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APPROACH
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Institute of Geodesy and Photogrammetry

8093 Zurich, Switzerland

ABSTRACT

The ionosphere is a significant error source in space-geodetic
techniques, such as the Global Navigation Satellite System
(GNSS) and satellite radar altimetry. This is especially pro-
nounced for single-frequency receivers, as ionospheric delays
cannot be mitigated by ionosphere-free combinations. There-
fore, for high-precision space applications, we need an ac-
curate ionospheric model to provide ionospheric corrections
at desired times and locations, such as global ionospheric
maps (GIMs) that depict the global distribution of vertical to-
tal electron content (VTEC). In this study, we propose a neu-
ral network (NN)-based global ionospheric model to predict
global VTEC with higher accuracy compared with conven-
tional GIMs. We first determined VTEC based on the carrier-
to-code leveling method using multi-GNSS observations from
global IGS stations. The derived VTEC time series for all
training station-satellite pairs were then used to train the NN-
based model. During our experiment in April 2022, a pe-
riod of high solar activity, the average mean absolute error
of VTEC predictions at 47 global test stations was 1.7 TECU.
The performance of the NN-based models were also evaluated
by single-frequency precise point positioning and compared
with GIMs provided by the Chinese Academy of Sciences
since the same differential code bias products were used. The
NN-based models demonstrated a noteworthy enhancement
in the positioning precision at 47 test stations, achieving im-
provements of 12%, 20%, and 8% for the east, north, and up
components, respectively.

Index Terms— Ionosphere, machine learning, GNSS,
neural network

1. INTRODUCTION

The ionosphere is the ionized part of the Earth’s upper atmo-
sphere, characterized by a significant concentration of ions
and free electrons. These electrons significantly affect the
propagation of radio waves, causing signal delays and re-
ducing the reliability of radio communication and navigation
systems. For instance, Global Navigation Satellite Systems
(GNSS) can experience signal delays of many tens of meters

due to the ionosphere under solar maximum conditions or so-
lar storms, introducing large errors in positioning [1]. To ad-
dress these errors, precise ionospheric modeling becomes es-
sential, which enables us to predict and compensate for iono-
spheric delays, ensuring more accurate and reliable GNSS ap-
plications.

Global ionospheric maps (GIMs) from the International
GNSS Service (IGS) and its Ionosphere Associate Anal-
ysis Centers (IAACs) are widely used products to correct
ionospheric delays in GNSS signals, especially for single-
frequency applications where ionospheric delays cannot be
mitigated with the ionosphere-free combination of observa-
tions. GIMs depict the global distribution of vertical total
electron content (VTEC), presented in the IONosphere Map
EXchange Format (IONEX) for the convenience of the in-
terested parties. With a typical spatial resolution of 5◦ in
longitude and 2.5◦ in latitude, GIMs can achieve an overall
accuracy of approx. 2-8 TEC Units (TECU) [2]. To generate
GIMs, traditional mathematical methods, such as spherical
harmonics, B-splines, and Kriging interpolation, are com-
monly used. Although these techniques can sufficiently
capture large-scale and global features of the ionosphere,
they tend to smooth out local variations and irregularities
due to the limited spatial resolution typically chosen by the
providers.

Machine learning (ML) methods offer new solutions for
addressing these challenges. As an effective tool to uncover
the nonlinear connections between inputs and outputs, ML
can be used to model relationships between ionospheric vari-
ations and parameters like time and location, as well as solar
and geomagnetic indices. In recent years, various ML algo-
rithms have been increasingly employed in ionospheric mod-
eling and show great potential [3, 4, 5]. However, these stud-
ies focused mostly on temporal ionospheric modeling, while
the spatial modeling of the ionosphere was rarely discussed,
especially at a global scale.

In this study, we propose a neural network-based (NN-
based) method for global VTEC modeling as an alternative to
conventional GIMs. The goal is to improve the accuracy of
ionospheric models. In the following sections, we first intro-



duce the methodology of GNSS VTEC estimation and ML-
based global VTEC modeling. Then, the data and experiment
settings are described. Finally, the performance of the gener-
ated NN-based global ionospheric model is discussed.

2. METHODOLOGY

2.1. GNSS VTEC estimation

We used the carrier-to-code leveling (CCL) method to esti-
mate VTEC based on multi-GNSS observations [6]. The ob-
tained VTEC time series were then used as target features to
train the NN-based model.

