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Abstract

Path guiding is a technique to facilitate Monte-Carlo-based rendering algorithms by incorporat-
ing the scene’s spatial-directional incident radiance information into local sampling decisions.
State-of-the-art path-guiding methods typically use a k-d tree to subdivide the scene space, and
then cache the directional incoming light distribution at the tree’s leaf nodes. While signifi-
cant work has been done to improve the representation of directional components, the spatial
structure remains underexplored, often relying on simple subdivision heuristics based on the
number, mean, and variance of samples arriving at each node.

This thesis mainly focuses on k-d-tree-based spatial subdivision schemes for path guiding. We
decompose the problem into “when and where to split” and address them separately. For “when
to split”, we present two adaptive splitting algorithms either based on divergence estimates or
multiple importance sampling, which make split decisions responsive to the light change at a
node. For “where to split”, we propose several geometry- and lighting-aware algorithms derived
from decision trees metrics. We demonstrate their ability to improve the subdivision quality by
fitting the shapes of geometries or lighting in the scene.

Finally, we introduce our comprehensive models by combining the “when and where to split”
algorithms. Rendering experiments across diverse scenes show that our best models consis-
tently outperform previous methods while maintaining an equal or lower tree node budget.
Additionally, we explore alternative spatial structures beyond k-d trees.
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1
Introduction

1.1. Background

In the world of computer graphics, physics-based rendering is the science of synthesizing re-
alistic images from scene descriptions. Monte Carlo rendering is the governing algorithm that
simulates light transport from the sources to the camera by generating random samples of paths
in the scene. To accelerate Monte Carlo rendering, path guiding is a technique that collects path
data on the fly gained during the rendering, which can be later used to guide local sampling
decisions. A fundamental problem in path guiding is the representation of the scene’s spatial-
directional lighting distribution. Common path-guiding methods first subdivide the scene into
a 3D structure and then store some cache per local region to approximate the 2D directional
incoming light distribution.

While numerous works have been focused on improving directional representations such as
histograms, quadtrees, and Gaussian mixture models, very few addressed the optimization of
spatial structures and their subdivision schemes. Mainstream path-guiding methods use a k-d
tree with a simple sample-count criterion as its subdivision scheme. Since this criterion does not
account for the underlying characteristics of the lighting, it leads to suboptimal spatial structures
for guiding, appearing as inefficient sampling during rendering. Instances are regions with
highly spatially varying lighting, such as caustics and shadows, being insufficiently subdivided
(see the red square in fig. 1.1), uniformly lit areas being over-subdivided, or points from distinct
surfaces being grouped into one region (see the blue arrows in fig. 1.1).

This thesis strives to explore some commonly used spatial subdivision approaches in computer
graphics and find ones suitable for path guiding. We tailor our proposed methods to address
the aforementioned subdivision problems while maintaining high compatibility with existing
path-guiding algorithms.

1



1. Introduction

Figure 1.1.: Demonstration of problems in a sample guiding structure in Water Caustics scene. Left:
reference image. Right: rendering overlaid with guiding region boundaries. The red square
highlights some regions that do not consider the high-frequency caustics pattern, which
should have been subdivided more finely. The blue arrows indicate the regions that span
across opposing surfaces, mixing up the guiding distributions from two geometries.

1.2. Contribution

Our main contribution comprises the following aspects:

• Summary of existing problems: we study the suboptimal subdivisions resulting from
existing methods. Based on this, we outline a list of requirements for the design of im-
proved subdivision schemes.

• Adaptive k-d trees: we enhance the k-d tree subdivision scheme with adaptive criteria,
based on either divergence estimates or multiple importance sampling.

• Geometry- and lighting-aware subdivision: we develop a family of efficient algorithms
to find the split position based on sample variance and information gain.

• Theoretically optimal subdivision: we give a lower bound of rendering error due to
spatial marginalization at a guiding region, and based on which, a theoretically optimal
split strategy for k-d tree subdivision.

• Bottom-up subdivision approaches: we explore several bottom-up subdivision approaches
that are based on clustering or bounding volume hierarchy.

• Comprehensive analysis: we experiment with our proposed algorithms with modular
and rendering experiments to understand and analyze their behaviors.

2



1.3. Overview

1.3. Overview

This thesis is organized into seven chapters.

In chapter 1, we introduce readers to the problem we consider and summarize the key contribu-
tions.

In chapter 2, we review some fundamentals about light transport, Monte Carlo integration, and
sampling, which form the basics for path guiding and spatial subdivision. We also introduce a
collection of commonly used spatial structures in graphics.

Chapter 3 summarizes a few representative path-guiding works with a focus on their spatial sub-
division schemes if applicable. Additionally, we include the part of their methodologies which
we draw inspiration from. To motivate the proposal of new spatial subdivision schemes, we
present a list of example scenes where current methods result in suboptimal spatial subdivision.

In chapter 4, we first provide information about the spatial subdivision problem in the context
of path guiding and rendering. Then, we introduce the reader to a few 2D examples to inform
the challenges and important aspects of a spatial subdivision.

Chapter 5 is the central part of the thesis, where we present our core methodologies based on k-d
tree subdivisions from two perspectives: “when to split”, which determines when a subdivision
happens, and “where to split”, which considers the axis and position to split. Next, we conquer
these two problems separately. Finally, we combine the when- and where-to-split solutions into
our full models.

In chapter 6, we evaluate our proposed algorithms in 2D and rendering experiments. The 2D
experiments demonstrate the behavior of the algorithms and offer a detailed analysis. In the
rendering experiments, we integrate our methods into a state-of-the-art path guiding library. We
then evaluate their performance by comparing them against previous works’ spatial subdivi-
sions.

In chapter 7, we showcase several of our less successful attempts, all of which construct the
spatial structure in a bottom-up manner. We give an outline of their pros and cons.

In the final chapter 8, we summarize the proposed methods and the key findings of our research.
We provide a list of limitations of our work and suggest future avenues for further investigation.

3





2
Preliminaries

2.1. The Light Transport Equation

The cornerstone of Monte Carlo rendering, or path tracing, is the light transport equation
(LTE) that describes the propagation of light in a scene [Kaj86] . It quantifies how a beam of
light transfers from one point to another based on radiance, a principled measurement of light.
The radiance from surface point x to an outgoing direction !o is given as an integral over all the
incoming directions !i by

Lo(x, !o) = Le(x, !o) + Ls(x, !o) (2.1)

Ls(x, !o) =

Z

⌦

f(x, !i, !o)Li(x, !i)(!i · n)d!i (2.2)

Figure 2.1.: Illustration of the light transport equation

5



2. Preliminaries

The related terminologies are listed as follows:

• Lo is the outgoing radiance leaving from x toward !o.

• Le is the emitted radiance.

• Ls is the scattered radiance.

• f is the bidirectional scattering distribution function (BSDF) that entails the material
properties at the scattering surface.

• Li is the incident radiance arriving at x from !i.

• !i · n is the cosine between the incoming direction and the normal.

• ⌦ is the incoming directional domain. For reflection-only materials, it is the unit hemi-
sphere of n on the same side of !o. For materials with transmission (e.g. glasses), it is
the full unit sphere.

Notably, eq. (2.2) only deals with scenes without participating media, i.e. surface rendering.
Hence, the radiance fields are defined on the spatial domain of geometry surfaces, essentially
2D manifolds in the 3D space. In a scene with media, however, LTE takes a more complicated
form. In the scope of this thesis, we only focus on surface rendering.

LTE is an integral equation that cannot be solved analytically in most real 3D scenes. Numerical
methods such as Monte Carlo integration (MC) come in handy in finding approximate solutions.

2.2. Monte Carlo Integration

Consider a general integration problem of a function f : D ! R

I =

Z

D

f(x)dx (2.3)

If we have a random variable X that follows a continuous distribution p, the integral can be
estimated by

One-sample MC estimator hI(X)i :=
f(X)

p(X)
(2.4)

I =

Z

D

hI(x)ip(x)dx = EX⇠p[hI(X)i] ⇡ 1

N

NX

i=1

f(Xi)

p(Xi)
(2.5)

Eq. (2.5) allows us to approximate the integral eq. (2.3) by taking the average of N random
samples from distribution p, each of which has a contribution of f(Xi)/p(Xi). An important
property of MC integration is that it makes an unbiased estimate of the integral if f(x) 6= 0 =)
p(x) > 0, 8x 2 D, which means the math expectation of the estimator equals the true integral.
The average of multiple one-sample estimators is called the N-sample estimator:

hI(X)iN :=
1

N

NX

i=1

f(Xi)

p(Xi)
, Xi ⇠ p (2.6)
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2.3. Importance Sampling

whose variance is in inverse proportion to the number of samples, if Xi are independent:

Var[hI(X)iN ] = Var

"
1

N

NX

i=1

hI(Xi)i
#

(2.7)

=
1

N2

NX

i=1

Var [hI(Xi)i] (2.8)

=
1

N
Var [hI(X)i] (2.9)

This says as we have more and more samples, the estimator will converge to the accurate value
of the integral. However, the speed of the convergence depends on the sampling distribution of
our choice. The more the p resembles f , the smaller Var [hI(X)i], and the faster the conver-
gence. Ideally if p(x) = f(x)/I , hI(x)i ⌘ I , the variance goes to zero.

Now let’s apply MC to solve LTE eq. (2.2). This involves choosing a sampling distribution q
over the directional domain, from which we have the scattered radiance estimator

hLs(x, !o)i :=
f(x, !i, !o)Li(x, !i)(!i · n)

q(!i)
(2.10)

Ls(x, !o) = E [hLs(x, !o)i] ⇡
1

N

NX

j=1

f(x, !(j)
i , !o)Li(x, !(j)

i )(!(j)
i · n)

q(!(j)
i )

(2.11)

The key of the above expression is the Li(x, !(j)
i ) term, which requires us to compute the inci-

dent radiance coming from the sample direction. This can be done by tracing the ray (x, !(j)
i ) in

the scene, finding the intersection y, and applying eqs. (2.2) and (2.11) to compute Lo(y,�!(j)
i )

recursively. This process of generating ray samples and tracking the radiance until reaching the
light source is named path tracing.

Path tracing inherits the unbiasedness from MC integration, as long as q(!i) > 0 whenever the
integrand product f(x, !i, !o)Li(x, !i)(!i · n) 6= 0. However, the intrinsic randomness of MC
makes path tracing suffer from variance which appears as noise in the images.

2.3. Importance Sampling

Importance sampling is a technique to reduce the variance of MC integration. The idea is to
select a sampling distribution as proportional to the integrand as possible.

For path tracing, the most naive way is to sample a direction uniformly in the sphere or hemi-
sphere, regardless of the product integrated f(x, !i, !o)Li(x, !i)(!i ·n). A better way is to im-
portance sample the cosine term !i·n, leaving the estimator proportional to f(x, !i, !o)Li(x, !i).
Moreover, we can take BSDF into account, i.e. approximately sampling f(x, !i, !o)(!i · n),
so the variance from the material properties is reduced. Despite this, the variance of the scat-
tered radiance estimator eq. (2.10) can still be high if the incident radiance has high-frequency
changes.
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2. Preliminaries

To address this, an alternative is to sample according to the light distribution. Typically, we can
decompose the scattered radiance into the direct and indirect components

Ls(x, !o) = Ldir
s (x, !o) + Lind

s (x, !o) (2.12)

where the first term is defined as the contribution of radiance from light sources that are directly
visible from x

Ldir
s (x, !o) :=

Z

⌦

f(x, !i, !o)Le(x, !i)(!i · n)d!i (2.13)

It can be estimated by sampling a point y on the union of surfaces of the light sources and
checking the visibility from x to y. This technique is called the next-event estimation (NEE).

On the other hand, the indirect lighting in eq. (2.12) has to be computed in the path tracing
routine recursively.

2.4. Defensive Sampling

On diffuse or rough materials, the change of f(x, !i, !o) is smooth, so when there is not much
occlusion, NEE can effectively sample the direct illumination eq. (2.13). However, when the
material is glossy with f(x, !i, !o) sensitive to incoming directions, sampling merely the light
source can still lead to noisy estimates. This is where sampling the BSDF is a safer strategy.
But in cases where we don’t know whether the lighting or the material is more crucial, how do
we decide which one to sample from?

A defensive mixture distribution is a technique to combine the strengths of different sampling
strategies and to make the variance of the estimator more robust [Hes95]. It allows us to create
a probability density function (PDF) using the weighted sum of each strategy, in the hope that
the mixture one can approximate the integrand better. Specifically, if we have a conservative
sampling distribution such as the BSDF pf (!), and an aggressive sampling distribution that
approximate the direct illumination pdir(!), then the mixture PDF is constructed as

q(!) = ↵ pf (!) + (1� ↵) pdir(!) (2.14)

where ↵ 2 [0, 1] controls the rate of sampling with BSDF. To sample from the mixture distribu-
tion, we can use the one-sample multiple importance sampling (MIS), which draws a uniform
1D sample ⇠ 2 [0, 1] and compares it with ↵ to decide which lobe to sample from. If ⇠ < ↵,
sample pf , otherwise pdir.

2.5. Path Guiding

The indirect illumination Lind
s (x, !o) plays an important role in rendering. Global illumination

effects such as color bleeding and caustics are both examples of indirect lighting. Yet, it remains
challenging to compute this component within the framework of path tracing as Lind

s (x, !o) is
unknown and can only be approximated during path sampling.
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Advanced Monte-Carlo-based methods have been developed over the years to improve the cal-
culation of indirect illumination, including bidirectional path tracing, Metropolis light transport
[Vea98], and photon mapping, etc. The downside of these methods is the requirement of an in-
tricate understanding of the path space, scene-specific parameter tuning, a fundamental change
of the rendering pipeline, or introducing bias that appears as visual artifacts in the rendering
results. As a result, these advanced methods work less robustly than a forward path tracer in
industrial practice.

Path guiding solves the problem in a different fashion. It aims to enhance the sampling process
in eq. (2.11) by gaining knowledge about the scene’s lighting progressively, as the rendering
goes on. The desired goal of path guiding is to find an efficient sampling PDF q at each point
and outgoing direction that resembles the product integrand as much as possible

Ls(x, !o) ⇡
f(x, !i, !o)Li(x, !i)(!i · n)

q(!i | x, !o)
(2.15)

where q is called the guiding distribution, or guiding cache. Path guiding has the potential to
significantly reduce the rendering variance if q accurately captures the incoming light distribu-
tion at every point and outgoing direction in the scene.

In the ideal case where q(!i | x, !o) / f(x, !i, !o)Li(x, !i)(!i · n), the estimator eq. (2.15)
gets zero variance. However, this would bring us the complexity of representing a 7D field
(3 spatial dimensions + 2 incoming direction dimensions + 2 outgoing direction dimensions).
In practice, current path-guiding works try to cache the distribution that is proportional to the
incident radiance Li(x, !i) instead, which boils down to representing a 5D function q(!i | x), a
PDF of the incoming direction domain, conditioned on the spatial location of the query.

For the learning of the radiance field Li(x, !i) or its distribution, path-guiding methods either
rely on the MC samples generated at each vertex along path tracing or undergo a separate
training phase where probing samples are emitted from the camera or the light sources.

In practice, people often build a mixture PDF for the actual sampling out of the BSDF sampling
strategy pf and the guiding distribution [VHH+19, RHL20], similar to eq. (2.14)

qs(!i | x) = (1� ↵) q(!i | x) + ↵ pf (!i | x, !o) (2.16)

This defensive handling is helpful in the initial iterations of rendering since the guiding distri-
bution is not mature yet.

Compared to advanced rendering algorithms, path guiding enjoys the modularity of being able
to integrate with both forward and bidirectional rendering methods while introducing relatively
small changes to the original pipeline. The cost is a modest overhead of sample storage and the
training of guiding caches. The simplicity and maintainability make path guiding increasingly
suitable for production renderers [VHH+19].

2.6. Spatial Subdivision

To achieve the representation of the 5D guiding field q(! | x), path-guiding works usually
decompose the spatial domain into subspaces and then treat the conditional PDF in each one as
a 2D PDF that is purely a function of incoming direction.
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2. Preliminaries

Assume X is the full space of the scene. A spatial subdivision is defined as a set of disjoint
subspaces {Xi}N

i=1, whose union is the full space:

X = [Ni=1Xi, Xi \Xj = ;, 8i 6= j (2.17)

Obviously, for every point in X , there exists exactly one subspace Xi that contains it. So the
5D guiding distribution simplifies to a somewhat piecewise constant function of x

q(! | x) = q(! | Xi), x 2 Xi (2.18)

where q(! | Xi) is the guiding cache for subspace Xi. For brevity, we refer to each subspace
after the spatial subdivision as a region.

In this section, we will review a few commonly used spatial structures in the world of computer
graphics.

2.6.1. Uniform Grid

A uniform grid trivially decomposes the space into uniformly sized regular voxels. Each voxel
is an axis-aligned rectangular cuboid. A uniform grid is parameterized by the resolution or the
size of the voxel along each dimension.

In CG applications, we are often interested in the scene parts where geometries exist. Particu-
larly, in a surface rendering application, geometries concentrate on 2D manifolds, a small subset
of the 3D space. Nevertheless, applying a uniform grid in such cases will produce a vast number
of empty voxels, wasting memory. Moreover, regions with fine geometries have the same size
as the empty ones, bearing a low-resolution limit.

2.6.2. Octree

To make grids more adaptive, octrees are proposed. An octree partitions the space by construct-
ing a tree-like data structure, where each internal node in the tree corresponds to a (axis-aligned
cubic) subspace. An internal node is split into eight descendants by cutting at the middle of the
node along the three coordinate planes simultaneously. The octree can rely on some heuristics
to trigger the split dynamically across the scene. Once the tree is built, the leaf nodes naturally
represent a valid subdivision of the space.

A common heuristic used in ray tracing acceleration is the count of geometries, which means
a node is split when it contains more geometries (triangles, points, etc) than a user-defined
threshold. This way, the spatial subdivision adapts to the density of geometries in the scene.
Scene parts containing more geometries will get finer subdivisions. As a result, all regions will
have more or less the same number of geometries.

Compared to uniform grids, octrees offer greater adaptivity and require less memory, albeit with
the drawback of additional overhead from maintaining the tree data structure.
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2.6. Spatial Subdivision

Figure 2.2.: Illustration of a uniform grid (left), a quadtree (middle), and a k-d tree (right) constructed
on top of the same points. The quadtree is the 2D equivalence of an octree. The k-d tree on
the right splits at the median point and the longest axis.

2.6.3. K-d Tree

A k-dimensional tree is similar to an octree, except that it splits an internal node into only two
descendants by cutting it at some offset along one of the coordinate planes in the k-d space. In
this introduction, we refer to the special case where k = 3.

Again, k-d trees require heuristics to know when to split and when to stop subdivision such as
the count of geometries threshold. On top of that, heuristics are needed to determine which of
the coordinate planes to split along (the xy-plane - called z-cut, the yz-plane - called x-cut, or
the zx-plane - called y-cut), and where to split. Formally, the algorithm has to determine the
axis d and position t of the splitting plane:

xd = t, d 2 {1, 2, 3} (2.19)

Once a tree is constructed, we define the terminologies in table 2.1 for convenience in future
discussions.

Term Explanation

Root node The top-level tree node.

Internal nodes Tree nodes with descendants. In particular, a root node is also an
internal node.

Leaf nodes The bottom-most tree nodes, or nodes without descendants.

Depth of a node Distance from the current node to the root plus one. Specifically,
the root node has a depth of 1.

Tree height The maximum depth of nodes in the tree.
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Region The subspace that the node contains. Apparently, the region
should be an axis-aligned rectangular cuboid Xi = [xmin, xmax) ⇥
[ymin, ymax) ⇥ [zmin, zmax). Particularly, the union of the leaf node
regions should form a valid spatial subdivision of the root region
X , which is the bounding box of the whole scene.

Split dimension The axis d that is perpendicular to the split plane of an internal
node.

Spilt position (pivot) the split position t 2 [(xmin)d, (xmax)d] of an internal node.

Left child The left descendant of an internal node i. The left child has the
region Xl = {x 2 Xi | xd < t}.

Right child The right descendant of an internal node i. The right child has the
region Xr = {x 2 Xi | xd > t}.

(Guiding) cache The guiding information associated with this tree node.

Table 2.1.: Terminologies in a k-d tree

Compared to octrees, k-d trees can produce more balanced data structures due to their binary
nature. Moreover, they offer more flexibility in splitting criteria in the sense that they allow us
to control both the dimension and location to split at the same time. K-d trees are also simpler
to implement and allow faster retrieval of the data with proper optimizations such as treelet
reconstruction [KA13].

2.6.4. Bounding Volume Hierarchy

The tree methods mentioned above sections 2.6.2 and 2.6.3 work in a top-down fashion, mean-
ing that the subdivision is found by constructing the tree from the root, where during each step,
a node is split into its children. Top-down construction may cause issues during initial splits
for complex scenes, especially when the geometries are arranged in such a way that any possi-
ble axis-aligned cut can intersect some geometry, dividing it into two parts. (For instance, the
middle vertical cut in fig. 3.8 intersects with two cuboids.)

Bounding volume hierarchies (BVHs) are a family of spatial data structures typically used in
ray tracing acceleration in rendering and collision detection in physics simulation. In our dis-
cussion, we specifically refer BVH to the ones that construct the tree in a bottom-up (agglom-
erative) fashion, such as the one described by Gu et al. [GHFB13].

Compared to top-down trees, a BVH works in a converse fashion. It first creates a leaf node
(also called a cluster, e.g. an axis-aligned bounding box) that bounds each geometry instance in
the scene. Then it iteratively selects the closest pair of clusters, and merges them into a new one
that bounds the pair, until all the clusters have been merged into a root node. Such an algorithm
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Figure 2.3.: Illustration of a bottom-up BVH construction algorithm. Source: [GHFB13]

is computationally expensive (with an O(N3) time complexity for N geometries). Gu et al.
proposed a way to accelerate it by ensuring the leaf node contains at least � geometries, and
limiting the closest-pair-search to local scopes defined by a constraint tree, shown in fig. 2.3.
This offers a speed up to O(N) construction, at a cost of a reduced BVH quality. The nearest
search and grouping process of BVH naturally avoids the initial split challenge for complex
scenes.

