti-
mization for freezing processes involving both controlled and uncontrolled
nucleation. The model allows to quantify the impact of process parameters
such as cooling rate and holding steps on the freezing behavior of vials at
a shelf-scale and thus enables a rational process design. By providing open
source access to the model in the form of a python package, we hope that this
work will benefit researchers and lyophilization professionals alike.[73]

To demonstrate its usefulness, we applied the model to gain a better un-
derstanding of freezing-related batch heterogeneity and analyzed process
strategies to reduce said heterogeneity. Our simulations revealed a novel
mechanism how ice nucleation adds on the batch heterogeneity based on
thermal interaction among vials: Early nucleating vials may act as local ”hot
spots” on the shelf and delay the nucleation events of their neighbors. Such
effect may be of great relevance to the design of freeze-drying processes.

We identified and modeled thermal interaction between vials, heat transfer
with the environment and a variable shelf-to-vial heat transfer all as potential
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mechanisms for batch heterogeneity. All these effects led to a broadening of
the solidification time distribution while only weakly affecting the nucleation
temperature distribution; in fact, we observed that nucleation temperatures
are inherently independent of heat transfer as long as the effective tempera-
ture profile in the supercooled regime remains similar. In practice, vials with
similar nucleation temperatures may solidify differently due to variability in
heat transfer. We conclude that the nucleation temperature distribution alone
is not sufficient to characterize batch heterogeneity and we advise against
using it as sole predictor of ice crystal morphology.

The simulation results confirmed the importance of both the choice of a
suitable cooling rate and a careful design of holding steps. While controlled
nucleation was shown to enable a more homogeneous freezing process, it
requires a careful design of the pre-nucleation cooling profile to ensure a
narrow nucleation temperature distribution. For uncontrolled nucleation,
our results indicate that a pre-nucleation holding step does not reduce batch
heterogeneity. With an ad-nucleation holding step, however, we were able
to engineer the nucleation temperature and solidification time distributions
successfully hence we recommend further studies on this type of holding step
to investigate its potential for process optimization. Also, we showed that
slow cooling rates, while leading to higher solidification times and nucleation
temperatures, also increase batch heterogeneity; the existence of this trade-off
constitutes a novel aspect to take into account when choosing the cooling rate.

While in this work we focus on quantifying the effects of stochasticity
during the freezing process on a set of vials, the underlying methodology is
not limited to freezing: Our work promises to benefit future efforts to develop
a model comprising the entire freeze-drying process.





7 SHELF-SCALE ONL INE MONITOR ING
OF V IAL FREEZE-DRY ING US ING
INFRARED THERMOGRAPHY

Freeze-drying is widely used in the manufacture of biopharmaceuticals
in vials and therefore its process design and optimization have received
considerable attention. In this context, vial-to-vial heterogeneity, also known
as batch heterogeneity, represents a major challenge that has been difficult
to investigate to date due to the lack of adequate monitoring techniques
that provide information on the nucleation, solidification, and sublimation
behavior of all vials on a shelf. This contribution reports a novel experimental
technique based on infrared thermography that is capable of doing so, hence
enabling comprehensive studies of vial-to-vial heterogeneity. The technique
was used to investigate the phenomenon of thermal interactions among vials,
which had been identified earlier (see Chapter 6) as dominant mechanism of
batch heterogeneity in the freezing stage of freeze-drying. The experimental
measurements confirmed the relevance of thermal interactions and enabled
their quantification; they revealed the use of high cooling rates and less
dense vial arrangements on the shelf as two feasible ways of mitigating
thermal interactions. This demonstrates the capability of this experimental
technique to deepen the process understanding of freeze-drying, and to
support practitioners in process design and optimization.

7.1 introduction

The stability of most biopharmaceuticals in aqueous solution is limited.
Their shelf life may be extended when storing them in the frozen state, which
necessitates an expensive cold chain that comes with significant logistical
challenges when distributing the drug products globally, particularly in devel-
oping countries.[1,2,4,194] To enable long-term storage at ambient conditions

The work reported in this chapter is under review at a peer-reviewed journal: Deck∗ , L.-T.; Ferru∗ ,
N.; Košir, A.; Mazzotti, M. Visualizing and understanding batch heterogeneity during freeze-drying
using shelf-scale infrared thermography. A pre-print is available on ChemRxiv.[193] This article is to
be published with a shared first authorship between Nicole Ferru, who carried out her Master’s
thesis research project under my supervision on this topic, and myself.
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and thus facilitate the distribution of the drug products, freeze-drying (also
called lyophilization) is commonly employed.[21,195,196] In freeze-drying, a
formulation filled into vials is first frozen and then dried under vacuum,
where most of the water is removed through sublimation (primary drying)
followed by desorption (secondary drying).[21,41] The design of such a pro-
cess is both challenging and time-consuming, which is why for instance the
commercially available vaccines against COVID-19, that had to be developed
at an unprecedented pace, were distributed as frozen products, despite the
tremendous logistical challenges.[197,198]

The difficulty of designing freeze-drying processes stems from the complex
interplay between the freezing and the drying stages.[21,43] Figure 7.1 provides
a schematic overview of a freeze-drying process highlighting the fact that
primary drying is the longest stage. Freezing conditions affect the dynamics of
sublimation, and therefore freezing should be carried out such that the ensuing
primary drying is as fast as possible. Two distinct phenomena occur during
freezing, namely nucleation, which represents the onset of ice formation, and
solidification, which denotes the crystal growth following nucleation. High
nucleation temperatures and long solidification times have been correlated to
fast sublimation,[19,43] because the micro-structure of the frozen product that
forms under these conditions is expected to enable fast mass transfer of the
sublimated water vapor out of the product.

At the shelf scale, the effect of freezing conditions such as the temperature
profile in the freeze-dryer (gray line in Figure 7.1) on the micro-structure
and its variability between vials is not yet entirely understood for multiple
reasons. First, nucleation is stochastic, and therefore the formulation in
different vials across the same batch experiences it at different points in
time.[64,66,76] This means that a large data set is required to draw statistically
relevant conclusions. Second, heat transfer may not be uniform across a shelf,
which may lead to differences between vials at the edge and the core of the
shelf.[41,92,169] Third, the temperature rise in a vial after nucleation affects the
thermal evolution of the neighboring vials, which implies that parameters
such as the vial packing configuration on the shelf (i.e., hexagonal or square
arrangement) affect freezing.[74,84,199] These three effects lead to a pronounced
batch heterogeneity, which must be considered in process design and which
may potentially lead to process failure.[20,21,28,170] To achieve a mechanistic
understanding of the freezing stage that can guide process design, one must
therefore study it at the shelf–scale.
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Figure 7.1 Schematic overview of the three phases of the freeze-drying process. Blue
line: temperature in a vial. Gray line: temperature of the shelf on which the vials are
placed. Green line: pressure inside the freeze-dryer. During the freezing phase, ice
crystals are formed as the product is cooled at ambient pressure. Then, the ice crystals
sublimate under vacuum during the primary drying phase which is followed by the
secondary drying phase where the residual bound water is desorbed upon increasing
the temperature.

To this end, we have developed an openly available shelf-scale model of
the freezing stage that considers both the stochastic nature of nucleation and
the thermal interaction among vials in the batch.[74] A variant of this model
was used to simulate the commercial freezing process of the Janssen COVID-
19 vaccine, and was found to correctly describe all relevant experimental
trends that were observed in engineering runs.[75] For freeze-drying, model
simulations revealed thermal interactions among vials as dominant mechanism
of vial-to-vial heterogeneity under practically relevant conditions: some vials
are expected to solidify more than twice as fast as others, even in cases where
both vial position and heat transfer with the shelf are identical (see Figure 7b
in Deck et al.[74]). Given that such heterogeneity poses a major challenge to the
freeze-drying process in vials, it may be worthwhile to design these processes
such that the extent of these interactions is limited. The model shows that
this is the case for high cooling rates and low vial packing densities (as this
reduces the heat transfer coefficient between neighboring vials).

However, it is important to note that the effect of thermal interactions
on solidification times has not yet been reported experimentally. This is
because there is no adequate monitoring technique available that provides
information on the freezing (in particular solidification) behavior for all vials
on a shelf. While the mechanistic character of the model ensures that the
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simulated trends are qualitatively correct, experiments are required to validate
the predictive performance of the model and quantitatively assess the extent
of thermal interactions. This contribution introduces a shelf-scale monitoring
technique based on infrared thermography for this purpose. We build on
earlier techniques that have been employed to monitor the thermal evolution
of a large number of vials at the same time during freeze-drying:[200–204]

Emteborg et al.[200] cut a hole into the top of a freeze-dryer to install an infrared
camera for the monitoring of the top-most shelf with 2D resolution. Lietta et
al.[202] developed a camera module that fits inside a freeze-dryer and monitors
the vials from the side, effectively measuring the temperature of the glass
vial. However, due to its large size, the spacing between the shelves had to be
increased significantly. Our technique combines the advantages of these two
approaches and allows for direct 2D monitoring of the product temperature
in a batch of vials without the need for any hardware modifications; it is
explained in detail in Section 7.2. Its capabilities to monitor the thermal
evolution of a set of vials are showcased in Section 7.3.1. We further utilize
the setup to explore the influence of freezing process parameters on the
freezing behavior and its variability in an extensive experimental campaign.
In particular, we consider various packing configurations and cooling rates
(Section 7.3.2) and compare the experimental measurements to simulation
results (Section 7.3.3). We draw the relevant conclusions in Section 7.4.

7.2 experimental methods

7.2.1 Experimental setup

The experimental setup developed in this work relies on infrared thermog-
raphy as a non-invasive temperature measurement method for freeze-drying
at the shelf scale. A schematic of the setup is shown in Figure 7.2(a): a set of
60 vials in a precise, but adaptable geometric configuration is placed in front
of an infrared camera. An infrared mirror is installed at a 45° angle behind the
vials. The infrared camera (FLIR A65 FOV 90, FLIR Systems Inc) is housed in a
customized camera module (IMC Service S.r.l.), which also comprises an RGB
camera, and a processing unit that manages all components and allows for
wireless communication for real-time monitoring. The camera has a precision
of ±5 °C and a resolution of 640 × 512 pixels, which corresponds to about 20

pixels per centimeter for the distances used in the experimental setup. The
module is made of a thermally insulating, airtight plastic casing (Ertacetal C)
that allows for the use of the camera module under vacuum, and protects the
camera from humidity and extreme temperatures. With a height of 90 mm,
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the module fits between the shelves of the laboratory-scale freeze-dryer used
in this work (LyoBeta 3PS, Telstar), as shown in Figure 7.2(b). It is worth
noting that an earlier version of such a camera module has been developed
in collaboration between IMC Services and Politecnico di Torino.[202] This
previous setup included a FLIR A35 infrared camera (FLIR Systems Inc) with
a lower resolution encased in a larger housing that did not fit between shelves
and did not feature the use of infrared mirrors to guide the optical path of the
camera. The experience gained from this project from this initial model has
been crucial in enhancing the design and functionality of the current system.

(b) Infrared camera module
between shelves

vials

Infrared 
mirror

Vials in adaptable 
configurations

Infrared camera module(a)

Configuration 2 Configuration 3Configuration 1
(c)

Figure 7.2 (a) Schematic of the experimental setup. The batch of 60 vials is monitored
from the top, by guiding the optical path of the infrared camera through a mirror
positioned in front of the camera and tilted at a 45°angle. (b) Photo of the setup in the
lab-scale freeze dryer. (c) Schematic of the three packing configurations investigated
in this work. Configuration 1: vials are placed on a plastic floor, i.e., they are not in
direct contact with the shelf. Configuration 2: vials are placed directly on the shelf but
separated by an air gap. Configuration 3: vials are placed directly on the shelf, but in a
compact hexagonal arrangement.

The gold-coated metal substrate mirror (Edmund Optics Inc.) with a near-
perfect infrared reflectance (R700−2000 nm > 96%) added in the current setup, is
tilted at a 45° angle (see Figure 7.2(a)) to monitor a batch of vials from the top.
Monitoring vials from the top as opposed to from the side yields three key
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benefits: first, the geometry of top-down monitoring significantly increases
the number of vials that can be monitored simultaneously. Second, it allows
to monitor vials positioned at various locations of the shelf, i.e., both at the
edges and in the core, which is required to identify spatial differences across
the shelf. Finally, temperature measurements are obtained directly from the
product’s surface, whereas measurements from the side report the temperature
of the vial wall and may not accurately indicate the vial’s internal temperature.
The custom-designed camera software accounts for (i) the transmittance of
the Germanium lens of the module casing (T700−2000 nm = 82%), (ii) the
reflectance of the mirror, and (iii) the emissivity of the sample (literature value
for the emissivity of water:[205] ϵ = 0.96) to convert the detected signal to
temperature. Note that while ice has a slightly higher emissivity (literature
value for the emissivity of ice:[205] ϵ = 0.97), the difference is so small that
the effect on the temperature measurement is negligible, allowing us to
assume a constant emissivity during a freezing cycle. Preliminary experiments
revealed considerable variability in absolute temperature readings, due to
the camera’s limited precision and ambient noise interference. We overcame
these issues through the definition of a set of robust freezing characteristics,
as discussed in Section 7.3.1. Additionally, a custom calibration pipeline was
created in this work, whereby the raw temperature readout from the camera
is corrected with a constant offset determined by the difference between the
median temperature measured after nucleation and the equilibrium freezing
temperature of the solution (which is close to the true temperature after
nucleation). More information on the calibration pipeline and its validation
are provided in Section 7.5.1.

The experimental setup allows to carry out sensitivity studies, exploring the
effect of freezing process conditions on the thermal evolution across the batch.
In this work, three different packing configurations of 60 vials in a 6 × 10
arrangement (see Figure 7.2(c)) using custom 3D-printed plastic holds were
studied. In configuration 1, the vials are placed on a 4 mm thick plastic floor
and separated from each other by a 3 mm air gap. In configuration 2, the vials
are in direct contact with the freeze-dryer shelf, and separated from each other
by a 3 mm air gap; for this configuration, we further assessed how the process
behavior changes when increasing the cooling rate (configuration 2f). In con-
figuration 3, the vials are in direct contact with the freeze-dryer shelf, and they
touch each other in a hexagonal arrangement. The experiments and sample
preparation steps were carried out under standard laboratory conditions, i.e.,
the samples were not sterilized and we did not operate in a particulate-free
environment. In line with typical model solutions used in the field,[21,76,93,203]

1 mL aqueous sucrose solution with a concentration of 5 wt. % was selected
as model system. A volume of 80 mL of fresh sucrose solution (deionized
water: Millipore, Milli-Q Advantage A10 system; sucrose: Sigma–Aldrich,
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BioXtra grade, 99.5% purity) was prepared for every experiment. Before use,
the glassware where the solution was prepared in, was cleaned with acetone
and deionized water. The vials were filled without a prior cleaning step. The
bulk solution was mixed by manual shaking and filled into snap ring glass
vials (APG Pharma, 1.5 mL), via a micro-pipette (Thermo Fisher Finnpipette
F2), resulting in a fill height of 12 mm. Drying experiments were carried out
with a 5 wt. % mannitol (Sigma-Aldrich, ≥98% purity) solution prepared in
the same manner, as mannitol can be dried at higher temperatures resulting
in shorter drying times.

7.2.2 Experimental protocol

The experimental campaign carried out in this work aims to demonstrate
the capabilities of the infrared thermography setup proposed in this work. To
this end, the freezing behavior of a set of vials was investigated by performing
freeze-thaw cycle experiments. Each freezing experiment comprises 5–9 freeze–
thaw cycles with thermal images being captured in 30 s intervals. Note that the
number of cycles per experiment was constrained by the maximum number of
40 steps in a recipe allowed by the software of the freeze-dryer. We carry out
freeze-thaw cycling experiments because they provide a large number of data
points and hence ensure that enough measurements are collected in every
experiment to be statistically relevant.[23,91] The full dataset for an exemplary
freeze-thaw cycle is shown in Section 7.5.2. The experimental protocol was
based on our earlier work:[76] The temperature of the shelf is first decreased
from 20 °C to −50 °C at different constant cooling rates γ, held at −50 °C for
10–60 min, then increased again to 20 °C at a heating rate of 1 K min−1, and
finally held at 20 °C for 60–90 min before initiating a new cycle. The holding
times were fine-tuned for each configuration based on the observed heat
transfer rate to ensure that all vials have sufficient time to reach the minimum
and maximum temperature respectively. An overview of the experiments is
provided in Table 7.1. Each experiment was repeated three times.
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# Configuration
γ t−50 °C t20 °C

[K min−1] [min] [min]

1 Vials on plastic floor −0.5 60 90

2 Vials on shelf −0.5 10 60

2f Vials on shelf, fast cooling −1.2 30 60

3 Hexagonal arrangement −0.5 10 60

Table 7.1 Process parameters of freeze-thaw cycles for each configuration.

7.3 results

This section reports and discusses the experimental data that was collected
using the infrared camera setup. First, we discuss thermal evolution profiles
that were extracted from the thermal images. Then, we leverage the ability
of the setup to monitor the temperature of all vials to make a statistically
relevant assessment of the freezing characteristics of a batch of 60 vials in
different configurations. Finally, we compare the experimental measurements
to simulation results obtained using the shelf-scale freezing model that was
developed earlier.

7.3.1 Thermal evolution during freeze-drying

Figure 7.3(a) shows an example of a thermal image captured during a
freezing experiment in configuration 1 (see Table 7.1) at the point in time
when the shelf has reached Tsh = −25 °C. The thermal image shows that the
setup allows to identify the individual vials and to differentiate solidifying
vials (bright, hot spots) from colder vials (dark spots), where nucleation either
has not occurred yet or where solidification has already been completed.
Hence, the spatial distribution of the nucleation events can be monitored and
the temperature profiles of all vials can be extracted. Figure 7.3(b) shows the
temperature profile of an exemplary vial, highlighted by the blue circle in
panel (a): the vial temperature increases upon nucleation and remains close to
the equilibrium value for several minutes while solidifying due to the release
of latent heat. The shape of the thermal evolution profile is consistent with
results obtained earlier using thermocouple readouts.[76]
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Figure 7.3 (a) Thermal image of a batch of vials during a freezing experiment after
90 min. Solidifying vials (yellow, T ≈ 0 °C) can be differentiated from colder vials (pur-
ple, T < −10 °C), where nucleation either has not occurred yet or where solidification
is already complete. (b) Thermal evolution of an early nucleating vial (see blue circle in
panel (a)). The nucleation event is marked by the sharp rise in temperature followed
by the solidification phase under constant temperature. (c) Thermal evolution for the
five vials highlighted by the green outline in panel (a). The vial in the center (purple
line) is heated up by the early nucleation of its neighboring vials (orange lines) and
only nucleates once the neighboring vials are completely solidified.
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The experimental setup hence enables the extraction of several relevant
freezing characteristics, i.e., nucleation temperature, nucleation time, and
solidification time, for each vial on the shelf. The nucleation time, tnuc, is
defined as the time between the onset of cooling and the nucleation event
characterized by the thermal spike. The nucleation temperature, Tnuc, is
the temperature measured at this time. In this work, it is computed by
subtracting the temperature jump upon nucleation from the equilibrium
freezing temperature Teq (see also Figure 7.4)

Tnuc = Teq − ∆Tnuc. (7.1)

This method bypasses accuracy limitations in the absolute value of the temper-
ature. The solidification time, tsol, corresponds to the period after nucleation
during which the temperature remains close to the melting point (see Section
7.5.1 for the exact definition).
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Figure 7.4 Freezing characteristics extracted from the thermal evolution of an exemplary
vial. The temperature (Tnuc) and time (tnuc) of the nucleation event (purple point)
can be read right before the rapid rise in temperature. The solidification time (tsol) is
characterized by the phase where the vial temperature remains close to the equilibrium
temperature. The thermal deviation (yellow area) is defined via the integral difference
between the measured vial temperature and the extrapolated linear cooling curve (see
Equation (7.2)).

To further demonstrate the capabilities of the setup, we plot the thermal
evolution of a group of five neighboring vials, namely those highlighted by
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the green frame in Figure 7.3(a). Panel (c) shows how the temperature of the
vial in the center of the group (purple line) is affected by the thermal evolution
of its four neighbors (orange lines): as the neighboring vials nucleate and
solidify, their temperature increases and they act as hot spots. This interaction
heats up the vial in the center and thus delays its nucleation: it only nucleates
once its neighbors have completely solidified.

To study such thermal interaction in a quantitative manner, we define an
indicator for the extent of interaction experienced by a vial, termed thermal
deviation ϑ. This quantity is based on the observation that the thermal evolu-
tion of a late nucleating vial (e.g., the central vial in panel (c)) deviates from
the linear profile imposed by the shelf during the cooling phase (i.e., before
nucleation). We define ϑ as the integral difference between the measured vial
temperature T(t) and the extrapolated linear cooling curve Tlin(t). Since the
thermal deviation is triggered by the nucleation of a neighboring vial, we
anchor the integral at the time at which the first vial on the shelf nucleates,
denoted by tnuc

min:

ϑ =
∫ tnuc

tnuc
min

(T(t)− Tlin(t))dt (7.2)

The integral term is highlighted by the yellow area in Figure 7.4, and is
given in units of K h. The setup allows extracting all four quantities shown in
Figure 7.4 for all vials on the shelf. For a quantitative analysis of the shelf-scale
freezing behavior, we introduce the probability density functions (PDFs) fnt(t)
for the nucleation time, tnuc, fsol(t) for the solidification time, tsol, fnT(T) for
the nucleation temperature, Tnuc, and fint(ϑ) for the thermal deviation, ϑ. The
quantity f (x)dx denotes the fraction of vials that have experienced nucleation,
solidification, or thermal deviation respectively for a value of the independent
variable x (i.e., t, T, or ϑ) between x and x+dx. The corresponding cumulative
distribution functions (CDFs), or cumulative probabilities, are called F(x).
CDFs and PDFs are related through the differential relationship dF = f (x)dx,
where x denotes any of the independent variables above.

Figure 7.5 illustrates the cumulative probabilities obtained for all four
freezing characteristics collected in 13 independent experiments (purple lines)
carried out in configuration 2, as well as a concatenated distribution with all
data points from the 13 experiments (red line). Each experiment (purple line)
comprises the data from the 32 vials in the core of the set during 4–8 freezing
cycles, corresponding to a total of 128–256 data points.
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Figure 7.5 Cumulative probabilities of the nucleation times (top left), solidification
times (top right), nucleation temperatures (bottom left), and thermal deviations (bottom
right) over 13 repetitions (purple lines) of freezing cycle experiments in configuration 2.
The red line denotes the sum over all experiments.

As readily observed, all freezing characteristics in all experiments exhibit
a spread in their values across vials and freeze–thaw cycles (note that in the
absence of any heterogeneity the lines would be rectangular steps). This is for
several reasons, including the stochasticity of nucleation and the variability
in heat transfer among the vials. Further, one observes variability among the
experiments, as the individual purple lines do not overlap perfectly. This
variability may be due to differences among sets of vials used in the individual
experiments, and to differences in the solution inside these vials, e.g., in terms
of particulate impurities levels.[76,79] Such observation points to the need to
choose the experimental protocol carefully: in the experiments discussed in the
next section, whenever comparing the effect of different operating conditions,
the same vials filled with the same solution have been used. In doing so we
ensure that the observed trends when changing the operating conditions are
not affected by the factors mentioned before.

We close this section by emphasizing that the setup enables the shelf-scale
monitoring not only of freezing but also of the primary drying stage. Even
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though a quantitative study of primary drying is beyond the scope of this
work, for the sake of illustration, Figure 7.6 shows thermal evolution data
from an experiment that includes a primary drying step at a shelf temperature
of −5 °C and a chamber pressure of 0.2 mbar. These preliminary results show
that the setup can be used to monitor the distribution of the temperature
of the vials across the shelf. Remarkably, the end point of primary drying –
which traditionally is identified as the point in time when the pressure values
measured through Pirani and Baratron probes approach each other[202,206] –
coincides with the onset of a steady state in the vial temperature. Hence, the
developed infrared thermography setup paves the way for future experimental
studies aimed at elucidating the link between the freezing process conditions
and the drying dynamics, for all vials on the shelf. Since primary drying
may take multiple days to complete,[41] identifying process conditions that
minimize its duration represents a main objective of freeze-drying process
design and optimization. In addition, the setup allows to investigate the
heterogeneity in drying behavior among vials, which is critical since the
drying process needs to be designed to ensure complete sublimation of ice,
even in the vial that dries the slowest.
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Figure 7.6 Overlay of the thermal evolution (blue lines) of three representative vials and
the Pirani and Baratron pressure measurements (green lines) during a full freeze-drying
experiment. The endpoint of drying of the entire batch as signaled by the steady state of
the temperatures coincides with the endpoint of drying of the Pirani-Baratron readout.
The three vials reach this endpoint at slightly different times, which indicates batch
heterogeneity in drying that cannot be identified by the widely used Pirani-Baratron
technique of endpoint determination.

7.3.2 Exploring freezing at the shelf scale

This section aims to elucidate the features of the nucleation, solidification,
and thermal interaction properties on a shelf-scale. Figure 7.7 shows the
measured nucleation times, nucleation temperatures, and solidification times
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for three comparative experiments. The first pair of experiments (left column)
addresses the effect of the cooling rate (slow in configuration 2 and fast in
2f); the second pair of experiments (center column) investigates the effect
of the shelf-to-vial heat transfer (slow in configuration 1 and fast in 2); the
third pair of experiments (right column) compares two vial configurations
(square in configuration 2 and hexagonal in 3, as shown in Table 7.1). Every
point in the scatter plots of Figure 7.7 represents a vial in one freezing cycle,
and each plot reports the data for the 32 core vials across all 4–8 freezing
cycles, i.e., comprises 128–256 data points per configuration. This analysis
focuses on the core vials, and the behavior of the edge vials is discussed in
more detail in Section 7.5.3. The top panels illustrate the correlation between
nucleation times and nucleation temperatures, while the bottom panels show
nucleation times and solidification times. The red dotted line indicates the
temperature of the shelf as a function of time. The red arrow indicates the
temperature difference between vial and shelf for the first nucleating core vial.
The probability densities of the distributions are shown on the sides of the
scatter plots.

2f2 12 32Tsh Tsh Tsh

Figure 7.7 Shelf-scale analysis of the freezing behavior of core vials over a freezing
experiment in configuration 1 (blue), configuration 2 (purple), configuration 2f (orange),
and configuration 3 (green). Top: Correlation between nucleation times and temper-
atures. The red line indicates the temperature of the shelf vs. time. The red arrow
indicates the temperature difference between vial and shelf for the first nucleating core
vial. Bottom: Correlation between nucleation time and solidification times.
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General remarks. Some trends and behaviors can be observed for all ex-
periments. In particular, nucleation times are correlated with both nucleation
temperatures and solidification times. The later a vial nucleates, the lower
its nucleation temperature, and the shorter its solidification time. This is
evident for all vials in configuration 2f and for early-nucleating vials in all
other configurations. These correlations are an immediate consequence of
the cooling protocol, whereby the shelf temperature decreases over time at
a constant rate. The temperature of the vials follows the shelf temperature,
which is the reason why late-nucleating vials are expected to nucleate at lower
temperatures compared to those that nucleate earlier. Similarly, the later a
vial nucleates, the colder the shelf and the faster the heat exchange between
vial and shelf, and thus the shorter the solidification time.

Thermal interactions are the reason why this correlation weakens for late-
nucleating vials in configurations 1, 2, and 3. To discuss this point, Figure
7.8 reports both the thermal deviation and the nucleation times for all core
vials on the shelf, whereby the four panels correspond to the four configu-
rations studied in this work. To enable an insightful comparison between
configurations where the process has been operated different cooling rates,
the nucleation times have been re-scaled with respect to the first nucleation
event in the batch. In all configurations, vials thermally deviate more the later
they nucleate. Such a behavior is expected because, by definition, thermal
interactions only become relevant when a certain number of vials on the shelf
has already nucleated, thus dissipating their heat into their neighbors and
therefore slowing down their cooling. Configuration 2f stands out because
it exhibits only small deviations – this can be attributed to the fast dynamics
imposed by the fast cooling rate resulting in there not being enough time for
the early-nucleating vials to heat up late-nucleating ones. Late-nucleating
vials in configurations 1, 2, and 3, however, experience deviations on the order
of 1 K h (configuration 2) or 5 K h (configurations 1 and 3). These deviations
lead to a delay in the nucleation times and thus weaken the linear correlation
between the nucleation times on the one hand, and the solidification times and
nucleation temperatures on the other hand. Interactions are more pronounced
in configurations 1 and 3 compared to configuration 2 because the heat transfer
between neighboring vials is more relevant in relative terms: configurations
2 and 3 exhibit similar heat transfer between shelf and vials since the vials
are placed directly on the shelf. However, the hexagonal arrangement of
configuration 3 leads to a more dense packing of the vials and thus to faster
vial-to-vial heat transfer. Configurations 1 and 2, in contrast, have the same
geometrical arrangement of vials and therefore similar vial-to-vial heat trans-
fer, but the plastic floor separating the vials from the shelf in configuration 1

effectively slows down the heat transfer with the shelf.
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2f 2

1 3

Figure 7.8 Effect of process conditions on thermal deviation in configuration 2f (top
left, orange points), configuration 2 (top right, purple points), configuration 1 (bottom
left, blue points), and configuration 3 (bottom right, green points).

Effect of cooling rate. For the same vial arrangement, in configura-
tions 2 (purple) and 2f (orange), the shelf is cooled at −0.5 K min−1 and
at −1.2 K min−1, respectively. The left column of Figure 7.7 shows that in
configuration 2f all vials nucleate within 15 min, while nucleation takes place
later and over a window of over 30 min in configuration 2. This is because
under slow cooling more time is required to approach temperature levels
at which the solution in the vials is supercooled and where nucleation can
happen. Moreover, as mentioned before, thermal deviations are more pro-
nounced in configuration 2 than in configuration 2f, which leads to a broader
distribution of nucleation times. The solidification times, in contrast, are less
affected by the cooling rate, with faster cooling leading to shorter solidification
times. This is best evidenced when considering the PDFs plotted at the side
of the panel. Such an effect is explained as follows: the rate of solidification is
governed by how fast the latent heat can be removed from the solidifying vial.
This scales with the difference in temperature between the solidifying vial
(close to the equilibrium temperature) and the shelf temperature, amongst
other things. At the time of the first nucleation event (see the red arrows),
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the shelf is at a temperature of −14 °C in configuration 2f, and at −6 °C in
configuration 2, which indicates that the shelf-to-vial heat transfer is faster in
configuration 2f.

Considering nucleation temperatures, the PDF observed in configuration 2

is narrower and exhibits a lower median value than that of configuration 2f.
The lower median value can be attributed to temperature gradients that form
in the vials during cooling, which are more pronounced for faster cooling rates.
As we have demonstrated earlier (see Figure 6 in Deck et al.[77]), nucleation
predominantly takes place in the coldest part of the vial, which corresponds
to the bottom of the vial when the vials are cooled from the shelf. The
temperature at the bottom of the vial at nucleation depends only weakly on
the cooling rate. However, with increasing cooling rates, the temperature
gradients in the vial are more pronounced, meaning that the temperature at
the surface of the vial at nucleation – monitored with the setup – is indeed
dependent on the cooling rate. An investigation of the thermal gradients is
provided in Section 7.5.1.

Effect of shelf-to-vial heat transfer. Configurations 1 and 2 use the same
cooling rate (−0.5 K min−1) and vial arrangement (square), but differ in the
rate of shelf-to-vial heat transfer which is slowed down in configuration 1 due
to a plastic floor placed between vials and shelf. As is evidenced in the center
column of Figure 7.7, doing so affects all characteristic quantities. In general,
slowing down the heat transfer causes the vials to nucleate later. The first
nucleation events in configuration 1 take place 8 min later than in configuration
2, and the temperature difference between vials and shelf at the time of
such first nucleation is larger in configuration 1 (red arrows). Furthermore,
the nucleation times exhibit a bimodal distribution for configuration 1, i.e.,
with the first peak corresponding to early-nucleating vials (tnuc <80 min)
and the second to late-nucleating vials (tnuc >100 min). Such a bi-modality
is also observed in the distribution of solidification times, whereby late-
nucleating vials solidify significantly faster than early-nucleating ones. We
attribute this behavior to the pronounced thermal interaction: the early-
nucleating vials dissipate an amount of heat into the neighboring vials such
that during their solidification period, almost no other vials nucleate, and
the majority of late-nucleating vials start nucleating only after the early-
nucleating vials have completely solidified and thus do not dissipate any
further heat. In fact, the two peaks in the nucleation time distribution are
separated by 30 min which corresponds to the solidification period of the early-
nucleating vials which lasts about 30 min. This effect leads to a very broad
distribution of solidification times in configuration 1, where early-nucleating
vials solidify more than two times slower than late-nucleating ones. Given
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that the solidification time is a key determinant of the properties of the frozen
(or freeze-dried) product,[9,20,32] this heterogeneity is highly undesired.

While the nucleation window in configuration 1 is twice as wide (35 min)
compared to the nucleation window of configuration 2 (17 min), the spread
in nucleation temperatures is similar in both configurations. Considering
the observations made in Figure 7.8, this re-iterates how strong thermal
interactions weaken the correlation between nucleation temperatures and
times.

Effect of vial arrangement. Here we assess how the geometrical arrange-
ment of the vials on the shelf affects the freezing characteristics. In config-
uration 2, vials are arranged in a square array, while they are arranged in
a hexagonal array in configuration 3. Conceptually, the denser hexagonal
packing is expected to enhance the extent of thermal interactions compared
to the square packing, which is confirmed by the data reported in Figure 7.8.
The nucleation times, nucleation temperatures, and solidification times are
shown in the right column of Figure 7.7.

Intriguingly, both configurations exhibit similar distributions of nucleation
times (with a minor shift to longer times in configuration 3) but show signif-
icant differences in nucleation temperatures and solidification times. Given
that in both configurations vials are placed directly on the shelf, the shelf-
to-vial heat transfer rate is similar and indeed the temperature differences
between the first vials that nucleate and the shelf are similar for both con-
figurations (red arrow). Hence the differences in nucleation temperatures
and solidification times between the configurations are due to the thermal
interactions.

The shorter solidification times in configuration 3 are therefore explained
by the fact that each vial that nucleates dissipates its heat into six neighboring
vials, whereas in configuration 2 vials have only four neighbors. We can also
see that the batch heterogeneity in terms of solidification times is more pro-
nounced in the hexagonal arrangement compared to the square arrangement.
In particular, the spread of solidification time relative to its median value is
significantly larger in configuration 3 compared to configuration 2.

Closing remarks. The experimental data indicates that thermal interactions
among vials broaden the distribution of both nucleation times and solidi-
fication times, which is considered undesirable due to the effect of these
quantities on the ensuing drying behavior. When designing a freeze-drying
process, one should therefore aim to minimize the extent of thermal interac-
tions. The experimental measurements of the four configurations show that
(i) fast cooling, (ii) fast heat transfer between shelf and vials, and (iii) slow
heat transfer between vials achieved through a less dense packing all help
to mitigate thermal interactions, and as a consequence batch heterogeneity.
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These measures may be considered when designing a freeze-drying process,
keeping in mind that they affect not only the extent of thermal interactions
but also other relevant aspects: for instance, packing vials in a less dense
arrangement lowers the total number of vials that fit into the freeze-dryer,
whereas the cooling rate affects nucleation and solidification in numerous
ways (e.g., fast cooling leads to substantial temperature gradients within the
vials),[77] rendering its rational choice difficult.

7.3.3 Comparison to mechanistic model

The freezing process of a set of vials placed on a shelf in a square arrange-
ment (configurations 1, 2, and 2f) can be simulated with the stochastic freezing
model SNOW,[74] which provides the thermal evolution and therefore the
freezing characteristics of all vials. Due to its mechanistic nature, this model re-
quires knowledge of three classes of model parameters: (i) Physical properties
of the formulation to be frozen, including its density and specific heat capacity,
the molecular masses and mass fractions of all solutes (to compute the freezing
point depression), and the nucleation kinetics; (ii) Operating conditions of
the process, including vial volume and geometrical arrangement, the shelf
temperature profile, and the number of vials on the shelf; (iii) heat transfer
coefficients, whose values depend on the freeze-dryer hardware, materials,
and vial configuration. In particular, the model distinguishes among heat
transfer between neighboring vials (quantified by the heat transfer coefficient
kint), between edge vials and the environment (kext), and between shelf and
vial (ksh).

Previously,[74] we explored through comprehensive sensitivity studies the
effect of the heat transfer parameters on the freezing behavior of a set of
vials on a shelf. Model simulations revealed an inverse correlation between
nucleation times and solidification times and predicted shorter freezing charac-
teristics (nucleation times and solidification times) for increasing heat transfer
between vials and shelf. We furthermore observed a shift from unimodal
to bimodal or even multimodal distributions of nucleation and solidification
times when increasing the value of the vial-to-vial heat transfer coefficient for
constant shelf-to-vial heat transfer. These simulation results closely match the
experimental findings that were presented and discussed in Section 7.3.2. It
is worth noting that these simulations were carried out two years before we
started the experimental campaign presented here, without precise knowledge
of many of the parameter values and without any experimental evidence
at hand that thermal interactions affect freezing at all (we introduced the
concept of thermal interactions in our previous work[74]). The close agreement
between experiments and simulations therefore provides strong evidence that
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the SNOW model exhibits a strong predictive capability of the key features of
freezing processes and that indeed thermal interactions play a major role in
the freezing stage of freeze-drying.

These results clearly demonstrate the value of the SNOW model in enhanc-
ing the physical understanding of the freezing process. However, the model
can also be used in a quantitative manner, in line with the current initiatives
in pharmaceutical manufacturing toward model-based process design. In this
context, we perform a parameter estimation for the heat transfer coefficients,
in order to reproduce the specific behavior of the tested configurations 1 and
2. The heat transfer coefficients represent the only unknowns when using
the model to simulate the freezing experiments carried out in this work (also
consider our two recent studies[76,79] where we estimated the nucleation ki-
netics). The estimation of parameters requires an objective function that is
to be minimized. Since the experimental data confirms that both nucleation
and solidification properties are randomly distributed among vials, the ob-
jective function must consider the relevant probability distributions of both
nucleation times and solidification times.

The objective function is based on the Chebyschev norm Dm,n,[23,24] which
denotes the maximum difference between two cumulative probabilities, in this
case between the simulated cumulative probability Fm,n(t) and the empirical
cumulative probability F̂m,n(t) that is computed from the experimental data:

Dm,n = max
t

∣∣Fm,n(t)− F̂m,n(t)
∣∣ (7.3)

where the subscript m indicates the type of distribution, i.e., m = {nt, sol}
for nucleation times and solidification times, respectively, and the subscript n
the vial configuration. The parameter space includes six parameters, namely
kext, kint and ksh for both configurations (denoted with subscripts 1 and 2).
To reduce the search space, we focused the estimation on core vials: edge
vials are not considered in computing the cumulative probabilities and the
additional heat transfer between the edge vials and the environment is ne-
glected in the simulations (i.e., kext = 0). Further, we set kint,1 = kint,2 = kint,
as the geometrical arrangement of the vials is identical in both configura-
tions. The resulting system of equations therefore depends on three unknown
heat transfer coefficients, namely kint, ksh,1, and ksh,2. In line with earlier
work,[24] we define the objective function as the Euclidean norm of the vector
D that contains as entries the Chebyschev norms considered in the parameter
estimation:

min
kint ,ksh,1 ,ksh,2

∥D∥2 = min
kint ,ksh,1 ,ksh,2

√
D2

nt,1 + D2
sol,1 + D2

nt,2 + D2
sol,2 (7.4)

To find the optimal combination of parameter values (kint, ksh,1, ksh,2), we
performed a gridsearch for all combinations of kint ∈ [15, 45]W m−2 K−1, and
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ksh,1, ksh,2 ∈ [35, 110]W m−2 K−1 in integer steps. Given the stochastic nature
of the underlying phenomena, such a grid search – while computationally
more expensive – enables a more robust identification of the global optimum
compared to derivative-based algorithms.

Figure 7.9 compares the resulting simulated (dark gray lines) and empir-
ical (colored lines) cumulative probabilities. A complete list of simulation
parameters is provided in Section 7.5.4. The figure shows that the simula-
tions correctly predict the absolute values as well as the bimodality in the
distributions of the nucleation and solidification times for configuration 1

(blue lines). A larger value of ksh was estimated for configuration 2 than for
1 which agrees well with the fact that the vials are placed directly on the
shelf in configuration 2, whereas they are separated from the shelf with an
insulating layer in configuration 1. Further, both shape and absolute values of
the simulated cumulative probabilities match experiments of configuration 2

(purple line).
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Figure 7.9 Comparison of the distributions of the simulated (dark gray lines) and
measured nucleation times and solidification times (blue line: configuration 1, pur-
ple line: configuration 2, orange line: configuration 2f). The resulting heat transfer
coefficients were kint = 20 W m−2 K−1, ksh,1 = 51 W m−2 K−1 for configuration 1, and
ksh,2 = 110 W m−2 K−1 for configurations 2 and 2f.

To study the predictive capabilities of the model, we used the estimated
parameters that were fitted to match configurations 1 and 2 to simulate the
behavior of configuration 2f, which has the same geometrical arrangement
of the vials as configuration 2 but exhibits a higher cooling rate. As is
obvious from Figure 7.9, the model correctly predicts the relevant trends:
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the simulated nucleation times in configuration 2f are shorter than those
in configuration 2 and are narrowly distributed, in line with experiments
(orange line). Similarly, the predicted solidification times for configuration
2f are shorter than those of configuration 2. These findings along with an
additional qualitative comparison of the full simulated and measured thermal
evolution profiles provided in Section 7.5.5 confirm that the model correctly
reproduces the fundamental freezing behavior observed during experiments,
which suggests that it can be used to guide the design and optimization of
pharmaceutical freezing and freeze-drying processes.

7.4 concluding remarks

In this work, we introduced an experimental setup that utilizes infrared
thermography as a reliable, non-invasive batch monitoring technique for
freezing and freeze-drying processes. The setup allows to track the thermal
evolution of 60 vials in parallel, hence facilitating a statistically relevant
analysis of the process. From the resulting data set, several critical pieces of
information have been extracted. These include the nucleation temperature,
nucleation time, solidification time, and thermal deviation, which is a measure
of the extent of thermal interactions among neighboring vials. To elucidate
how freezing process conditions affect these features, we have measured
them for various packing configurations and cooling rates. The experimental
data furthermore allowed us to validate the stochastic shelf-scale modeling
framework (SNOW) developed earlier;[74] the model correctly predicted all
experimental trends and the simulated thermal evolution profiles closely
matched the experimental ones.

It is worth putting these results in context, acknowledging that non-invasive
monitoring techniques for freeze-drying have been introduced earlier in the
literature. These include monochrome cameras[124] or optical fibers[207] for the
detection of nucleation events at a batch scale, as well as the use of infrared
thermography.[200,202] However, the use of monochrome cameras provides
nucleation times only, and no information related to solidification or thermal
interactions among vials. The existing infrared camera setups, in contrast,
provide all this information (even though thermal interactions have not been
studied explicitly), yet they require extensive alterations to freeze-drying
systems, or they monitor vials from the side, which restricts the number of
simultaneously monitored vials. The setup introduced here overcomes these
limitations through the use of an infrared mirror and enables comprehensive
shelf-scale studies of the freezing and primary drying stages in freeze-drying.
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7.5 supplementary information

7.5.1 Validation of thermography data

The temperature readout of the infrared camera module was calibrated with
a custom calibration pipeline: the raw data is corrected with a constant offset
determined by the difference between the median temperature measured after
nucleation and the melting point of the solution. As is well known in the
literature and was observed in our experimental studies reported earlier,[76]

the actual temperature of a partially frozen solution shortly after nucleation is
very close to the solution’s melting point. To create and validate the calibration
pipeline, experiments were carried out to compare the temperature values
measured by the infrared camera with those measured by a thermocouple.
The thermocouple measurements were considered to be the true temperature
of the vial at the position of the thermocouple.
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Figure 7.10 Calibration experiments. Top: Comparison of calibrated thermography
measurement (blue) and thermocouple measurement (orange). The thermography
measurement was calibrated with respect to the melting point of the solution (dashed
line). The position of the measured temperature is shown in the schematic on the right.
Bottom: Comparison of thermocouple measurement at the top (purple) and bottom
(orange) of a vial. The respective locations of the thermocouples are shown in the
schematic and the photograph on the right.

Identification of freezing characteristics: The top plot in Figure 7.10 com-
pares the temperature evolution measured by a thermocouple placed at the
bottom edge of the vial (orange line) to the calibrated temperature measured
by the infrared camera (blue line). The figure shows that the temperature rise
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caused by the nucleation event is simultaneously recorded by both measure-
ment approaches. In the infrared data, the measured temperature remains
close to the melting point during the entire solidification phase. During
solidification, the fraction of ice in the vial continuously increases. Given
that ice crystals contain water only, the concentration of the solute in the
remaining unfrozen solution increases. This phenomenon is termed freeze-
concentration. The increase in concentration is accompanied by a decrease in
the solution’s equilibrium freezing temperature due to freezing point depres-
sion. The equilibrium freezing temperature is a function of the composition of
the formulation and can be described by a constitutive equation. To do so, we
use the widely applied law for freezing point depression derived by Blagden:

Teq = Tm − kf
Ms

ms

mw − mi
= Tm − kf

Ms

ms

(1 − σ)mw
(7.5)

whereby σ denotes the fraction of the total amount of water in the vial that has
turned into ice. Solidification is considered complete when 90% of the water
has turned into ice (i.e., when σ = 0.9). Experimentally, this point in time is
detected when the vial cools down below the associated equilibrium freezing
temperature (Teq=−2.85 °C), as measured by the infrared camera. With this
approach, the experimental setup can be used to accurately and automatically
determine both nucleation times and solidification times.

Comparison to thermocouple: The two temperature curves differ in two
aspects that are worth discussing. First, the infrared camera measures a higher
temperature during the cooling phases before and after the nucleation event
compared to the thermocouple. In particular, the nucleation temperature mea-
sured by the infrared camera is 3.5 °C higher than the nucleation temperature
measured by the thermocouple. Second, the temperature measured by the
infrared camera remains constant and equal to the equilibrium temperature
throughout solidification, while the temperature measured by the thermocou-
ple continuously decreases. These differences arise because the two sensors
measure the temperature at different positions. The thermocouple measures
the temperature at the bottom of the vial, while the thermography setup
measures it at the top surface of the vial. During cooling, thermal gradients
emerge within the vial, whereby the bottom of the vial will be colder than the
top due to its proximity to the (cold) shelf. Further, solidification proceeds
in a directional manner, whereby ice initially forms at the bottom of the vial.
Over time, a solidification front moves upwards, and when it reaches the top,
solidification is complete. Hence, during most of the solidification phase, the
temperature at the top of the vial is expected to stay constant, whereas that at
the bottom continuously decreases.

Thermal gradients: To demonstrate that the sensor location affects the
measured values, we compare the temperature evolution measured by a
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thermocouple placed at the top and by another one placed at the bottom of
the same vial (see bottom panel in Figure 7.10). As is evident, the readouts
of the thermocouple located at the top of the vial closely match those of the
infrared camera shown in the top panel.

bottom

top

Tsh

Tsh

Figure 7.11 Effect of the cooling rate on thermal gradients as predicted by the SNOWing
model. Both simulations consider a single vial placed directly on the shelf with
ksh = 110 W m−2 K−1. Top plot: simulated thermal evolution with γ = −0.5 K min−1

corresponding to configuration 2. Bottom plot: simulated thermal evolution with
γ = −1.2 K min−1 corresponding to configuration 2f. The purple lines denote the
temperature at the vial top surface, while the dark orange line denotes the temperature
at the bottom of the vial, as shown by the schematic on the right. The red dotted line
denotes the temperature of the shelf.

The temperature gradients at the time of nucleation affect the measured
nucleation temperature. This is especially relevant for large cooling rates
where the thermal gradients become more significant. The SNOWing model[77]

considers thermal gradients during the cooling process of a single vial and is
used to simulate the behavior of the experiment shown in the bottom panel in
Figure 7.10. The top panel in Figure 7.11 shows how the difference between
the temperature at the top and bottom of the surface steadily increases until
it reaches 3 °C at nucleation. The model allows us to investigate how the
thermal gradient changes for a higher cooling rate. The bottom panel in
Figure 7.11 shows a simulation of the same vial, at an increased cooling rate
(corresponding to configuration 2f). While the temperature at the bottom of
the vial at nucleation (purple line) is rather independent of the cooling rate,
thermal gradients are more pronounced for fast cooling, which results in a
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significantly higher temperature at nucleation at the vial top (purple line). In
particular, the temperature at the top is 7 °C higher than at the bottom of the
vial for fast cooling. This supports the observations made in the experiment
that the temperature at the surface of the vial at nucleation – monitored with
the setup – is indeed sensitive to the cooling rate.

