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Abstract— Smart Internet of Things (IoT) devices are on the
rise in popularity, with innovative use cases and applications
emerging every year. Including intelligence in these novel systems
presents the challenge of integrating interaction and communica-
tion in scenarios where traditional interfaces are not viable. Hand
Gesture Recognition (HGR) has been proposed as an intuitive
Human-Machine Interface, potentially suitable for controlling
several classes of devices in the context of the Internet of Things.
This paper proposes a low-power in-ear HGR system based on
mm-wave radars, efficient spatial and temporal Convolutional
Neural Networks and an energy-optimized hardware design. The
design is suitable for battery-operated devices, with stringent
size and energy constraints, enabling user interaction with
wearable devices, but also suitable for home appliances and
industrial applications. The proposed machine learning model
is characterized thoroughly for robustness and generalization
capabilities, achieving 94.9% (single subject) and 86.1% (Leave-
One-Out Cross-validation) accuracy on a set of 11+1 gestures
with a model size of only 36 KiB and inference latency of 32.4 ms
on a 64 MHz Cortex-M33 microcontroller, making it compatible
with real-time applications. The system is demonstrated in a fully
integrated, miniaturized in-ear device with a full-system average
power consumption of 18.4 mW, a more than 6x improvement
on the current state of the art.

Index Terms—mm-wave, radar, gesture recognition, low-power,
embedded, sensor

I. INTRODUCTION

The past decade has witnessed an extremely rapid expan-
sion of technology, with intelligence today reaching domestic
appliances, industrial machinery, and wearable systems [1]–
[3]. Many of these devices are developed in the context of
Internet of Things (IoT), and they exploit their connection
to the internet to provide services and log data. With the
expansion of intelligence to such a heterogeneous pool of IoT
devices, the necessity of an appropriate interaction medium is
gaining relevance [4]. Traditional interfaces, such as keyboards
first and touchscreens later, offer a very rich and flexible
interface, suitable for relatively complex devices. However,
their limitations are becoming more evident when it comes to
adapting to the evolving landscape of ubiquitous, and perhaps
simple devices such as wearable systems, where the integration
of traditional interfaces is not a viable option for physical
constraints, strict energy requirements, or purely aesthetic
reasons. The need for more intuitive and adaptive solutions
has become increasingly evident, prompting extensive research
into alternative technologies such as, but not limited to,

voice interfaces [5], gaze estimation and eye-tracking [6], [7],
and brain-computer interfaces based on Electroencephalogram
(EEG) [8].

Hand Gesture Recognition (HGR) has emerged as a novel
and promising alternative for Human-Machine Interface (HMI)
[9] thanks to its natural and intuitive nature. Vision-based
techniques for HGR have been extensively explored [10]–[12],
thanks to the excellent state of the art in computer vision. Sev-
eral setups based on RGB cameras have been proposed [13],
with different approaches including color segmentation [14]
and Convolutional Neural Network (CNN). While effective in
certain scenarios, they often suffer from high sensitivity to
the lighting conditions, and complexity of the background.
Furthermore, they come with potential bias based on skin
color [15] and with added privacy concerns. Methods based
on depth cameras [16], [17] and RGB-D fusion [18], [19]
have also been investigated, taking advantage of the depth
information to aid the segmentation. However, vision methods
usually require relatively expensive and bulky infrastructure
and appropriate processing power, which makes them suitable
in robotic systems or fixed installations, but hard to integrate
into small, discrete IoT applications.

Other approaches for HGR focus on wearable systems, such
as Surface Electromyography (sEMG) wristbands [20], which
measure the electrical activity related to muscle activation
and correlate it with hand gestures, typically using statistical
approaches or deep learning [21], [22]. While promising, these
solutions suffer from generalization issues when not tuned
to a specific user [23]. Other solutions based on Inertial
Measurement Units (IMUs) make use of sensing gloves [24]
or multi-node wearable devices [25] to tackle the problem,
often resulting in complex and highly obtrusive systems.
Approaches to fuse IMU data with sEMG [26] or charge
variation sensing [27] also proved successful. However, all
such solutions require an external device to be worn, which
makes them a less desirable option for the heterogeneous
setting of IoT.

mm-Wave radar technology has already been proposed as an
alternative solution [28], offering a unique set of advantages
for hand gesture recognition. Due to its functional mecha-
nism and sensing medium, it offers contactless sensing, and
is agnostic to environmental conditions, such as lightning,
humidity, and dust. In recent years, substantial progress has



been made in the development of mm-wave radar-based HGR
systems [9], [29]. Furthermore, radar data is intrinsically com-
plex, requiring substantial processing to extract meaningful
insights. Efficient and resource-conscious processing methods
are required to operate within the constraints imposed by
the battery capacity, which necessarily restricts the available
computational resources and memory budget. However, little
research has been conducted on real-world implementation
challenges, such as addressing the issues of integration, energy
budget, and processing power requirements.

