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ABSTRACT

Cosmological galaxy surveys measure the positions and fluxes of millions of galaxies,

tracing the underlying distribution of matter in the Universe. The formation and

evolution of cosmic structures are successfully described through the interplay be-

tween gravity and the accelerated expansion of the Universe in the ΛCDM model.

The physical nature of the two dominant components of the Universe in this model,

dark matter and dark energy, is not yet understood and some discrepancies have

recently arisen between constraints from different observables. Large-scale structure

surveys can shed light on the dark components, through the combination of galaxy

clustering, cosmic shear and galaxy-galaxy lensing. The volume of cosmological data

has increased dramatically in the past two decades, and will continue to do so in the

near future with the advent of Stage IV cosmological surveys. The quantity and quality

of data requires a continuous effort to make theoretical predictions more robust and

easy to extend, while also carefully controlling observational systematics.

In this thesis, we explore how novel techniques can be developed to realize the po-

tential of next generation cosmological galaxy surveys. We start by introducing a

framework for the numerical solution of the Einstein-Boltzmann equations, describ-

ing the time evolution of linear order perturbations of cosmological fields. The key

innovation lies in the automatic translation of symbolic equations into optimized

code for their solution. This enables the timely implementation and testing of new

models, with minimal use of approximations. We test the framework in three cases:

for a dark energy model with constant equation of state, for massive neutrinos and for

the radiation streaming approximation.
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We then turn to observational systematics affecting cosmological galaxy surveys. One

major source of systematic uncertainty is the determination of the redshift distri-

butions of galaxy samples from a limited number of broad-band fluxes, known as

photometric redshift estimation. Inaccuracies in the estimated redshift distribution

can bias the resulting cosmological constraints from weak lensing or photometric

galaxy clustering.

To address this problem, we use a forward modelling approach, part of the Monte Carlo

Control Loops (MCCL) framework. The redshift distribution of galaxies is a result of

their observed properties, which we link to an underlying galaxy population model and

simulate at the image level including realistic observational and instrumental effects.

We derive posteriors of parameters from the empirical galaxy population model via

simulation-based inference. The resulting image simulations can be processed in

the same way as the data, thus accounting for sample selection, and yield realistic

redshift distributions. We apply this methodology to deep field images from the

Hyper Suprime-Cam Subaru Strategic Program (HSC) and photometric redshifts from

COSMOS2020 to constrain the galaxy population model at high redshift and test our

method in the regime of upcoming surveys.

We then perform a blind tomographic comparison between our forward modelling

pipeline and Self-Organizing Map p(z) (SOMPZ), a direct redshift calibration tech-

nique, applied on the same target sample from Dark Energy Survey (DES) Year 3 data.

The cross-comparison and combination of different methodologies will become an

essential tool to achieve the level of accuracy required for Stage IV surveys.

This work shows how advanced numerical methods and forward modelling offer good

prospects for the analysis of next generation cosmological galaxy surveys.
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SOMMARIO

Le osservazioni di galassie per la cosmologia misurano le posizioni e i flussi di milioni

di galassie, che ricalcano la distribuzione della materia nell’Universo. La formazione e

l’evoluzione delle strutture cosmiche sono descritte con successo dall’interazione tra

la gravità e l’espansione accelerata dell’Universo nel modello ΛCDM. La natura fisica

delle due componenti dominanti dell’Universo in questo modello, la materia oscura

e l’energia oscura, non è ancora stata compresa e di recente sono emerse alcune

differenze tra i parametri misurati da diverse osservabili. Le indagini della struttura a

grande scala possono far luce sulle componenti oscure, attraverso la combinazione

del clustering delle galassie, la correlazione tra lenti gravitazionali deboli e il lensing

galassia-galassia. Il volume dei dati cosmologici è aumentato in modo drammatico

negli ultimi due decenni e continuerà a farlo nel prossimo futuro con l’avvento delle

survey cosmologiche di fase IV. La quantità e qualità dei dati richiedono uno sforzo

continuo per rendere le previsioni teoriche più affidabili e facili da estendere, tenendo

sotto controllo allo stesso tempo gli errori sistematici osservativi.

In questa tesi esploriamo nuove tecniche per realizzare il potenziale delle osserva-

zioni cosmologiche di galassie di prossima generazione. Iniziamo introducendo un

framework per la soluzione numerica delle equazioni di Einstein-Boltzmann, che de-

scrivono l’evoluzione temporale delle perturbazioni dei campi cosmologici al primo

ordine. L’innovazione chiave consiste nella traduzione automatica delle equazioni

simboliche in codice ottimizzato per la loro soluzione. Ciò consente di implementare

e testare tempestivamente nuovi modelli, con un uso minimo di approssimazioni.

Abbiamo testato il framework in tre casi: per un modello di energia oscura con equa-

zione di stato costante, per i neutrini massivi e per l’approssimazione di flusso della
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radiazione.

Passiamo poi al trattamento delle sistematiche osservative che interessano le osserva-

zioni cosmologiche di galassie. Una delle principali fonti di incertezza sistematica è la

determinazione delle distribuzioni di redshift dei campioni di galassie a partire da un

numero limitato di flussi misurati in filtri a banda larga, nota come stima del redshift

fotometrico. Errori nella ricostruzione della distribuzione del redshift possono falsare

i vincoli cosmologici risultanti dal lensing debole o dal clustering fotometrico delle

galassie.

Per affrontare questo problema, utilizziamo un approccio detto forward modelling,

parte del framework Monte Carlo Control Loops (MCCL). La distribuzione del redshift

delle galassie è il risultato delle loro proprietà osservate, che possiamo collegare a

un modello di popolazione di galassie e simulare a livello di immagini includendo

effetti osservativi e strumentali realistici. Ricaviamo la distribuzione dei parametri

del modello empirico di popolazione di galassie mediante inferenza basata sulle

simulazioni. Una volta calibrate, le immagini simulate possono essere analizzate allo

stesso modo dei dati reali, tenendo conto della selezione del campione, e riproducono

distribuzioni di redshift realistiche. Applichiamo questa metodologia alle immagini

di campo profondo dell’Hyper Suprime-Cam Subaru Strategic Program (HSC) e ai

redshift fotometrici di COSMOS2020 per vincolare il modello di popolazione delle

galassie ad alto redshift e testare il nostro metodo nel regime delle survey future.

Eseguiamo poi un confronto tomografico in cieco tra la nostra pipeline che usa il

forward modelling e Self-Organizing Map p(z) (SOMPZ), una tecnica di calibrazione

diretta del redshift, applicata allo stesso campione di galassie misurate da tre anni

di osservazioni della Dark Energy Survey (DES). Il confronto e la combinazione di

diverse metodologie diventerà uno strumento essenziale per raggiungere il livello di

accuratezza richiesto per le survey di fase IV.

Questo lavoro mostra come i metodi numerici avanzati e il forward modelling offrano

buone prospettive per l’analisi delle survey cosmologiche di galassie di prossima

generazione.
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CHAPTER 1
INTRODUCTION

The story so far:

In the beginning the Universe was created.

This has made a lot of people very angry and been

widely regarded as a bad move.

— DOUGLAS ADAMS, The Restaurant at the End of the Universe

Cosmology is the study of the Universe as a whole, including its origin, contents

and evolution through time. Modern cosmology has been developed in the last

century. The theoretical foundation is Einstein’s theory of general relativity, describing

the geometry of spacetime and how the energy and momentum of the contents of

the Universe shape it through gravity. The ΛCDM model was enstablished as the

concordance model of cosmology roughly three decades ago, when experiments

started confirming the theoretical predictions and constraining the parameters of

the model (e.g. [1]). In this model, the Universe contains three main components:

baryonic matter, which is the ordinary matter we are accustomed to, cold dark matter,

which is a more abundant matter component only interacting gravitationally and

dark energy, the source of energy driving the accelerated expansion of the Universe

and described in ΛCDM by the cosmological constant Λ. Both the latter components

are of yet unknown nature and are deduced through indirect observations. A brief
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Chapter 1. Introduction

overview of the cosmological background and of the perturbations of the various

components of the Universe is presented in the next sections of this chapter.

Observational successes of the ΛCDM model include the detection of the black body

spectrum and anisotropies of the cosmic microwave background (CMB) [2], the accel-

erated expansion of the Universe observed from the Hubble diagram of Supernovae

Type Ia [3, 4] among other probes (see e.g. [5]), the structure of the cosmic web [6, 7]

and the abundance of elements in the Universe [8]. As measurements get more pre-

cise, some cracks have started appearing in the model. First the H0 tension [9], a

disagreement between early-time and late-time cosmological probes concerning the

rate of expansion of the Universe and then the S8 tension [10], a difference in the

measurements of the clumpiness of matter.

A popular way to investigate the tensions is that of increasing the constraining power

on the parameters of the model, by either using summary statistics that capture

more information from the data, novel probes or cross-correlations between different

probes and new datasets. Instead, in this thesis we explore some of the steps that

occur between the collection of data and cosmological constraints in a cosmological

galaxy survey. This is necessary to test the robustness of the constraints and whether

the cosmological tensions point to new physics, rather than limitations of our mea-

surements. First, we look at the theoretical predictions that we compare the data to,

which need to be accurate and include beyondΛCDM model extensions. Then, we

extend a novel technique to treat systematics that could affect large-scale structure

measurements.

At the core of many cosmological theory predictions lies the Einstein-Boltzmann

system of equations, that describes the evolution of perturbations in the Universe

at linear order [11]. In Chapter 2, we contribute to the development of the PyCosmo

Python-based symbolic framework [12], which allows to solve the Einstein-Boltzmann

equations numerically and can be easily extended beyond the ΛCDM model. We

demonstrate the extensibility of the framework by implementing two simple model

extensions: a dark energy component with a constant equation of state and massive

neutrinos. Allowing for a dark energy component that is not a cosmological constant

is a very common theory extension and allows for a test of the dark sector [13, 14]. Neu-
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trinos are known to be massive from oscillation experiments [15], so that accounting

for neutrino mass in cosmological predictions has become important at the current

level of precision. Furthermore, cosmological observations are a promising ground

for distinguishing between the neutrino mass orderings and eventually detecting the

neutrino mass [16]. We also extend the PyCosmo package to include the radiation

streaming approximation [17], providing a considerable speed-up of the code with lit-

tle accuracy loss. The main observable we focus on in this chapter is the linear matter

power spectrum, which appears in most large-scale structure theoretical predictions.

We transition from theory to observations of large-scale structure in Chapters 3 and 4.

One of the main systematics impacting large-scale structure observables and cosmic

shear measurements in particular is the retrieval of redshift distributions of samples

of galaxies from noisy photometry. Current cosmological surveys, such as the Dark

Energy Survey (DES) [18], the Kilo Degree Survey (KiDS) [19] and Hyper Suprime

Cam Subaru Strategic Survey (HSC) [20] measure the flux from galaxies in less than

ten broad-band filters between the optical and the near-infrared. Upcoming Stage

IV surveys, such as the Large Survey of Space and Time (LSST) [21], Euclid [22, 23]

and Nancy-Grace Roman Space Telescope [24], are pursuing a similar approach with

increased statistics and will thus need an improved control of systematics. Measuring

photometric redshifts is challenging, prone to known colour-redshift degeneracies

and errors in retrieved redshift distribution lead to biases in the resulting cosmological

constraints [25, 26].

We apply and extend the Monte Carlo Control Loops (MCCL) [27] forward modelling

framework for photometric redshift calibration. The method relies on a parametric

galaxy population model which is constrained by observations via simulation-based

inference. The full image simulations also include observational and instrumental

effects, so that the real and simulated data can be processed the same way and realistic

redshift distributions can be extracted from the simulations.

In Chapter 3, we constrain the galaxy population model parameters using HSC deep

data [28] and accurate photometric redshifts from COSMOS2020 [29]. This yields sim-

ulations that reproduce the photometric properties of the data well and redshift distri-

butions that we compare with COSMOS2020 at different magnitude cuts. In Chapter 4,

3



Chapter 1. Introduction

we perform a comparison between two different redshift calibration methodologies

applied to the same target sample from DES Year 3 [30]. We compare the MCCL for-

ward modelling approach with SOMPZ, a technique which applies a reweighting of

reference redshifts through Self Organizing Maps (SOMs) and is the fiducial redshift

calibration technique of the DES collaboration.

We summarize the conclusions of this thesis in Chapter 5. Chapters 2 and 3 appear in

a similar form in the publications [31, 32]. The references to publications are stated at

the beginning of the chapters.

1.1 The homogeneous Universe

The theoretical framework of physical cosmology is Einstein’s theory of general relativ-

ity (GR), which postulates a deep interconnection between the structure of spacetime

and its energy content. In this introduction, we give a brief overview of the ingredients

of the standard model of cosmology, following mainly [33]. More extensive treatments

can be found in [33–39].

One key observation that greatly simplifies our description of the Universe is the

fact that, on sufficiently large scales, there seem to be no preferred position and

spatial direction: there is no special place in the Universe. More mathematically, the

Universe is statistically homogeneous and isotropic. This base assumption, known

as the cosmological principle, imposes a unique and simple form for the geometry

of spacetime on large scales. The relation between the coordinate-independent line

element d s and the observer dependent coordinate system is given by the spacetime

metric. In the case of an homogeneous and isotropic Universe, this reads

d s2 = gµνd xµd xν =−c2d t 2 +a2(t )
[
dχ2 +S2

k (χ)dΩ2] (1.1)

where we use the Einstein summation convention with µ,ν ∈ 0, ...3. In Equation 1.1

c is the speed of light, a(t) is the scale factor relating comoving and physical spatial

coordinates, dΩ2 = dθ2+sin2θdφ2 is the solid angle in polar coordinates and k relates
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1.1 The homogeneous Universe

to the spatial curvature of the Universe. Sk (χ) parametrizes the three possible spatial

geometries:

Sk
(
χ
)= R0


1p
|k| sinh

(p
|k|χ

R0

)
, k =−1 (open universe)

χ
R0

, k = 0 (flat universe)

1p
k

sin
(p

kχ
R0

)
, k = 1 (closed universe)

(1.2)

where R0 is the curvature scaling. If we use the rescaling symmetry of the metric to

set the value of the scale factor today (t=t0) such that a(t0) = 1, then R0 = c
H0

is the

physical curvature scale today. This metric is known as the Friedmann-Lemaître-

Robertson-Walker (FLRW) metric [40–43].

In general relativity free falling particles follow geodesics, the shortest path between

two points on a curved spacetime surface. The trajectories xµ(λ) are determined by

the geodesic equation

d 2xµ

dλ2
=−Γµ

αβ

d xα

dλ

d xβ

dλ
(1.3)

where the Christoffel symbols Γµ
αβ

are defined as

Γ
µ

αβ
= gµν

2

[
∂gαν
∂xβ

+ ∂gβν
∂xα

− ∂gαβ
∂xν

]
. (1.4)

The Einstein field equations describe the dynamics of the Universe by relating the

spacetime curvature encoded in the Einstein tensor

Gµν = Rµν− 1

2
gµνR (1.5)

where the Ricci tensor and scalar are defined as

Rµν =
∂Γ

ρ
µν

∂xρ
− ∂Γ

ρ
µρ

∂xν
+ΓρσρΓσµν−ΓρνσΓσµρ, R = gµνRµν (1.6)

5



Chapter 1. Introduction

with the contents of the Universe represented by the energy momentum tensor Tµν:

Gµν+Λgµν = 8πG

c4
Tµν (1.7)

where G is Newton’s gravitational constant and Λ is the cosmological constant, in-

troduced by Einstein to allow for a static Universe solution of the equations. If we

assume that we can describe the components of the Universe as perfect fluids, then

the energy-momentum tensor of each component can be written as

Tµν =
(
ρ+ P

c2

)
UµUν+P gµν (1.8)

where ρ is the density, P the pressure and Uµ = c d xµp
−d s2

the four velocity of the perfect

fluid. The Universe contains both relativistic components, like photons and neutrinos,

and non-relativistic components such as baryonic matter. Furthermore, since the

1930s [44] various observations have pointed to the existence of an additional form of

matter, dark matter, which only interacts gravitationally and makes up the majority of

the matter in the Universe.