Importantly, the result of such a selecting-grouping process is a hierarchy of bounding volumes
where each node in the hierarchy descends to a pair of clusters that were used to form the
node. The leaf nodes are the bounding volumes of each geometry, whose union does not always
cover the whole space (Note there could be gaps or overlaps between nodes). Therefore, strictly
speaking, a BVH is not a spatial subdivision eq. (2.17). This issue is discussed in our chapter 7.

2.7. Decision Tree

A decision tree is a machine learning method that can predict outcomes given a set of obser-
vations, typically used in classification and regression tasks. A decision tree is trained with
multi-dimensional discrete or continuous data (features) with ground truth labels (the classifi-
cation or regression targets). Among all supervised learning methods, decision trees have the
advantage of being explainable and simple. They work by building a top-down binary tree
where a decision about some dimension is made at each internal node, directing the control
flow to a child node. Finally, a leaf node outputs a class label or a constant function value.

We are interested in decision trees because when the input is 3D sample positions, the dimension-
selection and decision-making steps coincide with k-d trees, where we also have to choose a
split axis and position. But different from k-d trees, decision trees have well-formed criteria
to guide the choice of dimension and the position to split based on concepts from informa-
tion theory. In other words, decision trees are intelligent k-d trees when applied to the spatial
subdivision!
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Figure 2.4.: Illustration of a decision tree trained on 2D position data with three classes. Left: sample
position, class, and partitions. Right: the constructed decision tree. Source: [Loh11]

The next sections recap some widely used decision tree metrics for measuring the “goodness of
splitting”.

We denote by S = {(xi, ci)}N
i=1 the sample positions and their ground truth labels at an internal

node with region X , where xi = (xi, yi, zi) 2 X, ci 2 {1, . . . , K}.

We represent by (d, t) the proposal split dimension and position, d 2 {1, 2, 3}, t 2 [(xmax)d, (xmin)d].
The split results in the left and right child regions Xl = {x 2 X | xd < t}, Xr = {x 2 X |
xd > t}, and corresponding samples Sl = {(x, c) 2 S | xd < t}, Sr = {(x, c) 2 S | xd > t}.

The metrics below are all linked with the homogeneity of samples.

2.7.1. Entropy

Shannon entropy quantifies the average level of impurity or uncertainty about a set of samples.

The entropy of a node is defined as

H(S) = H(p1, . . . , pK) := �
KX

i=1

pi log2 pi (2.20)

where pi =
|{(x, c) 2 S | c = i}|

|S| is the probability of finding class i in the samples within the

node.

When all the K probabilities equal to
1

K
, the entropy reaches its maximum at log2 K. When

the probability vector (p1, . . . , pK) is one-hot, the entropy is minimized at 0.
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2.7.2. Information Gain

Intuitively, the more reduction in “uncertainty” or “lack of information”, the better a split is.
The information gain is defined as the difference of the entropy when going from one node to
its descendant a (a 2 {l, r})

Ig(S, a) := H(S)�H(Sa) (2.21)

We are interested in the expected information gain (i.e. mutual information), which is the
average of Ig over left and right children

Ea [Ig(S, a)] = H(S)� (plH(Sl) + prH(Sr)) (2.22)
=: IG(S, d, t) (2.23)

where pl =
|Sl|
|S| , pr =

|Sr|
|S| are the fraction of the left and right samples. Sl, Sr, pl, pr implicitly

depends on d, t. That’s why the mutual information IG is a function of d, t.

The best split is defined as the one that maximizes the mutual information.

(d, t)⇤ = arg min
d,t

IG(S, d, t) (2.24)

2.7.3. Gini Impurity

Gini impurity is another decision tree metric. It is associated with the “lack of information” in
physics, defined as

Gini(S) = Gini(p1, . . . , pK) :=
KX

i=1

pi(1� pi) = 1�
KX

i=1

p2i (2.25)

It’s maximized at 1� 1

K
when all probabilities equal

1

K
, and minimized at 0 for one-hot cases.

Gini impurity can replace the entropy terms in eqs. (2.21) and (2.23) to serve as an alternative
splitting criterion.

2.7.4. Variance Reduction

When the target of the input is continuous rather than discrete class labels (called regression
trees), variance is often used to quantify the dispersion of the data. Let wi 2 R be the target
data of sample i.

The empirical target variance of S = {(xi, wi)}N
i=1 is defined as

V (S) :=
1

N

NX

i=1

(wi � w̄)2 (2.26)

w̄ =
1

N

NX

i=1

wi (2.27)
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The variance reduction of a node led by the split is

Iv(S, d, t) := V (S)� (plV (Sl) + prV (Sr)) (2.28)

which implies the best split
(d, t)⇤ = arg min

d,t
Iv(S, d, t) (2.29)

Our proposed spatial subdivision algorithms take a lot of inspiration from the concepts intro-
duced above. In chapters 5 and 6, we will revisit some of these points and make adaptations for
path guiding.
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3
Related Work

In this chapter, we first review a few of the most related path-guiding works, with a focus on
spatial subdivisions and how they represent the guiding distribution. We will trace the advance-
ments of spatial subdivision, showing how each work builds upon precedent ones.

We then identify several failure cases that persist in state-of-the-art approaches, highlighting
problems that need to be solved, which contextualizes and motivates the development of our
proposed algorithms in chapter 5.

3.1. Path Guiding without Spatial Subdivision

Earlier works [Jen95, SL06, BAJ08] proposed a two-pass algorithm, similar to photon mapping.
In the first pass, photon samples are sent to the scene to probe the incident radiance at discrete
points and directions ��(x(j), !(j)

i ). In the second pass, paths are traced from the camera and
importance-sampled using the photon information from the first pass. Specifically, k nearby
photons around a query point x are retrieved to form a directional histogram or mixture model
q(!(j)

i | x) for sampling.

Vorba et al. [VKŠ+14] proposed fitting Gaussian mixtures from photon and importon maps
for guiding. They reduce memory usage and computation by caching and reusing existing
distributions if one is available near the query location.

Dahm et al. [DK17] noticed the structural similarity between LTE and the equations from
reinforcement learning, and thus applied Q-learning to importance sample the light transport.
To approximate the Q function, they discretize it with hemispheres storing at surface points
exhibiting a 2D low-discrepancy sequence.

These methods involve no spatial subdivision. A core problem is the creation, caching, and fast
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Figure 3.1.: Path Guiding without Spatial Subdivision. To sample the incident direction at position x,
neighboring photons are retrieved to construct a representation of the directional radiance
distribution Li(x, ·)

retrieval of the guiding distributions. fig. 3.1 provides a general illustration of the cache query
workflow.

3.2. Practical Path Guiding

Muller et al. [MGN17] presented a simple yet practical path-guiding algorithm (PPG). The
high-level workflow is an iterative routine that combines rendering and training of the cache into
one. They collect guiding samples {si} (positions, incident directions, and incident radiance
estimates: si = (xi, !i, hLi(xi, !i)i)) at all path vertices. Then, they use {si} to update the
guiding cache q(! | x), represented as a 5D spatial-directional tree (SD-tree), as shown in
fig. 3.2.

Figure 3.2.: PPG’s subdivision scheme. Source: [VHH+19]
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The spatial subdivision is done with a k-d tree (k = 3). The split dimension alternates among
x, y, z in a round-robin manner (i.e. x, y, z, x, . . . ), while the split location is set to the middle
point of the current node. Whether to split is driven by the count of samples accumulated in
the node.

At a spatial leaf node (a region), a quadtree is created to represent the directional distribution
of incident radiance marginalized in that region. The quadtree is built over the world-space
cylindrical coordinate domain (�, cos ✓).

The middle-split-heuristics can generate relatively balanced spatial trees for the case when guid-
ing samples distribute uniformly on scene geometries. But when there is a discrepancy in the
spatial distribution of the samples, which is usually encountered in practice, splitting at the mid-
dle point of a node can cause fluctuation in the number of samples between the child nodes. In
extreme cases, one child can have zero samples whereas the other gets all of them (such as the
bottom left and the highlighted node in fig. 3.2).

The round-robin split dimension heuristics exhibit a problem when the scene bounding box is
not cubic. In a 2D example fig. 3.3, after a few splits, the leaf nodes of the k-d tree have the
same aspect ratio as the scene bounding box. Their elongated boundaries make it hard to adapt
to the shape of the geometries. PPG remedies this issue by enlarging the scene bounding box to
a cube so that after multiples-of-three splits, leaf regions remain cubic and can adapt better to
the scene geometries. The downside is that it produces more empty regions.

Figure 3.3.: Illustration of PPG’s bounding box extension handling. Left: the middle-round-robin split
heuristics will result in rectangular regions when the scene bounding box is not perfectly
cubic, which does not adapt to the shape of the geometries well. Right: by extending the
bounding box to a cube, the partition adapts better to the geometries.

3.3. Robust Fitting of Parallax-aware Mixtures for Path
Guiding

Ruppert et al. [RHL20] presented one of the leading works in path guiding. Their main im-
provement over PPG is the replacement of the directional quadtree at a spatial leaf node with a
parametric mixture model, along with various optimizations for its fitting.
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VMM. They employ the von Mises-Fisher Model (VMM) to represent the guiding distribution
in a region, based on the von Mises-Fisher distribution function (vMF).

A vMF is a 3D Gaussian distribution with mean µ and isotropic covariance �1I , conditioned
on the 2D unit sphere

v(! | µ, ) :=


2⇡(e � e�)
exp

�
µT!

�
(3.1)

The VMM is defined as a weighted sum mixture distribution of vMFs

V(! | ⇥) :=
KX

k=1

⇡kv (! | ⇥k) (3.2)

where ⇥k = {µk, k} are the parameters for each component. Weights ⇡k are positive and sum
up to one. Ruppert et al. argue that VMMs have the potential to represent varying numbers
of lighting components. Each vMF can represent the incoming radiance distribution of one
(virtual) light source. vMFs also offer the flexibility of approximately integrating with the
cosine and BSDF term to enable guiding the full product of LTE eq. (2.2).

Fitting. To learn the guiding distribution, they present a weighted EM algorithm to fit VMM
parameters. Their maximum a posteriori probability (MAP) estimate allows for incremental
updates with a small batch of samples. This enables the proposal of an interleaving rendering
and training process. During the rendering phase (several pixel samples), at vertices of the MC
random walk, samples {si} = {(xi, !i, p(!i | xi), hLi(xi, !i)i)} are generated and collected
into a buffer. During the training phase, the guider traverses the spatial k-d tree with the sample
buffer and fits or updates the VMM stored in each region. The faster turn-around between
rendering and guiding offers a smaller memory footprint.

Variance-aware split and merge. They further improve the accuracy and robustness of
fitting with an adaptive split and merge approach. This allows them to select the suitable num-
ber of vMF components for different local regions in the scene with different lighting complex-
ity. The split and merge criteria are based on the Pearson �2-divergence, which reflects the
normalized estimator variance (NEV) of sampling with PDF q(!) instead of the ground truth
p(!) / Li(x, !).

D2
�(p k q) :=

Z
(p(!)� q(!))2

q(!)
d! = Var


h�(x)i
�(x)

�
(3.3)

where the fluence estimator h�(x)i = hLi(x, !)i/p(! | x) is used as the sample weight for
expectation-maximization (EM) fitting. eq. (3.3) can be estimated using MC integration with
sample data.

They detect the �2-divergence of every component. A split is triggered if the divergence exceeds
a user-defined threshold, which hopefully increases the expressiveness of the model. Merging,
on the other hand, is designed to avoid overfitting. They compute pair-wise merging cost based
on �2-divergence of the original vMF pair and merged vMF. They merge the pair with the lowest
cost if it goes below the threshold.
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3.3. Robust Fitting of Parallax-aware Mixtures for Path Guiding

We take some inspiration from their adaptive split and merge in the directional domain while
developing our spatial subdivision approaches.

Figure 3.4.: Parallax effect is compensated by re-adjusting the vMF towards its light source. Source:
[RHL20]

Parallax compensation. They notice that within a region, assuming a single point light
source, the guiding samples’ directions exhibit shifts in response to their position change, which
introduces an extra dispersion in the learned signals. By re-projecting the samples to the region
center during training, and re-adjusting the direction of the vMF lobe towards the light source,
the distributions can better represent the actual lighting, as shown in fig. 3.4.

Spatial subdivision. Similar to PPG, they leverage a k-d tree to subdivide the space into
axis-aligned rectangular regions. Instead of splitting at the middle point with a round-robin
dimension selection, they collect the mean and variance statistics of the sample positions xi,
split at the mean position, and choose the axis with the largest variance. To ensure the child
regions after the split get enough valid samples, they only collect the statistics of non-zero-
weight samples (sample weight h�(xi)i = hLi(xi, !i)i/p(!i | xi)).

Ideally, splitting at the median point of the samples will ensure a perfectly balanced tree. How-
ever, due to the fact that there is no cheap way of incremental median update, they resort to
using the mean, which in practice results in fairly balanced trees, and avoids PPG’s issue of
having no samples for one of the children.

Splitting at the axis with the largest variance, on the other hand, maintains a high cubicality of
the resulting region boundaries. Intuitively, the axis with the largest variance has the longest
span of valid samples.
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3.4. Neural Path Guiding

With the surge in artificial intelligence, more and more methods based on neural networks and
deep learning have come up in the field of path guiding.

Muller et al. [MMR+19] and Zheng et al. [ZZ19] opened the avenue of applying deep learn-
ing methods to improve MC integration in rendering. Muller et al. presented a method to
guide path tracing by sampling a neural network that encodes the incident radiance distribution
of the whole scene. They train the network by minimizing Kullback–Leibler divergence (KL
divergence) or �2-divergence between the sampling distribution and the ground truth lighting
distribution. Zheng et al. represent and learn the density of MC samples in the primary sample
space of the rendering by a neural network and use it to effectively guide the sampling.

Notably, these works do not require spatial subdivision at all since a single network is trained
for the whole scene.

Zhu et al. [ZXS+21] proposed a photon-driven guiding method analogous to that of Jensen et al.
[Jen95]. They perform spatial subdivisions to allow the reuse of incident radiance histograms
created from local photons in each region. Furthermore, they feed the histograms through an
offline-trained neural network to decode a sampling distribution for better quality guiding.

Remarkably, they subdivide the scene using a hierarchical grid. The grid is initialized as a uni-
form one as introduced in section 2.6.1. As photons come in, valid voxels in the grid (those with
camera path vertices) are iteratively subdivided into local binary trees. For the split handling,
they propose a hybrid heuristics that involves splitting at either the median or middle point,
while choosing the dimension in the round-robin manner.

Figure 3.5.: The hierarchical grid spatial structure to cache sampling maps. Valid voxels are subdivided
into a binary tree based on local photon statistics. Source: [ZXS+21]

Instant Neural Graphics Primitives (Instant NGP) [MESK22] presents a multi-resolution hash
grid data structure (fig. 3.6) for a diverse set of neural graphics applications. The core is to
distribute parametric encodings of the neural network into spatial hash tables with different
scales. They argue that coarser scales can store more global information while finer ones store
more local ones. The advantages of a multi-resolution hash grid include its simplicity, high
performance, and GPU-friendliness. For hash conflicts, they rely on the neural network for
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3.4. Neural Path Guiding

resolution.

Figure 3.6.: Multi-resolution hash grids for neural graphics primitives. Source: [MESK22]

Neural Parametric Mixtures for Path Guiding (NPM) [DWL23] presents a path-guiding ap-
proach that combines the vMF guiding section 3.3 and neural networks. They implicitly store
the global and local guiding cache parameters in a multi-resolution hash grid. Then they con-
catenate and decode the spatial encodings through a multi-layer perceptron (MLP) to obtain
VMM parameters for path guiding. Similar to [MMR+19], they train the network on the fly by
flowing the gradient of KL divergence estimates.

Conceptually, this work subdivides the scene using a set of uniform grids with different scales,
where each region indirectly stores the parameters of a directional model at different frequen-
cies.

In this thesis, we focus on non-neural guiding methods. Despite the simplicity of hash grids, or
uniform grids, they necessitate setting the grid resolution parameter in advance, which requires
scene-specific tuning and cannot be refined during rendering. Uniform-sized voxels also make
adapting to local lighting contexts challenging. Employing a multi-scale uniform grid is non-
trivial because the number of scales adds one more parameter for tuning. Moreover, currently,
there is no available method to distribute VMM parameters across regions with different scales
without the help of a neural network.

Therefore, our primary approach will be based on a k-d tree spatial subdivision with directional
VMMs. We believe in k-d trees’ potential because of their adaptivity to valid sample distri-
butions. They offer flexibility in dimension selection, split position control, and incremental
refinement. Additionally, a k-d-tree-like subdivision is highly compatible with a cutting-edge
path-guiding implementation (see section 4.1).
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3. Related Work

3.5. Remaining Problems with Spatial Subdivision

Albeit the improvements in the state-of-the-art spatial subdivision made by Ruppert et al. (sec-
tion 3.3), problematic cases remain. We demonstrate some typical ones in figs. 3.7 to 3.10 with
a summary of observed issues into four categories. This helps inspire the considerations and
development of our proposed methods.

Not lighting-aware. The spatial change of actual incident radiance is not taken into account
when proposing the splitting position. For instance, the red squares in fig. 3.7 and fig. 3.9
highlight regions where there is a transition from shadow to bright areas. Using only one guiding
distribution will mess up the bright part, producing extra rendering errors.

Figure 3.7.: Example problems of a spatial subdivision in the Cube scene. Left: rendering image over-
laid with guiding region boundaries. Right: error map.

Figure 3.8.: Example of a spatial subdivision not being fully aware of the underlying geometry (Cornell
Box). Left: reference image. Right: visualization of guiding region ID.
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3.5. Remaining Problems with Spatial Subdivision

Not geometry-aware. In general, the incident radiance varies significantly at opposing geo-
metric objects because they are either far apart or have different hemispheres1. Existing methods
tend to use separate guiding caches for distant points, but they do not consider the geometries
on which the points lie. In figs. 3.7 to 3.9, the surface pairs highlighted with blue arrows have
very different lighting distributions, but are wrongly grouped into one guiding region.

Over-refinement. A high-resolution guiding cache is used for uniformly-lit areas, reducing
the number of training samples each region can access, and incurring more memory overhead.
Typical cases are highlighted with green squares in fig. 3.7 and fig. 3.9, where the optimal way
would be to use one guiding region for the whole bright part of the plane since it is uniformly
lit by the sky dome.

Insufficient refinement. A low-resolution guiding cache is used for areas with drastic light
changes, limiting the expressiveness of the model. A good case in point is the Water Caustics
scene fig. 3.10, which exhibits drastically changing lighting brought by the caustic effects. A
very coarse subdivision such as the image on the left, resulting from a high sample count thresh-
old, will mix signals from different parts of the caustics together, making it challenging for the
guider to summarize useful information. A fix would be to increase the resolution such as the
image on the right.

Figure 3.9.: Example problems of a spatial subdivision in the PBRT Book scene. Left: reference image.
Right: guiding region ID.

1For detailed discussions, see section 5.2.1
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Figure 3.10.: An example of insufficient refinement on the Water Caustics scene (32 samples per pixel).
Left: guided with a lower-resolution cache. Right: guided with a higher-resolution cache.

26



4
Context and Motivation

To begin with, we provide context to clarify the aspect of path guiding that our research focuses
on.

Figure 4.1.: The collaboration between the renderer and the guider. During each rendering phase, the
renderer queries the guider to sample ray directions and compute PDFs. In the training
phase, the newly collected samples are sent to the guider to store or update the guiding
cache.
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4. Context and Motivation

4.1. Open PGL

Our central work is based on Intel Open Path Guiding Library (Open PGL) [HD22]. It imple-
ments a wide set of state-of-the-art path-guiding algorithms [MGN17, RHL20].

The spatial subdivision part of Open PGL adopts the k-d tree described in section 3.3, which is
recapped in section 4.2.

In our discussion, we assume the high-level rendering pipeline to be the way fig. 4.1 illustrates,
which aligns with Ruppert et al.’s work described in section 3.3.

During the rendering phase, guiding samples generated at every path vertex are collected into a
list

S = {si}N
i=1 (4.1)

si = (xi, !i, qs(!i | xi), hLi(xi, !i)i) (4.2)

qs(!i | xi) is the sampling PDF of the incoming direction !i at location xi. hLi(xi, !i)i is
the noisy incident radiance obtained from path tracing. The Monte Carlo weight is a derived
quantity

h�(xi)i :=
hLi(xi, !i)i
qs(!i | xi)

(4.3)

It is also known as the fluence estimator, because it serves as an MC estimate for the fluence

�(x) :=

Z
Li(x, !)d! (4.4)

Entering the training phase, Open PGL first subdivides (refines) the scene into local guiding
regions. Then it fits (updates) the the directional cache with incoming samples S per region.

We mainly focus on the subdivision step of the training phase.

4.2. Problem Definition

A spatial subdivision algorithm takes a list of sample data (positions, directions, weights, etc.
eq. (4.2)) as input, and outputs a subdivision of 3D space, whose formal definition is given in
section 2.6.

As we have shown in chapter 3, the state-of-the-art path guiders employ k-d trees to partition
the space due to its simplicity, lookup efficiency, and freedom in the split criteria. For these
reasons, we base our proposed algorithms in this chapter and chapter 5 on k-d trees.

The behavior of a k-d tree is governed by three sub-decisions at a leaf node:

1. Should this node be further split to refine the partition?

2. If yes, which dimension should be chosen?

3. Where should the splitting occur?
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PPG’s strategy. For instance, the spatial binary tree from the work of Muller et al. (sec-
tion 3.2) is essentially a k-d tree with the split heuristics below:

1. Split when this node has accumulated more than a certain amount of samples. This fixed
upper bound is called the maximum sample count threshold.