This paper bridges this gap by demonstrating a fully in-
tegrated HGR system based on a novel low-power 60GHz
Frequency Modulated Continuous Wave (FMCW) radar. We
showcase the system in the challenging scenario of a battery-
operated earbud, demonstrating its feasibility even in small,
highly energy-constrained devices. This is achieved by adopt-
ing a holistic approach, starting from the algorithm design,
down to the efficient hardware and software implementation.
We introduce an efficient tiny machine learning model capable
of running on a low-power ARM Cortex-M33 microcontroller
in real time with low latency and high classification accuracy,
and only requiring a few KB of memory. We further pro-
vide an extensive analysis of the trade-offs between gesture
recognition performance and computation complexity, thereby
offering a comprehensive perspective for future researchers
and developers in this field.

We believe that mm-wave radar technology has the potential
to enable robust, context-aware HGR and to revolutionize
the field of wearable technology. By bridging the current
disconnect between technology and application, we hope to
pave the way for a new era of intuitive, hands-free interactions
and seamless integration of IoT devices into our daily lives.
With the publication of this paper, we also release the dataset,
the algorithmic implementation, and the hardware platform to
further accelerate research in this field.

II. RELATED WORK

Radar-based gesture recognition has already been demon-
strated with various sensing technologies [29]. In [30] the
authors interpret the micro-Doppler signature of hand motion
with a Continuous Wave (CW) radar system operating at
24GHz and a deep CNN, showing an accuracy over 90% with
14 gestures for single-subject datasets, but low generalization
capabilities. A similar setup was used by [31] with a system at
5.8GHz, also investigating the effect of distance to the sensor
on the accuracy.

The authors of [32] propose a system based on Ultra-Wide
Band (UWB) radars for mid-air digit writing. The described
setup is composed of three nodes, and Time of Arrival (TOA)
is used with a trilateration algorithm for hand tracking and
digit recognition. This solution is, however, only suitable for
non-mobile applications, such as inside a room or vehicle,
as it requires involved infrastructure with multiple nodes at
known relative distances. A system based on a single-channel
UWB system was proposed in [33], and multiple classification
techniques have been analyzed, obtaining accuracies over 90%
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Fig. 1. Time-frequency diagram representing transmitted and received signals
in FMCW radars. Marked in blue are some relevant parameters.

on a set of 14 gestures. A similar approach was used by [34]
for in-vehicle finger counting. Employing a combination of
UWB and inertial sensing, the authors of SeleCon [35] propose
a HMI modality for IoT. However, this approach also requires
UWB localization infastructure, as well as an UWB-enabled
wristband or smartwatch.

FMCW radars have been proposed as an effective option
for gesture recognition, offering simultaneously precise ve-
locity measurements and direct range measurements, with the
extra potential of zone segmentation for different gestures. A
system based on a 60GHz FMCW radar was demonstrated in
[28], capable of classifying 4 dynamic gestures with 92.1%
accuracy. The work was followed up by Wang et al. [36] with
the development of a new machine learning architecture lever-
aging a CNN-based representation network operating in the
Range-Doppler domain, combined with an Long Short-Term
Memory (LSTM) network to model dynamic gestures. This
work introduced a new set of 11 gestures, comprising some
challenging classes that only involve fine motion of the fingers.
A step towards a low-power implementation of the systems
was accomplished in [37], where gesture recognition on the
same gesture set was demonstrated running successfully on a
Parallel Ultra-Low Power (PULP) chip with a 92KiB model
and estimated system-level power consumption of 120mW.

III. RADAR BACKGROUND

Radars operate by emitting an electromagnetic signal and
then measuring the characteristics of the reflections caused by
the surrounding targets, which are received after a propagation
delay, following an illuminate/echo mechanism. Radar taxon-
omy is mostly determined by the characteristics of the emitted
signal, which also defines the type of information that can be
measured. In the case of FMCW technology, the emitted signal
is modulated in frequency, typically centered around a carrier
frequency fc. While there are various possible modulation
schemes, such as triangular and sine wave modulation, this
paper focuses on the widely used saw-tooth modulation,
characterized by a linear frequency sweep from fmin to fmax.
An illustration of this modulation is depicted in fig. 1, which
also illustrates the signal’s bandwidth, defined as the difference
between fmax and fmin, as well as the modulation’s slope S.



In the time domain, a chirp signal can be mathematically
expressed as:

xT (t) = A sin

(
2πfmint+ π

B

Tc
t2
)

(1)

where A represents a generic magnitude term. A note worth
mentioning is that the target is assumed to be static during the
duration of a chirp Tc, which is often in the order of a few
microseconds.