By inserting the FLRW metric in the Einstein field equations for an ideal fluid, we

obtain the Friedmann equations

H 2(t ) =
(

ȧ

a

)2

= 8πG

3
ρ− kc2

a2R2
0

(1.9)

ä

a
=−4πG

3

(
ρ+ 3P

c2

)
(1.10)

describing the time evolution of the scale factor a(t ). The function H(t ) is called the

Hubble parameter and plays an important role in cosmology. The time evolution of

pressure and density is derived from the conservation of the stress-energy tensor

∇µT µν = 0 (1.11)

together with the equation of state

P = wρc2 (1.12)

6



1.1 The homogeneous Universe

with w = 0 for dark matter and baryons and 1/3 for radiation components. The

combination of Equation 1.11 and 1.12 gives us

dρ

d t
+3

ȧ

a
ρ(1+w) = 0 ⇒ ρ(a) ∝ a−3(1+w) (1.13)

and thus

ρm(a) ∝ a−3 ρr (a) ∝ a−4 (1.14)

where ρm(a) is the density of matter, either dark or baryonic, and ρr (a) that of radia-

tion.

Edwin Hubble in 1929 observed that there is a positive linear relationship between the

recession velocity of a galaxy and its distance from the observer [45]. This means that

the value of the Hubble parameter today H0 ≡ H(t = t0) is positive and consequently

that the Universe is expanding. Tracing back the expansion history leads to the

prediction that the Universe was initially in a hot dense state called Big Bang and

then cooled down during the expansion. During this evolution, different components

dominated the energy density of the Universe: radiation was dominant at early times

whereas matter started dominating at intermediate time-scales. In the 1990s, the

observational evidence from supernovae Type Ia [3, 4] and other probes (see e.g. [5])

showed that the Universe is currently undergoing a phase of accelerated expansion

and lead to the addition of a further component to the model: dark energy. This

mysterious energy source drives the accelerated expansion of the Universe ä > 0 and

must therefore have an equation of state parameter w <−1/3. The simplest case is

when w =−1 so that ρΛ is constant and Tµν proportional to gµν which corresponds to

the cosmological constantΛ introduced in Equation 1.7.

We can reformulate the Friedmann equations 1.9 and 1.10, by defining the critical

density of the Universe

ρcrit(a) = 3H(a)2

8πG
(1.15)

7



Chapter 1. Introduction

and the density parametersΩi

Ωi = ρi (a)

ρcrit(a)
. (1.16)

We can use the quantities just defined to write

H(a)2

H 2
0

=Ωr,0a−4 +Ωm,0a−3 +ΩΛ+Ωk a−2 (1.17)

whereΩr,0 includes all radiation components andΩm,0 all matter components.

Ωk =− kc2

H 2
0 R2

0

(1.18)

is the curvature parameter, observationally shown to be very close to zero so that

Ω0 =Ωr,0 +ΩΛ+Ωm,0 = 1. (1.19)

From here on we assume a flat cosmology.

The wavelength of light emitted by a distant object in an expanding Universe is

stretched along its path

λobs

λemit
= a(tobs)

a(temit)
(1.20)

where λemit and temit are the emitted wavelength and time of emission and λobs and

tobs the observed one. The cosmological redshift is then defined as

z ≡ λobs −λemit

λemit
= a(tobs)

a(temit)
−1 (1.21)

and since we observe the Universe today at tobs = t0

1+ z = 1

a
. (1.22)

By measuring the spectrum of a distant galaxy, we can obtain the scale factor value

at the time the light was emitted by comparing the wavelength of emission and ab-
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1.1 The homogeneous Universe

sorption lines in the galactic spectrum with that of spectral lines of different elements

measured on Earth.

Besides cosmological redshift, there are several other important measures of distance

in cosmology. We have already mentioned the comoving distance χ, which defines

a spatial coordinate system that does not change over time. Let us look at a photon

travelling in space. Due to isotropy, we can always consider its motion as radial only

such that

d s2 = 0 =−c2d t 2 +a2(t )dχ2. (1.23)

We thus obtain

dχ= c
d t

a(t )
= cdη (1.24)

where η is called the conformal time. We call the maximum distance that a photon

can travel since the Big Bang comoving horizon

χH = c
∫ t0

0

d t

a(t )
. (1.25)

The comoving horizon χH corresponds to the size of the observable Universe.

Distances that are directly related to astronomical observations are the angular diame-

ter distance and the luminosity distance. Consider an object of size D and luminosity

L, which we call a standard ruler, and of which we measure the angular size ∆θ and

the flux F . Then, from the angular part of the metric in Equation 1.1, we obtain the

angular diameter distance dA

dA(z) = D

∆θ
= aSk (χ). (1.26)

The luminosity distance dL is defined through

F = L

4πd 2
L

(1.27)

9



Chapter 1. Introduction

and, since the solid angle subtended by the object depends on d−2
A and the photon’s

energy density evolves as a−4, we have

dL = Sk (χ)

a
. (1.28)

1.2 The inhomogeneous Universe

Despite the cosmological principle, the Universe is only homogeneous and isotropic

on sufficiently large scales. When we look at smaller areas of the Universe, inhomo-

geneities and anisotropies arise: we find filaments, voids and collapsed objects like

galaxy clusters, galaxies, stars and planets. These structures are formed by the collapse

of initially small inhomogeneities. We thus treat the inhomogeneities as perturbations

on top of an otherwise homogeneous and isotropic background.

1.2.1 Linear perturbation theory

We start by adding a perturbation to the FLRW metric ḡµν so that

gµν = ḡµν+δgµν (1.29)

where δgµν is symmetric and |δgµν| ≪ ḡµν. The perturbations in the metric can be

separated in a scalar, a vector and a tensor part (SVT decomposition) [46]. This decom-

position is important, as the three sets of equations do not mix at linear order. Here we

only focus on the scalar perturbations, which are relevant for structure formation in

our Universe. Both vector and tensor perturbations produce no density fluctuations

and are thus not important for structure formation [47], even though tensor pertur-

bations correspond to primordial gravitational waves potentially detectable in the

cosmic microwave background. We follow closely the linear perturbation treatment

from [11].

The form of the perturbed metric depends on the choice of gauge, which determines

10



1.2 The inhomogeneous Universe

the time slicing of spacetime and the spatial coordinates defined on this time slicing.

In the following, we work in Newtonian conformal gauge, which offers simple physical

interpretations and in which the perturbed metric is diagonal [11]. Another common

gauge is the synchronous gauge.

The line element in Newtonian conformal gauge assuming a flat Universe reads [35]

d s2 = a2(η)
[
−(1+2Ψ(η, x⃗))dη2 + (

1+2Φ(η, x⃗)
)

d xi d xi

]
(1.30)

whereΨ(η, x⃗) andΦ(η, x⃗) are the two Newtonian gravitational potentials and we use

conformal time η and xi as the spatial components of xµ in Cartesian coordinates. In

the case of dark and baryonic matter, we can again write the perturbed stress-energy

tensor using the perfect fluid assumption

T 0
0 =−(ρ̄+δρ) (1.31)

T i
0 =−(ρ̄+ P̄

c2
)v i (1.32)

T i
j = (P̄ +δP )δi

j +Πi
j (1.33)

where δρ and δP are the density and pressure perturbations, v i = d xi

dη is the bulk

velocity of the fluid and is also a first order perturbation and Πi
j is the anisotropic

stress (Πi
i = 0). We define the density contrast of a species i

δi (η, x⃗) = ρi (η, x⃗)− ρ̄i (η, x⃗)

ρ̄i (η, x⃗)
. (1.34)

Photons and massless neutrinos can only be appropriately described through their

phase space distribution function. In general, the stress-energy tensor Tµν can be

written in terms of the distribution function of a particle species f (xi ,P j , t ) as

Tµν =
∫

dP1dP2dP3(−g )−
1
2

PµPν
P 0

f (η, xi ,P j ) (1.35)

where P j is the conjugate momentum (the spatial part of the 4-momentum with lower
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Chapter 1. Introduction

indices) related to the proper momentum by

Pi = a(1−Φ(η,x))pi , (1.36)

and g the determinant of the metric. The perturbed distribution function is the sum

of the equilibrium distribution function and a perturbation

f (xi ,P j , t ) = f0(ϵ)
[

1+F (η, xi , q j )
]

(1.37)

where ϵ = a(p2 +m2)
1
2 is the comoving energy, q j = ap j = qq̂ j (q and q̂ j are the

magnitude and direction of q j ) and f0(ϵ) is either the Fermi-Dirac distribution for

fermions or the Bose-Einstein distribution for bosons [11].

The Einstein field equations describe how the perturbations in the energy density of

the various components of the Universe perturb the spacetime metric. In order to

close the system, we also need additional equations describing how the time evolution

of matter and radiation is affected by metric perturbations: the Boltzmann equations.

The Boltzmann equation for the phase space distribution function f (xi ,P j , t ) reads

d f

d t
= ∂ f

∂t
+ ∂xi

∂t

∂ f

∂xi
+ ∂q

∂t

∂ f

∂q
+ ∂q̂i

∂t

∂ f

∂q̂i
=C [ f ]. (1.38)

Here C [ f ] is the collision term describing interactions between different particle

species. Combining these equations for each particle species with the Einstein field

equations, we obtain the Einstein-Boltzmann system of ordinary differential equations.

The system of coupled ordinary differential equations determines the evolution of

the different components of the Universe at linear order and needs to be solved

numerically. It is commonly expressed in Fourier space, where the derivatives become

simple multiplications and where each Fourier mode evolves indipendently. The

Fourier transform of δ(η, x⃗) reads

δ(η, k⃗) = 1

(2π)
3
2

∫
d 3xδ(η, x⃗)e−i k⃗ ·⃗x . (1.39)

We now look at the equations for different components in terms of conformal time η.
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1.2 The inhomogeneous Universe

Dark matter and baryonic matter

Dark matter is described as a collisionless fluid, which only interacts gravitationally.

Its evolution can easily be derived from the conservation equation of the perturbed

stress-energy tensor T µν
;ν = 0 and results in

δ̇+ i kv =−3Φ̇ (1.40)

v̇ + ȧ

a
v =−i kΨ (1.41)

where dots corresponds to derivatives in η. We can also describe baryons as a non-

relativistic fluid, but need to include a collision term due to Thomson scattering

with the photons. The scattering mechanism conserves the number of particles but

modifies their momenta. The Boltzmann equations for baryons describe the evolution

of the baryon overdensity δb and velocity perturbation vb

δ̇b + i kvb =−3Φ̇ (1.42)

v̇b +
ȧ

a
vb =−i kΨ− i kc2

s δb +
4ργ
3ρb

τ̇ [vb +3iΘ1] (1.43)

where τ is the optical depth and the inverse of its comoving time derivative corre-

sponds to the free streaming distance of the particles. Θ1 is the first moment of the

perturbations of the photons, that will be introduced further below. The time evolu-

tion of τ and c2
s require precise knowledge of the ionization history of electrons in the

Universe, which is derived by solving the equations describing the atomic processes

happening during recombination numerically [48–50].

Radiation

For the radiation components, we use the stress-energy tensor from equation 1.35.

Neglecting the second order term in Equation 1.38 and using the geodesic equation to
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rewrite ∂q
∂t , we obtain

Ḟ + i
q

ϵ
(⃗k · q̂)F − d ln f0

d ln q

[
Φ̇+ i

ϵ

q
(⃗k · q̂)Ψ

]
= C [ f ]

f0
(1.44)

where the collision term on the right-hand side will depends on the particle species

(massless neutrinos or photons). In the case of neutrinos, the right-hand side can be

set to C [ f ] = 0 since their interactions are very weak. Photons instead interact with

the electrons via Thomson scattering. We define functions N (⃗k, q̂ ,η) for the neutrinos

and Θ(⃗k, q̂ ,η) for the photons by integrating out the q-dependence in the distribution

function and expanding the angular dependence in a series of Legendre polynomials

Pℓ(k̂ · q̂)

Θ(⃗k, q̂ ,η) ≡ 1

4

∫
d qq3 f0(q)F (η, x, q, q̂)∫

d qq3 f0(q)
=

∞∑
ℓ=0

(−i )ℓ(2ℓ+1)Θℓ(⃗k,η)Pℓ(k̂ · q̂). (1.45)

Θ corresponds to the fractional temperature δT /T . We also have a functionΘP (⃗k, q̂ ,η)

for perturbations in the polarization of photons. The Boltzmann equations for the

radiation components result in

Θ̇+ i kµΘ=−Φ̇− i kµΨ− τ̇
[
Θ0 −Θ+µvb −

1

2
P2(µ)Π

]
(1.46)

Θ̇P + i kµΘP =−τ̇
[
ΘP − 1

2
(1−P2(µ))Π

]
(1.47)

Ṅ + i kµN =−Φ̇− i kµΨ (1.48)

where µ = k̂ · q̂ , P2 is the second Legendre polynomial, Π = Θ2 +ΘP,0 +ΘP2 and we

omitted the functional dependencies for readability. In order to conveniently solve

these equations numerically, we write equations for the Legendre coefficients Θℓ(k,η)

Θℓ(k,η) = 1

(−i )ℓ

∫ 1

−1

dµ

2
Pℓ(µ)Θ(k,µ,η). (1.49)

14



1.2 The inhomogeneous Universe

The hierarchy of equations would be infinite, but it is common to define a truncation

rule [11]. The hierarchy of equations reads:

Θ̇0 = −kΘ1 − Φ̇ (1.50)

Θ̇1 = k

3
[Θ0 −2Θ2 +Ψ]+ τ̇

[
Θ1 − i vb

3

]
(1.51)

Θ̇2 = k

5
[2Θ1 −3Θ3]+ τ̇

[
Θ2 − Π

10

]
(1.52)

Θ̇ℓ = k

2ℓ+1
[ℓΘℓ−1 − (ℓ+1)Θℓ+1]+ τ̇Θℓ, ℓ> 2 (1.53)

Θ̇P,ℓ = k

2ℓ+1

[
ℓΘP,(ℓ−1) − (ℓ+1)ΘP,(ℓ+1)

]+ τ̇[
ΘP,ℓ−

Π

2

(
δℓ,0 +

δℓ,2

5

)]
(1.54)

Ṅ0 = −kN1 − Φ̇ (1.55)

Ṅ1 = k

3
[N0 −2N2 +Ψ] (1.56)

Ṅℓ = k

2ℓ+1
[ℓNℓ−1 − (ℓ+1)Nℓ+1] , ℓ> 1 (1.57)

where δℓ,0 = 1 if ℓ= 0 and δℓ,2 = 1 when ℓ= 2 and zero otherwise.

Gravity

The perturbed Einstein field equations in conformal Newtonian gauge result in

k2Φ+3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
=−4πGa2δT 0

0 (1.58)

k2
(

ȧ

a
Ψ− Φ̇

)
= 4πGa2i k jδT 0

j (1.59)

−Φ̈+ ȧ

a
(Ψ̇−2Φ̇)+ (2

ä

a
− ȧ2

a
)Ψ− k2

3
(Φ+Ψ) = 4π

3
Ga2δT i

i (1.60)

k2(Φ+Ψ) = 12πGa2(k̂i k̂ j − 1

3
δi j )Σi

j (1.61)

where Σi
j = T i

j −δi
j T k

k /3. Only two equations are needed to close the system, so the

other two are redundant. We choose to use Equations 1.58 and 1.61. After rewriting
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δT µ
ν in terms of densities, velocities and second order moments, this results in

k2Φ+3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
= 4πGa2 [

ρ̄δ+ ρ̄bδb +4
(
ρ̄γΘ0 + ρ̄νN0

)]
(1.62)

k2(Φ+Ψ) =−32πGa2 (
ρ̄γΘ2 + ρ̄νN2

)
. (1.63)

Initial conditions

We have discussed the evolution of perturbations in the Universe, but have not de-

scribed the source of primordial fluctuations. The theory of inflation, postulated

in the 1980s [51] to solve several problems arising in cosmology (like the flatness

problem, the curvature problem and the abundance of magnetic monopoles), pro-

vides a mechanism to produce super-horizon perturbations starting from quantum

fluctuations.