7.5.2 Experimental protocol

The freezing behavior of a set of vials was investigated by performing freeze–
thaw cycle experiments. Each freezing experiment comprises 5–9 freeze–thaw
cycles as shown in Figure 7.12. With the freeze–thaw cycling protocol, a
large number of data points is collected for a single set of vials. The freezing
characteristics of each cycle are concatenated in one dataset.
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Figure 7.12 Experimental protocol of freeze-thaw cycle experiments. The gray line
denotes the set point of the shelf temperature. The purple line shows the temperature
of a typical core vial in configuration 2.

7.5.3 Edge effect

Edge vials are expected to display a different freezing behavior than core
vials – termed edge effect in the literature – for two reasons. First, they are
exposed to additional heat exchange with the walls of the freeze-dryer. Second,
they are less affected by thermal interactions as they are in contact with fewer
neighboring vials. To enable a quantitative study of the differences between
the freezing behavior of edge and core vials, Figure 7.13 shows the charac-
teristic quantities (nucleation times, nucleation temperatures, solidification
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times) for both groups of vials. The columns correspond to the different vial
configurations that were investigated.

Tsh Tsh Tsh
2f2 1 3

Figure 7.13 Comparison of the freezing behavior of edge (dark shades) and core (lighter
shades) vials over a freezing experiment in configuration 1 (blue), configuration 2

(purple), configuration 2f (orange), and configuration 3 (green). Top row: Correlation
between nucleation times and nucleation temperatures. The red dotted line indicates
the temperature of the shelf as a function of time. Bottom row: Correlation between
nucleation time and solidification times. The probability density functions for the three
characteristics are shown on the sides of the scatter plots

General remarks: Some trends hold for all configurations and are discussed
in the following. First, we see that there is no relevant difference in the
nucleation temperatures of the edge and core vials in any configuration.
In principle, such a difference could arise for two reasons: as nucleation
kinetics are vial dependent, different vials in principle always exhibit different
nucleation behaviors, or edge vials specifically may experience a different
level of thermal gradients compared to core vials. As all vials were filled in
the same way and both the number of vials at the edge (28 vials) and core (32

vials) of the group is large, a systematic difference in the nucleation kinetics
between the two groups of vials would be unexpected. Similarly, as heat
transfer is dominated by the shelf, additional heat transfer with the walls that
acts at the sides of the edge vials only has a minor effect on the extent of the
(vertical) thermal gradients. Therefore, the finding of negligible differences
in nucleation temperatures between edge and core vials is indeed expected.
Another general trend is observed during solidification: On average, edge
vials tend to solidify faster than core vials. This effect is noticeable in all
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configurations but to different extents. Edge vials solidify faster due to the
additional cooling from the freeze-dryer walls (and the part of the shelf that
lies in the view of the edge vials). It is worth emphasizing that such behavior
is in line with shelf-scale simulations of freezing reported earlier.[74]

Low interaction configurations: In configurations 2 and 2f where the freez-
ing behavior is only weakly affected by thermal interactions the nucleation
event (i.e., nucleation temperature and time) is not affected by the edge effect
at all. For fast cooling, the shortening of solidification times is the most
pronounced.

Low shelf-to-vial heat transfer: The core vials in configuration 1 show a
distinct bimodal distribution both in terms of nucleation and solidification
times. The edge vials, however, do not: both the nucleation and solidification
times follow uni-modal distributions, suggesting that the edge vials are only
weakly affected by their (fewer) neighbors. In fact, the probability density
function of the nucleation times shows that the bulk of the edge vials nucleates
with the first group of core vials, and only very few edge vials experience a
delay in nucleation.

High number of neighbors: The hexagonal arrangement of configuration
3 results in almost no difference between edge and core vials in terms of all
freezing characteristics. Considering that the vial-to-vial heat transfer in the
hexagonal arrangement is high – it is the most dense arrangement of vials
studied in this work – and that edge vials in the hexagonal arrangement still
have four neighbors, edge vials in configuration 3 are more strongly influenced
by their neighbors than in other configurations.
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7.5.4 Simulation parameters

Quantity Symbol Unit Value

Vial volume V m3 10−6

Vial fill height H m 0.01

Vial width w m 0.01

Density ρ kg m−3
1000

Sucrose mass fraction ws % 5

Heat capacity water cp,w J K−1 kg−1 4187

Heat capacity ice cp,i J K−1 kg−1 2108

Heat capacity sucrose cp,s J K−1 kg−1 1240

Heat conductivity water kw W m−1 K−1 0.598

Heat conductivity ice ki W m−1 K−1 2.25

Heat conductivity sucrose ks W m−1 K−1 0.126

Molar mass sucrose Ms kg mol−1 0.3423

Cryoscopic constant water kf K kg mol−1 1.853

Latent heat of fusion water λw kJ kg−1 333.5

Melting point water Tm °C 0

Initial vial temperature T0 °C 20

Nucleation parameter a - 21.0

Nucleation parameter b - 24.3

Nucleation parameter c - 0.83

Batch size MxN - (10x6)

Cooling rate γ K min−1 −0.5, −1.2

Shelf–vial heat transfer coefficient ksh W m−2 K−1 35–110

Vial–vial heat transfer coefficient kint W m−2 K−1 15–45

Table 7.2 List of all parameters that were used in the simulations presented in this work.

7.5.5 Modeling thermal evolution

The SNOW freezing model provides the thermal evolution for each vial on
the simulated shelf.[74] A qualitative comparison between the simulated and
measured thermal evolution profiles is shown in Figure 7.14. The measured
(left) and simulated (right) thermal evolution profiles are extracted from a
group of five vials positioned at the top left of the batch, as highlighted in
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Figure 7.3(a). Because nucleation is stochastic, the temperature profiles of
the same group of vials are expected to vary between repetitions. To assess
whether the model is able to capture this variability, we here show two rep-
resentative experimental profiles collected in two independent experiments
of the freezing experiments in configuration 1. In the top row, the vial at
the center of the group (purple) nucleates last and its temperature strongly
deviates from the linear cooling curve. In the bottom row, this vial nucleates
first and delays the nucleation of its neighbors. The simulated profiles re-
produce the experimental variability of the freezing process both in terms of
thermal deviation and of nucleation sequence, i.e., by carrying out multiple
simulations one observes that in some cases the center vial nucleates first, in
other cases last, and in the remaining cases in between its neighboring vials.
These findings confirm that the model correctly reproduces the fundamental
freezing behavior observed during experiments.

experiment

experiment

simulation

simulation

Figure 7.14 Comparison of the measured (left) and simulated (right) thermal evolution
profiles of a group of neighboring vials located in the top left region of a set of vials
as highlighted in Figure 7.3. The experimental data is taken from two independent
repetitions of experiments in configuration 1. For the simulations, the estimated heat
transfer parameters ksh,1 = 51W m−2 K−1 and kint = 20W m−2 K−1 were used. The
model replicates the stochasticity observed in the experiments, and qualitatively predicts
the effect of interactions in terms of thermal deviation and spread in nucleation times.



8 STOCHAST IC ICE NUCLEAT ION
GOVERNS THE FREEZ ING PROCESS
OF B IOPHARMACEUT ICALS IN V IALS

Biopharmaceuticals commonly require freezing to ensure the stability of
the active pharmaceutical ingredients (APIs). At commercial scale, freezing
is typically carried out over the course of days in pallets comprising tens
of thousands of vials. The selected process conditions have to ensure both
complete freezing in all vials and a satisfactory manufacturing throughput.
Current process design, however, is mainly experimental, since no mecha-
nistic understanding of pallet freezing and its underlying phenomena has
been achieved so far. Within this work, we derive a mechanistic modeling
framework and compare the model predictions with engineering run data
from the Janssen COVID-19 vaccine. The model qualitatively reproduced
all observed trends and reveals that stochastic ice nucleation governs both
process duration and batch heterogeneity. Knowledge on the ice nucleation
kinetics of the formulation to be frozen thus is required to identify suitable
freezing process conditions. The findings of this work pave the way towards a
more rational design of pallet freezing, from which a plethora of frozen drug
products may benefit. For this reason, we provide open source access to the
model in the form of a python package.[73]

8.1 introduction

The freezing of pharmaceuticals recently has garnered substantial public
interest. Storage conditions of COVID-19 vaccines have received global news
coverage, since they greatly impact the product’s supply chain, with low
temperature cold chains being costly or not even available depending on
the market.[1,4,208] Although the stabilizing effect of freezing has been stud-
ied intensely,[8–13] its quantification and prediction remain challenging until
today.[14,15]

The work presented in this chapter has been reported in: Deck, L.-T.; Ochsenbein, D.R.; Mazzotti, M.
Stochastic ice nucleation governs the freezing process of biopharmaceuticals in vials. Int. J. Pharm.
2022, 625, 122051.
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Numerous studies have confirmed that the stabilization depends not only
on the formulation, which includes the active pharmaceutical ingredient
(API) and excipients, but also on the process conditions.[9,12,14,16–18] Freezing
comprises two phases, namely a cooling phase, during which the formu-
lation is in the liquid state, and a solidification phase, during which ice is
formed.[19–21] Solidification is initiated by ice nucleation, which is a stochas-
tic process,[19,20,22–27] leading to variability in freezing behavior among vials
even if their thermal environment is identical.[19,21,25,27–29] Based on these
considerations, freezing may be characterized by three quantities, which are
conceptually linked to most of the known degradation mechanisms for frozen
biopharmaceuticals:[10–13,21,30–34] These are the nucleation time, i.e. the du-
ration of the liquid state; the nucleation temperature, which is interpreted
as predictor for the ice crystal morphology in the frozen product;[21,34] and
the solidification time, which is the duration of the solidification phase and
connected to the phenomenon of freeze-concentration.[30–33] In case a drug
product exhibits a relevant degradation mechanism related to freezing, these
three quantities should be considered during development, implying that all
vials meet qualified target ranges with sufficient probability.

At the same time, freezing in vials is inherently hard to control.[28,41] At
commercial scale, tens of thousands of vials are typically packed together
in a pallet and frozen slowly in a cold storage room. In addition to the
inherent stochasticity of ice nucleation, spatial differences in heat transfer
across the pallet imply that freezing depends on vial position.[74] Furthermore,
the thermal evolution of a vial’s neighborhood also shapes its own behavior
due to thermal interactions resulting from the employed dense packing.[74,84]

To complicate things further, the means for process monitoring are limited; in
the case of the Janssen COVID-19 vaccine, a few thermocouples were inserted
into a pallet to monitor its thermal evolution and to identify the endpoint of
the process. Due to typical process times on the order of days, an optimization
of the process duration is of great practical interest to maximize throughput
while ensuring complete freezing in all vials. The observed thermal evolution
profiles exhibited several trends, which were not entirely understood during
process design, such as thermal spikes and a stationary phase at nearly
constant temperature.

While pharmaceutical manufacturing is moving towards more rational
process design as part of Quality by Design (QbD) initiatives,[35,36] pallet
freezing process design is performed mostly in an empirical fashion and
thus remains in the metaphorical dark ages. This is despite intense research
related to freezing in the pharmaceutical context.[19,28,37–40] In particular, these
research activities established links between properties of the frozen product,
like its mean ice crystal size or the extent of freeze concentration, and the



8.2 methods 177

freezing conditions. We posit that (part of) the reason why these valuable
contributions have yet to reshape freezing process design in industry to a
greater extent is because they are predominantly limited to the single-vial
scale.

To bridge the existing freezing research at single-vial scale with process
design at commercial scale, we recently introduced a batch-scale model for
the freezing stage in freeze-drying.[74] The model simulates the evolution
of temperature and ice mass for an arbitrary number of vials packed in
two spatial dimensions, and thus predicts the nucleation and solidification
behavior of all vials, as well as the process duration. It is entirely derived
from first principles and explicitly takes into account the stochastic nature of
ice nucleation.

In this work, we extend the model to batches comprising vials packed
in three spatial dimensions, as is the case in pallet freezing. We simulated
the process and compared the model predictions with engineering run data
of the Janssen COVID-19 vaccine. The model qualitatively reproduced all
experimentally observed trends; we thus apply it to characterize several
freezing phenomena, such as the occurrence of thermal spikes and a stationary
phase in the thermal evolution profiles. We further study how nucleation
kinetics, storage temperature and batch size affect process duration. To
promote the use and further development of the model, we provide open
source access to it in the form of a python package.[73]

8.2 methods

The modeling framework used in this work is based on a shelf-scale model
recently presented by the authors for the freezing stage of the vial freeze-
drying process.[74] We refer to the original work for a detailed derivation
of the model from first principles and present in Section 8.2.1 a summary
of the relevant equations and of the underlying principles. In Section 8.2.2
we discuss how to interpret the model predictions and how to characterize
freezing. Section 8.2.3, finally, outlines the experimental methods.

8.2.1 Modeling framework

We model the freezing process of densely packed vials in a mechanistic way
and take into account number and arrangement of the vials, heat transfer, and
ice nucleation and growth. A lumped capacitance approach is used, where
each vial corresponds to a homogeneous lump characterized by its mean
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temperature and ice mass. The formulation within the vials experiences both
a cooling phase and an ice growth phase during freezing. Ice nucleation is
the process that drives the vial’s state from the liquid to the partially frozen
state. It is described as an inhomogeneous Poisson process following existing
literature on both ice nucleation and primary nucleation of solutes from
solution,[22,23,25,29,66,70] and is simulated using a Monte Carlo approach.[74]

Single vial equations

For the derivation of the balance equations, let us consider a single vial
containing a formulation of mass mv, consisting of water and of solute, such
that

mv = mw + ms. (8.1)

All material is conserved within the vial during freezing, but the water in the
formulation will undergo a phase transition from its initial liquid state to ice.
Ice will be formed as soon as nucleation occurs. Given the above-mentioned
mass conservation, this implies

mw = mℓ + mi = constant. (8.2)

In addition to the mass of the formulation, we consider its enthalpy, Hv. The
evolution is governed by the heat exchange of the vial with its surroundings,
characterized by the heat flow Q̇:

dHv

dt
= Q̇ =

(
mscp,s + mℓcp,ℓ + micp,i

) dT
dt

− λw
dmi
dt

(8.3)

where cp,k denotes the specific heat capacity of component k ∈ {s, ℓ, i}, i.e.,
solute, liquid water, or ice, while the latent heat of fusion for water is given
by λw. Assuming knowledge on Q̇, we note that mass and enthalpy balance
constitute a system of two equations in three unknowns, namely temperature
T, mass of ice mi and mass of liquid water mℓ. As long as no ice is present,
the equation simplifies to

dHv

dt
= Q̇ =

(
mscp,s + mℓcp,ℓ

) dT
dt

= mvcp
dT
dt

(8.4)

and can be solved readily, with cp as the heat capacity of the solution. The
missing constraint to determine the evolution of the freezing process in the
presence of ice lies at the micro-scale, where one may characterize freezing
as the process of nucleation and growth of ice crystals. The kinetics of
nucleation and of growth, expressed by the corresponding rates of nucleation
J, and of crystal growth, govern the rate of change of the ice mass. As
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discussed earlier,[74] one commonly expresses these rates as a power law of
the thermodynamic driving force Teq − T, which is the difference between the
temperature of the formulation inside the vial and the equilibrium freezing
temperature, Teq. The equilibrium freezing temperature is governed by
thermodynamics and depends on the composition of the formulation. It
may be expressed using a constitutive equation, e.g., the widely applied law
derived by Blagden:[98]

Teq = Tm − kfbs = Tm − kf
Ms

(
ms

mw − mi

)
(8.5)

where bs is the molality of the solute in the solution, Ms its molar mass, kf the
cryoscopic constant and Tm the melting point of water; we also introduce Teq

ℓ
as the equilibrium freezing temperature of the solution before the formation
of any ice, i.e. when mi = 0. The nucleation rate J then is expressed as

J = kb(T
eq − T)b (8.6)

where kb and b are empirical constants, which are assumed to be independent
of temperature. Experimentally, one generally observes that freezing in vials
starts from a single ”point of origin of freezing”,[20,180] from which the rapid,
deterministic spread of a ”slushy” phase is observed, which occurs together
with a nearly instantaneous temperature rise to the equilibrium freezing
temperature. We interpret such behavior as a single primary nucleation event
at time tnuc followed by rapid, recalescent growth of ice through the entire
volume of the vial. As consequence of the rapid formation of ice, we consider
the process of nucleation to be adiabatic with respect to the vial: the heat
released upon ice formation equals the sensible heat associated to the rise
in temperature from the nucleation temperature, Tnuc, to the equilibrium
freezing temperature of the now partially frozen formulation, Teq, i.e.:

(Teq − Tnuc) cpmv = λwmnuc
i for t = tnuc (8.7)

where mnuc
i denotes the mass of ice formed immediately after the nucleation

event, that led to the instantaneous depletion of the existing supercooling, and
the corresponding equilibrium temperature Teq(tnuc). With the supercooling
depleted, no further primary nucleation event may take place after tnuc; the
first primary nucleus thus remains the sole one. Crystal growth, on the other
hand, is governed by heat transfer with the exterior, whereby

Teq − T = 0 for t ∈ [tnuc, ∞). (8.8)

The enthalpy balance (Eqn. (8.3) and the constitutive equation for Teq therefore
form a system of two equations in two unknowns, subject to the initial
condition in Eqn. 8.7.
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Generalization to batch scale

We generalize the framework outlined in the previous section to an arbitrary
number of vials arranged in three dimensions. The energy balance for a vial
in position (m, n, p) in a densely packed system with (M × N × P) vials is:

Q̇(m,n,p) =
(

mscp,s + mwcp,ℓ

) dT(m,n,p)

dt
= mvcp

dT(m,n,p)

dt
(8.9)

Q̇(m,n,p) =
(

mscp,s + mℓ,(m,n,p)cp,ℓ + mi,(m,n,p)cp,i

) dTeq
(m,n,p)

dt
− λw

dmi,(m,n,p)

dt
(8.10)

whereby the first equation holds for t ∈ [t0, tnuc
(m,n,p)) and the second one for

t ∈ (tnuc
(m,n,p) , ∞). Before nucleation, no ice is present and the enthalpy balance

simplifies accordingly. Importantly, the time at which nucleation occurs varies
among vials. After nucleation, the enthalpy balance governs the evolution of
both temperature and of ice mass, together with Eqn. 8.5, the constitutive
equation for the equilibrium freezing temperature. As outlined in Section
8.2.1, the enthalpy balance for the this phase is subject to the initial condition:(

Teq
(m,n,p) − Tnuc

(m,n,p)

)
cpmv = λwmnuc

i,(m,n,p) for t = tnuc
(m,n,p) (8.11)

Thus, the enthalpy balance (Eqn. 8.10) and Eqn. 8.5, the constitutive equation
for Teq

(m,n,p) form a system of two equations in two unknowns, subject to
the initial condition in Eqn. 8.11. Since the evolution of the vial is subject to
Q̇(m,n,p), which may depend on the state of the neighboring vials, the evolution
of all vials is coupled and a system of (M × N × P) enthalpy balances has to
be solved.

Heat transfer for vials in a batch

As derived in Section 8.2.1, the rate of change of the enthalpy of a vial
equals the heat exchange with its surroundings, i.e. the heat flow Q̇(m,n,p). In
terms of arrangement and geometry, we assume that vials are of cubic shape
and completely filled. They thus have six surfaces of equal size A and heat
transfer occurs via all of them. We note, however, that this model is generally
applicable for any arbitrary shape and arrangement. The heat flow for a vial
in position (m, n, p) is given by

Q̇(m,n,p) = A
(

q(m,n,p)
(m+1,n,p) + q(m,n,p)

(m−1,n,p) + q(m,n,p)
(m,n+1,p) + q(m,n,p)

(m,n−1,p) + q(m,n,p)
(m,n,p+1) + q(m,n,p)

(m,n,p−1)

)
(8.12)

whereby q(m,n,p)
(m′ ,n′ ,p′) denotes the heat flux across a single side of the vial. While

heat transfer in a cold storage room may be complex in practice, we consider
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the least complex description that is still qualitatively accurate. Depending on
position, each side of a vial is in contact with either another vial, or with the
environment. We quantify the extent of heat transfer according to these two
options with one lumped parameter each. These are the internal heat transfer
coefficient kint, which describes the heat transfer among neighboring vials,
and the external heat transfer coefficient kext, which describes the heat transfer
of vial surfaces facing the exterior of the system with the environment. These
considerations lead to the following expressions for the heat fluxes:

q(m,n,p)
(m′ ,n′ ,p′) =

kext

(
Text − T(m,n,p)

)
for external surfaces

kint

(
T(m′ ,n′ ,p′) − T(m,n,p)

)
otherwise

(8.13)

whereby a surface is considered as external if m′ ∈ {0, M + 1} ∨ n′ ∈ {0, N +
1} ∨ p′ ∈ {0, P + 1}. For a sufficiently large system of vials, such as a box or
pallet, four types of vials are observed: corner vials with three sides exposed
to the environment and thus three neighboring vials; edge vials with two
sides exposed to the environment and four neighbors; side vials with one
side exposed to the environment and five neighbors; and finally core vials
that are not in contact with the environment and that have six neighbors. As
Eqn. 8.13 indicates, Text is an additional parameter in the model to consider in
process design. Pallets are typically frozen in cold storage rooms at constant
temperature, motivating us to focus on the case where Text is constant during
the process. As demonstrated in Chapter 6, the model can be used with a
time-dependent definition of Text as well.

As a final note, a quantitative estimation of values for the heat transfer
parameters kint and kext is challenging due to the various mechanisms of heat
transfer involved in freezing. In this work, we therefore focus on a sensitivity
analysis and investigate how the freezing process behaves under various heat
transfer conditions. Importantly, we do not fit the parameters to experimental
data, and instead apply values that qualitatively correspond to conditions in a
cold storage room, based on existing knowledge at Janssen.

Transition from liquid state to ice growth state

As discussed in Section 8.2.1, the formation of a single primary nucleus
triggers the transition from the cooling phase to the ice growth phase due
to the rapid growth of ice. Since ice nucleation is stochastic, the nucleation
times tnuc

(m,n,p) vary among vials even when they experience identical freezing
conditions and when repeating the process, e.g. in a temperature cycling
experiment.
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Ice nucleation is widely interpreted as a Poisson process, i.e. the proba-
bility of nucleation depends on the current state of the vial, but not on its
history.[22,23,25,26,66] The rate constant of the Poisson process, K(m,n,p), corre-
sponds to the nucleation frequency in the vial, in units of nucleation events
per unit time, and is defined as

K =
∫ V

0
J(V′)dV′ =

∫ V

0
kb(T

eq − T(V′))bdV′ (8.14)

which simplifies to K(m,n,p) = J(m,n,p)V, in the case that the vial exhibits no
relevant thermal gradients; a reasonable assumption for pallet freezing given
the long duration of the process, which is typically on the order of several
hours or even days. As outlined in Section 8.2.1, the thermal evolution of a vial,
and thus its nucleation frequency, may also depend on the thermal evolution
of the neighboring vials and as a consequence on the sequence of neighboring
nucleation events. The value of K(m,n,p) in such a system therefore depends
not only on time, but also on the stochastic occurrence of prior nucleation
events. The type of stochastic process, where past stochastic events impact
the future, is known as self-exciting point process, and may be interpreted as a
step-wise inhomogeneous Poisson process.[22] We may express the probability

P(0)→(1)
(m,n,p) (t, t + ∆t) that a nucleus is formed in a vial in the liquid state in the

time interval [t, t + ∆t] as:

P(0)→(1)
(m,n,p) (t, t + ∆t) = 1 − exp

{
−
∫ t+∆t

t
K(m,n,p)(t

′)dt′
}

(8.15a)

≈ K(m,n,p)(t)∆t = V J(m,n,p)(t)∆t (8.15b)

We thus compute P(0)→(1)
(m,n,p) step wise until nucleation occurred in all vials in

the batch.

Numerical solution approach

In order to solve the coupled system of energy balances and stochastic
ice nucleation equations described above, we have used an adapted version
of the algorithm presented earlier.[73] Importantly, we note that repetitive
simulations of the process are required to capture the variability resulting from
the stochasticity of ice nucleation. The individual simulations are independent
of each other, thus enabling parallelization of the computations.

While the results generated for this work were computed using MATLAB,
we have opted to provide an equivalent, open source implementation of the
model in the form of a python package that we published on pypi under the
MIT license.[186] We have called this package Stochastic Nucleation of Water, or
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SNOW for short.[73] It is our intention to integrate upcoming developments
and potential contributions by third parties into future releases, thus hoping
to foster a spirit of open collaboration among researchers in this field. All
versions of the python package starting from v1.1.0 contain the implementation
of the freezing model for densely packed vials presented herein.

8.2.2 Characterizing freezing

An important application of the presented modeling framework in this work
is the quantification of properties of the frozen product and their variability
among vials and among repetitions of the process, i.e. batch heterogeneity.
Such heterogeneity is regarded as one of the main design challenges of freezing
and of freeze-drying processes, since it may result in a variability in critical
quality attributes.[28,37,41] Predicting and quantifying batch heterogeneity is
therefore an essential step towards a rational design of the freezing process.

To the best of our knowledge there is no systematic, model-guided assess-
ment available on batch heterogeneity in pallet freezing and on its root causes,
namely stochasticity of ice nucleation, thermal interaction among vials, and
position-dependency of heat transfer.[74] Compared to freeze-drying, in pallet
freezing we expect an enhanced variability among vials due to the stacking in
three instead of in two spatial dimensions: In freeze-drying, all vials are in di-
rect contact with a shelf,[20,21,41] while in the case of pallet freezing most vials
are not in direct contact with the exterior and heat transfer occurs through
their neighbors only.

As discussed in Section 8.1, product stability and its variability may be
related to the nucleation and solidification behavior of the frozen product.
We define the nucleation time tnuc, the nucleation temperature Tnuc, and the
solidification time tsol as characteristic quantities of the freezing process, and
understand them as critical material attributes in the context of Quality by
Design. Additional experimental studies are required when developing a
novel drug to understand the ranges of values for these quantities that lead to
acceptable critical quality attributes. Figure 8.1(a) shows the simulated thermal
evolution of a single vial and illustrates the definition of these quantities,
while Figure 8.1(b) provides complimentary information about the ice mass
evolution. The solidification time of a vial, tsol, denotes the elapsed time
between the nucleation event at time tnuc and the point in time when freezing
is considered to be complete for this vial, denoted with tfr. The definition
for such completion is to some extent arbitrary; for this work we assume
solidification to be complete when mi/mw = 0.9; however, the model is
compatible with any definition based on temperature or ice mass fraction. In
our prior work,[74] we studied the effect of the threshold on the characteristic
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quantities, and we found that it did not affect the observed trends for values
in the range of mi/mw = 0.85 − 0.95.[74] As it is apparent from Figure 8.1(b),
higher values for the endpoint should be avoided, since the amount of ice
that can be formed in the vial is ultimately limited by the freezing-point
depression for a given storage temperature. This implies that some water
will always remain in solution. Assuming sufficient knowledge of the specific
formulation to be frozen, one could alternatively use the attainment of the glass
transition temperature of the solution as indicator for completion of freezing.
Indeed, there is no consensus in literature regarding the definition of complete
freezing, with some authors relying on ice mass based definitions,[19,37] and
some relying on the glass transition temperature.[32,39]
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Figure 8.1 (a) Thermal evolution of a single vial during the freezing process. The
position of the nucleation event and the time when the vial is frozen, which corresponds
to the predefined threshold for the ice mass formed, are indicated. (b) Evolution of ice
mass during freezing. The first ice forms at the time of nucleation.

We interpret the distribution of the characteristic quantities among vials as
measure of batch heterogeneity: vials that nucleate and solidify differently,
will presumably have different mean crystal sizes and different API activity
levels,[9,28,37] even if the practical relevance of these differences cannot be
known a priori. We compute these distributions by running a large number of
independent simulations of the process and by determining the corresponding
probability density functions fnt(t), fnT(T) and fsol(t). By definition, fnt(t)dt
provides the fraction of nucleation events that take place between tnuc and
tnuc + dt; fnT(T)dT the fraction that nucleates at temperatures between Tnuc
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and Tnuc +dT; fsol(t)dt is the fraction of freezing processes with solidification
times between tsol and tsol + dt. In the same way we also define bi- and
tri-variate distributions of the characteristic quantities. The broadness of
the simulated probability density functions is gauged in this work by the
difference between the 10% and 90% quantiles of the distribution.

In addition to the three characteristic quantities, which are defined per vial,
the process duration ∆tpt is a quantity of key interest. We define the process
duration as the time of complete nucleation for a batch, i.e., the duration from
beginning of the cooling process until the nucleation of the last vial. This time
will inherently vary due to the stochasticity of ice nucleation, and process
design has to account for this variability.

Within this work, we assess the median values of these quantities and their
variability in batches of various sizes and conduct sensitivity studies with
respect to heat transfer rate, system size, and nucleation kinetics. Specifi-
cally, we investigate three sources of batch heterogeneity in four systems of
increasing complexity. They comprise: a) the inherent stochasticity of ice
nucleation that all systems exhibit; b) the thermal interaction among vials,
which was recently shown to enhance the existing stochasticity in the case of
freeze-drying;[74,84] and c) the batch geometry and the vials’ position within
the batch. Simulations of four systems allow us to gain insight and to reach a
mechanistic understanding on all these phenomena.

8.2.3 Experimental

Freezing process design for the Janssen COVID-19 vaccine was carried
out as per the governing standard operating procedures, i.e., by performing
engineering runs at different storage temperatures in order to identify suit-
able operating conditions, coupled with extensive quality control testing to
verify stability. After identifying supercooling as potential design challenge,
constitutive experiments were carried out to characterize the supercooling in
greater detail. Note that these experiments preceded the development of the
model presented within this work.

Supercooling experiments

Qualitative experiments were carried out covering a total of about 300 vials
to gain a high-level understanding of the supercooling phenomenon. The
vials were either directly exposed to cold air or positioned in boxes in a cold
storage room. It was found that a majority of vials containing the COVID-19

vaccine with thermocouples taped to the external side of the vial body would
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nucleate in a temperature range of −15°C to −10°C; vials with thermocouples
inside the vial were found to nucleate at temperatures anywhere from −15°C
to the equilibrium freezing temperature. Since the thermal evolution of these
vials was not tightly controlled, an estimation of the nucleation kinetics based
on these data alone is not possible. However, these experiments indicate that
a metastable zone for the COVID-19 vaccine extends down to at least −10°C.

Pallet freezing engineering runs

Engineering runs were carried out at pallet scale in three configurations
with US standard size pallets (40” × 48”) comprising either 32,400 vials (A-1
configuration, see Figure 8.11 in the supplementary information), 25,300 vials
(A-2 configuration, similar to A-1, but with reduced box size) or 33,600 vials
(B configuration, see Figure 8.12 in the supplementary information). The
geometry chosen for the pallet freezing simulations is comparable to the
A-2 configuration (40 × 36 × 18) vials, in total 25,920 vials), and corresponds
closely to the configuration presented in Figure 8.2. The geometry of the pallet
used in the simulation is in some aspects simplified: Neither are multiple
packaging layers considered, i.e. when vials are located in boxes that are
stacked together, nor is the effect of spacers between boxes explicitly modeled.
While these additional aspects may quantitatively affect the process outcome,
their inclusion was not required to qualitatively explain all observed exper-
imental trends, as discussed in Section 8.3. In other words, we present the
least complex model that is able to describe the system adequately, which is the
main task of any modeling effort.

Figure 8.2 Typical packaging setup used for the pallet freezing process at Janssen. Vials
are first packed together in small boxes, which then are stored in bigger boxes that are
stacked together on the pallet. Shown geometry similar to configurations A-1 and A-2.
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Engineering run material comprising the drug product at a concentration
similar to that of the final formulation was filled in ISO 2R vials. The vials
were packed together according to the aforementioned pallet configuration.
A weight check was conducted to ensure homogeneity of fill volumes. The
cooling process itself was initiated by moving the packed pallet into a cold
storage room after filling; the pallets were positioned in the warmest part
of the cold storage room to allow for a worst-case estimate of the process
duration.

A total of five runs were carried out at three different storage temperatures
of −20°C, −25°C and −40°C, and different duration, as outlined in Table 8.1.
After process completion, manual visual inspection of the vials in the pallet
was carried out for engineering run 4 and 5 at different points in time, and
found no vials remaining in the liquid state at the final time. Because the
effect of supercooling was initially not considered, freezing completion was
not verified for runs 1 to 3. For the study at −20°C, three repetitions were
carried out (i.e. runs 1,2 and 5), with varying freezing time and configuration.

Run Temp. Duration Inspection Configuration # TC

1 −20°C 165h not performed A-1 5

2 −20°C 130h not performed A-1 5

3 −25°C 65h not performed A-1 5

4 −40°C 48h all frozen A-2 6

5 −20°C 264h all frozen B 12

Table 8.1 Summary of the five engineering runs performed to study the pallet freezing of the Janssen
COVID-19 vaccine.

In all runs, the thermal evolution of the pallet was monitored for the entire
duration of the process via thermocouples. These thermocouples were inserted
at different positions in the pallet, with some of the sensors placed next to
the center of the pallet, and some further away from it. Thermocouples were
inserted directly into the vials. For such positioning, it is not possible to infer
a nucleation temperature distribution from the temperature readouts. When
thermocouples are positioned within vials, the nucleation kinetics may be
affected due to the introduction of additional nucleation sites, thus rendering
the observed nucleation behavior non-representative.[102] In the context of
freeze-drying, non-invasive methods of temperature monitoring have been
proposed recently,[209–211] which may help to overcome this issue. These
monitoring instruments comprise thin film thermocouple arrays[209,210] and
impedance spectroscopy[211], which both were unavailable at the time of the
engineering runs.
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Finally, it is worth underlining the scale of these engineering runs: The five
runs that we analyze within this case study comprise about 160,000 vials in
total, amounting to the equivalent of 800,000 vaccine doses. It is therefore
of utmost interest not only to develop a safe and rational process design,
but also to ensure that such design is identified in a small number of runs.
Indeed, these five runs comprise only a subset of all engineering runs that
were conducted during freezing process design.

8.3 results

We present simulation results for the freezing of a pallet comprising
40× 36× 18 vials and compare it with engineering runs of the Janssen COVID-
19 vaccine in Section 8.3.1; this analysis identified a number of complex freez-
ing phenomena that are investigated in the following sections. To generalize
our findings, we also studied the freezing of smaller systems, i.e. of single
vials, of a set of 2 × 2 × 2 vials, and of a box of 20 × 12 × 3 vials; the corre-
sponding studies are presented in Sections 8.5.3, 8.5.4 and 8.5.5. The packaging
geometries for box and pallet resemble real-world geometries in use in the
pharmaceutical industry. While the general findings are valid independent of
geometry, we invite the interested readers to run simulations for arrangements
of their interest via the open-source python package SNOW, as indicated in
Section 8.2.1.

Unless stated otherwise, 1000 repetitions were carried out for each simu-
lation study to accurately capture the variability of the process. Importantly,
such high number of repetitions is not required for most applications, and
was chosen in this work for being able to generate smooth plots of simu-
lated distributions. For practical applications, already 16 repetitions were
found to provide a sufficiently accurate estimate of the process variability. All
simulations comprise vials containing 1 mL of 5 wt.% sucrose solution. The
nucleation kinetics parameters used for the simulation of this solution lead
to single-vial nucleation temperature distributions in the range of −5°C to
−15°C. This range of temperatures is typically observed when freezing diluted
aqueous solutions in laboratory freeze-dryers in non-sterile environments. A
list of all simulation parameters is provided in Table 8.2.

8.3.1 Phenomenology of freezing

Within this section we study experimental data from engineering runs of
the Janssen COVID-19 vaccine, and compare the thermal evolution profiles
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with those from pallet freezing simulations. Figure 8.3 shows the readout
of four to five thermocouples for three runs at temperatures from −20°C to
−40°C. Figure 8.4 presents the simulated thermal profiles of one vial in the
core (shades of green) of the pallet and one at its side (shades of red) for three
repetitions of the freezing process, at storage temperatures of −8°C (8.4 (a))
and of −40°C (8.4 (b)). While the modeling framework provides the thermal
evolution profiles for all 25,920 vials, we selected these two vials to present
two extreme cases of particularly fast (side vial) and slow (core vial) freezing.
We identify four characteristic phenomena in the experimental data, all of
which were qualitatively reproduced by the simulations:

Thermal spikes: Two types of spikes are present in all profiles: First,
every profile shows a single spike rising up to the equilibrium freezing
temperature. For the experiments, these spikes occurred early on during
the process, whereas in the simulations, more variability in terms of their
time of occurrence was observed, with some spikes occurring close to the
end of the process in the case of the simulation at −40°C. A second type of
spikes, smaller but more frequent, was found to occur during most of the
process. The number of spikes was found to increase with increasing storage
temperature. We study the occurrence of these spikes in more detail in Section
8.3.2, where we reveal that the first type is connected to the nucleation event
in the monitored vials, while the second type stems from nucleation events in
neighboring vials.

Stationary phase: The stationary phase is where vials spend extended time
at a nearly constant temperature during freezing. This is most distinct for
the engineering run at −40°C (cf. Figure 8.3(c)) where the vials in the core
of the pallet exhibit a stationary temperature of Tsp ≈ −15°C. Similarly, the
simulated profiles for vials in the core of the pallet comprise a stationary
phase at Tsp ≈ −5°C, nearly independent of storage temperature. In Section
8.3.3 we investigate this phenomenon, and find it to be an emerging property
of freezing at pallet scale, linked to the nucleation kinetics of the formulation.

Process duration: When increasing the storage temperature from −40°C to
−20°C for the engineering runs, a five-fold increase in process duration was
observed. Similarly, simulations predict an increase in process duration of
one order of magnitude when increasing the storage temperature from −40°C
to −8°C for the studied sucrose solution. We study the process duration for
systems at different scales in Section 8.3.4, and reveal that the strong increase
in process duration at high storage temperatures is linked to kinetic limitations
of the nucleation process. Given the great interest in obtaining estimates for
the process duration, we derive and test a simplified model for its prediction
in Section 8.3.5.
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Figure 8.3 Thermal evolution for the first 48h of three engineering runs: Run 5 (−20°C),
run 4 (−40°C) and run 3 (−25°C); the curves indicate the readouts of the thermocouples,
while the blue lines denote the storage temperatures. Data points were recorded with a
resolution of 5s. Complete freezing was only observed for run 4 within the shown time
interval; complete freezing for run 5 was observed after about 200h, while run 3 was
stopped after 65h without achieving complete freezing.

Variability in freezing behavior: For the engineering run at −40°C, vials
close to the exterior cool down faster than their inner counterparts, and reach
low temperatures already at times when core vials are still at the stationary
temperature. At −20°C, all vials exhibited similar thermal evolution profiles,
while for −25°C minor differences between the readouts were observed. Re-
garding the simulations, we find that the side vial nucleates generally earlier
than the core vial and with less variability in time. We analyze variability
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in freezing behavior among vials in Section 8.3.6, based not only on the
thermal evolution profiles, but also on the nucleation and solidification be-
havior; this analysis reveals that significant variability is present at all storage
temperatures, with potential impact on drug stability.
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Figure 8.4 Thermal evolution for three repetitive simulations of the freezing process
for the pallet with 25,920 vials. Curves for one side vial (in outermost layer, red) and
one core vial (in innermost layer, green) are shown for storage temperatures of (a) −8°C
and (b) −40°C. Repetitions are denoted by different shades of the used colors.

8.3.2 Thermal evolution: thermal spikes

We investigate the phenomenon of thermal spikes by simulating freezing at
different scales. Figure 8.5 shows the thermal evolution of five single vials at
(a) −5°C, (b) −10°C, and (c) −20°C. At −5°C, all vials remain in the liquid,
supercooled state after 7h. At −10°C, all vials froze, albeit with significant
variability in nucleation time. For −20°C, this variability reduced strongly.
For all frozen vials, exactly one spike corresponding to a temperature rise
to the equilibrium freezing temperature was observed. Even in the case of
the pallet (as shown in Figures 8.3 and 8.4), one such rise was observed per
vial, corresponding to its nucleation event. In the case of the experimental
pallets, this rise took place early on, and at higher nucleation temperatures.
This behavior indicates that the insertion of thermocouples into the vials
affected the nucleation kinetics; i.e. additional nucleation sites enhanced the
nucleation rate. Such behavior is commonly reported in literature with respect
to pharmaceutical freeze-drying,[102] and is in line with the experimental
findings from the single vial cooling studies, as reported in Section 8.2.3.



192 modeling the freezing process of a covid-19 vaccine

Figure 8.5 Thermal evolution of a single vial during the simulated freezing process.
Five repetitions are shown for external temperatures at −5°C (a), at −10°C (b), and at
−20°C (c). An initial vial temperature of 20°C is used in all simulations. Blue lines
indicate the storage temperature.

A second type of spike emerges when moving towards larger systems
of interacting vials. Figure 8.6 presents the thermal evolution for a system
of 2 × 2 × 2 vials at −10°C and at −20°C; in such system all vials are in
equivalent positions. Heat transfer between neighboring vials is characterized
through the thermal interaction coefficient kint. We studied three values of
kint, resulting in thermal evolution profiles for weak (8.6(a,d)), intermediate
8.6((b,e)), and strong thermal interaction 8.6((c,f)). Thermal interaction causes
additional variability in the thermal evolution, leading to the observation of
spikes in the studies at −10°C (a,b,c) and to a lesser extent at −20°C in the
case of intermediate and strong interaction (e,f).

To study this variability in detail, we investigate in Figure 8.6(g) the thermal
evolution of one vial (green), while highlighting the nucleation events of the
other vials: we find that all spikes in the thermal evolution profile are caused
by nucleation events. The exothermic phase change affects neighboring vials
that absorb this heat, which in turn either slows down their cooling or even
heats them up temporarily. Thermal perturbations affect the thermal evolution
profiles stronger at higher storage temperatures. This is in good agreement
with the observations for the both the simulated and experimental pallets
(cf. Figures 8.3 and 8.4), which exhibited more pronounced thermal spikes at
higher temperature. Also, the effect of a nucleation event was found to become
smaller with increasing distance, as can be seen explicitly in Figure 8.6(c): The
thermal evolution of the direct neighbors (indicated in red) is more affected by
the nucleation event of the green vial compared to the next nearest neighbors
(magenta); the vial at the opposite side of the system (blue) is barely affected



8.3 results 193

at all. This is of practical importance, because it highlights that the number
of neighboring nucleation events that can be observed may be limited to a
few layers beyond the point of measurement. The detection of all nucleation
events in a pallet would therefore require a large number of thermocouples.
These findings confirm that thermal interaction is the responsible mechanism
for the formation of the second type of spikes. A detailed analysis on how the
nucleation and solidification behavior is affected by different levels of thermal
interaction is provided in Section 8.5.4.

Figure 8.6 (a-f): Thermal evolution of all eight vials in the (2 × 2 × 2) system for one
simulation of the freezing process each at a storage temperature of −10°C (a,b,c) and
of −20°C (d,e,f). External heat transfer for all studies is characterized by kext = 10
Wm−2K−1. Internal heat transfer is kint = 5 Wm−2K−1 for (a,d), kint = 10 Wm−2K−1

for (b,e) and kint = 20 Wm−2K−1 for (c,f). (g): Thermal evolution for one vial in study
(c), with nucleation events of other vials indicated. Red dashed lines - nearest neighbors,
magenta dash-dotted lines - next nearest neighbors, blue dotted line - most distant vial.
The same color coding is applied in figure (c).

8.3.3 Thermal evolution: stationary phase

In the context of freezing, a change in temperature may be induced by either
removal of heat due to external cooling, i.e. ∆Qc, or by the latent heat released
upon ice formation, ∆Qgen. A stationary temperature within the pallet thus
indicates that the two terms are in balance with each other. To formulate
analytical expressions for these terms, we consider two simplifications: (1) All
vials in the pallet exhibit the same stationary temperature Tsp, until freezing is
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completed. (2) Heat transfer of the pallet with the exterior is characterized by
a single, lumped coefficient Kc. For a time interval ∆t, ∆Qc is then given as:

∆Qc = AptKc(Tsp − Text)∆t (8.16)

where Apt is the outer surface area of the pallet. ∆Qgen is linked to the number
of nucleating vials. Since nucleation induces solidification within an entire
vial, it implicitly generates heat on the order of mwλw. The probability for a
vial to nucleate was derived in Eqn. 8.15 as JV∆t; for a pallet comprising nv
vials at temperature Tsp, the expected number of nucleation events becomes
nv JV∆t. ∆Qgen thus is:

∆Qgen = (mwλw)(nv JV∆t) (8.17)

To understand how ∆Qgen and thus the stationary phase depend on nucleation,
we introduce a second set of slow kinetic parameters, for which vials nucleate
at lower temperatures, in line with values observed in vial freeze-drying under
GMP conditions.[41,102,169] We also study the limiting case of instantaneous
nucleation, where ice is formed as soon as the vial reaches the equilibrium
freezing temperature. Figure 8.7(a) illustrates the values for five heat flows as
function of the stationary pallet temperature Tsp: heat removed by external
cooling at storage temperatures of −8°C and of −40°C, and heat generated
subject to (our standard) fast and newly introduced slow and instantaneous
kinetics. A total of six stable states are identified; for the ”fast” kinetics, the
heats balance at temperatures of about −5.5°C for Text = −40°C and of −4.5°C
for Text = −8°C. With respect to the slow kinetics, this value shifted to −13°C
for Text = −40°C. For −8°C, the stable state corresponds to a system which
does practically not transfer any heat; this indicates that the vials will stay
very long in the supercooled, liquid state before they eventually nucleate. For
the instantaneous kinetics, the stationary phase by nature is confined to the
equilibrium freezing temperature.

Figure 8.7(b) shows the thermal evolution for a core vial subject to the
three sets of parameters at Text = −40°C. A stationary phase is observed in
all cases and the values of Tsp indeed correspond to those predicted; since no
supercooling occurs in the case of instantaneous nucleation, no thermal spikes
are observed in the corresponding profiles either. For comparison, Figure 8.7(c)
presents the profiles for Text = −8°C; as expected, the thermal evolution for the
slow kinetics confirms that the core vials spend the entire simulated process
duration in the supercooled liquid. When comparing the process duration
for fast and instantaneous kinetics, one notices that the predicted values are
qualitatively similar for Text = −40°C, but differ by about a factor of three
for Text = −8°C. This clearly demonstrates the important role of stochastic
nucleation on process duration, manifested for pallet freezing in the form of
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the stationary phase. We thus study the behavior of the process duration in
more detail in Section 8.3.4.
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Figure 8.7 (a) Heat flows Q̇ = ∆Q/∆t for external cooling (blue, for storage tempera-
tures of −8°C and −40°C) and ice crystal formation (orange, subject to fast and slow
nucleation kinetics). A value of Kc = 0.90 Wm−2K−1 was used, based on the procedure
outlined in section 8.3.5. (b) Thermal evolution for three repetitions of the freezing
process for the pallet with 25,920 vials. Curves for the same core vial are shown at a
storage temperature of −40°C for three sets of nucleation kinetics. The corresponding
median complete nucleation times were found to be 153h (slow) and 122h (fast). (c)
Complementary figure to (b), generated for a storage temperature of −8°C. Note that
the freezing process for the slow kinetics is not completed at the end of the simulation.

These findings confirm that the stationary phase stems from a balance of
external cooling and heat generated by ice formation. The stochastic nature of
nucleation implies that the pallet does not assume a constant temperature Tsp,
but that the temperature oscillates around Tsp, since nucleation events release
a considerable amount of heat in short time into their neighborhood. Each
nucleation event leads to a local rise in temperature, and thus reduces the like-
lihood of nearby nucleation events, until solidification is mostly complete and
the temperature decreases again. The establishment of such balance requires
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a certain minimum number of vials, which explains why the stationary phase
was observed for neither the single vial nor the system of 2 × 2 × 2 vials.

8.3.4 Process duration and freezing regimes

The relationship between process duration and storage temperature is of
great practical interest, since it has to be well-understood in order to identify
suitable freezing conditions. Regarding stability, having vials remain in the
liquid state at the end of freezing was considered a relevant type of batch
heterogeneity that should be avoided if possible. An inspection of all vials
in densely packed pallets is undesirable due to the sheer number of vials
involved.

Figure 8.8 Left: Process duration for the single vial (red), the box with 720 vials
(magenta) and the pallet with 25,920 vials (cyan) subject to the fast nucleation kinetics.
The lines indicate the median of the distribution of the complete nucleation time, while
the error bars denote the 10% and 90% quantiles. 80,000 repetitions of the freezing
process were simulated for the single vial, 1,000 repetitions for the box and all pallet
simulations up to −12°C. For pallet simulations at −10°C and at higher temperatures,
128 repetitions were simulated. Right: Relative variability in process duration for the
same studies, measured as difference among the 90% and 10% quantiles divided by the
median value. The shaded regions in both figures indicate the boundaries of the three
regimes: Cooling-limited (green), nucleation-limited (red), metastable (blue).

To this end, we simulated the freezing process at different scales, subject
to storage temperatures of −8°C to −40°C, as shown in Figure 8.8. Due to
the stochasticity of nucleation, the process duration varies among repetitive
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simulations, whereby Figure 8.8(a) shows the median duration, while Figure
8.8(b) illustrates the relative variability. Based on the model predictions, we
identified three distinct freezing regimes dependent on storage temperatures,
but independent of scale. Their boundaries are governed by the nucleation ki-
netics, as our discussion in Section 8.3.3 illustrates. Importantly, we recognize
that the emergence of these three regimes is a direct consequence of nucle-
ation itself and therefore scale-independent. The three regimes are defined as
follows:

1. A metastable regime ( −8°C to Teq
ℓ , blue), in which nucleation does not

take place in a reasonable timescale (weeks or shorter). The reason is
that the supercooling is not sufficient to overcome the energy barrier
required to form a primary ice nucleus. Freezing therefore has to be
carried out at lower temperatures.