The echoed signal reflected by a target at distance d will
have the same characteristics as the illumination signal with an
extra time delay of τ = 2d/c, as determined by the round-trip
delay at the speed of light c. In FMCW radars the received
echo signal is demodulated by mixing it with the transmitted
signal, resulting in a low-frequency baseband representation
called Intermediate Frequency (IF) signal. Assuming a target
at distance d, the equation of the IF signal is

SIF (t) = A sin

(
2π

(
B

Tc
τt+

2d

λ

))
(2)

with λ being the wavelength of fmin, and A being a generic
magnitude term that depends, among others, on antenna gain,
distance of the target and its reflectivity. Equation 2 can be
further simplified as:

SIF = A sin (2πfIF t+ ϕ) where fIF =
B

Tc

2d

c
(3)

which highlights the linear relationship between the target’s
distance d and the frequency of the IF signal fIF enabling
a target’s distance to be resolved by analyzing the frequency
content of the IF signal. This is typically achieved in discrete
time using the Fast Fourier Transform (FFT) algorithm, an
approach often referred to as the Range FFT in the lit-
erature. Each discrete frequency magnitude obtained using
the FFT represents the reflected energy of targets within
a fixed distance interval. This process discretizes the range
measurements into multiple Range Bins with a resolution
denoted as dres =

c
2B , which is solely dependent on the chirp

bandwidth. The range resolution for commercial mm-wave
radars typically falls within the centimeter range. In situations
involving multiple targets at different distances, or targets that
span across several range bins, the frequency contributions
are simply superimposed. In practical scenarios, reflections
from the environment and noise inevitably also contaminate
the signal.

Simultaneously, it is possible to detect sub-millimeter dis-
placements of the target within a range bin by measuring the
phase change across different chirps separate by a known time
Ts. FMCW radars exploit this effect to estimate the target’s
velocity by sending a fast train of chirps separated by a time
interval Ts in what is called a radar frame. Within a frame,
the phase in each range bin occupied by the target rotates
at a speed proportional to the target’s velocity, such that the
velocity can again be extracted in the frequency domain with a
second FFT along the chirps. From eqs. (2) and (3), given two
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Fig. 2. Raw radar frame with 32 chirps and 16 samples (left), and the resulting
Range-Doppler map (right).

chirps a small displacement ∆d can be derived. By extension,
the target’s velocity v can be expressed as a function of the
phase angular velocity, as shown in eq. (4).

∆d =
λ ∆ϕ

4π
v =

λω

4π
(4)

Combining these two ideas, a 2D frequency analysis can
convert a radar frame into a distance-velocity map, referred to
in the literature as Range-Doppler map. The map encodes the
target’s distance and velocity into a two-dimensional array, a
sample of which is shown in fig. 2, alongside the respective
raw radar frame.

IV. DATASET

The system was developed around the BGT60TR13D
FMCW radar (Infineon Technologies), a novel sensor that
targets low-power applications. The device operates at a
frequency of 60GHz, and is provided as an Antenna-in-
Package chip which simplifies the integration effort. The
sensor embeds one transmitting and three receiving antennas,
physically placed in an L-shape.

A custom dataset had to be acquired, as no alternative
with the same sensor was available. The dataset was acquired
by replicating the gesture set proposed in [36]. The set
encompasses 11 gestures of varying complexity, comprising
both ”micro-gestures” characterized by small movements of
the fingers, such as Pinch gestures, Finger Slide and Finger
Rub, and more dynamic gestures involving the full motion
of the hand. Preserving the same set of gestures allows for
a direct comparison with the existing work in [36] and [37].
The set was further expanded with one extra dummy gesture
representing Idle/No Activity to allow meaningful inference
when no hand is detected. This is an absolute necessity to
extend the approach from an academic proof of concept to a
fully integrated approach.

The dataset was acquired with a radar evaluation board and
MATLAB SDK from the manufacturer, which provides APIs
for the both configuration of the device and data logging. The
acquisition setup was placed on the flat surface of a table,
with the subject sitting next to it and performing the gestures
as needed. The segmentation of the gesture was achieved by



Fig. 3. Gesture set as defined in [36], replicated in our custom dataset. Figure also taken from [36].

the subject triggering each acquisition when ready to perform
the gesture. The radar was configured with saw tooth chirp
pattern from 58.5GHz to 63.5GHz, for a total bandwith of
5GHz, and a chirp slope of 450MHz µs−1. The individual
chirp spacing was configured to be 700 µs for a sequence of 96
chirps, resulting in an overall framerate of 13.5FPS. Only 16
samples per chirp are acquired, which at 2MHz sampling rate,
and considering hardware overhead, gives a total chirp time
of 13 µs. The internal anti-alias filter was set to 600 kHz, and
the high-pass cutoff frequency was set to 180 kHz to reduce
the effect of the DC leakage.