Inflation introduces an early phase of accelerated expansion which flattens out the

curvature of the Universe and creates causal contact between parts of the Universe

that would otherwise not be causally connected. In its most simple description, the

accelerated expansion is caused by a scalar field which is in a false vacuum state

and then rolls slowly to its true vacuum state. One prediction of the simple single-

field inflation is that it sources adiabatic perturbations. This means that the density

contrast δi is the same for all species i [52].

1.2.2 Growth of structure

We have shown formally how the different fields evolve in time at linear order in an

expanding spacetime metric. We now want to describe the asymptotic behaviour

of the perturbations of different components and how this leads to the growth of

structure in the Universe.
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1.2 The inhomogeneous Universe

Gravitational potential

We start by describing the evolution of the gravitational potential, since it is coupled

with all the other fields. At early times, the perturbations are outside the horizon and

therefore cannot be affected by causal physics. As time passes, the horizon expands

and perturbations start entering the horizon. As we have seen in Chapter 1.1, different

components dominate the Universe at different timescales. Smaller perturbations

enter the horizon during radiation domination and are damped due to the fact that

pressure is very efficient at counteracting gravity in this epoch. Perturbations on larger

scales enter the horizon in the matter dominated era and start growing linearly with

the scale factor a(t ).

Dark and baryonic matter

Dark matter makes up the majority of matter in the Universe and drives the evolution

of the matter perturbations. It is common to parametrize the evolution of dark matter

perturbations using the tranfer function T (k) and the growth factor D(a) as

δ(k, a) ∝ k2Φp (k)T (k)D(a) (1.64)

whereΦp (k) is the primordial gravitational potential. In this equation, T (k) accounts

for the scale-dependence of the dark matter perturbations while D(a) parametrizes the

scale-independent growth. The time evolution of dark matter perturbations follows

that of the gravitational potential.

Baryon perturbations generally follow the growth of dark matter perturbations, but

are initially strongly coupled to the photons. This leads to a characteristic oscilla-

tory behaviour due to the electromagnetic interactions in their early time evolution,

which is imprinted on the large-scale structure of the Universe as Baryonic Acoustic

Oscillations (BAO).
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Radiation

Initially photons are tightly coupled to the baryons through Thomson scattering. At the

epoch of recombination zr ec ≃ 1100, protons and electrons combine to form neutral

hydrogen so that the Universe becomes transparent to radiation. Recombination ends

at the large scattering surface, when photons are free-streaming in the Universe.

The initial coupling between baryons and photons implies a competition between

gravity and pressure and the creation of acoustic waves in the baryon-photon plasma.

When the photons decouple, this wave remains imprinted in both the baryonic matter

distribution and the radiation perturbations. In real space this corresponds to an

enhanced correlation on a specific scale, corresponding to the sound horizon at

recombination

rs(ηr ec ) =
∫ ηr ec

0
cs(η′)dη′, (1.65)

whereas in Fourier space this corresponds to oscillations in the perturbations.

1.2.3 Nonlinear structure formation

At early times and on sufficiently large scales, linear perturbation theory is sufficient

to study the growth of structure in the Universe. However, perturbations at late times

become nonlinear (δ≫ 1) on certain scales and linear perturbation theory is no longer

valid. The most common approach to studying the growth of structure on non linear

scales is through numerical dark matter simulations. These are widely known as

N-body simulations since the matter field is described by N discrete matter particles.

N-body simulations track the interactions that act between the different particles from

initial conditions and evolve the phase space of the particles in time until today [53].

Fitting formulas for the non-linear evolution are derived from the N-body simulations

(e.g. [54–56]). Analytical approaches such as the Press Schechter formalism and the

halo model exist and are valid in certain regimes [57–60]. The picture that emerges

in the ΛCDM paradigm is that of a hierarchical formation of structures: smaller dark
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1.2 The inhomogeneous Universe

matter haloes form first and merge to form larger haloes at later times.

1.2.4 Galaxies in the cosmological context

Galaxies form from interstellar gas and dust hosted in the potential wells of dark

matter haloes. While the dark matter is collisionless, baryons undergo collisions until

the interplay between gravity and pressure leads to gravitational collapse. The collapse

causes the heating of the gas, which then cools via different radiative mechanisms that

depend on its temperature and density [61]. There are different evolutionary paths

of galaxies, depending on the local conditions, as well as the interactions with other

systems. These processes can be studied through observations and with the help of

hydrodynamical simulations [62] or semi-analytical models (SAMs) [63].

Galaxies are often classified as early-type (quiescent or red) and late-type (star-forming

or blue). This is a simplistic description, since a lot of variability is observed in the

galaxy population and galaxies are made up of bulges, spiral arms, disks, bars and

stellar halos, with different formation mechanisms. The most straightforward way to

distinguish different galaxy types is their morphology: this is a combination of the

intrinsic shape of the galaxy and its orientation relative to the line of sight. The first

galaxy classification dates back to 1926, when Hubble assigned galaxies to a tuning

fork diagram consisting of ellipticals, spirals (normal and barred), lenticulars and

irregular galaxies. Ellipticals and lenticulars are redder, meaning that the stars in the

system are older, whereas spirals are bluer and still star forming. Galaxy morphology

can be made more quantitative by measuring the surface brightness as a function of

radius Iλ(R). This is described by the Sersic light profile

Iλ(R) = Ie exp

{
−b(n)

[(
R

Re

) 1
n −1

]}
(1.66)

where Ie is the surface brightness at the effective radius Re , n is the Sersic index and

b(n) ≈ 2n −1/3 [64]. Elliptical galaxies and the bulges of spirals have Sersic indices

2 < n < 10, whereas disks have n ∼ 1 and bars n ≲ 0.5.
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Many properties of a galaxy can be measured through its Spectral Energy Distribu-

tion (SED) f (λ), which is the total energy emitted per unit wavelength. This can be

measured with a spectrometer and yields a wealth of information about metallicity

and star formation history encoded in the emission and absorption lines. In an op-

tical telescope we measure the flux of a galaxy, which is the SED integrated over the

throughput of an optical filter and the area of the galaxy

Fi =
∫ ∞

0
f (λ)Ri (λ)dλ (1.67)

where Ri (λ) is the filter response of the system, including atmospheric transmission.

For historical reasons, we often use magnitudes instead of fluxes to describe the light

coming from galaxies

mi =−2.5log

(
Fi

F AB
0

)
(1.68)

where F AB
0 is the flux of the standard source in the AB magnitude system correspond-

ing to a bandpass-averaged spectral flux density of 3631 Jy. mi is the apparent magni-

tude of the system, which depends on the intrinsic luminosity L and the luminosity

distance squared d 2
L . It is thus convenient to define a distance independent quan-

tity M which is known as the absolute magnitude and corresponds to the apparent

magnitude of a source at a distance of 10 pc from the observer. The relation between

absolute and apparent magnitude in the same filter band is

m −M = 5log

(
dL

10pc

)
+K (z) (1.69)

with K (z) the K correction [65], allowing us to account for the difference between

emitted and observed wavelengths due to redshift. The colour of a galaxy is the

difference between magnitudes in two different bands. This provides information

on the ages and metallicities of stars, but also depends on the dust extinction along

the line of sight. As already hinted at, there is a bimodality in the colour distribution,

which correlates with the early-type/late-type morphological classification [66]. The
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1.3 Probes of large-scale structure

region in between red and blue galaxies is often referred to as green valley.

In order to describe the overall galaxy population, one can write a stellar mass function,

which describes the number of galaxies at a certain redshift in ranges of stellar mass.

This depends on the halo mass function of dark matter and the stellar-to-halo mass

ratio. A more direct observable is the luminosity function of galaxies [67] describing the

number of galaxies per comoving volume per unit luminosity or absolute magnitude

at fixed redshift z

φ(z, M) = d N

d MdV
. (1.70)

We can rewrite the comoving volume element dV as

dV = dH d 2
M

E(z)
dΩd z (1.71)

where dH is the Hubble distance, dM the transverse comoving distance,Ω the solid an-

gle and E(z) = (
Ωr (1+ z)4 +Ωm(1+ z)3 +Ωk (1+ z)2 +ΩΛ

) 1
2 . A good parametrization

of the luminosity function is the Schechter function

φ(z, M) = 2

5
ln10φ∗10

2
5 (M∗−M)(α+1) exp

(
−10

2
5 (M∗−M)

)
(1.72)

where M∗ is the characteristic magnitude defining the change between the power law

behaviour for faint galaxies and the bright-end exponential cutoff, φ∗ is the normal-

ization and α describes the faint-end slope. Both M∗ and φ∗ can be constrained as a

function of redshift. Furthermore, it is common to separately fit a Schechter function

for star-forming and quiescent galaxies.

1.3 Probes of large-scale structure

In cosmology we want to study and describe the Universe as a whole. This implies that

there is only one single realization that we can observe and we cannot run multiple

experiments. To overcome this problem, we look at the Universe statistically. We
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Chapter 1. Introduction

are interested in ensemble averages over multiple realizations of our Universe, and

we use ergodicity to transform them into spatial averages [61]. In this thesis, we

focus on photometric galaxy surveys. In these surveys, galaxies are observed in the

night sky through an optical telescope. The images are then processed, stacked and

sources are detected in the images. In order to derive cosmological information from

these observations, we need to link properties of galaxies (such as their positions and

shapes) to the parameters of our cosmological model. To achieve this, we start by

describing the statistics of a dark matter overdensity field.

1.3.1 Cosmological field statistics

The dark matter overdensity field δ(t ,x) generated from inflation is a Gaussian random

field, so that the only moments needed to describe it are the first moment 〈δ(x)〉 = 0

and the second moment 〈δ(x)δ(x′)〉 ≡ ξ(x,x′) which is the correlation function. Due to

homogeneity and isotropy, the field is invariant to translations and rotations and we

can write

ξ(x,x′) = ξ(|x−x′|) (1.73)

so that the correlation function only depends on the distance between two points. It is

often convenient to predict observables in Fourier space and, using Equation 1.39, one

can show that the Fourier transform of the correlation function is the power spectrum

P (k,k′) = 〈δ(k)δ∗(k′)〉 = P (k)δD (k−k′) (1.74)

where ∗ indicates the complex conjugate and we have used isotropy and homogeneity

to obtain the final result (where δD (k−k′) is the Dirac delta function). The matter

power spectrum P (k) appears in most large-scale structure observables. The real

space variance of the field can be obtained from the power spectrum as

σ2 ≡ 〈δ2(x)〉 =
∫

d 3k

(2π)3

∫
d 3k ′

(2π)3
e i x(k−k ′′′)〈δ(k)δ∗(k ′′′)〉 =

∫
d 3k

(2π)3
P (k) (1.75)

22



1.3 Probes of large-scale structure

and defines the normalization of the power spectrum. It is common to smooth the

density field with a spherical top-hat window function to measure this normalization

on a given scale, most commonly R = 8Mpc/h, where H0 = 100h(km/s)/Mpc, so that

σ2
8 =

1

2π2

∫
k2P (k)

[
3 j1(kR)

kR

]2

dk (1.76)

where j1(kR) is the spherical Bessel function of order one. The whole treatment

presented so far can be generalized to any cosmological field f (for example the

overdensity fields of baryons, photons or neutrinos).

We often work on the two-sphereS2, due to the geometry of our sky observations, and

it is therefore useful to define the correlation function also on the sphere. In this case

ξ(θ,θ′) ≡ 〈 f (θ) f (θ′)〉 = ξ(∆θ) (1.77)

where ∆θ = |θ−−−θ′| and f (θ) = ∑
ℓ

∑
|m|<ℓ fℓmYℓm(θ) where Yℓm(θ) is the spherical

harmonic of degree ℓ and order m. The equivalent of the power spectrum on the

sphere are the spherical harmonic power spectra C (ℓ)

〈 f ∗
ℓm fℓ′m′〉 =C (ℓ)δℓ,ℓ′ δm,m′ (1.78)

where δℓℓ′ is the Dirac delta function.

1.3.2 Galaxy clustering

Galaxies reside in dark matter haloes and are therefore biased tracers of the underlying

dark matter distribution. We can write

δg (k, a) = b(k, a)δ(k, a) (1.79)

where b(k, a) is the galaxy bias [68] and is often approximated as linear and scale-

independent b(k, a) = b1 on sufficiently large scales and for specific populations of

galaxies. From here on, we will make use of this assumption.
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The distribution of galaxies is a three dimensional observable so it is best traced in

a spectroscopic survey, where the redshift is obtained by fitting the absorption and

emission lines of the galaxy’s SED. Spectroscopy is time consuming and costly though,

and is limited to brighter samples than photometry. It also requires targeting of objects

from an imaging survey and is prone to selection effects. In this work, we focus on

photometric galaxy surveys, which can span wider areas and consist currently of

hundreds of millions of objects. The galaxy positions in a photometric survey are used

to measure the angular correlation function (or power spectrum) in tomographic bins.

The reason for this, is the fact that the photometric determination of redshift yields

larger uncertainties, so that we do not want to rely on the photometric redshifts of

individual objects. We describe ways to measure photometric redshifts in Section

1.3.6.

From Equation 1.79, we can derive the galaxy-galaxy power spectrum

〈δg (k, a) δ∗g (k, a)〉 = Pg g (k, a)δD (k−k′) = b2
1P (k, a)δD (k−k′). (1.80)

The dark matter power spectrum P (k, a) must include the non linear evolution of dark

matter, since galaxy clustering is a late-time probe. In order to obtain cosmological

constraints from wide field surveys, we need to relate Pg g (k, a) to the angular power

spectrum Cg g (ℓ), by integrating over the line of sight. For simplicity, we use the Limber

approximation [69] and consider two tomographic bins i and j , then

Cg g (ℓ) =
∫

P

(
k = ℓ+ 1

2

χ
, z

)[
Wℓ

i (
χ(z)

)
Wℓ

j (
χ(z)

)] dχ

χ2
(1.81)

where

Wℓ
i (χ(z)) = ni (z)b1 (1.82)

with n(z) the redshift distribution of the galaxy sample normalized to unity.
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1.3 Probes of large-scale structure

1.3.3 Gravitational lensing

While the positions of galaxies trace the baryonic density field, their shapes directly

reflect the total matter content of the Universe. This is due to the deep connection

predicted by general relativity between the paths of photons travelling towards the

observer and the inhomogeneities present along their way. The gravitational lensing

effect can cause very dramatic distortions of the image of the object, such as multiple

images and time delays, when the photon paths are deflected by a galaxy cluster or a

very massive galaxy: this effect is called strong gravitational lensing [70, 71]. When we

instead look at the cumulative and coherent effect that the overall large-scale structure

distribution has on the statistical shapes of galaxies, we talk about cosmic shear. This

weak lensing regime is the focus of wide field photometric surveys and yields stringent

constraints on the cosmological parameters. Extensive treatments of gravitational

lensing can be found in many reviews and books [36, 72–77]. In the following we

provide a concise description of this effect.

As photons travel from a far away galaxy to the observer, their paths get distorted by

the intervening matter but the surface brightness of the galaxy is conserved

Iobs(θ) = Itrue(θS) (1.83)

where θ is the angle under which the observer sees the image of the galaxy and θS is the

true angular position of the galaxy. We consider two photons travelling from a source

galaxy to the observer along null geodesics. The transverse comoving separation

between the two light rays in a flat Universe is x0 = χθ where χ is the comoving

distance from the observer. Neglecting the anisotropic stress on large scales so that

the two Newtonian gravitational potentials are equal Ψ(a, x) = Φ(a, x), assuming

Φ(a, x) ≪ c2 and using the Born approximation (the perturbed path of photons does

not differ much from a straight line if we assume the weak lensing regime), one can

compute the modification of the angular separation due to the lensing effect which

results in

θS = θ− 2

c2

∫ χ

0

χ−χ′
χ

[∇⊥Φ(χ′θ,χ′)−∇⊥Φ(0)(χ′)
]

dχ′ (1.84)
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whereΦ(0) is the potential along the fiducial light ray and ∇⊥ is a derivative along the

separation x . By linearising the lens equation and defining the lensing potential

ψ(θ,χ) = 2

c2

∫ χ

0

χ−χ′
χχ′

Φ(χ′θ,χ′)dχ′ (1.85)

one obtains the distortion matrix

A= ∂θS

∂θ
= δi j −ψ,i j =

(
1−κ−γ1 −γ2

−γ2 1−κ−γ1

)
(1.86)

whereψ,i j = ∂2ψ/∂θi∂θ j and we have introduced the two shear componentsγ≡ γ1+iγ2

and the convergence κ which are defined in terms of derivatives of the lensing poten-

tial. In the weak lensing regime, the shear components describe the elongation of a

galaxy along and at 45◦ from the horizontal axis of the cartesian coordinate system

centered at the galaxy and the convergence describes the magnification of the galaxy.