2. Through the dimensions for splitting in a round-robin fashion. I.e. x, y, z, x, . . . .

3. Split at the middle point of the region bounds.

Open PGL’s strategy. The k-d tree implementation by Ruppert et al. (section 3.3) and
Open PGL adopts the following strategies:

1. Split with the maximum sample count threshold, except that they only count in valid
(non-zero-weight) samples1.

2. Choose the dimension with the largest variance in the valid sample positions.

3. Split at the mean position of valid samples along the chosen dimension.

Both strategies can yield suboptimal guiding results, which we already showed in sections 3.2
and 3.5. This drives us to consider what makes a “good” spatial subdivision.

4.3. Motivational Examples

To familiarize ourselves with the problem, let’s discuss the optimal split strategy in a low di-
mensional setup. We have the following ideal assumptions:

1. The incident radiance field L(x, !) : D ! R>0 is a 2D function over the product of a
1D spatial domain and a 1D angular domain D = X ⇥ ⌦ = [xmin, xmax] ⇥ [!min, !max].
Hence, there is no need to select the split dimension.

2. The rendering is noise-free. i.e. we can directly evaluate L(x, !) with no noise.

3. The guiding distribution q on a tree node is constant to x. i.e. q(! | x 2 X) = q(!).

4. The subdivision is greedy, meaning that we do not consider future splits in the children
(and in the grandchildren etc.) for optimality.

The goal of rendering is to estimate the fluence at each point in space by MC integration with a
guiding distribution

�(x) =

Z

⌦

L(x, !)d! (4.5)

⇡ h�(x)i =
L(x, !)

q(! | x)
(4.6)

1The reason for storing only valid samples is explained in section 3.3
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Consider a radiance field shown in fig. 4.2, where

L(x, !) = 1 + cos('(2! + '(20x))) (4.7)

'(t) =

8
><

>:

�⇡ t < �⇡

⇡ t > ⇡

t otherwise
(4.8)

x 2 [�1, 1], ! 2 [�⇡, ⇡]

It describes a spatially shifting single-cosine-lobe illumination. In particular, the peak direction
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Figure 4.2.: A 2D radiance field setup (1). Left: contour plot of the radiance field (spatial ⇥ directional,
not to be confused with an x⇥ y spatial plot). Right: 1D directional radiance at two spatial
locations.

shifts from ⇡/2 to �⇡/2, as x changes from �⇡/20 to ⇡/20.

The ground truth fluence is �(x) =

Z ⇡

�⇡

L(x, !)d! = ⇡, from which we can find the ground

truth distribution

p(! | x) :=
L(x, !)

�(x)
(4.9)

Theoretically, if we can set the guiding distribution to p, the rendering variance Var[h�(x)i] is
immediately 0. However, due to the third assumption, we are hindered by the spatial constancy
of q and the rendering variance is always positive in this case. This encourages us to split the
node into two, allowing each child region to have a separate guiding distribution. It is hoped
that the combined distributions of the children can provide a better approximation of p.

Concerning “where to split” optimally, one might propose the middle point x = 0, as this place-
ment minimizes the total spatial variation of the signal in the left and right half-spaces. This
reduction in variation facilitates the training of the guiding distributions for the child regions
holistically.
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4.3. Motivational Examples

Nevertheless, how to quantify “spatial variation” and “ease of training”? How can we demon-
strate that splitting at the midpoint is indeed the best?

4.3.1. Quality of a Guiding Distribution

Since our ultimate goal of subdivision and training is to achieve low rendering error, we use the
normalized estimator variance (NEV)2 to measure the performance of a guiding distribution
q(!), which is defined as the spatially marginalized relative variance of the fluence estimator:

NEV(q) := Ex⇠p̂XVar!⇠q


h�(x)i
�(x)

�
(4.10)

= ExVar!


L(x, !)

�(x)q(!)

�
= ExVar!


p(! | x)

q(!)

�
(4.11)

where x ⇠ p̂X is the sampling distribution of position, which depends on the density of par-
ticles traced from the camera. p̂X can be different from the ground truth marginal distribution

pX(x) =

Z

⌦

p(x, !)d! =

Z

⌦

L(x, !)R
X �(x)dx

d!. In this toy setup, we assume a uniform spatial

sampling distribution p̂X(x) =
1

xmax � xmin
.

Notably, it can be shown that the variance term in eq. (4.11) is the �2-divergence between p and
q [MMR+19].

4.3.2. Optimal Guiding Distribution

It is hard to evaluate the NEV of an arbitrary guiding distribution (e.g. trained with noisy
samples using an iterative EM algorithm), so we search for the lower bound of the error.

To find the optimal guiding PDF that minimizes NEV(q), we apply calculus of variation, in-
spired by how Rath et al. [RGH+20] find the best PDF for variance-aware guiding. Detailed
derivation can be found in appendix A.1. The optimal PDF is given by

q⇤(!) = arg min
q

NEV(q) =
p
Ex [p(! | x)2]/C1 (4.12)

C1 =

Z

⌦

p
Ex [p(! | x)2]d! (4.13)

with which the NEV lower bound is found

NEV (q⇤) = min
q

NEV(q) =

✓Z

⌦

p
Ex [p(! | x)2]d!

◆2

� 1 (4.14)

It is worth noting that the optimal PDF differs from trivially marginalizing the ground truth PDF

2This corresponds to the mean relative squared error of rendering the fluence with the guiding distribution.

31



4. Context and Motivation

with p̂X , which gives

qtrivial(!) =

Z

X

p(! | x) p̂(x)dx/C2 = Ex[p(! | x)]/C2 (4.15)

C2 =

Z

⌦

Ex[p(! | x)]d! (4.16)

Fig. 4.3 shows the difference of q⇤ and qtrivial under our setting eq. (4.7).

�3 �2 �1 0 1 2 3
�

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
D

F

qtrivial

q�

Figure 4.3.: Marginalized distribution v.s. optimal distribution in the demonstration setup (1)

In the special case when p(! | x) does not explicitly depend on x, we have q⇤(!) = p(! |

x) = p(!), and the lower bound error becomes NEV (q⇤) =

✓Z

⌦

p
Ex [p(!)2]d!

◆2

� 1 =
✓Z

⌦

p(!)d!

◆2

� 1 = 0. This aligns with the zero-variance guiding theory.

4.3.3. Optimal Split Decision

With the assistance of the error lower bound formula eq. (4.14), we can derive the optimal split
decision.

Let’s denote the parent node distribution by qp(! | x) = qp(!) and the child combined model
as qc

qc(! | x) =

(
ql(! | x) = ql(!) x < t

qr(! | x) = qr(!) x > t
(4.17)

where t 2 X is the split pivot.

If we assume the guiding distribution is optimally trained for the children, the cost of a split at
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t can be defined as NEV lower bound

cost⇤(t) := NEV (q⇤c ) = P(x < t) NEV (q⇤l ) + P(x > t) NEV (q⇤r) (4.18)

= P(x < t)

✓Z

⌦

p
Ex [p(! | x)2]d!

◆2

+ P(x > t)

✓Z

⌦

p
Ex [p(! | x)2]d!

◆2

� 1

(4.19)

where P(x < t) =

Z t

xmin

p̂(x)dx, P(x > t) =

Z xmax

t

p̂(x)dx are the fraction of samples on the

left and right.

The best pivot is then the one that results in the lowest cost, or the most reduction in the NEV
lower bound. We trigger the split if the lowest child cost is significantly lower than the parent
NEV lower bound.

Altogether, the optimal split criteria are written as

Split if NEV
�
q⇤p
�
�min

t2X
cost⇤(t) > Cthreshold (4.20)

at pivot t⇤ = arg min
t2X

cost⇤(t) (4.21)

To generalize it to the 3D spatial domain, the cost function is redefined as

cost⇤(d, t) := P(xd < t) NEV (q⇤l ) + P(xd > t) NEV (q⇤r) , d 2 {1, 2, 3} (4.22)

The split criteria

Split if NEV
�
q⇤p
�
�min

d,t
cost⇤(d, t) > Cthreshold (4.23)

at dimension and pivot (d⇤, t⇤) = arg min
d,t

cost⇤(d, t) (4.24)
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Figure 4.4.: The cost curve of the demonstration setup (1). The cost function reaches its minimum of
0.307 at t = 0. The reduction rate over the parent error is 76.6%
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Unfortunately, eqs. (4.14) and (4.19) involve highly intractable double integrals, which have
no analytic forms for most of the cases. Section 4.4 will provide practical solutions to strive
for robust subdivisions while circumventing the computation of optimal split costs. For the
demonstrative example eq. (4.7), we calculate the error lower bounds and cost function by
quadrature, with results shown in fig. 4.4.

The cost curve reaches its minimum at t = 0. This coincides with our intuition of splitting at
the middle.

4.3.4. Experiments

We experiment with our optimal split strategy eqs. (4.20) and (4.21) in more 2D radiance fields,
with results and analysis presented below.

Setup 2

L(x, !) = 1 + cos(!) (4.25)
x 2 [�1, 1], ! 2 [�⇡, ⇡]

This describes a radiance field that is constant to x. In the angular domain, it is a cut-off cosine-
shaped function.

Figure 4.5.: Optimal subdivision experiment (2).

Since in this case, the lower bound MRSE L(q⇤) = 0 within any spatial range (see section 4.3.2),
the cost curve remains zero. There is no need for subdivision.

Setup 3.1

L(x, !) = 1 + cos('(2! + 2x)) (4.26)
' ⇠ (4.8)

x 2 [�1, 1], ! 2 [�⇡, ⇡]

This is a simplified case of eq. (4.7), where the illumination changes uniformly with respect to
x in the whole domain. The cost is minimized at t = 0.
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Figure 4.6.: Optimal subdivision experiment (3.1).

Setup 3.2

L(x, !) = 1 + cos('(2! + x2 + 2x� 1)) (4.27)
' ⇠ (4.8)

x 2 [�1, 1], ! 2 [�⇡, ⇡]

This is a variant of eq. (4.26) whose change to x is nonlinear. The optimal split leans slightly
towards the right at 0.23 to balance the “average” signal change on the left and right.

Figure 4.7.: Optimal subdivision experiment (3.2).

Setup 3.3

L(x, !) = 1 + cos('(2! + 2x2 � 1)) (4.28)
' ⇠ (4.8)

x 2 [�1, 1], ! 2 [�⇡, ⇡]

This is a more elusive example. One may argue that the optimal pivot happens at t = 0 because
the signal is symmetric about the center. However, upon closer inspection, splitting at the
middle will leave us the left and right fields with the exact same configuration as the full field,
just half as small. The fact cost(0) = parent cost proves this.

In fact, two equally optimal pivots are found, symmetrically located about the center.
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Figure 4.8.: Optimal subdivision experiment (3.3).

Setup 4

L(x, !) = 10⌘ (2x) N (! | 0, 0.12)| {z }
sunlight

+ 0.1|{z}
ambient light

(4.29)

⌘(t) =

8
><

>:

0 t < 0

1 t > 1

t otherwise
(4.30)

x 2 [�1, 1], ! 2 [�5, 5]

This mimics a narrow-band sunlight superposed on an ambient light. ⌘ (2x) attenuates the sun-
light from completely shadowed to completely bright, where the transition is like a “penumbra”.

Figure 4.9.: Optimal subdivision experiment (4).

The optimal split is found near the left edge of the penumbra.
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Setup 5

L(x, !) = 10(lerp(lerp(N (! | 0, 0.12)| {z }
left sunlight

, N (! | 1, 0.12)| {z }
middle sunlight

, g(x)), N (! | �1, 0.12)| {z }
right sunlight

, h(x)) + 0.1|{z}
ambient

(4.31)
lerp(a, b, t) = (1� t)a + tb

g(x) = ⌘(5x + 0.5)

h(x) = ⌘(5x� 2)

⌘ ⇠ (4.30)
x 2 [�1, 1], ! 2 [�5, 5]

In this setting, sunlights in three different directions are linearly transitioned via g(x) and h(x).
The cost curve gives two local optima (the red and the yellow dashed lines). They both occur
near the transition region.

Figure 4.10.: Optimal subdivision experiment (5).

4.3.5. Conclusion

From the above experiments, we have the following findings:

1. The cost is usually minimized around the turning points of radiance, i.e. {x | @L(x, !)

@x
6=

0}. Multiple local minima can occur if the turning points consist of multiple intervals.

2. The cost responds rapidly to the pivot near turning points.

3. The more spatially constant the radiance is, the less we gain from subdivision.

4.4. Practical Requirements

Though the optimal cost function eq. (4.19) can tell us accurate information about the spatial
domain, it requires solving intractable integrals and the knowledge of the ground truth PDF that
we have no access to. Moreover, our ideal assumptions in section 4.3 are not met in reality:
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1. There is nested variance in the incident radiance estimate.

2. The guiding distribution can be inter-correlated with the spatial location due to the paral-
lax compensation.

3. The subdivision is a recursive routine, which means the suboptimality in earlier splits can
be resolved with recursive splits in the grandchildren nodes.

4. The guiding distribution is trained with finite noisy MC samples, which results in fluc-
tuation in the fitting, leading to higher NEV than our lower bound in an unpredictable
manner.

These concerns drive us to develop more practical subdivision strategies. We outline several
requirements to achieve robust subdivision based on observations in remaining problems (sec-
tion 3.5) and the findings in 2D experiments (section 4.3.5), if not optimal.

1. Minimum samples per split. The split decisions (when and where) depend on the
samples arriving at a node. For instance, Open PGL’s strategy computes the statistics of sample
positions, which are noisy estimates. Imposing a lower limit of accumulated valid samples
before a split can reduce the noise in the split decision.

2. Minimum samples per node. To ensure stability and low variance in the directional
fitting, a minimum number of valid samples (e.g. 1k) is required for each of the child nodes
after the split. This requirement leads us to be somewhat defensive about refinements.

3. Adaptive to light change. As shown in figs. 1.1 and 3.7, a low-resolution grid around
the regions with rapid light change can incur more noise in the rendering, while fig. 3.9 says a
high-resolution grid for uniformly-lit regions wastes memory and lookup time. Insights from
ideal setups (section 4.3.5) also tell us the benefit of splitting in response to light change. Thus,
an adaptive solution is necessary.

4. Geometry-aware. As observed from the blue arrows in figs. 1.1 and 3.7 to 3.9, incident
radiance at opposing geometry surfaces tend to be drastically different. A geometry-aware
subdivision should try to separate different geometries into distinct regions. We will discuss
this in more detail in section 5.2.1. Notably, this requirement can overlap with requirement 3.

5. Explorative in the beginning. As shown in fig. 3.10, having a defensive split strategy
does not always do us good. When a node contains a large region with intricate lighting, it is
challenging to see the benefit of a split immediately, and the algorithm can get stuck in local
optima. This problem usually arises in the first few splits. To avoid it, we need to encourage the
guider to subdivide more aggressively in early iterations.

6. Isotropic. K-d trees offer fast construction and query only when it is close to balanced
ones. We find in practice if an algorithm tends to split at the very ends of a region (called thin
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splits), though still meeting the minimum samples per node constraint, it is prone to construct
ill-formed tall trees with a lot of consecutive thin splits (see the upper left of fig. 4.11), which
may compromise the efficiency. Therefore, we impose some penalties on thin splits in the
algorithm design. In other words, we often prefer middle splits and cubic (isotropic) regions
to elongated rectangular cuboids. Nevertheless, this requirement can contradict requirement 3
in some cases. When the lighting only varies along a specific axis (e.g. the middle column of
figs. 6.43 and 6.44), anisotropic splits can be more effective and should be tolerated.

7. Robust to degeneration. In special cases where samples lie on a plane or even a line
parallel to one of the coordinate planes, the algorithm shouldn’t select the degenerate dimen-
sions, otherwise it can ambiguate the region boundaries due to the rounding in the floating point
representation. For instance, if the samples are parallel to the xz-plane (see the lower right of
fig. 4.11), splitting at Y is dangerous because it is very likely that |ymin � ymax| < ✏machine,
causing the split pivot t to be rounded away.

Figure 4.11.: Problems of not correctly handling thin splits and degenerate samples (rendering overlaid
with region boundaries in the PBRT Book scene). The upper left book part is split by
consecutive thin y-cuts. The lower right plane is filled with flickering region boundaries
because of an unexpected y-cut within the samples parallel to the xz-plane.

It is worth mentioning that some requirements may overlap or conflict with each other, so it is
crucial to find a balance.

Open PGL’s solution meets requirements 1 and 2 by only triggering the split at a maximum
sample count threshold (e.g. 32k) and placing the pivot at the mean, which is close to the
median, ensuring that the child nodes receive around half of the threshold (e.g. 16k). Also,
thanks to the mean split, isotropy (requirement 6) is maintained. Selecting the axis with the
highest variance will ensure the robustness to degeneration. Nevertheless, other requirements
are not satisfied.

In chapter 5, we will present several proposed methods that address one or multiple of these
requirements individually. Finally, we will introduce our full models that integrate these com-
ponents, with an aim of achieving all of the goals.
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5
Methodologies

We answer the sub-decisions of a split (section 4.2) from two aspects. Section 5.1 responds to
the first sub-decision, whereas section 5.2 addresses the second and third sub-decisions. Our
complete spatial subdivision models are introduced in section 5.3.

5.1. When to Split

In this section, we mainly focus on improving k-d trees’ adaptivity to light change by controlling
the timing to trigger a split. Specifically, we answer the first sub-decision:

Should this node be further split to refine the partition?

To simplify the discussion and to modularize our findings, we leverage Open PGL’s split pivot
and dimension selection (mean and longest axis of valid samples):

Split at dimension d = arg max
d

V (Svalid)d (5.1)

and pivot t = (x̄valid)d (5.2)

where

Svalid := {si 2 S : h�(xi)i > 0} (5.3)
Nvalid := |Svalid| (5.4)

x̄valid =
1

|Svalid|
X

si2Svalid

xi (5.5)

and the 3D sample variance

V (S)d :=
1

N

NX

i=1

((xi)d � x̄d)
2, d 2 1, 2, 3 (5.6)
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Starting from the root node, how do we know the right time to split?

First of all, practical requirement 2 says we cannot have too few samples during a split. We find
1k samples a suitable safeguard for the child nodes’ fitting. So the parent node should have at
least 2k valid samples before a split. We also find the mean and variance estimates of 2k sample
positions quite stable, so the minimum samples per split constraint is automatically met.

Therefore, we do not proceed with a split if there are fewer than two thousand samples. Beyond
this constraint, what additional considerations must we address?

5.1.1. Lookahead Guiding Regions

If we always split with more than 2k samples, we might create over-refinements that violate
practical requirement 3. Moreover, we have to bear in mind that the child regions have access
to fewer samples. Although it sounds reasonable to split at the places with light changes, the
increased noise of fitting in a smaller region can make the child distributions worse than the
parent’s for guiding.

A safe choice is to create a “hypothetical” but not real split, resulting in two candidate child
regions. The candidate regions are independently trained with samples arriving in themselves.
We do not realize the split until the candidate regions’ guiding caches are actually better than
the parent one.

Interchangeably, we refer to hypothetical splits as candidate splits. We term candidate regions
as lookahead guiding regions because they grant our k-d tree the ability to foresee the horizon
by one level down.

The lookahead guiding regions are demonstrated in fig. 5.1. Note that they are only created
when the leaf node has accumulated more than 2k samples.

Figure 5.1.: Illustration of lookahead guiding regions. Note that some leaf nodes might not have looka-
head regions because they haven’t accumulated enough samples for a candidate split. The
lookahead regions are not attached to the k-d tree yet, so they are counted as leaves.
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5.1. When to Split

Now, we are left with one last question: how to compare the guiding cache of the parent (a leaf
node) with the candidate children’s?

For clarity and consistency, let’s first recap a few terminologies and notations in table 5.1 that
will be used throughout the section.

Notation Explanation

Xp Region of the parent (a leaf node).

Xl, Xr Region of the left or right candidate child. Xl [Xr = Xp ^Xl \
Xr = ;.

L(x, !) Incident radiance at the location x towards direction !.

�(x) =

Z
L(x, !)d! Fluence at x.

p(! | x) =
L(x, !)

�(x)
Ground truth lighting distribution at x. It is the zero-variance PDF
for the MC integration of fluence.

p̂X(x) Distribution of sample position, or the density of particles traced
from the camera, conditioned on region X .

q(! | x) A guiding distribution to check.

qp(! | x) Guiding distribution of the parent. Without loss of generalization,
we include the variable x to indicate the possible use of parallax
compensation.

qc(! | x) ⇠ (5.7) Guiding distribution of the candidate children. Note that the term
“child model” refers to the combined distribution that shares the
same spatial domain Xp as the parent.

qs(! | x) Actual sampling distribution to generate training samples eq. (4.2).
It can be the mixture distribution between the guiding distribution
and the BSDF sampling distribution eq. (2.16).

hL(x, !)i Noisy observation of incident radiance.

h�(x)i =
hL(x, !)i
qs(! | x)

the MC estimator of fluence, or the weight of training samples
eq. (4.3).

Table 5.1.: Notations for adaptive splitting approaches

The child model qc is defined as

qc(! | x) :=

(
ql(! | x) x 2 Xl

qr(! | x) x 2 Xr

(5.7)
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In the following, we will introduce two solutions (sections 5.1.2 and 5.1.3) that achieve the
comparison between the guiding cache of the leaf regions and that of the lookahead regions.

5.1.2. Adaptive Splitting Based on Divergence Estimates

Inspired by Ruppert et al.’s [RHL20] variance-aware split and merge of the VMM, we attempt
to evaluate the cache using the divergence between a guiding distribution q of interest and the
ground truth distribution p.