2. A nucleation-limited regime (−8°C to −12°C, red), in which a highly
non-linear increase in nucleation times with increasing storage tempera-
ture is observed. The duration of the process is affected by the kinetics
of nucleation which are slow compared to the capacity of the system to
remove heat.

3. A cooling-limited regime (below −12°C, green), in which nucleation
for a single vial predominantly occurs during the initial cooling phase
from the initial temperature towards the storage temperature. Thus, the
regime is connected with short process times and low variability.

A decision on suitable process temperatures requires knowledge on these
regimes, and thus the nucleation kinetics of a formulation. This implies that
lab-scale work should be carried out with vials that are filled under realistic,
GMP conditions. To ensure short process duration, one may operate the
process in the cooling-limited regime at temperatures as low as practically
feasible. However, the choice of the storage temperature is not trivial and may
need to consider factors beyond process duration, such as freezer availability.
Additional constraints may be related to nucleation temperatures and solid-
ification times, as both quantities may be linked to stability and depend on
storage temperature, as discussed in Section 8.3.6.

Figure 8.8(b) indicates that the variability in process duration increases
with storage temperatures, especially in the nucleation-limited regime, and
decreases with scale. Such behavior results from the fact that the variability is
governed by the nucleation behavior of the last-nucleating vial. Its stochasticity
results only in small variations in nucleation time at low storage temperatures
(cf. Figure 8.5), and is overall less relevant at larger scales with overall longer
process durations.
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In addition to the choice of storage temperature, the model predicts the
effect of the packaging configuration on process duration. For example, Figure
8.8(a) shows that, because of the more favorable surface to volume ratio, the
freezing of a box is about one order of magnitude faster than that of a pallet.
Thus, for the same storage temperature faster processes can be achieved by
freezing a larger number of individual boxes in parallel.

8.3.5 Simplified model of pallet freezing

Practitioners typically desire guidelines and approximations that are easy
to implement into development procedures, motivating us to introduce a
simplified approach to estimate the process duration for pallet freezing, ∆tpt.
Based on Eqns. 8.16 and 8.17 in Section 8.3.3, we formulate the total heat
transferred during the freezing process, ∆Qpt:

∆Qpt
gen = nvmwλw (8.18)

∆Qpt
c = AptKc(Tsp − Text)∆tpt (8.19)

Since the generated heat ∆Qpt
gen equals the removed heat ∆Qpt

c , the process
duration reads

∆tpt =
nvmwλw

AptKc(Tsp − Text)
(8.20)

Given that Tsp is tied to the nucleation behavior of the formulation, it may be
determined either by simulations using known nucleation kinetics or inferred
directly from thermal evolution profiles of engineering runs. Kc, the lumped
system-scale heat transfer coefficient, remains the only hitherto unknown
quantity. It may be computed from the remaining quantities, either from
experiments or simulations. We computed Kc for the simulated pallet (Tsp
assumed to be −4.5°C for all Text) at storage temperatures of −40°C (Kc
= 0.93 Wm−2K−1) and −8°C (Kc = 0.88 Wm−2K−1): a nearly temperature-
independent value of Kc implies that the simplified model may be useful to
estimate the process duration at a broad range of temperatures. In practice,
one may conduct one engineering run or pallet simulation at one storage
temperature to obtain the value of Kc, and use this value to predict the process
duration at different storage temperatures.

Process duration is governed not only by the storage temperature, but
also by the nucleation kinetics. We may apply the model to compute the
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relative change in process duration with nucleation kinetics and with storage
temperature directly, i.e. without estimating Kc, via

∆t(a)pt

∆t(b)pt

=
T(b)

sp − T(b)
ext

T(a)
sp − T(a)

ext

(8.21)

for two arbitrary systems ”(a)” and ”(b)” with the corresponding temperatures.
Figure 8.7(b) in Section 8.3.3 shows a 25% increase in process duration for the
slower set of nucleation kinetics compared to the ”fast” one for Text = −40°C.
For the same system, Eqn. 8.21 predicted a similar increase of 31%.

We further tested the simplified model with the experimental data presented
in section 8.3.1. We use the data from run 4 (duration of about 40h at −40°C
and Tsp = −15°C) to predict the duration at higher storage temperature. Eqn.
8.21 predicts a five-fold increase in process duration when increasing the
storage temperature to −20°C, in agreement with the experimentally observed
trend (duration of about 200h at −20°C). It also correctly predicts incomplete
freezing for run 3 at −25°C. We thus confirm that the simplified model may
be a useful practical tool to predict the effect of both storage temperature and
nucleation kinetics on process duration.

8.3.6 Variability and control of freezing

The control of the freezing outcome and the characterization of its variability
represents a major aspect of process design. For a system of pallet size, the
effect of vial position within the batch has to be studied in detail, since we
observed differences in thermal evolution among core and side vials in both
simulations and experiments (cf. Figures 8.3 and 8.4). To achieve a system-
scale understanding of the process, we report the temperature of all vials
within vertical layers of the pallet at a few points in time in the form of
heatmap snapshots.

Figure 8.9 shows the temperature distribution for the pallet at three points
in time, selected based on the fraction of nucleated vials, for a storage tem-
perature of −40°C; Figures 8.19 and 8.20 in the supplementary information
showcase the process at storage temperatures of −20°C and −8°C. We notice
both a layer-wise progression of freezing at low storage temperatures and a
stationary temperature for vials in the core, whereby the spatial extent of this
stationary region shrinks with time. Furthermore, we identify individual vials
at higher temperatures than their neighbors: they correspond to vials that are
solidifying at the corresponding point in time.

The pronounced position-dependency of freezing necessitates a more de-
tailed investigation based on the characteristic quantities, i.e. the nucleation
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time, the nucleation temperature, and the solidification time. To do so, we
define position-dependent populations of vials with different distance to the
side of the pallet. The simulated pallet comprises 18 vertical layers, which
may be categorized into nine populations based on their location along the
vertical axis. The outermost population, referred to as layer 1, comprises
vials in the top-most and bottom-most layers, which exhibit the same thermal
environment. To exclude edge and corner effects (which are studied in detail
in Section 8.5.5 in the supplementary information), only the 36 vials in the
center of each layer are included in the populations. The relevant subset of
vials is contained in a rectangle, as visualized for layers 1, 5 and 9 in the left
column of Figure 8.9.
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Figure 8.9 Thermal evolution for all vials in three of the 18 vertical layers at three
selected points in time, identified based on the fraction of nucleated vials in the pallet,
for a storage temperature of −40°C. Layer 1 indicates the top layer of the pallet, which
is in direct contact with the exterior. Layer 9 denotes the central, innermost layer in
the core of the pallet. Each tile corresponds to a vial. The black rectangle in the left
column indicates the position of the vials that are included into the populations shown
in Figure 8.10.

Figure 8.10(a) illustrates the distribution of nucleation times for the three
studied layers. As anticipated, vials nucleated earlier, the closer they were
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to the exterior. For high storage temperatures, the nucleation times for the
individual positions strongly overlap with each other, indicating that at any
given time vials in several layers are nucleating and solidifying. Under
colder conditions, less overlap was observed, indicating a layer-wise freezing
process from the outside to the core. Independent of storage temperature,
the innermost layer 9 exhibited the broadest distribution of nucleation times.
We attribute this behavior to the formation of the stationary phase, which
comprises most of the process duration, and during which nucleation events
may occur.

Figure 8.10 Dependency of the three characteristic quantities on storage temperature.
(a) Nucleation time, shown for vials in layers 1 (pink), 5 (grey) and 9 (green). (b)
Solidification time, shown for vials in layers 1 and 9. (c) Nucleation temperatures,
shown for vials in layers 1 and 9. The solid lines indicate the median value of the
characteristic quantity, while the dotted lines denote the 10% and 90% quantiles of the
distribution. The shaded regions in the background correspond to the freezing regimes
discussed in Section 8.3.4.

Figure 8.10(b) shows the distribution of solidification times. The median
solidification time increased by about 75% at all positions when increasing
Text from −40°C to −8°C. This is in contrast to the solidification behavior of
the single vial, where the solidification time scales with the difference between
storage temperature and equilibrium freezing temperature, as discussed in
Section 8.5.3. For the pallet, we attribute the reduced dependency of solidifi-
cation times on storage temperature in comparison to nucleation times to the
thermal interaction with the neighboring vials, which governs the local heat
transfer.
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Independent of storage temperature, vials solidify slower with increasing
distance from the exterior. For example, the median solidification times of the
innermost layer 9 were about 40% higher than those of layer 1. In addition
to variability due to a vial’s position, we observe variability among vials in
the same position. Within layer 9, vials at the 10% quantile of the distribution
exhibit 40% (at Text = −8°C) to 60% (at Text = −40°C ) shorter solidification
times than those at the 90% quantile. Furthermore, the variability within
layer 9 is more pronounced than the one within layer 1. A more detailed
characterization of the position-dependent freezing behavior is provided in
Section 8.5.6, which revealed that the large variability within layer 9 stems
from the more pronounced variability in nucleation times and the connected
change in thermal environment over time. Vials that nucleated later in time,
were found to exhibit shorter solidification times, since most of their neighbors
were already completely frozen; the heat of ice formation is absorbed faster
by the neighborhood, thus accelerating solidification.

Finally, we discuss the distributions of nucleation temperatures, illustrated
in Figure 8.10(c). The median nucleation temperatures increased with in-
creasing storage temperatures. However, the extent of this effect is limited
compared to the other two quantities, since the range of feasible nucleation
temperatures is governed by the nucleation kinetics. On the one hand, nucle-
ation cannot occur at too high temperatures, because of the low nucleation
rate. On the other hand, very low nucleation temperatures are unlikely to
ever be reached. With respect to position-dependency, the same trends are
observed as for the solidification times, and for the same reasons.

To summarize, we find that pallet freezing naturally results in strong batch
heterogeneity in all three characteristic quantities due to spatial differences in
heat transfer, thermal interaction among vials and the inherent stochasticity of
ice nucleation. We observed a position-dependency and intra-layer variability
among vials independent of storage temperature in both the thermal evolution
profiles, and in nucleation and solidification behavior. Furthermore, only
limited control over the median values and the variability of solidification
times and of nucleation temperatures can be exerted by the choice of the
storage temperature, in comparison to nucleation times. Thus, in case a
drug product requires a tight control over solidification times or nucleation
temperatures, additional process variables have to be investigated, such as
different packaging configurations and scenarios involving faster heat transfer.
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8.4 concluding remarks

We have presented a modeling framework for the simulation of freezing
processes involving an arbitrary number of densely packed vials up to pallet
scale. Instantiations of this model qualitatively predict all experimental trends
observed in the engineering run data of the Janssen COVID-19 vaccine. The
findings imply that stochastic ice nucleation is an essential aspect of the
freezing process and that a mechanistic description of it is required in order
to fully understand, and eventually optimize, the process.

We applied the model to characterize the observed trends in detail, reveal-
ing that thermal spikes occur due to the release of latent heat induced by
nucleation events both in the monitored vials and in their neighborhood. The
emergence of a stationary phase was explained by the interplay between the heat
generated by ice formation, governed by nucleation, and the heat removed via
external cooling. The model also confirmed the position-dependency of the
thermal evolution, where vials freeze in average later the closer they are to
the core of the pallet. In addition, it revealed a yet unknown, but potentially
relevant batch heterogeneity among vials in equivalent positions that could
not be inferred from the thermal monitoring; this variability results from the
interplay of stochastic nucleation and thermal interaction among vials. Since
it may affect the stability of the frozen drug product, it should be considered
in drug development and in freezing process design: the model provides
information on the variability in the nucleation and solidification behavior
among vials, and thus may inform the stability analysis to ensure that quality
requirements are met for the entire range of predicted values.

The main application for the presented model lies in the quantification of
the process duration for a wide range of freezing settings in industry. We
revealed that freezing in vials may occur in three regimes, the boundaries of
which depend on the nucleation kinetics of the formulation. Knowledge of the
kinetics thus is required to predict the process duration and to choose suitable
packaging configurations and storage temperatures. Given that typical freezers
in industry operate between −20°C and −40°C, while nucleation temperatures
of lower than −20°C are commonly reported in literature, stochastic ice
nucleation indeed governs the process behavior under practically relevant
process conditions.

Since process design currently is carried out experimentally without con-
sidering ice nucleation, this work aims to provide professionals in industry
and academia with the means to conduct a more rational, model-informed
process design. For this reason, we provide open access to the model and the
source files in the form of a python package.[73] To provide practitioners with a
simple rule-of-thumb, we further developed a simplified version of the model,
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for which all model parameters can be inferred from a single engineering run
at low temperature.

Finally, we understand this work as starting point towards rational process
design of pallet freezing. The use of the model as digital twin in a quantitative
manner is planned for the future, paving the path towards fully optimized
processes with respect to process duration and batch heterogeneity.

8.5 supplementary information

8.5.1 Pallet packaging geometries

Figure 8.11 Packaging configuration A-1, as used in engineering runs 1-3.

Figure 8.12 Packaging configuration B, as used in engineering run 5.
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8.5.2 List of simulation parameters

Quantity Abbreviation Unit Value

Vial volume V m3
10

−6

Vial surface area A m2
10

−4

Mass of formulation mv kg 0.001

Solute mass fraction w0 % 5

Heat capacity water cp,w J K−1kg−1
4187

Heat capacity ice cp,i J K−1kg−1
2108

Heat capacity sucrose cp,s J K−1kg−1
1240

Molar mass sucrose Ms kg mol−1
0.3423

Cryoscopic constant water kf K kg mol−1
1.853

Heat of fusion water λw J kg−1
333550

Melting point water Teq
0 °C 0

Initial vial temperature T0 °C 20

Nucleation parameter 1 (fast) b - 12

Nucleation parameter 2 (fast) kb m−3s−1K−b
10

−9

Nucleation parameter 1 (slow) b - 23

Nucleation parameter 2 (slow) kb m−3s−1K−b
10

−26

Batch size pallet M × N × P - 40 × 36 × 18

Batch size box M × N × P - 20 × 12 × 3

Time step dt s 5

Vial to vial HT coefficient kint
W

m2K 5-20

Vial to exterior HT coefficient kext
W

m2K 10

Table 8.2 List of model parameters that were used in the simulations presented in this work.

8.5.3 Supplementary simulations: isolated vials

The stochasticity in the time of nucleation results in variability in all three
characteristic quantities, as shown in Figure 8.13 that presents the simulated
distributions for four values of the storage temperature, i.e., −8°C, −10°C,
−20°C and −40°C. For all three quantities, the distributions were found to be
highly sensitive with respect to the storage temperature. The distributions
of nucleation temperatures (panel (b)) generally shift towards lower values
for lower storage temperatures. Between −20°C and −40°C, only a minor
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shift in nucleation temperatures is observed, while the distribution appears
highly sensitive to the storage temperature in the range of −8°C and −10°C.
The reason for this lies in the temperature-dependency of the nucleation
rate. Nucleation events become rarer with increasing vial temperature, which
explains the strongly increasing nucleation times in Figure 8.13 (a). Since
the temperature-dependency of nucleation is highly non-linear, nearly no
nucleation events are observed above a certain temperature, while faster
rates are observed for lower storage temperatures. Thus, for low storage
temperatures, most nucleation events take place early in the process during
the initial cooling towards the storage temperature. For −10°C and −8°C,
however, most nucleation events occur after vials have reached the vicinity
of the storage temperature, thus explaining why the distribution in Figure
8.13 (b) narrows down in these cases. Such behavior may be inferred from
Figure 8.5 (b-c) as well, that clearly shows that for a storage temperature of
−10°C some vials nucleate after reaching the storage temperature, while all
vials nucleate during the initial cooling in the case of −20°C.

Given that freezing occurs at constant storage temperature, the stochasticity
of nucleation only leads to a variability in the initial mass of ice formed upon
nucleation; thus only little variability in solidification times is observed for
single vials, as implied by Figure 8.13 (c). This initial amount only accounts
for about 10% to 20% of the total ice, as can be seen e.g. in Figure 8.1(b) in
the main body of this work. The remaining water is frozen after nucleation
in a deterministic manner, at a rate that is governed solely by the storage
temperature. Solidification times, therefore, decrease nearly inversely propor-
tional with decreasing the storage temperature with respect to the equilibrium
freezing temperature.
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Figure 8.13 Distributions of (a) nucleation times, of (b) nucleation temperatures, and
of (c) solidification times, for four storage temperatures each. 80,000 repetitions of
the process were simulated per storage temperature. The scale of the nucleation time
distribution is logarithmic to account for the strong effect of the external temperature
on this quantity.
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8.5.4 Supplementary simulations: interacting vials

When moving from the single vial towards larger systems, thermal in-
teraction among vials becomes a relevant mechanism of heat transfer. To
understand how the freezing behavior is affected by such interaction, we
have conducted a sensitivity analysis considering a system of 2 × 2 × 2 vials
and various values of the thermal interaction coefficient kint while keeping
kext = 10 Wm−2K−1. We have chosen a batch geometry of 2 × 2 × 2 vials,
because all eight vials are in equivalent position, with three sides facing other
vials and the remaining three interacting with the exterior. This enables the
study of thermal interaction without the effect of position-dependency, which
will further enhance batch heterogeneity in larger systems. We investigate a
total of six settings, namely two storage temperatures of −10°C (nucleation-
limited regime) and of −20°C (cooling-limited regime) with three values of
kint each (5Wm−2K−1, 10 Wm−2K−1, 20 Wm−2K−1).
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Figure 8.14 Characteristic distributions for the system with 2 × 2 × 2 vials for external
temperatures of −10°C (top) and −20°C (bottom) for varying values of the interaction
coefficient kint.

Figure 8.14 illustrates the various characteristic distributions for all studied
cases. Thermal interaction leads to a decrease in solidification times due to the
heat exchange with neighboring vials: Vials solidify faster, the stronger they
thermally interact with their neighbors. On the other hand, the variability
in nucleation times becomes more pronounced: while the time of the first
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nucleation event is not affected by thermal interaction, subsequent nucleation
events are increasingly delayed in time with increasing interaction. This is
especially true in the nucleation-limited regime, i.e. at −10°C: Here, the heat
received from the early nucleating vials may heat up the neighboring vials
towards the metastable regime, basically preventing nucleation events until
complete solidification of the early nucleating vials. Nucleation temperatures,
finally are affected to a smaller extent than the two other quantities, with values
being slightly increased compared to the single vial system. This increase
again is a consequence of the vials spending more time in the metastable,
supercooled state due to heat received from their neighbors.

8.5.5 Supplementary simulations: box of vials

Within this section, we present the model predictions for the freezing of a
box comprising 20 × 12 × 3 vials. The additional complexity compared to the
2 × 2 × 2 system lies in the position-dependency of freezing.
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Figure 8.15 Thermal evolution for all vials at three selected points in time, selected
based on the fraction of nucleated vials, for a storage temperature of −20°C. Each tile
denotes a vial.
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For a system of this size, it is not helpful to plot the thermal evolution
of all vials when aiming at understanding the process. Instead, we prefer
to show the temperature of all vials at a few points in time in the form of
heatmap snapshots to achieve a system-scale understanding of the process.
Figure 8.15 illustrates such evolution for three points in time and a storage
temperature of −20°C. Figure 8.15 shows that corner and edge vials cool
down and nucleate faster than their inner counterparts; bright spots indicate
vials that are solidifying at the specific time shown in the figure. Vials in
the central layer nucleate later than those in the top and bottom layers. It is
noteworthy that with this type of representation, thermal interaction can be
studied in a direct manner; one indeed observes that some vials are hot spots
in the system and heat up their neighbors.

A more comprehensive analysis of the position-dependency in freezing
is carried out by generating distributions of the characteristic quantities for
position-specific populations of vials. Figure 8.16 shows the distributions of
nucleation times, nucleation temperatures, and of solidification times for four
populations of vials at a storage temperature of −20°C. The populations are
defined based on the number of sides that face the exterior. Corner vials have
three such sides, edge vials have two, side vials have one, and core vials have
none. For this study at −20°C, we observe a strong position-dependency for
all three distributions. On average, vials nucleate later the less contact they
have with the environment, in line with the observations made for the thermal
evolution. Solidification was found to be faster the closer a vial was to the
environment, although side vials (one side in contact with exterior) and core
vials (no contact with exterior) experienced similar solidification times.
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Figure 8.16 Distributions of the three characteristic quantities for the freezing process
of the box (20 × 12 × 3 vials) at an external temperature of −20°C. The color-coding
indicates the position of the vials in the box, ranging from corner vials in pink to core
vials in green.
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Figure 8.16 also demonstrates the limitations of visualizing the distributions
as probability density functions; since the four populations contain different
numbers of vials, the level of noise differs as well. The effect is particularly
pronounced for corner vials, of which only eight exist. We therefore opt for a
different visualization, i.e. the cumulative distribution, when assessing the
impact of the external temperature on the freezing behavior.
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Figure 8.17 Cumulative distributions of nucleation times and of solidification times.
The color coding indicates the storage temperature, the line style the population: Full
lines refer to corner vials, dashed lines to side vials and dash-dotted lines to core vials.
Edge vials were excluded for the sake of clarity; their behavior generally was found to
be between corner and side vials.

Figure 8.17 shows these cumulative distributions for the nucleation and
solidification times. As expected, both increase with increasing storage tem-
perature. For the nucleation times, this increase occurs over several orders of
magnitude and we also find that the broadness of the distributions increases
with temperature; for −8°C, the distributions span more than one order of
magnitude in time, while only little variability is observed at −40°C due to
the more pronounced cooling. At −40°C, freezing occurs sequentially from
the outside towards the core and the individual populations do not overlap;
this is a direct consequence of operating in the cooling-limited regime. On
the other hand, at −8°C, freezing takes place in the nucleation limited-regime,
and significant overlap between the populations is observed.

These findings for the temperature-dependency of the nucleation times can-
not be translated directly to the solidification times. While we again observe
an increase in time with increasing temperature, this increase appears to scale
linearly with the temperature difference between the equilibrium freezing
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temperature of the solution and the storage temperature. For example, the
median solidification time for corner vials was found to increase from 32.7
min at −40°C to 58.2 min at −20°C and 138.4 min at −8°C. With respect to
variability, no clear trend could be found for its dependency on temperature.
While the distributions for corner and edge vials appear narrow at all temper-
atures, significant variability for side and core vials was found independent of
temperature. We also note that while side and core vials solidify at similar
times at −20°C, side vials solidified faster at −8°C: at such high temperature
the capability of the neighboring vials to receive heat is limited. The opposite
was found for −40°C; here, core vials solidified faster than side vials and
they do so as a consequence of the enhanced position-dependency: At the
time, when the side vials solidify, the core vials are still at relatively high
temperature in the liquid state and unable to receive the heat of nucleation of
the side vials. However, when the core vials solidify, the remaining system
already is completely frozen and thus capable to receive heat, leading to faster
solidification.

8.5.6 Supplementary simulations: pallet of vials
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Figure 8.18 Characteristic distributions for the pallet with 40x36x18 vials for storage
temperatures of −8°C (top) and −40°C (bottom). The color indicates the layers in
vertical direction: the pallet comprises 18 layers in total, leading to 9 populations.
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Figure 8.19 Thermal evolution for all vials in three of the 18 layers at three selected
points in time for a storage temperature of −20°C. Layer 1 indicates the top layer of the
pallet, layer 9 the central, innermost layer. Each tile denotes a vial.
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Figure 8.20 Thermal evolution for all vials in three of the 18 layers at three selected
points in time for a storage temperature of −8°C.
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Freezing of the innermost vials

The exceptionally large variability observed within the innermost popula-
tion motivated a more detailed analysis. To do so, we analyze the tri-variate
distribution (green) and the three bi-variate distributions (grey) of the char-
acteristic quantities of freezing, as shown in Figure 8.21 for this population.
The tri- and bi-variate distributions shown enable an analysis of correlations
among the characteristic quantities. For each distribution, three iso-surfaces
for the probability density were drawn that denote the regions in the space
of nucleation and solidification properties that were increasingly frequently
observed for the freezing vials. The region limited by the largest iso-surface
each comprises a level of 3% compared to the maximum observed probability
density; the inner surfaces correspond to levels of 10% and 30%, thus denoting
the regions in which vials were most likely to nucleate and solidify.

Figure 8.21 Tri-variate distribution of the characteristic quantities of freezing for the
pallet with 40x36x18 vials for a storage temperature of −40°C. Only the innermost
population 9/10 is shown. The three marginal bi-variate distributions are shown in the
three planes of the plot.
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We may draw several conclusions from this analysis. The tri-variate distri-
bution exhibits a banana-like shape, corresponding to two regions in nucleation
time. For short nucleation times, few nucleation events occur, predominantly
at high nucleation temperatures and long solidification times. For larger nu-
cleation times, close to the completion of freezing, the frequency of nucleation
events increases. This is indicated by the position of the innermost iso-surface.
Here, we observe lower nucleation temperatures and shorter nucleation times.
This observation of two regimes is in line with the findings presented in Figure
8.4, where the thermal evolution for a core vial in the innermost layer was
shown; such core vial spends a long time in the supercooled state, before a
final cool-down at the end of the process. Vials nucleating during the station-
ary phase naturally exhibit long solidification times and a relatively narrow
distribution of nucleation temperatures around the value of the stationary
temperature. The faster solidification process later on stems from an accel-
eration in heat transfer at the end of the stationary phase, when nearly all
vials are already completely frozen. Since vials in the core may nucleate either
during the long, stationary phase, or during the cool-down in the end, we
observe an enhanced heterogeneity for the core part of the system.



9 MODEL ING THE FREEZ ING PROCESS
OF AQUEOUS SOLUT IONS
CONS IDER ING THERMAL GRAD IENTS
AND STOCHAST IC ICE NUCLEAT ION

Despite its importance to multiple scientific fields and industries, the freez-
ing process of aqueous solutions is not yet completely understood. In partic-
ular, the relationship between temperature gradients within a solution and
the occurrence of stochastic ice nucleation remains elusive. To address this
knowledge gap, we have derived a novel stochastic spatial freezing model
from first principles. The model predicts with quantitative accuracy how
temperature gradients affect the stochastic ice nucleation of sucrose solutions
in vials. This motivated a detailed study of the freezing-stage in freeze-drying.
In particular, the model enabled a mechanistic assessment of vacuum-induced
surface freezing, an emerging approach towards optimized freeze-drying pro-
cesses. Model predictions revealed both the stochastic nature of this freezing
method, and its performance limitations in case highly concentrated solutions
are frozen. To ensure that both researchers and practitioners benefit from
this modeling work, we provide open source access to it within our python
package ethz-snow.

9.1 introduction

Many biopharmaceuticals exhibit limited stability in the liquid state and
require a freezing treatment to ensure sufficiently long shelf life.[8,14,16,17] Bio-
pharmaceutical formulations comprising the active pharmaceutical ingredient
(API) and excipients are typically filled under sterile conditions into vials
that contain a single or a few doses of the drug product and then frozen or

The results presented in this chapter have been reported in: Deck, L.-T.; Košir, A.; Mazzotti, M.
Modeling the freezing process of aqueous solutions considering thermal gradients and stochastic ice
nucleation. Chem. Eng. J. 2024, 483, 148660. There are two major differences between this chapter
and the journal article. First, the article does not include the results on vacuum-induced surface
freezing (VISF) that are shown here. Second, for the sake of brevity, supplementary information
that accompanies the journal article and focuses on the numerical aspects of the model has been
excluded from this chapter.

215



216 modeling freezing with spatial resolution

freeze-dried in large batches.[41,170] Under these conditions, aqueous solutions
experience pronounced supercooling during freezing,[28,43,76] meaning that
they cool down in the liquid state significantly below the equilibrium freezing
temperature before the first ice crystals are formed.

Freezing comprises two phenomena, namely ice nucleation, which consists
of the random formation of ice crystals from the liquid, and solidification,
which is the formation of ice due to growth of these nuclei.[21,40,74] Ice nucle-
ation is an activated process and therefore it is stochastic.[22,27,66,76] Hence,
vials that contain the same product and are frozen under identical process con-
ditions may undergo nucleation at different times. Such variability is regarded
as one of the main challenges in the design of pharmaceutical freezing and
freeze-drying processes, since it may translate into variability in critical mate-
rial attributes of the final product.[20,28,41,75,170] Despite its relevance, stochastic
ice nucleation remains poorly understood in the context of pharmaceutical
freezing. While a large number of experimental studies acknowledge the
variability in nucleation time among vials within a batch,[28,43,170] the stochas-
ticity of ice nucleation traditionally has not been considered in models and
theoretical works in the context of pharmaceutical manufacturing,[19,20,28,212]

until very recently.[40,62,74]

To simulate the stochastic freezing process of an arbitrarily sized batch of
thermally interacting vials in a mechanistic manner, we have recently devel-
oped a model termed Stochastic Nucleation of Water (SNOW).[73,74,186] We have
applied the SNOW model to the freezing process of the Janssen COVID-19

vaccine, where the model correctly predicted all relevant experimental trends,
and where we could highlight the importance of an accurate description of
stochastic ice nucleation for process understanding, design, and optimiza-
tion.[75] In addition, we have developed a robust methodology to estimate the
kinetic parameters for ice nucleation from experimental data.[76]

To keep the computational costs of process-scale simulations reasonably
low, SNOW does not consider thermal gradients within individual vessels.[74]

Such simplification is accurate for freezing in vials with small fill volumes
and at sufficiently small cooling rates, as is the case in pallet freezing and in
shelf-ramped freezing.[74,75] Conversely, SNOW may be limited in describing
freezing processes where large thermal gradients occur, e.g., when freezing
in large containers,[32,39] or when applying very large cooling rates such
as in vacuum-induced surface freezing (VISF).[176,212,213] VISF is a technical
modification of the freezing stage in freeze-drying that aims at controlling
the nucleation behavior by rapidly cooling down the formulation through
surface evaporation.[20,176] While VISF has been shown to positively affect
product attributes compared to conventional freezing techniques, its design
and optimization remain challenging due to the large number of process
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parameters involved,[178,213,214] and ultimately due to the lack of a mechanistic
model.

To accurately model such process, the effects of thermal gradients on the
stochastic occurrence of nucleation have to be considered. No model available
in the literature is able to do so, which motivates us to develop this capabil-
ity by incorporating thermal gradients into the SNOW methodology. This
extended model is termed SNOWing (for SNOW - INternal Gradients) and
available to researchers and practitioners for free as part of the open-source
python package ethz-snow.[73,186]

This work is structured as follows: In Section 9.2 we derive the SNOWing
modeling framework and we discuss how to interpret the model predictions.
We assess the role of thermal gradients in detail in Section 9.3, where we also
compare model predictions with experimental data. Having confirmed the
predictive performance of the model, we study the freezing stage in freeze-
drying in Section 9.3. We consider both shelf-ramped freezing in Section 9.4.1
and vacuum-induced surface freezing in Section 9.4.2. Finally, we draw the
relevant conclusions in Section 9.5.

9.2 methods

In this section, we present the modeling framework for the simulation
of freezing processes in a single vial considering both thermal gradients
and stochastic ice nucleation. We provide in Section 9.2.1 the derivation for
the spatial description of freezing in a single vessel of arbitrary geometry.
The freezing processes studied in this work involve two-dimensional (2D)
cylindrical and one-dimensional (1D) slab geometries; the corresponding sets
of balance equations for these geometries, as well as the numerical solution
approach, are provided in the Supplementary Information of the associated
journal article.[79] Finally, we outline how to characterize freezing based on
model predictions in Section 9.2.2.

9.2.1 Modeling framework

Freezing comprises first a cooling phase, where the solution within the
vessel is in the liquid state, and second a solidification phase, during which
ice is formed. The transition between the two phases is initiated by a single
stochastic ice nucleation event. These phases are discussed individually in
the following sections. We start the derivation by introducing the relevant
assumptions.
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Model assumptions

The model describes the freezing process in a vessel that contains an aque-
ous solution of mass mv, which comprises water, mw, and solutes, ms; the
mass both of the water and of the solutes remains constant during freezing.
Water may be present either as liquid (with mass mℓ) or as ice (with mass
mi), whereby no ice is present at the beginning of the process. Physically,
growing ice crystals incorporate only little solute in their structure. During
solidification, the solute concentration in the remaining solution thus increases.
The solution co-exists with the ice crystals, forming a partially frozen state
consisting of two interwoven phases. The model describes this state as a
homogeneous phase: every point within the volume to be frozen is considered
to comprise ice, with mass fraction wi, and a solution comprising liquid water
with mass fraction wℓ and solute with mass fraction ws. No ice is present in
the beginning (wi = 0), and as soon as ice is formed, the mass fraction of ice
increases and that of liquid water decreases. Similar assumptions are common
in models that describe porous media.[40] The effective thermal properties for
such system are defined as

cp,eff = cp,sws + cp,ℓwℓ + cp,iwi (9.1)

keff = ksws + kℓwℓ + kiwi (9.2)

whereby cp,eff denotes the specific heat capacity and keff the thermal con-
ductivity. Both properties are assumed to depend on solution composition,
but not on temperature. The increase in solute concentration in the liquid
phase, due to the exclusion of solutes from the growing ice crystals, lowers
its equilibrium freezing temperature, Teq. The initial equilibrium freezing
temperature, i.e., when no ice is present yet, is termed Teq

ℓ . The depression of
the freezing point of a solvent due to the presence of solutes is described in
this work based on the law by Blagden:[98]

Teq = Tm − kf
Ms

ws

wℓ
(9.3)

whereby Tm denotes the freezing temperature of pure water and kf its
cryoscopic constant. The molar mass of the solute present with mass fraction
ws is Ms. Finally, the following assumptions are made with respect to mass
and heat transfer, and to the kinetics of the process:

1. The model describes only the volume of the solution to be frozen; the
surrounding vessel is not explicitly modeled. Its contribution to heat
transfer is accounted for by defining appropriate boundary conditions
(see Section 9.2.1).
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2. The density change associated with the transition from liquid water to
solid ice is considered negligible.

3. The simulated volume is stagnant; internal heat transfer is considered
to occur through thermal conduction only.

4. The mass of water remains constant during freezing: in case of heat
transfer through evaporation, we neglect the associated mass loss, after
verifying that this is indeed negligible.

5. Crystallization of the solute during freezing is neglected, the solute
remains in solution during the entire process.

These assumptions were made in line with the relevant literature on modeling
of freezing in small volumes such as vials.[19,40,171,212]

Cooling phase

During the cooling phase the system consists only of the solution (liquid
water and solute). Introducing the thermal diffusivity αeff = keff/(cp,effρ),
which depends on the specific heat capacity cp,eff, on the heat conductivity keff,
and on the density ρ of the solution, the enthalpy balance for the evolution of
the system during the cooling phase can be written:

∂T
∂t

= αeff∇2T (9.4)

The enthalpy balance can be solved for given sets of initial and boundary
conditions. In this work, we impose as initial condition that all positions x
belonging to the simulated volume V are at a given initial temperature, i.e.,
T(x, t = 0) = T0. The definition of the boundary conditions is subject to the
applied technical variation of the freezing process. Boundary conditions for a
number of industrially relevant freezing processes are presented in Section
9.2.1.

Stochastic ice nucleation

The temperature in the vessel decreases due to cooling, eventually approach-
ing the equilibrium freezing temperature of the solution Teq

ℓ . Upon further
cooling, the solution enters a liquid, super-cooled state, in which nucleation
may occur. Nucleation is described as an inhomogeneous Poisson process, fol-
lowing a large body of literature,[22,25,40,66] whereby a single nucleation event
occurs at the time of nucleation tnuc.[27,74,76] We define the time-dependent
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domain of nucleation Dn(t) ⊆ V ⊂ R3 as the super-cooled region of the
volume of interest:

Dn(t) =


{

x ∈ V|T(x, t) < Teq
ℓ

}
; t ≤ tnuc

∅ ; t > tnuc
(9.5)

The literature widely uses the terms local supercooling when nucleation occurs
at a time where only parts of the volume are supercooled (i.e., Dn(tnuc) ⊂ V),
and global supercooling when the entire volume is supercooled (i.e., Dn(tnuc) =
V).[43] The model is capable of simulating both cases. To quantify the occur-
rence of nucleation events, we define the time-dependent nucleation frequency
Kv(t) that represents the expected number of nucleation events per unit time
in the domain of nucleation Dn(t):

Kv(t) =
∫

Dn(t)
J(x, t) d3x =

∫
Dn(t)

kb

(
Teq
ℓ − T(x, t)

)b
d3x (9.6)

whereby J(x, t) denotes the rate of nucleation per unit volume at an arbitrary
position x within the domain of nucleation Dn. J is expressed as a function
of the supercooling, which is the difference between the equilibrium freezing
temperature of the solution and the actual temperature at the relevant posi-
tion.[40,62,74,76,88] The parameters b and kb may be obtained experimentally
following the procedure that was developed earlier;[76] they are considered
temperature-independent, but may depend on manufacturing conditions such
as the concentration of particulate impurities. By defining the nucleation rate
in terms of supercooling, effects of solution composition are inherently ac-
counted for: more concentrated solutions exhibit a lower equilibrium freezing
temperature and hence nucleate at lower temperatures than less concentrated
ones. This quantitatively matches experimental findings.[79,88] In particular,
we recently demonstrated that a single set of kinetic parameters accurately
describes nucleation in aqueous solutions of ten different compositions con-
taining sucrose, trehalose, and sodium chloride at different concentration
levels.

It is worth noting that significant differences in the nucleation kinetics
among vials that contained solutions of identical composition were observed
experimentally.[76,79,159] This was attributed to the heterogeneous nature of
nucleation; i.e., ice nucleation is rate-controlled by the availability of impurities
such as dust particles, and their number and activity may vary among vials.
To this end, a vial-dependency of the pre-factor kb has been introduced: for
a specific vial v, the vial-specific pre-factor kb,v is defined as − log10(kb,v) =
a + ξvc. Here, a and c are two kinetic parameters, while ξv is a number
randomly drawn from the standard normal distribution. This vial-dependent
approach was shown to provide both a closer fit to experimental data, and to
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exhibit a superior predictive performance compared to the vial-independent
approach,[76,79] which is why we use it in this work as well.

Having discussed how to compute the nucleation frequency Kv(t), we note
that integrating it over the duration of the cooling phase yields the expected
number of nuclei formed, called E(Nv)(t):

E(Nv)(t) =
∫ t

0
Kv(t′) dt′ (9.7)

The cumulative density function (CDF) Fnt(tnuc) for the probability that nu-
cleation occurred at or before time tnuc is defined as[66,76]

Fnt(tnuc) = 1 − exp
{
− E(Nv)(tnuc)

}
(9.8)

Accordingly, the probability density function (PDF) f (tnuc) is

f (tnuc) =
dFnt

dtnuc = Kv(tnuc) exp
{
−
∫ tnuc

0
Kv(t′)dt′

}
. (9.9)

In addition to the density functions above, it is of interest to identify the time
of nucleation in individual realizations of the freezing process. We do so
by drawing a randomly generated number from the uniform distribution in
[0,1]. This number is inserted for Fnt in Eq. 9.8, hence obtaining an implicit
expression for the nucleation time..[22,76,215]

Next, we consider how the nucleation event initiates the transition from the
cooling phase to the solidification phase. The chosen modeling approach im-
plies that a single nucleation event triggers the transition to the solidification
phase in the entire volume of interest, in line with experimental observa-
tions.[20,76] The literature reports that ice grows from a single point in space,
called the origin of freezing, which constitutes the position of the nucleation
event. In diluted, super-cooled solutions, the growth rate of ice crystals is
in the order of centimetres per second.[69] Hence, a single nucleus initiates
ice growth throughout the super-cooled volume and depletes the supercool-
ing in a time span considerably shorter than the cooling and solidification
phases. Accordingly, we define the time-dependent domain of solidification
Ds(t) ⊂ V:

Ds(t) =


∅ ; t < tnuc

Dn(tnuc) ; t = tnuc

{x|wi(x, t) > 0} ∪
{

x|wi(x, t) = 0 ∧ T(x, t) < Teq
ℓ

}
; t > tnuc

(9.10)
The domain is empty before nucleation occurred and it equals the domain
of nucleation at the time of nucleation. In case of local supercooling (i.e.,
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Dn(tnuc) ⊂ V), some positions are not supercooled at the time of nucleation;
they will continue to cool down until they eventually supercool (at a time
termed ts0), and then start to solidify as well.

Solidification phase

During solidification, both temperature and ice mass fraction depend on
time and position, and are unknown. The enthalpy balance for solidification
accounts both for thermal conduction and for the release of latent heat λw:

cp,effρ
∂T
∂t

= ∇ · (keff∇T) + λwρ
∂wi
∂t

(9.11)

As discussed in Section 9.2.1, ice crystal growth in diluted solutions is a rapid
process; therefore it is rate-limited by the heat transfer with the surroundings,
and the supercooling is practically depleted during solidification, i.e., Teq −
T = 0 within Ds. Since Teq is a function of the ice mass fraction, Equation
9.11 forms with the expression for the freezing point depression (Equation
9.3) a system of two equations with two unknowns. When combining the two
equations and solving for the temperature, we obtain:

cp,effρ
∂T
∂t

(
1 +

β

(T − Tm)2

)
= ∇ · (keff∇T) (9.12)

whereby we introduce the term β(x, t):

β(x, t) =

{
λwkfws
Mscp,eff

; x ∈ Ds(t)

0 ; otherwise
(9.13)

The quantity β can be understood as an apparent heat capacity term that
describes the liquid-to-solid phase transition in the domain of solidification.
Conversely, in the part of the vial that does not solidify (yet), it assumes a
value of zero. In this way, the model is capable of simulating solidification in
a system that experiences local supercooling at the time of nucleation.

Initial and boundary conditions are required to solve the enthalpy balance.
Boundary conditions are discussed in detail in the next Section 9.2.1, whereas
we consider the initial conditions here. Solidification at a position x starts
when this position enters the domain of solidification at time ts0(x); this time
equals the nucleation time tnuc for those positions that are supercooled at
nucleation (see Equation 9.10). At ts0, the enthalpy associated with the rise in
temperature from the value Ts0 to the equilibrium value Teq corresponds to
the enthalpy released by the formation of ice:

λwwi(x, t) =
(

Teq(x, t)− Ts0(x)
)

cp,eff for t = ts0(x) (9.14)
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Consequently the set of initial conditions Teq(x, t), wi(x, t) at time ts0 is ob-
tained by solving Equation 9.14 together with the expression for the freezing-
point depression (Equation 9.3).

Technical variations of the freezing process

Various types of freezing processes find widespread use in the manufacture
of bio-pharmaceuticals,[14,16] and beyond. One may distinguish between the
freezing of large volumes for the purpose of storage and transport, and the
freezing in vials. Freezing in vials is relevant first as standalone process for
drug products that are stored in the frozen state; this is for example the case
for most commercially available COVID-19 vaccines where large numbers of
vials are frozen in pallet configurations.[75] Second, freezing in vials is the
first step in freeze-drying, which is the most common process to stabilize
biopharmaceuticals.[20,41,171]

Knowledge of the type of freezing process is essential for process modeling,
since the boundary conditions have to account for the relevant process-specific
types of heat transfer. In this work, we study three common freezing processes,
which are described below, and which are also illustrated in Table 9.1. The
table provides the equations that define the relevant boundary conditions.

Jacket-ramped freezing (JRF): In this process, the temperature in the vials
is controlled by a jacket, which cools the vials at both the sides and the bottom.
Heat transfer at the bottom occurs directly with the jacket, while the one at
the sides is slowed down due to a small air gap between vial and jacket. The
top of the vials is insulated. This process has been used in an earlier work to
generate large sets of experimental nucleation temperature data,[76] which are
compared with the predictions of the model developed here.

Shelf-ramped freezing (SRF): This is the predominant type of freezing
used in freeze-drying, where vials are placed on a shelf with time-dependent
temperature Tsh(t).[41,43,170] The shelf is in contact with the bottom of the
vial, which facilitates fast heat transfer. Furthermore, heat transfer may occur
through both the top and the sides of the vial, either by means of natural
convection due to the surrounding gas at temperature Tg(t), or by means of
thermal radiation.

Vacuum-induced surface freezing (VISF): This is a modification of shelf-
ramped freezing, where ice nucleation is induced by rapid evaporative cooling
at low pressure.[176,178] First, vials are pre-cooled on a shelf to a set temperature
close to 0°C; then, vacuum is applied, hence lowering the temperature at the
top surface of the liquid. Heat transfer during vacuum differs from SRF, as
there is an additional heat flux due to evaporative cooling at the top surface
of the vial.[212,216,217]
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Jacket-ramped freezing (JRF): Section 9.3
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Shelf-ramped freezing (SRF): Section 9.4.1
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Vacuum-induced surface freezing (VISF): Section 9.4.2
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Table 9.1 The table visualizes the three technical variations of freezing considered in this work along
with the relevant boundary conditions.

We limit this work to the aforementioned three processes for the sake of
brevity; the modeling framework, however, can be applied to any arbitrary
freezing process that relies on boundary conditions involving conduction,
convection, radiation or evaporation.
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Numerical approach

The three freezing processes studied in this work (see Section 9.2.1) involve
radial-symmetric 2D cylindrical and 1D slab geometries; the corresponding
sets of balance equations for these geometries, as well as the numerical
approach to the solution, are provided in the Supplementary Information
of the associated journal article.[79] In these sections, an overview of the
numerical methods, which are used to solve the model equation, is provided,
along with a brief discussion of their features, such as stability, accuracy and
convergence.

Two methods have been considered, implemented, and tested for the nu-
merical solution, following the literature:[218–222] the finite difference method
(FDM) and the finite volume method (FVM). The model predictions obtained
with the two methods quantitatively agreed with each other, hence verifying
their correct implementation. In the following, we show the results obtained
through the finite difference method only.

We provide an open source implementation of the model in the form of a
python package published on pypi under the MIT license.[186] The model is
part of the package Stochastic Nucleation of Water,[73] which in its first version
comprised the two process-scale models for the freezing process of a large
number of vials that were presented in earlier works.[74,75] All versions of the
python package starting from v2.0.0 contain the spatial freezing model that
has been developed in this work. Future extensions of the freezing model will
be integrated into this package as well.

9.2.2 Characterizing the freezing process

The model presented in this work enables the fully stochastic simulation
of a freezing process comprising cooling, ice nucleation, and solidification.
Hence, it may be used to characterize a number of essential aspects of freezing,
such as batch heterogeneity and spatial heterogeneity.

Batch heterogeneity denotes the variability in product attributes among
vials frozen within the same batch, or within different batches. This variability
is attributed both to the stochasticity of ice nucleation, and to the variability
in heat transfer among positions of the vials in the batch.[28,43,84,199] Recently,
we showed that thermal interaction among vials acts as a third mechanism of
batch heterogeneity in freezing by enhancing the first two.[74,75]

The model can be used to characterize batch heterogeneity by carrying out a
large number of stochastic simulations, hence capturing the variability in time
and temperature of the nucleation event, as well as its effect on solidification.
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We define the probability density functions fnt(t) for the nucleation time tnuc,
ffr(t) for the time of complete freezing tfr, and fsol(t) for the solidification time
tsol. In line with our earlier works,[74,75] freezing is considered complete when
90% of the total water in the vessel has solidified, i.e., when mi(tfr)/mw = 0.9;
however, we note that the endpoint of freezing may be defined using a
different threshold. The solidification time tsol is defined as the time elapsed
between nucleation and complete freezing. By definition, fnt(t)dt provides the
fraction of nucleation events that take place between t and t + dt; ffr(t)dt the
fraction of vials that freezes completely between tfr and tfr +dt; fsol(t)dt is the
fraction of freezing processes with solidification times between t and t + dt.
The capital letter F with appropriate subscript denotes the corresponding
cumulative distribution.

This methodology closely resembles the one that we introduced in the earlier,
process-scale freezing model SNOW.[74,75] The difference is that SNOW was
developed to simulate the freezing process of a batch of vials that thermally
interact with each other. The model presented here (called SNOWing), is not
tailored towards process-scale simulations, but considers individual vessels. In
turn, SNOWing provides spatial information of freezing, which goes beyond
the scope of SNOW. The two models provide complementary information and
can be applied together to achieve a comprehensive, multi-scale understanding
of freezing.

Spatial heterogeneity is directly observed in the evolution profiles both of
temperature and of ice mass fraction. Of special interest is the temperature
profile at the time of nucleation T(tnuc); due to temperature gradients, differ-
ent positions in the vessel exhibit different temperatures at this point in time.
The process-scale model SNOW, however, provides only a single value for
the nucleation temperature, termed Tnuc

0D . To compare the predictions of the
two models, we define the kinetic mean temperature T̄nuc

kin that represents the
temperature at which a volume in the absence of thermal gradients exhibits
the same nucleation frequency as the one with thermal gradients:

T̄nuc
kin =

1
Kv(tnuc)

∫
Dn(tnuc)

T(x, tnuc)J(x, tnuc) d3x (9.15)

If the difference between Tnuc
0D and T̄nuc

kin is sufficiently small, the effect of
thermal gradients on nucleation may be neglected and the process-scale
freezing model may be considered accurate. We carry out such comparison in
Section 9.4.1 for shelf-ramped freezing.