By introducing the angular position φ of the source galaxy with respect to the x-axis,

we can rewrite the shear γ in terms of tangential shear γt and cross shear γ×

γt =−γ1 cos(2φ)−γ2 sin(2φ) (1.87)

γ× = γ1 sin(2φ)−γ2 cos(2φ). (1.88)

The tangential component is usually referred to as E-mode, which is curl-free, and the

cross shear is referred to as B mode, which is divergence free and vanishing since the

shear field is sourced by a single scalar potential.

Using the Poisson equation

∆Φ= 4πGa2ρ̄mδ, (1.89)

which is a late-time limit of Equation 1.58, we can rewrite the convergence κ in terms

of the dark matter density perturbations and matter energy density:

κ
(
θ,χ

)= 1

2
∇2ψ

(
θ,χ

)= 3H 2
0Ωm

2c2

∫ χ

0

(
χ−χ′)χ′
a(χ′)χ

δ
(
χ′θ,χ′

)
dχ′. (1.90)
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1.3 Probes of large-scale structure

So far we have considered sources at a specific distance χ from the observer. In order

to express the mean convergence from a population of source galaxies we integrate

along the line of sight

κ(θ) =
∫ χmax

0
n(χ)κ(θ,χ)dχ= 3H 2

0Ωm

2c2

∫ χmax

0

g (χ)χ

a(χ)
δ

(
χθ,χ

)
dχ (1.91)

where n(χ) is the source redshift distribution and

g (χ) =
∫ χmax

χ
n(χ′)

(
χ′−χ
χ′

)
dχ′ (1.92)

is known as lensing efficiency. This means that the convergence is a 2D projection

of the matter overdensity δ weighted by the lensing potential. We can now write the

spherical harmonics power spectrum of the convergence of two tomographic bins i

and j

C i j
κκ(ℓ) =

(
3H 2

0Ωm

2c2

)2 ∫ χmax

0
P

(
k = ℓ+ 1

2

χ
,χ

)
g i (χ)g j (χ)

a(χ)2
dχ (1.93)

where we have used the Limber approximation to only consider modes perpendicular

to the line of sight. Since cosmic shear is sourced by a single scalar field we have

Cγγ(ℓ) =Cκκ(ℓ) =CEE (ℓ) and CBB (ℓ) = 0.

We now have a connection between shear and cosmological parameters, but we still

need to relate shear and galaxies’ ellipticity. Assuming that galaxies are randomly

oriented in space so that the instrinsic ellipticity 〈ϵint〉 = 0, we can use the measured

ellipticities of galaxies to infer the underlying matter distribution. We first rewrite the

distortion matrix

A= (1−κ)

(
1− g1 −g2

−g2 1− g1

)
(1.94)

where

gi = γi

1−κ (1.95)
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is called reduced shear. This shows that the convergence κ only affects the size of

the objects and the observable change in the ellipticities is controlled by the reduced

shear. If we measure the shape of a galaxy using elliptical isophotes, the observed

ellipticity can be related to the intrinsic ellipticity [78] through

ϵobs =
ϵint + g

1+ g∗ϵint
≈ ϵint +γ (1.96)

where g∗ is the complex conjugate of g and the approximation is valid in the weak

lensing regime.

1.3.4 Galaxy galaxy lensing

Galaxy-galaxy lensing (GGL) correlates shapes of high-redshift galaxies (sources) with

positions of galaxies at lower redshift (lenses). The spherical harmonics power spec-

trum is thus a cross-correlation of the two introduced in the previous sections

C i j
gκ(ℓ) = 3H 2

0Ωm

2c2

∫
P

(
k = ℓ+ 1

2

χ
,χ

)
ni (χ(z))b1

g j (χ)

a(χ)

dχ

χ
. (1.97)

C i j
gκ(ℓ) can be measured from convergence and galaxy density maps. A more common

observable of galaxy-galaxy lensing is the mean tangential shear as a function of angu-

lar scale 〈γt (θ)〉. This requires finding lens-source pairs at given angular separations,

measuring the tangential shear and averaging over angular bins. 〈γt (θ)〉 can be re-

lated to the mean convergence in a circular aperture of angular radius θ and is thus

a measurement of the total projected mass within the radius. Another related GGL

observable is the excess of surface mass density ∆Σ, where the surface mass density

Σ is defined in terms of the convergence κ. The derivation of these quantities and a

more extensive description can be found e.g. in [79].
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1.3 Probes of large-scale structure

1.3.5 3×2-point analysis

The combination of galaxy clustering, cosmic shear and galaxy-galaxy lensing is known

as 3×2-point analysis. It is highly beneficial to combine the three large-scale structure

observables to constrain cosmological parameters since different probes are subject

to different systematic effects and biases. Galaxy clustering is strongly affected by the

relation between dark matter and baryons encoded in the galaxy bias modeling, which

is highly uncertain [68]. Cosmic shear, as mentioned, is a much more direct probe

of the total matter distribution. Despite the theoretical simplicity, there are several

systematic effects affecting cosmic shear. First of all, the shape measurement needs to

be very accurate and the residual difference between the true and measured shear is

often parametrized by an additive and a multiplicative shear bias [80], calibrated on

simulations. One source of such biases is the Point Spread Function (PSF), which is

the response of the optical system to a point source caused by the atmosphere and

the optics of the telescope. The PSF is convolved with the intrinsic profile of a galaxy

and smears it, so that accurate PSF reconstruction is crucial for shape measurement

[81]. Furthermore, most cosmological signal in cosmic shear comes from small faint

galaxies. For this reason, spectroscopic estimation of redshifts becomes infeasible

and surveys need to rely on photometry in a few broad-bands for estimating the red-

shift distribution of the source sample. The sample is split in different tomographic

bins, in order to increase the constraining power and reconstruct some of the three

dimensional information [82]. We treat photometric redshift calibration in detail

in the following subsection 1.3.6, as it is the focus of the second half of this thesis.

Another effect that can bias cosmic shear measurements is the intrinsic alignment

of galaxies [83], the fact that galaxy shapes are not uncorrelated but depend on com-

plex astrophysical processes and the local environment. Finally, modelling choices,

approximations and baryonic effects all have the potential to bias results from large-

scale structure probes by shifting power between scales in the power spectrum, even

though these effects should be negligible in current surveys. Galaxy-galaxy lensing

inherits the systematics of cosmic shear and galaxy clustering but probes the relation

between dark and baryonic matter, thereby helping to break degeneracies between

cosmological parameters and the galaxy bias [84]. The 3×2-point analysis is a power-
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ful probe of cosmological parameters describing the matter distribution of the local

Universe, mostly Ωm and σ8, and also the dark energy parameters such as ΩΛ and the

dark energy equation of state parameter w .

1.3.6 Photometric redshift estimation

In the previous sections, we saw how the redshift distribution of galaxies n(z) appears

in the kernels of the different large-scale structure observables. As already mentioned,

the most accurate way to retrieve redshift information would be through high res-

olution spectroscopy. This is infeasible for the large samples we are interested in

measuring in current and future cosmological galaxy surveys, most notably for cos-

mic shear, which benefits from large samples and from small faint galaxies. Another

promising approach is that of obtaining a low resolution spectrum by collecting many

fluxes in narrow-band filters and with broad wavelength coverage. This is also costly,

and currently available only for selected deep fields such as COSMOS [29, 85, 86] or

to bright limiting magnitudes (for example in the PAU Survey [87]). In wide-field cos-

mological galaxy surveys we are thus relying on images in a few broad-band filters to

constrain the redshift distribution of our samples, a technique known as photometric

redshift (photo-z).

Many photo-z methodologies have been developed and compared over the years, as

redshift requirements get more stringent [23, 88–93]. The precise determination of

the redshift distribution is currently one of the main systematic errors of weak lensing

and photometric clustering, possibly leading to biases in the determination of cos-

mological parameters. We can broadly distinguish two different needs for photo-zs:

probes such as clustering (or galaxy evolution studies) benefit from the knowledge of

individual redshifts of galaxies whereas often we can get away with the overall redshift

distribution of an ensemble of galaxies, possibly divided in several tomographic red-

shift bins. To obtain individual redshifts there are two main approaches: SED fitting

and machine learning. When constraining the overall redshift distribution, one can

use techniques to stack or combine individual redshifts or methods specifically de-

signed for redshift distributions, such as direct calibration, spatial cross-correlations
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and hierarchical Bayesian models or forward modelling. In the following, we give

some details on each family of methods.

SED fitting methods

SED fitting methods rely on a family of known template spectra, coming either from

spectroscopic observations or from stellar population synthesis models. The tem-

plates are either fitted individually or combined. Through a χ2-minimization, the

methods determine the redshifted template whose broad-band colours best match the

observed galaxy, and determine simultaneously the galaxy redshift and type. The goal

is to estimate the posterior p(z|fluxes) using Bayes’ theorem, so that prior knowledge

on the expected shape of the redshift distribution or the fraction of different galaxy

types can be included. Wrong prior information or an incomplete template set can

cause problems with these methods. Commonly used codes in this cathegory are:

LePhare [85, 94], EAZY [95], BPZ [96], ZEBRA [97] and MIZUKI [98].

Machine learning methods

The idea behind the machine learning methods is to rely on training data, where the

fluxes and the redshifts are known, either from spectroscopy or many-band photome-

try. Sometimes the methods are directly applied to images, other times features such

as fluxes and colours are extracted from the data first. The algorithm of choice (usually

an artificial neural network, gaussian process or random forest) will then minimize

a score, the details of which depend on the specific method and on whether the re-

sult is the point estimate of the redshift or a probability distribution function. The

weakness of these methods comes from the training sample: if this is not complete

and representative of the target sample, the methods are prone to biases. Machine

learning methods include ANNz [99], ANNz2 [100], DNF [101], GPz [102], TPZ [103],

MLPQNA [104], METAPHOR [105] and DEmp [106] among many others.
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Direct calibration and spatial cross correlations

Direct calibration methods rely on known redshift samples, that are reweighted to

be representative of the sample of interest [107]. In the simplest scenario this im-

plies a colour reweighting of the well-known redshifts in order to match the colour

distribution of the galaxies with unknown redshifts. More sophisticated methods

rely on dimensionality reduction in order to group galaxies with similar redshifts and

properties. In recent years several surveys have used Self-Organizing Maps (SOM)

[108], an unsupervised learning algorithm, to map photometric properties to cells of a

two dimensional plane [103, 109–113]. Each SOM cell is calibrated with known red-

shifts and the redshift distribution of the sample of interest is derived probabilistically,

taking into account selection effects.

Cross-correlation methods, often referred to as clustering redshifts, rely on the spatial

correlation between the sample of interest and galaxies with well-known redshifts

[114–119]. The secure redshifts are binned in narrow redshift bins and the two-point

correlation function with the unknown redshifts are computed. The method relies

on the knowledge of the redshift evolution of the galaxy bias. It is a complementary

method, since it does not rely on photometric properties of the galaxies but only on

their positions.

Forward modelling

Forward modelling in the context of photometric redshifts is the idea that it is possible

to rely on the knowledge of the galaxy population, either explicitly or through observed

distributions of intrinsic properties, in order to obtain the redshift distribution of

a sample of galaxies [120, 121]. This makes use of forward simulations, so that the

simulated data can be treated like real data, including observational effects and sample

selection.

Hierarchical Bayesian methods infer both the posterior distribution for the redshifts

of individual galaxies and the parameters of the model describing the population

of galaxies [122–126]. These models are extensions of SED fitting where the prior is
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calibrated on the data. They differ in whether the inferred prior describes the intrinsic

galaxy properties or the observed ones.

The forward modelling method that we employ and further develop in this thesis is

called Monte Carlo Control Loops (MCCL) [27, 127]. The method relies on a parametric

galaxy population model and on a simulator that renders realistic telescope images

from a specific survey. The parameters of the model are constrained using the real

telescope data via Approximate Bayesian Computation (ABC). Once the model is

tuned, we can use it to simulate a whole survey and obtain the redshift distributions

of galaxies [120] or to calibrate the cosmic shear measurement [127]. The redshift

distribution of galaxies depends both on the intrinsic properties of the population

and on the selection effects, which are carefully modelled. The robustness of the

method can be tested by perturbing the simulator’s configuration or by extending the

forward model and the uncertainty is naturally included by running an ensemble of

simulations.

1.4 Contributions

I wrote the introductory Chapter 1 based on my review of the cited literature.
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CHAPTER 2
SYMBOLIC IMPLEMENTATION OF EXTENSIONS OF THE

PyCosmo BOLTZMANN SOLVER

There is a theory which states that if ever anyone

discovers exactly what the Universe is for and why it

is here, it will instantly disappear and be replaced

by something even more bizarre and inexplicable.

There is another theory which states that this has

already happened.

— DOUGLAS ADAMS, The Restaurant at the End of the Universe

This chapter appeared in a similar form in Moser et al., 2022 [31].

2.1 Introduction

Our understanding of the Universe relies on the possibility to predict cosmological

observables from theoretical principles. One of the key theoretical predictions is

the evolution over time of the linear order perturbations of the constituents of the

Universe, captured by the Einstein-Boltzmann equations (see, e.g., [11], [128]). The

35



Chapter 2. Symbolic implementation of extensions of the PyCosmo Boltzmann
Solver

system of ordinary differential equations, due to its complexity and the coupling of

the fields, needs to be solved numerically (see, e.g., [129]). For this purpose, several

codes have been developed since the release of the pivotal Boltzmann code COSMICS

[130], closely followed in time by CMBFAST [131], later ported to C++ with the name

CMBEASY [132]. The currently maintained Boltzmann solvers are CAMB [133], CLASS

[134] and PyCosmo [12]. Both for CAMB and CLASS several codes have been written to

include extensions beyondΛCDM, for example hi_class [135] and EFTCAMB [136] for

modified gravity theories, CLASS_EDE [137] for early dark energy and CLASSgal [138]

to include general relativistic effects in the computation of galaxy number counts.

PyCosmo was introduced by [12] as a novel Python library that uses symbolic represen-

tation of equations for generating efficient C/C++ code. The framework includes both

a Boltzmann solver as well as prediction tools for the computation of cosmological

observables with several different fitting functions and approximations [139]. With

these tools, PyCosmo offers similar utilities as, e.g., the Core Cosmology Library CCL

[140] developed by the Dark Energy Science Collaboration (DESC).

An important feature of PyCosmo is the possibility to easily implement model exten-

sions in symbolic form in the code, while taking advantage of the computational speed

of the generated C/C++ code. This feature has been improved by rewriting and refac-

toring the related code as a new sympy2c package presented in [141], which expands

the idea of generating fast C/C++ code from symbolic representations of equations.

Both sympy2c and PyCosmo are publicly available in the Python Package Index (PyPI).

In this work, we illustrate how the PyCosmo Boltzmann solver can be extended thanks

to the symbolic framework by implementing several extensions. We introduce two

extensions of the Standard Model of Cosmology: a constant dark energy equation of

state and massive neutrinos. We also include a Radiation Streaming Approximation

(RSA) for photons and massless relics, which approximates the evolution of radiation

at late times and includes reionisation, following the treatment in [17] implemented in

CLASS. This approximation speeds up the code by reducing the number of equations

in the ODE system and avoiding the reflection of power caused by the truncation of

the multipole expansion of the radiation equations.