Marginalized KL Divergence

We start with Kullback-Leibler divergence, a widely used metric in machine learning. It mea-
sures the dissimilarity between two PDFs. The KL divergence between any distribution p(!)
and q(!) is given by

DKL(p k q) :=

Z

⌦

p(!) log
p(!)

q(!)
d! (5.8)

where the support of q should cover that of p: 8!, p(!) > 0! q(!) > 0

According to Jensen’s inequality, the KL divergence is always non-negative. It equals zero if
and only if p(!) = q(!) almost everywhere.

The KL divergence can boil down to the cross-entropy between p, q minus the entropy of p.

DKL(p k q) = H(p, q)�H(p) (5.9)

H(p, q) := �
Z

⌦

p(!) log q(!)d! (5.10)

H(p) := �
Z

⌦

p(!) log p(!)d! (5.11)

We now define the marginalized KL divergence between a guiding distribution to be checked
(defined on a region X) and the ground truth distribution as the spatial expectation of the
directional-domain KL divergence:

D̃KL(q) := Ex⇠p̂X [DKL(p!|x k q!|x)] = Ex⇠p̂X

Z
p(! | x) log

p(! | x)

q(! | x)
d!

�
(5.12)

Expanding it using eq. (5.9), we rewrite it into

D̃KL(q) = Ex⇠p̂X [H(p!|x, q!|x)]� Ex⇠p̂X [H(p!|x)] (5.13)

The second term does not depend on q, so we are interested in the first marginalized cross-
entropy term

H̃(q) := Ex⇠p̂X [H(p!|x, q!|x)] (5.14)

We developed an unbiased eq. (A.19) and a biased MC estimator eq. (A.33) for it. The deriva-
tions can be found in appendix A.2.1. Since the unbiased estimator involves the ground truth
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5.1. When to Split

fluence, which we do not have access to, we adopt the biased one to evaluate the guiding cache
of the parent and child.

To simplify, let’s introduce the following sufficient statistics that rely on sample data eq. (4.2)
at the child half-spaces Xl, Xr and guiding PDFs:

ap,l =
X

i: xi2Xl

�h�(xi)i log qp(!i | xi), ap,r =
X

i: xi2Xr

�h�(xi)i log qp(!i | xi) (5.15)

ac,l =
X

i: xi2Xl

�h�(xi)i log ql(!i | xi), ac,r =
X

i: xi2Xr

�h�(xi)i log qr(!i | xi) (5.16)

fl =
X

i: xi2Xl

h�(xi)i, fr =
X

i: xi2Xr

h�(xi)i (5.17)

Nl = freq(xi 2 Xl), Nr = freq(xi 2 Xr), N = Nl + Nr (5.18)

where freq counts the frequency of samples in that region.

Substituting the terms in eqs. (A.34) and (A.35), we arrive at the final estimators

hH̃(qp)i =
Nl

N

ap,l

fl
+

Nr

N

ap,r

fr
(5.19)

hH̃(qc)i =
Nl

N

ac,l

fl
+

Nr

N

ac,r

fr
(5.20)

Since the sufficient statistics depend on the split dimension and position, they are collected per
child region instead of the parent one as samples come in, as is illustrated in fig. 5.2.

Figure 5.2.: The storing of sufficient statistics for marginalized cross-entropy

Importantly, to obtain unbiased estimates for fluence, sufficient statistics need to take all sam-
ples into account, including those with zero weights.

45



5. Methodologies

Marginalized �2-Divergence

Ruppert et al.’s approach (section 3.3) of adaptive merge and split is based on the �2-divergence
eq. (3.3), which corresponds to NEV [MMR+19] and is more closely related to rendering error.

Similarly, we can define the marginalized �2-divergence between q and p:

D̃�2(q) := Ex⇠p̂X [D�2(p!|x k q!|x)] = Ex⇠p̂X

Z
p(! | x)2

q(!| x)
d! � 1

�
(5.21)

Due to the occurrence of the squared ground truth PDF, we failed to find an unbiased estimator
for it. The biased MC estimator is developed in appendix A.2.2.

Similarly, we define the following sufficient statistics for the parent and child regions:

bp,l =
X

i: xi2Xl

h�(xi)i2qs(!i | xi)/qp(!i | xi), bp,r =
X

i: xi2Xr

h�(xi)i2qs(!i | xi)/qp(!i | xi)

(5.22)

bc,l =
X

i: xi2Xl

h�(xi)i2qs(!i | xi)/ql(!i | xi), bc,r =
X

i: xi2Xr

h�(xi)i2qs(!i | xi)/qr(!i | xi)

(5.23)
fl, fr ⇠ (5.17)

Nl, Nr, N ⇠ (5.18)

Plugging them into eqs. (A.40), (A.46) and (A.47) yields the estimators for the parent and child
marginalized �2-divergence:

hD̃�2(qp)i =
Nl

N
· Nlbp,l

f 2
l

+
Nr

N
· Nrbp,r

f 2
r

� 1 (5.24)

hD̃�2(qc)i =
Nl

N
· Nlbc,l

f 2
l

+
Nr

N
· Nrbc,r

f 2
r

� 1 (5.25)

Notably, due to more approximations made in the derivation, our �2-divergence estimators ex-
hibit more bias than the the cross-entropy ones eqs. (5.19) and (5.20). The presence of the
squared terms in the �2-divergence estimators also produce more noise in the evaluation, as
evidenced by section 6.1.1 and fig. 6.16.

Split Criteria

The divergence estimators allow us to compare the quality of the parent’s and candidate chil-
dren’s guiding caches. The lower the divergence is, the better the guiding cache approximates
the true signals. Due to the intrinsic noise from MC integration, we trigger the split of a leaf
node only when the divergence of its candidate children is significantly lower than that of the
parent. Formally, the split criteria are written as

Split if Nvalid > 2Nmin ^ hD̃(qp)i � hD̃(qc)i > Dths (5.26)
at dimension ⇠ (5.1)

and pivot ⇠ (5.2)
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5.1. When to Split

where D̃ can be the marginalized cross-entropy or �2-divergence, Dths is a fixed constant thresh-
old. Nmin is the minimum number of valid samples per child node after the split, hence the factor
2.

Implementation Details

When to evaluate? In the original pipeline of Open PGL’s training phase, the k-d tree is
incrementally subdivided, and then guiding caches at the leaf nodes are fit or updated with
the incoming samples. Our proposed divergence metrics require evaluating the caches with
the samples. This is only possible when the guiding PDF is available. If we naively put the
evaluation after the fitting step, the divergence tends to be underestimated because we are
training and testing with the same dataset1.

The smaller the dataset, the more likely the underestimation will be. Hence, even if the parent
and child regions share the same lighting configuration, the child’s divergence is still more likely
to be lower than the parent’s. We find in practice, this can indeed lead to over-refinements in a
super simple uniformly-lit scene (see fig. 6.3).

Figure 5.3.: Adaptive splitting pipeline. Upper: naive order. Split decisions depend on statistics from
the previous iteration. Lower: improved order reduces this issue.

To remedy this, we adjust the order of subdivide-fit-evaluate steps to evaluate-subdivide-fit, as
shown in fig. 5.3. Since the fit or updated cache is now evaluated with samples from the next
rendering wave, which is much less correlated with the guiding distribution, the underestimation
is less severe.

Guiding distribution for queries. During the rendering phase, the renderer queries the
guiding PDF at a given scene point x and samples from it. Since lookahead regions are probably

1This is known as “overfitting” in machine learning
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premature, we exclude them from the k-d tree retrieval. i.e. the retrieval should return a (non-
lookahead) leaf node.

Candidate split handling. When a leaf node first exceeds the minimum sample per split
threshold, a candidate split should be created. The candidate split dimension and pivot are
determined by eqs. (5.1) and (5.2). The sufficient statistics stored at the children are initialized
to the child one stored at the parent 2. Similar to how Open PGL inherits and decays the VMM
statistics when a child region is created, we also decay our sufficient statistics. Specifically

ap,l = ac,l = ap,r = ac,r  �a0
c

bp,l = bc,l = bp,r = bc,r  �b0c

fl = fr  �f 0

Nl = Nr  �N 0

(5.27)

where � is the decay ratio (we use 0.25 in our experiments). The meaning of a, b, f, N is given
in eqs. (5.15) to (5.18), (5.22) and (5.23). a0

c, b
0
c, f

0, N 0 denote the child statistics stored at
the parent node. This handling implies we start from a “tie”-position between the parent and
candidate child cache.

Real split handling. When the split condition eq. (5.26) is met, the candidate split dimen-
sion and pivot are adopted. The parent leaf node becomes an internal node, while two new leaf
nodes are created, reusing the cache of the former candidate regions.

Fail-to-split handling. Training samples from the early rendering waves are more noisy
because of the lack of a guiding cache. This could result in more fluctuation in the divergence
estimate. If some unlucky candidate region gets unexpectedly high divergence estimates during
early evaluations, there are chances when it will never be adopted in the future, even if its
guiding distribution surpasses the parent’s over time.

To avoid the curse of “bad history” and to encourage exploration, we propose the following
handling when a split test eq. (5.26) fails:

1. We decay the sufficient statistics by �.

2. The mean and variance statistics, as well as the VMM statistics, are also decayed by �.

3. The candidate split dimension and pivot are re-proposed with the new mean and variance
statistics in the hope for a more balanced valid sample distribution.

5.1.3. Adaptive Splitting Based on Multiple Importance Sampling

In this section, we will present an alternative adaptive subdivision approach based on multiple
importance sampling (MIS).

2which once was a candidate child to the grandparent
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MIS is used for combining multiple sampling strategies when we don’t which one is the most
suitable. For instance, the actual sampling distribution used by Ruppert et al. [RHL20] and
our renderer is the mixture of the guiding distribution and the BSDF sampling distribution
eq. (2.16). Vorba et al. [VHH+19] present an online approach to adjust this weight such that
the mixture PDF resembles the ground truth PDF. If we look from another view, the optimized
weight tells us how much BSDF is preferred to the guiding distribution.

The Mixture Distribution

Inspired by this, we can also build a mixture model with the leaf region cache qp and the looka-
head region cache qc, when we are unsure which one is better.

q↵(! | x) := (1� ↵(x)) qp(! | x) + ↵(x) qc(! | x) (5.28)

The MIS weight ↵(x) 2 [0, 1] is set to a constant value (which will be discussed shortly) in each
lookahead region (as shown in fig. 5.4), whose meaning is the preference of the child cache to
the parent cache. Assuming we can find the best value of ↵, it can offer us an alternative way
to compare the parent and child distributions.

Figure 5.4.: Mixture between a leaf region’s and a lookahead region’s cache at x. The MIS weight ↵ is
constant within the hit lookahead region.

MIS Weight Optimization

Motivated by the previous works [VHH+19, MMR+19], we can optimize the MIS weight per
lookahead region, by minimizing the divergence between the mixture distribution q↵ and the
ground truth distribution p. We choose the marginalized KL divergence (eq. (5.12)), for its
simplicity and numeric stability.

↵⇤ = arg min
↵2[0,1]

D̃KL(q↵) (5.29)

Sbert et al. [SSK22] show that eq. (5.29) is a convex optimization problem. They apply the
second-order Newton-Raphson method to solve for the optimal ↵⇤.
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Vorba et al. [VHH+19] leverage an adaptive moment estimation (Adam) optimizer [KB14] to
solve for eq. (5.29). To further constraint the weight between 0 and 1, they introduce a hidden
variable and a sigmoid activation

↵(✓) =
1

1 + exp(�✓)
, ✓ 2 R (5.30)

and optimize ✓ instead of ↵.

In our experiments, we find out Vorba et al.’s method more stable than that of Sbert et al.
thanks to Adam’s adjustment to the learning rate based on momentum estimates of gradients.
In theory, the second-order method converges faster than the first-order Adam optimizer with
few gradient samples. Still, in our cases, each region contains at least thousands of samples,
making the stability issue more pronounced than the convergence speed. Therefore, we adopt
the Adam optimization approach.

Moreover, we abandon the use of sigmoid activation eq. (5.30) and directly optimize ↵ to avoid
the vanishing gradient problem of the sigmoid function. Mathematically, applying the sigmoid
activation also violates the convexity of the optimization problem eq. (5.29).

Now, let’s introduce our optimization approach.

The stochastic gradient for ↵ is derived as

r↵D̃KL(q↵) = r↵Ex⇠p̂X [DKL(p!|x k q↵,!|x)] (5.31)

= r↵Ex,!⇠qs(·|x)


�h�(x)i

�(x)
log q↵(!| x)

�
similar to (A.18) (5.32)

= Ex,!


�h�(x)i

�(x)
r↵ log q↵(!| x)

�
(5.33)

= Ex,!


�h�(x)i

�(x)

r↵q↵(!| x)

q↵(!| x)

�
chain rule (5.34)

Using the identityr↵q↵(!| x) = qc(! | x)� qp(! | x), we have

r↵D̃KL(q↵) = Ex,!


�h�(x)i

�(x)

qc(! | x)� qp(! | x)

q↵(!| x)

�
(5.35)

Vorba et al. eliminate the normalizer �(x) by assuming it is a constant scaling factor, which can
be handled by the Adam optimizer. However, we point out that due to the spatial marginalization
Ex⇠p̂X , the normalizer serves as a location-dependent weighting factor, which should not be
ignored. To circumvent this issue, we redefine our optimization target as

J(↵) := Ex⇠p̂X [�(x)DKL(p!|x k q↵,!|x)] +
1

2
⌘(↵� ↵0)

2 (5.36)

↵⇤ = arg min
↵2[0,1]

J(↵) (5.37)

which multiplies the ground truth fluence to the KL divergence before spatial marginalization.
Similar to Vorba et al., we add a regularization term to pull the MIS weight towards a constant
↵0, which is set to 0.5 to indicate a “tie” between the parent and child cache.
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The gradient of the new objective is

r↵J(↵) = Ex,!


�h�(x)iqc(! | x)� qp(! | x)

q↵(!| x)

�
+ ⌘(↵� ↵0) (5.38)

We can build an MC estimator (called the stochastic gradient) for eq. (5.38), using incoming
sample data

hr↵J(↵)i =
1

M

MX

i=1


�h�(xi)i

qc(!i | xi)� qp(!i | xi)

q↵(!i| xi)

�
+ ⌘(↵� ↵0) (5.39)

where the batch size M is independent of the sample count N .

The incoming samples are divided into batches of size m. Batch gradients eq. (5.39) are itera-
tively fed to an Adam optimizer to update the MIS weight.

state AdamStep(state, hr↵J(↵)i) (5.40)

The state variables of our Adam optimizer include the iteration count i, the first and second
momentum estimate m, v, and the parameter ↵.

state := (i, m, v, ↵) (5.41)

Lastly, we clamp the updated ↵ to be in the range of [0.05, 0.95] to reserve minimum probabili-
ties of sampling each of the components.

In theory, the parent and child PDFs are evolving over iterations, which could lead to a shift in
the optimal MIS weight. Fortunately, we find in practice, the MIS weight usually converges to
a certain value in a stochastic manner.

Split Criteria

If we assume that qp and qc try to learn the same signals, then ↵ < 0.5 indicates the parent PDF
is better, while ↵ > 0.5 indicates the preference of the child PDF. But similar to section 5.1.2,
noise in the fitting and the optimization leads to oscillation of the MIS weight. To be resistant
to this noise and to control the “aggressiveness” of subdivision, we trigger the real split only
when ↵ is above some threshold ↵ths (e.g. 0.6, 0.7, etc.).

Yet, there are two MIS weights at a leaf region-the left and right child’s. How do we make a split
decision with two numbers? To maintain the balance of the tree and to encourage exploration,
we trigger the split if either the left or right weight exceeds the threshold:

Split if Nvalid > 2Nmin ^ (↵l > ↵ths _ ↵r > ↵ths) (5.42)
at dimension ⇠ (5.1)

and pivot ⇠ (5.2)

Theoretically, an intrinsic problem with this approach arises from the ambiguity of multi-
solutions. When qp and qc are equal, any ↵ between 0 and 1 can serve as the solution for
eq. (5.29). The optimization process in this case is unstable, triggering the split criteria unpre-
dictably.
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Implementation Details

Guiding distribution for queries. Unlike divergence-based solutions, the mixture guiding
distribution eq. (5.28) naturally makes a valid PDF that can be sampled with one-sample MIS.
It has some slight advantages over the PDF of the leaf region qp in that, it opts for a better
approximation of p with by trading off qp and the lookahead region PDF qc. To exploit this fact,
during a query, we retrieve both the leaf region PDF and the lookahead region PDF (if it exists),
and return the mixture PDF using the optimized MIS weight stored at that lookahead region, as
shown in fig. 5.4.

Efficiency-wise, we provide an alternative query handling by only returning the leaf region PDF.

Initialization. The MIS weight of a newly created candidate region is initialized to 0.5, the
prior weight implied by the regularization term.

Candidate split handling. Different from section 5.1.2, the lookahead regions do not in-
herit the Adam state variables eq. (5.41) from the parent region, but instead initialize them to
zero (↵ to 0.5).

Hyperparameters. The hyperparameters of the Adam optimizer along with M and ⌘ are
set as the following, according to our experiment results

• Learning rate lr = 10�3.

• Exponential decay rate for the first moment �1 = 0.9.

• Exponential decay rate for the second moment �2 = 0.999.

• Epsilon ✏ = 10�8.

• Batch size M = 16.

• Regularization strength ⌘ = 10�3.

5.1.4. Defensive Fallback To Escape Local Optima

Our adaptive solutions have an intrinsic limitation-they look ahead by only one level down,
assuming the benefit of refinements can be directly seen by the algorithm. In reality, this is not
always the case. This greedy approach can get stuck when the cache does not improve until two
or more recursive splits.

In a case such as fig. 6.18, the adaptive approach gets stuck at the first split. Ideally, it should
have subdivided like Open PGL’s approach fig. 6.20. The candidate split is placed where the
resulting marginalized ground truth PDFs of the lookahead regions do not change much from
the parent one. Consequently, the cross-entropy estimates of the child are not significantly lower
than the parent’s, misleading the algorithm to stop subdivision at a shallow tree depth.
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Completely solving this problem is not trivial. It might require the training and evaluation of
lookahead guiding caches at multiple levels, which is implementation- and performance-wise
intractable.

We propose a simple fix by adding a maximum sample count threshold to the split criteria
eq. (5.26), similar to Open PGL. Specifically, we enforce a real split when the leaf node has
accumulated more valid samples than a large value (e.g. 512k).

The final split criterion for the divergence-based adaptive splitting is

Split if
⇣
Nvalid > 2Nmin ^ hD̃(qp)i � hD̃(qc)i > Dths

⌘
_Nvalid > Nmax (5.43)

For the MIS-based adaptive splitting

Split if (Nvalid > 2Nmin ^ (↵l > ↵ths _ ↵r > ↵ths)) _Nvalid > Nmax (5.44)

In response to requirement 5 in section 4.4, we set the maximum sample count threshold to a
smaller value (e.g. 32k) when the node’s depth is no greater than 4.

The experiment results for this section and their analysis can be found in sections 6.1.1 and 6.2.1.

5.2. Where to Split

In this section, we pay attention to the orthogonal problem of choosing the split dimension and
pivot. i.e. the second and the third sub-decisions:

If yes, which dimension should be chosen?
Where should the splitting occur?

Again, to simplify and modularize the discussion, we adopt Open PGL’s strategy of “when to
split”:

Split if Nvalid > Nmax (5.45)

Learned from the optimal guiding takeaways section 4.3.5, the best split should happen at the
turning points of lighting3. Nevertheless, the challenge in solving for the theoretically optimal
split position eq. (4.21) and the noise in the observation do not allow us to directly infer the
best split. Instead, we strive for heuristics-based solutions that only depend on sample data
S = {si}N

i=1, with an aim of efficiency and robustness.

5.2.1. Geometry-Aware Splitting

The Proximity Assumption

Open PGL splits at the mean and longest axis of valid samples. As a result, it produces close-
to-cubic regions where the average distance from samples to the center of mass is somehow

3To recap, turning points are defined as {x | @L/@x 6= 0 _ @L/@y 6= 0 _ @L/@z 6= 0}
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minimized. The underlying heuristic of this approach is that “points that are close to each other
tend to have similar lighting distribution”, which we refer to as the proximity assumption.

The proximity assumption holds at uniformly-lit regions with flat geometries such as the diffuse
surfaces in figs. 3.7 and 3.8. However, it breaks in either a non-uniform lighting scenario (such
as fig. 1.1) or regions with complex geometries.

For instance, in the collage fig. 5.5, opposing close-by surfaces exhibit distinct incident radiance
(with a different hemisphere or visibility to light sources). However, the proximity assumption
misleads Open PGL’s strategy to group these surfaces into one region, causing suboptimal guid-
ing.

Figure 5.5.: Failure cases of the proximity assumption (Patches from Cornell Box, Cube, and PBRT-
Book).

The Geometry Assumption

We refine the proximity assumption by proposing the geometry assumption, which states that
“proximate points that lie on the same geometry tend to have similar lighting distribution”,
corresponding to requirement 4.

This heuristic fixes the failure cases in fig. 5.5. According to the geometry assumption, the
red wall and the cube in fig. 5.5 (left), the cube and ground (middle), as well as the book and
the ground (right) should belong to distinct regions because they are from different geometry
objects.

Importantly, this is still a very crude heuristic because there is no guarantee that the incident
radiance depends on which geometry it hits. Close points on two geometries could have similar
lighting distributions, while points on one geometry could have distinct lighting profiles (e.g. a
large geometry with self-shadows).

We have developed a family of algorithms driven by the above assumptions that only take
sample positions {xi}N

i=1 into account.