As reference system for all simulations, a vial containing 1 mL of 20 wt%
aqueous sucrose solution is considered; the freezing in this system has been
studied previously.[76] The kinetic parameters for stochastic ice nucleation have
been estimated for this solution, thus ensuring that the simulations presented
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here are physically meaningful. A list of all simulation parameters is provided
in the Supplementary Information of the associated journal article.[79]

9.3 the role of thermal gradients

In this section, we study the role of thermal gradients during freezing and
we assess the capability of the presented model to describe them. We simulate
a cylindrical vessel with a fill height of 1.38 cm and a radius of 0.48 cm (fill
volume of 1 mL, Figure 9.1) and a scaled-up cylindrical vessel with a fill height
of 13.8 cm and a radius of 4.8 cm (fill volume of 1 L, Figure 9.2). We compare
model predictions with a large set of experimental freezing data recently
reported.[76] The data comprises thousands of freezing experiments in vials
containing 1 mL of 20 wt% aqueous sucrose solution. The heat transfer of the
vials is well-controlled; they are surrounded by a jacket that cools them both
from the sides and from the bottom (see Section 9.2.1).[76]

In a first step, we confirmed that the predicted thermal evolution profiles
from this work closely resemble the experimental ones (measured with a ther-
mocouple).[76] Figure 9.1 (a) reports three experimentally measured evolution
curves (black) for vials that exhibited different nucleation temperatures at a
cooling rate of 0.6 K min−1. Moreover, one simulated temperature profile,
corresponding to the median nucleation time, tnuc

50 , and to the position of the
thermocouple, is shown in blue. In both experiments and simulations, the tem-
perature decreases linearly during the cooling phase, and rises very rapidly
close to the equilibrium value of the solution upon nucleation. It remains
for some time at a value close to the equilibrium freezing temperature of the
unfrozen system, indicating that the solution solidifies. Eventually, the tem-
perature decreases again. The similarity among simulation and experiments
underlines that the model is capable to predict realistic thermal evolution
profiles. In fact, the model is capable to do more than that: in experiments,
the temperature is only measured at a single spot (see Figure 9.1 (b)), whereas
the simulations provide spatial information on both temperature and ice mass
fraction. Panels (b-d) show for three points in time, i.e., t1, t2 and t3, both the
temperature field (top) and the ice mass fraction field (bottom). At time t1,
the vial is still in the cooling phase and no ice is present; the entire volume
is supercooled, indicating global supercooling. At times t2 and t3, different
stages of solidification are observed. Nucleation has occurred just before
time t2 and has induced the formation of ice throughout the volume. Hence,
temperatures close to Teq

ℓ are observed throughout the entire volume. During
further solidification, i.e., at time t3, additional ice has formed, predominantly
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close to the bottom of the vial and to its sides. These positions are colder than
the center of the vial, because heat is removed through the jacket.

Figure 9.1 (a) Validated thermal evolution of the product: simulations performed with
the spatial model (blue) for cooling rate γ = 0.6 K min−1 and compared to experiments
(black), (b) temperature field (top) and ice mass fraction field (bottom) at time t1 before
nucleation, (c) same for time t2 after nucleation and (d) t3.

Even though we did not carry out experiments at larger scales, it is worth
considering the model predictions for the freezing in larger volumes. Figure
9.2 shows model predictions for a system in which both radius and height were
increased by one order of magnitude compared to the vial. This amounts to a
fill volume of 1 L, which is a typical size in the pharmaceutical industry when
freezing pharmaceutical solutions for the purpose of storage and transport.
Panel (a) shows the temperature profiles for three different positions in the
vessel, labelled A, B and C. Position A is at the same relative position as the
thermocouple in the vial of Figure 9.1. Position B is at the bottom center,
which is the coldest spot in the vessel, whereas position C is at the bottom
side of the vessel. Panels (b-d) show the temperature and ice mass fraction
fields for three points in time. There are some aspects worth mentioning:

First, the thermal evolution profiles for the three positions strongly differ;
this indicates the presence of large thermal gradients within the vessel. These
gradients are shown more explicitly in panels (b-d). Second, the nucleation
temperature depends on position. If a thermocouple were placed in position
A, it would indicate a temperature larger than 0◦C at the time of nucleation. In
positions B and C, however, supercooling occurs before nucleation, and a clear
spike in the thermal evolution profile is visible. We discuss this issue in more
detail in Section 9.4.1. Finally, nucleation occurs under local supercooling:
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as indicated before, point A is not supercooled at the time of nucleation.
Panel (b) shows the domain of nucleation, which covers about half of the
vessel’s volume just before the nucleation event. Consequently, solidification
is initiated only in the volume that belongs to the domain of nucleation. The
core of the vessel starts to solidify at later times. This is shown by the inward
movement of the domain of solidification from t2 to t3.

Figure 9.2 Similar to Fig. 9.1, but for a vessel with height and radius increased by a
factor of ten compared to the vial: (a) temperature evolution in positions A, B and C
(potential thermocouple locations), (b) temperature field (top) and ice mass fraction
field (bottom) at time t1, (c) t2 and (d) t3.

While thermal gradients increase with vessel size, they are already present
at the vial-scale. Hence, we further probe the model predictions by assess-
ing the model’s capability to accurately predict the nucleation temperature
distribution for the vial. For this, we rely on the cooling rate analysis in
our earlier work,[76] where we have measured the experimental nucleation
temperature distributions for cooling rates of 0.2 K min−1 and of 0.6 K min−1,
as shown in Figure 9.3. We estimated the nucleation kinetics for both cooling
rates separately using a lumped freezing model (violet). Then, we used the
estimated parameters to simulate the freezing process at the second cooling
rate, and compared the predictions with experimental data. Here, we extend
this procedure to the new spatial model (black). Figure 9.3 (a) shows the
experimental distribution of nucleation temperatures (blue) for the cooling
rate of 0.2 K min−1, as well as the lumped model fit (violet), which was used
to parameterize the model. The parameters in the nucleation rate equation
(Eq. 9.6) were estimated to be: a = 29.0, b = 29.3, c = 1.00.[76] However,
these parameter values were estimated assuming that no thermal gradients
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are present. For the spatial model, a close fit to the 0.2 K min−1 experimental
data is obtained when slightly adjusting parameter a to a value of 29.25; the
resulting fit is shown in Figure 9.3 (a). Furthermore, Figure 9.3 (b) shows the
model predictions for 0.6 K min−1, as well as the experimental measurements
(red). As it can be seen, and as discussed in our earlier work,[76] the lumped
model fits well the data at 0.2 K min−1, but underestimates the nucleation
temperatures at the cooling rate of 0.6 K min−1 by about 0.5 K. The predictions
of the new spatial model, on the other hand, quantitatively agree with the
experimental data.

Figure 9.3 (a) Lumped and spatial model fits for experimental data obtained at 0.2 K
min−1 using nucleation kinetics estimated based on the same experimental data with
the lumped model. (b) Lumped and spatial model predictions for experimental data
obtained at 0.6 K min−1, when using parameters estimated with the lumped model
based on 0.2 K min−1 experimental data; all experimental data taken from previous
work[76].

This implies that an accurate description of thermal gradients is required
for a quantitative description of stochastic ice nucleation in case large thermal
gradients occur. The spatial model is therefore well-suited to study freezing
processes where this is the case, such as either shelf-ramped freezing with
large volumes or at high cooling rates (see Section 9.4.1), or vacuum-induced
surface freezing (see Section 9.4.2). The lumped model, on the other hand,
may be applied with reasonable accuracy to freezing processes that involve
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only small thermal gradients, such as pallet freezing or shelf-ramped freezing
in small volumes or at low cooling rates.

9.4 on the freezing stage in freeze-drying

In this section, we study freezing as part of the freeze-drying process. We
simulate a cylindrical vessel with a fill height of 1 cm and a radius of 0.56

cm, amounting to a fill volume of 1 mL. For shelf-ramped freezing (SRF, see
Section 9.4.1), heat transfer occurs only at the vessel bottom, i.e., through the
shelf. For vacuum-induced surface freezing (VISF, see Section 9.4.2), surface
evaporation at the top of the vial is considered as well. In both cases, the
spatial model simplifies into a 1D model, since we do not consider heat
transfer through the sides of the vial.

Let us first consider the role of the shelf temperature profile Tsh(t), which
represents the main design parameter for the freezing stage in freeze-drying.
Figure 9.4 presents three scenarios typically applied in pharmaceutical freeze-
drying.[21,41] In scenario (1), Tsh(t) (blue) decreases at a constant rate γ to
a final temperature Tend

sh , which is the base case in shelf-ramped freezing.
In scenarios (2) and (3), a holding step is integrated during which the shelf
temperature remains constant.

Figure 9.4 Spatial temperature evolution for a single vial when (a) no holding steps
are used, (b) a 4 h ad-nucleation holding step is added at a temperature of T = −15◦C
and (c) both a 2 h pre-nucleation and a 2 h post-nucleation holding step are added at
T = −5◦C in combination with vacuum.

Scenario (1) is discussed in more detail in Section 9.4.1, where we assess
the effect of cooling rate, solute concentration and vial fill volume on freezing.
Scenario (2) corresponds to a process where nucleation occurs at constant
temperature during the holding step. This leads to a narrower distribution
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of nucleation temperatures, and to longer solidification times, which are
considered beneficial in freeze-drying.[20] For the sake of brevity, we do not
discuss the design of such holding step in detail in this work, and we refer
to our earlier process-scale modeling work.[74] Importantly, both the existing
process-scale freezing model and the new spatial freezing model can be used
to simulate holding steps; together they provide a comprehensive picture of
the effect of holding on freezing.

In scenario (3), finally, we report a typical temperature profile for vacuum-
induced surface freezing. The temperature is hold for 2 h at T = −5◦C, before
vacuum is applied. The ensuing evaporative cooling leads to rapid nucleation.
After nucleation, the shelf remains for two more hours at −5◦C to ensure slow,
but complete solidification. We study the design of such vacuum-induced
surface freezing process in detail in Section 9.4.2.

9.4.1 Shelf-ramped freezing

In the following, we study scenario (1) in detail, which comprises cooling at
a constant rate without holding steps. We assess the effect of three process
parameters, namely the cooling rate (cases A), the solute mass fraction (cases
B), and the fill height (cases C), on the freezing behavior. A total of ten cases
have been studied, as summarized in Tables 9.2 and 9.3.

Case γ [K min−1] H [cm] ws [%]

R 1.0 1.0 20

A1 0.1 1.0 20

A2 2.0 1.0 20

A3 ∞ 1.0 20

B1 1.0 1.0 0

B2 1.0 1.0 10

B3 1.0 1.0 60

C1 1.0 0.5 20

C2 1.0 2.0 20

C3 1.0 5.0 20

Table 9.2 List of the operating conditions for the ten simulated cases for shelf-ramped freezing.
The reference case is denoted with R. Cases (A1-3) correspond to different cooling rates, (B1-3) to
different solute mass fractions, and eventually (C1-3) to different fill heights.

Table 9.3 provides the following information for all cases: first, the median
nucleation time tnuc

50 and the median solidification time tsol
50 . And second, two

temperature values at the median nucleation time: the minimum temperature
in the vial, Tnuc

min, and its mean temperature, T̄nuc. We observe the following:
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Nucleation time: Shorter nucleation times are obtained with faster cooling
rates (see cases A1-3,R) due to the faster decrease in shelf temperature. The
solute mass fraction has only little effect on the nucleation time (see cases
B1-3,R). This is because it influences the nucleation time through two opposing
mechanisms. On the one hand, solutions with higher solute concentrations
nucleate later (as seen in case B3), since lower temperatures are required
to initiate nucleation due to freezing-point depression. On the other hand,
the effective heat capacity of the solution is smaller when the sucrose mass
fraction is higher. This means that the vial reaches lower temperature levels
earlier, which is directly shown in Figure 9.5 (B). As a consequence, no major
effect of solute mass fraction on nucleation time is observed. With respect to
fill height (see cases C1-3,R), nucleation occurs later, the higher the vial. This
is because more heat must be removed from larger vials to cool to the range
of temperatures where nucleation is likely to occur.

Case tnuc
50 [min] T̄nuc [◦C] Tnuc

min [◦C] tsol
50 [min]

R 47.9 -12.9 -16.5 23.8
A1 357.0 -14.1 -14.5 59.4
A2 28.4 -10.7 -16.9 20.2
A3 7.3 -6.3 -17.2 20.6
B1 48.1 -11.7 -15.1 21.5
B2 47.9 -12.2 -15.7 20.4
B3 51.3 -19.4 -23.4 26.6
C1 42.2 -15.3 -16.2 12.3
C2 54.3 -5.5 -16.4 40.9
C3 56.8 8.3 -15.9 151.8

Table 9.3 List of the freezing characteristics for the ten simulated cases for shelf-ramped freezing.
The reference case is denoted with R. The mean and minimum nucleation temperatures correspond
to the median nucleation time tnuc

50 .

Solidification time: Solidification times decrease with increasing cooling
rate (see cases A1-3,R), and eventually approach a limit in the case of the pre-
cooled shelf (case A3). With respect to the solute mass fraction (see cases B1-
3,R), no clear trend can be observed, because two opposing effects cancel each
other out. First, a higher solute mass fraction implies that solidification should
be faster, since there is less water present to solidify. Second, high solute
mass fractions are associated with significant freezing point depression, which
means that the vial must reach low temperatures to solidify completely. For
the fill height (see cases C1-3,R), the solidification time increases approximately
linearly with height; this is expected, as the absolute amount of heat to remove
scales with volume.
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Nucleation temperature: The temperature at the vial bottom at the median
nucleation time (termed Tnuc

min) decreases for faster cooling (see cases A1-3,R).
This is expected, since there is less time for nucleation to occur at a certain
temperature when cooling faster. Further, a higher solute mass fraction
leads to a lower nucleation temperature due to freezing-point depression (see
cases B1-3,R). This effect outweighs that of the cooling rate for high solute
concentrations (e.g., case B3). For the fill height (see cases C1-3,R), perhaps
surprisingly, no significant effect on Tnuc

min was found in the range of 0.5 cm
to 5.0 cm. To appreciate this behavior, let us consider the mean temperature
in the vial at nucleation T̄nuc. Its value strongly increases from −15.3°C for a
vial height of 0.5 cm to +8.3°C for a height of 5.0 cm. A value larger than 0◦C
indicates that a part of the vial fill volume is not supercooled at the time of
nucleation. In these cases, nucleation is driven by local supercooling at the
bottom of the vial. For small fill heights, however, global supercooling occurs.
This finding underlines the importance of thermal gradients when describing
stochastic nucleation.

We continue this analysis by studying the role of internal gradients in
detail. To this end, Figure 9.5 reports the spatial evolution of temperature (top
rows) and of ice mass fraction (bottom rows) for all ten studied cases. The
color-coding denotes the vertical position; the bottom is indicated with black,
whereas the top is shown in light grey.

First, we note that thermal gradients become more prominent when cooling
faster (cases A1-3,R). This is especially pronounced for the pre-cooled shelf
(A3), where relevant gradients are present at all times. Similarly, gradients in
the ice mass fraction are more pronounced for faster cooling. However, even
for the smallest cooling rate (0.1 K min−1, A1), significant gradients are still
observed during solidification. In general, solidification proceeds from the
bottom (black) to the top (light grey), so that more ice is present at the bottom
at any given time than at the top. For the pre-cooled shelf (A3), the bottom
region is nearly completely frozen before relevant amounts of ice are formed
at the top.
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Figure 9.5 Effect of cooling rate (R, A1-3), solute content (R, B1-3) and fill height (R,
C1-3) on the product temperature (top) and ice mass fraction evolution (bottom) at
different positions (greyscale); the cases correspond to the results presented in Table 9.2.
Case (A3), corresponds to a pre-cooled shelf: the simulation starts at a shelf temperature
of −50°C, which is the final temperature in the other cases.
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Next, we assess the effect of the solute mass fraction (cases B1-3,R). In
the case of pure water (B1), the thermal evolution shows a sharp decrease
at the end of solidification. At the top position, the temperature remains
constant until freezing is completed at lower positions; if solute is present
(cases R,B2,B3), the temperature at the top decreases already earlier; this is
more pronounced for higher solute concentrations. The behavior is explained
when considering the ice mass evolution: for pure water (case B1), the ice mass
increases asymptotically, i.e., the freezing process exhibits a sharp freezing
front, since the system does not experience any freezing point depression.
Hence, there is a region in the bottom of the vessel that is completely frozen,
while in the top no ice has been formed besides some initial one at the time of
nucleation. If solute is present (cases R,B2,B3), the evolution profiles exhibit a
slope that decreases with increasing solute content. This implies that there is
a region, instead of a sharp front, in which ice is formed at any given time.
This is because the equilibrium freezing temperature is decreasing due to the
increase in solute concentration upon ice growth. The formation of such broad
freezing region is therefore a direct consequence of the solidification kinetics
of the system in the presence of solutes. We underline that such region of
freezing has been broadly observed in freezing experiments in vials.[19,171]

Finally, we assess the effect of fill height on internal gradients (cases C1-3,R).
Both the gradients in temperature and in ice mass scale with fill height: for
the smallest system (case C1), solidification at the bottom is not completed
before a significant amount of ice is formed also at the top. Conversely, for the
largest system (case C3), freezing is completed in most of the vessel, before
ice is formed at the top. We also recognize local supercooling in the evolution
profiles: in the small systems (cases C1,R), ice is present at all positions at the
time of nucleation, thus indicating global supercooling. For the second-largest
system (case C2), only the bottom part of the vial is supercooled. Intriguingly,
we observe dissolution of some ice after nucleation, i.e., for dimensionless
vertical positions of about 0.4. This is because the ice present in the system
dissolves to cool down the remaining, not yet-supercooled part of the system.
In the largest system (case C3), ice is only formed at the very bottom at
the time of nucleation; the top regions remain for an extended time at a
temperature above the equilibrium value despite the formation of a significant
amount of ice in the bottom.

These observations are closely connected to the discussion of the nucleation
temperatures shown in Table 9.2, where we highlighted the increase in the
mean temperature at the time of nucleation, T̄nuc, with fill height: for the
largest system (C3), a mean temperature larger than 0◦C is obtained, thus
indicating that most of the volume is not supercooled when nucleation oc-
curs. Therefore the occurrence of global and local supercooling is primarily
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governed by fill volume: in vials with small fill heights, global supercooling
occurs in most cases, and local supercooling can only be achieved with very
high cooling rates. In large volumes, however, local supercooling is the norm
rather than the exception. The transition between these regimes occurs at
fill heights on the order of a few centimetres, as shown here. Since this cor-
responds to typical heights used in pharmaceutical freeze-drying,[41,213] the
case of local supercooling should indeed be considered in process design and
development. If modeling is to inform process design, local supercooling has
to be accounted for, as we do here.

Figure 9.6 (a) Temperature at the time of nucleation versus cooling rate. The shaded
regions denote the 10% and 90% quantiles of the nucleation temperature distributions.
(b) Localization of nucleation as a function of cooling rate. Simulations were generated
using the nucleation parameters a = 29.0, b = 29.3, c = 1.00, estimated directly from
experimental data on sucrose solutions reported in Chapter 2.

To conclude this section, we assess in more detail the temperature at the
nucleation time. So far, the temperature at the bottom of the vial Tnuc

min and the
mean temperature T̄nuc have been discussed, both evaluated at the median
nucleation time. Since different trends in the two quantities were observed
for the ten simulated cases, we carried out an additional sensitivity study
shown in Figure 9.6. The figure reports the simulated nucleation behavior
for a vial with reference parameters as a function of cooling rate (0.01 K
min−1 ≤ γ ≤ 5 K min−1). Panel (a) shows the temperature field Tnuc(x)
at the time of nucleation: the solid lines indicate the median values, and
the shaded regions the variability, i.e., the region between the 10% and 90%
quantiles of the distribution. The colors indicate five different definitions of the
nucleation temperature: the minimum temperature (blue, Tnuc

min) at the bottom,
the maximum temperature (red, Tnuc

max) at the top, and the mean temperature



238 modeling freezing with spatial resolution

(green, T̄nuc) in the vial, as well as the kinetic mean (light blue, T̄nuc
kin , defined

in Equation 9.15) and, for comparison, the predictions of the lumped model
(magenta, Tnuc

0D ).

Let us first consider the minimum temperature (blue, Tnuc
min). It monotonously

decreases with increasing cooling rate, and eventually reaches a plateau; the
plateau corresponds to the case when nucleation occurs at a time when the
shelf has already reached its final temperature. In shelf-ramped freezing,
the minimum temperature generally is at the bottom. This is also where the
temperature is typically measured in experimental studies when inserting
thermocouples.[102] Hence, it is no surprise to find that various experimental
studies indeed confirm that faster cooling leads to lower nucleation tempera-
tures.[19,43]

Both the maximum temperature (red, Tnuc
max) and the mean temperature

(green, T̄nuc), however, behave differently. For sufficiently slow cooling, the
nucleation temperature decreases with increasing cooling rate; for faster
cooling, the trend reverses and the temperature increases with cooling rate.
Such effect is due to temperature gradients formed in the vial that scale with
the cooling rate, as illustrated in Figure 9.6 (b). This panel shows the spatial
probability density for nucleation to occur at a certain vertical position. A
vertical line is obtained in the case of slow cooling rates of 0.1 K min−1 and
below (black), which means that nucleation may occur throughout the fill
volume with similar probability. For 1 K min−1, however, a higher probability
of nucleation is observed in the bottom of the vial; this effect is even more
pronounced in the case of 2 K min−1 (grey). Hence, for sufficiently fast cooling,
nucleation is dominated by the coldest bottom part of the vial and neither the
maximum temperature nor the mean temperature serve as useful indicators
for nucleation.

Next, we assess the kinetic mean nucleation temperature (light blue, T̄nuc
kin ),

which represents the uniform temperature at which the vial would exhibit the
same nucleation frequency. Its value is close to the minimum temperature,
which confirms that nucleation is dominated by the bottom part of the vessel.
The kinetic mean temperature may also be used to compare the predictions
of the lumped freezing model (magenta, Tnuc

0D ) with the newly developed
spatial model. We note that neither the minimum, nor the maximum, nor the
mean of the spatial nucleation temperature field Tnuc(x) can be used for such
comparison, as they insufficiently describe the spatial effects on nucleation.
As it can be seen in Figure 9.6, both the kinetic mean and the lumped model
predictions assume similar values and follow the same trend. This confirms
that the lumped model correctly captures the nucleation behavior, with quan-
titative accuracy in the case of sufficiently low cooling rates. Moreover, it
supports our earlier analysis, where we had concluded that thermal gradients
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may be neglected without loss of accuracy when modeling the shelf-ramped
freezing in vials with 1 mL fill volume.[74] Conversely, thermal gradients
become more prominent for systems with larger volumes and faster cooling.
When simulating such systems, the predictions of both spatial and lumped
models should be compared to assess whether a spatial resolution is beneficial
or not. Perhaps the most extreme process with respect to thermal gradients
is the case of vacuum-induced surface freezing, which is discussed in the
following.

9.4.2 Vacuum-induced surface freezing

In this section, we expand the assessment of the freezing stage in freeze-
drying to vacuum-induced surface freezing. We first consider the evolution
profiles of shelf temperature, vial temperature, and of ice mass fraction, as
shown in Figure 9.7. The findings motivate a sensitivity study on surface
evaporation, which is illustrated in Figure 9.8. Finally, the times required to
induce nucleation and their dependency on vacuum parameters are discussed
with reference to Figure 9.9.

Figure 9.7 reports a typical setting for vacuum-induced surface freezing
that comprises six stages. Panel (a) illustrates the thermal evolution of both
shelf (blue) and vial (shades of grey). After the initial ramp (stage 1), the
shelf temperature is held at a pre-defined temperature (pre-hold, stage 2).
In stage 3, the pressure is lowered to a value of pvac for a certain amount
of time tvac that should suffice to induce nucleation in all vials. Both the
cooling due to evaporation and the post-nucleation temperature rise are
clearly visible in the thermal evolution of the vial. Panel (b) shows a zoom-in
of the process that highlights these phenomena: the temperature at the top of
the vial drastically decreases within seconds, while the bottom temperature
remains nearly constant. This means that large temperature gradients form in
a short time, which implies that surface evaporation is an effective method
to rapidly cool-down and nucleate an aqueous solution. Concerning the
practical implementation of such process, we note that an instantaneous
decrease to a pre-defined vacuum pressure level as simulated here is not
feasible;[178,213] if the capabilities of the freeze-drying apparatus are known,
however, the boundary conditions of the model may be adjusted to match the
experimentally accessible pressure profiles.
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Figure 9.7 (a) Shelf temperature (blue) and product temperature at different positions
(greyscale) profile during VISF, colored regions represent different process stages: (1)
first ramp, (2) pre-hold, (3) vacuum, (4) post-hold, (5) ramp and (6) minimum shelf
temperature stage; (b) zoom-in the temperature profile at time of nucleation; (c) ice
mass fraction evolution; (d) zoom-in at the initial part of solidification.

After the vacuum stage, a second holding step follows at higher pressure
to ensure complete solidification in all vials (post-hold, stage 4). This is
visualized in panels (c,d), which report the ice mass fraction profile in the vial.
At the time of nucleation, the largest ice fraction is observed at the top of the
vial. Intriguingly, some of the ice formed at the very top during nucleation
melts again to cool down the lower parts of the vial. In general, ice grows
from the bottom due to the heat transfer with the shelf. Since nucleation is
induced in a short amount of time, most of the solidification takes place in
this stage; the solidification time can be adjusted by changing the temperature
of the holding step. Finally, the temperature is ramped down to the final,
minimum value of the shelf temperature (stages 5 and 6). To design an optimal
vacuum-induced surface freezing process, the process parameters have to be
chosen carefully, especially for the vacuum stage.
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Figure 9.8 (a) Effect of vacuum pressure on the product temperature at the top of the
vial (solid) and at the bottom of the vial (dashed); (b) cumulative solvent mass loss
(dotted) due to the evaporative vapour flux.

The time tvac and pressure pvac of the vacuum are of great interest; addition-
ally, the temperature of the shelf during stages 3 and 4 should be chosen high
enough that vials do not nucleate spontaneously before vacuum is applied.
Given the nucleation kinetics of the sucrose solution, a value of −5°C is cho-
sen. Figure 9.8 shows the effects of the vacuum parameters on both thermal
evolution (panel a) and evaporated mass ∆mvac (panel b). We consider the
mass loss due to evaporation ∆mvac an important process attribute for two
reasons. First, it provides a definite time limit to the process, given that only a
finite amount of water is present. Second, the evaporation of water increases
the concentration in the remaining solution, which may be detrimental to
product quality. Such increase in concentration would lead to slightly slower
nucleation due to the additional depression of the freezing point. To keep
computational costs low, this is not considered in the model. Given that the
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process is supposed to operate under conditions where the mass loss is small,
this is a reasonable assumption that has also been made in earlier modeling
works.[212] With respect to temperature (Figure 9.8 (a)), we note that lower
pressures lead to a faster decrease in temperature, and to a lower final value
of the temperature. For all studied pressure levels, eventually a steady state
temperature profile is obtained. This is because the heat removed through
evaporation at the top will eventually balance the heat provided through the
shelf.

Similar effects are observed concerning the evaporated mass (Figure 9.8
(b)): more mass is lost in a specific amount of time, the lower the pressure.
However, there is no steady state: in principle all water can evaporate. Hence,
the process must be designed with the objective of limiting the evaporation of
water to a reasonable extent. In practice, further operational challenges such
as the possible boiling of the solution have to be accounted for as well.[213,214]

Figure 9.9 Cumulative density function of nucleation times for a VISF process subject
to different solution compositions: (a) pure water, (b) 20 wt%, (c) 40 wt% and (d) 60

wt% sucrose solution. All simulations start at an initial temperature of −5°C in the
vials. The shelf temperature is set to −5°C throughout the entire simulation. Different
vacuum pressures are applied; in some cases, the applied vacuum pressure is incapable
of inducing nucleation, hence the missing distributions, e.g., in panels (c) and (d).
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Let us next assess the effect of the vacuum on the nucleation behavior.
Figure 9.9 shows the nucleation time distributions obtained for four differ-
ent solute concentrations (four panels) at five pressure levels each (colors).
The most fundamental, and perhaps most relevant, observation is that the
nucleation times are randomly distributed. While surface evaporation pro-
motes nucleation, it does not affect its stochastic nature; rather, the rapid
cooling narrows down the range of likely nucleation times. Traditionally,
vacuum-induced surface freezing is considered as a deterministic technique
that enables a control of the nucleation temperature.[20,178] However, this is not
the case, as our simulations predict, and as recent experimental evidence has
confirmed.[213,214] With respect to the nucleation temperature, we underline
that the notion of a single value may be of little relevance due to the large
thermal gradients; the literature typically refers to the temperature reached
by the vials during the pre-hold as nucleation temperature.[62] However, as
shown in Figure 9.8, the actual temperature at nucleation may be significantly
lower and exhibit a strong dependency on position.

Next, we investigate the effect of pressure and solute concentration on the
nucleation times (Figure 9.9). Independent of solution composition, nucleation
occurs earlier when the pressure is lower. With increasing concentration,
nucleation occurs later; this is because lower temperatures are required to
achieve the same nucleation rates (see Eq. 9.6). For the highest concentrations,
pressure levels of 1 mbar and above are unable to induce nucleation in a
short amount of time, i.e., before a significant amount of water has evapo-
rated. Importantly, this concentration-dependency of the nucleation times
is in line with recent experimental observations.[213] We further note that in
experimental studies involving vacuum-induced surface freezing, the pressure
is continuously decreased down to a value of zero. When doing so, nucleation
was reported to occur in diluted solutions in the range from 1.3 mbar down
to 0.7 mbar.[214] Our simulations for pure water indicate that almost all vials
nucleate at a pressure of 1 mbar within one minute, in accordance with these
experimental observations. It is worth emphasizing this finding, since the
simulations rely on nucleation parameters that have been estimated from
jacket-ramped freezing experiments, i.e., from a different freezing process.
This implies that the model provides sound predictions across different freez-
ing processes thanks to its mechanistic character. To do so, it only requires the
information on the nucleation kinetics of the formulation to be frozen and of
the vacuum capabilities of the equipment.
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9.5 concluding remarks

In this work we present a model to simulate the freezing process in a
vessel, which accounts for the stochastic nature of ice nucleation and considers
thermal gradients. We compared the model predictions with the largest
experimental data set for freezing in vials available to date,[76] where we
found a quantitative agreement between the fitted and predicted nucleation
temperature distributions. With respect to pharmaceutical freezing and to
freeze-drying, the following findings are of obvious relevance:

Stochasticity of nucleation: We here achieve a quantitative description of
the experimentally measured nucleation behavior for freezing in vials. Doing
so will promote the use of mechanistic freezing models for process design and
development in pharmaceutical freezing and freeze-drying. Comparable mod-
els that consider stochastic nucleation have found widespread use in related
fields such as industrial crystallization[22,66] and atmospheric sciences[27,82]

already during the past decade. Most existing pharmaceutical freezing models,
however, describe nucleation in a deterministic manner.[19,28,171] The models
that consider stochastic nucleation[40,62] do it in a manner inconsistent with
its underlying physical principles, so that they are unable to predict physi-
cally meaningful nucleation temperature (or time) distributions.[76] Hence, the
mechanistic spatial model presented here, together with our earlier contribu-
tions on process-scale modeling,[74,75] provides insights into freezing that go
beyond the capabilities of the existing models.

Definition of the nucleation temperature: The spatial freezing model
demonstrates that the nucleation temperature as commonly referred to in the
literature is an ill-defined quantity: a broad range of temperatures may be
present at different positions in the vessel at the time of nucleation. Further,
different positions and definitions of the nucleation temperature exhibit dif-
ferent trends, as shown in Section 9.4.1. Experimental studies hence should
follow best practices and standardize the positions where temperatures are
measured; this is commonly done in the bottom center of the vessel,[43,102]

although some authors also measure the temperature at the side wall at half
height,[19] or at the top.[213] Recently, non-invasive means for temperature
monitoring have been used to monitor the freezing stage in pharmaceutical
freeze-drying, which enable a spatially distributed measurement of the nucle-
ation temperature;[200,203] their further use will be beneficial for scientists and
practitioners in the field.

Local and global supercooling: Modeling works on freezing in the phar-
maceutical context typically focus either on small volumes where global su-
percooling dominates,[19,28,171] or on large volumes, where local supercooling
dominates.[39] Some attributes of the freezing process, such as the ice crystal



9.5 concluding remarks 245

size in the frozen materials, strongly depend on the type of supercooling.[20,43]

Thus, there is a need for mechanistic models that are capable of describing
freezing in both cases within a single mathematically sound framework, as
we do here.

Vacuum-induced surface freezing (VISF): We present the first mechanistic
assessment of this emerging freezing technique that accounts for its underlying
stochastic nature. We show how vacuum pressure, solute concentration, and
nucleation kinetics affect the distribution of nucleation times, thus obtaining
a design space for the process. We clearly demonstrate the limitations of
VISF towards formulations that nucleate slowly, such as highly concentrated
sucrose solutions. Hence, this study provides novel insights into how to design
and to conceptualize the VISF process in a rational manner. Practitioners
may use these information to identify suitable process conditions, while
also considering additional challenges such as the possible boiling of the
solution.[213,214]

Finally, we highlight that some of the observations reported here deviate
from the commonly accepted understanding of nucleation in the pharmaceuti-
cal freezing and freeze-drying literature. For example, it has been argued that
nucleation temperatures are lower when cooling faster, and that this leads to
smaller mean ice crystal sizes.[20,43,223] In contrast, this contribution shows, in
line with our earlier works,[74–76] that the trends of the nucleation behavior are
rather complex. While it is true that faster cooling leads to lower temperatures
measured at the bottom of the vial, such effect is relatively small. If the spatial
distribution of temperatures is considered, the trend may reverse: the mean
temperature at the time of nucleation increases when cooling faster under
conditions of practical relevance. Importantly, this behavior has been observed
in our earlier experimental work as well,[76] and it is quantitatively predicted
by the model presented here. Hence, additional factors have to be considered
in order to explain the behavior of the crystal sizes and of their distribution
with respect to pharmaceutical freeze-drying.

To conclude, this work provides researchers and practitioners with novel
insights into the role of stochastic ice nucleation in freezing, and it reports a
systematic framework to inform process design and optimization for various
freezing processes widely used in the pharmaceutical industry. The model
may be connected to our earlier process-scale models of freezing,[74,75] and
we provide open source access to it in the form of a python package termed
ethz-snow.[73,186]
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10 CONCEPTUAL VAL IDAT ION OF
STOCHAST IC AND
DETERMIN IST IC METHODS TO
EST IMATE CRYSTAL NUCLEAT ION
RATES

This work presents a generalized framework to assess the accuracy of meth-
ods to estimate primary and secondary nucleation rates from experimental
data. The crystallization process of a well-studied model compound was simu-
lated by means of a novel stochastic modeling methodology. Nucleation rates
were estimated from the simulated data through multiple methods and were
compared with the true values. For primary nucleation, no method considered
in this work was able to estimate the rates accurately under general conditions.
Two deterministic methods that are widely used in the literature were shown
to over-predict rates in the presence of secondary nucleation. This behavior is
shared by all methods that extract rates from deterministic process attributes,
as they are insensitive to primary nucleation if secondary nucleation is suffi-
ciently fast. Two stochastic methods were found to be accurate independent
of whether secondary nucleation is present, but they underestimated rates
in case a large number of primary nuclei are formed. We hence proposed
a criterion to probe the accuracy of stochastic methods for arbitrary data
sets, thus providing the theoretical foundations required for their rational use.
Finally, we showed how both primary and secondary nucleation rates can be
inferred from the same set of detection time data by combining deterministic
and stochastic considerations.

10.1 introduction

The role of nucleation in crystallization processes remains elusive due to
various issues related to the measurement of nucleation rates.[22,45,70,97] Accu-
rate knowledge of the nucleation rates is required for the rational design and

The work presented in this chapter has been reported in: Deck, L.-T.; Mazzotti, M. Conceptual
Validation of Stochastic and Deterministic Methods to Estimate Crystal Nucleation Rates. Cryst.
Growth Des. 2023, 23, 2, 899–914.
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optimization of industrial crystallization processes. Three types of nucleation
may occur in stirred crystallizers, namely primary homogeneous nucleation
(HON), primary heterogeneous nucleation (HEN), and secondary nucleation
(SN). Numerous methods have been proposed to measure the rates of these
phenomena; some of them correlate nucleation either with the first point in
time when crystals are detected,[224,225] or with the evolution of the crystal size
distribution and features derived therefrom,[97,226–229] or with the observation
of the inherent variability of the process.[22,66,68]

Nucleation is an activated process and therefore it is stochastic.[22,64,66,76,230]

Repetitions of a crystallization experiment under identical conditions hence
exhibit a certain degree of variability. Conceptually, one may infer the primary
nucleation kinetics by linking the experimental variability to the inherent
stochasticity of nucleation.[22,66,68,231] During a crystallization process, all
crystals nucleate in a stochastic manner, whereby earlier nucleation events
affect later ones in two ways: first, nuclei deplete supersaturation via crystal
growth, and second, they provide active sites for secondary nucleation. Such
secondary nucleation may occur through various mechanisms, which are
discussed elsewhere in detail.[71,232–235] Similar to primary nucleation, multi-
ple types of secondary nucleation are activated processes, and their inherent
stochasticity hence may contribute to the experimental variability. Thus, an
accurate description of the inherent variability of a crystallization process is
difficult to achieve.[66,74,215] Therefore, all widely applied stochastic methods
to estimate primary nucleation are based on a strong simplification: they
impose that only the first nucleus is formed in a stochastic manner so that
the variability in time of the first nucleation event equals the variability in
detection time.[22,68,231]

However, recent literature suggests that stochastic methods underestimate
primary nucleation rates compared to more established methods based on
deterministic process attributes: for p-aminobenzoic acid in ethanol, an under-
prediction of 5 − 6 orders of magnitude was reported,[97] and for paracetamol
in ethanol one of 2− 3 orders of magnitude.[236] Thus, some researchers argue
that estimates obtained from stochastic methods should not be used in process
design.[70,97,236,237] Evidence collected in this work, however, challenges this
view. We find that the estimates of the stochastic method are accurate under a
broad range of conditions, whereas deterministic methods over-predict rates
under the same conditions due to neglecting or misinterpreting secondary
nucleation.

To arrive at this conclusion, we assessed multiple methods to measure
isothermal nucleation rates by means of a newly developed modeling frame-
work, which we refer to as stochastic particle balance model. The model is derived
in Section 10.2, together with methods to estimate nucleation rates. In Section
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10.3 we simulate the crystallization of p-aminobenzoic acid, a compound for
which some of the largest deviations in nucleation rates among measurement
methods have been reported. The kinetic parameters are estimated from
literature data reported by Cedeno et al[97]. In Section 10.4 we compare and
assess methods to estimate nucleation rates from the simulated data sets and
we critically assess their accuracy. Finally, we generalize our findings and
draw the relevant conclusions in Section 10.5.

10.2 three aspects of nucleation

In this section, we derive the stochastic modeling framework that is used to
simulate a crystallization process comprising stochastic primary nucleation,
stochastic secondary nucleation and deterministic crystal growth. Doing so
requires a consistent description of at least three different aspects of nucleation.
We first discuss phenomenological aspects in Section 10.2.1, before outlining
deterministic aspects in Section 10.2.2 and stochastic aspects in Section 10.2.3.
We conclude with the methodology to probe methods for the estimation of
crystal nucleation rates in Section 10.2.4.

10.2.1 Phenomenological aspect

Nucleation is characterized by the nucleation frequency K, which denotes
the number of nuclei formed per unit time.[22,45] The overall nucleation fre-
quency in a process is the sum of the contributions of all relevant types:

K = KHON + KHEN + KSN = KPN + KSN (10.1)

Homogeneous and heterogeneous rates commonly are grouped together
in a single term that comprises the total frequency of primary nucleation
(PN). In addition, one may define a rate of nucleation per unit volume, i.e.,
B = K/V.[22,45,238] Nucleation is an activated process, since an energy barrier
has to be overcome in order to form a nucleus.[45,64,215] Thus, K may be
interpreted as the product of three contributions, namely

K =

(
number of

sites

)(
frequency of

attempts per site

)(
probability of success

per attempt

)
(10.2)

Importantly, the value of each contribution may change during a crystallization
process. The number of active sites for secondary nucleation may increase due
to the nucleation and growth of crystals; for heterogeneous primary nucleation
it may change due to the occurrence of impurities or due to deactivation. The
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frequency of attempts depends on the temperature, the hydrodynamics within
the reactor, and on the solution properties such as solute diffusivity.[45,65]

Further, both the probability of success and the frequency of attempts are
strong functions of supersaturation. Let us consider in detail what this entails
for a crystallization process. The primary nucleation frequency KPN in a
volume V is given as:

KPN =
∫ V

0
JPN(V′)dV′ ≈ JPNV (10.3)

where JPN is the local primary nucleation rate defined at each location V′

within the reactor. We note that the formulation of a local rate implicitly
assumes that nucleation is an infinitely divisible process, i.e., that a nucle-
ation event may occur within an infinitesimally small volume. Under the
assumption of uniform conditions within the reactor volume, this expression
simplifies and JPN may be defined as the volume-averaged rate of primary
nucleation. It is this quantity that is typically reported in the literature. We
highlight that such averaging is potentially inaccurate under two conditions.
First, in case of heterogeneous nucleation, nucleation events are enabled by
nucleation sites on external surfaces.[68,239] These sites, however, may be dis-
tributed arbitrarily within the system.[76,240] Since external surfaces such as
reactor walls may also act as nucleation sites, the primary nucleation frequency
may not scale linearly with volume in real processes.[104,241] Second, process
conditions may vary within the volume; thermal gradients and hydrodynamic
variabilities may be present and may alter the local nucleation rate.[76,242]

Primary nucleation is commonly interpreted in the context of the classical
nucleation theory (CNT).[45,65] The functional form used in this work is the
one used in the experimental reference work,[97] namely

KPN = VAPNS exp
{
− BPN

ln(S)2

}
(10.4)

where APN, BPN are parameters with physical meaning as discussed else-
where.[45,65] The supersaturation level S is approximated as

S =
c

c∗(T)
(10.5)

where c∗(T) is the equilibrium concentration of the solute at temperature T
and c the actual solute concentration.

Secondary nucleation may occur through different mechanisms, among
which the dominating ones are typically not known a priori.[71] Potential
underlying mechanisms are discussed elsewhere.[71,232–235] For simplification,
it is common practice to describe secondary nucleation with power laws
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that scale with either the surface area or the volume of the crystals.[45,215,228]

The frequency of secondary nucleation events may be defined for a system
comprising a total number of N crystals with characteristic lengths Li as

KSN = VBSN = kaµ2V JSN = ka

(
N

∑
i=1

L2
i

)
JSN = ka

(
N

∑
i=1

L2
i

)
kSN,a(S − 1)sa

(10.6)

in case secondary nucleation scales with the surface area of the crystals, or as

KSN = VBSN = kvµ3V JSN = kv

(
N

∑
i=1

L3
i

)
JSN = kv

(
N

∑
i=1

L3
i

)
kSN,v(S − 1)sv

(10.7)

in case it scales with their volume. kv and ka denote the shape factors for
crystal volume and surface area, respectively.[45] We applied both equations
to fit secondary nucleation rates to experimental data,[97] whereby a closer
agreement was observed for Equation 10.6. Thus, this expression is considered
in the following.

10.2.2 Deterministic aspect

This section outlines how to mathematically describe nucleation within a
crystallization process in a deterministic manner. In Section 10.2.2, we present
the deterministic population balance model, before discussing deterministic
methods to measure nucleation rates in Section 10.2.2.

Population balance model

Crystallization processes are characterized by the evolution of the crystal
population over time. If the population is sufficiently large, it may be described
by a continuous crystal size distribution n(L);[45,243] n(L)dL is the number of
crystals with a characteristic length between L and L + dL per unit volume of
the crystallizer. The moments µj of such distribution are defined as

µj =
∫ ∞

0
Ljn(L)dL (10.8)
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A batch crystallization process comprising nucleation and growth may be
simulated by tracking the evolution of the first four moments together with
that of the solute concentration (see Equation 10.10):

dµ0
dt

= B (10.9a)

dµ1
dt

= Gµ0 (10.9b)

dµ2
dt

= 2Gµ1 (10.9c)

dµ3
dt

= 3Gµ2 (10.9d)

Importantly, these equations are independent of the type of nucleation occur-
ring: they hold for any arbitrary form of the volumetric nucleation rate B,
whereby the size of newly formed nuclei is assumed to be zero. The evolution
of the solute mass concentration in solution c over time relates to the evolution
of the third moment as

c(t) = c0 − kvρcµ3(t). (10.10)

where ρc denotes the mass density of the crystals. The crystal growth rate G
is assumed to be size-independent and to follow a power law of the thermo-
dynamic driving force

G = kg(S − 1)g (10.11)

where kg and g are compound-specific temperature-dependent parameters.
Such mathematical description of growth was chosen for the sake of simplicity,
but without loss of generality. A plethora of alternate growth rate expressions
have successfully been implemented in population balance models reported
in the literature.[45,215]

The evolution of the crystallization process may be simulated by solving
the set of moment equations coupled with the solute mass balance. Methods
that estimate nucleation rates based on evolution profiles are referred to as
direct deterministic methods. Both primary and secondary nucleation rates
have been estimated in the literature by minimizing the difference between the
experimental evolution of process attributes, and predictions of the population
balance model.[227–229]

A simple direct method that does not require solving the population balance
is to extract the primary nucleation rate from the linearized particle count
profile (corresponding to µ0), imposing that the evolution is governed by
primary nucleation. We refer to this as Method 1.[97,236] In this work, we
linearize the profile by measuring the time elapsed between reaching 25% and



10.2 three aspects of nucleation 255

75% of the final number of crystals detected at the end of the process (∆t25,75),
and the total number of detected crystals (Ntot):

JPN =
Ntot

2V∆t25,75
(10.12)

The value of Ntot is subject to the sensitivity of the sensing equipment. In line
with the experimental reference work,[97] we assume that all crystals larger
than a size of Ldet = 5µm are detected, whereas smaller ones are not. As
pointed out recently,[244] such approach may be considered simplistic, and
more advanced analytical techniques capable of detecting smaller crystals may
benefit the accuracy of the method.

Deterministic view on detection times

The experimental effort required to quantitatively monitor the process
evolution has motivated the development of indirect deterministic methods to
estimate nucleation rates. These methods do not rely on evolution profiles,
but on alternative process attributes such as the detection time (also termed
induction time in the literature).[225,237] The detection time tdet denotes the
first point in time when crystals are detected from a clear solution. tdet is
commonly defined as the time at which a critical volume fraction of crystals,
α, is reached:

α =
Vc(tdet)

V
= kvµ3(tdet) (10.13)

The value of α generally depends on the sensing equipment; a value of 10−4 is
used as reference, as recommended by the literature.[22,215] To study the effect
of α, we carry out a sensitivity study considering both larger and smaller
values (see Section 10.4.1). Analytical expressions for detection times may
be obtained under two conditions; namely that crystallization occurs under
isothermal conditions and that the change in supersaturation before detection
is negligible (i.e., S is constant). In the following, we derive detection times
for two different expressions of B.
Method 2: Dominant primary nucleation (PBE-PN)
The detection time for the limiting case that only primary nucleation occurs is
obtained for B = JPN (no secondary nucleation). Since no crystals are present
at the beginning of the process (t = 0), the initial conditions for the moment
equations are µ0(0) = µ1(0) = µ2(0) = µ3(0) = 0. The equations can be
solved explicitly, and the evolution of the third moment is given as

µ3(t) =
t4

4
G3 JPN. (10.14)
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Crystals are detected, when the condition of detection is met (see Equation
10.13), i.e., at:

tdet =

(
4α

kvG3 JPN

) 1
4

, (10.15)

which is an expression that has found widespread use in both academic
literature and industrial applications.[45,70,239,245]

Method 3: Dominant secondary nucleation (PBE-SN)
If secondary nucleation occurs, the detection time is the sum of tn1, which is
the time required for the first nucleus to form, and of a growth time tg, which
denotes the period in time that is required to reach the volume fraction of
detection:[215]

tdet = tn1 + tg. (10.16)

Despite its rather misleading name, tg comprises contributions not only of
growth, but also of nucleation. In the limiting case of infinitely slow primary
nucleation, only secondary nucleation and growth occur during the growth
time, and an explicit expression can be derived: we do so by solving the
moment equations subject to B = kaµ2 JSN. At time t = 0 one nucleus of zero
size is present, hence the initial conditions are µ0(0) = 1

V , µ1(0) = µ2(0) =
µ3(0) = 0. Through the explicit solution, one obtains for µ3(t):

µ3(t) =
G

ka JSNV

[
exp

{
(ka2G2 JSN)

1
3 t
}

+ 2 exp
{
−1

2
(ka2G2 JSN)

1
3 t
}

cos

(√
3

2
(ka2G2 JSN)

1
3 t

)
− 3
]

(10.17)

and, accordingly, the growth time tg is found by imposing

α = kvµ3(tg). (10.18)

Equation 10.17 reveals an exponential relationship between crystalline volume
and time, which is not the case for primary nucleation (as implied by Equation
10.15). Thus, secondary nucleation may be interpreted phenomenologically
in a similar way as an autocatalytic chemical reaction.[246] Finally, we note
that alternative expressions for tg may be derived for seeded crystallization
processes by adjusting the initial conditions accordingly.