With this setup, two datasets were generated: a single-
subject dataset (Subject 0) consisting of 700 samples per
gesture, and a multi-subject dataset consisting of 50 samples
per gesture from 20 subjects. The data from Subject 0 is used
in both datasets. Prior to the recording session, the participants
were provided with a demonstration of the gestures before
being asked to replicate them. The gestures were performed
5 cm to 40 cm from the radar. This range was chosen as a
consequence of the configured chirp slope and sampling time.

A. Dataset Augmentation

Only 32 chirps per frame are necessary for the algorithm
pipeline to generate the Range-Doppler maps, as this already
provides a sufficient velocity resolution of circa 0.2m s−1.
Nevertheless, the entire sequence of chirps is used for dataset
augmentation: the training pipeline has been designed to
generate the Range-Doppler maps on the fly extracting random
crops of 32 chirps from the full sequence of 96 available in
the dataset. This technique allows sampling frames from the
original sequence with a variable time shift, with the beneficial
effect of augmenting the variability of the training data.

V. PREPROCESSING

While deep learning has proved effective in feature extrac-
tion directly from raw data with large models [38], their com-
plexity falls beyond the capabilities of an embedded platform.
Instead, knowledge-driven pre-processing can greatly improve
the performance of the model with low computation overhead

by simplifying the task. Practically all previous research in
the field of radar-based HGR relies on a pre-processing step
in the frequency domain [17], [39]. The clear advantage of
this approach has been shown with a comparative analysis in
[37].

As introduced in section III, the range and velocity in-
formation of the targets are well represented in the Range-
Doppler domain. Furthermore, the locality of information on
velocity and range is better represented in this domain where
they both map linearly. This is advantageous when working
with CNNs due to the intrinsically local scope of the kernels.
For these reasons, the radar frames are first pre-processed into
Range-Doppler maps by the means of two FFTs, starting with
a real FFT on the slow-time dimension (along the chirps),
followed by a complex FFT on the samples axis (fast-time).
The magnitude of the resulting complex image is computed
and used as input for the neural network. We apply a further
clipping to the Range-Doppler maps, bounding the values
between 0 and 1 as a form of normalization of the inputs of the
neural network, since most of the information was observed to
be in this range. Observations on the data also showed that the
DC components of the signal (range 0) were always saturated.
Thus this row was dropped as it did not introduce any useful
information. With 32 chirps and 16 samples per chirp, the pre-
processing produces Range-Doppler maps with a resolution of
15x16.

VI. NEURAL NETWORK ARCHITECTURE

A gesture is defined as a sequence of 16 radar frames,
corresponding to a time window of about 1.2 s. Each radar
frame is pre-processed, producing a 15x16 Range-Doppler. An
intuitive representation of the inputs of the Neural Network is
presented in fig. 4.

A supervised learning approach was adopted to solve the
problem of gesture classification. The neural network archi-
tecture, inspired by [37], was designed from the beginning
to target deployment on constrained devices, both in terms
of parameter count and available computational power. In
addition, the approach was designed to be efficient in a
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Fig. 4. Sequence of Range-Doppler maps associated with a gesture. A
sequence of 16 frames composes the full input for the neural network.

streaming-oriented real-time setting, necessary in a real-world
system.

The task is separated into a cascade of three sub-models.
A convolutional Feature Extractor is used to extract spatial
information from the Range-Doppler maps, which encode
the instantaneous position and velocity pattern during the
gesture. The second model exploits the abstract representations
extracted by the first block, merging the temporal features
spread across different frames into a single feature represen-
tation. Finally, a fully connected model is used to separate the
gestures in the predefined set of classes defined at training
time. A block diagram of the model is shown in fig. 5. In all
layers, unless otherwise specified, ReLU activation was used
for its efficient implementation.

A. Feature Extractor

While computing the Range-Doppler maps could be already
seen as a feature extraction step itself, exploiting the spatial
representation of range and velocity in this domain is benefi-
cial. First, a convolutional Feature Extractor is used to extract
features from the Range-Doppler maps, which encode the
instantaneous position and velocity pattern during the gesture.

The first component of the Neural Network is based on a
lightweight CNN composed of three 2D convolutional layers,
with kernel sizes of 5x5, 3x3 and 3x3 respectively, and one
pooling layer with max-pooling policy. The three layers used
16,24, and 16 channels respectively. Batch normalization [40]
and dropout were also introduced to accelerate convergence
and reduce overfitting. This network extracts spatial features
from the Range-Doppler maps, producing a flat abstract repre-
sentation. Another advantage of this approach is the reduction
in runtime memory requirements, as the network compresses
the inputs into a smaller set of features that can be stored
more efficiently. The feature sets extracted by the CNN are
stored in a shift buffer of length 16, which acts as input for
the following step.