We begin by giving an overview of the new features of the PyCosmo framework in
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Section 2.2, where we discuss also the usage of the code and the precision settings

used to compare with CLASS. We then present the equations of the models, imple-

mentation details and code comparisons with CLASS, both in terms of agreement

and performance. In Section 2.3 we present the implementation of the constant dark

energy equation of state, since it is a minimal modification of the Boltzmann system

of equations for ΛCDM. We describe the inclusion of massive neutrinos, treated as

non-interacting and non relativistic relics, in Section 2.4. In Section 2.5 we present

the radiation streaming approximation, which requires sympy2c to handle a switch

between two different equation systems and is then applied to all models. In Section

2.6 we discuss the results obtained by benchmarking the speed of the computations

and comparing the numerical results to CLASS. We conclude in Section 2.7. This

work heavily relies on the Boltzmann equations presented in [11]. To translate the

PyCosmo notation to the Ma-Bertschinger and CLASS notation, we refer the reader to

Appendix 2.A.1. Appendix 2.A.2 presents the Einstein-Boltzmann system of ODE in

PyCosmo notation, using ln a as the independent variable. The adiabatic initial condi-

tions forΛCDM and all the other implemented models are shown in Appendix 2.A.3.

We report in Appendix 2.A.4 the parameters of PyCosmo and CLASS that have been

kept constant throughout the chapter. In Appendix 2.A.5, we provide a self contained

summary of the computation of the total matter power spectrum, including general

relativistic corrections, and using the As normalisation parameter.

2.2 PyCosmo framework

2.2.1 C/C++ code generation

We reimplemented and improved the C/C++ code generation related parts of previous

versions of PyCosmo [12] as a separate Python package named sympy2c which we

describe in detail in [141]. sympy2c translates symbolic representations of expressions

and ordinary differential equations to C/C++ code and compiles this code as a Python

extension module.
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sympy2c replaces the Backward-Differentiation-Formula (BDF) solver from the previ-

ous version of PyCosmo by the established and robust Livermore Solver for Ordinary

Differential Equations (LSODA) solver [142] for improved step-size control and error

diagnostics. LSODA detects stiff and nonstiff time domains automatically and switches

between the nonstiff Adams method and the stiff BDF method. The BDF method

solves a linear system derived from the Jacobian matrix of the differential equations at

each time step. This affects runtime significantly for large systems. sympy2c leverages

the symbolic form of the ODE and generates code to solve such systems efficiently

by avoiding unnecessary computations based on the known sparsity structure of the

involved Jacobian matrix.

To solve such linear systems sympy2c unrolls loops occurring in used LU factorization

with partial pivoting (LUP) algorithm during code generation. This procedure depends

on predetermined row permutations of the system, and the generated code includes

checks for whether the considered permutation is appropriate for ensuring numerical

accuracy. When solving the ODE, a new, not yet considered, permutation might arise.

In this case, the solver delegates to a fall-back general LUP solver and records the new

permutation. The result is a valid result but with a sub-optimal computation time.

In this case, the warning message "there are new permutations pending, you

might want to recompile"will be displayed together with the command necessary

to recompile. Running the code-generator again will then also create optimized code

for the newly recorded permutation(s), so that future runs of the solver will benefit

from this. This approach starts with the identity permutation and could require

several steps of solving the Boltzmann equations followed by code generation and

compilation to achieve optimal performance. In our experiments not more than one

such iteration is needed.

A large ODE system can result in C/C++ functions with millions of lines of code which

challenge the compiler and can cause long compilation times and high memory

consumption, especially during the optimization phase of the compiler. To mitigate

this, sympy2c can split the original matrix into smaller blocks and then generate code

to implement blocked Gaussian elimination using Schur-complements. This affects

the generated C/C++ code by creating more but significantly shorter functions and
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thus supports the optimization step of the compiler. Another benefit of this approach

is that runtime is improved by reducing the number of cache misses on the CPU.

Depending on the size and sparsity structure of the system, this code generation

and compilation step can take seconds up to 30 minutes or even more. PyCosmo

and sympy2c use caching strategies that consider previously generated code so that

cached solvers are available within fractions of a second.

2.2.2 Usage

The equations forΛCDM and the extended models are implemented symbolically in

PyCosmo, both with and without radiation streaming approximation, in the

CosmologyCore_model.py and CosmologyCore_model_rsa.pyfiles. Supported mod-

els are currently "lcdm", "wcdm" or "mnulcdm".

The method PyCosmo.build initializes an instance of the Cosmo class for subsequent

computations. Cosmo is the class that manages most of the functionalities of PyCosmo

and on which all the other classes rely. PyCosmo.build requires the name of the

model as well as all parameters which influence the code generation and compila-

tion step. The argument rsa enables or disables the RSA and l_max specifies the

maximum moment for truncating the photons and massless neutrinos hierarchies.

The "mnulcdm" model also accepts parameters l_max_mnu and mnu_relerr which

we describe later. Furthermore, parameters controlling the compiler, such as the

optimization flag -On and the splits to use to reduce memory consumption and

compilation time, can be specified when calling PyCosmo.build. All the parameters

that can be passed to build are specified in Table 2.1.

Parameters which do not affect code generation, such as cosmological parameters,

precision settings, parameters specific for approximations and physical constants

can be set or modified using the Cosmo.set method. Each cosmological model is

equipped with a default set of such parameters, contained in a default_model.ini

file. Listing 2.1 demonstrates how to create a cosmology and change parameters.
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1 import PyCosmo

2 cosmo = PyCosmo.build("lcdm", l_max=50, rsa=True)

3 cosmo.set(omega_m=0.28)

4 cosmo.print_params()

Listing 2.1: Creation of a ΛCDM cosmology using RSA and truncating photons and

massless neutrino hierarchies at l_max = 50. We override the default value ofΩm by

0.28 and print a report of all parameter values.

One parameter that is particularly relevant is pk_type, since it allows the user to

switch between the Boltzmann solver (pk_type = "boltz") and the approximations

(pk_type = "EH" for the fitting function by Eisenstein and Hu [143] and pk_type =

"BBKS" for the BBKS polynomial fitting function [144]). In this work we will always set

pk_type = "boltz". Other cosmological and precision parameters which are kept

fixed throughout the chapter are reported in Appendix 2.A.4. Tutorials for the com-

putation of cosmological observables and the usage of the Boltzmann solver can be

found on the PyCosmo Hub (see [139]), a public platform hosting the current version

of PyCosmo, along with CLASS, CCL, and iCosmo [145], an IDL predecessor of PyCosmo.

The link to the PyCosmo Hub can be found at

https://cosmology.ethz.ch/research/software-lab/PyCosmo.html.

2.2.3 Code comparisons setup

In order to validate the newly introduced models, we carry out detailed comparisons

with CLASS1. We evaluate the accuracy in terms of relative difference:

Relative difference(PyCosmo,CLASS) = XPyCosmo−XCLASS

XPyCosmo

where X is the cosmological observable we want to compare, for example the total

matter power spectrum. Since this is a function of the wavenumber k, we compare

1We use CLASS v3.1.0 throughout the chapter, through the Python wrapper classy.
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it visually by plotting as a function of k or, when specified, we look at the maximum

relative difference in a k interval.

Comparing the two codes implies carefully setting the cosmological parameters and

the precision settings. In the case of CLASS, we use the precision files shipped with

the code: cl_permille.pre for fast and accurate computation and pk_ref.pre for

high precision. cl_permille.pre guarantees a precision of 0.1% up to k = 1hMpc−1

for the matter power spectrum, and pk_ref.pre a precision of 0.001% on scales

k < 50hMpc−1 [146]. Both CLASS precision settings use the radiation streaming ap-

proximation, described in detail in Section 2.5. They also include the tight coupling

approximation and ultra-relativistic fluid approximation (see [17]), whereas only

cl_permille.pre uses the fluid approximation for massive neutrinos (presented in

[147]). The main parameters controlling precision in PyCosmo are the l_max parame-

ter which defines the truncation of the multipole hierarchy for radiation fields (same

for photons and massless neutrinos) and the boltzmann_rtol and boltzmann_atol

parameters defining the relative and absolute tolerance of the LSODA ODE solver.

Massive neutrinos also add two important precision parameters which will be de-

scribed more in detail in section 2.4: mnu_relerr controlling the number of momenta

q used for the massive neutrino integrals and l_max_mnu, controlling the truncation

of the multipole expansion for massive neutrinos. We summarise all the precision pa-

rameters available in PyCosmo in Table 2.1. The two precision settings that we use in

PyCosmo when comparing respectively to CLASS cl_permille.pre and pk_ref.pre

are:

• speed: l_max = 17, l_max_mnu = 17, rtol = 10−5, atol = 10−5, mnu_relerr =

10−5

• precision: l_max = 50, l_max_mnu = 50, rtol = 10−6 and atol =10−6, mnu_relerr

= 10−6.

When using the RSA in PyCosmo, we set the RSA trigger parameters (detailed in Section

2.5) to:

• speed: rsa_trigger_taudot_eta = 5, rsa_trigger_k_eta = 45

41



Chapter 2. Symbolic implementation of extensions of the PyCosmo Boltzmann
Solver

Parameter Description Method Default

rsa Switch for the RSA build False
compilation_flags GCC compiler’s optimization flag build “-O3"

splits Splittings of the ODE system build None

reorder Whether to reorder the ODE system build True
to speed up code generation

when using splits
l_max Hierarchy truncation build 20

of the relativistic relics

l_max_mnu Hierarchy truncation build 20
of massive neutrinos

mnu_relerr Relative error build 1e-5
for massive neutrinos integral

sec_factor Safety factor for permuting rows set 10
in the LUP decomposition

within LSODA

boltzmann_rtol Relative tolerance set 1e-5
of the LSODA solver

boltzmann_atol Absolute tolerance set 1e-5
of the LSODA solver

boltzmann_max_bdf_order Maximum order used set 5
by the BDF integrator

boltzmann_max_iter Max number of iterations set 2e6

of the LSODA solver

Table 2.1: Description of the precision parameters available in the PyCosmo Boltzmann
solver, along with the method they are passed to and their default values.

• precision: rsa_trigger_taudot_eta = 100, rsa_trigger_k_eta = 240

which match the equivalent CLASS parameters in cl_permille.pre and pk_ref.pre.

All the other precision parameters have default values, as in Table 2.1. We do not

attempt to exactly match the precision parameters in the two packages, since CLASS

includes a number of approximations that are not available in PyCosmo. It is possible

to switch off most of the approximations but this would imply losing the precision

guarantees of the default precision files.

The cosmological parameters that remain constant throughout the chapter are listed

in Appendix 2.A.4, whereas the matter energy density Ωm , the number of massless
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neutrinos Nν, the number of massive neutrinos Nν,m , the total sum of neutrino masses

Σmν and the dark energy equation of state parameter wde (corresponding in CLASS

to Ωcdm = Ωm −Ωb since Ωb is fixed, Nur , Nncdm , mncdm = Σmν/Nν,m and w0, f ld )

change in different models and are reported in the corresponding sections. ΩΛ is

computed by imposing the flatness condition
∑

i Ωi = 1.

2.3 A simple model: dark energy with a constant equa-

tion of state

2.3.1 Equations

In order to search for deviations from a cosmological constant, we consider here a dark

energy equation of state with wde = pde/ρde ̸= −1. The equations for this model have

been studied in detail in [148], and experimental constraints have been presented in,

e.g. [149–152].

For a constant dark energy equation of state wde, the dark energy density is given by2

ρ(a) = ρ0 ·a−3(1+wde). (2.1)

We immediately see that ρ = const. for a cosmological constant with wde =−1. The

Hubble parameter is given by

H(a)

H0
=

[
Ωr a−4 +Ωm a−3 +Ωκa−2 +ΩΛ ·a−3(1+wde)

] 1
2

. (2.2)

In this equation, Ωr is the radiation density which includes photons and massless

neutrinos,Ωm the matter density,Ωκ the curvature density (listed for completeness,

even though the Boltzmann solver in PyCosmo currently only supports flat models)

andΩΛ the dark energy density. In all cases, Ωi is defined as the fraction of the energy

density of the corresponding component today and the critical energy density ρcrit of

2In the code, wde is written as the parameter w0.
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the Universe.

In the case of a cosmological constant, there are no dark energy perturbations. For

wde ̸= −1, we can write down the dark energy equations following [11, 128] and obtain

δ̇de =−(1+wde)(kude +3Φ̇)−3
ȧ

a

(δpde

δρde
−wde

)
δde

u̇de =− ȧ

a

(
1−3wde

)
ude +

δpde/δρde

1+wde
kδde −kσde +kΨ,

(2.3)

where all derivatives are with respect to the conformal time η and we use the conformal

Newtonian gauge as in [12]. The anisotropic stress, σde, vanishes, which deletes one

term in the second perturbation equation.

In general, the sound speed c̃2
s,de =

δpde
δρde

is a Gauge-dependent variable, which can be

expressed in terms of the rest frame sound speed c2
s,de and the adiabatic sound speed

c2
a . The latter is equal to wde for a constant dark energy equation of state [148]. Here,

we use the expression [148]

c̃2
s,deδde = c2

s,deδde +3
d ln a

dη
(1+wde)(c2

s,de −wde)
ude

k
, (2.4)

which is valid for a constant dark energy equation of state.

Inserting this expression in Eq. 2.3 we obtain

δ̇de =−(1+wde)(kude +3Φ̇)−3
ȧ

a

(
c2

s,de −wde

)
δde −9

( ȧ

a

)2
(1+wde)(c2

s,de −wde)
ude

k

u̇de =− ȧ

a
(1−3c2

s,de)ude +
c2

s,de

1+wde
kδde +kΨ.

(2.5)

Compared to the system of equations in [12], the Einstein equations are modified to

k2Φ+3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
= 4πGa2 [

ρmδm +4ρrΘr 0 +ρdeδde
]

(2.6)

Φ̇− ȧ

a
Ψ = −4πG

a2

k

[
ρmum +4ρrΘr 1 +ρde(1+wde)ude

]
(2.7)

44



2.3 A simple model: dark energy with a constant equation of state

k2(Φ+Ψ) = −32πGa2ρrΘr 2. (2.8)

In order to evolve the perturbation equations, we also need to define the initial con-

ditions for these. We choose the adiabatic initial conditions from CLASS, outlined

in [148] in the synchronous gauge, and then transform them into the conformal

Newtonian gauge. We report the initial conditions for all the fields in Appendix 2.A.3.

2.3.2 Numerical implementation

In order to implement the new equations outlined in the previous section, we gener-

ated a new file for the symbolic Boltzmann equations, called CosmologyCore_wcdm.py.

This can be used instead of the default equations file CosmologyCore.py for the

ΛCDM model, by setting the model to "wcdm" as shown in Listing 2.1.

In PyCosmo, all derivatives are written with respect to ln a (in the code lna) instead of

η. The perturbation equations for aΛCDM model in this notation are detailed in 2.A.2.

In the previous section, we presented the dark energy perturbation equations with

respect to η. Using the conversion d ln a
dη = aH , we can rewrite the two dark energy

perturbation equations from Eq. 2.5 as

dδde

d ln a
=− (1+wde)

( kude

aH(a)
+3

dΦ

d ln a

)
−3(c2

s,de −wde)
(
δde +3(1+wde)

aH(a)ude

k

)
dude

d ln a
=− (1−3c2

s,de)ude +
c2

s,de

1+wde

kδde

aH(a)
+ k

aH(a)
Ψ.

(2.9)

Then the two dark energy perturbation equations in Eq. 2.9 can be expressed with

SymPy as

1 ddelta_de_dlan = - (1 + w0) * (k / (a * H) * u_de + 3* dPhi_dlan)

2 - 3 * (cs_de2 - w0) * delta_de
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3 - 9 * (1 + w0) * (cs_de2 - w0) * (a * H) / k * u_de

4

5 du_de_dlan = - (1 - 3* cs_de2) * u_de

6 + cs_de2 / (1 + w0) * k * delta_de / (a * H)

7 + k / (a * H) * Psi

Listing 2.2: The two dark energy perturbation equations as implemented in

CosmologyCore_wcdm.py.

CosmologyCore_wcdm.py also contains the background equations and the initial

conditions for the linear perturbations.