10.2.3 Stochastic aspect

This section is dedicated to the stochastic nature of nucleation. We first
derive the statistical framework for the stochasticity of a single nucleation
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event in Section 10.2.3. We then generalize the statistical framework to a
crystallization process comprising an arbitrary number of stochastic nucleation
events in Section 10.2.3.

Stochasticity of the first nucleation event

The first nucleus in a crystallization process randomly forms at time tn1.
This time is a random variable with mean E(tn1) and variance Var(tn1). The
process can exhibit two states, namely state (0), where nucleation did not take
place, and state (1), where it did.[74] The probability to be in either state is
P(0)(t) + P(1)(t) = 1 at any time, whereby the time evolution is governed by
the Master equation according to[66]

dP(0)

dt
= −K(t)P(0). (10.19)

For an initial condition of P(0)(0) = 1, the solution of the differential equation
is

P(0)(t) = exp
{
−
∫ t

0
K(t′)dt′

}
(10.20a)

P(1)(t) = 1 − exp
{
−
∫ t

0
K(t′)dt′

}
. (10.20b)

where P(1)(tn1) corresponds to the cumulative distribution function (CDF)
F(tn1) of the first nucleation time tn1:

F(tn1) = P(1)(tn1) (10.21)

The probability density function (PDF) f (tn1) is obtained via

f (tn1) =
dF

dtn1
= K(tn1) exp

{
−
∫ tn1

0
K(t′)dt′

}
. (10.22)

Mean and variance of the random variable are inferred from the moments of
the PDF:

E(tn1) =
∫ ∞

0
t′ f (t′)dt′ =

∫ ∞

0
t′K(t′) exp

{
−
∫ t′

0
K(s)ds

}
dt′ (10.23a)

Var(tn1) =
∫ ∞

0
(t′)2K(t′) exp

{
−
∫ t′

0
K(s)ds

}
dt′ − E(tn1)

2 (10.23b)
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Both expressions can be solved explicitly in the case of an isothermal process
at constant supersaturation until detection, i.e., K(t) = KPN = constant:

E(tn1) =
1

KPN
(10.24a)

Var(tn1) =
1

K2
PN

(10.24b)

The nucleation frequency for such processes may be inferred directly from both
mean and variance of the distribution. Specifically, we use Equation 10.24a in
this work to estimate the rate of primary nucleation and refer to it as Method
4; this equation has found widespread adoption in the literature.[45,70,245]

It is commonly termed mono-nucleus method (MNM), since it imposes the
immediate detection of crystallization upon formation of the first nucleus.

Practically, it is not possible to instantaneously detect the first nucleation
event due to the small size of the nucleus. Detection occurs when a certain
amount of crystalline matter has been formed, characterized by the critical
volume fraction α. As discussed in Section 10.2.2, such detection time tdet
comprises two contributions, namely the time of the first nucleation event
tn1 and the growth time tg. Since multiple crystals are present in most
crystallization processes at detection, further nucleation events take place
during the growth time; thus, tg and tdet are random variables as well. It
holds that

E(tdet) = E(tn1) + E(tg) (10.25a)

Var(tdet) = Var(tn1) + Var(tg) + 2 Cov(tn1, tg). (10.25b)

For an isothermal process, the expression for the variance simplifies: under
this condition, tn1 and tg are not correlated and their covariance becomes zero.
Thus, the following system of equations is obtained:

E(tdet) =
1

KPN
+ E(tg) (10.26a)

Var(tdet) =
1

K2
PN

+ Var(tg) (10.26b)

Since E(tdet) and Var(tdet) can be estimated from a sufficiently large set of
detection times, Equations 10.26 form a system of two equations in the three
unknowns KPN, E(tg) and Var(tg). With the information of detection times
alone it is thus not possible to infer primary nucleation rates in general.
Methods that do so have to rely on an additional assumption, namely:

Var(tg) = 0 (10.27)
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This leads to a system of two equations in the two unknowns KPN and E(tg) =
tg, whereby KPN is governed solely by Var(tdet). The cumulative distribution
for the detection times of this system assuming isothermal conditions and
constant supersaturation until detection is

F(tdet) = 1 − exp
{
− KPN(tdet − tg)

}
. (10.28)

The estimation of KPN based on Equation 10.28 is termed Method 5 in this
work; it is known in the literature as single-nucleus mechanism (SNM),[67,68,91,95]

due to the similarity of Equations 10.20a and 10.28. We prefer the term single-
nucleus assumption to highlight that the underlying assumption has been
motivated by necessity, not by mechanistic considerations. Since further
stochastic nucleation events may occur during the growth time, non-zero
values of Var(tg) are to be expected in most crystallization processes. To date,
it has not been studied how large Var(tg) is, and how its value depends on
the process conditions; hence, there is a lack of validation as to whether the
estimated nucleation rates are accurate. This is even more true for Method 4

that entirely neglects the growth time. We address this gap in Section 10.4 of
this work.

A detailed explanation of the experimental methodology to obtain statisti-
cally relevant sets of detection times is provided in the literature.[23,24,67,68,91,101]

Generally, large data sets are required due to both the measurement uncer-
tainty and the inherent variability induced by the stochasticity.[23,91,99] This
necessitates the use of experimental setups with parallelized reactors and
repetitive cycles, whereby experiments are commonly carried out in stirred
microvials or micro-droplets.[66–68,90] We summarize how to infer nucleation
rates from such data sets in Section 10.6.1.

Stochasticity of batch crystallization (Method 6)

The statistical analysis in Section 10.2.3 focused on the nucleation of the
first crystal. During a real crystallization process in a stirred vessel, millions
or billions of crystals may nucleate, and all of them do so in a stochastic
manner.[22,215] However, this does not necessarily imply that process attributes
exhibit variability among repetitions under identical conditions. In order to
observe relevant variability, a second condition has to be met, which is that
nucleation has to be a rare event.[22,66,215] This is supported by Equation 10.24a,
which states that the first nucleation time is less variable when the frequency
of primary nucleation is larger.

The variability of an unseeded batch crystallization process is dominated by
its early phase, when the number of crystals still is small. This is because early
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crystals have more time to grow until detection and hence they contribute
more to the detected crystalline mass. The random formation of the first
nucleus contributes the most to it, followed by the one of the second nucleus
and so on. It is worth noting that already the second nucleus has a chance
to be formed through secondary nucleation instead of primary nucleation.
When no crystals are present, the rate of secondary nucleation by definition is
zero. It thus constitutes a rare event, like primary nucleation, at least during
this early phase. As the crystal surface area increases during the process,
the rate of secondary nucleation increases as well; eventually, it may become
large enough to be considered as deterministic in later phases. Therefore, the
contributions of both primary and secondary nucleation have to be considered
in the stochastic description of an unseeded crystallization process.

Typically, secondary nucleation is not explicitly considered in the literature
on stochastic nucleation, with two exceptions. Maggioni and Mazzotti[215]

developed a methodology that comprises stochastic primary nucleation and
deterministic secondary nucleation in the framework of a population balance
model, while Unno and Hirasawa[247] studied fully stochastic systems exhibit-
ing both stochastic primary and secondary nucleation. The model presented
here builds on these works and extends them; we use it for two purposes.
First, to estimate kinetic parameters for secondary nucleation and for crystal
growth from experimental data,[97] which is referred to as Method 6. Second,
to simulate a large number of crystallization processes to generate synthetic
data sets that are used to estimate nucleation rates through Methods 1–5 (see
Section 10.2.4).

Let us consider a time interval [ti , ti+1] with ti+1 = ti + ∆t during a crystal-
lization process. The expected number of nuclei E(Ni) that are formed during
the interval is given by

E(Ni) =
∫ t+∆t

t
K(t′)dt′ (10.29)

where Ni is a discrete random variable, since only an integer number of nuclei
can be formed. If the following three conditions hold, Ni follows a Poisson
distribution:

1. In the limit of an infinitesimally short time interval either zero or one
nuclei are formed. This implies first that a nucleation event may physi-
cally occur in infinitesimally short time, and second that each successful
nucleation event leads to the formation of exactly one nucleus.

2. Within the time interval, nucleation events occur independently from
each other. The random formation of a nucleus does not affect the
probability that other nuclei are formed.
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3. Within the time interval, the nucleation frequency is not affected by the
number of nuclei formed. The deterministic value of the nucleation
frequency computed at the beginning of the interval solely governs the
probability distribution of the number of nuclei formed.

The first two conditions are subject to the molecular mechanisms of nucleation,
and the literature predominantly considers them to be valid independent of
∆t.[22,66,215,230,247,248] The third condition, however, is quantitatively accurate
only for an infinitesimally short time interval, since the formation of a nu-
cleus inherently affects the evolution of the nucleation frequency. Thus, the
stochasticity of a crystallization process goes beyond the stochasticity of a
single Poisson process. Crystallization has to be described as a step-wise
inhomogeneous Poisson process comprising a large number of sufficiently
short time intervals. This is commonly referred to as self-exciting point
process.[22,74,75,215]

The probability that k nuclei form during a time interval follows a Poisson
distribution and is

P(k)
i =

E(Ni)
k

k!
exp {−E(Ni)} . (10.30)

The actual number of nuclei Ni formed during the interval is obtained by
drawing a random number from the corresponding Poisson distribution. Since
E(Ni) depends on the nucleation frequency, Equation 10.30 is coupled with the
constitutive equations for crystal growth, nucleation rates, and the solute mass
balance (cf. Section 10.2.2). Together, these equations form a fully stochastic
model for crystallization. Since it is grounded on the absolute number of
crystals to form, which is an extensive and discrete property, we refer to it as a
particle balance model; this highlights the difference to the inherently intensive
and continuous deterministic population balance model, which is unable to
depict stochasticity.

As a final note, numerical aspects of the modeling framework are discussed
in more detail in Section 10.6.2, which also includes a table with all parameter
values that were used in the simulations.

10.2.4 Estimating crystal nucleation rates

This work aims at probing methods to estimate the crystal nucleation rates
in isothermal batch crystallization processes. Various methods have been
reported for this purpose, whereby a major experimental challenge lies in
the separation between primary and secondary nucleation.[45,231,245] Multiple
methods have been derived and are assessed in this work, as summarized
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in Table 10.1. These methods are used as follows: The stochastic particle
balance model derived in Section 10.2.3 is applied to generate in-silico large
sets of detection times and of particle count evolution profiles. Since this
model considers the stochastic formation of all nuclei, it constitutes the most
mechanistically grounded modeling framework of crystallization for this
purpose available to date. The simulated data sets are used to estimate crystal
nucleation parameters according to Methods 1, 2, 3, 4 and 5. In doing so, we
conceptually validate these methods for an idealized crystallization process
comprising primary nucleation, secondary nucleation, and crystal growth.

Method/Model Underlying model Considered phenomena Explained
in

1.Direct method
for PN (direct)

Deterministic popula-
tion balance with dom-
inant PN

PN at constant S Section
10.2.2

2.Deterministic
method for PN
(PBE-PN)

Deterministic popula-
tion balance with dom-
inant PN

Deterministic PN and crystal
growth at constant S

Section
10.2.2

3.Deterministic
method for SN
(PBE-SN)

Deterministic popula-
tion balance with dom-
inant SN

Single stochastic PN event followed
by deterministic SN and crystal
growth at constant S

Section
10.2.2

4.Mono-nucleus
method for PN
(MNM)

Mono-nucleus assump-
tion (no growth time)

Single stochastic PN event with im-
mediate detection

Section
10.2.3

5.Single-nucleus
method for PN
(SNM)

Single-nucleus as-
sumption (constant
growth time)

Same as for Method 3 Section
10.2.3

6.Stochastic simu-
lation of crystal-
lization

Stochastic particle bal-
ance

Stochastic PN and SN, and de-
terministic crystal growth at time-
dependent S

Section
10.2.3

Table 10.1 Summary of the six modeling methods used in this work. Methods 1, 2, 3, 4, 5 are applied
to estimate nucleation kinetics from data sets generated in-silico by Method 6.

To ensure that this validation is of practical relevance, physically meaningful
values have to be chosen for the kinetic parameters in the stochastic particle
balance model. We select para-aminobenzoic acid as model compound due
to the broad literature available on its crystallization behavior,[249,250] and
because of the widely diverging primary nucleation parameters reported in
the literature.[97] Importantly, the unseeded isothermal batch crystallization
process of this compound has been characterized in great detail experimentally
by Cedeno et al.[97] in a solvent mixture of water and ethanol; we use this data
to estimate the kinetic parameters for primary nucleation through Method 5,
and the kinetics for secondary nucleation and crystal growth trough Method
6. This is discussed in detail in Section 10.6.3.
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10.3 stochastic simulations of crystallization

In this section, we present stochastic simulations of the crystallization of
para-aminobenzoic acid in water/ethanol generated via the stochastic particle
balance model derived in Section 10.2.3 (Method 6). Simulations comprise
primary nucleation, secondary nucleation, and crystal growth; a similar set
of simulations in the absence of secondary nucleation is presented in Section
10.6.4. To accurately capture the variability of the process, 16384 independent
simulations of the system were carried out. Such large number was required to
generate figures with smooth probability distributions. Figure 10.1 shows the
time evolution of the number of detected crystals (panel (a)) as well as of all
crystals (panel (b)) formed. When considering such evolution profiles, crystals
are considered to be detected when they reach a critical size of Ldet = 5µm.[97]

Figure 10.2 highlights the variability in three process attributes. Figure 10.3
finally shows the absolute number of primary nuclei formed for this system.

Figure 10.1 Characterization of the reference system: Evolution of the system after the
first nucleation event. (a) Total number of detected crystals, i.e., of those with a size
larger than Ldet = 5µm. (b) Total number of crystals, i.e., including those smaller than
the detection threshold. The colors indicate the four supersaturation levels studied by
Cedeno et al.[97]: S = 1.40 (red), S = 1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta).
The solid lines indicate the simulation corresponding to the median detection time,
while the dashed lines show the profiles for the simulations corresponding to the 10%
and 90% quantiles of the detection time distribution.

Let us first consider the evolution of the process, as shown in Figure
10.1. The figure illustrates the total number of detected crystals and of
all crystals vs. time elapsed after the first nucleation event. The solid lines
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correspond to the simulation that exhibited the median detection time; the
dashed lines correspond to the simulations with the 10% and 90% quantiles
of the detection time distribution. For all supersaturation levels, variability
due to the stochasticity of nucleation is observed; more so for the lower
supersaturation levels. Importantly, the variability shown in the figure is the
one due to stochastic nucleation events after the first one. Such variability
is commonly neglected in the literature, and it is worth underlining that
the stochastic particle balance model is capable of quantifying it; this is a
prerequisite to assess the accuracy of stochastic methods for the estimation of
primary nucleation rates (cf. Section 10.4).

With respect to the shape of the evolution profile, one clearly observes a
lag time, the duration of which becomes shorter with increasing supersat-
uration. This is because both crystal growth and nucleation are faster at
higher supersaturation. Furthermore, the total number of crystals present
increases with supersaturation, up to a total value of about five billions of
detected crystals for the highest supersaturation. While the lag time clearly
exhibits stochasticity, both the total number of crystals formed and the slope
of the profile can be considered deterministic. This finding agrees with the
theoretical considerations made in Section 10.2.3: the lag time is governed by
the early phase of the process, where nucleation still is a rare event; the other
attributes are governed by later stages of the process, where nucleation is not
rare anymore and thus deterministic.

Next, we investigate the variability of the process in detail. Figure 10.2 shows
the variability in three characteristic times in the form of probability density
functions: namely the induction/detection time (left), the first nucleation
time (center), and the growth time (right). A value of α = 10−4 is considered
as condition of detection. As discussed in Section 10.2.3, the detection time
is the sum of first nucleation time and of growth time. With respect to
detection times, we notice a broad distribution for the lowest supersaturation
(magenta), and narrower ones with increasing supersaturation. This is indeed
in line with the observations made in the literature,[97] and with the theory
derived in Section 10.2.3. Since both mean and variance of the detection time
depend on the primary nucleation frequency, both values are to decrease with
increasing supersaturation. This effect can be observed even more clearly in
the first nucleation times (center). Here, the typical shape of the exponential
distribution is obtained for all supersaturation levels, and both mean and
variance decrease with supersaturation. With respect to the growth time (right),
we also observe shorter times and less variability for higher supersaturation
levels. However, the supersaturation-dependency of the growth time is weaker
than the one of the first nucleation time; this is due to secondary nucleation
being less dependent on supersaturation than primary nucleation. As a
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consequence, the growth time contributes considerably to the variability in
detection times, especially at high supersaturation levels.
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Figure 10.2 Characterization of the reference system: Distribution of the detection times
(left), and of its components, i.e., of the first nucleation times (center) and of the growth
times (right). A total of 16384 crystallization processes were simulated to generate the
distributions. The colors indicate the four supersaturation levels studied by Cedeno et
al.[97]: S = 1.40 (red), S = 1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta).

Here, we have to highlight one important feature of the stochastic particle
balance model: it provides information on the number of crystals formed by
each type of nucleation, which is an information that is inaccessible through
experiments. Figure 10.3 shows the number of primary nuclei formed. The
dashed lines indicate the number of primary nuclei at the end of the process,
whereas the solid lines denote the number present at the detection time. We
posit that the latter is more insightful, since the methods to measure nucleation
discussed in this work are based on detection times. At all supersaturation
levels more than one primary nucleus is formed, and the number increases
with supersaturation. The overall number of primary nuclei is small; below 50

in all simulations. Since Figure 10.1 shows that billions of crystals are formed
during the process, secondary nucleation can be considered the dominant
mechanism of nucleation.
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Figure 10.3 Characterization of the reference system: Number of primary nuclei formed
in the 100 mL system. A total of 16384 crystallization processes were simulated to
generate the distributions. The dashed lines indicate the number of crystals formed by
primary nucleation at the end of the process, the solid lines show the number at the
detection time. The colors indicate the four supersaturations studied: S = 1.40 (red), S =
1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta).

To conclude this section, we compare the number of nuclei formed (Figure
10.3) with the detection times shown in Figure 10.2; we find that the variability
in detection times decreases with increasing number of primary nuclei. For
the highest supersaturation (S = 1.40), about 25 primary nuclei are present
at detection in average and the variability in detection times is practically
negligible. For the lowest supersaturation (S = 1.20), about 3 primary nuclei
are formed in average and a pronounced variability in detection times can
be observed. It follows that a crystallization process has to comprise a small
absolute number of primary nucleation events in order to exhibit relevant
variability. This is in line with the general understanding that nucleation has
to occur as a rare event to observe variability. Intriguingly, only the number
of primary nucleation events is small, whereas billions of crystals are formed
through secondary nucleation. As discussed in the following sections, the
number of primary nuclei governs the extent of variability present, and in
turn it is related to the accuracy of various methods to infer nucleation rates
from experimental data.

10.4 assessing methods to measure nucleation rates

In this section, we assess the methods to estimate nucleation rates that were
derived in Section 10.2: we first compare four methods to estimate the rate of
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primary nucleation in Section 10.4.1. The study considers the effect of multiple
process conditions, i.e., of crystallizer volume, supersaturation level, condition
of detection, and with/without secondary nucleation. The findings motivated
a more detailed characterization of deterministic methods (Methods 1 and
2) in Sections 10.4.2 and 10.4.3 and of the more accurate stochastic method
(SNM, Method 5) in Section 10.4.4.

For every process condition, 4096 simulations were carried out. We un-
derline that experimental data sets typically comprise only about 80–120

data points, which is considered large enough to estimate the variability in
detection times with sufficient accuracy;[68,70] however, some experimental
uncertainty remains at this data set size.[23,24] Hence, we simulate larger data
sets to be able to quantitatively compare sets of simulations generated under
different process conditions without relevant error due to the limited size of
the data set.

10.4.1 Comparison of the methods

Figure 10.4 reports the computed primary nucleation rates estimated using
Methods 1, 2, 4, and 5 for a broad range of crystallizer volumes at a supersat-
uration of S = 1.40. We limit this study to a single supersaturation level, since
similar trends were obtained at all levels in the range of 1.20 < S < 1.40, i.e.,
in the range that was studied experimentally by Cedeno et al[97]. We carried
out two sets of simulations, one with secondary nucleation (Figure 10.4 (a,c)),
and one without it (Figure 10.4 (b,d)). The color-coding corresponds to the
condition of detection. Method 1 depends on the size Ldet at which crystals
are detected, for which values of Ldet = 5µm (red, reference) and Ldet = 0
(dark red) have been studied. Methods 2,4 and 5 depend on α, i.e., the critical
volume fraction required for detection. Four values have been considered:
10−2 (dark blue), 10−3 (light blue), 10−4 (red, reference), and 10−5 (yellow).
We observe the following:

Method 1 (direct): In the presence of secondary nucleation, this method
strongly over-predicts the rate of primary nucleation (true value, black) in all
volumes; this is because the particle count evolution that is used to estimate
the rate does not distinguish between primary and secondary nucleation. All
crystals that are detected are interpreted as primary nuclei; hence the method
overestimates the rate of primary nucleation more, the faster secondary nucle-
ation is. With respect to the condition of detection, a lower nucleation rate is
obtained for the larger value of Ldet. This implies that a relevant fraction of
crystals does not grow beyond the critical size of Ldet = 5µm. The correspond-
ing evolution profiles shown in Figure 10.1 confirm this behavior. Hence, a
small value of Ldet is required to ensure that no crystals are missed when esti-
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mating the nucleation rate. We must note, however, that the underestimation
due to a non-zero value of Ldet is small compared to the overestimation due
to secondary nucleation.
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Figure 10.4 Estimating primary nucleation rates by means of deterministic (Methods
1 and 2) and stochastic methods (Methods 4 and 5) for the supersaturation level of S
= 1.40. The black line indicates the true value of the primary nucleation rate, i.e., the
one used to generate the simulations. Panel (a) shows the rates estimates for a process
comprising primary nucleation and secondary nucleation, as presented in Section 10.3.
Panel (b) shows the estimates for a simplified crystallization process in which only
primary nucleation, but no secondary nucleation occurs. Panels (c,d) show the mean
number of crystals present at the detection time, which depends on the value of α.
Note that all crystals are formed through primary nucleation, if secondary nucleation
is absent. The colors indicate the four values of the detection threshold α (Methods
2,4 and 5): 10−2 (dark blue), 10−3 (light blue), 10−4 (red, reference value), and 10−5

(yellow). For Method 1, they denote the value of the detection threshold Ldet: 5µm (red,
reference value) and 0 (dark red).

In the absence of secondary nucleation, quantitatively accurate primary
nucleation rates were obtained for both values of Ldet. They are not shown
in Figure 10.4 (b), because the lines would completely overlap with other
lines. It is worth noting that the method was not applied to volumes smaller
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than 10 mL, since the number of crystals formed was too small to define
a meaningful evolution profile (see Figure 10.4 (d)). Without secondary
nucleation, quantitative accuracy of the method was expected, at least for
Ldet = 0. The method remains accurate for Ldet = 5µm, because the primary
nucleation rate is a stronger function of the supersaturation than the growth
rate: at the time, when the last crystal nucleates, the supersaturation level is
still high enough to ensure that this crystal can grow to a size of Ldet = 5µm.
These findings imply that the method can be used to estimate the primary
nucleation rate accurately and in a robust manner, if no secondary nucleation
occurs. Otherwise, the method should not be used, as the true will be strongly
overestimated.

Method 2 (PBE-PN): Similar to Method 1, Method 2 overestimates rates in
the presence of secondary nucleation (Figure 10.4 (a)), and it is accurate in
its absence (Figure 10.4 (b)). However, the over-prediction is limited to large
volumes, where the estimates are about four orders of magnitude too large,
compared to nine orders of magnitude for Method 1. The reason for this is that
the detection times used in Method 2 are more sensitive to primary nucleation
than the slope of the particle count evolution used in Method 1. With respect
to the value of α, we find that the method is more accurate for smaller values:
this is especially prominent in the case of α = 10−2 in the absence of secondary
nucleation, where rates are underestimated in all volumes. This is because the
supersaturation is depleted considerably before detection occurs. Since such
depletion is not considered by the method, rates are underestimated. Let us
now consider the behavior in small volumes where the estimates increase with
volume: a transition to this regime occurs at a volume of about 100 mL in the
presence of secondary nucleation and of 10 mL in its absence. A comparison
with Figure 10.4 (c,d) reveals that this corresponds to the transition from
a regime where only a single primary nucleus is formed to a regime with
a large number of primary nuclei. Since the method is derived from the
deterministic population balance, it is based on the underlying assumption
that the population of crystals is large enough that it can be described as a
continuous entity. Hence it is unable to correctly interpret processes where
only a single primary nucleus is formed. In this regime, a decrease in volume
leads to an increase in detection time (see Section 10.6.6). The model cannot
capture this, and instead predicts smaller and smaller rates with decreasing
volume.

Method 5 (SNM): This stochastic method was found to be accurate in small
volumes independent of whether secondary nucleation is present or not. It
becomes inaccurate in large volumes, where a large number of primary nuclei
are formed. This implies two things. First, that the stochastic formation of
primary nuclei after the first one creates relevant variability in detection times:
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ignoring it leads to the observed under-prediction. Second, that the stochastic
formation of secondary nuclei does not contribute to the overall variability to
a relevant extent: in the volume-range, where only a single primary nucleus
forms, the method is accurate independent of how many secondary nuclei
are formed. Secondary nucleation, however, does have some effect on the
accuracy of the method: for the same number of primary nuclei formed, the
method is slightly more accurate in the presence of secondary nucleation
than in its absence. These aspects are discussed in Section 10.4.4. Finally,
we note that the rate estimates are practically independent of the volume
fraction of detection α: in the presence of secondary nucleation, the effect of
α is sufficiently small that the corresponding lines overlap. This is because
an earlier or later detection of crystals is accounted for by the method in the
value of the growth time. A larger value of α results in longer growth times
and in a larger number of crystals present at detection (Figure 10.4 (c,d)), but
it affects the estimated nucleation rate only slightly.

Method 4 (MNM): This method exhibits similar trends as Method 5 (SNM),
but it underestimates the rate more strongly in large volumes. The threshold
volume for accuracy is smaller than for Method 5, because the underlying
mono-nucleus assumption is more stringent than the single-nucleus assump-
tion used to derive Method 5. The single-nucleus assumption imposes that
the growth time after the first nucleation event is constant, whereas the mono-
nucleus assumption imposes that it is zero. Method 4 is thus accurate only
in the limiting case that tn1 ≫ tg. Since no growth time is considered, the
estimates depend more on the value of α than those of Method 5. Small
values of α are beneficial, since they correspond to conditions where the actual
growth time is short; hence neglecting it has a smaller effect on the accuracy.

Having studied the accuracy of the four methods, we find that none of them
is accurate under all conditions; that is, both with and without secondary
nucleation and independent of volume. In sufficiently small volumes, the
stochastic Method 5 (SNM) should be considered as the method of choice,
since it is not affected by the presence of secondary nucleation unlike the
deterministic Methods 1 and 2. Furthermore, it is in general more accurate
than Method 4 (MNM). In large volumes, however, no method was accurate
in the presence of secondary nucleation. Thus, we study three questions in
the following: first, we investigate whether one could conceive an alternative
deterministic method for primary nucleation that is not affected by secondary
nucleation (Section 10.4.2). Then, we consider whether deterministic methods
such as Method 3 may be used to estimate the rate of secondary nucleation
in Section 10.4.3. Finally, we study in detail why the stochastic Method 5 is
inaccurate in large volumes in Section 10.4.4.
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10.4.2 Deterministic methods for primary nucleation

The deterministic methods (Methods 1 and 2) were found to over-predict the
rate of primary nucleation in case secondary nucleation is present. Stochastic
methods are still able to provide accurate estimates in the limit of small
volumes, i.e., when only a few primary nuclei are formed in average (cf.
Section 10.4.1). In large volumes, however, there is a need for an alternative
method that is accurate. We thus investigate whether such method may be
derived from deterministic considerations.

To this end, we carried out the sensitivity study illustrated in Figure 10.5,
focusing on the process behavior in case primary nucleation were faster. The
slowest case (solid lines) corresponds to the reference kinetics, and we compare
the particle count evolution with systems exhibiting 102 times (dashed lines),
104 times (dotted lines), 106 times (dash-dotted lines), 108 times (solid lines),
and 1010 times (dashed lines) faster primary nucleation kinetics, simulated by
a corresponding increase in the value of the pre-exponential parameter APN.

Figure 10.5 Effect of the primary nucleation rate on process behavior. Six sets of
increasingly fast primary nucleation are shown for two supersaturation levels: S = 1.40
(red) and S = 1.20 (magenta). The slowest primary nucleation kinetics (solid lines)
corresponds to the reference values, while faster kinetics have been evaluated by using
larger values of the pre-exponential parameter APN: 102 times larger (dashed lines), 104

times larger (dotted lines), 106 times larger (dash-dotted lines), 108 times larger (solid
lines), and 1010 times larger (dashed lines).

An increase of up to six orders of magnitude in primary nucleation rate
does not significantly affect the process behavior with respect to deterministic
attributes such as the shape of the evolution profile or the final number of
crystals. When increasing the primary nucleation rate by eight orders of mag-
nitude, a minor change in process behavior is observed for the supersaturation



272 estimating crystal nucleation rates

of S = 1.40, i.e., a larger number of crystals. For S = 1.20, an increase in
ten orders of magnitude is required to induce a relevant change. While this
analysis focuses on the particle count profile, similar observations were made
for alternative process attributes such as the shapes of the evolution profiles
for concentration and particle size distribution (not explicitly shown). We
conclude that most process attributes are governed predominantly by sec-
ondary nucleation in case it is present at a relevant rate, and not by primary
nucleation. From a mathematical point of view, any parameter estimation
method based on such attributes is thus bound to fail. The detection time
is the only attribute sensitive to primary nucleation, i.e., it is shorter when
primary nucleation is faster. The reason for this is that primary nucleation has
a stronger effect on the early phases of crystallization, when the rate of sec-
ondary nucleation is small, compared to later phases. However, as discussed
before, the deterministic method based on detection times (i.e., Method 2) is
unable to yield accurate primary nucleation rates.

Therefore, we generalize these observations by arguing that deterministic
methods to measure primary nucleation rates generally should not be applied
to systems in which secondary nucleation dominates. While such statement
may appear to be obvious, we emphasize two points: First, deterministic
methods are still predominantly used in the literature to estimate primary
nucleation rates, even from unseeded batch experiments.[70,228,251–253] Second,
in general it is not known a priori, which type of nucleation dominates in a
crystallization process. For example, Cedeno et al.[97] assumed that primary
nucleation dominates in the reference work and extracted primary nucleation
rates directly from the particle count evolution with a method similar to
Method 1. This highlights the need for a simple and robust experimental
approach to probe whether relevant secondary nucleation takes place. We
discuss in Section 10.6.7 that experiments based on single-crystal seeding may
provide this information.

If secondary nucleation dominates, and the volume is too large for an
accurate application of the stochastic Methods 4 and 5, primary nucleation
rates cannot be estimated accurately. Hence, process conditions have to be
modified to enable accurate estimates; the volume of the crystallizer may be
decreased to apply a stochastic method, or the rate of secondary nucleation
may be decreased by adjusting operating conditions such as the intensity of
stirring.

10.4.3 Deterministic methods for secondary nucleation

Deterministic methods for primary nucleation rates have been found to be
inaccurate in the presence of secondary nucleation. Here, we study whether
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the rate of secondary nucleation may be estimated in a deterministic manner.
Let us first consider the method based on detection times (Method 3). Figure
10.6 (a) shows the obtained nucleation rates for all four supersaturation levels
in different volumes. Figure 10.6 (b) reports the same data plotted vs. the
mean number of primary nuclei formed instead of vs. volume.
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Figure 10.6 (a,b) Secondary nucleation rates obtained using the deterministic expression
for the growth time (cf. Equation 10.18), Method 3. (c,d) Primary nucleation rates
obtained through the stochastic Method 5. The colors indicate the four supersaturations
studied: S = 1.40 (red), S = 1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta). The
dashed lines denote the true values of the nucleation frequency. (a,c) Plotted versus
crystallizer volume. (b,d) Plotted versus mean number of primary nuclei formed.

Accurate rates are obtained at all supersaturation levels in sufficiently small
volumes. Rates are over-predicted, however, in large volumes. The threshold
shifts towards smaller volumes for increasing supersaturation levels. The rea-
son for this lies in the number of nuclei formed: in the limit of a single primary
nucleus, rates are estimated accurately independent of supersaturation, since
the crystallization process is well described by the underlying assumptions of
the method. The more primary nuclei formed, the stronger the over-prediction.
This implies that the number of primary nuclei is a more useful measure of
the accuracy of the nucleation rate estimate than the system’s volume, as
illustrated in Figure 10.6(b). Figure 10.6 (c,d) provide for comparison the
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estimated rates of primary nucleation using the stochastic Method 5 for the
same supersaturation levels. Intriguingly, Methods 3 and 5 exhibit the same
range of accuracy, implying that they can be combined to obtain a complete
understanding of nucleation in the limit of a single primary nucleus. To the
best of our knowledge, such combined estimate from detection times has not
yet been proposed in the literature. We thus consider it a promising avenue
for future work.

In case multiple primary nuclei form, alternative deterministic methods
may be applied to estimate the kinetics of secondary nucleation. As discussed
in Section 10.4.2, process attributes are dominated by secondary nucleation if
it occurs at a relevant rate. For example, the evolution of the particle count
may be fitted to predictions of either the deterministic population balance
model or of the stochastic particle balance model (Method 6). This, however,
requires prior knowledge of the primary nucleation kinetics, e.g., obtained
through the stochastic method (Method 5) in a smaller volume where only
one primary nucleus is formed. This combination of Methods 5 and 6 is the
approach that we have chosen to extract the reference kinetic parameters from
the experimental data reported in the literature.[97] We describe the procedure
in more detail in Section 10.6.3.

10.4.4 Stochastic methods for primary nucleation

The stochastic Methods 4 and 5 enable an accurate estimation of the primary
nucleation rate in the presence of secondary nucleation, i.e., under conditions
where deterministic methods fail (see Figures 10.4 and 10.6). However, their
accuracy is limited to small volumes, and this section is dedicated to inves-
tigate this behavior. We focus on Method 5, since it is more accurate than
Method 4. We first consider the accuracy of the predicted nucleation rates
at different supersaturation levels in Figure 10.6 (c,d). The behavior closely
mirrors the one of Method 3 for secondary nucleation: nucleation rates are
accurately estimated in the limit of small volumes. They increasingly deviate
from the true value with increasing volume, and with increasing supersatura-
tion. At all supersaturation levels, accurate rates are estimated when only a
single primary nucleus forms. We also studied the accuracy of the primary
nucleation parameters estimated from these rates, where we observed the
same volume-dependency of the accuracy (see Section 10.6.5).
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Figure 10.7 Scatter plot comprising all process conditions studied in this work, i.e., nine
volumes, four supersaturation levels, and with/without secondary nucleation. For each
condition, both the value of the standard deviation ratio and the relative accuracy are
shown. The relative accuracy was computed as the ratio of the estimated value for the
nucleation rate and the true value. The red line indicates the diagonal.

We continue this analysis by quantifying the conditions for accuracy of the
method. The relative accuracy of Method 5, termed jM5

PN , may be defined as
follows:

jM5
PN =

JM5
PN

Jtrue
PN

=
KM5

PN
Ktrue

PN
=

(
Var(tn1)

Var(tdet)

)0.5

=
Std(tn1)

Std(tdet)
(10.31)

Here, JM5
PN denotes the estimated value of the nucleation rate through Method

5, and Jtrue
PN its true value. The relations between nucleation frequency and

variance are given by Equations 10.26 and 10.27. To confirm the validity of

Equation 10.31, Figure 10.7 reports the relative accuracy (computed as JM5
PN

Jtrue
PN

)

and the standard deviation ratio Std(tn1)
Std(tdet)

for all process conditions that were
studied in this work. The two quantities are strongly correlated, confirming
that the accuracy of the stochastic Method 5 can be probed quantitatively
through the standard deviation ratio: the method is accurate if it assumes
a value of one, and it underestimates the true nucleation rate in case it is
smaller.
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Figure 10.8 (a,b) Standard deviation ratio of first nucleation time and of detection time
for nine volumes and four supersaturation levels. Simulations were carried out both in
the presence and in the absence of secondary nucleation. (c,d) Coefficient of variation
for the same data sets. (a,c) Volume-based plots. (b,d) Number of nuclei-based plots.
The solid black line at a value of one indicates the theoretical value corresponding to
the single-nucleus assumption (SNM).

To this end, Figure 10.8 reports the standard deviation ratio as a function
of crystallizer volume (panel (a)) and of the mean number of primary nuclei
formed (panel (b)); the colors indicate the studied supersaturation levels,
and the line type the presence (solid) or absence (dash-dotted) of secondary
nucleation. A value of one is observed in sufficiently small volumes and for
sufficiently small numbers of nuclei in all cases, in line with the behavior
observed in Figure 10.6. In larger volumes and for a large number of primary
nuclei, the ratio approaches a value of zero in all cases, underlining the
limitations of the method. For a given volume or number of nuclei, the
standard deviation ratio is larger in the presence of secondary nucleation than
in its absence. With respect to the effect of supersaturation, the lines for all
levels overlap if the standard deviation ratio is plotted as a function of the
number of nuclei. This again confirms that the number of primary nuclei
formed is a more useful predictor of the method’s accuracy than the volume.
For a given number of primary nuclei, the standard deviation ratio is larger in
the presence of secondary nucleation than in its absence. To appreciate this
effect, one needs to consider that within an experiment early primary nuclei
contribute more to the observed variability in detection times than later ones
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(cf. Section 10.2.3). In the presence of secondary nucleation, early primary
nuclei are even more dominant, since their daughter crystals compete with the
later primary nuclei in depleting the supersaturation. Even if many primary
nuclei form in the presence of secondary nucleation, the early ones retain a
dominant effect on the overall variability. In turn, the stochastic Method 5 is
more accurate in the presence of secondary nucleation for a given number of
primary nuclei. For this reason, the standard deviation ratio in the absence of
secondary nucleation may be considered as a robust worst case predictor of
the method’s accuracy.

However, we note that both the standard deviation ratio and the number
of primary nuclei formed are accessible only through simulations, but not
through experiments. In order to probe the method’s accuracy when applying
it to experimental data, an experimentally accessible validation criterion
is required. Specifically, such criterion has to be based on features of the
detection time distribution, since no information on the first nucleation time
are available. Hence, we studied whether the coefficient of variation of
detection times can be used as validation criterion. It is defined as

Coeff. of var. =
Std(tdet)

E(tdet)
=

√
Var(tn1) + Var(tg)

E(tn1) + E(tg)
=

√
K−2

PN + Var(tg)

K−1
PN + E(tg)

(10.32)

assuming isothermal conditions. Conceptually, the coefficient is to approach a
value of one in sufficiently small volumes and for small numbers of primary
nuclei formed: this is because under this condition, the detection time is
dominated by the features of the first nucleation time. In the limit of large
volumes and of large numbers of primary nuclei, the coefficient approaches a
value of zero. In this case, all quantities are to approach zero except the mean
value of the growth time in the denominator, which is volume-independent
(see Section 10.6.6). To this end, Figure 10.8 (c) shows the coefficient as a
function of crystallizer volume, and Figure 10.8 (d) as a function of the mean
number of primary nuclei formed. In both cases, the trends for the coefficient
are in line with expectations. We further note that the lines for all process
conditions overlap if the coefficient is plotted vs. the number of primary
nuclei formed. This if of great relevance, since it provides strong evidence that
the coefficient of variation may be used to probe the mean number of primary
nuclei formed in a way that is independent of the actual crystallization kinetics
of the system. As a consequence, the coefficient of variation may be used as
a measure for the accuracy of the method. As reported in Figure 10.8 (b), a
standard deviation ratio of about 0.9 is obtained when about 5 primary nuclei
form in the absence of secondary nucleation. Hence, we consider the method
to be accurate when 5 or fewer primary nuclei form. According to Figure
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10.8 (d), this corresponds to a coefficient of variation of about 0.25, which we
define as experimental criterion for quantitative accuracy. To conclude, we
recommend that future studies involving any of the Methods 2 − 5 report
the value of the coefficient of variation. This will aid both practitioners and
readers to assess the accuracy of the reported nucleation rates.

10.5 discussion and conclusions

10.5.1 Best-practice recommendations

According to the literature, different methods to estimate primary nucleation
rates from unseeded batch crystallization experiments may provide values
that differ by several orders of magnitude.[70,97,236,237] This work revealed that
the following four factors contribute to this divergence:

1. Deterministic methods (e.g., Methods 1, 2) require knowledge on the
relevant type of nucleation. This is the case because all process attributes
that were studied in this work were found to be governed by secondary
nucleation in case it occurs at relevant rate. Hence primary nucleation
rates should be estimated from such attributes only, if secondary nucle-
ation is negligible.

2. Deterministic methods that are derived from the population balance
model (e.g., Methods 2 and 3) are unable to accurately describe crystal-
lization processes in which a small absolute number of (primary) nuclei
are present; in this case, the underlying assumption of a continuous
population is not valid.

3. Deterministic methods are more sensitive to the condition of detection
than stochastic methods. Specifically, if the supersaturation is depleted
considerably before detection, the deterministic Method 2 may underes-
timate the primary nucleation rate considerably.

4. Stochastic methods (e.g., Methods 4 and 5) underestimate nucleation
rates in case the underlying single-nucleus or mono-nucleus assump-
tions do not apply. The criterion derived in Section 10.4.4 may be used
to probe the accuracy of the more accurate Method 5 for a given set of
data.

Based on these findings, we developed best-practice recommendations
for the measurement of nucleation rates in crystallization processes. We
distinguish four cases based on two pieces of information that have to be
obtained before any method is applied: first, it has to be determined whether
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relevant variability is present (i.e., if the coefficient of variation is larger
than 0.25) or not. To do so, a sufficiently large number of repetitions of the
experiment has to be carried out. Second, one has to assess whether relevant
secondary nucleation is present or not. We studied single-crystal seeding
(cf. Section 10.6.7) and confirmed that this type of experiment is capable to
provide such information: If a sufficiently small seed leads to a significant
decrease in detection times, secondary nucleation can be considered relevant.
The four cases are categorized as follows:

1. Relevant variability and relevant secondary nucleation: The primary
nucleation rate can be estimated accurately with the stochastic method
(Method 5), since the single-nucleus assumption applies. The secondary
nucleation rate can be estimated deterministically from the detection
times (Method 3), or by fitting the particle count evolution to either
the deterministic population balance model or the stochastic particle
balance model derived here (Method 6).

2. Relevant variability and no secondary nucleation: The primary nu-
cleation rate can be estimated accurately with the stochastic method
(Method 5), as in the first case.

3. No variability and relevant secondary nucleation: The primary nucle-
ation rate cannot be estimated accurately, since both stochastic and
deterministic methods fail under these conditions. Process conditions
have to be adjusted, e.g., by decreasing volume until relevant variability
is observed. The secondary nucleation rate can be estimated accurately
if the primary nucleation rate is known. This is done by fitting the
particle count evolution to a deterministic population balance model or
the stochastic particle balance model (Method 6).

4. No variability and no secondary nucleation: The primary nucleation
rate can be estimated through any deterministic method, e.g., Methods
1 and 2 that were studied in this work. In general, Method 2 is to be
preferred, since it is less sensitive to over-predictions in the presence of
secondary nucleation. It should be considered, however, that Methods
1 and 2 require different types of experimental data; for Method 1, the
particle count evolution has to be measured accurately. For Method
2, both the limit of detection and the crystal growth rate have to be
determined in separate experiments.

We especially underline the third case, where secondary nucleation occurs
at a relevant rate and where no relevant variability is observed. Here, accurate
rates of primary nucleation conceptually cannot be obtained, and different
methods were confirmed to provide widely diverging values for the primary
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nucleation rate. Recent experimental evidence indicates that secondary nucle-
ation may be the dominant type of nucleation in unseeded batch processes for
a wide variety of compounds, implying that this case is of practical relevance
in industrial crystallization.[105,215,228,254] As demonstrated in Section 10.4.1,
deterministic methods in this case over-predict primary nucleation rates, while
stochastic ones under-predict them. Importantly, this conceptual finding is
supported by a number of recent experimental studies in the literature, which
observed that stochastic methods predicted smaller primary nucleation rates
than deterministic methods for the same system.[70,97,237] These literature
studies, however, were not able to identify the underlying reasons for this
behavior; as we show in this work, this difference naturally arises because
stochastic and deterministic methods are accurate under different conditions.

10.5.2 Concluding remarks

This work reports novel insights into how accurate measurements of nucle-
ation rates are to be carried out: it provides practitioners with the conceptual
framework to identify and apply appropriate methods for the estimation
of crystal nucleation rates under general conditions. To this end, various
commonly used stochastic and deterministic approaches to estimate primary
and secondary nucleation rates from isothermal crystallization experiments
have been studied and compared.

To carry out this assessment, we have developed a novel modeling method-
ology termed stochastic particle balance for the simulation of a crystallization
process comprising stochastic primary nucleation, stochastic secondary nu-
cleation, and deterministic crystal growth. We used the model to simulate
the crystallization of a well-studied model compound, for which diverging
primary nucleation rates have been reported for different methods of measure-
ment.[97,236] Nucleation rates were estimated from the simulated data through
multiple methods and were compared with the true values. For primary nu-
cleation, no method considered in this work was able to estimate the kinetics
accurately under general conditions. Deterministic methods (Methods 1 and
2) were shown to over-predict rates in the presence of secondary nucleation.
Stochastic methods (Methods 4 and 5) were found to be unaffected by the
presence of secondary nucleation, which is advantageous when compared to
the deterministic ones. Furthermore, their estimates were shown to depend
less on the condition of detection than the ones of the deterministic Method 2.
However, they under-predicted rates in case a large number of primary nuclei
are formed.

Based on these observations, we have studied the accuracy of the stochastic
method based on the single-nucleus assumption (Method 5) in detail. We have
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proposed a criterion to verify its applicability for arbitrary experimental data
sets, thus providing the theoretical foundations required for its rational use.
Furthermore, we have developed a method to estimate the rate of secondary
nucleation from detection times (Method 3), which can be applied together
with the stochastic method (Method 5). This novel approach significantly
increases the amount of information that can be inferred from detection times.

Finally, we consider this work as a starting point for a more rational use
of methods to estimate crystal nucleation rates in general. While we focus
on isothermal conditions, the underlying methodology can be extended to
more complex polythermal methods, as well as to crystallization processes of
polymorphic or chiral compounds.

10.6 supplementary information

10.6.1 Parameter estimation via Method 5

In this section, we discuss how to estimate primary nucleation parameters
from sets of detection times obtained through either experiments or simula-
tions. First, the Mdet measured detection times obtained from a total of Mtot
measurements are sorted in ascending order:

ttt = [t1, t2, ..., tMdet ]
T : 0 < t1 < t2 < ... < tMdet < ∞. (10.33)

The empirical cumulative distribution function (eCDF), F∗(tdet), for these
times is defined as

F∗(tdet) =
1

Mtot + 1

∫ tdet

0

Mdet

∑
i=1

δ(τ − ti)dτ (10.34)

where δ is the Dirac delta function. Importantly, this definition of F∗(T) differs
from those provided in the literature in one aspect, i.e., it contains a division
by Mtot + 1, whereas literature expressions generally involve a division by
Mtot.[23,24,67,68,97] As discussed elsewhere, a division by Mtot results in a biased
distribution:[76] it assigns a physically and mathematically not meaningful
value of 1 to the highest measured detection time, assuming all experiments
nucleated.

According to the Glivenko-Cantelli theorem,[99] the empirical distribution
approaches the theoretical one in the limit of an infinitely large data set:

lim
Mtot→∞

F∗(tdet) = F(tdet) (10.35)
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Similarly, the measured values of the mean detection time t̄det and its variance
σ2

det approach the theoretical values E(tdet) and Var(tdet) for infinite large
data sets. However, it is worth highlighting that in some experimental stud-
ies, not all vials nucleate, so that mean and variance cannot be computed
accurately.[68,91]

Thus, parameters K and tg for a set of detection times are generally ob-
tained by minimizing the difference between empirical and theoretical distribu-
tions,[23,24,68,91] which was shown to be a robust method even for incomplete
data sets.[91] The literature also reports a modification of this method, where
tg is interpreted as the shortest measured detection time;[91,97] this procedure
is motivated by the observation that the fitting of tg yielded negative, and
thus non-physical values in some studies. We discuss this issue in more detail
in the following.