B. Temporal Convolutional Network

The second block is responsible for integrating the temporal
information contained across several frames. Several archi-
tectures have been proposed in the last decade for temporal
models. Recurrent Neural Network (RNN) such as LSTM and
GRU are common choices for temporal sequences, as they
allow modelling an infinitely long sequence by storing and
updating an internal state, and they have been demonstrated
on Edge devices [41]. However, these architectures have been
criticized for having in fact a short memory, mostly due to
vanishing gradient issues during training [42]. Furthermore,
they tend to be memory and computationally intensive. Tem-
poral Convolutional Networks (TCNs) have demonstrated to
over-perform recurrent architectures in many fields [43]. They
exploit a strategy of exponential kernel dilation, which allows
them to extend the receptive field quickly while remaining
relatively shallow. Causal convolutions are used in TCN ar-
chitectures to model real-time applications, where only the
past data points are known.

We use a TCN composed of 4 stacked convolutional layers
with small kernels of size 2 and dilation from 1 to 8, which
results in a receptive field of 16. All convolutions use 16
channels. In addition, skip connections between blocks and
a dropout of 10% are used between the layers. An extra
initial 1D convolutional layer with a unit kernel size and no
activation function is used to adapt the dimensionality of the
input space (number of spatial features) to the desired number
of channels in the TCN. This block produces again a flat set
of features, this time comprising both the spatial information
and the temporal knowledge across several frames.

C. Classification Head

A simple Multi-Layer Perceptron (MLP) model is used to
produce a prediction based on the features produced by the
previous block. The classification head is composed of three
fully connected layers with dropout. The two hidden layers use
32 units each, while the dimensionality of the output layer is
12, equal to the number of classes. ReLU activation is used
in the hidden layers, and Softmax activation is used for the
output layer, producing normalized class probabilities.

D. Training Policy

The model ensemble is trained with all components in the
loop. During the training phase, the zero padding in the TCN
exposes the network to partially complete gestures. This allows
the network to reach high confidence levels as quickly as
possible, even before the complete gesture has been seen. On
the other hand, predictions based on the entire time window
contain more information and should be considered more
reliable. For this purpose, the custom Time-Weighted loss in
eq. (5) was designed around the Categorical Cross-Entropy
(CCE), in order to give more weight to predictions containing
more frames.

L = −
F−1∏
j=0

n(j) ·
C∑
i=1

yj,i · log(pj,i) (5)



Fig. 5. Scheme representing the model described in section VI. The feature
extractor is depicted on the top left. The feature set produced by the CNN is
stored in the temporal shift buffer. The TCN (right) extracts temporal features
from the shift buffer, used by the classification head (bottom left) for the final
prediction.

n(x) = tanh(
x · π
F − 1

) (6)

Here, F and C are the number of frames and classes, yj,i
and pj,i are the true and the predicted probability of the sample
of frame j belonging to class i, and n(j) is a monotonically
increasing weight function that determines the weight based
on how many frames were used to generate the prediction. In
our training loop, eq. (6) was used as the weight function.

E. Quantization and Deployment

Since the deployment targets a real-time system, the padding
step in the TCN is skipped, as the prediction is always based
on the latest spatial features. This has the added benefit of
reducing the run-time memory requirements and complexity of
the model once deployed. Post training full integer quantiza-
tion was chosen for the deployment on our custom embedded
platform. Convolution kernels are quantized to single-byte
signed integers (int8), while the biases retain a larger dynamic
range with int32 quantization. Quantization significantly re-
duces the model footprint and allows the exploitation of the
fixed-point hardware acceleration commonly available on em-
bedded platforms. The model was deployed with TensorFlow
Lite for Microcontrollers, which offers support for optimized
kernels based on the efficient Digital Signal Processing (DSP)
library CMSIS-NN [44] on Cortex-M-based platforms. The
library makes use of efficient Single-Instruction-Multiple-Data
(SIMD) instructions for Multiply-Accumulate (MAC) oper-
ations, granting a significant speed advantage over a pure
software implementation.

VII. SYSTEM DESIGN

The selected algorithms are demonstrated on a system built
on VitalCore, our custom hardware platform designed for low-
power wearable sensor applications.

While a variety of applications could gain from the benefits
provided by HGR as an interface, we choose to present
the system within the demanding configuration of a wireless
earbud. This underlines its integration capabilities and minimal
energy requirements. Nonetheless, we want to emphasize that

deploying this solution to a whole range of systems would be
equally feasible - if not simpler, due to the removal of design
constraints.

The system is composed of two main components. The
VitalCore platform hosts the main application processor, power
management, and all other non-application-specific hardware.
The board is then expanded with a second Printed Circuit
Board (PCB). referred to as RadarPack, which hosts the radar-
related hardware. A custom 3D printed case, battery and power
switch complete the design holding all components together.
A high-level overview of the unit is shown in figure 6.