To derive TEC from GNSS measurements, the geometry-
free combination is widely used due to the frequency-dependent
characteristics of ionospheric delay, which can be written as
follows:
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where k is a constant value of 40.3 m3s−2; f1 and f2 rep-
resent the frequencies of GNSS signals (GPS: L1 and L2,
Galileo: E1 and E5a); STECs

r denotes the slant total elec-
tron content (STEC) along the satellite-receiver path; DCBr

and DCBs represent the differential code biases (DCB) re-
lated to the receiver and satellite, which can be corrected by
DCB products; Bs

r,GF is the geometry-free ambiguity con-
taminated by carrier-phase hardware delays, which needs to
be set up for each new satellite arc and whenever a cycle slip
occurs; esr,GF and ϵsr,GF represent the observation noise and
unmodeled errors like multipath.

Based on Equation 1, we can estimate the phase ambigu-
ity and STEC simultaneously. Finally, STEC values are trans-
formed into VTEC values at each ionospheric pierce point
(IPP) using the single-layer model (SLM) mapping function:
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where Re represents the radius of the Earth; Hion represents
the height of the ionospheric layer and is set to 450 km in this
study; and θ is the elevation angle of the satellite.

2.2. ML-based global VTEC modeling

We used a feed-forward NN to model the VTEC on a global
scale using available GNSS observations from IGS stations.
The NN has three key layers: the input layer, the hidden
layer(s), and the output layer. After hyperparameter tuning,
we used three hidden layers, each with 60 neurons. As shown
in Fig. 1, seven input features, including location and time in-
formation, were used. Note that we used solar magnetic (SM)

latitude (SM LAT) and longitude (SM LON), instead of geo-
graphic coordinates, to take into account the impact of solar
radiation and geomagnetic activities. We used sine and cosine
terms of SM longitude to ensure the continuity of the model
at −180◦ and 180◦. Besides, sine and cosine components of
seconds of day (SODS and SODC) and day of year (DOYS
and DOYC) were incorporated as temporal features.

Fig. 1. Neural network model, input features, and the target
feature utilized in this study.

3. DATA AND EXPERIMENT

In this study, we used GPS and Galileo observations from ap-
prox. 300 IGS stations distributed globally. The data were
processed with a 30-second sampling resolution based on the
CCL method implemented in CamaliotGNSS [7]. The lat-
ter employs a Kalman filter (KF) with a smoother to derive
VTEC time series for each station-satellite pair. As an input to
the KF-based CCL approach, satellite and receiver DCB prod-
ucts [8] from the Chinese Academy of Sciences (CAS) were
used to correct the geometry-free observables, as shown in
Equation 1. An elevation cut-off angle of 35◦ was used during
the preprocessing of machine learning to exclude VTEC esti-
mates with low accuracy since they were greatly affected by
errors in the SLM mapping function. The experiment covered
the period from April 1st to 30th, 2022. Fig. 2 displays the
time series of F10.7 and the Disturbance Storm-Time (Dst) in-
dex during the period. F10.7 is represented in red, which can
be considered an indicator of solar activity, while the Dst is
in blue, serving as a proxy for geomagnetic activity. Notably,
the F10.7 index reflects high solar activity in April 2022, with
its value ranging from 96 solar flux units (sfu) to 147 sfu. As
illustrated by the Dst index, there was a geomagnetic storm on
April 14th, where the Dst index dropped to −80 nT at 21:00.
By selecting this experiment period, we can better evaluate
the performance of the proposed model during an active iono-
sphere period.

We trained the neural network (NN) model daily, utiliz-
ing VTEC time series with a 30-second resolution. This ap-
proach ensures comparability with conventional GIMs, which
are also updated daily. As a result, 30 daily NN-based models
were generated. We selected 47 globally distributed IGS sta-



Fig. 2. Time series of F10.7 solar flux index (red) and the
Disturbance Storm-Time (Dst) index (blue) in April 2022.

tions as our test stations. The remaining stations were used as
training data. Fig. 3 displays the distribution of training and
test stations on April 4th, 2022. To evaluate the performance
of our NN-based model, single-frequency precise point po-
sitioning (SF-PPP) tests were conducted on the test stations.
The positioning accuracy of NN-based models was compared
with that of traditional GIMs from CAS since the same DCB
products were used to produce VTEC time series in our case.
Note that the CAS GIMs are based on the traditional spher-
ical harmonics and generalized trigonometric series method
[9]. For a fair comparison, the 47 test stations selected above
were not utilized to generate the CAS GIMs either.