Variance-Scanning

As a first attempt, we come up with an algorithm that finds the best split by minimizing a cost
function. The cost function quantifies the proximity of the points in the left and right half-spaces
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if splitting at dimension d and pivot t. It is defined as the sum of within-group variances.

cost0(d, t) := TV (Sl(d, t)) + TV (Sr(d, t)) (5.46)
(d⇤, t⇤) = arg min

d,t
cost0(d, t), s.t. min(Nl, Nr) > Nmin (5.47)

The meaning of each term is given by

Total variance TV (S) :=
3X

k=1

V (S)k (5.48)

3D sample variance V ⇠ (5.6) (5.49)
Samples on the left Sl(d, t) = {si 2 S : (xi)d < t} (5.50)

Samples on the right Sr(d, t) = {si 2 S : (xi)d > t} (5.51)

Since the total variance corresponds to the average squared distance from samples to the center
of mass, the cost measures the dispersion of samples in the child regions in an average sense.

Figure 5.6.: Variance-scanning with cost eq. (5.46). Left: input samples. Right: the cost is computed as
the sum of squared distances to the center of mass.

The constraint min(Nl, Nr) > Nmin ensures the minimum number of samples is assigned to
each of the children, for a safe variance estimate and directional fitting.

Finding the minimum. To find the minimum eq. (5.47), we can exhaust all possible dimen-
sions d 2 {1, 2, 3} and key points ti 2 {(xi)d} subject to the constraint, compute the variances
and costs at each point, and then take their minimum. This naive algorithm has a runtime of
O(3 ⇥ N ⇥ N) = O

�
N2
�

as each variance-pair takes O(N) to compute. Compared to Open
PGL that runs in O(N), the O

�
N2
�

overhead makes it unattractive.

To improve the performance, we can first sort the samples according to their d-dimension co-
ordinates, and then enumerate t from (xNmin+1)d to (xN�Nmin+1)d. The advantage of sorting is
that it allows us to compute the variances Sl(d, t) and Sr(d, t) on the fly as we sweep t from left
to right4. The improved algorithm runs in O(3⇥ (N log N + N)) = O(N log N).

Since this algorithm involves a left-to-right scan, we call it variance-scanning. Fig. 5.6 illus-
trates the workflow and intuition behind the cost metric.

4Welford algorithm for online variance update [Wel62, Knu97]
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Unfortunately, the formulation eq. (5.46) is extremely unstable. A 2D experiment fig. 5.7 (up-
per) visualizes the cost function of 200 points uniformly sampled from [0, 1]2. Ideally, if the
samples are perfectly random, using the variance formula for uniform distribution

VarX⇠Unif[0,l][X] =
1

12
l2 (5.52)

The cost function then forms a parabola

costtheory(t) =
1

12

�
t2 + 12

�
+

1

12

�
(1� t)2 + 1

�
(5.53)

which is minimized at the middle point t = 0.5. However, due to the discrepancy in the random
sequence, the actual cost curve is contaminated by noise, which gives a suboptimal split pivot
at 0.9. Furthermore, we notice that the cost function in this example is higher than the total
variance of the parent TV (S).
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Figure 5.7.: A 2D experiment of variance-scanning without (upper) v.s. with (lower) weighting terms.

Weighting terms. To fix this problematic formulation, we change the cost definition to be
the weighted sum of within-group variances

cost1(d, t) :=
Nl

N
TV (Sl(d, t)) +

Nr

N
TV (Sr(d, t)) (5.54)

56



5.2. Where to Split

where the weighting terms
Nl

N
,
Nr

N
are the fractions of samples on the left or right. They serve

as a prior to pull the optimal t⇤ towards the median of the samples, necessary for the algorithm’s
robustness.

This weighted version of variance-scanning eq. (5.54) produces the lower plots in fig. 5.7, whose
cost curve is much smoother and has a minimum point at around 0.5. Besides, the cost curve
is strictly below the parent cost, defined as the total variance of the samples in the parent space
TV (S).

In experiments (section 6.2.2), we find the variance-scanning with cost eq. (5.54) behaves very
similarly to Open PGL, which tends to split at the samples’ median, not really addressing the
geometry assumption.

Analysis. To understand this problem, let’s zoom in to the middle patch in fig. 5.5 and ex-
amine the cost curve of the samples there.
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Figure 5.8.: Variance-scanning analysis (Cube). The first row shows the top, front, and left views of
samples on a region containing the cropped cube and the ground. The second row shows
the histograms in each dimension. The third row visualizes the cost function eq. (5.54). The
dashed gray horizontal line shows the parent cost.

In the plots fig. 5.8, x-cut (red dashed line) is selected because it achieves the lowest cost.
However, one would argue the y-cut (green dashed line) is better as it separates the surface of
the upper cube and the ground apart, while the x- and z-cuts only care about the proximity but
not the geometry.
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By inspecting the cost curves, we immediately know that the selection of the x-cut is driven
by a high variance reduction along the x-dimension (same for z). Conversely, the variance
curve barely changes in the y-dimension. A closer look at the sample views shows that the
dispersion of the samples is mainly due to their spread in the x- and z-dimensions (with a length
of around 15 units), while the y-axis only extends 4 units. Our variance-scanning considers the
total variance, which is the sum of the x, y, z components eq. (5.48). The larger the extent of
the axis, the larger its variance contribution. This explains why our variance-scanning favors
choosing the longest axis.

Covariance-Scanning

Inspired by fig. 5.8, to make the y-cut stand out, we can change the cost metric into the prod-
uct of the x, y, z variances so that the variance reduction in each dimension becomes equally
important.

cost01(d, t) :=
Nl

N
PV (Sl(d, t)) +

Nr

N
PV (Sr(d, t)) (5.55)

where

Product variance PV (S) :=
3Y

k=1

V (S)k (5.56)

Using this metric, the result with the same example is drastically improved. Shown in fig. 5.9,
the cost reduces most significantly in the y-dimension, yielding a correct horizontal split.
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Figure 5.9.: Improved variance-scanning result with the product metric eq. (5.55).

This metric has been proven to function as expected in our experiments (sections 6.1.2 and 6.2.2).
However, is there any deeper significance to the product variance?
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Let’s recall a 3D Gaussian distribution with mean µ and covariance ⌃

N (x | µ, ⌃) :=
1p

det(2⇡⌃)
exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆
(5.57)

The sublevel sets of the distribution are given by ellipsoids centered at µ

L�
c (µ, ⌃) =

�
x 2 R3 : (x� µ)T⌃�1(x� µ) 6 c

 
(5.58)

whose volumes are proportional to the square root of the determinant of ⌃

Vol
�
L�
c (µ, ⌃)

�
=

4

3
⇡
p

det(c⌃) _
p

det ⌃ (5.59)

In the special case where the covariance matrix is diagonal ⌃ = diag
�
�2
1, �

2
2, �

2
3

�
, i.e. the sub-

level ellipsoids are axis-aligned, the volume boils down to the product of the standard deviations
in each dimension

Vol
�
L�
c (µ, ⌃)

�
_
q

�2
1�

2
2�

2
3 = �1�2�3 (5.60)

Back to our topic. The product variance metric eq. (5.55) we used is the squared volume of an
axis-aligned Gaussian fit to the samples.

PV (S) =
3Y

k=1

V (S)k =
3Y

k=1

�(S)2k _ Vol
�
L�
c (µ, diag(V (S)))

�2 (5.61)

Therefore, our cost function eq. (5.55) roughly measures the reduction of the squared volume
of the samples in the half-spaces. We find in our 2D experiments section 6.1.2. If the region is
dominated by multiple geometries, a split that segments geometries apart usually results in the
most volume reduction. In other words, this new metric is geometry-aware.

Motivated by eqs. (5.57) to (5.59), a more generalized and robust volume measurement should
include the case of skewed Gaussians instead of axis-aligned ones, which requires the estimate
of the covariance matrix ⌃ instead of the variances. Moreover, to reveal the reduction of volume
instead of squared ones, we should take the square root of det ⌃. These observations give us
the following new cost function

cost2(d, t) :=
Nl

N
Vol(Sl(d, t)) +

Nr

N
Vol(Sr(d, t)) (5.62)

where

Sample volume estimate Vol(S) :=
p

det(Cov(S) + ✏I) (5.63)

Sample covariance matrix Cov(S) :=

0

BBB@

V (S)1 Cov(S1, S2) Cov(S1, S3)

Cov(S1, S2) V (S)2 Cov(S2, S3)

Cov(S1, S3) Cov(S2, S3) V (S)3

1

CCCA
(5.64)

Component covariance Cov(Sa, Sb) =
1

N

NX

i=1

((xi)a � xa)((xi)b � xb) (5.65)
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Figure 5.10.: Covariance-scanning with cost eq. (5.62). Left: input samples. Right: the cost is computed
as the volume of a (skewed) Gaussian blob fit to the samples.

A small ✏ = 10�6 is added to the diagonals of the covariance matrix before taking the determi-
nant eq. (5.63) to avoid degenerate cases. Without this handling, the cost function will always
be zero if samples in the whole region are coplanar or colinear.

The advantage of the covariance-based metric eq. (5.62) over the variance-based one eq. (5.55)
is demonstrated in an example in fig. 5.11. The best split pivot should occur at the joint where
two line segments meet. The variance-based metric (red) fails because it fits an axis-aligned
Gaussian, which overestimates the volume of the skewed line on the left, yielding high costs.
The covariance-based metric (green) successfully detects the joint location because splitting
there will collapse the volumes on both sides to almost zero.
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Figure 5.11.: Variance-scanning v.s. covariance-scanning on a 2D experiment. Left: samples are
uniformly placed on two line segments contacting at (1, 1). Right: the cost curves of
eqs. (5.55) and (5.62).

The downside is that we need to collect the covariance estimates of samples eq. (5.65), on top of
the variances. In total, our scanning algorithm must update six variables online: three variances
and three covariances. The new algorithm is thus called covariance-scanning, as illustrated by
fig. 5.10.

Information-Gain-Scanning

One might still argue that the cost function eq. (5.62) is ill-formed as it is purely an outcome
of geometric intuitions. There is no strict proof that a split proposed by eqs. (5.47) and (5.62)
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is optimal for guiding. Besides, we did not show the necessity of using volume instead of the
squared volume, or the validity of adding two volumes together instead of multiplying them.

On the other hand, we notice three fundamental aspects that make covariance-scanning effec-
tive: the weighting terms, the determinant operation, and the covariance matrix.

What other property of the Gaussian distribution involves the determinant of the covariance
matrix? Entropy.

H(N (µ, ⌃)) =
1

2
log det(2⇡e⌃) =

1

2
log det ⌃ + const. (5.66)

Do other algorithms employ weighted entropies? Consider decision trees. Referring back to
eq. (2.23), one type of decision tree finds a split by minimizing the mutual information

IG(d, t) = H(S)�
✓

Nl

N
H(Sl(d, t)) +

Nr

N
H(Sr(d, t))

◆
(5.67)

The original algorithm uses the Shannon entropy of supervised data eq. (2.20). However, in our
case, we only have unsupervised position data with a different “entropy” definition eq. (5.66).
If we plug that into eq. (5.67), we obtain a novel algorithm

IG(d, t) := H(S)�
✓

Nl

N
H(Sl(d, t)) +

Nr

N
H(Sr(d, t))

◆
(5.68)

(d⇤, t⇤) = arg max
d,t

IG(d, t), s.t. min(Nl, Nr) > Nmin (5.69)

where
Sample spatial entropy H(S) :=

1

2
log det(Cov(S) + ✏I) (5.70)

Or equivalently, we rewrite it into the following optimization problem

cost3(d, t) :=
Nl

N
H(Sl(d, t)) +

Nr

N
H(Sr(d, t)) (5.71)

(d⇤, t⇤) = arg min
d,t

cost3(d, t), s.t. min(Nl, Nr) > Nmin (5.72)

Interestingly, eq. (5.70) tells us to take the log of the determinant before summing it up into the
final cost eq. (5.71). In our experiments sections 6.1.2 and 6.2.2, we will show that the subtle
change in the measurement can sometimes improve the subdivision quality compared to the
volume-based metric eq. (5.62).

The new gain (cost) function tells us how much information we can gain from making the split,
or how much uncertainty the split reduces. Since it is based on concepts from information
theory, we name this well-formed new scanning algorithm information-gain-scanning, our final
geometry-aware splitting solution.

An additional benefit of information-gain-scanning is that it offers a scale-invariant quantity
eq. (5.68), whose magnitude is independent of the size of the geometries (see appendix A.3).
This property allows us to compare mutual information to some threshold, assisting the split
decision in our later discussion.
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5.2.2. Lighting-Aware Splitting

So far, we have developed several variance- and covariance-based cost functions that reveal
the information of geometries while sweeping left to right. They are parameter-free, simple to
implement, and enjoy an efficient run time of O(N log N).

Motivated by this framework, we aim to expand scanning algorithms to incorporate more infor-
mation from training samples.

Fluence-Scanning

We are immediately attracted to the sample weights, or the fluence estimates h�(xi)i that quan-
tify the amount of incoming light at a position.

Suppose we treat the sample position as the input variable and the ground truth fluence as
the target variable. In that case, we can directly apply the variance reduction algorithm from
regression trees eq. (2.28). This generates the following optimization problem

cost�(d, t) :=
Nl

N
V�(Sl(d, t)) +

Nr

N
V�(Sr(d, t)) (5.73)

(d⇤, t⇤) = arg min
d,t

cost�(d, t), s.t. min(Nl, Nr) > Nmin (5.74)

where

Sample fluence variance V�(S) :=
1

N

NX

i=1

⇣
h�(xi)i � h�(x)i

⌘2
(5.75)

We can leverage the same sorting-scanning trick to collect the fluence variance on the fly and
find the best split in O(N log N). We refer to such a lighting-aware algorithm as fluence-
scanning, whose workflow is illustrated in fig. 5.12.

Figure 5.12.: Fluence-scanning with cost eq. (5.73). Left: input samples annotated with fluence values.
Right: the cost is computed as the variance in the fluence estimates. Red and green colors
show the fluctuation of fluence estimates.

Analysis

The cost eq. (5.73) resembles the optimal cost function eq. (4.19) in the weighting terms and
error metric.
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The optimal cost function entails the marginalized NEV lower bound of the fluence estimator
eq. (4.11). The marginalized NEV of a sampling distribution qs(! | x) is given by

NEV⇤(qs) = ExVar!⇠qs(·|x)


h�(x)i
�(x)

�
= ExVar!


L(x, !)

�(x)qs(! | x)

�
(5.76)

However, fluence-scanning’s error metric eq. (5.75) is actually measuring the total mean squared
error (MSE) of the fluence estimator

E[V�(S)] = L�(qs) = Varx,!⇠qs(·|x)[h�(x)i] = Varx,!


L(x, !)

qs(! | x)

�
(5.77)

The first difference between these two errors is that the extra �(x) term is missing in our
eq. (5.77). This may appear as suboptimality in the spatial subdivision regarding relative ren-
dering errors.

Secondly, applying the law of total variance to eq. (5.77), we have

L�(qs) = Varx,![h�(x)i] (5.78)
= ExVar![h�(x)i] + VarxE![h�(x)i] (5.79)
= ExVar![h�(x)i]| {z }

marginalized MSE

+ Varx[�(x)]| {z }
spatial variance

(5.80)

where the first term is the marginalized MSE of the fluence estimator. The second term measures
the spatial variance of the fluence function. The first term depends on the sampling PDF qs,
usually the guiding or the defensive sampling PDF learned in the previous training iteration,
which can introduce inter-correlation into the split decision.

Unfortunately, if we try to remove the marginalized MSE term from the fluence-scanning algo-
rithm, we are left with the intrinsic challenge of estimating the ground truth fluence. Even if we
manage to measure only the spatial variance, problems still arise because the fluence function
does not tell us enough information about incoming radiance. A failure case is our initial toy
setup fig. 4.2 where the incident radiance changes across the space while maintaining a constant
fluence �(x) = ⇡. A cost function based on the spatial variance of �(x) will be constant with
respect to t.

Bridging the gap between the theoretically optimal split cost and fluence-scanning, as well as
finding a sensible way to combine the marginalized MSE and spatial variance of fluence will be
challenging future avenues.

5.2.3. Degeneration Handling

The ✏ perturbation added to eqs. (5.63) and (5.70) ensures the numeric stability when points are
coplanar or colinear. However, if the degeneration happens at one of the coordinate axes, i.e. the
position variance along that axis is almost zero, the scanning algorithms will still execute along
these axes. This can, in turn, lead to selecting the degenerating dimensions to split, causing
pathological and ambiguous subdivisions as illustrated earlier in fig. 4.11.
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5. Methodologies

To avoid this, before scanning along axis d, we check if its variance eq. (5.6) is too small
compared to the longest-axis variance. If so, skip this dimension for scanning. Formally

Skip dimension d if V (S)d < kskip max
i

V (S)i (5.81)

The skip ratio kskip is set to 10�4 in our implementation.

5.2.4. Incremental Update

The incremental update means the subdivision algorithm can memorize some information about
samples arriving at a k-d tree node if a split decision is negative in the current iteration, and use
this information to make better proposals of split pivot and dimension in future iterations.

Open PGL’s strategy achieves this goal by storing the mean and variance statistics at each leaf
node, spending only a few float variables. Our adaptive splitting solutions achieve the incre-
mental update by storing the sufficient statistics for divergence estimates or the state variables
for Adam optimization.

However, it is not trivial to make our scanning algorithms sections 5.2.1 and 5.2.2 incremental.
The core of these algorithms is the cost curve, represented as key points with the same number
as the sample count. Making this representation incremental requires finding suitable ways to
summarize the curves.

A naive way for the incremental update to cache all the sample data arriving at this node. Then
we run the scanning algorithm with the union of incoming samples and stored ones. But this
soon leads to expensive memory consumption over time.

We finally decided not to cache previous samples nor to support the incremental update for two
reasons:

1. The memory consumption issue explained above.

2. The gain in the split quality by incorporating previous samples is minimal while the in-
crease in the memory cost is substantial.

5.2.5. Defensive Fallback To Maintain Isotropy

None of the algorithms in this section consider requirement 6. In extreme cases, covariance-
scanning, information-gain-scanning, and fluence-scanning can propose split pivots very close
to the left or right end, or repeating split dimensions that produce thin elongated regions. An
example is shown in fig. 5.13 (left). For variance-scanning, however, we didn’t observe such
issues.

Upon a closer inspection in a 2D experiment fig. 5.14, we ascribe this phenomenon to the
“greediness” of the optimization eqs. (5.47), (5.69), (5.72) and (5.74), which strives to select
the minimum point of the cost curve, regardless of the magnitude of the cost reduction. To
remedy this, let’s first introduce a few concepts.
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5.2. Where to Split

Figure 5.13.: Information-gain-scanning without (left) vs. with (right) defensive fallback (Cube, 8 SPP)

Gain of a split. The parent cost is defined as the error of samples on the parent region,
denoted with cost(S). Specifically:

cost1(S) := TV (S) (5.82)
cost2(S) := Vol(S) (5.83)
cost3(S) := H(S) (5.84)
cost�(S) := V�(S) (5.85)

Then, we define the gain of a split as the maximum ratio of cost reduction in a certain dimension:

gain(d) :=
cost(S)�mint cost(d, t)

cost(S)
(5.86)

For information-gain-scanning, the definition is a bit different, since the absolute difference of
two entropies is more meaningful than the ratio difference, which has a unit of “bit”:

gain(d) := cost3(S)�min
t

cost3(d, t) = max
t

IG(d, t) (5.87)

In practice, the gain is always positive. Its magnitude can tell us about the “confidence” of
a proposed split. The higher the gain, the more the algorithm believes the split benefits the
guiding.

For covariance-scanning, the physical meaning of the gain is the percentage in volume reduc-
tion.

Example. To give some intuition about the gain, let’s consider a 2D case where sample po-
sitions follow a uniform distribution Unif([0, a]⇥ [0, b]). The covariance ⌃ = diag( 1

12a
2, 1

12b
2).

Hence, the parent cost is
p

det ⌃ = 1
12ab. Apparently, splitting at the center, either at x = a/2

or y = b/2, the cost function is minimized at 1
2 · 1

12
a
2b + 1

2 · 1
12a

b
2 = 1

24ab. So the gains for
both dimensions are 0.5. A wise choice would be to select the dimension with the longer extent.
However, our way of greedily selecting the dimension with the highest gain will produce an
unpredictable dimension.

This example tells us, that for covariance-based methods, when the gains across dimensions
are similar, we should use a more conservative dimension selection policy. We resort to Open
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Figure 5.14.: The stability issue of fluence-scanning in 2D experiments. Samples are uniformly gener-
ated in the unit square. Upper row: when sample weights correlate with x, the best pivot
significantly reduces the variance. Lower row: when sample weights are independent of
the spatial location, the cost doesn’t change much. Fluctuation in the cost curve misleads
the algorithm in finding the wrong pivot or dimension.

PGL’s dimension strategy eq. (5.1) that at least maintains the isotropy, while we still use the
split positions suggested by the scanning algorithms.

Specifically, for covariance- and information-gain-scanning, we switch to the defensive strategy
when the gain difference across dimensions is no greater than a threshold:

(d⇤, t⇤) =

(
arg mind,t cost(d, t) �gain > gths
(d0, arg mint cost(d0, t)) otherwise

(5.88)

where �gain = maxd gain(d)�secondmaxd gain(d). The optimization constraint min(Nl, Nr) >
Nmin is omitted. The defensive split dimension d0 is given by eq. (5.1).

The gain ratio threshold gths controls the defensiveness. The higher, the more likely it falls
back to Open PGL’s strategy. For covariance-scanning, the gain is in [0, 1], so gths 2 [0, 1]. For
information-gain-scanning, however, the gain and the threshold have no upper bound.

For fluence-scanning, the handling is different. The meaning of gain is the reduction ratio of
the variance in the fluence. We notice that when the gain is small, the proposed split pivot can
be very unstable, as shown in fig. 5.14. So we trigger fallbacks with the value of the gain, and
resort to not only use Open PGL’s dimension, but also the pivot.

(d⇤, t⇤) =

(
arg mind,t cost�(d, t) gain(d⇤) > gths
⇠ (5.1), (5.2) otherwise

(5.89)
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The gain threshold gths 2 [0, 1].