2.3.3 Code comparisons

In Figure 2.1 we show the dark energy perturbations δde and ude as a function of

scale factor a for three wavenumbers k = 0.005,0.05 and 5 Mpc−1, plotted both with

PyCosmo as well as CLASS. We also display the relative difference between the evolution

of the perturbations obtained by the two codes. The cosmology we consider is

• wCDM: {ΩΛ,Ωm , Nν, Nν,m , Σmν, wde} = {0.69992, 0.3, 3.044, 0, 0, -0.9}

with all other parameters as specified in 2.A.4 and using the precision settings from

2.2.3. In general, we find good agreement between the codes. When the fields are

highly oscillating around zero, we observe a degradation of the agreement, as expected,

given the impact of step-size control and numerical precision of the solver in that

regime. We also notice a discrepancy at initial time for small values of k, which

is caused by the tight coupling approximation in CLASS. In Figure 2.2 we show the

wCDM total matter power spectrum computed with the two codes for 200 log-spaced

k values between 10−4 and 10 Mpc−1 at redshifts z = 0, z = 1 and z = 5. In general, we

observe that the results for wCDM show the same level of agreement with CLASS as

ΛCDM. The discrepancies tend to grow on large scales for z = 5 but remain below the

10−3 level. The same is observed for higher redshifts. In Section 2.6 we summarize the
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Figure 2.1: In the top left panel, we show the dark energy perturbation δde as a function
of scale factor a for a dark energy equation of state with w =−0.9 and sound speed
c2

s,de = 1 at three values of the wavenumber k = 0.005,0.05 and 5 Mpc−1. In the top
right panel, we show dark energy perturbation ude as a function of scale factor a for
the same wavenumbers. Perturbations computed with PyCosmo are displayed by thick
lines, while CLASS values by dash-dotted lines. The bottom panels display relative
differences between the two codes.

comparisons in terms of computing time and power spectrum relative difference for

different k ranges at z = 0.

2.4 A complex model: massive neutrinos

2.4.1 Equations

Oscillation experiments provide evidence that neutrinos have mass (see e.g. [153–155]

and also [156] for a recent global fit of neutrino oscillation data) and since their masses

are imprinted onto cosmological observables, we need to include the evolution of

light massive relics in the system of equations. This allows cosmological probes to

constrain the properties of neutrinos, in particular the sum of the neutrino masses

(see e.g. [16, 157, 158] for reviews on neutrino cosmology).

In this section, we present the implementation of the Einstein-Boltzmann equations
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Figure 2.2: Total matter power spectrum at redshifts z = 0, z = 1 and z = 5 for a dark
energy equation of state with w =−0.9 and sound speed c2

s,de = 1, plotted both with
PyCosmo (thick solid lines) and CLASS (dash-dotted lines) for 200 log-spaced k values
between 10−4 and 10 Mpc−1. On the bottom panel we display the relative difference
between the two codes.

for massive neutrinos into the PyCosmo Boltzmann solver. Massive neutrinos modify

both the background evolution and the linear order perturbations. Qualitatively,

massive neutrinos undergo a phase transition: they behave like radiation at early

times, when they are fully relativistic, and shift to a matter-like behaviour at late times

(see, e.g., [16, 159]). The transition happens smoothly through cosmic time and the

dependence on mass, scale factor and momentum in the evolution of the distribution

function prevents from integrating out the momentum dependence. This can be done

only when considering approximations. For this reason, the inclusion of massive

neutrinos in the Boltzmann equations is highly non trivial and has a strong impact on

the size of the ODE system.

In this section we write the equations for Nν,m massive neutrinos with degenerate

masses and total neutrino mass sum Σmν, where the sum goes over the three neu-

trino mass eigenstates. A generalization to neutrinos with different masses is simply

achieved by suppressing the Nν,m in front of the equations and writing separate equa-

tions for each neutrino species with mass mν,i . In PyCosmo we introduce degenerate
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massive neutrinos. The introduction of neutrino hierarchies is left as future develop-

ment.

The massive neutrino density can be written as

ρν,m(a) = 4πa−4
∫ ∞

0
d qq2 f0(q)ϵ, (2.10)

where q = ap, with p the proper momentum, related to the 4-momentum by

Pi = a(1−Φ)pi in the Newtonian conformal gauge. Then ϵ = √
q2 +a2m2 is the

proper energy measured by a comoving observer multiplied by the scale factor and

f0(q) is the Fermi-Dirac distribution

f0(q) = gs

(2πℏ)3

1

eq/kb T0 +1
, (2.11)

where gs is the spin degeneracy factor that equals 2Nν,m in the case of degenerate

neutrinos. T0 is the temperature of the Cosmic Neutrino Background today expressed

in units of the CMB temperature T0 = Tν,mTCMB, Tν,m = ( 4
11

)1/3
for neutrinos that

undergo instantaneous decoupling and kb is the Boltzmann constant. The Friedmann

equation results in

H(a)

H0
= [

(Ωr +Ων,m(a))a−4 +Ωm a−3 +Ωκa−2 +ΩΛ

] 1
2 (2.12)

where Ωr still includes massless neutrinos if present (denoted with the subscript ν

such that Ωr = Ωγ+Ων), whereas the massive neutrino energy density is Ων,m(a).

Note that we factor out the a−4 term fromΩν,m(a) for similarity with the other energy

densities, but Ων,m(a) still contains a dependency on the scale factor a, differently

from the other species, since the proper energy ϵ contains a factor of a that we cannot

integrate out (see equation 2.10,Ων,m(a)a−4 = ρν,m(a)/ρcrit).

The massive neutrino perturbations arise from a linear expansion of the distribution

function f (x, q, q̂ ,η) = f0(q)
[
1+M(x, q, q̂ ,η)

]
around the Fermi-Dirac distribution

f0(q). The function M(x, q, q̂ ,η) is Fourier transformed and expanded in a Legendre
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series as

M(⃗k, q̂ , q,η) =
∞∑
ℓ=0

(−i )ℓ(2ℓ+1)Mℓ(⃗k, q,η)Pℓ(µ) (2.13)

with µ= k̂ · q̂ , Pℓ the Legendre polynomials and Mℓ defined as

Mℓ =
1

(−i )ℓ

∫ 1

−1

dµ

2
Pℓ(µ)M(µ). (2.14)

The massive neutrino Boltzmann equations are then derived similarly to those of

the ultra-relativistic fields, setting the collision term to 0, since neutrinos are only

weakly interacting. Using the definition of Mℓ to express the Boltzmann equations as

a hierarchy of moments, we obtain

Ṁ0 =−qk

ϵ
M1 − Φ̇d ln f0

d ln q
(2.15)

Ṁ1 = qk

3ϵ
(M0 −2M2)− ϵk

3q
Ψ

d ln f0

d ln q
(2.16)

Ṁℓ =
qk

(2ℓ+1)ϵ
[ℓMℓ−1 − (ℓ+1)Mℓ+1] , ℓ≥ 2. (2.17)

The hierarchy is truncated at a multipole ℓmax (l_max_mnu in the code) when solving

the system of equations numerically with a hierarchy truncation from [11], which is

analogous to that for photons and massless neutrinos

Ṁℓmax ≃
qk

ϵ
Mℓmax−1 −

(ℓmax +1)

η
Mℓmax . (2.18)

Massive neutrinos also modify the Einstein equations due to the extra terms in the

stress-energy tensor. These now read

k2(Ψ+Φ) =−12

(
H0

a

)2 (
ΩγΘ2 +ΩνN2 +

Nν,m

(2π)2ρcrit

∫
q2d q

q2

ϵ

M2

eq/kb T0 +1

)
(2.19)

k2Φ+3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
= 3

2
(H0a)2

[
Ωmδm a−3 +4a−4

(
ΩrΘr 0 +

Nν,m

(2π)2ρcrit

∫
q2d q

ϵM0

eq/kb T0 +1

)]
,

where Ωmδm is a shortcut for Ωdmδ+Ωbδb , ΩrΘr 0 =ΩγΘ0 +ΩνN0 and ρcrit is the

critical energy density of the Universe. The massive neutrino quantities we are inter-
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ested in are the density fluctuation, the fluid velocity and the shear stress which are

computed by integrating over the moments Mℓ:

δν,m =
∫

q2d qϵ f0(q)M0∫
q2d qϵ f0(q)

(2.20)

uν,m =
∫

q2d qq f0(q)M1∫
q2d qϵ f0(q)+ 1

3

∫
q2d q q2

ϵ f0(q)

σν,m = 2

3

∫
q2d q q2

ϵ
f0(q)M2∫

q2d qϵ f0(q)+ 1
3

∫
q2d q q2

ϵ
f0(q)

.

Note that in the PyCosmo implementation, we substitute q with q ′ = q
kb T0

for conve-

nience.

2.4.2 Numerical implementation

The implementation of the massive neutrino equations uses sympy2c similarly to

the PyCosmo implementation of ΛCDM and wCDM. The background integral over

momentum q is computed using indefinite numerical integration from sympy2c ,

whereas the integrals at perturbation level use a Gauss-Laguerre quadrature integra-

tion scheme in our symbolic representation of the ODE system, since we need to

evolve a finite number of equations. This follows the approach used in [147]. The

number of discrete q values is governed by the parameter mnu_relerr, which sets

the relative difference between the Gauss-Laguerre integration of a test function (∑n=4
n=2 qn f0(q) ) with respect to its analytical result. This parameter is specified using

PyCosmo.build since it affects the size of the ODE system and thus also code genera-

tion. We introduce an additional parameter influencing code generation in addition

to the truncation parameter l_max of the photon and massless neutrino hierarchies:

l_max_mnu that truncates the Legendre series Mℓ as described above.

The implementation of massive neutrino cosmologies results in a large systems of

equations and thus C functions with millions of lines of generated code, challenging

the optimizer of the used C compiler. To mitigate significantly compilation time
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and memory requirements, we enable sympy2c to use the matrix splitting feature

(enabled by specifying the splits parameter and reorder=True in PyCosmo.build)

described in Section 2.2. The user can also pass a compilation_flags parameter,

that enables or disables compiler optimizations of the C code and has a diametrical

effect on compilation vs runtime.

We implement initial conditions for massive neutrinos that match the adiabatic initial

conditions in CLASS and COSMICS and can be triggered using the initial_conditions

parameter. We report the equations in Appendix 2.A.3.

2.4.3 Code comparisons

One of the key effects of massive neutrinos on cosmological observables is the suppres-

sion of small scale matter overdensities due to neutrino free streaming [157]. In Figure

2.3 we show the total matter power spectrum obtained with PyCosmo and CLASS for

200 log-spaced k values between 10−4 and 10 Mpc−1 at redshifts z = 0, z = 1 and z = 5

with the following cosmological parameters:

• degenerate Σmν = 60 meV: {Ωm , Nν, Nν,m , Σmν, wde} = {0.29869, 0.00440, 3,

0.06, -1}3.

All other parameters are set to default values (see 2.A.4) and we use the precision

settings for the two codes (see 2.2.3). In the bottom panel we display the relative

difference between PyCosmo and CLASS. In Appendix 2.A.5 we outline the equation

of the total matter power spectrum, following a fully general relativistic treatment in

the presence of massive neutrinos [138, 160–163]. In general, we observe a very good

agreement, with a maximum relative discrepancy of 5×10−4 on intermediate scales.

The redshift evolution does not impact the agreement. We also show the suppression

of the total matter power spectrum with respect to the power spectrum with massless

neutrinos in Figure 2.4 both for Σmν = 60 meV and 120 meV (Ωm=0.29737), when

3Ωm and Nν are determined by fixingΩm,tot =Ωm+Ων,m = 0.3 and Neff = Nν+Tν,m
4
( 4

11

)− 4
3 Nν,m =

3.044 in order to look at the effects of neutrino mass on the total matter power spectrum in Figure 2.4.
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Figure 2.3: Total matter power spectrum at redshifts z = 0, z = 1 and z = 5 for a cosmol-
ogy with three massive neutrinos with Σmν = 60 meV, plotted both with PyCosmo and
CLASS for 200 log-spaced k values between 10−4 and 10 Mpc−1. In the bottom panel,
we display the relative difference between the two codes.

keepingΩm,tot =Ωm +Ων,m fixed toΩm,tot = 0.3 and Neff = 3.044. The cosmological

parameters for theΛCDM model are set to:

• ΛCDM: {Ωm , Nν, Nν,m , Σmν, wde} = {0.3, 3.044, 0, 0., -1}.

On the left panel of the figure, we show the suppression of the power spectrum com-

puted with PyCosmo and CLASS, using the default precision settings and the relative

difference between the two codes. The suppression has a large discrepancy at low k

values when it is approaching and crossing zero. Furthermore, there is a ∼ 1% differ-

ence on small scales (large k values), where the effects of the hierarchy truncation and

the approximations are most dominant. We verify that this discrepancy is reduced

when matching the l_max parameters in the two codes (l_max_g = l_max_pol_g

= l_max_ur = l_max_ncdm = 50 in CLASS, PyCosmo remains in precision settings)

and suppressing the ultra-relativistic fluid approximation in CLASS, as shown in the

right panel of Figure 2.4.
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Figure 2.4: Suppression of the total matter power spectrum for two cosmologies
with three neutrinos and Σmν = 60 and 120 meV, respectively, compared to aΛCDM
cosmology with massless neutrinos only computed with PyCosmo and CLASS. For all
cosmologies, we set the total matter density to Ωm,tot = 0.3 and Neff = 3.044. The
left panel displays the power spectrum and the relative difference with the default
precision settings for CLASS and PyCosmo. In the right plot, we display the same
quantities when setting l_max = 50 for all the radiation fields and massive neutrinos
and switching off the UFA in CLASS.

2.5 An approximation scheme: radiation streaming ap-

proximation

2.5.1 Equations

After decoupling, photons and massless neutrinos behave approximately like test par-

ticles free-streaming in the gravitational field determined by the massive components,

making it possible to derive a non-oscillatory solution of the inhomogeneous Boltz-

54



2.5 An approximation scheme: radiation streaming approximation

mann equations inside the Hubble radius. This approximation, called the Radiation

Streaming Approximation (RSA), was introduced in the Newtonian gauge by [164] and

in the synchronous gauge by [17]. This treatment allows both to avoid unphysical

oscillations resulting from the hierarchy truncation and to speed up the integration,

which is slowed down by fast late time oscillations of the radiation fields especially on

small scales. At late times, the approximation does not need to be precise, since the

contribution of the radiation energy density to the overall energy density is negligi-

ble. This approximation only impacts the linear perturbations. The evolution of the

relativistic fields can be written as

Θ0 =Φ+ τ̇ub

k

Θ1 =−2

k
Φ̇+ τ̇

k

(
aH

k
ub − c2

bδb +Φ
)

N0 =Φ

N1 =−2

k
Φ̇

Θ2 =ΘP0,1,2 =N2 = 0,

(2.21)

with all the higher order multipoles set to 0. This approximation is switched on when

two conditions are satisfied, following the CLASS [17] scheme:

• rsa_trigger_k_eta≤ kη

• rsa_trigger_taudot_eta≤−(τ̇η)−1,

corresponding to decoupled radiation within the horizon.

2.5.2 Numerical implementation

In order to implement the radiation streaming approximation within PyCosmo we use

a functionality from sympy2c to switch between two different ODEs at a dynamically

computed time point.

This requires:
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• Two ODE systems specified as sympy2c OdeFast objects. In our case these will

be the symbolic representations of the model of interest (ΛCDM,ΛCDM with

massive neutrinos or wCDM) and its equivalent RSA system. Note that the two

systems can have different dimensions.

• A switch_time function which determines at which time to switch from the

first system of equations to the second. In the RSA implementation we use the

switching conditions described above.

• A switch function, computing the initial conditions for the second system of

equations from the state of the first system before and at the switching time. In

the RSA implementation, this function just discards the matrix entries for the

fieldsΘi , ΘPi and Ni , i ≥ 0 since Θ0, Θ1, N0 and N1 have analytical expressions

and thus do not need initial conditions.

• A merge function which specifies how to combine the matrix valued results from

both numerical solutions into a final matrix. Our RSA implementation keeps

the full matrix from the solution of the full system of equations and extends the

matrix from the RSA solution using the analytical formula forΘi and Ni for i ≤ 1.