We first highlight that the model-based study on the stochastic method
by Vetter and co-workers[91] observed no relevant difference among the two
methods to estimate the growth time and found no explanation for the emer-
gence of negative values. The authors studied the stochastic method under
the assumptions that (1) only a single primary nucleation event occurs during
the crystallization process and that (2) detection occurs when this nucleus has
grown to an arbitrary, pre-defined size.[91] These assumptions are significantly
stronger than those used in the stochastic particle balance model that we
derived in this work. For this reason, we compared both methods to estimate
the growth time based on the simulated sets of detection times. However,
similar to Vetter and co-workers[91], we did not observe relevant differences
between the two methods; this implies that negative growth times are caused
by factors not considered in the simulations. For this reason, we only show the
rates obtained by means of combined fitting of growth time and nucleation
frequency in the main body of this work.

To understand where negative values for the growth time can come from, let
us consider again the governing equations of the single-nucleus assumption
(see also Section 10.2.3 in the main body):

KPN =
1

Var(tdet)0.5 (10.36a)

tg = E(tdet)−
1

KPN
(10.36b)

These two expressions may be solved exactly for any arbitrary combination
of E(tdet) and Var(tdet): first, the nucleation frequency is obtained directly
from Var(tdet). Second, tg is computed based on the obtained value of the
nucleation frequency and on E(tdet). Let us now consider how the value of
tg changes when the detection times are affected by experimental error. For
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the sake of simplicity, we assume that such error increases the variance of the
detection times by a value of σ2

error, but does not affect their expected value,
so that

Var(t̂det) = Var(tdet) + σ2
error (10.37)

whereby t̂det denotes the detection times affected by the error. Such type of
error may occur for example due to practical limitations in ensuring identical
temperature profiles among parallelized crystallizers within an experimental
series.[23,24,76] Considering Equations 10.36, it is apparent that the error leads
to smaller values of both nucleation frequency and growth time. In the limit
of an infinitely large experimental error, the nucleation frequency approaches
zero, and the growth time approaches negative infinity. The presence of
significant experimental errors therefore has to be regarded as a potential
cause for negative growth times.

When the fitting of the growth time yields a negative value, one may utilize
the alternative interpretation of the growth time as shortest detection time. The
corresponding estimate for the nucleation frequency is to be more accurate;
this is, because the shortest detection time in any case assumes a non-negative
value, which is a physically more meaningful estimator for the growth time
than a negative value. Setting a non-negative value for the growth time hence
limits the under-prediction of the growth time due to the error, and in turn
yields a more accurate nucleation frequency.

10.6.2 Numerical aspects of Method 6

In this section, we discuss several numerical aspects relevant to the imple-
mentation of the stochastic particle balance model (Method 6). First, we notice
that the accuracy of the model is subject to the choice of the time interval.
Therefore, numerical verification has to be carried out, which was done by
comparison with the deterministic, analytical solutions of the population
balance model derived in Section 10.2.2. Second, it has to be acknowledged
that in case secondary nucleation is dominant, the nucleation frequency will
change strongly throughout the process and may be very small initially. To
avoid a large number of time steps without any formation of nuclei in the
beginning of the simulation, the simulation is initiated with the presence of
a single primary nucleus with zero size. The value of tn1 in turn is obtained
by inserting a randomly generated number drawn from the uniform distribu-
tion in [0,1] into the expression for the cumulative distribution provided by
Equation 10.20a.[22,76]

Now let us consider the implementation of the constitutive equations. A
discrete number of nuclei Ni forms at time ti, which denotes the beginning
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of the time interval [ti , ti + ∆t). Information on the discrete crystal size
distribution is stored in two vectors L and N, defined as

N = [N0, N1, N2, ..., Nend] (10.38)

and

L = [L0, L1, L2, ..., Lend] (10.39)

respectively. Note that elements in N are computed only once, namely at the
corresponding time step. The elements in L, on the other hand, may change
due to growth at any time step. The first entry in both vectors corresponds to
the initial primary nucleation event that occurs at time tPN

n1 = t0 where L0 = 0
and N0 = 1. The moments of the crystal size distribution then read

µj =
Lj · N

V
(10.40)

Importantly, not only the moments are obtained with this stochastic model-
ing approach, but the entire crystal size distribution and its evolution over
time. Furthermore, we highlight the capability of the method to track sub-
populations of crystals; nuclei can be classified readily into primary and
secondary ones, which was done in this work. Furthermore, the model allows
for studies of chiral crystallization by assigning primary nuclei a random
chirality and assuming that secondary nucleation is enantiospecific. This can
be done in two ways: first, the absolute number of primary nuclei that form
during a time step NPN

i is obtained from the Poisson distribution; the number
of primary nuclei of a certain chirality is obtained by drawing a number of
the Binomial distribution subject to NPN

i trials and a success probability of 0.5.
Second, for both chiralities the number of nuclei formed is directly obtained
from the Poisson distribution when applying an expected value that is half
the one for the entirety of primary nucleation.

Finally, to simulate the variability of the process, multiple repetitions of
the simulations were carried out subject to different seeds of the random
number generator to ensure independence. For this purpose, the model was
implemented in a way that allowed for parallelization, typically employing
sixteen workers. Table 10.2 provides an overview over all model parameters.
The model as well as all methods to estimate nucleation parameters have been
implemented in MATLAB R2021a.
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Quantity Symbol Unit Value

Primary nucleation parameter APN m−3s−1
3.3 ×103

Primary nucleation parameter BPN - 0.127

Secondary nucleation parameter ka × kSN,a m−2s−1 109

Secondary nucleation power sa - 0.98

Crystal growth parameter kg m s−1 10−5.4

Crystal growth power g - 1.05

Equilibrium concentration c∗ g / kg 40.6

Crystal density ρc kg m−3
1380

Solvent density ρs kg m−3
953.8

Crystal shape factor kv - 0.0144

Crystallizer volume V m3
10

−9 to 10
−1

Supersaturation S - 1.20 to 1.40

Crystal detection size Ldet m 5 × 10−6

Seed crystal size Lseed m 0 to 10−2

Detection volume fraction α - 10−5 to 10−2

Time step dt s 0.1

Process duration (with SN) tend s 1000

Process duration (without SN) tend s 10000

Number of simulations N - 4096

Table 10.2 List of model parameters that were used in the simulations presented in this work. In
case specific studies employed different parameter values, this is highlighted in the corresponding
sections.

10.6.3 Properties of the reference system

Cedeno et al.[97] discuss their experimental methodology in detail in two
works,[97,236] so that we limit this section to a summary. Cedeno et al.[97]

studied the crystallization of para-aminobenzoic acid in ethanol/water via
two types of isothermal experiments.

First, they measured induction times in microvials using a Crystal16 instru-
ment, following the methodology widely used in the literature.[68] A total of
112 induction times were measured per experiment, by carrying out seven
repetitions in sixteen vials. Experiments at four supersaturation levels were
conducted to estimate the primary nucleation kinetics with multiple variations
of the stochastic method. In this work, we use the reported parameter values
for primary nucleation based on linear regression, i.e., those provided in Table
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S3 in the Supplementary Information of Cedeno et al.[97] The growth time was
interpreted as shortest detection time, in line with the discussion in Section
10.6.1.

The second experiment comprises measurements of the particle count evo-
lution via optical reflectance measurement (ORM). A reactor comprising 100

mL solution was crash-cooled to the desired temperature at the beginning of
the experiment; it was held at constant temperature, until no change in the
particle count was observed anymore. With this method, the authors obtained
a detection rate of crystals, assuming that particles are detected as soon as
they reach a critical size of Ldet = 5µm. Experiments at different stirring rates
were conducted with the aim of characterizing the effect of hydrodynamics on
nucleation. In this work, we analyze the data provided in the Figures 7 and 8

of Cedeno et al.[97], i.e., for a stirring rate of 700 rpm. The relevant information
were digitally extracted from the figures and are reported in Table 10.3.

With respect to the kinetics of the system, we assume that the primary
nucleation kinetics obtained via the stochastic method is correct. We thus
use the reported primary nucleation parameters to estimate the secondary
nucleation and crystal growth parameters from the particle count evolution in
the 100 mL experiments. Optimal parameters were identified by minimizing
an objective function using the MATLAB routine patternsearch, which applies
a direct search algorithm. The objective function is

Ψ =
J

∑
j=1

H

∑
h=1

ϑj,h (10.41)

where ϑj,h is the term related to characteristic quantity j at supersaturation
level h. ϑj,h is defined as

ϑj,h =

 θ
exp
j,h − θsim

j,h

θ
exp
j,h + θsim

j,h

2

(10.42)

whereby θj,h is the actual value of the characteristic quantity, obtained from
experimental data (θexp

j,h ) and from stochastic simulations (θsim
j,h ). Two quantities

were incorporated into the objective function, namely the total number of
particles formed and the duration elapsed between reaching 25% and 75%
of the final particle count at the end of the process. Additional quantities
were considered, but ultimately not included: the optimized parameter values
already provided a sufficiently accurate representation of the experimental
data.
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Supersaturation Ntot [-] ∆t25,75 [s]
1.40 5.1 × 10

9
20

1.32 4.5 × 10
9

25

1.25 3.4 × 10
9

28

1.20 2.6 × 10
9

37

Table 10.3 Data obtained for the PABA system.

10.6.4 Simulations without secondary nucleation

In this section, we present stochastic simulations of the crystallization of
para-aminobenzoic acid in water/ethanol based on the stochastic particle
balance model derived in Section 10.2.3. The simulations are carried out in
the absence of secondary nucleation, i.e., only primary nucleation and crystal
growth are considered. This section complements the simulations shown in
Section 10.3 in the main body of this work, where secondary nucleation was
considered as well.

0 2000 4000 6000 8000
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0 2000 4000 6000 8000

Figure 10.9 Characterization of the reference system in the absence of secondary
nucleation: Distribution of the induction/detection times (left), and of its components,
i.e. the first nucleation time (center) and the growth time (right). A total of 4096
crystallization processes were simulated to generate the distributions. The colors
indicate the four supersaturation levels studied by Cedeno et al.[97]: S = 1.40 (red), S =
1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta).

Figure 10.9 presents the detection times (panel (a)) and growth times (panel
(b)). Since no secondary nuclei form, supersaturation is depleted only by
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the nuclei formed through primary nucleation. We show in Figure 10.10 the
number of nuclei that form; in the 100 mL system (panel (a)), about 50 to 250

nuclei form in average for the different supersaturation levels. These numbers
are about one order of magnitude higher than those obtained in the presence
of secondary nucleation (see panel (b)). This implies that the rapid occurrence
of secondary nucleation limits the time in which primary nuclei can form.
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Figure 10.10 Characterization of the model system in the absence of secondary nucle-
ation: (a) Number of primary nuclei formed in 100 mL. A total of 4096 crystallization
processes were simulated to generate the distributions. (b) Mean number of primary
nuclei in the absence of secondary nucleation (solid) and in the presence of secondary
nucleation (base case, see Figure 10.3, dashed lines) present at the detection time for
different volumes. The colors indicate the four supersaturations studied: S = 1.40 (red),
S = 1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta).

To conclude this section, we consider the particle count evolution in the
absence of secondary nucleation as shown in Figure 10.11. As expected, the
particle count increases initially in a linear manner with time. Over time, the
supersaturation is depleted and the nucleation rate decreases; this leads to
a decrease in the slope of the evolution profile, until a plateau is reached
eventually. This behavior is very far from the one observed in the presence
of secondary nucleation (cf. Figure 10.1), where an exponential increase in
particle count was observed after a pronounced lag phase.
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Figure 10.11 Characterization of the reference system: Evolution of the system after the
first nucleation event. (a) Total number of detected crystals. (b) Total number of crystals,
i.e. including those smaller than the detection threshold. The colors indicate the four
supersaturation levels studied by Cedeno et al.[97]: S = 1.40 (red), S = 1.33 (green), S =
1.26 (blue), and S = 1.20 (magenta).

10.6.5 Estimation of primary nucleation parameters

The knowledge of nucleation rates vs. supersaturation is a prerequisite
to compute the parameters in the kinetic rate equation. Figure 10.12 shows
the values of the parameters APN and BPN appearing in the expression for

the primary nucleation frequency, KPN = VAPNS exp
{
− BPN

ln(S)2

}
. The black

lines correspond to the parameter values obtained from the rates shown in
Figure 10.6. Further, we studied cases for faster (orange) and slower (purple)
primary nucleation, corresponding to a pre-exponential factor APN increased
and decreased by one order of magnitude.

For all three sets of primary nucleation kinetics, the stochastic method
provided quantitatively accurate parameter values for small volumes. For
larger volumes, the pre-exponential parameter APN is under-predicted, and
the under-prediction increases with increasing volume. The same effect
already observed in Figure 10.6 appears here as well, namely a threshold at
lower volume under conditions of faster primary nucleation. With respect to
the exponential parameter, BPN, we similarly find a quantitative agreement for
small volumes, and an under-prediction at larger ones. However, the extent of
the under-prediction becomes approximately constant for sufficiently large
volumes.
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Figure 10.12 Measured nucleation parameters through the stochastic method for differ-
ent volumes. (a) Pre-exponential parameter APN. (b) Exponential parameter BPN (b).
The dashed lines indicate the true values for the nucleation parameters. Note that three
values for APN were studied to investigate the sensitivity of the methods towards the
values of the kinetics. The reference set of primary nucleation kinetics corresponds to
the nucleation rates shown in Figure 10.6.

10.6.6 On the characteristic times

In this section, we study in detail the volume-dependency of the three
characteristic times, i.e., the first nucleation time, the growth time, and the
detection time in the presence of secondary nucleation. Figure 10.13 shows
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how the mean values for the three characteristic times depend on crystallizer
volume.
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Figure 10.13 Characterization of the reference system: Effect of volume on the mean
value of the three characteristic times. (a) Detection time. (b) First nucleation time. (c)
Growth time. The colors indicate the four supersaturation levels studied: S = 1.40 (red),
S = 1.33 (green), S = 1.26 (blue), and S = 1.20 (magenta).

Detection times (panel (a)) exhibit two regimes: for small volumes, the times
exponentially increases with size; for large volumes, a nearly constant value is
observed. This is due to the behavior of its constituents: The first nucleation
times (panel (b)) decrease inversely proportional with increasing volume.
Thus, for sufficiently small systems, the first nucleation time dominates the
detection time. The growth time, on the other hand, depends only weakly on
system size and eventually reaches a plateau; this is due to the exponential
growth in crystalline matter due to secondary nucleation (cf. Section 10.2.2).
As discussed in Section 10.4, the ratio of primary to secondary nucleation
becomes scale-independent in large volumes. As a consequence, the growth
time becomes scale-independent as well: an increase in volume is accounted
for by a proportional increase in the number of both primary and secondary
nuclei. In the limit of small volumes, where only a single primary nucleus
is formed, growth times decrease with volume. Here, a decrease in volume
implies that less material has to be formed via secondary nucleation of the
single primary nucleus. Thus, growth times become shorter in this case.
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10.6.7 Single-crystal seeding

Figure 10.14 (a) shows the effect of inserting a single seed with different sizes
on the time evolution of detected crystals. The solid line indicates seeding
with size zero, which corresponds to the unseeded case, since nuclei are
assumed to form with size zero. Independent of supersaturation, the insertion
of a seed significantly accelerates the evolution of the system. This implies
that secondary nucleation due to the presence of the seed crystal is faster than
primary nucleation in the unseeded system. If such behavior is observed for a
sufficiently small seed, secondary nucleation should be considered dominant.
If the seed crystal were found not to affect the evolution of the process (i.e., a
so-called inert seed), primary nucleation could be considered dominant.

Figure 10.14 Effect of seed size on particle count evolution. Four sizes were studied:
Lseed = 0 (solid lines), Lseed = 10−4m (dotted lines), Lseed = 10−3m (dash-dotted lines)
and Lseed = 10−2m (dashed). The colors indicate the two supersaturations studied: S =
1.40 (red) and S = 1.20 (magenta).

The shape of the evolution curves is nearly unaffected by the seed; a 10,000

times magnification (panel (b)) is required to observe some deviation of the
exponential shape for the largest size of Lseed = 10−2m. This indicates that
the secondary nuclei created by the seed rapidly dominate the total nucleation
frequency. While this single-crystal seeding study for the model system
is purely in silico, we highlight that the predicted trends in Figure 10.14

qualitatively agree with observations made in recent experimental studies.[238]



11 GENERAL STAB I L I TY ANALYS IS OF
THE STEADY STATES IN THE
CONT INUOUS
MIXED-SUSPENS ION
CRYSTALL I ZER

11.1 introduction

The mathematical description of continuous mixed-suspension crystallizers
was developed in the 1960s and 1970s,[45,243,255] thus enabling the widespread
use of that concept across industries. In the framework of quality-by-design
initiatives, interest in continuous crystallization recently has emerged also in
the pharmaceutical industry.[50] Continuous crystallization promises enhanced
control over polymorphism, which is a critical property of solid active phar-
maceutical ingredients,[256,257] while avoiding or at least decreasing the batch-
to-batch variability observed in traditional batch manufacturing.[50,258,259]

Polymorphism, or more generally the existence of multiple solid forms for a
chemical compound, poses a major challenge to pharmaceutical manufactur-
ing. This is because different polymorphs exhibit different physicochemical
properties across the spectrum of what is relevant, including processability
and bio-availability.[260,261] The capability of a mixed suspension crystallizer
to maintain stable steady states for metastable (i.e., thermodynamically un-
favorable) polymorphs has therefore received great attention, particularly
during the past decade.[49,258,262–264] In contrast, in batch crystallizers the
thermodynamically stable polymorph is the natural long-term outcome, be-
cause metastable crystals are converted into stable ones via solvent-mediated
transformation.[45,265]

However, understanding and leveraging this remarkable feature of the
mixed suspension crystallizer is far from trivial, and it requires a mathemat-
ical model of its behavior and a model-based analysis of its steady states.

The results presented in this chapter have been reported in: Deck, L.-T.; Mazzotti, M. General
stability analysis of the steady states in the continuous mixed-suspension crystallizer. Chem. Eng. J.
2024, 483, 148721.

293



294 analyzing the steady state in continuous crystallizers

To this end, Farmer et al.[258,266] carried out a linear stability analysis of a
bi-polymorphic system by transforming the governing population balance
equation into a set of ordinary differential equations through the method of
moments. While their original analysis focused on mixed suspension crys-
tallizers with mixed product removal, commonly abbreviated as MSMPR,
extensions have been proposed.[259,263,267–269]

Even though such stability analysis represented a big step forward in un-
derstanding the steady-state behavior of MSMPR-type crystallizers, it was not
general for at least three reasons. First, the earlier mathematical methodology
is applicable only to simplified systems, e.g., where crystal growth and with-
drawal are size-independent. Second, the stability analysis applies specifically
to the selected functional forms for the rate of crystal growth and nucleation,
which are very simple, though still relevant for real systems. Finally, the liter-
ature has focused on systems with only one or two polymorphs,[258,259,266,270]

and it remains unclear how to characterize the stability of steady states in
systems where an arbitrary number of different solid forms may exist.

In this context, we have revisited the mathematical description of the mixed
suspension crystallizer, and derived a general framework both to determine
the possible steady states and to assess their stability. The paper is organized
as follows: we first provide a general description for the mixed suspension
crystallizer in Section 11.2; then we apply it to a set of relevant applications in
Section 11.3; finally, we draw conclusions in Section 11.4.

11.2 modelling a mixed suspension crystallizer

The mixed suspension crystallizer is defined in this work as a well-mixed
vessel with classified product removal at the outlet, in line with the relevant
literature.[258,259] Its steady-state depends on the inlet concentration c0, the
temperature T, the expected residence time of the fluid τ, the energy dissi-
pation intensity in the crystallizer ϵ, and the kinetics of the relevant set of
crystallization phenomena. It is characterized by the concentration of the
solute in solution c, termed css if the crystallizer operates at steady-state,
the particle size distribution inside the crystallizer f (L), and those in the
inlet and outlet streams, f in(L) and f out(L). This is illustrated in Fig. 11.1.
The distributions f (L), f in(L) and f out(L) are number density functions, i.e.,
f (L)dL denotes the number of crystals with sizes between L and L + dL per
unit volume. The expected residence time is defined as τ = V/Q, with V the
suspension volume and Q the volumetric flow rate in and out the crystallizer.
Similarly, τ/ξ(L) is the expected size-dependent residence time of a crystal of
size L defined through the withdrawal factor ξ(L) = f out(L)/ f (L).[271] The
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withdrawal factor ξ(L) is used to account for classified or non-representative
product withdrawal.[269,271,272] Following its definition, if ξ < 1, the outgoing
suspension is diluted and the crystals spend more time in the crystallizer than
the fluid; if ξ > 1, the outgoing suspension is concentrated, as crystals leave
the crystallizer preferentially compared to the fluid; under ideal conditions,
ξ = 1 for all crystal sizes. For the sake of brevity, we describe a solution-fed
crystallizer in this section, so that f in(L) = 0, and we refer to the appendix
(Section 11.5.3) for a discussion of a suspension-fed crystallizer. Crystalliza-
tion is assumed to comprise two phenomena, namely crystal growth and
secondary nucleation. Secondary nucleation, in contrast to primary nucle-
ation, describes the formation of new crystals triggered by existing ones, and
it is well-established that it is the dominant type of nucleation in continuous
crystallizers.[45,243] Recent literature suggests that even in unseeded batch
crystallization a majority of crystals is formed through secondary nucleation,
with only a few formed via primary nucleation.[78,105,273,274]
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Figure 11.1 Schematic of a continuous mixed suspension crystallizer that shows all
relevant physical quantities except for the crystallization kinetics. Quantities in orange
are design parameters that can be chosen freely within physically meaningful and
technically feasible ranges, whereas those in white denote the corresponding steady-
state properties.

In the derivation that follows, we will first establish the relevant expres-
sions for the particle size distributions using both the well-known population
balance approach (Section 11.2.1) and an equivalent, but less established ap-
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proach based on the residence time distribution (Section 11.2.2). In Section
11.2.3, we introduce several concepts that facilitate a general mathematical
treatment of the steady state, namely a new single crystal-based definition
of secondary nucleation, and the so-called birth rate function. The latter ex-
presses the number of daughter nuclei that a crystal forms during its lifetime
in the crystallizer. It determines the occurrence and stability of the steady
states in the crystallizer, as discussed in Section 11.2.4.

11.2.1 Population balance approach

Following the aforementioned assumptions, a mixed-suspension crystallizer
at steady-state is mathematically described through a population balance
equation coupled with a material balance:

d( f (L)G(L))
dL

= − 1
τ

f out(L) = − ξ(L)
τ

f (L) (11.1)

c0 = css + kvρcnout
3 = css + cc (11.2)

with the initial condition f (0) = B/G(L = 0) where B is the nucleation rate,
i.e., the number of nuclei formed per unit time and per unit volume. Moreover,
nout

3 is the third moment of the PSD f out(L), and G(L) is the crystal growth
rate, which may depend on crystal size L.[275–277] Finally, ρc is the density of
a crystal, kv its volume shape factor, and cc the suspension density. Newly
formed crystals are generated with size L = 0 through secondary nucleation.

The general solution of the PBE is obtained by multiplying and dividing the
right hand side by G(L), and then by integrating upon separation of variables
to obtain f (L)G(L); one obtains:

f (L) =
B

G(L)
exp

(
−
∫ L

0

ξ(λ)

τG(λ)
dλ

)
(11.3)

From this, f out(L) follows, as:

f out(L) = ξ(L) f (L) =
Bξ(L)
G(L)

exp
(
−
∫ L

0

ξ(λ)

τG(λ)
dλ

)
(11.4)

The j-th moments of the two distributions are defined as follows:

nj =
∫ ∞

0
Lj f (L)dL, nout

j =
∫ ∞

0
Lj f out(L)dL =

∫ ∞

0
Ljξ(L) f (L)dL

(11.5)
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It is worth noting that transforming the PBE of Eq. 11.1 into the moment
equations, and considering the steady-state equation for the zero-th order
moment yields the following relationship:

Qnout
0 = VB (11.6)

whose important physical meaning is that the rate of crystals generated in the
crystallizer must equal the rate of crystals withdrawn from the crystallizer.

11.2.2 Residence time approach

The solutions for the particle size distributions may also be obtained using
a second approach that relies on the concept of residence time and on its
distribution. To this aim, we introduce the age a of a crystal, i.e., the time
the crystal has spent inside the crystallizer since its birth.[270,272] During its
lifetime within the well-mixed crystallizer at steady state a crystal experiences
constant conditions, i.e., in terms of temperature, and concentration; what
changes is its size L(a), hence the rate of processes that depend on the crystal
size L, e.g., in the context of this work its growth rate G(L), the rate at which a
crystal triggers the birth of secondary nuclei, and the withdrawal rate defined
through ξ(L). A crystal that has reached age a may either still reside inside the
crystallizer, or might have already been washed out; we define the probability
of the former as P(a) and call it the residence probability. The probability
of the latter is Pout(a) = 1 − P(a). As a crystal ages, i.e., as a increases, its
residence probability P(a) decreases, according to the following ordinary
differential equation:

dP = −P(a)ξ(L(a))
da
τ

(11.7)

whereby the differential change of the crystal’s residence probability dP
between ages a and a + da is given by the product of two probabilities:
(i) the residence probability P(a) at age a, and (ii) the probability that a
crystal of age a is withdrawn from the crystallizer in the differential age
interval da. For the withdrawal of a fluid element, such probability equals
Qda/V = da/τ, whereas for the crystal it is ξ(L(a))da/τ, taking into account
the size-dependent withdrawal factor ξ(L). We note that the link between the
size of a crystal and its age follows directly from dL = G(L)da, so that:∫ L

0

dλ

G(λ)
= a (11.8)
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which simplifies to L = Ga if the growth rate is size-independent. The solution
to the differential equation 11.7 for the initial condition P(a = 0) = 1 (newborn
crystals are in the crystallizer) is:

P(a) = exp
(
−
∫ a

0

ξ(L(a′))
τ

da′
)
= exp

(
−
∫ L

0

ξ(λ)

τG(λ)
dλ

)
= PL(L) (11.9)

where P can be expressed equivalently in terms of both age a and size L using
Eq. 11.8. Note that when approaching infinite age and size the residence
probability P approaches zero, i.e., no crystal can live for ever and grow
indefinitely.

The function Pout(a) = 1 − P(a) is a cumulative density function that
defines the fraction of crystals that have been withdrawn from the crystallizer
before reaching the age a. Its derivative, pout(a), is a probability density
function (PDF), so that pout(a)da is the fraction of crystals that is withdrawn
between ages a and a + da:

pout(a) =
ξ(L(a))

τ
exp

(
−
∫ a

0

ξ(L(a′))
τ

da′
)
=

ξ(L(a))
τ

P(a) (11.10)

Likewise, pout
L (L) is the PDF associated to the cumulative density function

Pout
L (L) = 1 − PL(L):

pout
L (L) =

ξ(L)
τG(L)

exp
(
−
∫ L

0

ξ(λ)

τG(λ)
dλ

)
=

ξ(L)
τG(L)

PL(L) (11.11)

The two PDFs above are equivalent, i.e., they fulfill the condition pout(a)da =
pout

L (L)dL. They can be interpreted either as normalized crystal age distri-
bution of the withdrawn suspension in the case of pout(a), or as normalized
crystal size distribution of the withdrawn suspension in the case of pout

L (L).
The latter interpretation establishes the link to the particle size distribution,
which is a number density function, as follows:

f out(L) = pout
L (L)nout

0 =
ξ(L)nout

0
τG(L)

exp
(
−
∫ L

0

ξ(λ)

τG(λ)
dλ

)
(11.12)

This equation matches the one obtained through the population balance
approach outlined before (i.e., Eq. 11.4 ), since nout

0 = Bτ, as to Eq. 11.6,
confirming the equivalence of the two approaches.

These observations allow using the material balance of Eq. 11.2 to express
the nucleation rate prevailing in the crystallizer, B, in terms of the CDF of Eq.
11.9, as

B = (css − c0)

(
kvρc

∫ ∞

0
L3 ξ(L)

G(L)
PL(L)dL

)−1
(11.13)
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making use of both the solution of the PSD (Eq. 11.3) and the definition of
its moments (Eq. 11.5). Due to the css-dependence of the nucleation rate B,
for any given constitutive relationship defining such rate, this is an implicit
equation for css, whose solution depends on c0. To demonstrate properties of
the crystallizer’s steady state, it seems necessary to specify the constitutive
equation defining the secondary nucleation rate, B. Interestingly, a number of
steady state properties can be derived for rather general expressions of the
nucleation rate, B, as we show in the following.

11.2.3 Secondary nucleation and birth rate

In general, the nucleation rate B is a function of concentration c (css at
steady state), of temperature T, of the energy dissipation intensity in the
crystallizer, ϵ, and of some integral properties of the PSD, typically one of its
moments, nj, with j an integer number, often either 2 or 3;[45,46] by exploiting
this observation B(c, T, ϵ) can be written as:

B(c, T, ϵ) = b(c, T, ϵ)nj = b(c, T, ϵ)
∫ ∞

0
Lj f (L)dL (11.14)

Defining the secondary nucleation frequency K(c, T, ϵ, L) = b(c, T, ϵ)Lj and writ-
ing for simplicity K(L) = bLj yields

B =
∫ ∞

0
K(L) f (L)dL (11.15)

where K(L) represents the number of secondary nuclei generated per unit
time by a single parent crystal of size L. With this definition in mind, the last
equation represents a rather natural and physically intuitive definition of the
rate of secondary nucleation over a population of crystals with PSD f (L).

A property of special interest and closely related to the secondary nucleation
frequency, is the birth rate of a crystal, i.e., the expected number of nuclei
formed during its lifetime in the crystallizer. We call such property ν and
observe that the differential birth rate of a crystal of age a must equal the
differential number of nuclei formed in the differential age interval, K(L(a))da,
multiplied by its residence probability P(a) (a withdrawn crystal cannot form
nuclei in the crystallizer anymore), so that dν = P(a)K(L(a))da. ν is obtained
by integrating over all ages, as to

ν(c, T, τ, ϵ) =
∫ ∞

0
K(L(a), c, T, ϵ)P(a, c, T, τ)da (11.16)

=
∫ ∞

0

K(L, c, T, ϵ)

G(L, c, T)
PL(L, c, T, τ)dL (11.17)
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where the second equality is obtained by changing integration variables, from
crystal age to crystal size. Through the definitions of K(L, c, T, ϵ), G(L, c, T),
and PL(L, c, T, τ), the birth rate ν(c, T, τ, ϵ) is a function of concentration,
residence time, temperature, and energy dissipation intensity; to keep the
notation concise, we drop these dependencies where appropriate. Let us now
again consider the right hand side of Eq. 11.15. Substituting first the right
hand side of Eq. 11.9 into Eq. 11.3, then substituting the latter into the right
hand side of Eq. 11.15, dividing the resulting relationship by B, and finally
introducing the birth rate yields the following expression:

ν(css, T, τ, ϵ) = 1 (11.18)

which is an implicit equation in the steady state concentration, hence defining
the value of css(T, τ, ϵ) as a function of the operating conditions (T, τ, ϵ).
This equation plays a central role in this work, and due to its importance, it
deserves, together with the birth rate, a few clarification remarks.

11.2.4 Stability of the steady states

The concept of the birth rate together with the steady state condition given
by Eq. 11.18 provide a general path to compute the concentration and to
analyze the stability of the steady state. This is true for arbitrary expressions
of the withdrawal factor ξ(L), of the secondary nucleation frequency K(L),
and of the crystal growth rate G(L).

Eq. 11.18 enforces the condition that the birth rate at steady state must
be one: for the crystallizer to be at steady state, each crystal during its
lifetime inside the crystallizer must in average give birth to exactly one new
crystal. This is physically intuitive, because if ν > 1, each generation of
crystals would be more numerous than their predecessor generation. For
ν < 1, every generation of crystals would be smaller than their predecessor
generation. Neither case is compatible with stationary operation, only for
ν = 1 a suspension can attain a stationary state.

To assess the stability of the steady state, it is indispensable to study how
the birth rate depends on concentration. The following three properties hold
true in the entire physically meaningful range of operating conditions (T, τ,
ϵ):

ν(c) > 0 (11.19)

lim
c→ceq

ν(c) = 0 (11.20)

lim
c→∞

ν(c) → ∞ (11.21)
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which requires that both the rate of crystal growth and the secondary nu-
cleation frequency approach zero at the equilibrium concentration ceq, are
larger than zero at c > ceq, and that they approach infinity when c → ∞. This
applies to all commonly used rate expressions for G(L) and K(L). Given these
properties of the birth rate function, there is an odd number of concentra-
tion levels that meets the steady state condition ν(css) = 1. If ν(c) increases
monotonically with concentration, there is a unique solution. This requires
first that G(L) and K(L) monotonically increase with concentration (which is
physically meaningful and virtually always true) and second that ξ(L) is either
size-independent or monotonically decreasing with crystal size L. Hence, a
non-monotonic behavior of ν and thus steady state multiplicity are limited to
the case where ξ(L) increases with crystal size L; we refer to Section 11.3.2 for
a detailed discussion on size-dependent withdrawal.
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Figure 11.2 Birth rate ν as a function of supersaturation in the crystallizer. Panel (a)
shows a case with size-independent withdrawal where the birth rate monotonically
increases with concentration. Panel (b) illustrates size-dependent withdrawal, where
larger crystals preferentially exist the crystallizer. This results in a non-monotonic birth
rate function with three potential steady states.

Fig. 11.2 shows the birth rate as a function of supersaturation for two
cases, first in panel (a) with a unique steady state, and second in panel (b)
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with three steady states, enumerated in the order of increasing concentra-
tion/supersaturation. To assess the stability of these possible steady states, we
consider their behavior with respect to a perturbation. The addition of crystals
to a steady state depletes the supersaturation in the crystallizer because of
their growth. If at steady state dν/dc > 0, which is true for all odd-numbered
states, the birth rate ν would drop below 1 due to this perturbation and some
crystals would be washed out until the original steady state were recovered. If
on the other hand, some crystals were removed, the supersaturation would in-
crease and the birth rate ν would become larger than 1; as a consequence more
crystals would be formed to compensate for those removed until the original
steady state were recovered. This proves that if at steady state dν/dc > 0,
then the steady state is stable.

On the contrary, if dν/dc < 0, similar considerations prove that the steady
state is unstable, and perturbations are amplified until the system approaches a
different, stable steady state of either lower or higher concentration depending
on whether crystals are added or removed. This holds true for steady state
2 in Fig. 11.2 (b). If multiple stable steady states exist (e.g., states 1 and 3 in
panel (b)), the initial conditions during the startup of the crystallizer decide,
which one is attained.

Finally, we note that the conditions ν(css) = 1 and dν/dc > 0 are only
necessary, but not sufficient to identify a stable steady-state. This is because
they are independent of the mass balance, i.e., they do not consider the
inlet concentration c0. A stable steady state with crystals must maintain a
suspension density cc = c0 − css larger than zero. Practically, this means that
a stable steady state with crystals can be obtained in general, for any set of the
operating conditions T, τ, and ϵ, by choosing a value of c0 larger than css; a
concentration c0 < css however would result in a steady state without crystals,
which we refer to as trivial steady state.

11.3 characterizing steady-states

In the following, we show how to solve the steady-state equations derived
in Section 11.2 for a process with size-independent crystal growth and crystal
withdrawal (Section 11.3.1) as well as for processes with size-dependent
withdrawal and multiple steady state solutions (Section 11.3.2). Then, we
assess the steady-states for systems with multiple solid forms, namely for
polymorphic (Sections 11.3.3 and 11.3.4) and for chiral compounds (Section
11.3.5). Further extensions to systems with growth rate dispersion (Section
11.5.1), size-dependent crystal growth (Section 11.5.2) or a suspension-fed
crystallizer (Section 11.5.3) are discussed in the appendix.
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11.3.1 Size-independent crystal growth and withdrawal

This section considers the crystallization of compounds with size-independent
growth rate, G, and with size-independent withdrawal factor, ξ, possibly dif-
ferent than 1. The expression for PL(L) in Eq. 11.9 simplifies to:

PL(L) = exp
(
− Lξ

Gτ

)
= exp

(
− L

Gτ̂

)
. (11.22)

where τ̂ = τ/ξ is the expected residence time of the crystals. To compute
the steady state, information on G and K(L) are required. G may be defined
using the following generic functional form

G(c, T) = kg,0 exp
(
− E

RT

)(
c

ceq(T)
− 1
)g

= kg(T)
(

c
ceq(T)

− 1
)g

(11.23)

where both the growth rate constant (through an Arrhenius-like term) and
the solubility depend on temperature. The term S(c, T) = c/ceq(T) is called
the saturation ratio, and when assuming that the ratio between the activity
coefficients at saturation and at supersaturation is approximately one, (S − 1)
represents the thermodynamic driving force. The dependency of the growth
rate on (S − 1) is given through an empirical power law.

The nucleation rate B is defined as in Eq. 11.14, hence the secondary nucle-
ation frequency K(L) = b(c, T, ϵ)Lj, where b(c, T, ϵ) contains the temperature-
and supersaturation-dependent terms of the nucleation kinetics. It is defined
as power law of the thermodynamic driving force:

b(c, T) = kshkb(T)
(

c
ceq(T)

− 1
)b

(11.24)

where ksh is a crystal shape factor, which is called kv if j = 3 and ka if
j = 2, and where we neglect the dependency on energy dissipation, ϵ,
for simplicity. Numerous mechanistic expressions for b(c, T) have been re-
ported in the literature as well, and we refer to an earlier contribution for
a summary of the relevant mechanisms.[278] Substituting the last equation
in the birth rate definition of Eq. 11.17 and using the well-known relation∫ ∞

0 Lj exp (−L/(Gτ̂))dL = (Gτ̂)j+1Γ(j + 1) yields (note that j ≥ 0):

ν(c, T, τ̂) = Γ(j + 1)τ̂ j+1kb(T)kshkj
g(T)

(
c

ceq(T)
− 1
)jg+b

(11.25)
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where Γ(j + 1) is the gamma function, which equals j! if j is an integer. For
the two common cases where nucleation scales either with volume (j = 3) or
with surface area (j = 2) of the crystals, one obtains

ν(c, T, τ̂) = 6τ̂4kb(T)kvk3
g(T)

(
c

ceq(T)
− 1
)3g+b

; for j = 3 (11.26)

ν(c, T, τ̂) = 2τ̂3kb(T)kak2
g(T)

(
c

ceq(T)
− 1
)2g+b

; for j = 2 (11.27)

Imposing ν(css, T, τ̂) = 1 and re-arranging yields the following explicit expres-
sions for the steady state concentration:

css(T, τ̂)/ceq(T) = 1 +
(

6τ̂4kb(T)kvk3
g(T)

)− 1
3g+b ; for j = 3 (11.28)

css(T, τ̂)/ceq(T) = 1 +
(

2τ̂3kb(T)kak2
g(T)

)− 1
2g+b ; for j = 2 (11.29)

Eqs. 11.28 and 11.29 demonstrate that css depends on temperature through
both the solubility ceq(T) and through the crystallization kinetics. It further
depends on residence time, whereby longer times lead to smaller values of
css; this is relevant in the context of polymorphic steady states, where longer
residence times favor the thermodynamically stable polymorph (see Section
11.3.3). It is worth noting that Eqs. 11.28 and 11.29 may also be obtained
when applying the method of moments to the population balance equation, as
often done in the literature;[45,243,270] however, the method of moments is not
generally applicable to arbitrary functional forms for PL(L), K(L), and G(L),
unlike the approach presented here. We discuss an example of such a case in
the next section.

11.3.2 Size-dependent withdrawal

Size-dependent, or classified, crystal withdrawal commonly occurs in mixed
suspension crystallizers and has been studied as early as in the 1960s’.[271,272]

The possible occurrence of multiple steady states had been identified earlier as
well,[270,279] focusing on the role of the nucleation rate expression in causing it.
Here we combine and expand these concepts and show how size-dependent
withdrawal leads to steady state multiplicity.

To this aim, we consider the following empirical expression for the size-
dependent withdrawal factor ξ:

ξ(L) =
1 + a0L2

1 + a1L2 (11.30)
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where a0 and a1 are two positive constants.[271] According to this expres-
sion, small particles are withdrawn ideally, i.e., at the same rate as the fluid
(ξ → 1 as L → 0), whereas larger and larger particles are withdrawn with
a withdrawal factor ξ approaching a0/a1: if a0 > a1 or a0 < a1 crystals are
withdrawn more or less likely than the fluid, respectively. Substituting the
last equation in the birth rate definition of Eq.11.17 yields:

ν(c, T, τ, a0, a1) =

b(c, T)
G(c, T)

∫ ∞

0
Lj exp

(
− 1

τG(c, T)

(
(a1 − a0)

a1.5
1

arctan(
√

a1L) +
a0
a1

L

))
dL

(11.31)

assuming for simplicity that G(c, T) is size-independent. Of particular interest
is the case a0 > a1, i.e., where large particles preferentially leave the crystallizer.
In this case, the monotonic behavior of ν(c) with c is not guaranteed, and
the equation ν(css) = 1 may have multiple solutions. Figure 11.3 (a) shows
the birth rate function for a scenario where three concentration levels fulfil
ν(css) = 1.
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Figure 11.3 Example for a system with multiple steady-states. (a) Non-monotonic
birth rate with three steady-state supersaturation levels (orange, blue, green). (b)
Corresponding cumulative distributions for the three steady states. (c) Withdrawal
factor as function of the crystal size, with a0/a1 = 100).

This scenario was constructed in three steps. First, by taking values for the
kinetic parameters and solubility from the literature[280] for the α polymorph
of L-glutamic acid, which by themselves lead to a monotonic birth rate. Second,
by enforcing a particularly strong size-dependency of the withdrawal (a0/a1 =
100, see panel (c)), which leads to a locally non-monotonic behavior of the
birth rate; and third, by appropriately adjusting the kinetic parameters for
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nucleation and growth to ensure that the non-monotonic region includes the
value ν = 1. Obviously, the particle size distributions that correspond to the
three steady states are different, whereby higher steady-state concentrations
correspond to larger crystal sizes with a narrower distribution, as shown in
panel (b).

Given the rather specific and unrealistic conditions required to obtain steady
state multiplicity, this case is of little practical relevance. In the following, we
hence implicitly assume that the birth rate function increases monotonically
with concentration, thus leading to a unique steady state.

11.3.3 Polymorphic steady states

Experimental studies have demonstrated that continuous mixed suspension
crystallizers are capable of operating stable and pure steady states for both
metastable and stable polymorphs,[49,262] which was explained using a linear
stability analysis based on the method of moments.[258,266] These earlier stud-
ies established that the crystallization of a polymorphic compound may lead
to three types of steady states: (i) a trivial steady state in which no crystals
exist, (ii) a pure steady state containing crystals of one polymorph only, either
the stable one or a metastable one. And (iii), a mixed steady state where
crystals of multiple polymorphs are present. We here generalize this analysis
using the birth rate approach.

All i = 1, 2..., N polymorphs of a compound have distinct properties, i.e.,
solubility, crystallization kinetics, and withdrawal factor, so that they may
exhibit distinct birth rates νi and thus steady state concentration levels css,i for
any given set of operating conditions (i.e., T, τ). Figure 11.4 (a) shows the birth
rates for a bi-polymorphic system for operating conditions where css,1 < css,2.
As discussed in Section 11.2.4, the value of the inlet concentration c0 must be
known to identify the steady state, hence there are three potential cases: first,
that c0 < css,1 < css,2, which leads to a trivial steady state without crystals as
neither polymorph can maintain a positive suspension density. Second, that
css,1 < c0 < css,2. In this case, a pure steady state at css,1 is obtained, because
only polymorph 1 can maintain a positive suspension density, whereas crystals
of polymorph 2, if inserted, would be washed out.

The third case, css,1 < css,2 < c0, requires a more detailed analysis, because
if they were alone, both polymorphs could maintain a stable steady state with
a positive suspension density. The stability of these states depends on what
happens when perturbing them by adding crystals of the other polymorph (or
in general, with crystals of all other polymorphs). Only when perturbations
with crystals of all other polymorphs lead to the recovery of the original state,
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a pure steady state is stable. Making use of the birth rates, the pure steady
state of polymorph i is stable when at the given value of css,i the birth rates of
all other polymorphs j are νj ̸=i(css,i) < 1. Let us consider again Figure 11.4
(a): at css,2, it holds that ν1(css,2) > 1, so the pure steady state of polymorph
2 is unstable with respect to the appearance of polymorph 1. Conversely, if
crystals of polymorph 2 were to be added to a pure steady state of polymorph
1, they would be washed out over time due to ν2(css,1) < 1. Hence, the pure
steady state of polymorph 1 is stable.

Figure 11.4 Birth rates ν1 (red) and ν2 (blue) as a function of concentration in the
crystallizer for a given set of operating conditions T and τ. The horizontal dashed line
indicates ν = 1, the condition for the steady-state concentrations. (a) Scenario of a pure
steady state, i.e., where css,2 > css,1. (b) Scenario of a mixed steady-state, i.e., where
css,2 = css,1.

In fact, it is not a coincidence that the stable steady state in this example
is the one with the smallest steady state concentration; such behavior is a
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direct consequence of the monotonicity of the birth rates, and hence can be
considered as a general rule. Note that this is independent of the number of
polymorphs, i.e., it applies also to compounds with three or more polymorphs,
which is the case for many or most industrially relevant compounds (consider
e.g., mannitol and calcium carbonate).

A mixed steady state that contains crystals of multiple polymorphs is a
special case of the pure steady state where multiple polymorphs share the
lowest steady state concentration level (see panel b). One can identify the set
of operating conditions (T, τ) that lead to such mixed state: temperature and
residence time provide two degrees of freedom, one of which is exploited
by the condition css,1(T, τ) = css,2(T, τ), so that the residence time τmix(T) at
which the mixed state occurs can be expressed as a function of temperature,
and vice versa. This is practically useful, because the mixed steady state
represents the frontier of the regions in the (T, τ) plane corresponding to the
pure steady states: if τ > τmix, the pure state of one polymorph is obtained,
and for τ < τmix, the one of the other polymorph.

To conclude this section, we assess the implications of this analysis for
the polymorphic design space, i.e., the polymorphic outcome of the crystal-
lization process as function of the operating conditions (T, τ). Figure 11.5
illustrates the design space for the bi-polymorphic compound L-glutamic
acid, computed using the kinetic parameters and solubility values reported
in the literature,[280] and assuming ideal withdrawal (ξ = 1) and that no
cross-nucleation between the polymorphs takes place. This design space has
been simulated recently by solving the transient population balance equation
for a large number of operating conditions.[259] Our analysis quantitatively
agrees with the previous one, but it is based on the newly introduced birth
rate approach, which leads to orders of magnitude lower computational costs
(run time < 1s to generate the figure on a M1 MacBook Pro).

Figure 11.5 shows three lines, which divide the (T, τ) plane into six regions.
The black line corresponds to the mixed steady state, i.e., the condition
css,α(T, τ) = css,β(T, τ), as discussed before. The N = 2 colored lines indicate
the relationships css,i(T, τ) = c0, which means that they represent the frontier
between the pure steady state of the i-th polymorph (red for α, blue for β) and
the trivial steady state without crystals. All three lines intersect at a single
point, which fulfils the condition css,α(T, τ) = css,β(T, τ) = c0, in this case
c0 = 29g/kgs. When decreasing the value of c0, this point would shift on the
black line towards larger residence times, hence enlarging the two regions in
which the stable steady state is the trivial one without crystals. The opposite
is true when increasing the value of c0.
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Figure 11.5 Polymorphic design space for the bi-polymorphic compound L-glutamic
acid. The kinetic parameters for secondary nucleation and growth as well as the
solubility values were taken from the literature.[280] The polymorphic outcome is gov-
erned by three lines, which represent the condition css,α(T, τ) = css,β(T, τ) (black) and
css,i(T, τ) = c0 (red for α, blue for β).

The stable steady state attained in each of the six regions is identified using
the analysis done before, i.e., it is governed by which value out of c0 and the
two steady-state concentration levels is the smallest. In regions I) and VI),
this is c0, so that the stable steady state is a trivial one without crystals. In
regions II) and III), css,β is the smallest, hence the pure steady state of the β

polymorph is stable. Likewise, in regions IV) and V), css,α is the smallest, and
the pure steady state of the α polymorph is stable.