Based on our experiences, we recommend setting the defensiveness thresholds for covariance-
scanning, information-gain-scanning, and fluence-scanning to 0.2, 1.0 bit, and 0.03, respec-
tively. An improved result with the defensive fallback is shown in fig. 5.13 (right).

Results and analysis for “where to split” can be found in sections 6.1.2 and 6.2.2.

5.3. Full Model

So far, we have presented the main components of our spatial subdivision algorithms. To
determine “when to split”, we have the maximum sample count threshold, divergence reduc-
tion threshold, and MIS weight threshold. For “where to split”, we utilize variance-scanning,
covariance-scanning, information-gain-scanning, and fluence-scanning.

Our complete spatial subdivision schemes combine some of the most performant modules ac-
cording to our experiment results in section 6.2. We list some of the best practices in the
following.

KL divergence + information-gain-scanning with defensive fallback

Split if
⇣
Nvalid > 2Nmin ^ hD̃KL(qp)i � hD̃KL(qc)i > Dths

⌘
(5.90)

_Nvalid > Nmax (5.91)

at (d⇤, t⇤) =

8
><

>:

arg maxd,t IG(d, t) Ncur > 2Nmin ^�gain > gths
(d0, arg maxt IG(d0, t)) Ncur > 2Nmin ^�gain 6 gths
(d0, t0) Ncur < 2Nmin

(5.92)

d0 = arg max
d

V (Svalid)d (5.93)

t0 = (xvalid)d0 (5.94)

where eq. (5.90) is the adaptive threshold based on KL divergence. eq. (5.91) enforces the split
to escape the local optima of the adaptive one and also to encourage more frequent refinement
at the beginning of the subdivision. As a defensive backup policy, Nmax is set to be way larger
than Open PGL’s maximum sample count threshold.

Eq. (5.92) is the information-gain-scanning algorithm with a gain-based dimension selection
strategy. Note that Ncur is the number of samples in the current recent training iteration, which
is no greater than Nvalid, the number of valid samples accumulated at this node, as we do not
store previous samples (see section 5.2.4). This is why there can still be the case of having
insufficient input samples to run the scanning algorithm. As a result, we fully fall back to using
Open PGL’s split strategy.
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KL divergence + variance-scanning with defensive fallback
Eq. (5.92) can be replaced by

Split at (d⇤, t⇤) =

(
arg mind,t cost1(d, t) Ncur > 2Nmin

(d0, t0) otherwise
(5.95)

KL divergence + fluence-scanning with defensive fallback
Eq. (5.92) can be replaced by

Split at (d⇤, t⇤) =

(
arg mind,t cost�(d, t) Ncur > 2Nmin ^ gain > gths

(d0, t0) otherwise
(5.96)

As explained in section 5.2.5, the gain > gths condition deals with the instability of fluence-
scanning. This strategy addresses practical requirement 3 with both when- and where-to-split
policies.

With the defensive fallbacks, each of our full models is capable of addressing all of our practical
requirements in section 4.4.

Please see section 6.2.3 for a quantitative evaluation of our full models.
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6
Experiments and Analysis

This chapter provides a comprehensive evaluation and analysis of the models proposed in chap-
ter 5. We first experiment with each module to understand their behavior in detail and get
insights into their strengths and weaknesses. Then we implement these methods in the PBRT
renderer with Open PGL, conduct rendering experiments, and demonstrate their performances
both qualitatively and quantitatively.

6.1. 2D Experiments

6.1.1. Adaptive Subdivision

We validate the divergence-based adaptive split decision (section 5.1.2) on the same 2D setups
as section 4.3. Candidate splits are set near the theoretical optimal locations. We repeat this
process: generate MC samples, evaluate the models with our KL or �2-divergence estimators,
and update the parent and child guiding distributions1. We then compare this evaluation result
(“split” or “not split” at each iteration) with the theoretical ground truth.

Specifically, for the generation step, 200 MC samples with data si = (xi, !i, qs(!i | xi), hL(xi, !i)i)
are generated. Positions and directions are sampled uniformly. Gamma-distribution (to ensure
positiveness) noise is added to the observed radiance values. The gamma distribution parame-
ters are set in such a way that the mean equals to L(xi, !i) and the variance equals to 10�2.

We use weighted EM and two-lobe Gaussian mixtures to fit the guiding distributions with the
samples (!i, h�(xi)i = hL(xi, !i)i/qs(!i | xi)). In particular, the parent model qp has access to
all training samples. The left and right children ql, qr see only samples in their half space. The
“child model” qc is defined in eq. (5.7).

1Why evaluating before fitting? See the Implementation Details part in section 5.1.2
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For the evaluation of the parent and child models in each iteration, we compute their divergence
estimates using MC samples with eqs. (5.19), (5.20), (5.24) and (5.25) by accumulating their
sufficient statistics from the first iteration, with an exponential decay ratio of 0.5. To validate
this result, we compute the ground truth cross-entropy and �2-divergence by quadrature using
eqs. (5.14) and (5.21), and compare the estimated values with the ground truths.

In total, 20 iterations of evaluation, generation, and training are launched.

Setup 1
The radiance field setup, trained parent and child models, and their divergence curves are shown
in fig. 6.1. The “gain” is defined as the reduction of divergence by adopting the child model. It
is the parent divergence subtracted by the corresponding child one. A gain above the threshold
0 means the tendency to adopt the candidate split, otherwise not.

Figure 6.1.: Divergence metric experiment (1). First row: the radiance field, the parent model, and the
child model after 10 iterations. Second row: the cross-entropy, �2-divergence, and the gain
over iterations.

In this case, the gains are most positive all the time, indicating strong confidence in the split,
which agrees with our intuition that cutting in the middle can reduce the signal complexity.

By comparing the ground truth curves with the estimated ones, we can conclude that both
metrics make a fair approximation. The cross-entropy suffers from less noise than the �2-
divergence. Interestingly, the ground truth �2-divergence also exhibits large fluctuations, re-
vealing its sensitivity to the distribution change over iterations.
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6.1. 2D Experiments

Setup 2
In this case, the signals are constant to x. Splitting in the middle will not improve the represen-
tation of the guiding field. Even worse, because child models have access to fewer samples, the
noise in the fitting is more than the parent’s. This fact is perfectly captured in the result fig. 6.2,
where the gain curves are almost always negative. By examining the parent and child PDFs, we
can see the child model approximates the optimal distribution slightly worse than the parent.

Figure 6.2.: Divergence metric experiment (2)

Figure 6.3.: Problems with evaluating after the training (Experiment 2).

We also experimented with swapping the order of “evaluation, generation, training” to “gen-
eration, training, evaluation”. In the results fig. 6.3, the child divergences tend to be more
underestimated than the parent’s. In the gain curve plot, the estimated gains tend to take the
positive side, contrary to the negative ground truths.

This finding supports our proposal of delaying the evaluation to the beginning of the next itera-
tion fig. 5.3.
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Figure 6.4.: Divergence metric experiment (3.1)

Figure 6.5.: Divergence metric experiment (3.2)

Setup 3.1
The spatial dependency of the radiance field makes the child model stand out in both of our
metrics, yielding a consistently positive gain, shown in fig. 6.4.
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Setup 3.2
When the spatial dependency is nonlinear, the finding is the same, shown in fig. 6.5.

Setup 3.3
This case is similar to the second setup, where the child performs worse due to fewer available
samples.

Figure 6.6.: Divergence metric experiment (3.3)

Setup 4
Thanks to the split, the child can represent the sunlight and ambient separately. The cross-
entropy curve captures this advantage. However, the �2-divergence fails due to its increased
sensitivity and noise.
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Figure 6.7.: Divergence metric experiment (4)

Figure 6.8.: Divergence metric experiment (5)

Setup 5
In this complex lighting case, the child model still approximates the signals better than the
parent, if not perfectly. Again, �2-divergence suffers from fast oscillation. Fortunately, the
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cross-entropy curves are stable enough to highlight the gain of the split.

Conclusion. From all of these experiments, by inspecting the gain curves with a focus on the
signs, we conclude that our estimators make split decisions that are consistent with the ground
truths, although they exhibit higher levels of noise.

We find out that KL divergence, or cross-entropy, is a more stable metric than �2-divergence.
Our cross-entropy estimator also manifests less bias from the ground truth compared to �2-
divergence. This, again, aligns with our discussion in section 5.1.2.

6.1.2. 2D Geometry-Aware Subdivision

In this section, we test our scanning algorithms that tackle the “where to split” problem with
some fabricated 2D scenes. The input in these experiments is 500 position-only samples gen-
erated from mixtures of Gaussian or uniform distributions with diverse shapes. We hope these
2D examples can emulate some typical local subdivision scenarios in real rendering scenes.

We will examine the cost curves eqs. (5.54), (5.62) and (5.71) obtained from applying variance-
scanning, covariance-scanning, and information-gain-scanning to the input samples in each di-
mension, to understand their behaviors in detail.

The results are displayed in figs. 6.9 and 6.10. In each row, we visualize the sample distribution
and the best splits proposed by each algorithm in the left image, and show the cost curves along
x- and y-axis in the right three images. The best split of each algorithm is defined as the pivot
and dimension with the lowest cost eq. (5.47).

From these results, we can see all scanning algorithms aim to reduce the average amount of
dispersion of samples with an axis-aligned cut. All algorithms tend to split in the center, if
samples are somewhat uniformly distributed (see Uniform and Uniform Triangle).

If there are multiple “objects” in the scenes, in cases where their extents in each dimension are
similar (2 Gaussians and 5 Gaussians), all algorithms propose a split near the gaps between
these objects, where each gap appears as a local minimum on the cost curve.

If there is a significant discrepancy in their extents, we find that variance-scanning and covariance-
scanning sometimes fail to identify the objects and propose a cut in the longest dimension (Thin
Gaussians and 3 Gaussians). The reason for this is explained in fig. 5.8. Information-gain-
scanning and covariance-scanning avoid this issue in Thin Gaussians by measuring the gain
resulting from volume reduction. However, in 3 Gaussians, covariance-scanning still proposes
an x-cut (green) because of a slightly higher volume reduction compared to the y-cut. Only
information-gain-scanning selects the expected y-cut. We attribute this to its entropy-based
metric eq. (5.71), which makes more sense with the weighted-sum operation than the volume
eq. (5.62).

Segments and T emulate scenes with closely-contacted geometries. Under our geometry as-
sumption introduced in section 5.2.1, an accurate split at the contact point would best sepa-
rate the geometries for guiding. The results magnify the difference between variance-scanning
and the two covariance-based methods. Variance-scanning’s distance-based metric makes it
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Figure 6.9.: 2D experiments with our scanning algorithms (a)

76



6.1. 2D Experiments

Figure 6.10.: 2D experiments with our scanning algorithms (b)

favor the proximity assumption more, producing splits not accurately occurring at the joints.
Covariance- and information-gain-scanning, on the other hand, perfectly detect the joint lo-
cation that results in the most volume reduction (to almost zero). In the final U scene, both
variance- and covariance-scanning prefer an x-cut at the center. Only information-gain-scanning
selects the pivot near the left or right vertical lines. One would imagine if the subdivision is
continued recursively, information-gain-scanning can sharply distinguish all the lines and keep
them intact while the other two chop off the middle line in the beginning. Again, we ascribe
information-gain-scanning’s aggressive feature to its metric formation.

However, two failure cases (Uniform and Uniform Triangle) are found for covariance- and
information-gain-scanning where they are prone to select a shorter axis, compromising the
isotropy requirement. Through a closer look at the cost curves, we immediately know the rea-
son: the cost reductions (gains) for both axes are identical, making them indistinguishable! This
issue arises when the points are up to a scale-transform when rotating 90 degrees. The good
news is we can easily contour it by enforcing the selection of the longest axis when the gains
along different axes are similar, which indicates the algorithm’s indecision about the dimension.
This aligns with our fallback handling in section 5.2.5.

We conclude that the proposed scanning algorithms can, to some extent, infer underlying ge-
ometries from sample points in an unsupervised manner. Information-gain-scanning generates
splits most aggressively for the goal of separating geometries, while variance-scanning is the
most conservative one. There needs to be careful handling of their robustness and stability when
applying these algorithms to rendering applications.
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6.2. Rendering Experiments

Our implementation of the proposed subdivision schemes is done on PBRT-v4 [PJH23] and
Open PGL [HD22]. The test environment is on Ubuntu 20.04, with an eight-core CPU and
32GB memory.

We select a diverse set of scenes, categorized into three groups: planar, small, and large.

In planar scenes fig. 6.11, the camera is looking at a plane illuminated by a sky dome. Floating
geometries drop various shapes of shadows on the plane. Indirect illumination is turned off so
that the guiding samples concentrate only on the plane. This makes these scenes suitable for
testing spatial subdivisions’ adaptivity to lighting.

Figure 6.11.: Planar scenes

Small scenes (fig. 6.12) consist of simple geometries (cubes, planes, etc.), containing some
shadow and caustics effects. These scenes are designed to facilitate the understanding and
analysis of spatial subdivision.

Large scenes fig. 6.13 are mainly selected from commonly used benchmarks for testing path
guiders’ performance. Pool, Villa, Living Room, and Kitchen contain intricate indirect illumina-
tion. Specifically, we select Classroom and San Miguel scene variants, which feature complex
geometries, to evaluate our geometry-aware solutions.

To emphasize the guider’s performance, we disable next-event estimation. We enable defen-
sive sampling eq. (2.16) with a BSDF sampling rate of 0.5. We turn off stochastic query2 to

2A technique to perturb a query sample to a point nearby, in order to propagate guiding information to neighboring
regions [VHH+19].
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Figure 6.12.: Small scenes

attribute guiding cache issues to spatial subdivisions more easily.

To further enhance the comparisons between different subdivisions, the rendering of each scene
is divided into two passes. In the first pass (training pass), we alternate rendering and training
of the guiding cache in the way described in fig. 4.1, until a total nt samples per pixel (SPP) has
been depleted. In the second pass (evaluation pass), we freeze the guiding cache, and execute
the guided rendering for ne SPP. The final rendering result is the average of pixel estimates from
only the evaluation pass.

For brevity in our following discussions, we refer to Open PGL’s subdivision scheme as the
baseline, which we compare all our models against.

First, we will validate each of the modular algorithms individually. Then, we will conduct large-
scale experiments with our complete models. For an overview of our models’ performance,
please refer to fig. 6.49, which summarizes the results across all scenes .

6.2.1. When to Split

In this experiment, we compare our adaptive subdivision schemes with the baseline that relies
on a static sample count threshold. As for the split position and dimension selection, all methods
share the baseline strategy eqs. (5.1) and (5.2).
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Figure 6.13.: Large scenes

Adaptive Splitting Based on Divergence Estimate

We tested our solution of section 5.1.2 on the planar scenes and small scenes for a qualitative
study. The parameters of the adaptive splitting are set as follows:

• The maximum sample count threshold is initially turned off. I.e. Nmax =1.

• The minimum samples per node threshold Nmin is set to 1k.

• The divergence threshold Dths is set in the range of [0, 0.1].

• The decay ratio for the sufficient statistics � = 0.25.

The baseline’s sample count threshold is set to Nmax = 32k by default unless otherwise spec-
ified. The maximum path tracing depth is set to 1 for planar scenes and 20 for the rest. The
training pass SPP nt is set to 16. For planar scenes, the evaluation pass SPP ne = 16, while for
other scenes it’s set to 32 for a less noisy image.

Noise in the fitting and evaluation. Let’s first validate that our adaptive splitting does
not generate over-refinements in a simple setup. The Plane scene is uniformly lit by a sky dome
without any shadow. Results in Plane are shown in fig. 6.14.

Theoretically, this should correspond to the case of fig. 6.2 where splitting will do us no good
but reduce the available training samples. However, in fig. 6.14 (left), we still observe quite
a few subdivisions when the cross-entropy (CE) threshold is set to 0. We attribute this to the
fluctuation of light samples h�ii arriving in each region, caused by the random sampling of
the environment light. This fluctuation can result in small differences between the parent’s
and children’s guiding caches, even when their ground truth lighting distributions are the same.
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CE-0 CE-0.05

Figure 6.14.: Cross-entropy-based (CE) subdivision with different thresholds in Plane. E.g. “CE-0.05”
means splitting when the cross-entropy reduction exceeds 0.05. Dashed lines indicate the
candidate splits.

It is possible that at some iteration, the child model performs slightly better than the parent
one, leading to a split. Furthermore, the cache evaluation relies on MC estimation, which is
inherently subject to noise.

It is due to both of the two types of noise, that the resulting divergences can lie about the actual
cache quality. A positive threshold Dths can effectively contour this effect. After increasing the
cross-entropy reduction threshold to 0.05, most unnecessary splits are gone (fig. 6.14 (right)).

CE-0 Figure 6.15.: CE-0.05

�2-0 �2-0.05

Figure 6.16.: Divergence-based adaptive subdivision in Shadow

In the Shadow scene fig. 6.16, we show the subdivision using cross-entropy or �2-divergence
with different thresholds. Again, noise in the training and evaluation appears as some un-
necessary splits at the upper fully shadowed or lower fully bright regions in the left images of
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fig. 6.16. From the left-and-right comparison, it follows that a higher threshold leads to a coarser
subdivision, where over-refinements in the uniform areas are gradually filtered out, leaving the
necessary splits near the shadow boundaries.

Another interesting finding is the difference between CE and �2-divergence. The former creates
more uniform splits across the scene, whereas the latter displays more spatial fluctuation. We
attribute this to the sensitivity of the �2-divergence formation and the extra bias introduced in
its estimator.

Figure 6.17.: CE-0 Figure 6.18.: CE-0.01

Figure 6.19.: CE-0.01+128k Figure 6.20.: Baseline

Figure 6.21.: RAE of CE-0 (0.141) Figure 6.22.: RAE of Baseline (0.155)

Figure 6.23.: Baseline vs. cross-entropy-based subdivision in Complex Shadows. “CE-0.01+128k”
means the cross-entropy threshold 0.01 with a maximum sample count threshold of 128k.
The last row compares the relative absolute error (RAE) between “CE-0” and the baseline.
The warmer the color, the higher the error. Numbers in the brackets indicate the mean
error.

Local Optima. Examining fig. 6.15, we can see the process gets stuck in the middle regions
that contain the shadow boundary. Ideally, if the candidate splits are parallel to the shadow
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edge, they would enhance the guiding field, and thus be adopted. However, proposed splits
are orthogonal to the shadow edge, resulting in lookahead regions no better than the parent.
This suboptimality from the baseline strategy prevents our adaptive solution from seeing the
advantages of future splits there.

This phenomenon inspires our proposed fix of using the maximum sample count threshold, as
introduced in section 5.1.4.

In Complex Shadows (fig. 6.23), the cross-entropy-based subdivision with a zero threshold
(fig. 6.17) successfully adapts to the change of lighting. Shadowed areas have a higher cache
resolution than the bright parts, contrary to the baseline that subdivides uniformly (fig. 6.20).
Still, we see some unnecessary splits coming from noise. Increasing the CE threshold to even
0.01 will get us stuck in a local minimum at the beginning (fig. 6.18). In fig. 6.19, a defensive
sample count threshold can encourage splits in the beginning to escape local minima, resulting
in a subdivision with fewer over-refinements than fig. 6.17.

From the error map figs. 6.21 and 6.22, we can see that the adaptive solution significantly
reduces the error near the shadows due to the higher cache resolution there.

Estimated Fluence Ground Truth Fluence

Child CE Figure 6.24.: Parent CE - Child CE

Figure 6.25.: Visualization of sufficient statistics of fig. 6.17. The fluence and CE maps are normalized.
The brighter the color, the higher the fluence and cross-entropy. In the CE reduction map
fig. 6.24, green means the child model has a lower CE than the parent’s (better), red means
the child has a higher CE, while black means they have the same CE (tie).

Some visualization of the sufficient statistics are shown in fig. 6.25. The ground truth fluence
is obtained by dividing the incident radiance by the sampling PDF at the primary intersection
point from path tracing. We observe some similarities between the estimated fluence, resulting
from averaging the MC samples eq. (5.17), and the ground truth. From the CE reduction map
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fig. 6.24, we see some structures corresponding to the shadow shapes: the child CE is indeed
lower than the parent’s, suggesting a higher tendency to split than the red parts.

We also compared the CE-based subdivision with the baseline in our small scenes. The de-
fensive maximum sample count threshold is enabled with 128k. Selected results are shown
below.

In Torus (fig. 6.26), we notice more subdivisions near the caustics, torus, and shadow regions
than the baseline, where there is a high-frequency change of lighting.

Baseline CE-0.01

Figure 6.26.: Baseline vs. cross-entropy-based subdivisions in Torus

CE-0 CE-0.01 CE-0.05

Baseline RAE of CE-0 (0.102) RAE of Baseline (0.109)

Figure 6.27.: Baseline vs. cross-entropy-based subdivisions in Multi Cubes

In Multi Cubes (fig. 6.27), we sweep the divergence threshold from 0 to 0.05, observing a
decreasing number of regions. Regions near the shadow boundaries exhibit a slower decrease
than the uniform ones. From the error map, we can CE represents the shadows more finely than
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the baseline, which produces higher noise there.

Projection Box (fig. 6.28) is a scene where we stare at the inside of a pinhole camera. Three
small area lights from outside project three spots on the camera film (red, green, and blue). The
small size of the pinhole makes it challenging to sample the light source in initial iterations. The
default baseline with a 32k threshold subdivides too slowly to catch any meaningful signals.
Reducing Nmax to 8k or 2k can make it work normally, at the risk of getting higher noise in the
fitting with fewer samples. The optimal Nmax that results in the lowest error in this experiment
is 8k. However, tuning this parameter requires the user to be aware of the bias-variance trade-
off. All of our solutions, on the other hand, produce adaptive subdivisions with lower errors
than any of the baselines, and thus, require less effort in parameter tuning. We attribute the
reduction of error to the improvement in selecting the right timing of a split.