All other entries are set to 0 for i ≥ 2 and for all the polarization termsΘPi .

In order to use the RSA in PyCosmo one needs to pass the rsa = True flag to

PyCosmo.build for any of the models. This will switch the CosmologyCore_model.py

equation file to a CosmologyCore_model_rsa.py file containing the RSA equations

for the radiation fields and all the other equations of the system.

2.5.3 Internal code consistency

The main achievement obtained by implementing the RSA is a significant reduction of

the computation time for the fields, especially for high values of k, as we will discuss

in detail in the next section. This is especially true when choosing the ΛCDM and

wCDM models, where most of the system of ODEs consists of radiation perturbations.

In Figure 2.5, we show the effects of the RSA and of the hierarchy truncation on the
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ΛCDM matter power spectrum (ΛCDM cosmological parameters as specified in the

Section 2.4.3). To show the effects of the RSA alone we display in light blue in both

panels of Figure 2.5 the relative difference between a reference power spectrum with

l_max = 200 and atol = rtol = 10−6 and the same power spectrum computed with RSA

(rsa_trigger_taudot_eta = 100, rsa_trigger_k_eta = 240) for 200 log-spaced k

values between 10−3 and 10 Mpc−1. We observe that the oscillations around zero

correspond to a relative difference of the order of 0.001%, but the computation time is

reduced by approximately 80%. In Figure 2.5 we also display the relative difference

between the power spectrum computed using PyCosmo speed (panel a) and precision

(panel b) settings from Section 2.2.3, both with and without RSA, and the reference

power spectrum just described.

Reducing the l_max parameter to 50 (precision settings) increases the discrepancy

with the reference power spectrum to ∼0.08% for the full system, regardless of whether

the RSA is turned on or not. For the speed settings, the discrepancy is ∼0.6% both

when using or not using the RSA. The computation time is again reduced by roughly

80% when using RSA compared to solving the full equation system with the same

l_max, meaning that the approximation is essential to reduce the computational time

of the perturbations for mid to high k values without sacrificing the accuracy. The

unphysical reflection of power caused by the hierarchy truncation dominates on small

scales, making the inaccuracy introduced by the approximation completely negligible.

2.6 Agreement and performance comparison with CLASS

In this section, we present benchmarks of the PyCosmo Boltzmann solver for all the

models described in the previous sections, both in terms of relative difference to CLASS

and in terms of computing times. The cosmological parameters that are modified

in each model are specified in the ΛCDM, wCDM and degenerate Σmν = 60 meV

parameter settings in the previous sections, while the fixed parameters are reported in

Appendix 2.A.4. In order to perform a comparison purely on the Boltzmann solver,

we read in the CLASS recombination files for each model and set the same initial

57



Chapter 2. Symbolic implementation of extensions of the PyCosmo Boltzmann
Solver

10−3 10−2 10−1 100 101

k[Mpc−1]

0.000
0.001

0.003

0.005

|∆
P

(k
)|

P
(k

)

reference RSA speed RSA speed
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Figure 2.5: Relative difference between theΛCDM matter power spectrum computed
with l_max = 200 and atol = rtol = 10−6 (reference) and the same power spectrum
computed with PyCosmo speed (top panel) and precision (bottom panel) settings with
and without RSA. We also display in both panels in light blue the relative difference
between the reference matter power spectrum with and without RSA. The grey hori-
zontal lines correspond to a 10−3 (dash-dotted) and 10−4 (dotted) precision level.

conditions4. All the computations are carried out on a single core on a full node

of the ETH Zurich Euler cluster5, by disabling parallel execution in CLASS and not

enabling parallel computation for the PyCosmo power spectrum. We run on a full

node on the cluster, instead of on a laptop, in order to only run the Boltzmann solver

and not get impacted by other processes being executed by the operating system.

In the case of PyCosmo, we only report the time necessary for the power spectrum

4Note that initial_conditions=class in PyCosmo corresponds to adiabatic initial conditions in
CLASS.

5Euler is a HPC Cluster of ETH Zurich, a description of the hardware in an Euler VI node can be
found at https://scicomp.ethz.ch/wiki/Euler (two 64-core AMD EPYC 7742 processors).
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Model kmax Speed settings, time [s] Precision settings, time [s]

PyCosmo PyCosmo* CLASS PyCosmo PyCosmo* CLASS
ΛCDM 1 Mpc−1 1.26 0.23 0.42 3.80 1.05 2.02

ΛCDM 10 Mpc−1 8.80 0.44 0.80 20.5 2.20 5.28

wCDM 1 Mpc−1 1.32 0.65 1.29 3.84 1.55 2.86

wCDM 10 Mpc−1 9.08 0.82 4.91 20.93 2.72 10.18

MνCDM 1 Mpc−1 54.54 29.04 10.19 237.26 154.93 105.87

MνCDM 10 Mpc−1 357.24 98.52 13.78 1337.32 471.22 417.95

Table 2.2: Best execution time from three executions on a full Euler VI node. PyCosmo*
stands for PyCosmo with RSA.

computation, which does not include the compilation time for the first time the C/C++

code is generated for each model. Most models also require a second compilation

(recompilation) that applies permutations to the existing equations in order to enable

the use of specialized solvers instead of the standard solver as explained in Section

2.2.1. The runtime we report is the best time obtained in three executions.

We begin by comparing the runtime between the computation of the matter power

spectrum in PyCosmo, with and without turning on the RSA, and CLASS, both for the

speed and precision settings (defined in Section 2.2.3). In Table 2.2, we display the

time necessary to compute the power spectrum with PyCosmo and CLASS for a 100

log-spaced k values between kmi n and kmax . We fix kmi n = 10−4 Mpc−1, and set kmax

first to 1 Mpc−1 and then to 10 Mpc−1, where the effects of the radiation streaming

approximation are most evident.

We observe that, while PyCosmo achieves a slower runtime than CLASS before intro-

ducing the RSA, the RSA reverts the situation for all the models, except for massive

neutrinos. This happens despite the presence of further approximations in the CLASS

implementation. Previous versions of PyCosmo achieved a comparable execution time

with CLASS without physical approximations [12]. This was due to the reduction of

the dynamic range of the time step based on a consistency relation of the Einstein

equations. The adaptive control of the time step was highly optimized for ΛCDM and

proved difficult to extend to more general models. The new approach has also the
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Model precision k range [Mpc−1]

10−4 −10−3 10−3 −10−2 10−2 −10−1 10−1 −1 1−10

ΛCDM
speed 0.0006 0.0007 0.0007 0.0031 0.0077

precision 0.0001 0.0003 0.0005 0.0003 0.0008

wCDM
speed 0.0006 0.0007 0.0008 0.0031 0.0078

precision 0.0002 0.0003 0.0005 0.0003 0.0008

MνCDM
speed 0.0004 0.0010 0.0010 0.0046 0.0146

precision 0.0001 0.0003 0.0005 0.0002 0.0001

Table 2.3: Maximum relative differences in k ranges between PyCosmo and CLASS for
given models and precision settings.

advantage of reducing the number of permutations necessary to create the optimized

code.

In the case of massive neutrinos, the size of the system determines a considerable

decline in the performance of both codes. PyCosmo is significantly slower than CLASS

when using the speed settings, mainly due to the presence of the fluid approximation

for non cold dark matter in CLASS. For the pr eci si on settings, the time needed for the

computation is comparable for CLASS and PyCosmo. The ODE system used by CLASS

is larger in this case, since the tol_ncdm parameters are set to 10−10 in pk_ref.pre,

and the three neutrinos are treated independently despite having the same mass. We

do not decrease mnu_relerr, equivalent to tol_ncdm, in PyCosmo since we do not

deem it necessary to achieve the desired precision. The error caused by sampling less

q values is always subdominant compared to the hierarchy truncation, due to the

small contribution of massive neutrinos to the overall matter density.

We compare the numerical results of PyCosmo and CLASS in Table 2.3. We report

the maximum relative difference between the matter power spectra in PyCosmo and

CLASS in five k ranges for the different models and precision settings. The RSA is not

relevant here because it leads to a 10−5 relative difference, when compared to the full

computation with the same l_max, as shown forΛCDM in the previous section.

We start by noting that the size of the relative differences is comparable in all models

60



2.7 Conclusion

when using the same k ranges, with the exception of the model with massive neutrinos

for k > 0.1 Mpc−1. We also see that the difference in precision between speed and

precision settings is dominant on scales k > 0.1 Mpc−1, where the truncation effects

have the largest impact. The precision settings lead to a relative difference to CLASS

that is better than 0.1% on all scales k < 10 Mpc−1, while the speed settings lead

to a relative difference of order 0.5−1% beyond k = 0.1 Mpc−1. This is acceptable,

especially since cl_permille.pre comes with no guarantees for scales k > 1 hMpc−1.

2.7 Conclusion

In this chapter, we demonstrated how the PyCosmo Boltzmann solver can be easily

modified to include extensions of the ΛCDM cosmological model and approximation

schemes, by taking advantage of the SymPy symbolic implementation of equations.

The symbolic expressions are translated into optimized C/C++ code by the sympy2c

package presented in [141]. In this way, PyCosmo combines the speed of C/C++ with

the user-friendliness of symbolic Python.

We first presented two cosmological model extensions: dark energy with a constant

equation of state, which is a minimal modification of ΛCDM, and massive neutri-

nos, which enlarge considerably the ODE system and comprise numerical integra-

tions, constituting a more complex extension. The inclusion of these models makes

PyCosmo more widely applicable for constraining cosmology. We also implemented

an approximation scheme, the radiation streaming approximation. In order to trigger

the approximation, sympy2c includes a functionality to switch between two different

ODE systems when a condition is verified. The radiation streaming approximation

makes the solution of the ODE system considerably faster, up to an 80% speed-up,

since it suppresses oscillations of the radiation fields for large k values. The errors

introduced by the approximation are largely sub-dominant compared to the artificial

power reflection induced by the hierarchy truncation. For convenience, we presented

a conversion table between common conventions for cosmological perturbations

(Appendix 2.A.1) and a clarification of the computation of the total matter power

spectrum with As normalization (Appendix 2.A.5).
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We compared the numerical results obtained by computing the total matter power

spectrum with CLASS and found an agreement better than 0.1% with high precision

settings. With more relaxed precision settings, we found an agreement of 0.5% for

scales k < 1Mpc−1 for all models. The PyCosmo Boltzmann solver achieves precision

and speed that is comparable to CLASS, while not relying on physical approxima-

tions (such as tight coupling and ultra relativistic fluid approximation) other than

the radiation streaming approximation introduced in this work. In the future, we

plan to include more beyond ΛCDM models in PyCosmo. Possible extensions include

time-varying dark energy, early dark energy [137, 165], curvature [166], dark matter

models [167], such as axions and fuzzy dark matter, and extensions of the neutrino

sector. We believe that our symbolic implementation will be applicable for most

model extensions, with some refactoring needed when a model introduces an ODE

system already at background level (for example in the case of scalar field models).
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2.A Appendix of chapter 2

2.A.1 Notation table

Ma-Bertschinger PyCosmo Meaning

a a scale factor

k k wavenumber of Fourier mode

Pi Pi conjugate momentum to xi

pi pi proper momentum

qi qi api

ϵi ϵi (q2
i +am2)1/2

δγ 4Θ0 photons overdensity

θγ 3kΘ1 photons velocity divergence

σγ 2Θ2 photons shear stress

Fγℓ 4Θℓ ℓth Legendre component of photons perturbations

δur 4N0 massless neutrinos overdensity

θur 3kN1 divergence of massless neutrinos velocity

σur 2N2 shear stress of massless neutrino fluid

ψ,φ Ψ,−Φ Newtonian gravitational potentials

τ η conformal time

τc =1/κ′ −τ̇ Thomson scattering rate

θc ku = i kv velocity divergence of dark matter

θb kub = i kvb velocity divergence of baryons

Ψ1,Ψ2,Ψℓ M1,M2,Mℓ Legendre components of massive neutrinos perturbations

δh δν,m massive neutrinos overdensity

θh kuν,m massive neutrinos velocity divergence

σh σν,m massive neutrinos shear stress

Table 2.A.1: Relations between the notation in Ma-Bertschinger and PyCosmo. Ma-
Bertschinger notation is used in both the Boltzmann solvers COSMICS and CLASS. Some
exceptions include θur that is denoted θr in COSMICS and all the massive neutrino
quantities that are denoted δncdm , θncdm and σncdm in CLASS (ncdm = non cold dark
matter) and δn , θn and σn in COSMICS.
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2.A.2 Linear perturbations in ln(a)

In PyCosmo we use ln(a) (from here on simply l na) as the independent variable of

the Einstein-Boltzmann ODE system. The relation between ln(a) and η is simply:
d ln(a)

dη = aH . We report the Einstein-Boltzmann equations in ΛCDM, as used in the

code, in the following:

• Einstein equations:

Ψ=−Φ−12

(
H0

ka

)2 (
ΩγΘ2 +ΩνN2

)
Π=Θ2 +ΘP,0 +ΘP,2

dΦ

d ln a
=Ψ−

(
k

aH

)2 Φ

3
+ 1

2

(
H0

H

)2 (
(Ωdmδ+Ωbδb) a−3 +4a−4 (

ΩγΘ0 +ΩνN0
))

• Dark matter:

dδ

d ln a
=− k

aH
u −3

dΦ

d ln a
du

d ln a
=−u + k

aH
Ψ

• Baryonic matter:

dδb

d ln a
=− k

aH
ub −3

dΦ

d ln a
dub

d ln a
=−ub +

k

aH
Ψ+ τ̇

RaH
(ub −3Θ1)+ k

aH
cs

2δb

• Photons temperature:

dΘ0

d ln a
=− k

aH
Θ1 − dΦ

d ln a
dΘ1

d ln a
= k

3aH
(Θ0 −2Θ2 +Ψ)+ τ̇

aH

(
Θ1 − ub

3

)
dΘ2

d ln a
= k

5aH
(2Θ1 −3Θ3)+ τ̇

aH

(
ΘP,0 − Π

2

)

64



2.A Appendix of chapter 2

For ℓ> 2
dΘℓ

d ln a
= k

aH(2ℓ+1)
(ℓΘℓ−1 − (ℓ+1)Θℓ+1)+ τ̇

aH
Θℓ

• Photons polarization:

dΘP,0

d ln a
=− k

aH
ΘP,1 + τ̇

aH

(
ΘP,0 − Π

2

)
dΘP,1

d ln a
= k

3aH

(
ΘP,0 −2ΘP,2

)+ τ̇

aH
ΘP,1

dΘP,2

d ln a
= k

5aH

(
2ΘP,1 −3ΘP,3

)+ τ̇

aH

(
ΘP,2 − Π

10

)
For ℓ> 2

dΘP,ℓ

d ln a
= k

aH(2ℓ+1)

(
ℓΘP,ℓ−1 − (ℓ+1)ΘP,ℓ+1

)+ τ̇

aH
ΘP,ℓ

• Massless neutrinos:

dN0

d ln a
=− k

aH
N1 − dΦ

d ln a
dN1

d ln a
= k

3aH
(N0 −2N2 +Ψ)

For ℓ≥ 2
dNℓ

d ln a
= k

(2ℓ+1)aH
(ℓNℓ−1 − (ℓ+1)Nℓ+1)

The hierarchy truncations for relativistic species read:

dΘℓmax

d ln a
= 1

aH

(
kΘℓmax−1 −

(
(ℓmax +1)

η
− τ̇

)
Θℓmax

)
dΘP,ℓmax

d ln a
= 1

aH

(
kΘP,ℓmax −

(
(lmax +1)

η
− τ̇

)
ΘP,ℓmax

)
dNℓmax

d ln a
= 1

aH

(
kNℓmax−1 −

ℓmax +1

η
Nℓmax

)

The equations for the extended models are easily obtained with the same change

of variables from the equations in η, reported in the corresponding sections of the

chapter.
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2.A.3 Adiabatic initial conditions

The default setting of PyCosmo is to use the adiabatic initial conditions from CLASS

[17, 168, 169]. We present the initial conditions for ΛCDM, wCDM and massive

neutrinos in the following. We start by introducing auxiliary notation which is useful

to define the initial conditions:

η0 = η(a0)
ȧ

a
= aH(a0) ω= Ωm H0√

Ωr,tot

ρm

ρr
= Ωm a0

Ωr

Fν =
Ων,tot

Ωr,tot
Fcdm = Ωcdm

Ωm
Fb = 1−Fcdm Fg = 1−Fν

where Ων,tot = 7
8 Neff

( 4
11

) 4
3 Ωγ which includes massless and massive neutrinos (as-

sumed to be relativistic at early times), Ωr,tot =Ωγ+Ων,tot and η0 is defined as the

minimum between 0.001/k and 0.1h with k expressed in hMpc−1. a0 is computed

from η0 assuming radiation domination as a0 = η0
√
Ωr,tot /H0. We use these conser-

vative definitions of initial times to avoid using an iterative shooting algorithm. The

initial perturbations are computed in synchronous gauge as

δg =− (kη0)2(1− ωη0
5 )

3

θg =−k(kη0)3

36

(
1− 3(1+5Fb −Fν)

20(1−Fν)
ωη0

)
δb = 3δg

4
= δc

θb = θg

δur = δg

θur =− k(kη0)3

36(4Fν+15)

(
4Fν+23− 3(8F 2

ν +50Fν+275)

20(2Fν+15)
η0ω

)
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σur = 2(kη0)2

45+12Fν

(
1+ (4Fν−5)

4(2Fν+15)
η0ω

)
l 3ur = 2(kη0)3

7(12Fν+45)

ηsync = 1− (kη0)2

12(15+4Fν)
(5+4Fν−

(16F 2
ν +280Fν+325)

10(2Fν+15)
η0ω).