11.3.4 Cross-nucleation of polymorphs

The previous section considered polymorphic systems where each poly-
morph forms secondary nuclei of the same polymorph only. Such behavior is
in line with the general understanding of secondary nucleation, even though
for some systems cross-nucleation of polymorphs has been observed ex-
perimentally:[259,268,281,282] this means that crystals of one polymorph form
secondary nuclei not only of the same polymorph, but also of others. For a de-
tailed discussion of this phenomenon, we refer to an earlier contribution,[259]

which has revealed that steady states in the presence of cross-nucleation are
in general mixed; however, no theoretical analysis has been carried out. Here
we show how to generalize the birth rate concept to cross-nucleating systems.
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The total nucleation rate B and the total particle size distribution f (L) for a
system with N cross-nucleating polymorphs comprise the contributions of all
polymorphs so that:

B =
N

∑
i=1

Bi , f (L) =
N

∑
i=1

fi(L) (11.32)

where fi(L) is defined through the properties of the i-th polymorph, as

fi(L) =
Bi

Gi(L)
exp

(
−
∫ L

0

ξi(λ)

τGi(λ)
dλ

)
=

Bi
Gi(L)

PL,i(L) (11.33)

Because crystals of all N polymorphs may nucleate crystals of polymorph i,
the nucleation rate Bi is written as

Bi =
N

∑
j=1

Bij =
N

∑
j=1

∫ ∞

0
Kij(L) f j(L)dL (11.34)

whereby the secondary nucleation frequency Kij used in Eq. 11.34 denotes
the rate at which crystals of polymorph j nucleate crystals of polymorph i.
Similarly, the birth rate νij for cross-nucleating systems is defined as

νij(c, T, τ) =
∫ ∞

0
Kij(L(a), c, T)Pj(a, c, T, τ)da =

∫ ∞

0

Kij(L, c, T)
Gj(L, c, T)

PL,j(L, c, T, τ)dL

(11.35)
where νij gives the expected number of crystals of polymorph i nucleated
by a crystal of polymorph j during its lifetime. Dividing Eq. 11.34 by the
nucleation rate B, introducing the expression for fi(L) given by Eq. 11.33, and
defining the nucleation fraction αi = Bi/B leads to

αi =
N

∑
j=1

∫ ∞

0
αj

Kij(L)
Gj(L)

PL,j(L)dL =
N

∑
j=1

αjνij (11.36)

where the second equality follows when considering the birth rate given in
Eq. 11.35. The relation ∑N

i=1 αi = 1 and the N Eqs. 11.36 form a system
of N + 1 equations in N + 1 unknowns, namely the value of the steady
state concentration, and N values of the nucleation fractions αi. For a bi-
polymorphic system, one obtains:

α1 = α1ν11 + α2ν12 (11.37)

α2 = α1ν21 + α2ν22 (11.38)

Combining the two equations and considering α1 + α2 = 1 yields the relation

(1 − ν11)(1 − ν22) = ν12ν21 (11.39)
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where the four birth rates all depend on the steady-state concentration css as
the sole unknown. With css known, the nucleation fractions αi are computed
from either Eq. 11.37 or 11.38, and the absolute value of B is found through
the material balance.

Let us consider Eq. 11.39 in detail: at a sufficiently small concentration, all
birth rates are zero, hence the l.h.s. equals one, and the r.h.s equals zero. An
increase in concentration leads to an increase in all birth rates (given they are
monotonic), so that the value of the l.h.s decreases, and the one of the r.h.s.
increases. Thus, there is a unique solution for css. Finally, Eq. 11.39 applies
also if no cross-nucleation were to take place. In this case, the birth rates ν12
and ν21 would be zero at all concentration levels, and the equation is met for
ν11 = 1 and for ν22 = 1, which agrees with the earlier discussion in Section
11.3.3.

11.3.5 Chiral steady states

In this section we study a crystallizer fed with a racemic solution of the two
enantiomers of a chiral compound; given the rising demand for the crystalliza-
tion of enantiopure drug products in the pharmaceutical industry, continuous
chiral crystallization is increasingly studied in the literature.[105,283–285] Not
accounting for potential polymorphism or solid solutions, a racemic solution
of a chiral compound may crystallize into two solid forms:[53] first, a racemic
crystal that contains both enantiomers in a 1:1 ratio in a regular lattice (termed
DL crystal), and second, a conglomerate of enantiopure crystals that contain
molecules of only one of the two enantiomers (termed D and L crystals). Since
enantiomers exhibit identical physicochemical properties except for how they
interact with other chiral entities, the D and L crystals behave identically also
in the crystallizer, thus leading to a number of symmetric situations, among
which there is the fact that css,L = css,D under all operating condition (T, τ, ϵ).
Conversely, the solubility, the crystallization kinetics, and the withdrawal
behavior of the racemic DL crystal differ from those of the enantiopure D and
L crystals.

Chiral conglomerate-forming compound: Let us consider a chiral com-
pound that forms a conglomerate, i.e., one that forms D and L crystals only.
Since all relevant properties of the two enantiomers are identical, their birth
rates are identical as well, and hence the stable steady state must contain
both types of crystals in equal amounts, i.e., it must be racemic. This follows
when considering an enantiopure state where only a single type of crystals
(say L) is in suspension. Since the growth of these L crystals depletes the
concentration of L in solution only, but not that of D, it must hold for such
state that cD = c0,D > css,L. This means that νD(cD) > 1 so that if D crystals
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were added, their population were to amplify itself until a racemic state with
cL = css,L = css,D = cD is attained. This racemic state remains stable even if
there were a racemization reaction in solution, as commonly studied in the
context of solid-state deracemization.[285,286]

Achiral conglomerate-forming compound: Some compounds such as the
inorganic salts sodium bromate or sodium chlorate are achiral in solution, but
form two types of enantiopure crystals. This is different from the previous
case, because there is only one solute in solution, not two. Given the identical
kinetics of the enantiopure D and L crystals and that they both contain the
same solute, their birth rates must equal each other under all operating
conditions. The stability of the steady state hence is independent of its
handedness, i.e., it is marginally stable with respect to perturbations. This
again follows when considering an enantiopure state of L, and assessing
its behavior when perturbing it with D crystals: such perturbation would
neither grow, nor would the original state be recovered. This finding of
marginal stability well explains recent experimental studies that have shown
that an enantiopure state of sodium bromate obtained through seeding can
be maintained over multiple residence times in an MSMPR crystallizer before
slowly losing enantiopurity (e.g., through primary or cross-nucleation).[105,284]

Racemic crystal-forming compound: Finally, we study a compound that
forms not only the enantiopure D and L crystals, but also the racemic DL
crystal; this applies to about 90% of all chiral compounds.[53] The solubility of
the racemic crystal is given in terms of a temperature-dependent solubility
product κDL(T), and its supersaturation as[53]

SDL(T) =
√

cLcD
κDL(T)

. (11.40)

Since SDL depends on the concentration of both enantiomers, its birth rate
νDL(cD , cL) is a function of both as well. Consequently, there is a group of
concentration levels that fulfils ν(cD , cL) = 1. We limit the stability analysis
to the case of a racemic feed where cL = cD, so that there is a unique value
for the steady-state concentration of the DL crystal. The stability analysis of
such system is identical to the one of a bi-polymorpic compound (see Section
11.3.3), but with the racemic DL crystal and the racemic conglomerate of D
and L crystals as the two attainable solid forms.

11.4 concluding remarks

In this work we have revisited the mathematical description of the contin-
uous mixed suspension crystallizer and introduced a general framework to
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assess the stability of its steady states. The analysis is based on the birth rate
ν, which denotes the expected number of daughter crystals born by a parent
crystal throughout its lifetime in the crystallizer. A stable steady state with
crystals is defined through the following three conditions: (i) ν(css) = 1, i.e.,
the birth rate at the steady state concentration level must equal one at all
operating conditions. (ii) dν/dc > 0, i.e., the derivative of the birth rate at the
value of the steady state concentration must be positive, as to be stable against
perturbations. (iii) c0 > css, i.e., the steady state must maintain a positive
suspension density. This set of conditions enables the steady state analysis
for a general mixed suspension crystallizer, applicable to arbitrary kinetic rate
expressions for crystal growth and secondary nucleation, to size-dependent
crystal growth and crystal withdrawal, and to growth rate dispersion.

The application of this theory to compounds with multiple solid forms, i.e.,
polymorphic and chiral compounds, is of particular interest. The analysis of
the polymorphic steady states generalizes the existing approaches and is in
agreement with the relevant literature.[258,259,263] Concerning chiral systems,
enantiopure steady states for racemic feeds are found to be inherently unstable
with respect to the appearance of the second enantiomer. This explains why
the enantiopure continuous crystallization of chiral compounds is particularly
challenging.

Thus summarizing, the insights obtained through the new mathematical
framework presented here promise to further facilitate implementation of
mixed suspension crystallizers across industries. The generalized steady-state
analysis provides practitioners with the opportunity to study the process
behavior of complex systems in detail without the need to resort to computa-
tionally much more expensive numerical simulations.

11.5 additional scenarios

This section contains three derivations that illustrate how to apply the
birth rate analysis to specific scenarios. We consider growth rate disper-
sion in Section 11.5.1, size-dependent crystal growth in Section 11.5.2, and a
suspension-fed crystallizer in Section 11.5.3.

11.5.1 Growth rate dispersion

Growth rate dispersion describes the phenomenon that crystals of the same
size and shape grow at different rates. It is widely observed in experimental
studies,[254,287–289] and its effect on the behavior of an MSMPR crystallizer
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has been studied theoretically already in the 1980s.[255,290,291] In line with the
relevant literature, growth rate dispersion is described as random variability
in the growth rate pre-factor among crystals, termed kg,0 in Eq. 11.23. kg,0
follows the distribution pg where pg(kg,0)dkg,0 is the fraction of crystals with
values of the growth pre-factor between kg,0 and kg,0 + dkg,0. The distribution
itself may be of arbitrary shape, but must be normalized as probability density
function, so that ∫ ∞

0
pg(kg,0)dkg,0 = 1. (11.41)

Such distribution in kg,0 complicates the link between the size of a crystal
and its time spent in the crystallizer. Conceptually, one may interpret growth
rate dispersion as the presence of infinitely many infinitesimally small sub-
populations of crystals, with identical secondary nucleation frequency K(L)
and withdrawal factor ξ(L), but with distinct growth rates G(L, kg,0) and
hence distinct residence probabilities PL(L, kg,0):

PL(L, kg,0) = exp

{
−
∫ L

0

ξ(λ)

G(λ, kg,0)τ
dλ

}
(11.42)

All sub-populations contribute to the overall birth rate ν of the suspension, to
the overall nucleation rate B and to the overall particle size distribution f (L).
The birth rate expression hence is obtained by expanding Eq. 11.17 as follows

ν(c, T, τ) =
∫ ∞

0
pg(kg,0)

∫ ∞

0
PL(L, kg,0, c, T, τ)

K(L, c, T)
G(L, kg,0, c, T)

dL dkg,0

(11.43)
and it is used to compute the steady state concentration level as discussed in
Section 11.2.4. The overall nucleation rate B is found when considering the
sub-populations in the mass balance (Eq. 11.13), as to

B = (c0 − css)

(
ρckv

∫ ∞

0
pg(kg,0)

∫ ∞

0

L3ξ(L)
G(L, kg,0)

PL(L, kg,0)dL dkg,0

)−1

(11.44)
where we impose that both the crystal density ρc and the volume shape factor
kv are identical for all sub-populations. The overall particle size distribution
f (L) is obtained when integrating over all sub-populations:

f (L) = B
∫ ∞

0
pg(kg,0)

PL(L, kg,0)

G(L, kg,0)
dkg,0 (11.45)

Hence, if the growth rate distribution pg is known, all properties of the steady
state can be computed following the approach presented in the main body.
To conclude, we emphasize that the theoretical approach developed in this



11.5 additional scenarios 315

work applies to systems with growth rate dispersion as well; growth rate
dispersion does not change the underlying behavior of the crystallizer, but
merely influences the precise values of the relevant properties of the steady
state such as the steady state concentration level.

11.5.2 Size-dependent growth

Size-dependent growth describes the phenomenon that the growth rate
G(L) depends on crystal size L, whereby larger crystals typically grow faster
than smaller ones.[275,277] There are different reasons for such behavior, in-
cluding (1) the notion that particles of different sizes behave different in a flow
field,[276] (2) the effect of the size-dependent surface curvature on a crystal’s
solubility (Gibbs-Thomson effect),[275] and (3) the misinterpretation of alterna-
tive crystallization phenomena such as crystal agglomeration or growth rate
dispersion.[290,292,293] Hence, from a practical point of view, a size-dependent
growth rate provides a useful tool to empirically account for a plethora of
effects that may be relevant but too complex for a more rigorous mathematical
treatment.

In this section, we show how to characterize the steady-state for a system
with size-dependent growth, using the following expression for the size-
dependent growth rate:[293]

dL
da

= G0(c, T)
(

1 +
L
α

)
(11.46)

where G0(c, T) is the growth rate of a crystal of zero size, and α is an empirical
positive constant that can be fitted to experimental data. Solving this equation
subject to the initial condition L(0) = 0 gives the size of a crystal as a function
of its age:

L(a) = α

(
exp

(
G0a

α

)
− 1
)

(11.47)

Considering size-independent crystal withdrawal (τ̂ = τ/ξ), the birth rate ν

can be expressed as

ν(c, T, τ̂) = b(c, T)
∫ ∞

0
L(a)j exp

(
− a

τ̂

)
da (11.48)

The integral converges if the size-dependency is sufficiently small. Assuming
that secondary nucleation scales with crystal surface area (j = 2), this holds
true for values α > 2G0τ̂, leading to the following expression for the birth
rate:

ν(c, T, τ̂) = α2b(c, T)τ̂
[

α

α − 2G0(c, T)τ̂
− 2α

α − G0(c, T)τ̂
+ 1
]

(11.49)
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ν may be computed analytically using this expression, making the computation
of the steady-state concentration straightforward. The particle size distribution
f (L) is obtained by inserting the expression for G(L) into Eq. 11.3:

f (L) =
B

G(L)
exp

(
−
∫ L

0

1
G(λ)τ̂

dλ

)
=

nout
0

G0τ

(
1 +

L
α

)−(1+ α
G0 τ̂ )

(11.50)

where B is obtained as discussed in Section 11.2. Similar derivations can
be carried out for different expressions of the size-dependent growth rate;
the main conclusion of this case study is that size-dependent growth only
affects the relationship between the size of a crystal and its age, but it does
not change the general behavior of the steady state.

11.5.3 Suspension-fed crystallizer

In this section, we model a crystallizer fed with a suspension of known
particle size distribution f in(L) = nin

0 pin(L). During their lifetime in the
crystallizer, the fed particles will both grow and generate secondary nuclei.
The secondary nuclei, similarly will grow and generate additional secondary
nuclei. Hence, the description of such system is more complex than that of
the solution-fed crystallizer. Nevertheless, one can still apply the birth rate
approach, as we do in the following.

To facilitate the mathematical treatment, the populations of fed particles
(termed seeds) and of nucleated particles are treated separately, i.e.,

f (L) = fseed(L) + fnuc(L), f out(L) = f out
seed(L) + f out

nuc(L). (11.51)

For the nucleated particles, the mathematical description initially derived in
Section 11.2 applies, so that

f out
nuc(L) =

nout
0,nucξ(L)
G(L)τ

exp
(
−
∫ L

0

ξ(λ)

τG(λ)
dλ

)
(11.52)

as well as the usual definition of the birth rate, here called νnuc. To describe
the behavior of the fed particles, we first formulate the residence probability
PL0 (L, L0) and the associated PDF in the outlet stream pout

L0
(L, L0) for a mono-

disperse population of seeds with initial size L0:

PL0 (L, L0) = exp
(
−
∫ L

L0

ξ(λ)

τG(λ)
dλ

)
(11.53)

pout
L0

(L, L0) =
ξ(L)

τG(L)
exp

(
−
∫ L

L0

ξ(λ)

τG(λ)
dλ

)
(11.54)
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Next, by imposing that the PDF of the seeds’ crystal size distribution at the
inlet, pin(L0), is known (as one can measure it before feeding it), one can
compute the corresponding one in the outlet, pout

seed(L), by integrating over all
initial sizes L0

pout
seed(L) =

∫ L

0
pin(L0)pout

L0
(L, L0)dL0 =

∫ L

0
pin(L0)

ξ(L)
τG(L)

PL0 (L, L0)dL0

(11.55)
which is related to the outlet PSD of the seeds, f out

seed(L), through f out
seed(L) =

nin
0 pout

seed(L), as the number density of the seed particles in the outlet stream
must equal the one in the inlet stream at steady state. The mass balance can
be re-formulated using these definitions as

c0 − css

ρckv
=
∫ ∞

0
L3nin

0

(
pout

seed(L)− pin(L)
)

dL +
∫ ∞

0
L3nout

0,nuc pout
nuc(L)dL

(11.56)
considering the contributions of both the nucleated and of the seeded crystals.
We next introduce the birth rate, first for a mono-disperse seed population of
size L0, then to the poly-disperse one with the given PDF pin(L0):

νL0 (L0) =
∫ ∞

L0

K(L)
G(L)

PL0 (L, L0)dL (11.57)

νseed =
∫ ∞

0
pin(L0)νL0 (L0)dL0 (11.58)

The birth rate of the crystallizer, ν, is obtained by inserting the expression for
f (L) derived in this section into Eq. 11.15, dividing by B, using the zero-th
moment equation Bτ = nout

0,nuc, and introducing νseed and νnuc, as to

ν = νnuc +
nin

0
nout

0,nuc
νseed = 1 (11.59)

where the second equality holds at steady state. The mass balance (Eq. 11.56)
and the birth rate equation (Eq. 11.59) form a system of two equations and
two unknowns, namely css and nout

0,nuc. Even though numerical approaches are
required to solve this system, some general remarks are worth making.

First, it holds that νseed >> νnuc given that the secondary nucleation fre-
quency K(L) strongly increases with crystal size, so that a seed crystal in
average generates more secondary nuclei than a nucleated crystal.

Second, if only growth occurs, but no secondary nucleation, the only un-
known is css, which is obtained by solving the mass balance, since by definition
nout

0,nuc = 0. Such growth-dominated crystallizers are commonly used in the
industry as part of crystallizer cascades;[50,243] in a cascade, multiple crystal-
lizers are connected in series. Nuclei are predominantly formed in the first
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one, which are then grown to larger sizes at low levels of supersaturation in
the subsequent ones.

Third, the pure steady state of a suspension-fed crystallizer may be unstable
with respect to the formation of another polymorph. This holds true if the
birth rate of such polymorph assumes a value larger than one at the steady-
state concentration level computed through solving Eq. 11.56 and Eq. 11.59,
in line with the theory derived in the main body. In such case, a mixed
steady-state is obtained that comprises both the fed crystals and the secondary
nuclei of the first polymorph, as well as the nucleated crystals of the second
polymorph.



12 EXACT AND UB IQU ITOUS
CONDIT ION FOR SOL ID-STATE
DERACEMIZAT ION IN V ITRO AND
IN NATURE

Solid-state deracemization is the amplification of an enantiomeric excess
in suspensions of conglomerate-forming chiral compounds. Although nu-
merous chemical and biochemical compounds deracemize, its governing
mechanism has remained elusive. We introduce a novel formulation of the
classical population-based model of deracemization through temperature
cycles to prove that suspensions deracemize whenever a simple and ubiqui-
tous condition is met: crystal dissolution must be faster than crystal growth.
Such asymmetry is a known principle of crystallization, hence explaining the
generality of deracemization. Through both experiments and a theoretical
analysis, we demonstrate that this condition applies even for very small tem-
perature cycles, and for random temperature fluctuations. These findings
establish solid-state deracemization as attractive route to the manufacture of
enantiopure products and as plausible pathway towards the emergence of
homochirality in nature.

12.1 introduction

Solid-state deracemization refers to the amplification of an enantiomeric
excess in suspensions of conglomerate-forming compounds, in the presence
of racemization in solution.[55,56,294,295] It is an attractive route to the manu-
facture of enantiopure products, and a possible pathway to the emergence of
homochirality on Earth,[55,56,296] which is linked to the origin of life.[297,298] It
has been demonstrated by various methods of manipulating the crystalline
suspension, namely isothermal grinding or milling,[55,56] the application of
ultrasound,[283,299] temperature-cycling in a single[57,300] or in two coupled
vessels,[301,302] high-pressure homogenization,[303] and solvent-cycling.[304,305]

The results presented in this chapter have been reported in: Deck, L.-T.; Hosseinalipour, M.S.;
Mazzotti, M. Exact and ubiquitous condition for solid-state deracemization in vitro and in nature. J.
Am. Chem. Soc.. 2024, 11, 6552–6559.
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Numerous compounds have been shown to deracemize, including many
of biological relevance,[306–308] which suggests the existence of a general
governing mechanism.[55–57,283,295,299,300,303–305,309,310] Yet pinning down such
mechanism has been difficult, controversial, and not conclusive.[311–314] In
this work, we introduce a simplified formulation of the classical population
balance model of deracemization through temperature cycles to prove an exact
condition under which deracemization occurs: crystal dissolution must be
faster than crystal growth. Such kinetic asymmetry is a fundamental prin-
ciple of crystallization,[47,315,316] which explains the general success of the
deracemization experiments reported in the literature.

The analysis that follows comprises theory, numerical simulations, and
experiments. In Section 12.2, the mechanism of solid-state deracemization
by temperature-cycling is conceptualized, which serves as starting point for
the derivation of an exact condition for deracemization reported in Section
12.3. Comprehensive numerical simulations presented in Section 12.4 con-
firm that this condition applies not only to deracemization with periodic
temperature-cycling, but to processes with arbitrarily oscillating temperature
profiles. These findings are validated experimentally: Section 12.5 reports
the results of deracemization experiments with the chiral compound N-(2-
methylbenzylidene)-phenylglycine amide (NMPA) carried out using periodic
temperature cycles, uncontrolled ambient thermal conditions, and a tightly
controlled constant temperature level. Finally, conclusions are drawn and
implications for the emergence of homochirality in nature are discussed in
Section 12.6.

12.2 conceptual analysis

We model solid-state deracemization using population balance equations, an
approach widely applied in industrial crystallization and related fields.[45,46,243]

Through numerical simulations, our group has successfully described der-
acemization for both temperature-cycling and isothermal process variations
(the latter commonly termed Viedma ripening).[313,317–319] These earlier mod-
els attribute deracemization to the interplay between enantioselective crystal
agglomeration (yielding a larger crystal by the merge of two smaller ones)[45],
crystal breakage and attrition, and crystal ripening (the preferential disso-
lution of smaller crystals due to size-dependent solubility)[46,320,321]. Even
though the overall mechanism to deracemization remains elusive, most contri-
butions agree that both crystal agglomeration and ripening play pivotal roles
in it.[311–314]
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The mechanistic character of population balance-based models implies that
they comprise numerous parameters, some of which are neither accessible
through experiments nor predictable through theory. The identification of
accurate rate expressions for crystal agglomeration, breakage and ripening, as
well as the ensuing estimation of the kinetic parameters from experimental
data have been found to be particularly challenging. For this reason it has
not yet been possible to conclusively demonstrate which mechanisms control
solid-state deracemization. Here we tackle this challenge by reducing the
complexity of the underlying population balance model: we eliminate all
elements that we prove are not essential to deracemization, thus enabling the
derivation of an analytical solution and the design of ad-hoc experiments to
confirm the theoretical findings.

In the general model we consider deracemization through periodic temper-
ature cycling in a well-stirred batch crystallizer (i = 1, 2 and j = 3 − i), where
the target (major) enantiomer is i = 1, and the undesired (minor) enantiomer
is i = 2. The racemization reaction between the two enantiomers (E1, E2) in
solution is described as a reversible first order chemical reaction

E1
kr−−⇀↽−− E2 (12.1)

where the temperature-dependent reaction rate constant, kr(T), is the same in
both directions because of symmetry; therefore at equilibrium the concentra-
tion of the two enantiomers is obviously the same. The material balance is:

dci
dt

+
dni
dt

= −kr(ci − cj) (12.2)

where ci and ni denote the mass of solute per unit mass solvent in solution
and in the solid phase, respectively, and kr(T) is the temperature-dependent
rate constant of racemization. The quantity ni is given in terms of the particle
size distribution of the i-th enantiomer crystals, fi (PSD), as:

ni = ρc

∫ ∞

0
vc(L) fi(L)dL (12.3)

where ρc is the crystal density and vc(L) = kvL3 is the volume of a crystal
of characteristic size L and volume shape factor kv. It is worth noting that,
in the model system, enantiomers are present either as molecular species in
solution (i.e., monomers) or as building blocks of enantiopure crystals, but
not as chiral clusters (i.e., oligomers), as proposed in other studies.[311,314]

Eqs. 12.2 are coupled to the population balance equations that determine
the two PSDs fi(t, L); these are transient integro-differential equations that
account in general for crystal agglomeration and breakage (both through
integral terms), and for crystal growth and dissolution (through a differential
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term). In the context of deracemization, nucleation is neglected for two reasons.
First, the classical inclusion of nucleation through the boundary condition
on the population balance equation at L = 0 is incompatible with a model
accounting for size-dependent solubility, unless master equations are used
that lead to an excessive computational burden.[322] Second, experiments are
typically carried out under conditions where little to none nucleation takes
place; in particular, the use of slow cooling rates and of large solid loadings
prevents the suspension from attaining the large supersaturation levels that
would trigger nucleation.[57,300]

The temperature in the crystallizer is assumed to be precisely controlled
undergoing periodic cycles, each consisting of a cooling ramp from high tem-
perature, Td, to low temperature, Tg, a holding period, tg, at Tg (termed growth
step), a heating ramp, and a holding period, td, at Td (termed dissolution step).
In the following, ramps are replaced by step changes, without loss of general-
ity. Such cycle is associated to a solubility difference ∆c∞ = c∗(Td)− c∗(Tg),
where c∗(T) is the solubility of a crystal of infinite size, i.e., the value that is
used when the size-dependency of solubility is neglected.

To assess whether deracemization occurs or not, different indicators can be
used, either the change of crystal mass of the two enantiomers over one cycle,
or the extent of conversion reaction from the minor to the major enantiomer
during one cycle. The change in mass of the major enantiomer crystals per
unit mass of solvent throughout a single cycle, ∆ncyc is defined as:

∆ncyc =
∫

g
kr(Tg)(c2 − c1)dt +

∫
d

kr(Td)(c2 − c1)dt (12.4)

whereby the boundaries of the integrals (g,d) refer to the growth and dis-
solution steps, respectively. Note that ∆ncyc > 0 is required for successful
deracemization. This is illustrated in Figure 12.1, whose three panels illustrate
process simulations of temperature cycling (see Section 12.7.1) for different
relative rates of dissolution and growth, all other model parameters being
identical. Note that, in order to highlight the mechanisms that are prerequisite
for deracemization, neither crystal agglomeration, nor breakage or attrition,
nor ripening have been included. Moreover, for the sake of simplicity but
without loss of generality heating and cooling ramps have been substituted by
step changes between temperature levels. The upper row shows the evolution
of the enantiomer concentrations c1 (blue, major enantiomer) and c2 (red,
minor enantiomer), as well as the value of the solubility c∗ (black) during a
single temperature cycle. The lower row shows the evolution of the crystal
mass suspended, ni, for both crystal populations.
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Figure 12.1 Simulations of temperature cycling-induced deracemization for three cases
with different process behavior. Top row: Evolution of concentrations in solution during
a single cycle. Bottom row: Evolution of suspended crystal density during the entire
process. The three simulations were generated using identical model parameters except
for the relative rates of growth and dissolution. Growth is either slower than, panel (a),
as fast as (b), or faster than (c) dissolution.

Crystals grow at low temperature and dissolve at high temperature. During
both steps, a difference in concentration between the enantiomers emerges
(shaded areas), which drives the racemization reaction (see Eqs. 12.2) and
governs the process performance. Deracemization happens when the net effect
of the racemization reaction throughout a temperature cycle favors the major
enantiomer (i.e., when ∆ncyc > 0, see Eq. 12.4). To enable a visual analysis of
deracemization, we neglect the temperature-dependency of kr(T) in Figure
12.1, so that the shaded areas are proportional to the amount of reacted
material (the integrals in Eq. 12.4). In panel (a), where model parameters are
such that dissolution is fast and growth is slow (in general terms, that will
be made more precise in the next section), the green area (proportional to the
extent of conversion of the minor enantiomer into the major enantiomer) is
larger than the red area (proportional to the extent of conversion of the major
enantiomer into the minor enantiomer); hence the net effect during the whole
cycle favors the major enantiomer and deracemization occurs (∆ncyc > 0). In
panel (c) on the contrary, where growth is fast and dissolution is slow, the
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red area is larger than the green one hence temperature-cycling racemizes
the suspension (∆ncyc < 0). In panel (b), where dissolution and growth have
similar rates, both areas are of equal size and temperature-cycling does not
alter the handedness of the suspension (∆ncyc = 0).

It follows that deracemization is successful if and only if dissolution is faster
than growth (in general terms), even in the absence of crystal agglomeration,
crystal breakage or attrition, and crystal ripening. This is a novel and simple
criterion for deracemization, which is demonstrated rigorously in the next
section and whose consequences are presented and demonstrated in the
sections after the next.

12.3 exact condition for deracemization

The model used in the previous section, i.e., with neither breakage nor
agglomeration, nor size-dependent solubility, has been further simplified for
the analysis that follows. First, the area of the active surface of the crystals
is assumed to remain constant as their volume changes. This would be the
case for rods that grow and dissolve only in the length direction; it would
also apply to arbitrary crystal geometries if the actual surface area change
through a temperature cycle is small. Second, the growth and dissolution
rate of crystals of type i is given by a temperature-dependent rate constant,
km(Tm) (the subscript m = g or m = d indicates the growth or dissolution
phase, respectively), multiplied by the linear driving force xi = ci − c∗(Tm).
Thorough numerical simulations have proven that these two assumptions
can be relaxed without changing the main conclusions below (see SI Section
12.8.2).

Under these assumptions, the model reduces to two linear ODEs that can
be written in vector notation (see methods Section 12.7.2 for the detailed
derivation) as:

[
dx1
dτm
dx2
dτm

]
=

[ −(am + 1) 1
1 −(amξ + 1)

] [
x1
x2

]
(12.5)

where the matrix of coefficients of the linear system is called Am, and
τm = tkr(Tm) is a dimensionless time. The dimensionless parameter am =
3ρckvm2,1km(Tm)/kr(Tm) is proportional to the ratio of the rate constant of
growth or dissolution and of the racemization reaction (at the relevant tem-
perature); m2,i denotes the second moment of the i-th PSD, which scales
with the population’s surface area per unit mass of solvent; the quantity
ξ = m2,2/m2,1 < 1 characterizes the asymmetry between the enantiomers (the
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simplest case is where the two crystal populations are similar in size and
shape, but the amount of the minor enantiomer crystals is smaller than that
of the major enantiomer crystals). Implementing temperature cycles implies
solving the system above for 0 ≤ τ ≤ τg = kr(Tg)tg for an initial solution
composition x0

i , typically racemic, so as xi becomes xg
i ; then switching to the

dissolution temperature level and setting x0
i = xg

i –∆c∞ (so as to account for
the change in solubility) and solving the new version of the system above for
0 ≤ τ ≤ τd = kr(Td)td; finally switching back to Tg and setting x0

i = xd
i +∆c∞.

In this way the evolution of the solution composition is obtained, depending
on the six model parameters ag, ad, ∆c∞, ξ, τg, and τd.

Independent of the initial state, the solution composition reaches a cyclic
steady state, as long as the surface areas of crystals and thus the parameter ξ

do not change (see SI Section 12.8.2). The net amount of minor enantiomer
converted into the major enantiomer in Eq. 12.4, ∆ncyc, can be calculated in
closed form as:

∆ncyc =
ξ
(

ad − ag

)(
∆x2 − ξ∆x1

)
det (Ad)det (Ag)

= η∆c∞ (12.6)

where the matrices Ad and Ag are implicitly defined through Eq. 12.5, and
∆xi is the change in concentration of enantiomer i during the dissolution step
given in closed form by:[

∆x1
∆x2

]
=

(exp(τd Ad)− I)(I − exp(τg Ag) exp(τd Ad))
−1(exp(τg Ag)− I)

[
∆c∞
∆c∞

]
(12.7)

where exp(τ Am) is the matrix exponential and I is the unitary matrix. The
second equality in Eq. 12.6 introduces the cycle efficiency, η, which is the
ratio between ∆ncyc and the solubility difference ∆c∞, i.e., the maximum value
of ∆ncyc that a single cycle enables; η is independent of the amplitude of
the temperature cycles because ∆xi scales with ∆c∞ as to Eq. 12.7. The two
determinants in Eq. 12.6 are always positive, as also ξ obviously is (ξ = 0
corresponds to an enantiopure suspension). We found that also the term
(∆x2 − ξ∆x1) in the numerator of Eq. 12.6 is always positive, by evaluating it
for a huge number of combinations of model parameters, selected randomly
within broad ranges of values.

Therefore, we conclude that the cycle efficiency η is positive and deracem-
ization occurs if and only if

ad > ag (12.8)
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or, as to the relevant definitions, if and only if

kd(Td)/kr(Td) > kg(Tg)/kr(Tg). (12.9)

Remarkably, this condition is independent of the duration of the dissolution
and growth phases, τd and τg, of the enantiomeric asymmetry, ξ, and of the
solubility difference, ∆c∞. This implies that the amplitude of the temperature
oscillations leading to successful deracemization may even be extremely small
(see Section 12.5 where the reported successful deracemization experiments
at a controlled temperature exhibit a standard deviation of 0.02°C), and
that the result above applies not only to deracemization by temperature
cycling, but also to isothermal Viedma ripening, where minimal temperature
fluctuations may certainly be caused by intense stirring or by grinding. It
is also worth noting that the analysis above applies also when temperature
cycling is replaced by periodic removal and re-addition of the solvent at
constant temperature, as proposed in recent experimental studies.[304,305]

Note that in practice and under rather general conditions crystal dissolution
is faster than growth for the same thermodynamic driving force and at the
same temperature.[47,315,316] This is because the crystal shape evolves during
growth towards a steady-state shape dominated by the slowest-growing crystal
facets.[47,323,324] Yet the opposite occurs during dissolution, when the crystal
shape evolves away from the steady-state shape, thus exposing fast dissolving
facets. Data reported in the literature indicate that for instance kd/kg = 4 for
sodium chlorate,[316] and kd/kg > 2.5 for paracetamol[315] (consider Snyder
et al.[47] for a detailed discussion of the asymmetry between growth and
dissolution).

Note also that although a strong temperature dependence of the racem-
ization rate constant may in theory switch the sign of the inequality in Eq.
12.9, in practice this is very unlikely given the relatively small amplitudes of
temperature cycles used in experiments (order of 5–20°C),[57,300,325] if not at all
impossible when considering the very small-amplitude temperature-cycling
experiments presented in this work (see Section 12.5).

Finally it is worth noting that the condition derived above holds true
no matter how slow (or fast) the chemical reaction is (see Figure 12.4 in
the SI). This is an important remark, because most chiral compounds do
not racemize easily. For example, amino acids in solution racemize very
slowly at ambient temperature and neutral pH, i.e., with a characteristic
time on the order of thousands of years.[326,327] The amount of material that
reacts in such a case during a temperature-cycle with characteristic times for
growth and dissolution on the order of minutes to hours is very small, and
deracemization consequently proceeds only very slowly. From an industrial
manufacturing perspective, the implementation of solid-state deracemization
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is particularly interesting for compounds with fast racemization, e.g., for
N-(2-methylbenzylidene)-phenylglycine amide (NMPA) that racemizes in the
presence of non-nucleohilic bases within timescales of ten minutes to an
hour[56,328] (see Section 12.5).

Based on the considerations above, we argue that the condition in Eqs. 12.8
and 12.9 is met for most chiral species that crystallize as conglomerates and
that racemize, in a broad range of temperatures. Thus, solid-state deracemiza-
tion is based on a simple and ubiquitous growth-dissolution mechanism that
requires neither grinding, nor agglomeration, nor ripening.

12.4 extension to nearly isothermal conditions

While the exact condition above was derived for deracemization through
temperature-cycles that induce a periodic change of solubility, here we assess
through simulations carried out using the PBE model presented in Section
12.7.1 to what extent such condition and the underlying growth-dissolution
mechanism applies also to cases such as isothermal deracemization, i.e., to
Viedma ripening, as conjectured in the previous section.

Figure 12.2 shows the outcome of simulations of two processes with ad/ag =
4 and different values of ξ0. In the first case the suspension undergoes tem-
perature cycles where the solubility changes by 1%, corresponding to a tem-
perature differential of about 0.2°C for the compound used in the experiments
reported below. In the second case the suspension is subject to random tem-
perature fluctuations generated through a random walk constrained within
the same range of solubilities; the mean rate of temperature change equals
that of the periodic cycling. Similar to Figure 12.1, the top panels illustrate
the evolution of the concentration levels in solution, and the center ones those
of the crystals in suspension; in addition, the bottom panels indicate the
evolution of the enantiomeric excess in the suspension, which is defined as
ee = (n1 − n2)/(n1 + n2), and quantifies enantiopurity.

Notably, deracemization is achieved in both types of simulations, whereby
it is faster for periodic temperature cycles than for random fluctuations. In
all simulations the temporal evolution of the enantiomeric excess exhibits an
acceleration over time. Such autocatalytic behavior has been observed in several
experimental studies on Viedma ripening in the literature;[56,325,329] it has been
argued that non-linear phenomena such as crystal agglomeration are required
to explain both deracemization and the mentioned acceleration.[55,295,311–314]
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Figure 12.2 Simulations of nearly isothermal deracemization processes with different
initial values of ξ. The left column shows small periodic temperature cycles, and
the right one randomly generated temperature profiles, generated as random walk
constrained between the solubilities used in the periodic cycles. The top row shows the
concentration in solution for the simulation with ξ = 0.43, as in the experiments. The
center panel shows the corresponding evolution of the crystalline mass, and the bottom
one that of the enantiomeric excess (black lines correspond to ξ = 0.43).

Here we offer a completely different explanation. First, we crucially con-
jecture that any supposedly isothermal experiment still exhibits arbitrary
temperature fluctuations, particularly when a suspension is subject to intense
stirring or grinding as in Viedma ripening experiments; therefore, the random
temperature fluctuation simulations presented here are indeed representative
of Viedma ripening conditions. Second, such simulations demonstrate that
deracemization, both in the temperature-cycling case and in the Viedma ripen-
ing case, is achieved without including any non-linear phenomenon, whilst
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the acceleration in the evolution towards deracemization is due to the fact
that the enantiomeric ratio ξ decreases over time because of the conversion of
the minor enantiomer into the major one caused by the growth-dissolution
mechanism; this leads to an increase over time of the cycle efficiency, η, until
the deracemization rate becomes controlled by the irreversible disappearance
of crystals of the minority enantiomer during the dissolution steps (see SI
Section 12.8.1).

12.5 experimental evidence

To provide experimental evidence to the theoretical results above, we carried
out deracemization experiments with the conglomerate-forming species N-(2-
methylbenzylidene)-phenylglycine amide (NMPA), in the presence of the base
1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) that catalyzes its racemization in
solution, using 10 mL glass vials (see details in Section 12.7.3). The evolution
of the enantiomeric excess during these experiments is shown in Figure 12.3.

The first set of experiments (top panel) consists of temperature cycling
with very small amplitudes, i.e., of 2°C, 1°C, and 0.5°C, using a magnetic
bar for stirring, and with an initial asymmetry of ξ0 = 0.43 (corresponding
to ee0 = 0.40); complete deracemization is achieved in ca. 55, 80, and 160

cycles, respectively (i.e., between one and two days). This is consistent with
the model-based analysis above. The number of cycles must in fact scale
with the reciprocal of ∆ncyc in Eq. 12.4; and therefore, with the reciprocal
of the solubility difference, ∆c∞ – which is proportional to the temperature
difference for small temperature amplitudes, and with the reciprocal of the
cycle efficiency, η – which is by and large independent of the solubility
difference. To confirm this, we computed the value of η following the approach
outlined in Section 12.8.1 not only for these three experiments where we found
0.12 ≤ η ≤ 0.18, but also for a large set of earlier NMPA temperature-cycling
experiments with similar operating conditions and an amplitude up to 21°C
where we found 0.08 ≤ η ≤ 0.13[330] (see Section 12.8.1 for the details, as well
as for consistent results obtained for two other chiral compounds).

Then we carried out two sets of deracemization experiments in the same
equipment, whose outcome is shown in the bottom panel of Figure 12.3. The
first was operated at 26°C in a tightly controlled manner (the average tem-
perature was 25.97°C, with a standard deviation of 0.02°C). The second was
operated under uncontrolled conditions, i.e., with no temperature control,
thus allowing for temperature fluctuations caused by the varying room condi-
tions in the lab. The uncontrolled experiments deracemized faster than the
controlled ones (about 8 days instead of more than 15 days), which is justified
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by the presence of larger temperature fluctuations mostly between 28°C and
30°C; in fact, the 24-hour period of day-night temperature fluctuations can be
easily recognized in the associated temperature profile.
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Figure 12.3 Evolution of enantiomeric excess for deracemization experiments using
NMPA with an initial enantiomeric excess of 0.4 (ξ = 0.43); all repetitions of each experi-
ment are shown. Top panel: temperature cycling experiments with small amplitude,
i.e., of 2°C (green), 1°C (violet), and 0.5°C (orange) plotted in terms of number of
cycles. Bottom panel: controlled (constant temperature, blue) and uncontrolled (random
temperature fluctuations, red) experiments plotted in terms of time; one representa-
tive experiment for each of the periodic temperature cycling experiment is shown for
comparison. In both panels, the insets show the thermal evolution for the relevant
experiments, as indicated.

A few remarks are worth making. First, the experiments with small-
amplitude periodic oscillations confirm the conclusions derived from the
theoretical approach above. Second, the controlled experiments confirm that
Viedma ripening, i.e., deracemization attained at constant temperature typ-
ically by continuously grinding the suspension, is explained by the same
growth/dissolution mechanism of deracemization via temperature cycles,
when the unavoidable random temperature fluctuations are accounted for.

Third, the uncontrolled experiments, with random temperature fluctuations
as illustrated in the bottom panel of Figure 12.3, have obvious implications
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on theories about the emergence of homochirality in nature: if tiny, random
temperature fluctuations enable deracemization any kind of arbitrary tempera-
ture profiles experienced by pre-biotic systems (because of daily and seasonal
temperature variability) may have led to deracemization and to homochirality.

12.6 concluding remarks

This work introduces and validates a general mechanism for solid-state der-
acemization based on growth and dissolution driven by temperature cycling,
either periodically or randomly, even with very small temperature amplitudes.
Through the derivation of an analytical solution we obtained an exact condi-
tion for deracemization: suspensions of conglomerate crystals in the presence
of a racemization reaction in solution deracemize when crystal dissolution is
faster than crystal growth in the terms discussed above. Such condition is ubiq-
uitous,[47,315,316] hence solid-state deracemization of conglomerate-forming
chiral compounds provides both a convenient route towards enantiopure
products, e.g., in the pharmaceutical sector where this is a major challenge,
and a natural pathway to amplify asymmetries in enantiomeric composition
all the way to homochirality.

Numerous bio-relevant compounds such as the amino acids threonine and
asparagine crystallize as conglomerates[306] and hence are candidates for
solid-state deracemization. Amino acids in solution racemize even at ambient
temperature and neutral pH, albeit slowly (order of thousands of years), and
they do so many orders of magnitude faster at high temperatures and low
pH.[326,327] Since even small, random temperature fluctuations (or the natural
day-night cycle) enable deracemization, homochiral suspensions of these
compounds may well have emerged in pre-biotic environments. This is in stark
contrast to the main competing theoretical mechanism for chiral amplification,
i.e., asymmetric autocatalysis, for which only a single example (in fact with
no pre-biotic relevance) has ever been found experimentally.[331,332] The initial
asymmetry required to kick-off deracemization may have been generated in
multiple ways,[333] yet a certain asymmetry is intrinsic to crystallization due
to the inherent stochasticity of the underlying micro-physical phenomena
such as nucleation.[78,294,334] Based on the simple and ubiquitous mechanism
demonstrated in this work, we argue that solid-state deracemization may
indeed have played a pivotal role in the origin of homochirality on Earth.
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12.7 materials and methods

Here we present the general Population Balance Equation (PBE) model
(Section 12.7.1), the simplified model and the analytical derivation of the exact
condition for deracemization (Section 12.7.2), and the experimental methods
(Section 12.7.3).

12.7.1 General PBE model

Model equations

We model deracemization in a well-stirred batch crystallizer (i = 1, 2,
j = 3 − i), where the target (major) enantiomer is i = 1, and the undesired
(minor) enantiomer is i = 2. The material balance is

dci
dt

+
dni
dt

= −kr(ci − cj) (12.10)

with ci and ni the mass of solute per unit mass solvent in solution and in the
solid phase, hence

ni = ρc

∫ ∞

0
vc(L) fi(L)dL = ρckvm3,i (12.11)

and kr is the temperature-dependent rate constant of racemization and vc(L) =
kvL3 is the volume of an individual crystal of size L and volume shape factor
kv. Eqs. 12.10 are coupled to the population balance equations of the two
populations. The k-th moment of the particle size distributions of enantiomer
i is defined as

mk,i =
∫ ∞

0
Lk fi(L)dL. (12.12)

Numerical simulations

We have numerically implemented the generalized model presented in
Section 12.7.1 using Matlab R2022b. All simulations were carried out for
monodisperse populations with crystals of size Li(t). This is for two reasons;
first, the effect of polydispersity on deracemization has been studied exten-
sively in an earlier contribution to which we refer the interested reader.[319]

Second, the newly introduced deracemization mechanism is largely indepen-
dent of the shape of the particle size distribution, hence little insights can be
obtained from the analysis of more complex polydisperse systems. The k-th
moment of the PSDs of enantiomer i thus is

mk,i = Lk
i Ni. (12.13)
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where Ni is the number of crystals of enantiomer i per mass of solvent. Since
here we neither consider agglomeration, breakage, nor nucleation, this number
is constant throughout the entire process, until homochirality is reached and
the population of enantiomer 2 dissolves, at which point N2 = 0. The initial
state of the suspension is characterized through initial sizes L0,i and numbers
N0,i of the two enantiomers. All simulations employ N0,2 < N0,1 as source of
the initial asymmetry and L0 = L0,1 = L0,2, and they start with a growth step.
We consider an equal initial size for two reasons: first, in actual experiments
the initial crystal sizes of both enantiomers are rather similar. Second, a
difference in mean crystal size is primarily relevant in the context of crystal
ripening (which is faster for smaller crystals), but this is a phenomenon not
essential to the new mechanism. Thanks to the monodispersity, the model
reduces to a set of four ODEs that describe the evolution of c1, c2, L1, and L2:

dLi
dt

= Mi(ci) (12.14)

dci
dt

= −ρckvNi
d
dt

(L3
i ) + kr(cj − ci) (12.15)

where Mi equals Gi during growth steps and Di during dissolution steps and
d
dt (L3

i ) = 3L2
i

dLi
dt (termed 3D-growth). For simulations carried out under the

assumption also used in the analytical solution that the second moment of
the PSD remains constant during temperature-cycling, we impose d

dt (L3
i ) =

3L2
0

dLi
dt (termed 1D-growth). In this case, the system simplifies into a set of

two ODEs (see Section 12.7.2). In terms of the kinetic rate expressions for
crystallization, we consider the following two cases:

Gi = kg(ci − c∗)g (12.16)

Gi = kg ln(S)g (12.17)

whereby the dissolution rates are defined analogously. Note that the dimen-
sion of the rate constant depends on both the choice of the driving force and
on the value of the exponent. The saturation ratio Si is defined as (neglecting
activity coefficients):

Si(T) = ci/c∗(T) (12.18)

From a thermodynamic point of view, the logarithmic expression of the driv-
ing force is the most accurate. Yet given that the typical operating conditions
of deracemization experiments do not involve particularly large super- or
undersaturation levels, we consider it adequate to linearize the logarithm
when deriving the analytical solution, which yields a driving force based on
the concentration difference. We confirmed the applicability of this assump-
tion by comparing numerical simulations carried out using both linear and
logarithmic driving forces, as presented in Section 12.8.2.
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A complete list of simulation parameters is provided in Table 12.1. In
general, parameter values were chosen to match the behavior of the model
compound NMPA, which has been studied extensively in earlier contribu-
tions on deracemization through both temperature-cycling[300,328,330] and high
pressure homogenization.[303]

For the generation of Figure 12.1, cases were simulated in which growth and
dissolution occur at similar rates (panels b) and where growth is faster than
dissolution (panels c). In case (b), it holds that kg(Tg) = kd(Td) = 10−4.699

m s−1kg−1kgs, whereas in case (c) it holds that kg(Tg) = 4 × 10−4.699 m
s−1kg−1kgs and kd(Td) = 10−4.699 m s−1kg−1kgs.