Baseline-32k (1.426) Baseline-8k (0.569) Baseline-2k (0.577)

CE-0 (0.521) CE-0.05 (0.516) CE-0.1 (0.519)

Figure 6.28.: Baseline vs. cross-entropy-based subdivisions in Projection Box. Numbers in the brackets
indicate the mean relative absolute error (MRAE).

Adaptive Splitting Based on Multiple Importance Sampling

Similarly, we tested our MIS-based split approach (section 5.1.3) with the same rendering con-
figuration. Below are the parameters of the adaptive splitting:

• The maximum sample count threshold Nmax is set to 128k.
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• The minimum samples per node threshold Nmin is set to 1k.

• The MIS weight threshold ↵ths is set in the range of [0.5, 0.95].

• During queries, we turn off the MIS between the leaf region and lookahead region cache
(illustrated in fig. 5.4) by default.

MIS-0.5 MIS-0.6 MIS-0.9

Figure 6.29.: MIS-based subdivisions in Complex Shadows. “MIS-0.5” indicates splitting when the MIS
weight exceeds 0.5.

MIS-0.6 MIS-0.9

CE-0.01 Weights of MIS-0.9

Figure 6.30.: MIS- vs. CE-based subdivisions in Torus. The lower right image visualizes the ↵ weights
of MIS-0.9. Green means ↵ > 0.5, red means ↵ < 0.5, otherwise white. The red in the
far background and the transparent part of the cube result from a missing guiding cache.
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In fig. 6.29, we observe a similar pattern in the change of cache resolution when increasing the
MIS weight threshold. The subdivision somewhat adapts to the shadow shapes.

In fig. 6.30, adaptivity to lighting is evident for MIS-0.6. However, when increasing the thresh-
old to 0.9, the MIS-based approach tends to subdivide more uniformly across the scene, com-
pared to CE. The latter is more sensitive to signals and can propose more aggressive splits at
high-frequency regions. We speculate this is caused by the spatial marginalization effect and
the adapted MIS weight optimization target eq. (5.36). Still, the visualization of MIS weights
shows some correlation with the signal frequencies.

MIS for guiding. We experimented with the idea of returning guiding queries with the mix-
ture distribution defined in eq. (5.28) and fig. 5.4. A notable result is shown in fig. 6.31. Despite
having the same split threshold, returning the mixture distribution (MIS-Mix-0.9) can encour-
age exploring the directions suggested by the lookahead child regions. In this scene, the child
model happens to be more accurate about lighting than the parent one, hence reinforcing its MIS
weight, leading to more subdivisions and lower errors. However, we find this effect insignificant
in other scenes.

MIS-0.9 (0.674) MIS-Mix-0.9 (0.613)

Figure 6.31.: Guiding without (MIS-0.9) vs. with (MIS-Mix-0.9) the mixture distribution in Projection
Box. Numbers in the brackets indicate the MRAE.

Quantitative Study

To provide insights into our proposed methods’ behavior quantitatively, we use two metrics: the
number of regions and the rendering error throughout rendering iterations. We run the rendering
with baseline and CE subdivision in our small or large scenes for 64 SPP in the training pass and
64 SPP in the evaluation and compile the metrics into plots. The defensive maximum sample
count threshold for CE is set to 512k and only enabled for the first 12 depths of the tree. Selected
results are shown in figs. 6.32 and 6.33.
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Figure 6.32.: Number of regions and MRAE over rendering iterations: baseline vs. cross-entropy-based
subdivisions with different thresholds (a). E.g. “Baseline-32k” means the baseline with a
32k maximum sample threshold. Bold labels highlight the method with the lowest evalua-
tion error.

Overall, we have the following findings:

1. Both the baseline and the adaptive methods produce more partitions as the split threshold
decreases.

2. Baseline’s performance regarding the rendering error is sensitive to the choice of the max-
imum sample count threshold, while the adaptive method generally performs similarly as
long as the divergence threshold is below 0.1.

3. Baseline’s number of regions grows linearly over rendering time.

4. The adaptive method exhibits a “burn-in” period: during the first 10 iterations, its number
of regions grows sub-linearly, slower than the baseline. We attribute this to be related to
the local optima as described before, especially when the region is large.
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5. After the burn-in period of the adaptive method, the region count then grows linearly. The
growth slows down and even displays a trend of convergence with a large split threshold
such as CE-0.02 and CE-0.1 in Cornell Box and Projection Box.

6. In best cases, the adaptive method requires a much lower region budget while maintaining
similar or even better rendering performances. For instance, in Cornell Box (and Living
Room), the best adaptive method CE-0.1 requires fewer than 1k (10k) regions, whereas
the best baseline-2k produces around 40k (50k) regions when the rendering ends.

Figure 6.33.: Number of regions and MRAE over rendering iterations: baseline vs. cross-entropy-based
subdivisions with different thresholds (b).

A representative subdivision result is demonstrated in fig. 6.34. We select the second-best CE
with a threshold of 0.02 for a clean visualization. The baseline subdivides uniformly. CE-0.02
subdivides adaptively to the frequency of the lighting in the scene. Coarse guiding caches are
used for directly lit areas at the pool bank. Fine caches are applied to the shadowed areas on the
bank, the caustics inside the pool, and the caustics within the house on the right.
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Baseline-32k (0.164)

CE-0.02 (0.150)

Figure 6.34.: Spatial subdivision of the baseline vs. CE-0.02 (64 SPP, Pool).
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6.2.2. Where to Split

This experiment section provides a qualitative study for our proposed scanning algorithms in
sections 5.2.1 and 5.2.2. We compare our solutions with the Open PGL’s and PPG’s “where to
split” strategy eqs. (5.1), (5.2), (6.1) and (6.2). To recap, PPG’s strategy is given as by:

Split at dimension d = RoundRobin(dp) (6.1)

and pivot t =

✓
xmin + xmax

2

◆

d

(6.2)

Where xmin,xmax are the bounds of the region, dp is the split dimension of the parent region.

The “when to split” policies of all methods share the same maximum sample count threshold
Nmax = 32k. Training SPP nt is set to 8 to magnify the effect of early splits which are more
crucial for a spatial subdivision. Evaluation SPP ne = 32.

We turn on the defensive fallback as described in section 5.2.5, with the following parameters
for each method:

• Variance-scanning (VS): no defensive fallback.

• Covariance-scanning (COVS): gths = 0.2

• Information-gain-scanning (IGS): gths = 1.0 bit

• Fluence-scanning (FS): gths = 0.03

Geometry-Aware Splitting

We first compare the spatial subdivisions of PPG, Open PGL, and our geometry-aware ap-
proaches in Cube scene (fig. 6.35). Two geometric issues are identified for previous methods:

1. PPG is prone to generate splits that do not adapt well with the geometry edges, evidenced
by some thin regions near the cube corners. This is because its split positions are fixed,
regardless of the sample distribution.

2. Open PGL creates “sticky” partitions that mix up geometries, especially near the contact
points between the cube and the ground.

We observe improvements with our geometry-aware methods, albeit with some failure cases:

1. VS produces more isotropic regions with the help of the distance-based metric but still
mixes up geometries.

2. COVS separates the cube and the ground while maintaining a high isotropy on average
except for one problematic thin region intersecting the upper left contact point (green).

3. IGS also separates the geometries. It splits more aggressively than COVS in that it iden-
tifies all the faces of the cube. Failure cases occur at the upper edges of the cube, which
are isolated into separate regions from the faces. We explain this to be the reduction of
volume when cutting the “L”-shaped joint into two planar parts, similar to the Lines and
L examples in fig. 6.10.
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Reference PPG Open PGL

VS COVS IGS

Figure 6.35.: Comparing the spatial subdivisions of PPG, Open PGL, VS, COVS, and IGS in Cube. We
visualize their subdivision as the region IDs at the hit location, during the 2nd iteration of
the training pass.

In Multi Cubes scene (fig. 6.36), we see similar issues of thin and sticky subdivisions with PPG
and the Open PGL. VS has the highest isotropy visually. Both COVS and IGS create “sharp”
partitioning that separates geometries.

In fig. 6.37, the benefit of a geometry-aware splitting is significant. From the region visual-
ization, we can see that IGS immediately detects the walls, the ground, the ceiling, and two
cuboids, while PPG and Open PGL attempt to fit all the geometries into several large bounding
boxes. At the end of the training, IGS produces a subdivision where all faces of cuboids are
sharply divided into their respective partitions, whereas the other two still have problems with
mixing geometries, which was pointed out in fig. 3.8. The advantages of IGS brought by its
early splits enhance the fitting of guiding caches, resulting in the lowest rendering error in this
scene.

Our approaches can scale up to larger scenes. Classroom Lights-on (fig. 6.38) contains densely
arranged desks and chairs, as well as geometrically complex objects such as flagpoles, black-
board frames, and light tubes. From the reference rendering, we know that the lighting distribu-
tion on these various surfaces differs drastically. Hence, the geometry assumption should hold.
All methods seem to somewhat identify the objects.

However, zooming into the region IDs, we notice Open PGL’s subdivision exhibits two prob-
lems: regions that glue the ground with the chairs and desks, chop-offs caused by inaccurate
split locations (e.g. two legs of the leftmost desk, the upper edges of the two chairs on the
right, and the podium). In contrast, COVS and IGS sharply detach the desks from the ground
and isolate each desk-chair pair to respective partitions. IGS even identifies fine geometries:
the blackboard frames, the podium, and even the light tubes. The enhancement in meeting the
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Reference PPG Open PGL

VS COVS IGS

Figure 6.36.: Comparing 2nd-training-iteration spatial subdivisions of PPG, Open PGL, VS, COVS, and
IGS in Multi Cubes.

PPG (0.226) Open PGL (0.220) IGS (0.208)

PPG’s regions Open PGL’s regions IGS’ regions

Figure 6.37.: Comparing PPG, Open PGL, and IGS in Cornell Box. The second row shows the region
IDs at the 3rd training iteration. Numbers in the brackets indicate the MRAE.
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Reference Open PGL (0.733)

COVS (0.714) IGS (0.726)

Figure 6.38.: Comparing 4th-training-iteration spatial subdivisions of Open PGL, COVS, and IGS in
Classroom Lights-on. Numbers indicate the MRAE.

Reference Open PGL (0.537)

PPG (0.429) IGS (0.515)

Figure 6.39.: Comparing spatial subdivisions of Open PGL, PPG, and IGS in Bathroom. Numbers indi-
cate the MRAE.

94



6.2. Rendering Experiments

geometry assumption makes COVS and IGS stand out in terms of rendering errors.

For the Bathroom scene in fig. 6.39, surprisingly, PPG works the best error-wise. Upon an
inspection of the region IDs, we can see PPG’s middle splits happen to occur at key locations
such as the upper face of the wash basin and the contact line between the bath and the floor.
Likewise, IGS is also able to detect these objects, albeit with more aggressive and precise cuts
at all the edges. We speculate that in this scene, the geometry assumption does not always hold,
as points from nearby geometries can still share similar lighting distributions. Thereby, a more
conservative algorithm that finds a balance between the geometry assumption and the proximity
assumption may perform better in reality.

Geometric performance. The figures shown above provide a qualitative assessment of the
goodness of subdivision either based on visual judgments or rendering errors. One may argue
that the former is too subjective to serve as an evaluation, while the latter is sensitive to the
random seed of the rendering. Stepping back, we have yet to validate whether our models satisfy
the fundamental geometry assumption. Namely, they should separate different geometries into
different regions.

Therefore, we developed a novel metric to evaluate the performance of achieving the geometry
assumption quantitatively, called the geometric performance.

Cornell Box Bathroom

Figure 6.40.: Ground truth labels (shape IDs)

To begin with, we notice the shape IDs that are available in the scene description. Distinct ob-
jects are assigned with different IDs. For instance, the shape IDs in Cornell Box and Bathroom
are shown in the right image of fig. 6.40.

We can compare spatial subdivision to a classification task, where the input is a 3D coordinate
and the output is a region ID, essentially a decision tree with 3D features and a discrete target.
This way, under the geometry assumption, the desired output of the classifier should be exactly
the IDs of the objects, which means we can somehow utilize the shape IDs as the ground truth
labels to evaluate the classifier. For example, we can calculate the accuracy score between the
model output from a group of samples and their ground truths.

However, two problems arise with this idea. First, the ID values of the ground truth do not
necessarily match the model output, even if we have a perfect model. For instance, the model
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output “1” for the left wall, while its ground truth label is “42”. We care about the distinctiveness
of the output instead of its actual values. Second, if we solved the first issue, a model can still
trivially achieve 100% accuracy by subdividing super finely until one sample gets on one region.
That kind of model is undesirable in practice because of too much memory consumption and
instability in the cache fitting. A desirable one, instead, should achieve a high score while
keeping a low tree height.

Inspired by the metrics from decision trees, we came up with evaluating the geometry perfor-
mance based on the impurity. Specifically, we feed a set of spatial samples labeled with shape
IDs S = {(xi, ci)}N

i=1 to the k-d tree. Then we compute the impurity score of the sample labels
at each node (both internal and leaf), either with Shannon entropy (section 2.7.1) or the Gini
impurity (section 2.7.3). Finally, we average the impurity scores of all the nodes at a certain
depth d weighted by the number of samples, defined as the “impurity at depth d”:

Imp(d) :=
1

N

X

i2nodes⇤(d)

Ni score(Si) (6.3)

score ⇠ (2.20) or (2.25) (6.4)

Where Ni is the number of samples arriving at node i. nodes⇤(d) denote the set of leaf nodes of
the sub-tree with a maximum depth of d, as illustrated in fig. 6.41. It’s defined this way instead
of just the nodes at depth d because the union of the latter’s regions does not necessarily cover
the whole space. The depth d is between 1 and the tree height.

Figure 6.41.: An example k-d tree (left) and the definition of nodes⇤(d) (right). The green ones illustrate
nodes⇤(3), used for computing Imp(d).

In particular, a high Imp(d) means the tree nodes at this depth mix a lot of objects. While a zero
Imp(d) means all objects are perfectly separated into different nodes.

Once we have computed the Imp(d) for all p, we obtain an impurity curve. It starts from the
highest impurity at the root node because all the geometries are initially grouped together. As
d increases, the impurity will monotonically decrease, due to the submodularity of the impurity
metrics. The rate of the decrease reflects the tree’s ability to separate geometries. Therefore,
the impurity curve can be used to measure the geometric performance of a spatial subdivision.
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Specifically, Imp(d) measures the geometric performance at a maximum subdivision depth of
d. A faster decrease and a lower minimum imply a better performance.

Figure 6.42.: Gini impurity curves of the spatial subdivision of different methods across various scenes.
Bold labels mark the method with the lowest minimum impurity.

With this metric, we can evaluate the geometric performance of our proposed methods vs. the
baseline (Open PGL) and PPG. Shannon entropy and Gini impurity results are similar, so we
only report the Gini-impurity-based curves. Selected results are shown in fig. 6.42.

We observe the following:

1. All methods reduce the impurity as the k-d tree grows.

2. PPG’s impurity curve sometimes gets stuck during part of the subdivision. This happens
when all samples are within one side of the middle-point subdivision.

3. VS behaves similarly to the baseline.

4. COVS and IGS reduce the impurity faster than the baseline, PPG, and VS in general. The
fastest reduction happens in the initial splits.

5. In all of the results, IGS consistently achieves the most impurity reduction.

We conclude that the proposed covariance-scanning and information-gain-scanning meet the
geometric assumption most successfully.

However, it is important to emphasize that the model’s geometric performance does not always
indicate its guiding cache quality.
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Lighting-Aware Splitting

We evaluated fluence-scanning (FS) in planar and simple scenes. Qualitative results are pre-
sented as follows.

Open PGL FS-0 FS-0.03

Figure 6.43.: Open PGL vs. FS with different defensiveness in Shadow.

Open PGL FS-0 FS-0.03

Figure 6.44.: Open PGL vs. FS with different defensiveness in Two Shadows.

In fig. 6.43, FS-0 splits firmly along the shadow edge because it detects the largest lighting vari-
ation along the front-back direction. However, without defensive fallback, this model aggres-
sively creates thin regions at the lower bright regions. With a defensiveness level gths = 0.03,
FS-0.03 finds a better balance between lighting-awareness and isotropy. This supports our han-
dling in section 5.2.5.

Similar effects are observed in fig. 6.44, where both two FS accurately fit region boundaries to
the shape of the shadows.

Reference Open PGL (0.109) FS (0.107)

Figure 6.45.: Open PGL vs. FS in Multi Cubes. Numbers indicate the MRAE of the full image.

We conclude FS’ ability to propose split positions while being aware of the shadow shapes in
the scene. For robustness concerns, we use a defensiveness of 0.03 in later experiments, denoted
by “FS” for brevity.
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Reference Open PGL (0.249) FS (0.244)

Figure 6.46.: Open PGL vs. FS in Pool

In figs. 6.45 and 6.46, we notice the improvement of FS in the adaptivity to the shadow bound-
aries, which brings a slight error reduction.

Quantitative Study

We give a quantitative analysis of the scanning algorithms compared to the baseline (Open PGL)
and PPG by plotting the error-iteration curves.

Figure 6.47.: MRAE over rendering iterations: PPG and baseline vs. our proposed scanning algorithms.
Bold labels mark the method with the lowest error in the final iteration.

From fig. 6.47, we have the following observations:
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1. The performance of each method varies from scene to scene. The winner goes to IGS,
COVS, and FS based on their suitability for the test scene.

2. Scanning algorithms’ performance gain over the baseline is less significant compared to
adaptive splitting (figs. 6.32 and 6.33).

3. In best cases such as Cornell Box and Kitchen, the performance gain of COVS and IGS
becomes evident from the 3rd iteration onwards. We attribute this to the improvement of
early splits.

In other scenes, however, the performance differences between the scanning algorithms and the
baseline are less pronounced.
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6.2.3. Full Model

In this section, we ran nt = ne = 64 SPP comprehensive rendering experiments in all small and
large scenes with our full models in section 5.3 vs. reference models across different configu-
rations of the split threshold. The common parameters of our models are set in the table below.

Name Notation Value

Defensive maximum sample count threshold Nmax

(
512k if depth less than 12

1 otherwise

Minimum sample count threshold Nmin 1000

Decay ratio for the sufficient statistics � 0.25

Defensive gain threshold for IGS gths 1.0 bit

Defensive gain threshold for FS gths 0.03

Table 6.1.: Common parameters for our full models

All full models and reference ones are listed in table 6.1, where CE-Dths adopts Open PGL’s
where-to-split strategy, used as an ablation model to verify the impact of the scanning algo-
rithms.

Full Name Abbreviation Parameter Range

Baseline (Open PGL) with maximum sample count
threshold Nmax (Reference)

Baseline-Nmax {2k, 8k, 32k}

Adaptive splitting with cross-entropy threshold Dths

(Reference)
CE-Dths {0, 0.02, 0.1}

Adaptive splitting with variance-scanning and cross-
entropy threshold Dths

CE-VS-Dths {0, 0.02, 0.1}

Adaptive splitting with information-gain-scanning
and cross-entropy threshold Dths

CE-IGS-Dths {0, 0.02, 0.1}

Adaptive splitting with fluence-scanning and cross-
entropy threshold Dths

CE-FS-Dths {0, 0.02, 0.1}

Table 6.2.: All of the models used in the comprehensive experiments

Quantitative results regarding the rendering error vs. iteration are shown below. For each type
of model in table 6.2 we display the most performant one in the plots per scene.
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Figure 6.48.: MRAE over rendering iterations: comprehensive experiments. Bold labels mark the
method with the lowest error in the evaluation.
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Finally, for a quick impression of the strengths and weaknesses of each method, we plot their
performance gains over the baseline in each scene. Results are collected in fig. 6.49. Specifi-
cally, for each scene, we select the best baseline (among Baseline-2k, Baseline-8k, and Baseline-
32k) and the best instance of each proposed method in terms of evaluation MRAEs. Then we
compute the gain of method m by

PerformanceGain(m) :=
MRAE(Baseline)�MRAE(m)

MRAE(Baseline)
(6.5)

Figure 6.49.: Performance gains of all proposed models per scene

From fig. 6.49, we conclude the effectiveness of all our when-to-split and where-to-split models
in the spatial subdivision for path guiding. The performance gain from adaptive splitting (CE)
is around 3-10%, while the gain further brought by the scanning algorithm to decide “where to
split” is only about 0-5%.

On top of the adaptive CE, variance-scanning (in orange) shows an almost consistent improve-
ment. The more sophisticated geometries there are in the scene (e.g. Classroom Day, Classroom
Lights-on, and Kitchen), the less significant the improvement.
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Information-gain-scanning with CE is the only method that always has positive gain over the
baseline. In its most successful cases such as Cube, Cornell Box, and Classroom Lights-on, the
scene usually has regular shaped objects (e.g. flat walls and cubes) which are easily detectable
by the algorithm. However, a failure case arises for scenes with fine non-regular geometries
such as San Miguel Trees. A counterexample of our geometry assumption is also found in
Living Room, where CE-IGS performs slightly worse than CE alone.

The inclusion of fluence-scanning over CE displays minor gains. We find it superior in scenes
with non-trivial shadow or shade shapes (Multi Cubes, Living Room, and San Miguel Trees).

Additionally, by inspecting fig. 6.48, we observe the scanning algorithms can sometimes accel-
erate the error reduction from around 12 SPP onwards (Bathroom, Classroom Lights-on, and
San Miguel Trees). We suspect this is due to key progress in the object detection and that the
holding of geometry assumption.

As for the divergence threshold for “when to split”, we find any of the parameters {0, 0.02, 0.1}
have their winning scenes. Thus, there is no general rule of thumb on which is the best.
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Bottom-up Subdivision Approaches

So far, all our presented methods are modifications of k-d trees, which subdivide the scene in a
top-down fashion. As we pointed out in section 2.6.4, this way of subdivision has an intrinsic
problem: the cutting plane is axis-aligned and will inevitably break the continuity of geometries
in scenes with very sophisticated shapes.