A. VitalCore

VitalCore is our custom research platform for wearable
sensing technology. The device represents the evolution of
VitalPod [45], and is designed around the two principles
of energy efficiency and flexibility: the first a necessity for
research in the wearable domain; the second a key advantage
for rapidly exploring novel concepts. The board is a self-
contained system that can be combined with extra application-
specific hardware by means of so-called VitalPack extension
boards, thanks to the 50-pin high-density connector on the
bottom side. The platform can be seen on the top side in fig. 7,
and was successfully validated in our previous work [46].

VitalCore is built around the ultra-low power nRF5340
System-on-Chip (SoC) (Nordic Semiconductor), which fea-
tures both ample processing power through its dual-core ARM
Cortex-M33 processors with a maximum clock frequency of
128MHz, and space through its built-in 1MiB of flash and
512KiB of RAM. It supports Bluetooth 5.4 standard and
comes with a compact chip antenna with 2.4 dBi peak gain
for an excellent wireless range. A full-speed USB interface
provides flexible communication options for different applica-
tion scenarios, debugging and data offloading.

The power management is controlled by a Power Manag-
ment IC (PMIC) (MAX77654, Analog Devices), providing an
efficient and flexible power subsystem. The integrated bat-
tery interface, monitor, and charger allow most re-chargeable
batteries to be connected directly to VitalCore, while three
software-controlled buck-boost converters with an output volt-
age range of 0.8V to 5.5V, and two software-controlled
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Chip Antenna

LSM6DSV16BX
IMU

MAX77654B
PMIC

W25Q256JWY
Flash

VitalCore RadarPackExternal

CP1254A4
Varta Battery
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Radar

I2C

I2C QSPI
 

40MHz Oscillator

 

 

Power
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Fig. 6. Complete hardware system block-diagram of the custom earbud
demonstration platform.



Fig. 7. Render of the custom VitalCore (top) and RadarPack (bottom) printed
circuit boards, depicted next to a one euro coin for reference. The back side
of both boards is also shown to present the high-density interface used to
connect them.

+

Fig. 8. Render of the custom VitalCore and RadarPack assembly, as installed
in demonstration system.

Low-Dropout (LDO) linear regulators with an output range of
0.8V to 3.975V can accommodate the power-requirements of
most extension applications. The SoC is powered by a dedi-
cated high-efficiency buck converter (MAX38640, Analog De-
vices). VitalCore offers 256Mbit of non-volatile flash memory
(W25Q256JWY, Winbond) that can be used to store logging
information, sensor data or other application-specific config-
uration. Finally, a multi-color LED with driver (IS31FL3194,
Lumissil) and an IMU with QVAR fronted (LSM6DSV16BX,
ST Microelectronics) provide an option for visual feedback
and basic tap-based control.

The VitalCore has proven to be an effective platform for
the rapid development of integrated devices in our previous
work [removed for review]. With the publication of this work,
we are open-sourcing the design, in the hope of encouraging
more interesting applications.

B. RadarPack

The RadarPack is developed as an expansion board sharing
the same form factor of the VitalCore to simplify the final
assembly, as visible on the bottom of fig. 7. The board hosts
the mm-Wave 60GHz radar sensor BGT60TR13D, a 40MHz
reference oscillator required from the radar, and several passive
filters for the power supply of the sensing element. The two
power rails are directly derived from the PMIC from the main
board, which allows to power-gate the entire board when
needed. The two boards are coupled with the high-density
connector, resulting in the assembly shown in fig. 8.

C. Mechanical Design and System Integration

The electronics are housed in a custom 3D printed enclosure
shown in fig. 10, comparable in size and shape to commer-

cial true-wireless earbuds that can be worn comfortably. A
Lithium-Ion rechargeable battery with capacity 70mAh (circa
260mWh) is used as the power source of the system and can
be charged using a connector held in the stem of the casing.
The device can be powered down completely by disconnecting
the battery with a power switch, also placed in the stem.
This is functional purely for development purposes, as the
power subsystem of the device is capable of pseudo-shutdown
mode, reducing the power consumption to a low level suitable
for storage, and includes low-voltage battery protection. The
complete assembly is shown in fig. 10.

Fig. 9. Assembled device.

VIII. RESULTS

Several experiments were conducted on the algorithms to
evaluate the system performance and explore potential trade-
offs to exploit. These results are reported in the subsection
Model Evaluation. Results relative to the embedded system
design and implementation follow, including power and la-
tency evaluation.

A. Model Evaluation

Two metrics were used in our evaluation to assess the net-
work’s performance. Given a sequence of frames, the accuracy
obtained on the last frame is the most intuitive metric to use
since the last prediction in the sequence is expected to be the
most accurate. However, we further evaluate the performance
with a more robust metric by pooling the accuracy over the
last four frames, which results in overall better predictions
thanks to its smoothing effect. This metric was also used in
[36], but across the entire sequence. While feasible, pooling
on the entire sequence would add a considerable delay in the
final prediction output on the real system. Since the network
targets a constrained device, we further compare full-precision
models with their quantized version.