Parameter Symbol Values [unit]
Crystal density ρc 1300 [kg m−3]
Solvent density ρs 786 [kg m−3]
Volume shape factor kv π/4 [-]
Growth rate exponent g 1 [-]
Dissolution rate exponent d 1 [-]
Growth pre-factor (∆c) kg(Tg) 10−4.699[m s−1kg−1kgs]
Growth pre-factor (ln(S)) kg(Tg) 10−6.398 [m s−1]
Growth/dissolution ratio kd(Tg)/kg(Tg) 4 [-]
Reaction rate constant at Tg kr(Tg) 0.2 [min−1]
Temp.-dep. of dissolution kd(Td)/kd(Tg) 1 [-]
Temp.-dep. of reaction kr(Td)/kr(Tg) 1 [-]
Solubility at Tg c∗(Tg) 20 [g kg−1

s ]
Solubility at Td c∗(Td) 20.2 or 25 [g kg−1

s ]
Number density of crystals N0 = N0,1 + N0,2 108 [kg−1

s ]
Initial crystal size L0 = L0,1 = L0,2 10−4 [m]
Initial enantiomeric ratio ξ0 0.43 [-]
Time of growth step tg variable
Time of dissolution step td variable
Initial concentration c0 = c0,1 = c0,2 c∗(Td)

Simulation time step tstep 1 [s]
Process duration ttot variable, until N2 = 0

Table 12.1 List of simulation parameters, grouped into physicochemical quantities, process condi-
tions and numerical parameters. The reported parameter values represent the base case, if specific
simulations use different values, this is indicated elsewhere. Note that an initial enantiomeric ratio
of ξ0 = 0.43 corresponds to an initial enantiomeric excess of ee0 = 0.40, which was also used in most
of the experiments.
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12.7.2 Simplified model

Simplified model equations

The expressions for ni and its derivative simplify when assuming no nucle-
ation and a linear driving force for growth and dissolution as follows:

ni = ρckvm3,i (12.19)
dni
dt

= ρckvṁ3,i = 3ρckv Mim2,i (12.20)

where Mi is the rate of growth or dissolution (depending on the step) of
enantiomer i, for which we assume a linear driving force:

Gi = kg(ci − c∗) (12.21)

Di = kd(ci − c∗) (12.22)

We discuss the effect of a non-linear driving force in Section 12.8.2. c∗ is the
solubility at the relevant temperature, and km is the rate constant of either
growth or dissolution. Note that both solubility and crystallization kinetics
are identical for both enantiomers, and that the solubility of each enantiomer
is assumed to be independent of the concentration of the second enantiomer,
i.e., that the solution is ideal.

We next introduce the assumption that the second moments of the PSDs do
not change during temperature-cycling, i.e., that the crystals’ active surface
area remains constant as their volume changes, so that the model reduces to
two linear ordinary differential equations:

dci
dt

+ 3ρckvm2,ikm(ci − c∗) = −kr(ci − cj) (12.23)

Such assumption corresponds for example to the crystallization of rod-like
particles where the rod cross section remains unchanged during growth and
dissolution and crystals grow only in the length direction. It is however
accurate for arbitrary geometries in case the actual change of the second
moment during an individual cycle is small. We verified the validity of the
assumption through a broad set of numerical simulations that are presented
in the SI Section 12.8.2.
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Introducing the following new variables and parameters (the condition that
m2,1 > m2,2 introduces the asymmetry needed to trigger deracemization):

τm = kr(Tm)t (12.24)

xi = ci − c∗ (12.25)

am = 3ρckvm2,1km(Tm)/kr(Tm) = a (12.26)

ξ = m2,2/m2,1 < 1 (12.27)

a1 = a (12.28)

a2 = aξ (12.29)

yields the following pair of ODEs (we indicate the derivative of a variable
with respect to the dimensionless time τ with a dot above the variable itself):

ẋi = −aixi − (xi − xj) (12.30)

The system can conveniently be written in vector notation, with x = [x1, x2]
T

and the matrix of coefficients, A, defined below:

ẋ =

[ −(a + 1) 1
1 −(aξ + 1)

]
x = Ax (12.31)

Note that det(A) = a(aξ + ξ + 1) > 0.

Before studying the solution of this system, let us introduce the following
parameter, which is bounded between 0 and 1:

α =
1
2

(√
a2(1 − ξ)2 + 4 − a(1 − ξ)

)
(12.32)

The two eigenvalues of the matrix A are:

λ1 = −α − a − 1 (12.33)

λ2 = α − aξ − 1 (12.34)

with λ1 < λ2 < 0. The matrix A can be decomposed according to A = ZΛZ−1,
whereby the eigenvectors of A are used as columns to define the orthogonal
matrix Z:

Z =
1√

1 + α2

[ −1 α

α 1

]
= Z−1 (12.35)

Note that Z has been constructed such that it is symmetric as indicated by
the second equality. Λ is a diagonal matrix, whose diagonal elements are λi.
Thus, the solution of the system of linear ODEs (12.31) can be written for a
generic initial condition x0 as:

x(τ) = exp(τ A)x0 = Z exp(τ Λ)Z−1x0 = Z exp(τ Λ)Zx0 (12.36)

where exp(τ A) is the matrix exponential, that can be calculated using the
matrix Z and the diagonal matrix exp(τ Λ), whose diagonal elements are
exp(τλi).
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Temperature cycles

Temperature cycles consist of alternate time periods spent by the system first
at low temperature, Tg, and then at high temperature, Td, i.e., at conditions
first where the solution is supersaturated (xi > 0) and crystals grow, and
then where the solution is undersaturated (xi < 0) and crystals dissolve,
respectively. The transition from Tg to Td and back occurs instantaneously, i.e.,
contrary to standard temperature cycles there are neither heating nor cooling
ramps. Since in practice ramps are instrumental to minimize nucleation, the
idealized model above, that does not include nucleation, is consistent with
practice. The time periods spent at Tg and at Td are tg = τg/kr(Tg) and
td = τd/kr(Td), respectively.

The general discussion above is specialized to the two operation modes
through the following definitions.

• During growth, at Tg:

τ = kr(Tg)t

xi = ci − c∗(Tg) > 0

a = ag = 3ρckvm2,1kg(Tg)/kr(Tg)

Ag = A (12.37)

• During dissolution, at Td:

τ = kr(Td)t

xi = ci − c∗(Td) < 0

a = ad = 3ρckvm2,1kd(Td)/kr(Td)

Ad = A (12.38)

Iterating the solution given by Eq. 12.36 through the idealized temperature
cycles, the system attains a cyclic steady state, where each cycle consists of
alternate periods of growth and of dissolution (see SI Section 12.8.2 for a
set of illustrative numerical simulations). Between the two modes the values
of xi must be converted to account for the change of temperature hence of
reference solubility; to this aim, we introduce the vector s, whose elements are
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the solubility difference ∆c∞ = c∗(Td)− c∗(Tg). Using vector notation and
starting from the initial state of growth, called x0

g, one obtains:

xg(τ) = exp(τ Ag)x0
g

xg = exp(τg Ag)x0
g

x0
d = xg − s

xd(τ) = exp(τ Ad)x0
d

xd = exp(τd Ad)x0
d

x0
g = xd + s (12.39)

where the last equation enforces the condition for the attainment of the cyclic
steady state. Combining the equations above, and solving for x0

d yields an
explicit equation for this state vector:

x0
d = (I − exp(τg Ag) exp(τd Ad))

−1(exp(τg Ag)− I)s (12.40)

where I is the unitary matrix. The vector x0
d is the fixed point of the trans-

formation defined by the sequence of Equations 12.39, whose existence is
demonstrated by the fact that we can obtain an explicit expression for it, i.e.,
Equation 12.40. From the last equation one can also calculate the following
explicit expression for the change in state vector during dissolution:

∆xd = (exp(τd Ad)− I)(I − exp(τg Ag) exp(τd Ad))
−1(exp(τg Ag)− I)s

(12.41)
It is worth noting that the two components of this last vector are positive, as
concentrations increase during dissolution, and that ∆xg = −∆xd, as one can
easily verify using the equations above.

Exact condition for deracemization

We formalize the conditions for deracemization based on two considerations.
First, in a process that reaches cyclic steady state such conditions must be
valid for each individual cycle. Secondly, effective deracemization can be
characterized in different ways, e.g., by looking at the evolution of the two
populations of crystals (that of the target enantiomer must increase in number
and size, and vice versa) or by considering the solution: we follow the
latter approach, and recognize that the system deracemizes if and only if
the net direction of the deracemization reaction during one entire cycle is
from the minor to the major enantiomer. Such condition can be formalized as
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follows, where we use the following property of the matrix exponential, i.e.,∫
exp(τ A)dτ = A−1(exp(τ A)− I):

∆ncyc =
∫

g
kr(Tg)(c2(t)− c1(t))dt +

∫
d

kr(Td)(c2(t)− c1(t))dt

=
∫ τg

0
(x2,g(τ)− x1,g(τ))dτ +

∫ τd

0
(x2,d(τ)− x1,d(τ))dτ

= [−1 1]
(∫ τg

0
xg(τ)dτ +

∫ τd

0
xd(τ)dτ

)
= [−1 1]

(∫ τg

0
exp(τ Ag)x0

gdτ +
∫ τd

0
exp(τ Ad)x0

ddτ

)
= [−1 1]

(
A−1

g (exp(τg Ag)− I)x0
g + A−1

d (exp(τd Ad)− I)x0
d

)
= [−1 1]

(
A−1

g ∆xg + A−1
d ∆xd

)
= [−1 1]

(
(A−1

d − A−1
g )∆xd

)
(12.42)

The last expression can be transformed and simplified, so as the condition
for deracemization (∆ncyc > 0) reduces to the following inequality, written in
vector notation first and then using scalar quantities:

0 <
ξ(ag − ad)

det(Ad)det(Ag)
[ξ − 1]∆xd

=
ξ

det(Ad)det(Ag)
(ad − ag)(∆x2,d − ξ∆x1,d) (12.43)

In the last expression, the fraction consists of positive quantities; the factor
(ad − ag) may be positive or negative; the last factor, i.e., (∆x2,d − ξ∆x1,d),
appears to be ambiguous. But this is the most remarkable result of this
derivation, namely that the last term is always positive, whatever the (positive)
values of the six parameters that characterize the system, namely ag, ad, ξ, τg,
τd, and c∗(Td)− c∗(Tg). As a consequence, the difference (ad − ag) must also
be positive to fulfill the conditions for deracemization, which can be simply
written as:

ad > ag. (12.44)

12.7.3 Experimental

General protocol

All experiments were conducted with the conglomerate-forming compound
N-(2-methylbenzylidene)-phenylglycine amide (NMPA). NMPA was synthe-
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sized following the protocol outlined in our earlier work.[303] NMPA racemizes
in the presence of non-nucleophilic bases such as 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU).[56] We used a mixture of 95/5 (w/w) isopropanol (IPA) and
acetonitrile (ACN) as solvent, and tert-butyl methyl ether as anti-solvent to
wash crystals after filtration, all in line with earlier work.[300,328] Both DBU
and the solvents were purchased from Sigma-Aldrich with a purity of 99 %
and used without further purification.

Saturated solutions of NMPA were prepared in an EasyMax 102 apparatus
(Mettler Toledo) by adding an excess amount of NMPA to 100 g of the solvent
mixture and stirring for 8 h to allow for equilibration at the target temperature
of the experiment. For each deracemization experiment, 5 g (5.032 ± 0.0035

g) of saturated solution was transferred into 10 mL cylindrical glass vials (2
cm diameter and 10 cm height) using a syringe equipped with a hydrophilic
syringe filter (PTFE, 0.22 µm, pk.100) before DBU (6 µL g−1

s ) was added
to each vial. In all experiments, the resulting mixture was stirred using a
magnetic stirring bar with 1000 rpm. An initial suspension density of 40.0 g
kg−1

s was used, amounting to a mass of 0.2 g for each vial. 0.201 ± 0.0005 g of
crystals were added to the crystallizers and the temperature evolution was
recorded through inserted K-type thermocouples. A single batch of NMPA
crystals was prepared with initial enantiomeric excess of 0.4 using the protocol
explained in our earlier work,[300] and was used in all experiments reported
here.

Samples were taken throughout each experiment by extracting 80 µL of sus-
pension using a precision pipette. Crystals were collected from the suspension
by vacuum filtration using a Büchner funnel and a MS PTFE membrane filter
with pore size of 0.45µm. The crystals were then washed with few droplets
of anti-solvent to remove potential residual of DBU. The dried samples were
dissolved in acetonitrile and analysed with HPLC according to the protocol
reported earlier.[328]

Temperature-cycling experiments

Three sets of temperature-cycling experiments were carried out with four
vials each in the EasyMax 102 apparatus using the three temperature ampli-
tudes of 2°C, 1°C, and 0.5°C and an initial enantiomeric excess of ee0 = 0.4.
The lower temperature of the cycle, i.e., the temperature of the growth step,
was set to Tg = 40°C in all experiments, hence the dissolution temperatures
were Td = 42°C, Td = 41°C, and Td = 40.5°C, respectively. The cycles were
designed such that dissolution and growth steps are of equal duration and
that the total cycle time was 20 min (three cycles per hour); note that the actual
cycle times as measured by the thermocouple turned out slightly longer for
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the experiments with 0.5°C and 2°C amplitudes, with values on the order of
21 min. Heating and cooling rates were set to 1.0 K min−1 for the experiments
with 2°C and 1°C amplitude, and to 0.3 K min−1 for the 0.5°C experiment.
We chose slower ramps for the 0.5°C experiments to mitigate the issue of
temperature overshooting. One vial per experiment was equipped with a
thermocouple. Cycle efficiencies were computed for all temperature-cycling
experiments as discussed in the SI in Section 12.8.1.

Isothermal experiments

Two sets of isothermal experiments were performed with four vials each. In
the first, the temperature of the jacket surrounding the vials was controlled at
26°C, and in the second, the temperature was not controlled, and hence subject
to the ambient conditions in the laboratory. For the controlled experiments,
the vials were placed in the EasyMax 102 apparatus (jacket temperature
set to 26°C), in the second case vials were placed on a magnetic stirring
plate next to the window of the laboratory to allow for direct contact with
sunlight. In the controlled experiments, one out of four vials was equipped
with a thermocouple, in the uncontrolled ones, all vials were equipped with a
thermocouple each.

12.8 supporting information

Section 12.8.1 explains the methodology used to compute experimental
cycle efficiencies from experimental data, and presents the values obtained
for experiments reported earlier.[330] These values are discussed within the
framework of the analytical solution derived in the main body of this work.
Section 12.8.2 reports additional considerations related to the assumptions
made in deriving the analytical solution; namely the effect of a non-linear
driving force for crystal growth and dissolution, the occurrence of the cyclic
steady state, and the effect of more complex cycle configurations.

12.8.1 Experimental cycle efficiencies

Methodology

Here we explain how to obtain estimates of the cycle efficiency η for experi-
mental temperature-cycling data. We first discuss the general approach, which
we apply to a set of literature data, before estimating η for the experiments
carried out in this work.
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Breveglieri et al.[330] designed temperature profiles such that a certain frac-
tion of the minority enantiomer dissolves in the first cycle. This is quantified
by the dissolution factor δ0:

δ0 =
ρ0(1 − ee0)

2∆c∞
(12.45)

whereby the enantiomeric excess in the suspension is ee = n1−n2
n1+n2

. Its value
at the beginning of the experiment is ee0 = ee(t = 0) and may be converted
into an initial enantiomeric ratio ξ0 (defined on a surface-basis) assuming
that the initial particle size distributions of both enantiomers. ρ0 denotes
the total mass density of crystals in the suspension at the beginning, i.e.,
ρ0 = n1(t = 0) + n2(t = 0). The dissolution factor δ0 is useful for this work,
because it is linked to the total amount of material that must react towards
enantiomer 1 to achieve homochirality, termed ∆ntot. All of enantiomer 2

except for the part that anyways dissolves during every cycle upon heating
must be converted, so that ∆ntot = n2(t = 0)− ∆c∞. We further assume that
every cycle converts the same amount of material, so that ∆ntot = ∆ncyc × nc.
This enables the definition of the experimental cycle efficiency η:

η =
δ0 − 1

nc
(12.46)

This approach provides an easily accessible estimate of η from experimental
data that just requires the values of nc and δ0. It is worth noting that this
approach only considers the initial properties of the suspension; naturally,
the value of ξ changes throughout the process as more and more material
deracemizes. This is not considered here, nor is it taken account in the
computation of η using the analytical solution (which provides η for a process
that achieves cyclic steady-state at a constant value of ξ). In fact, the decrease
in ξ over time leads to an acceleration of the deracemization process, as shown
in Figure 12.2 in the main body of this work. Given the large initial asymmetry
used (ee0 = 0.4) in the experiments, such effect is only of limited relevance
and the estimated values of η can be considered as accurate determinants of
the experimental deracemization performance.

Results

Here we compute the values of the cycle efficiency following the approach
outlined in Section 12.8.1. We first do so for for experiments involving
the three model compounds N-(2-methylbenzylidene)-phenylglycine amide
(NMPA), 2- (benzylideneamino)-2-(2-chlorophenyl) acetamide (CPG) and
3,3-dimethyl-2-((naphthalen-2-ylmethylene)amino) butanenitrile (tLEU) re-
ported previously.[330] All three compounds racemize in the presence of the
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non-nucleophilic base 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU). The overall
suspension density, ρ0, lies between 10 and 60 g/kg solvent, with ee0 values
of 0.4 in most experiments, corresponding to ξ0 = 0.43. η was found to
predominantly lie between 0.08 and 0.13 for all three model compounds.

Exp. ∆c∞ ρ0 nc δ0 ee0 η

[g kg−1
s ] [g kg−1

s ] [-] [-] [-] [-]
n1, NMPA 2.0 10 5 1.5 0.4 0.10

n2, NMPA 2.0 13 11 2 0.4 0.09

n3, NMPA 4.0 27 9 2 0.4 0.11

n4, NMPA 6.0 40 8 2 0.4 0.13

n5, NMPA 2.0 23 20 3.5 0.4 0.13

n6, NMPA 2.0 33 53 5 0.4 0.08

n7, NMPA 6.0 40 2 1.4 0.6 0.20

n8, NMPA 8.0 56 4 1.4 0.6 0.10

n9, NMPA 6.0 40 4 1.4 0.6 0.10

n10, NMPA 2.0 10 5 1.5 0.4 0.20

n11, NMPA 2.0 13 11 2 0.4 0.09

n12, NMPA 4.0 27 9 2 0.4 0.11

n13, NMPA 2.0 23 25 3.5 0.4 0.10

c1, CPG 2.0 10 16 1.5 0.4 0.03

c2, CPG 2.0 13 20 2 0.4 0.05

c3, CPG 4.0 27 10 2 0.4 0.10

c5, CPG 2.0 23 26 3.5 0.4 0.10

c11, CPG 2.0 13 15 2 0.4 0.07

c13, CPG 2.0 23 24 3.5 0.4 0.10

c14, CPG 4.0 47 18 3.5 0.4 0.14

t1, tLEU 2.0 10 5 1.5 0.4 0.10

t2, tLEU 2.0 13 9 2 0.4 0.11

t3, tLEU 4.0 27 7 2 0.4 0.14

t11, tLEU 2.0 13 10 2 0.4 0.10

t12, tLEU 4.0 27 12 2 0.4 0.08

t15, tLEU 4.0 20 5 1.5 0.4 0.10

t16, tLEU 4.0 20 7 1.5 0.4 0.07

Table 12.2 Analysis of experimental data reported by Breveglieri et al.[330]; the enumeration of the
experiments equals the one of the referenced work. The model compounds studied are NMPA, CPG,
and tLEU. The values of the initial enantiomeric excess, ee0, of 0.4 and 0.6 correspond to values of
the enantiomeric ratio ξ0 of 0.43 and 0.25, respectively.

Next, we estimate the cycle efficiency η for the temperature cycling experi-
ments carried out in this work, which involve small temperature amplitudes
of 2°C, 1°C, and 0.5°C. The corresponding dissolution factors were computed
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as outlined by Breveglieri et al.[330], and are 7.5, 15.2, and 30.7, i.e., much
larger than those in the literature study.

For 2°C, all experiments exhibited complete deracemization after about 55

cycles; for 1°C, after 80 cycles; and for 0.5°C, after 160 cycles. This corresponds
to cycle efficiencies of 0.12, 0.17, and 0.18, respectively. In all cases only little
variability was observed among the four vials used in each experiment.

Discussion

To understand whether the experimental values of the cycle efficiency com-
puted in Section 12.8.1 are attainable through the newly identified mechanism,
we evaluated the analytical solution of η for different values of the three
parameters ad, ag, and ξ, as shown in Figure 12.4.
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Figure 12.4 Values for the cycle efficiency given by the analytical solution in the limit of
long step durations where η depends only on the three parameters ag, ad, and ξ. (a) η
as a function of ag with ξ = 0.43. The lines represent different values of the ratio ad/ag.
(b) η as a function of ξ. The lines represent combinations of ag, ad that lead to model
predictions that match the experimental value of η.

This analysis focuses on the model compound NMPA, which has been
studied intensely by our group,[300,328,330] and by others,[56,325] over the past
decade. Motivated by the observation[330] that longer steps did not have a
major effect on the cycle efficiency of NMPA temperature cycling experiments,
we assume that the step durations td and tg are sufficiently long that the
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concentration levels of the enantiomers in solution approach the equilibrium
values, i.e., the solubility, before the steps end. In this case, η is independent
of td and tg. The lines shown in panel (a) correspond to different values of
the ratio ad/ag and to the experimental value of ξ0 = 0.43. Even though the
precise crystallization kinetics of the model compounds are not known, one
can identify the space of parameter values where the analytical solution and
experiments match each other in terms of η (colored regions, corresponding
to the cycle efficiencies observed in the literature experiments). The red region
that corresponds to small values of ag can be ruled out, because a previous
study has shown that an increase in the reaction rate (which would decrease
the values of ad and ag) increases the deracemization rate and hence η.[328]

Consequently, the relevant parameter space is given by the blue region.

From a physical point of view, it is well plausible that the actual parameter
values associated to the literature experiments lie within the identified space:
first, the required values of the ratio ad/ag ≥ 4 agree with the ratios of growth
and dissolution rates reported in the literature for different compounds, in-
cluding sodium chlorate (kd/kg = 4),[316] and paracetamol (kd/kg > 2.5)[315].
Second, given a characteristic time of the racemization reaction on the order
of 10 min to an hour, and that crystallization is complete in step durations on
the order of 10 min, it must hold that ag > 1.

Considering the identified parameter space, one can explain the recent
observation by Belletti et al.[325] that temperature-cycling experiments involv-
ing NMPA showed slower deracemization in some cases when they were
combined with grinding. Grinding decreases the mean crystal size in the
suspension, hence increasing the values of ad and ag, which in turn leads to
smaller values of η under the relevant conditions. This experimental observa-
tion in fact cannot be explained when considering alternative deracemization
mechanisms based on crystal ripening, since ripening becomes more pro-
nounced the smaller the crystal size. That grinding accelerates isothermal
deracemization processes, on the other hand, may be due to the fact that the
grinding process enhances the naturally occurring temperature fluctuations.
Obviously, such enhancement is of little relevance in temperature cycling
processes which are dominated by the periodic temperature variations.

Finally, 12.4 panel (b) illustrates the dependency of the cycle efficiency η

on the enantiomeric ratio ξ for sets of realistic parameter values. η generally
increases when decreasing ξ, except when ξ becomes very small values, i.e.,
under conditions where the suspension is already nearly homochiral. Keeping
in mind that ξ decreases with every cycle during a successful deracemization
process, it follows that deracemization is to accelerate throughout the process.
This is the reason why the numerical simulations of solid-state deracemization



346 elucidating the mechanism of solid-state deracemization

reported in Figure 12.2 show an acceleration in the increase of the enantiomeric
excess over time.

12.8.2 Additional considerations

In this section, we assess how the predicted deracemization performance
changes when relaxing the assumptions made in deriving the analytical
solution. We consider the role of the linear driving force for crystal growth
and dissolution in Section 12.8.2, the emergence of the cyclic steady state in
Section 12.8.2, and more complex cycle configurations such as those including
temperature ramps in Section 12.8.2.

Relaxing the linear driving force

In this section, we discuss the effect of a non-linear driving force for crystal
growth and dissolution on deracemization. To this end, we numerically solved
the general model as outlined in Section 12.7.1 for values of the exponents
g = d = 1 (termed 3D, ln(S)). We further solved two simplified systems,
one comprising 3D growth and the linearized driving force (termed 3D, ∆c),
and one comprising 1D growth and the linearized driving force (termed 1D,
∆c); the latter corresponds to the assumptions made in the derivation of the
analytical solution. In particular, 1D growth refers to the assumption that
the surface area of the crystals does not change as their volume changes, and
3D growth to the general case where the surface area does change. Figure
12.5 compares the predictions for the cycle efficiency η as a function of the
parameter ratio ad/ag obtained through the analytical solution and the three
sets of numerical simulations. The values for η that belong to the simulations
were obtained by simulating a single temperature cycle subject to sufficiently
long step duration that the concentration levels of the enantiomers in solution
approach the equilibrium values.

Panel (a) shows the result for cycling between the equilibrium concentrations
of 20 g kg−1

s and 25 g kg−1
s , whereas panel (b) shows the outcome for cycling

between 20 g kg−1
s and 20.2 g kg−1

s . All simulations were generated for a
constant value of the growth parameter ag = 5.15 and for the surface area
ratio ξ0 = 0.43, while changing the value of the dissolution parameter.

All four solutions in both panels indicate that an increase in the ratio ad/ag
leads to a more positive value of the cycle efficiency. The exact solution (black
dashed line) and the corresponding numerical solution (Sim. 1D, ∆c, green)
quantitatively agree with each other; this verifies the accuracy of the numerical
implementation of the three numerical solutions. When comparing the exact
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solution with the numerical solution for 3D growth (Sim. 3D, ∆c, violet),
only minor differences are observed. Importantly, the root of η lies exactly at
ad/ag = 1, hence the choice of 3D or 1D growth does not affect the condition
for deracemization. The minor difference in the values of η results from the
change in surface area of the crystals during growth and dissolution within
a cycle that is considered in the 3D growth simulation, but not in the exact
solution. Finally, the line corresponding to the solution with the non-linear
driving force (Sim. 3D, ln(S), blue) exhibits a similar shape as the one for the
linear driving force, but it is shifted towards the right, i.e., deracemization
requires ad/ag > 1.
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Figure 12.5 Comparison of the exact (black dashed lines) and three numerical solutions
to temperature cycling-induced deracemization for two cases. The numerical solutions
correspond (i) to the general case with logarithmic driving force and 3D growth (blue
lines), (ii) to a simplified version considering 3D growth and the linear driving force
(magenta line), and (iii) to the conditions of the analytical solution with 1D growth and
linear driving force (green line). Panel (a): Cycling between solubilities of 20 g kg−1

s
and 25 g kg−1

s . Panel (b): Cycling between solubilities of 20 g kg−1
s and 20.2 g kg−1

s . All
simulations were generated for a constant value of the growth parameter ag = 5.15 and
for the initial enantiomeric ratio ξ0 = 0.43, while changing the value of ad.

This is because the logarithm introduces additional asymmetry to the
system, since it is not symmetric around S = 1. Such asymmetry becomes
more prevalent the larger the levels of super- and undersaturation at the
beginning of the growth and dissolution steps. Panel (a), which shows an
experimentally realistic case of temperature-cycling, highlights that such effect
is small enough to be of limited practical relevance, i.e., the root of η lies
at ad/ag = 1.10. In the case of a cycle with a small solubility difference, as
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illustrated in panel (b), all simulations perfectly overlap, as expected. Hence,
the conclusions using the assumptions made in deriving the analytical solution
can be generalized to systems with non-linear driving force and 3D growth.

The cyclic steady state

The analytical solution was derived under the assumption of a cyclic steady
state, i.e., that the evolution of the concentration during a cycle is periodic,
so that the concentration at the beginning of a cycle matches the one at the
end. Such behavior is obvious for the case of sufficiently long growth and
dissolution steps, where the concentration at the beginning of each step equals
the solubility value of the step before. For short step durations, the situation
is more complex and we show through numerical simulations (1D growth, ∆c
driving force) that a cyclic steady state emerges.

Figure 12.6 shows four sets of simulations: the top left panel shows sim-
ulations for sufficiently long cycles so that the concentration levels of the
enantiomers (blue and red) approach the solubility (black) at the end of each
cycle. This is similar to the simulations shown in Figure 12.1 in the main
body of this work. The top right panel shows the evolution of the re-scaled
concentration vector x with xi = ci − c∗: a value of [0 0] indicates that both
concentration levels are at equilibrium. As initial condition, where the con-
centration levels are at 25 g kg−1

s and the solubility at 20 g kg−1
s , the vector

assumes values of [5 5], corresponding to the right top corner of the panel.
During the growth step, the supersaturation depletes and the concentration
levels approach 20 g kg−1

s , corresponding to a value of [0 0]. When the disso-
lution step starts, the solubility changes, so that x =[-5 -5]. During dissolution,
the undersaturation is depleted and the concentrations again approach [0 0];
with the start of a new growth step, the solubility changes, leading to [5 5]. As
can be seen clearly, the concentrations rapidly approach a cyclic steady state.

In the case that the dissolution step is short (row b), a similar behavior
emerges, however, the value of x at the end of the dissolution step does not
reach [0 0], but rather a value of [-1.8 -3.1]; the growth step hence starts at a
value of [3.2 1.9]. Still, the growth step is sufficiently long that the equilibrium
value of [0 0] is approached at its end. Just as in the first case, a cyclic steady
state emerges here as well, and already between the second and third cycles
no relevant difference in the concentration levels is observed. The same holds
true in case the growth step is short, and dissolution is long (row c).
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Figure 12.6 Numerical simulations for deracemization using four different step dura-
tions (a-d). The left panels illustrate the evolution of the concentration levels of both
enantiomers in solution (red and blue), and the one of the solubility (black). The right
panels show the cyclic evolution of the rescaled concentration vector x with xi = ci − c∗.

The final case that both steps are too short to approach the equilibrium is
shown in the bottom row (d). Again, a cyclic steady state is reached, even
though more slowly as in cases (b) and (c). These simulations clearly illustrate
the emergence of the cyclic steady state independent of the values of the step
durations. Hence it is safe to contend that the assumption of such steady state
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in the derivation of the analytical solution is valid. Note that, while not shown
explicitly, a similar behavior is observed when simulating the process using
3D growth and the logarithmic driving force.

Effect of more complex cycle configurations

We proved ad > ag as exact condition for solid-state deracemization under
the set of assumptions made to derive the analytical solution in Section 12.3,
and we generalized this condition to systems with 3D growth and non-linear
driving force for crystal growth and dissolution in Section 12.8.2.

0 0.05 0.1 0.15 0.20 0.05 0.1 0.15 0.2

20

25

30

0 0.05 0.1 0.15 0.2

20

25

30

0

50

0 2 4 60 2 4 60 2 4 6

0

50

Figure 12.7 Numerical solution for temperature cycling-induced deracemization. Th
red and blue lines show the evolution of concentration in the case of g = d = 1, the
violet and yellow lines for g = d = 2. Three process configurations are considered
(columns): (a) Basic cycle with one growth and one dissolution step. (b) Cycle with
intermediate growth step. (c) Cycle with growth ramp and constant dissolution step.
We note that for g = d = 2, configurations (b) and (c) enable deracemization; this is
remarkable, since ad = ag, and hence the analytical solution would predict no change
in the handedness of the suspension. The simulation parameters for the case g = d = 2
are reported in Table 12.3.

Here, we show that deracemization becomes feasible for ad ≤ ag when
relaxing some further assumptions; namely when considering more complex
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cycle configurations combined with values of the exponents g and d in the
expressions for the driving force that differ from 1. Figure 12.7 illustrates the
deracemization performance for six simulations with ad = ag, i.e., for three
cycle configurations with g = d = 1 (top row), and with g = d = 2 (second
row). The columns report the cycle configurations; (a) is the base configuration
with two steps connected through temperature jumps, (b) includes a third
intermediate step for growth, and (c) shows a cycle comprising a dissolution
step and a ramped growth step. To enable a fair comparison, the duration of a
single cycle has been chosen to be the same in all three configurations, namely
12 min. While one may extend this study to an arbitrary number of cycle
configurations, the three chosen ones sufficiently highlight the main effects.

Following the exact condition for deracemization, the simulations should
neither lead to deracemization nor to racemization. For g = d = 1, this is
indeed the case for all three cycle configurations. For g = d = 2, however, the
configurations with intermediate growth step and with growth ramp lead to
deracemization. In these two cases, growth takes place at a lower value of the
driving force than dissolution in average. For g > 1 this creates an additional
asymmetry that shifts the process towards deracemization. This effect is most
pronounced for a ramped step, where growth occurs at low, nearly constant
supersaturation over the entire step duration. While not shown explicitly,
similar effects are observed for configurations where dissolution occurs at
lower values of the driving force than growth, which favors racemization.

It is worth underlining the practical relevance of this finding. The ratio
ad/ag is hard to control in practice, as it depends on the physicochemical
properties of the compound that is crystallizing, and on the temperature-
dependency of the racemization reaction. In contrast, the manipulation of
the cycle configuration provides an accessible means of improving the der-
acemization performance in the rather relevant scenario that at least one of
the exponents g and d is unequal one.

Parameter Symbol Values [unit]
Growth rate exponent g 2 [-]
Dissolution rate exponent d 2 [-]
Growth pre-factor at Tg (∆c ) kg(Tg) 10−1.699[m s−1kg−2kg2

s ]
Growth/dissolution ratio kd(Tg)/kg(Tg) 4 [-]
Time of growth step tg variable
Time of dissolution step td variable
Simulation time step tstep 0.05 [s]
Process duration ttot until N2 = 0

Table 12.3 Set of parameter values used in the simulations for g = d = 2. Note that these simulations
required a shorter time step due to the non-linearity introduced by the values of the exponents.





13 CONCLUD ING REMARKS

The preceding chapters provided detailed insights into the research ac-
tivities carried out within this thesis. This chapter aims to synthesize the
main achievements and to indicate potential avenues for future investigations.
Its structure mirrors that of the thesis as a whole, whereby the following
three sections are related to the three parts of the thesis. I close the thesis
with a personal perspective on the broader research field of pharmaceutical
manufacturing.

13.1 part i: nucleation of ice

The limited understanding of ice nucleation in the commercial freezing
process of the Janssen COVID-19 vaccine was a main motivation for this thesis.
Chapters 2–5 report experimental studies that shed light on the fundamen-
tals of this elusive phenomenon and its relevance to the freezing process of
pharmaceuticals. In Chapter 2, I developed an experimental methodology to
monitor ice nucleation in vials filled with aqueous solution at mid-throughput.
I further showed how to estimate the kinetic parameters in the nucleation rate
expression and their uncertainty from the collected experimental data.

This first study aimed to establish a robust measurement methodology for
ice nucleation and hence experiments focused on a single solution composition,
namely 20 wt% sucrose solution. Next, I carried out a large experimental
campaign comprising solutions of ten different compositions that contained
sucrose, trehalose and sodium chloride at various concentration levels, as
reported in Chapter 3. The objective of this study was to quantify the effect of
solution composition on the rate of ice nucleation; and as the experimental
data indicated, such an effect mirrors that of the solution’s thermodynamic
properties (i.e., the melting point) on its composition. Three nucleation rate
expressions based on the supercooling, on the water activity difference, and
on the chemical potential difference were shown to accurately describe the
effect of solution composition: when estimating the kinetic parameters in these
expressions for all ten compositions studied, no significant differences were
observed among the compositions. This finding is of immediate relevance to
the pharmaceutical industry, as it demonstrates that nucleation rates do not
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have to be measured for all formulations individually; rather, it is sufficient to
measure them for a single formulation of a specific composition and then to
extrapolate to different compositions.

In addition to solution composition, particulate impurities are of key interest
to the freezing of pharmaceuticals. This is because drug products prepared
under manufacturing conditions must be particulate-free, whereas those
prepared under standard laboratory conditions are contaminated with dust
particles. Therefore, Chapter 4 reports a detailed investigation on the effect of
particulates on ice nucleation. Samples prepared under standard conditions
were compared first with particulate-free ones prepared at Janssen, and second
with samples spiked with silver iodide particles, which are known to promote
ice nucleation. As expected, and now quantified with statistical relevance,
the particulate-free samples nucleated significantly slower than the less clean
samples. This finding highlights that nucleation rates should be measured
under conditions that are representative for the manufacturing process. The
effect of particulates on ice nucleation is also relevant to the freeze-drying
process of pharmaceuticals in vials where scale-up issues between particulate-
free manufacturing conditions and less clean laboratory conditions are widely
reported.

Chapters 2–4 focus on the freezing process in vials. This was done to match
the conditions of industrial processes, where vials are used as well. However,
it is also true that a certain volume, on the order of tens of milli-liters, is
required to measure the nucleation kinetics at the vial-scale, which may be
expensive and hard to acquire during early stages of drug development. To
this end, I explored in collaboration with the research groups of Prof. Dr.
Ulrike Lohmann (Atmospheric Physics) and Prof. Dr. Andrew deMello (Bio-
chemical Engineering), both at ETH Zurich, the use of droplet microfluidics
to monitor the freezing process of aqueous solutions in pico-liter volumes at
high throughput. Initially focusing on ice nucleation, the main achievement
of this study was the discovery that droplet microfluidics allows for the direct
visualization of the maximally freeze-concentrated state that represents the
endpoint of solidification. We applied this technique to extract the critical
temperature and composition of this state, which are relevant to the design
of pharmaceutical freeze-drying processes. This demonstrates that the use of
miniaturized setups is beneficial for pharmaceutical applications and should
be explored further.

I conclude this section by emphasizing that the experimental studies re-
ported in Part I focus on binary solutions that consist of water and either
sucrose, trehalose, or sodium chloride. These three solutes indeed are of phar-
maceutical relevance, as they are common excipients in biopharmaceuticals.
Yet, one may wonder whether actual drug products that comprise a multitude
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of excipients and – often rather complex – active ingredients, nucleate in a
similar manner or if they show a more complex nucleation behavior. While
not explicitly reported in this thesis, the nucleation behavior of the Janssen
COVID-19 vaccine was studied in the context of Chapter 4, and no major
differences were observed between the vaccine and the particulate-free sucrose
solutions. As a next step, it would be very interesting to generalize these find-
ings and to measure the ice nucleation rate in samples of all relevant classes of
biopharmaceuticals – such as those based on macro-molecules (peptides, pro-
teins, RNA, etc.), on nano-particles, on viral vectors, and so on. Such a study
could also establish links to the literature on so-called antifreeze-proteins,[335]

which are proteins known to inhibit ice nucleation, and that are abundant in
different organisms that live in cold environments.

13.2 part ii: freezing of pharmaceuticals

While the first part of this thesis focuses on fundamental aspects of freezing,
the second part utilizes these insights for the rational design and understand-
ing of pharmaceutical processes that involve freezing. Chapters 6–9 report the
development of mechanistic models for different types of freezing processes
and the comparison of model predictions with experimental data. In Chapter
6, I introduce a process-scale freezing model that accounts for the stochastic
nature of ice nucleation, and I apply it to simulate the freezing stage in a
freeze-drying process. In such a process, numerous vials are densely packed
in two dimensions on a temperature-controlled shelf, and frozen together.
A key finding of this modeling study was that vials thermally interact with
each other as a consequence of their dense packing, and that such interactions
significantly enhance batch heterogeneity. Such heterogeneity among vials is
undesired and represents a major challenge to the design and optimization of
pharmaceutical freeze-drying processes.

To validate these model predictions, I designed an experimental setup
that enables for the first time the monitoring of nucleation times, nucleation
temperatures, and solidification times for all vials in a batch of up to one
hundred vials. This setup relies on infrared thermography, as reported in
Chapter 7, and experiments carried out with the setup placed in a laboratory-
scale freeze-dryer confirmed the trends predicted by the model. In particular,
the experiments corroborated the key role that thermal interactions among
vials play in freeze-drying and elucidated the effect of loading configurations
on the extent of these interactions. In line with model predictions, high cooling
rates and fast heat transfer with the shelf were found to mitigate thermal
interactions, and hence to reduce batch heterogeneity.
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The two-dimensional model for the freezing stage in freeze-drying served
as a starting point for the development of a three-dimensional model for the
commercial freezing process of the Janssen COVID-19 vaccine, as reported
in Chapter 8. In this process, tens of thousands of vials are stacked in three
dimensions on a pallet and frozen over several days in a cold storage room.
Engineering runs, however, revealed that after multiple days at −20°C, the
drug product in many vials remained liquid, whereas in others ice formed.
Temperature sensors located in the pallet reported complex thermal evolution
profiles with numerous unexpected features such as thermal spikes that were
not understood at the time of process design. With the help of the mechanistic
freezing model, however, all these trends could be explained and were traced
back to the phenomenon of ice nucleation. In particular, I found that the ice
nucleation kinetics of the vaccine were too slow at the given temperature for
nucleation to happen in all vials in the given time frame; the use of lower
freezing temperatures and less dense packing configurations ensured that the
drug product in all vials freezes in a reasonably short amount of time.

To assess the accuracy of a key assumption in these process-scale models,
namely that temperature and composition in each vial are spatially uniform,
I developed a third freezing model that simulates the spatial evolution of
freezing in a single vessel, which is reported in Chapter 9. Given that the walls
of the vessel are cooled during freezing, the regions in the vicinity of these
walls are colder than the center of the vessel, and therefore nucleation should
be more likely to happen there than. The spatial freezing model correctly
predicted this behavior, and further revealed that thermal gradients strongly
influence the time of nucleation in case of freezing in large vessels (tens of
mL and above) or at high cooling rates. Thermal gradients affect the interplay
between the distribution of nucleation temperatures and the cooling rate, and
hence the model was validated using experimental nucleation data in vials
generated at two different cooling rates. When applied to the conditions
used in pallet freezing and in the freezing stage of freeze-drying, the model
predicted no relevant effects of thermal gradients, thus confirming that such
gradients can be neglected at the process-scale without loss of accuracy.

The three freezing models have been made available to the public in the
form of a Python package termed SNOW, short for Stochastic Nucleation of
Water.[73] Considering potential avenues for future work, there are several
promising opportunities how to expand these models. In particular, it may
be worthwhile to explore how to integrate the shelf-scale freezing model
presented in Chapter 6 with a mechanistic model for drying, to obtain a
complete model for the freeze-drying process of pharmaceuticals. Such a
model must be able to predict the properties of the micro-structure that forms
during freezing, because it is this micro-structure that affects the dynamics of



13.3 crystallization systems 357

drying. This promises to be challenging, as the mechanisms that govern the
formation of this micro-structure are not entirely understood.

To validate such a freeze-drying model, one should carry out an experi-
mental campaign where aqueous solutions are frozen under different process
conditions and then dried under vacuum afterward. By monitoring both
freezing and drying of all vials on the shelf using the setup introduced in
Chapter 7, one can experimentally quantify the link between the two stages
of the process. The micro-structure in dried samples can be analyzed using
scanning electron microscopy (SEM), whereby pores in the dried material
represent regions of pure ice in the formerly frozen product. Alternatively,
one could use µ-computed tomography, which provides three-dimensional
images of the micro-structure. This technique avoids issues that arise during
sample preparation for SEM, which involves cutting the fragile dried product.
During the early stages of my doctorate, I conducted preliminary experiments
using µ-computed tomography, where I could confirm the feasibility of this
technique for the analysis of freeze-dried products.

13.3 part iii: crystallization systems

The third and final part of this thesis comprises Chapters 10–12 and focuses
on complex systems related to crystallization. Originally, I envisioned to focus
my thesis research entirely on freezing and freeze-drying, however, when
investigating these processes in detail I learned to appreciate the similarities
with crystallization. In particular, nucleation plays a central role in both
freezing and crystallization, and its limited understanding represents a major
hurdle for rational process design in both cases. Intriguingly, one of the main
methods to measure nucleation rates in crystallization from solution relies on
the same principles as the one I developed for ice nucleation during freezing
in vials. Both methods assume that a single nucleus randomly forms in the
vessel and extract the nucleation rate from the statistics of this random event.
In the case of crystallization, one also accounts for the time that this nucleus
requires to grow to a detectable size. In the case of freezing, ice crystal growth
is rapid and quickly penetrates the entire vial, so that the first nucleus is
detected immediately after its formation, as observed many times during the
studies reported in Part I. In crystallization, however, there is still a major
debate around this detection delay and the general notion of forming only a
single (primary) nucleus in a vessel. I therefore studied in Chapter 10 how
the interplay of primary nucleation, secondary nucleation and crystal growth
results in the formation of detectable crystalline matter. I assessed the accuracy
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of different methods for the estimation of nucleation rates and formulated
recommendations for their correct application.

In Chapter 11, I investigated secondary nucleation in more detail. The
rate of secondary nucleation dominates that of primary nucleation at low
supersaturation levels,[50,105] which is relevant to the design of continuous
crystallization processes that rely predominantly on secondary nucleation.
Such continuous crystallizers operate at steady state, and an open question
in the field was how to rigorously describe the stability of the steady state.
I conceived a general mathematical framework for this purpose, which is
grounded on the notion that at steady state a crystal must on average promote
the formation of one secondary nucleus during its lifetime in the crystallizer.
This framework confirmed the findings of earlier studies,[258,259] and provided
a set of necessary and sufficient conditions to characterize the stability of
systems with size-dependent crystal growth, size-dependent crystal with-
drawal, growth rate dispersion, and cross-nucleation. It is particularly useful
to characterize the steady state of systems that form multiple types of crystals
such as polymorphic or chiral compounds, which are of immediate interest to
the pharmaceutical industry.

The crystallization of chiral compounds is also the topic of Chapter 12.
To summarize it, I quote one of the anonymous reviewers of the associated
journal publication:[80] The authors make a landmark contribution to an important
scientific and technological phenomenon that has occupied the minds of many scholars
since the late twentieth century. The phenomenon is this, when a racemic mixture of
crystals is stirred in solution or ground (e.g., in a mortar and pestle) in the solid state
it is found experimentally that the crystals transform to one particular enantiomorph.
They all become L- or they all become D- crystals. When this phenomenon was
first reported there was general disbelief that it was real, but after many confirming
experiments from many laboratories the phenomenon became accepted but mysterious.
During the last 25 years there have been several explanations offered to account for
the phenomenon, but they are all mysteriously complex until now. In this manuscript,
Mazzotti and co-workers offer a simple, believable, and very general explanation
that is validated by theory, simulation, and experiment. The explanation is that
deracemization occurs when the crystal dissolution rate is faster than the crystal
growth rate. Their proof is beyond doubt, their simulations are in excellent agreement
with theory, and the experiments agree with both theory and simulation. There is
nothing more to say on this topic in my opinion, except well done.

This phenomenon, called solid-state deracemization, is relevant both to
the industry in the context of chiral resolution, and to the fundamental
sciences in the context of how homochirality emerged on Earth. Given that
chemical reactions with achiral starting materials yield chiral products as
racemates, it is an open question how it happened that chiral molecules in
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nature such as carbohydrates or amino acids nowadays occur in homochiral
form, i.e., as only one of the two enantiomers. Two phenomena are known to
enable the amplification of a given enantiomeric excess, which are solid-state
deracemization and asymmetric autocatalysis. While the newly identified
mechanism for solid-state deracemization is ubiquitous and many different
chiral compounds have successfully been deracemized in the past, only a
single class of chemical reactions, without biological relevance, has been
found to undergo asymmetric autocatalysis.[332] This supports the notion that
solid-state deracemization has contributed to the emergence of homochirality.
These results open up several exciting paths for future research concerning
the crystallization of chiral compounds, both in the context of the emergence
of homochirality on Earth and related to the industrial implementation of
solid-state deracemization.

13.4 perspective

The study of the physical and chemical foundations of manufacturing pro-
cesses is of immediate interest not only to industry but also to the fundamental
sciences and to society as a whole. Despite many decades of successful im-
plementation in the pharmaceutical industry, the mechanistic understanding
of the three processes studied in this thesis – freezing, freeze-drying, and
crystallization – is not yet sufficient for model-based process design. While
the predominant use of trial and error in industrial process design may yield
acceptable results under normal circumstances, it became a major issue in the
context of the COVID-19 pandemic and the associated accelerated manufac-
turing timelines.

There are many lessons to be learned from the pandemic, and one of
them is that drug products can be brought to the market significantly faster
than done in the past. To avoid becoming a bottleneck in the overall drug
development timeline, the way how processes are designed must change.
In this context, process models will become more relevant as they help to
reduce the necessary number of time-consuming experiments. Such models
may rely on mechanistic considerations as is the case for those presented in
this thesis, or instead on data-driven approaches. Mechanistic models are
particularly useful if there is at least some basic understanding of the relevant
fundamental phenomena involved in the process, such as crystal nucleation
in case of freezing and crystallization.

The work in this area greatly benefits from collaborations between academia
and industry, as is exemplified by the fruitful interactions I had during my
doctorate with my collaborators at The Janssen Pharmaceutical Companies
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of Johnson & Johnson. This is for several reasons, and the most important
one is that academia and industry are two very different environments with
distinct ways of working. The rather slow-paced nature of academia allows
researchers to deeply dive into specific topics without too many external
constraints, hence nurturing the discovery of fundamental advances. The
pace in industry is much faster, even more so in the future, so that there
may be only little time for fundamental studies dedicated to the mechanistic
understanding of processes. Therefore, by supporting academic research,
pharmaceutical companies can promote the generation of relevant knowledge
that they may find difficult to obtain on their own.

A lot of work remains to be done, and I would not be surprised to see
more and more such collaborations in the future (and perhaps to be involved
in some of them). Indeed, one may argue that freezing and crystallization
represent rather basic processes in the field of pharmaceutical manufacturing
because they have been around for a long time. It is quite remarkable that
even for these processes there is a substantial lack of process understanding.
And while I am confident that the results of my thesis filled some of the gaps,
I also acknowledge that there are many more issues to address in the future.
Various processes of industrial relevance do not have such a long history,
consider for instance the manufacture of mRNA-based drug products. How
to design and optimize the manufacturing processes for these products will
remain a topic of great relevance for a long time, as mechanistic investigations
have only just begun.
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