In the early stage of this thesis, we sought another direction for spatial structures that achieve
the goal of “subdivision” without actually subdividing at all. Having noticed the nature of a
spatial subdivision algorithm is to take a query location and output a region ID, we reframe the
subdivision into a clustering problem. I.e. given a set of unlabeled point samples, output their
labels corresponding to a guide cache ID.

Unfortunately, our attempts to bottom-up approaches turned out less successful. In this chapter,
we will briefly present three tentative approaches that follow the concept of clustering. We refer
to them as bottom-up subdivision approaches, in contrast to the top-down ones.

7.1. Bounding Volume Hierarchy

The “bounding volume hierarchy” (BVH) we used is defined in the narrow sense: bounding
volume hierarchies that are constructed bottom-up. We implemented a fast, agglomerative BVH
construction algorithm [GHFB13], introduced in section 2.6.4.

Roughly speaking, we initialize each MC sample as an axis-aligned bounding box (cluster) in
the working set. Then we iteratively select the closest pair of clusters out of the set based on
some distance metric, merge them into a new cluster whose bounds are the union of the pair,
and add it to the working set. The loop stops when there is only one cluster left, the top-level
cluster that bounds the whole scene. The selection-merging relationship is memorized between
the new cluster and the old pair. Hence a hierarchical structure of clusters is formed.
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The most frequently used distance metric in ray tracing applications is the surface area heuristic
(SAH) that computes the surface area of the merged cluster as the distance between the selected
cluster pair.

A crucial problem now is to decide where specifically in the BVH are the guiding regions cre-
ated. To meet the minimal sample count requirement, a naive way is to track the (monotonically
growing) sample count in each cluster as the merging process goes on. Once the sample count
in the merged cluster exceeds the minimal sample count Nmin, create a guiding region with the
same shape as the cluster.

Gaps and overlaps. A flaw with the BVH is that the regions it creates do not usually form
a valid spatial subdivision. There can be gaps in space where no guiding region is available.
Moreover, regions could overlap with each other, making guiding queries ambiguous. Overlaps
also compromise the training efficiency of the guiding cache, as samples within the overlaps are
repeatedly used for EM fitting.

To solve the first issue, when a query miss happens, we return the closest region to that query
location. For the second issue, we return one of the regions intersecting that query point either
randomly or deterministically based on e.g. the region size.

K-d Tree BVH

Figure 7.1.: K-d tree vs. BVH spatial subdivision in Kitchen with Nmin = 8k

An example of the spatial subdivision created by the BVH using SAH compared to a k-d tree is
shown in fig. 7.1. Visually, the BVH subdivision maintains the shape of the objects somewhat
better than the k-d tree. However, severe overlapping issues are identified near the densely
arranged regions. Voids without regions are found on a plate on the right table. We also observe
more variation in the region size and a higher anisotropy compared to the k-d tree result.

Alternative merge handlings. We also experimented with different merge handlings in a
BVH construction (fig. 7.2) to address the overlapping issue.

We found that the default SAH distance metric is prone to generate thin and elongated regions.
We tried replacing SAH with the centroid distance heuristic (CDH) that calculates the Euclidean
distance between the centroids of the cluster pair. It turned out that CDH yields much more
isotropic and uniformly sized regions. The amount of overlaps decreases as well.
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SAH CDH Cubic Merge

Figure 7.2.: BVH subdivision with different merge handlings (Cube)

In addition, we proposed “cubic merge”, which enlarges the clusters to perfect cubes after the
merge. We found that this handling can ensure high isotropy but does not resolve the overlaps.

Conclusion. Despite the advantage of a fast linear construction time, the freedom in the
choice of merge handlings, and the potential to better fit the shape of scene objects, we still
abandoned the BVH subdivision due to the following factors:

1. The overlapping issue that creates ambiguity for the queries and hurts the performance of
training.

2. Higher anisotropy of the regions, making it less robust than the k-d tree subdivision.

3. Higher variation of the region size, causing more fluctuation in the sample count per
region.

4. Unpredictability: a slight change in the input samples can result in a drastically different
subdivision.

5. Non-trivial incremental update: the agglomerative construction described in section 2.6.4
cannot be trivially extended to support incremental refinements iteratively.

7.2. Clustering

We explored applying two commonly used clustering methods to the spatial subdivision: k-
means and Gaussian mixture models (GMMs).

K-means is an iterative algorithm that partitions the space into k clusters. It first assigns
each input sample to a random cluster ID from 1 to k. Then it repeats the following steps until
convergence or reaching the maximum number of iterations:

1. Compute the centroid of each cluster by taking the average of samples assigned to it.

2. Re-assign samples to their nearest cluster centroid.

107



7. Bottom-up Subdivision Approaches

Once the process is done, we can define k guiding regions as the Voronoi sets1 of the cluster
centroids. The parameter k can determine the granularity of the subdivision that is inversely
proportional to the maximum sample count threshold.

K-means GMM

Figure 7.3.: K-means vs. GMM subdivision with 32 regions (Cornell Box)

K-means GMM

Figure 7.4.: K-means vs. GMM subdivision with 128 regions (Pool)

Figure 7.3 and 7.4 (left) display the results of k-means subdivisions in two scenes. We can
see that the regions exhibit Voronoi diagrams, which favor high isotropy and close-to-uniform
sizes. However, the downside is that the k-means fitting process is unaware of the radiance
field, causing samples with distinct lighting profiles to be grouped into one cluster (e.g. the edge
above the water and the wall inside the water in Pool). Moreover, the Euclidean distance metric
used in the second step of the fitting does not deal with the geometry assumption, resulting in
regions with mixed geometries similarly to the Open PGL k-d tree (e.g. the lower left and the
lower right regions in Cornell Box).

Gaussian mixture models are another technique to cluster unsupervised samples. The
GMM assumes samples are generated from a mixture of Gaussian distributions. We fit GMMs

1A Voronoi set of cluster i is the subspace whose distance to the centroid i is closer to any other centroids.
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to samples using the expectation-maximization (EM) algorithm that works in an iterative man-
ner, similar to k-means. EM first initializes k 3D Gaussian distributions (i.e. k clusters) with
random means and covariance matrices. Then it alternates between the expectation and maxi-
mization steps. Broadly speaking, the procedure of each iteration can be described as:

1. E-step: compute the probability of each sample being assigned to each cluster.

2. M-step: adjust the parameters of the mixture weights and Gaussian distributions to max-
imize the probabilities from the E-step.

When this process converges or reaches the maximum iteration count, we obtain a GMM that
maps a 3D coordinate x into an array of PDFs pi(x) for each component and their corresponding
weights wi (i 2 {1, . . . , k}). We define a guiding region for each of the components as the
subspace with a higher likelihood than any other components. Specifically, the region for the
i-th component is given by

Xi := {x | wipi(x) > wjpj(x) 8j 2 {1, . . . , k}} (7.1)

Two spatial subdivision results of GMMs are demonstrated in figs. 7.3 and 7.4 (right). Interest-
ingly, GMMs show great potential in fitting the shapes and surfaces of the scene objects. In a
complex setting (fig. 7.5) where very few non-zero-weight samples are projected into the box
through narrow slits, GMMs can surprisingly capture the shape of several skewed projections,
efficiently guiding the samples toward the slits.

Reference GMM

Figure 7.5.: GMM subdivision in Complex Projections

Nevertheless, GMMs produce less isotropic and highly non-uniformly sized regions compared
to k-means. They have instability issues when the number of components k does not match the
number of scene geometries, as evidenced by some extremely small regions in figs. 7.3 and 7.5.

Conclusion. Though clustering-based techniques have great potential in representing non-
linear shapes, which top-down methods struggle to, we decided not to continue in this research
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direction for the following reasons:

1. They require a user-set number of clusters or components k, harder to tune than the Open
PGL k-d tree’s maximum count threshold because the clustering result is sensitive to k.

2. Instability in the clustering process: both k-means and GMMs rely on random initializa-
tion, resulting in unpredictable spatial subdivisions. This makes it challenging to analyze
their performance as well as to address the requirements of adapting to geometries and
lighting in section 4.4.

3. High anisotropy and size variation of regions generated by GMMs makes them less robust
for subdivisions.

4. Non-trivial incremental update: both k-means and EM fitting naturally support incremen-
tal update by adjusting the cluster centroids or the GMM parameters with new samples.
However, path guiding involves the refinement of regions that requires changing the num-
ber of clusters k. Implementing advanced k-means or GMM algorithms that support the
incremental update of k and ensuring their robustness needs considerable efforts.
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8.1. Conclusion

In this thesis, we presented multiple novel spatial subdivision schemes for path guiding. We
first analyzed a few existing problems of state-of-the-art spatial subdivision techniques. Next,
we motivated the requirements for an improved spatial subdivision with 2D experiments. We
then broke down the k-d tree subdivision problem into two aspects: “when to split” and “where
to split”.

For “when to split”, we derived two adaptive splitting methods by extending the k-d tree with
lookahead regions. The first solution is by comparing the quality of the leaf region guiding
distribution with the lookahead regions’, based on cross-entropy or �2-divergence estimates.
The second solution creates a mixture distribution from the leaf and lookahead regions. It
optimizes the MIS weight and uses it to guide the splitting decision. In our experiments, we
found the cross-entropy-based (CE) splitting most numerically stable and performant regarding
rendering errors. We observed that in ideal cases, CE offers better rendering quality with a
much lower region budget than the static baseline subdivision schemes.

For “where to split”, we developed several schemes aware of the geometries or lighting in
the scene: variance-scanning (VS), covariance-scanning (COVS), information-gain-scanning
(IGS), and fluence-scanning (FS). They all work in a way that sorts and scans the samples
through each dimension. We proposed a novel metric that proves the geometric performance
of COVS and IGS. Through rendering experiments, we analyzed their pros and cons. COVS
and IGS perform the best when there are regular, distinguishable geometries in the scene. FS
refines the region boundaries to fit the shadows. We also found that the rendering improvements
brought by the scanning algorithms are less significant than those achieved by the adaptive
splitting.

Altogether, we built our full models by integrating the adaptive splitting with one of the scan-
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ning algorithms: CE-VS, CE-IGS, and CE-FS. We conducted rendering experiments across
various scenes to show the performance gain of the full models over Open PGL’s scheme and
the ablation model that only considers “where to split”. We observed an improvement of around
3-15% with our most performant model in terms of the mean relative absolute error, compared
to the state-of-the-art spatial subdivision.

Lastly, we explored another way of subdivision by building the spatial structure bottom-up with
bounding volume hierarchies or clustering algorithms. In spite of their potential to capture fine
or nonlinear shapes, we ceased pursuing this direction mainly because of the less predictable
subdivisions they generate compared to those of the top-down k-d trees.

8.2. Limitations

Local optima. An intrinsic problem of all our adaptive splitting methods originates from
looking at only one split ahead. The subdivision can get stuck when there are similar lighting
distributions marginalized in the parent and child regions. Our current naive handling based on
sample count (section 5.1.4) can slow down the subdivision process. Unfortunately, extending
the candidate split depth will incur an exponential growth of lookahead regions, both computa-
tionally and implementation-wise challenging.

No recursive splits for adaptive splitting. The current implementation of our adaptive
splitting cannot perform recursive splits (except those triggered by the defensive sample count
threshold). When a candidate split is adopted and the new leaf nodes still contain enough
samples for another candidate split, this new split cannot be immediately adopted in the current
iteration. This is because, constraint by our pipeline fig. 5.3 (lower), the evaluation for this new
split will not arrive until the next iteration.

Fortunately, the slowdown caused by not having recursive splits is gone over time. The aver-
age number of incoming samples per region is decreasing as we have more and more regions,
leading to lower chances of triggering recursive splits.

The inter-correlation between “when and where to split”. In our full models, we
found that the decision of “when to split” depends on the quality of the “where to split” pro-
posal. Adaptive splitting functions effectively when the candidate splits can benefit the guider.
However, if the candidate split occurs at the wrong dimension or location (e.g. the candidate
splits of the middle regions of fig. 6.15), it may take a longer time to meet the adaptive split
criteria or may never meet them.

No incremental update for scanning algorithms. As explained in section 5.2.4, our
scanning algorithms are purely based on the most recent wave of samples. As the subdivision
goes on, the average number of samples for new splits is diminishing. At a point when there are
not enough samples to run the scanning algorithms, we have to resort to Open PGL’s “where to
split” approach that’s based on mean and variance statistics.
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8.3. Outlook

Better criteria for adaptive splitting. Our adaptive splitting approaches trigger the split
by only looking at the most recent divergence estimate or MIS weight. The divergence-iteration
plots in section 6.1.1 already showed that there is significant noise in the evaluation of the
cache. Fluctuation in the divergence can mislead the algorithm to trigger unnecessary or late
splits. Our current way to counter this noise is the use of a fixed threshold Dths for the entire
scene. Understanding the pattern of this noise is crucial, as it will allow us to propose more
robust and dynamic methods to manage the noise in the future.

Recursive splits for adaptive splitting. A possible solution to enable recursive splits for
adaptive splitting is to decompose the training samples into two groups A and B, similar to the
cross-validation technique used in machine learning. We can train the guiding cache with only
group A while evaluating it with group B to avoid the underestimation of divergences. This
way, the evaluation phase can come immediately after the training, allowing the adoption of
recursive candidate splits.

Adaptive dimension selection. We envisioned one prospective method to address the
third limitation. To fully de-correlate “when and where to split”, an ultimate solution is to
propose all possible candidate split locations and dimensions, fit the lookahead regions, evaluate
all of them, and select the best candidate split. This is, of course, impractical. Yet, if we restrict
to use only one candidate split position per dimension, we are left with only three pairs of
lookahead regions, whose cost is affordable. We can then let the adaptive splitting algorithm
determine not only the split timing but also which candidate dimension to adopt. It is hoped that
this adaptive dimension selection mechanism can yield a simpler and shallower k-d tree while
maintaining the same guide cache quality.

More sensible ways to combine modules. Our current full model combines adaptive
splitting with only one of the scanning algorithms, leaving the user to choose which one among
VS, COVS, IGS, and FS to use per scene. It would be meaningful to find a more sensible way
to integrate the scanning algorithms. A possible solution is to let the model dynamically choose
which scanning algorithm to use based on the scene’s local information. This way, we will have
the potential to combine the strength of each one at the right stage of subdivision, hopefully
achieving a higher performance than using any of the algorithms statically.

For instance, we can first employ IGS to detect the main objects in the scene during the first few
iterations. Then, we resort to FS to adapt the subdivision to the shadows and shades. Finally,
we resort to Open PGL’s splitting for a more robust splitting at smaller scene regions.

Finding a robust strategy to decide when to switch between methods will be an interesting
challenge.

Equal-time study. All comparisons in section 6.2 are done with equal SPP. Due to limited
time, we haven’t optimized our implementations to be on par with Open PGL’s original spatial

113



8. Discussion

subdivision scheme. Comparing them with equal render time can be unfair, and was not done in
our thesis. To understand the gain of our methods in real-world applications, we will optimize
our codes and make equal-time comparisons with Open PGL.

Support for participating media. Due to time limits, we didn’t explore applying the pro-
posed subdivision schemes to the path guiding for volumetric rendering, an active research
avenue in academia.

In that scenario, state-of-the-art path guiders leverage two guiding fields: one to approximate
the surface radiance field, and one for the volume radiance field. The presence of participating
media may introduce new sources of indirect light paths, leading to more noise in the fitting and
evaluation of the cache. Cautious efforts would be required to handle this extra intricacy.

Prospectively, it would be meaningful if our work, orthogonal to other research in path guiding,
could contribute to volume path guiding.
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Appendix

A.1. Derivation of Optimal Guiding PDF and MRSE

eq. (4.11) expands to
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The optimal PDF q⇤ reads
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Expressing the minimization problem into the variational calculus form
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q⇤ should satisfy the Euler-Lagrange equation
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The optimal PDF is immediately found
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The normalizer C is calculated by integrating q⇤ to one
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Substituting it back to eq. (4.11) , we get the minimum MRSE:
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A.2. Development of the Divergence Estimators

A.2.1. Marginalized Cross-Entropy

We can eliminate the ground truth PDF terms by simplifying eq. (5.14) into an expectation form
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We can build an unbiased MC estimator for eq. (A.18), using training samples arriving at this
region eq. (4.2):
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Plugging in the parent and child guiding distribution, we get the unbiased cross-entropy esti-
mates for the parent and child models:
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Note that both estimators are evaluated on the same spatial domain-parent region Xp.

Unfortunately, we have no access to the ground truth fluence �(xi) during rendering. So instead,
we attempt to avoid this term by building biased estimators.

We continue from eq. (A.18), aiming to replace the ground truth fluence with its estimate
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eq. (A.29) is a result of Jensen’s inequality
1
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Good, eq. (A.27) gives us a formula to estimate the marginalized cross-entropy directly with
sample weight h�(xi)i and the guiding PDF q(!i | xi) that can be evaluated.

However, if we look closely at step eq. (A.24), it is essentially replacing the fluence with its
average across the whole region to be able to extract it out of the expectation, which is a very
crude approximation.
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Let’s reduce this bias by making a more “fine-grained” approximation on the child half-spaces.
Restarting from eq. (A.18), we have
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Likewise, steps with .
= incur bias. Nl and Nr denote the number of samples falling into Xl and

Xr.

Plugging in the parent and child guiding distributions yields
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A.2.2. Marginalized �2-Divergence

We express eq. (5.21) in the expectation form, to get rid of p
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Unlike the KL divergence case, an unbiased estimator for eq. (A.38) cannot be easily derived.
We have to move on to build biased estimators.
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The bias in the first step arises from

E
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Again, to avoid the ground truth fluence term, we have to further split the expectation of divi-
sion, introducing the bias shown in eqs. (A.28) and (A.29). Finally, we arrive at a tractable MC
estimator
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Likewise, we use the same trick to reduce the bias in eq. (A.46), by decomposing the expectation
eq. (A.40) to the child half-spaces
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A.3. Proof of the Scale-Invariance Property of Mutual
Information

From eqs. (5.68) and (5.70), the mutual information of samples S = (x1, . . . ,xN) of a split
(d, t) reads
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H(S) =
1

2
log det Cov(S) (A.49)

In the scope of this proof, we omit the ✏ term.

We will show that, if the sample positions undergo a scale transform S 0 = AS, A = diag(�1, �2, �3),
the resulting new mutual information at the same normalized split location IG0(d, �dt) will
stay the same.
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Let’s first consider the entropy of the new samples

H(S 0) = H(AS) =
1

2
log det Cov(AS) (A.50)

Using the linear transform property of the covariance matrix
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Meanwhile, we notice splitting S 0 at �dt gives the same fractions of left and right samples as
before the transform. Namely, N 0

l = Nl, N
0
r = Nr, S

0
l = ASl, S

0
r = ASr. Plugging these terms

into eqs. (A.48) and (A.49), and applying eq. (A.55), we have

IG0(d, �dt) = H(AS)�
✓

Nl

N
H(ASl) +

Nr

N
H(ASr)

◆
(A.56)

= log det A + H(S)�
✓

Nl

N
(log det A + H(Sl)) +

Nr

N
(log det A + H(Sr))

◆

(A.57)

= H(S)�
✓

Nl

N
H(Sl) +

Nr

N
H(Sr)

◆
(A.58)

= IG(d, t) (A.59)

Therefore, the normalized mutual information curve (IG vs. normalized split location) remains
unchanged after scale transforms. In other words, the mutual information is scale-invariant.
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Master Thesis
Spatial Subdivision for Path Guiding

Left to right: test scene, guided path tracing, guiding cache ids, and ground truth.

Introduction
Path guiding is an importance-sampling technique for Monte-Carlo-based rendering algorithms integrating global
information of a scene's light distribution into local sampling decisions. Compared to traditional importance
sampling methods that only consider local information, such as the BSDF, path guiding improves sampling
efficiency for complex global light transport effects such as indirect diffuse/glossy illumination, caustics, and
multiple scattering in volumes. A crucial component of every path-guiding algorithm is the representation of the
scene's 5D light distribution. The 5D distribution is commonly separated into spatial 3D structures containing a 2D
approximation of each leaf node's directional incoming light distribution.

While much work has been done on optimizing the directional representations (e.g., quad-trees, VMMs, or
parallax-aware VMMs), only a little work dealt with optimizing the spatial structures and their subdivision
schemes. Most current algorithms use a kd-tree in combination with a somewhat naive subdivision scheme based
on the number of (valid) samples. Since these subdivision schemes do not consider the scene's actual light
distribution characteristics, the resulting guiding structure can be sub-optimal, leading to inefficient sampling
behavior. Examples are regions of higher variance caused by large areas covering high-frequency changes (e.g.,
shadow boundaries or smaller caustics) or many smaller regions covering the same or similar distribution, leading
to unnecessary memory consumption and lookup times.

This thesis aims to develop and evaluate more advanced spatial structures and subdivision schemes countering
the previous limitations of the current naive approaches.

Task
● Exploring the limitations of current spatial subdivision schemes in the context of path guiding, such as

late refinement, early refinement, unnecessary refinement, and suboptimal splitting planes.
○ Collecting a variety of representative scenes with complex light distributions or geometries

which current subdivision methods fail to address.
○ Diagnosing what problems are present in each scene and propose approaches to improve the

subdivision.
● Identifying metrics to quantify the quality of a subdivision scheme.

○ Exploring sample statistics that are useful and robust for improving the subdivision criterion.
○ Exploring buffers available during rendering that can help subdivision decisions. (e.g. irradiance

and normal)
● Developing new subdivision schemes to address the identified limitations.
● A qualitative and quantitative evaluation of the developed subdivision methods on the collected scenes

(e.g., equal sample, equal quality, and equal time comparisons).

Remarks
This thesis is assigned to Fengshi Zheng. A written report and an oral presentation conclude the thesis. The
thesis will be overseen by Prof. Markus Gross and supervised by Sebastian Herholz (Intel), Dr. Marco Manzi
(DRS), and Dr. Marios Papas (DRS).

Dates
The project starts December 18, 2023 and ends on June 30, 2024.
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