Fig. 3. Distribution of training and test stations on April 4th,
2022. Blue dots and red triangles represent the training and
test stations, respectively.

4. RESULTS

Fig. 4 shows the time series of mean absolute error (MAE) of
the NN-based VTEC predictions compared to CCL VTEC.
The black line represents the MAE at all training stations,
while the red line represents the MAE at test stations. Con-
cerning the experiment period, the average training MAE and
test MAE are 1.2 TECU and 1.7 TECU, respectively. Com-
pared with the training MAE, the test MAE shows larger vari-
ations, ranging from a minimum of 1.3 TECU to a maximum
of 2.4 TECU. For the geomagnetic storm day (April 14th),
the test MAE increases to 1.5 TECU compared to 1.3 TECU

Fig. 4. Time series of daily mean absolute error between NN-
based VTEC and CCL VTEC at training and test stations.

on April 13th, a geomagnetic quiet day with Dst higher than
−30 nT.

The station-specific MAE is shown in Fig. 5. There is a
clear correlation between MAE and stations’ latitudes, which
is expected considering the VTEC magnitude distribution.
Specifically, for low-latitude stations, prediction errors tend
to be higher than those for stations located at mid- and high-
latitudes, reaching a maximum MAE of approx. 6 TECU.
Conversely, for mid-latitude stations, the prediction errors are
usually within 2 TECU.

Fig. 5. VTEC prediction error (mean absolute error between
NN-based VTEC and CCL VTEC) at test stations.

We also conducted SF-PPP tests to evaluate the posi-
tioning performance when utilizing our NN-based models.
Observations on GPS L1 and Galileo E1 frequencies were
used. The ionospheric delays in L1/E1 signals were directly
corrected with the predictions from the NN-based models.
Satellite orbit and clock errors were computed with the final
products from the Center for Orbit Determination in Europe
(CODE) [10]. The station coordinates were estimated in
kinematic mode. The same SF-PPP test was also conducted
with CAS GIMs and the results were compared to those using
our NN models.

Fig. 6 displays the 3D positioning error of SF-PPP using
the NN-based models at each test station. Notably, lower po-
sitioning errors (approx. 0.5 m) are observed at mid-latitude
stations, while errors at low-latitude stations are relatively
larger, ranging from 1.6 m to 3.6 m. The average position-
ing errors are shown in Table 1. Overall, the NN-based mod-
els can achieve an accuracy of 0.37, 0.37, and 0.78 m for the



Table 1. Average positioning error at 47 test stations over the
experiment period of NN-based models and CAS GIMs

NN-model CAS-GIM Improvement
East (m) 0.37 0.42 12%

North (m) 0.37 0.46 20%
Up (m) 0.78 0.85 8%
3D (m) 0.95 1.07 11%

east, north, and up components during the experiment period.
Compared with CAS GIMs, the positioning accuracy is vis-
ibly enhanced by using the NN-based models, with an im-
provement of 12%, 20%, and 8% for the east, north, and up
position components, respectively. The improvements do not
show a clear dependence on latitude.

Fig. 6. 3D positioning error based on the SF-PPP processing
at test stations using the NN-based VTEC model.

5. CONCLUSIONS

In this study, we proposed daily NN-based ionospheric mod-
els for global VTEC prediction. The models were trained
based on daily VTEC time series and achieved an average
MAE of 1.7 TECU at global test stations during a period
of high solar activity. The generated models can be used to
predict ionospheric corrections globally. Based on the con-
ducted SF-PPP tests, the NN-based models tend to provide
more accurate ionospheric corrections than traditional GIMs
from CAS, with distinct improvements in positioning preci-
sion. These results demonstrate the great potential of uti-
lizing ML methods in global ionospheric modeling, which
can efficiently improve the accuracy of ionospheric predic-
tions compared with traditional mathematical methods. Con-
sidering that the IONEX is a widely employed standard for
the exchange of ionospheric products, we plan to generate
NN-based GIMs formatted in IONEX in the future, providing
user-friendly products for the interested research communi-
ties.
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