The model is evaluated with both the single-subject
and the multi-subject datasets. Leave-one-out cross-validation
(LOOCV) validation was also introduced to assess the general-
ization capabilities of the gesture recognition system. During
this experiment, the data from one subject was kept out of
the training set and used instead as validation data. All the



Fig. 10. 3D render of the system with individual components labeled, and picture of the assembled device.

Single Subject Multi Subject LOOCV

Acc. (FP) 96.5% ± 1.6% 89.7% ± 1.5% 88.1% ± 3.7%
Acc. Pool. (FP) 97.0% ± 1.2% 90.2% ± 1.6% 88.3% ± 3.7%
Acc. (Q) 93.8% ± 3.2% 87.1% ± 4.5% 85.7% ± 5.4%
Acc. Pool. (Q) 94.9% ± 3.2% 87.9% ± 4.7% 86.1% ± 5.4%

TABLE I
MODEL EVALUATION. ACC. REFERS TO ACCURACY, POOL. REFERS TO

FRAME POOLING OVER THE LAST 4 FRAMES, FP AND Q REFER TO
FULL-PRECISION AND QUANTIZED MODELS.

evaluations are repeated multiple times (40+ per subject) to
assess the variability of the results and measure the capability
of the network to produce consistent results over time. The
mean accuracy and its standard deviation are reported in
table I.

B. Per-Class Study

The confusion matrixes in fig. 11 show another interesting
observation. Analysing the accuracy on a per-gesture basis
indicates that a lot of errors happen in distinguishing between
the two gestures Pinch Index and Pinch Pinky. Indeed the
two gestures are similar, especially if translated in the Range-
Doppler domain. By reducing the scope of the classification by
a single gesture (through removal or merging of the two), the
overall accuracy can be significantly increased. We conducted
an evaluation without loading the Pinch Pinky gesture, which
led to a 94.6% ± 4.6% LOOCV accuracy for the full precision
model, and 90.9% ± 7% for the quantized one. Surprisingly,
the effect of frame pooling in this case was not noticeable.

C. Per-Subject Study

The robustness of the methods was further examined with
a per-subject analysis. This evaluation brings further insights
into the performance of the LOOCV by showing the average
performance of specific subjects with respect to each other.
As visible in fig. 12, a mean accuracy over 80% is retained
by virtually all subjects with LOOCV, even if a relevant drop
can be seen in a few cases. This observation is relevant in the
context of truly subject-agnostic systems where pre-training
or fine-tuning is not an option, as it shows that there were no
big outliers.

D. Number of Antennas

An ablation study on the number of antennas was conducted
to explore the possibility of reducing the number of receiving

1 Ant. 2 Ant. 3 Ant.

1 Subj. Acc. Pool. (FP) 96.5% 96.4% 96.8%
1 Subj. Acc. Pool. (Q) 93.4% 91.8% 91.7%
LOOCV Acc. Pool. (FP) 88.5% 89.5% 87.6%
LOOCV Acc. Pool. (FP) 85.0% 85.9% 82%

TABLE II
ACCURACY FOR DIFFERENT NUMBERS OF RECEIVING ANTENNAS.

antennas. In our implementation, the Range-Doppler maps
generated with the data from the three antennas are directly
used as input channels in the Feature Extractor block. While
a reduction in the number of antennas would slightly decrease
the memory and computation requirements, the greatest benefit
would come from the integration viewpoint, as the sensor
size could be reduced by at least 50%. The evaluation was
conducted both with the single-subject dataset and with the
multi-subject dataset with LOOCV, and the results are reported
in table II. In the case of the multi-user analysis, no clear
correlation could be identified, as the obtained accuracy was
well within the previously evaluated standard deviation error.
This suggests that the number of antennas does not have a
significant effect, and applications could be based on a single-
antenna system.

E. Complexity Trade-offs

Since the proposed architecture is composed of three com-
ponents working together, a further evaluation was performed
to explore the trade-off of network complexity versus accuracy.
The computational load of the network is mostly concentrated
in the Feature Extractor and in the TCN. We explored sepa-
rately different configurations of the three blocks, and for each
evaluated the mean accuracy and standard deviation with the
LOOCV method. For the Feature Extractor and Classification
Head, while a positive correlation between higher complexity
and mean accuracy was identified, the gains were small and
always below the standard deviation of the LOOCV. Clear
gains were instead observed when tuning the complexity of
the TCN by increasing the number of convolutional channels,
as shown in fig. 13. It can also be observed that the effect is
especially pronounced with the quantized version, due to the
bottleneck effect caused by the TCN when too few channels
are available. The evaluation shows a clear accuracy improve-
ment by increasing the number of TCN channels up to 16,
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Fig. 12. Per-subject LOOCV mean accuracy over multiple train folds with the
respective standard deviation as shaded fill. The average across all subjects is
shown in grey.

and diminishing returns with more channels. For this reason,
16 channels were used in the final embedded implementation,
as it represents a good trade-off point in terms of computation
complexity and parameter count.

F. Systems evaluation

Given the real-time requirements for embedded HGR, the
processing latency is a critical metric, as the power consump-
tion is critical in the context of battery-operated devices. In
general, the processing must be faster than the time interval
between new data samples. Ideally, an extra margin of time
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Fig. 13. Accuracy against number of channels in TCN. Diminishing returns
are evident for more than 16 channels.

is desirable to allow further applications to execute on the
same platform. We evaluate the latency of all the processing
steps by running the inference on the platform and measuring
the elapsed time with the internal RTC clock. The time is
accumulated over 100 repetitions to reject the possible inter-
ference of context-switching or other sporadic high-priority
tasks in the firmware, such as the battery monitor. The latency
of the preprocessing step was consistently 3.69ms. A detailed
breakdown of the neural network processing latency, size, and
complexity is reported in table III.

The power consumption of the system has been profiled
both during idle time and during inference. For all the power



CNN TCN Class. Tot.

MAC 493,320 50,400 1988 545,708
Parameters 8,168 3,664 1,996 13,828
Time [ms] 23.53 4.89 0.27 32.39
Size [KiB] 13 18 5 36

TABLE III
BREAKDOWN OF LATENCY FOR ALL THE PROCESSING STEPS ON THE
EMBEDDED PLATFORM. MEASURED AT CLOCK FREQUENCY 64MHz.
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Fig. 14. Power profile during acquisition and processing of one radar frame.
Also visible is a BLE event at time 10ms.

and energy evaluations, a source at 3.7V is assumed, simu-
lating a standard lithium-ion battery. The average power con-
sumption when the system is idle is circa 1.1mW, measured
with a Bluetooth Low-Energy (BLE) advertising interval of
100ms. When the radar board is powered, a further 8.0mW
is used with most of the current required to power the 40MHz
oscillator. The power profile of one frame is visible in fig. 14.
The radar activity is clearly visible as a sequence of 32
spikes in current, corresponding to the transmission of as many
chirps. The average power consumption during the radar ac-
tivity is 21.7mW. The data processing step follows right after,
with an average power consumption of 20.5mW. Afterwards,
the CPU sleeps until the next frame is available. This leaves
around 41ms of processing time for other tasks. Overall,
the average power consumption of the entire system during
HGR is 18.4mW. With the battery included in our prototype
(70mAh, nominal voltage 3.7V), the system could perform
continuous gesture recognition for 14 hours. A battery of
120mAh would be necessary to reach the 24-hour milestone.

IX. CONCLUSION

This paper presented a mm-wave-enabled earbud and an
algorithm pipeline for Hand Gesture Recognition. A new
efficient 3-stage machine learning model based on spatial and
temporal convolutions is proposed as an optimized option for
HGR in the Range-Doppler feature space. A thorough analysis
of the model showed an accuracy of 97.0% (94.9% quantized)
on a single-subject dataset, and 88.3% (86.1% quantized)
LOOCV accuracy on 20 unseen subjects. The metrics could

Wang et al. [36] Scherer et al. [37] This Work

S. Subj. Acc. 94.7% 92.4% 94.9%
M. Subj. Acc. — 86.6% 87.9%
LOOCV Acc. 88.3% 78.9% 86.1%
Num. Subj. 10 26 20
Model Size 689 MiB 91 KiB 36 KiB
Sens. Power 300 mW 95 mW 20.6 mW
NN Power — 21 mW 11.4 mW

TABLE IV
COMPARISON OF KEY PERFORMANCE METRICS WITH THE MOST

RELEVANT WORK FROM WANG ET AL. [36] AND SCHERER ET AL. [37].

be improved even further by removing a single problematic
gesture class which showed high confusion, boosting the
LOOCV accuracy to 94.6% (90.9 quantized). Complexity
trade-offs and the size of the antenna array were also explored,
demonstrating the potential of a single-antenna system. With a
final size of only 36KiB, the model was deployed in a custom
in-ear wearable device, demonstrating the first fully integrated
wearable system for HGR based on a novel low-power FMCW
radar sensor. The overall power consumption of the device is
only 18.4mW for continuous HGR. The on-device inference
only takes 32.3ms, sufficient for a real-time operation and to
accommodate further tasks in the device.

A comparison of the most relevant metrics is shown in
table IV. While we acknowledge that each work was developed
with a different, custom dataset, maintaining the same gesture
set allows for a direct comparison, showing that our method
exceeds the previous work both in terms of accuracy and
efficiency, with an improvement of more than 6x over the
system-level power consumption.

Finally, we are happy to open source the model implemen-
tation1 and the hardware platform VitalCore2 on Github.
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