In the wCDM case we add the generalized initial adiabatic conditions from [148] for

the dark energy fields:

δde =−1

4
(1+wde)

4−3c2
s,de

4−6wde +3c2
s,de

(kη0)2

θde =−
kc2

s,de

4(4−6wde +3c2
s,de)

(kη0)3.

We then need to introduce the transformation from synchronous to conformal Newto-

nian gauge that uses the following quantities

δtot =
Fgδg +Fνδur + ρm

ρr
(Fbδb +Fcdmδc )

1+ ρm
ρr

vtot =
4
3 (Fgθg +Fνθur )+ ρm

ρr
Fbθb

(1+ ρm
ρr

)

α=
ηsync + 3

2

( ȧ
a

)2 1
k2 (δtot +3 ȧ

a
vtot
k2 )

ȧ
a

and reads

−Φ= ηsync − ȧ

a
α

δc = δc (sync)−3
ȧ

a
α θc = k2α

δb = δb(sync)−3
ȧ

a
α θb = θb(sync)+k2α

δg = δg (sync)−4
ȧ

a
α θg = θg (sync)+k2α
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δur = δur (sync)−4
ȧ

a
θur = θur (sync)+k2α

δde = δde(sync)−3(1+wde)
ȧ

a
α θde = θde(sync)+k2α.

The fields where we did not specify a conversion are gauge invariant, including the

massive neutrinos’ perturbations of the distribution function. The initial conditions

imposed to the multipoles of M(µ) are

M0 =−1

4
δν

d ln f0

d ln q
= q

kbT0

N0

e−q/kb T0 +1

M1 =− ϵ

3qk
θν

d ln f0

d ln q
= ϵ

kbT0

N1

e−q/kb T0 +1

M2 =−1

2
σν

d ln f0

d ln q
= q

kbT0

N2

e−q/kb T0 +1

M3 =−1

4
l 3ur

d ln f0

d ln q
= q

kbT0

N3

e−q/kb T0 +1

and are set after transforming the other fields to the conformal Newtonian gauge.

We can then relate the fields from CLASS to those of PyCosmo with the following

conversions (already introduced in Appendix 2.A.1):

u = θc /k ub = θb/k ude = θde/k Θ0 = δg /4 N0 = δur /4

Θ1 = θg /3k N1 = θur /3k N2 =σur /2 N3 = l 3ur /4.

2.A.4 Fixed cosmological parameters

We report all the parameters of the configuration file of PyCosmo that are kept fixed

throughout the chapter:

[cosmology]

h = 0.7

omega_b = 0.06

flat_universe = True
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Tcmb = 2.725

Yp = 0.24

wa = 0.0

cs_de2 = 1.0

T_mnu = 0.71611

[recombination]

recomb = ‘class’

[linear_perturbations]

pk_type = ‘boltz’

pk_norm_type = ‘A_s’

pk_norm = 2.1e-9

k_pivot = 0.05

[internal:boltzmann_solver]

initial_conditions = ‘class’

dt_0 = 1.5e-2

sec_factor = 10.0

boltzmann_max_bdf_order = 5

boltzmann_max_iter = 10000000

fast_solver = True

[internal:physical_constants]

kb = 8.617342790900664e-05

evc2 = 1.7826617580683397e-36

G = 6.67428e-11

hbar = 6.582118991312934e-16

mpc = 3.085677581282e22

mp = 938.272013425824

msun = 1.98855e30

sigmat = 6.6524616e-29

Note that the physical constants are not set to the default values in PyCosmo, but to de-

fault values from CLASS (found in the header files thermodynamics.h and background.h).

The same parameters are passed to CLASS and are also fixed throughout this work:

output = ‘mPk’

T_cmb = 2.725

Omega_b = 0.06

h = 0.7

T_ncdm = 0.71611,0.71611,0.71611

ksi_ncdm = 0, 0, 0

Omega_fld = 0

wa_fld = 0

cs2_fld = 1

reio_parametrization = ‘reio_none’

YHe = 0.24

gauge = ‘newtonian’

A_s = 2.1e-09

n_s = 1

alpha_s = 0

k_pivot = 0.05

Note that some parameters (for instance Tν,m or c2
s,de) are specified only when neces-

sary.
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2.A.5 Power spectrum computation

We compute the gauge invariant real space matter power spectrum, using a fully gen-

eral relativistic treatment [160–163], accounting for real space matter fluctuations and

volume distortions, similarly to CLASS [138]. Note that general relativistic corrections

are not included in other observables in PyCosmo, but are left as future development.

Prior versions of PyCosmo separated transfer function and growth factor and used the

Poisson equation to relate the Newtonian gauge matter density perturbation to the

Newtonian gravitational potential. This is still the case when setting pk_norm_type to

deltah and using the power spectrum fitting functions.

We define Ωm,tot = Ωdm +Ωb +Ων,m as the total matter energy density, including

massive neutrinos and Pm,tot = Pν,m , since the massive neutrino component is the

only matter ingredient that has a non-zero pressure term. Then the gauge invariant

matter density reads

δm,tot =
δρm,tot

ρ̄m,tot
+3

aH

k2
θm,tot =

Ωdmδ+Ωbδb +Ων,mδν,m

Ωm,tot

+3
aH

k

Ωdmu +Ωbub + (Ων,m +Pν,m)uν,m

Ωm,tot +Pm,tot
,

(22)

where we omitted the a dependencies for brevity.

The power spectrum is defined in terms of the primordial power spectrum of gauge

invariant curvature perturbations, PR(k) = 2π2

k3 As

(
k

kp

)ns−1
with ns the tilt of the pri-

mordial power spectrum and kp the pivot scale with corresponding As amplitude , as

P (k, a) = 2π2As
kns−4

kns−1
p

δm,tot (k, a)2, (23)

valid in the case of adiabatic initial conditions for which the initial curvature R is

normalized to 1. These are the only initial conditions currently implemented in

PyCosmo. PyCosmo also allows to output Pcb(k, a), the power spectrum of dark and

baryonic matter, where massive neutrinos are excluded.
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2.B Contributions

For Chapter 2, I was the main contributor. I translated the equations to the correct

formalism and implemented the massive neutrinos and radiation streaming approxi-

mation equations in the PyCosmo framework. I also contributed to the documentation

of the code for the release on PyPi, drawing and interpretation of the results and

writing the manuscript. The work on massive neutrinos was initiated as part of my

Master’s thesis, of which this chapter constitutes a major extension.

Further contributors: Christiane S. Lorenz, Uwe Schmitt, Alexandre Refregier, Janis

Fluri, Federica Tarsitano and Lavinia Heisenberg. They contributed in particular to the

interpretation of the results and manuscript preparation. Christiane S. Lorenz derived

in the appropriate formalism and implemented the equations for the wCDM model

and Uwe Schmitt developed the sympy2c framework [141] for symbolic manipulation

of equations that is used throughout the chapter. Janis Fluri set up the PyCosmoHub.

The mentioned contributors are also the co-authors of the published work [31] upon

which this chapter is based.
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CHAPTER 3
SIMULATION-BASED INFERENCE OF DEEP FIELDS: GALAXY

POPULATION MODEL AND REDSHIFT DISTRIBUTIONS

Space is big. You just won’t believe how vastly,

hugely, mind-bogglingly big it is. I mean, you may

think it’s a long way down the road to the chemist’s,

but that’s just peanuts to space.

— DOUGLAS ADAMS, The Hitchhiker’s Guide to the Galaxy

This chapter appeared in a similar form in Moser et al., 2024 [32].

3.1 Introduction

Cosmological probes allow us to investigate the structure and components of our

Universe, by posing constraints on a cosmological model. The standard model of

cosmology, known as ΛCDM, comprises of three main components: dark energy, dark

matter and baryons. These components can be traced in a large-scale galaxy survey, by

measuring the positions and shapes of galaxies and their correlations. In recent years,

state-of-the-art experiments such as the Dark Energy Survey1 (DES; [18]), the Kilo-

1http://www.darkenergysurvey.org/
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Degree Survey2 (KiDS; [19]) and the Hyper Suprime-Cam Subaru Strategic Program 3

(HSC; [20]) have reported their constraints resulting from galaxy clustering, cosmic

shear and galaxy-galaxy lensing and their combination, known as 3×2 point analysis

[170–172]. Precise determination of the redshift distribution n(z) of samples of galax-

ies is critical for obtaining cosmological constraints from galaxy surveys. Redshift

information allows the separation of source and lens sample, and the computation of

cosmological observables. Spectroscopy is prohibitively time-consuming as a tech-

nique to provide accurate redshifts of all galaxies in a wide survey, and is furthermore

subject to selection biases, especially for faint samples. Surveys thus rely on integrated

measurements in a limited number of broad-bands in order to determine the redshift

distribution of the sample of interest (for review, see [173, 174]). This has proven to be

a challenging task, especially since the relationship between redshift and colour in

a limited wavelength range is subject to degeneracies [174]. The characterization of

photometric redshift (photo-z) distributions is one of the key systematics affecting

cosmic shear measurements since errors in the calibration of redshift distributions

and their uncertainties can lead to biases in the retrieved cosmological parameters

[174–181]. Traditional photo-z approaches include template fitting (for example Le-

Phare [85, 94], BPZ [96], ZEBRA [97] and EAZY [95]) and machine learning methods

(for example ANNz [99], ANNz2 [100, 182] and DNF [101]).

In a cosmological survey it is common to employ methods to constrain the overall

redshift distribution of the sample of interest rather than the redshifts of single objects,

either by an empirical reweighting of a well measured redshift sample [107, 111, 183],

by using spatial cross-correlations [184], or by a combination of the two [112, 185].

Another approach, which has been introduced in recent years, is simulation-based

inference (SBI) [120, 121, 127]. SBI relies on forward modelling the survey of interest:

the redshift distribution of a sample of galaxies is the result of the statistical properties

of the observed galaxy population, the observing conditions and limitations of the

detector, and the selection applied to define the target sample. Accurate modelling of

magnitude, colour and (at second-order) size distributions of galaxies as a function

of redshift, taking into account the observational and instrumental effects, enables

2http://kids.strw.leidenuniv.nl/
3https://hsc.mtk.nao.ac.jp/ssp/survey/
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robust determination of the redshift distribution of the sample, as well as a straight-

forward estimation of its uncertainty. Furthermore, the constraints on the galaxy

population model provide some insights on the statistical nature of galaxies and allow

a robust treatment of complicated selection functions. The methodology used in

this chapter has been developed in [120] and further extended and applied in [127]

and [186, 187]. We refer to this forward modelling framework as Monte Carlo Control

Loops (MCCL) [27]. The method relies on an empirical galaxy population model to de-

scribe the intrinsic properties of galaxies and stars. We render the objects with photon

shooting methods using an image simulator called Ultra Fast Image Generator (UFIG

[188]) in a set of broad-bands described by the filter throughputs of the telescope

used. Moreover, we simulate observational and instrumental effects such as sky and

detector noise, point spread functions (PSF), reddening and saturation. In this way,

we can post-process the simulations and the real images in the same way. We run

SEXTRACTOR [189] on both to obtain catalogs of objects and apply the same selection

functions to both the simulated and the real catalog, which simplifies the treatment

of selection biases. The model parameters are constrained using the observed data

via Approximate Bayesian Computation (ABC), using distance measures that ensure

that the photometric properties of the objects in simulations statistically agree with

real data. The method has been used to simulate and perform a cosmic shear mea-

surement of the Dark Energy Survey Year 1 [127, 190, 191], for redshift calibration on

Subaru data [120], and to obtain the luminosity functions of blue and red galaxies

at different redshifts with Canada-France-Hawaii Telescope Legacy Survey (CFHTLS

[192]) data [186]. Furhermore, it has been applied to simulate the narrow band imag-

ing of Physics of the Accelerating Universe survey (PAUS [193]) [187, 194] and galaxy

spectra from the Sloan Digital Sky Survey (SDSS [195]) CMASS sample [196, 197].

In this chapter, we use HSC Deep/UltraDeep (DUD) data [28] and accurate many-band

photometric redshifts from COSMOS2020 [29] in order to obtain tight constraints on

the model parameters at high redshift. Previous constraints to the model parameters

extended to a redshift of z ∼ 1, whereas in this work we explore the regime of Stage

IV surveys. [198] suggests that HSC data is the most powerful for constraining the

Schechter parameters of the luminosity function and thus the redshift distribution

of galaxies, because of its exquisite depth. As done in previous work, we use an ABC

75



Chapter 3. Simulation-based inference of deep fields: galaxy population model
and redshift distributions

framework, with several important practical improvements. After tuning the model,

we use the obtained posterior parameters to simulate HSC DUD data in the COSMOS

field and validate the n(z) for different magnitude cuts.

The chapter is structured as follows. Section 3.2 describes the HSC DUD data and

the COSMOS2020 catalog used both to tune the model and validate our results. In

Section 3.3, we describe the methodology and introduce the changes compared to

previous work. Section 3.4 reports the results of our analysis. We conclude the chapter

in Section 3.5. We assume a standard ΛCDM cosmology with h=0.7, Ωm=0.3, and

ΩΛ=0.7 throughout the chapter.

3.2 Data

In this section, we present the data used to constrain our model of the galaxy popu-

lation and to validate the obtained redshift distributions. We rely on data from the

Deep and Ultradeep layers of the third data release (PDR3) of the Hyper Suprime-Cam

Subaru Strategic Program (HSC) [28]. In order to provide our model with additional

redshift information and validate the n(z), we complement the HSC data with accurate

photo-z estimates from the COSMOS2020 panchromatic photometric catalog [29].

3.2.1 Deep/UltraDeep data from HSC PDR3

HSC is a large multi-band imaging survey conducted with the 8.2-metre Subaru tele-

scope. It comprises of three layers: Wide, Deep and UltraDeep. The Wide layer covers

1470 deg2, considering partially observed areas in five broad-band filters (g ,r ,i ,z,y).

The Deep/UltraDeep (DUD) layers cover ∼ 36 deg2 in the five broad-band filters and

four additional narrow-band filters. In this work, we use the publicly available coad-

ded broad-band DUD images with local sky subtraction from PDR34. There are four

different fields: COSMOS, DEEP2-3, SXDS+XMM-LSS and ELAIS-N1. Each field is

separated in tracts which are equi-area rectangular regions on the sky, divided in 9×9

4https://hsc-release.mtk.nao.ac.jp/doc/index.php/available-data__pdr3/
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patches comprising of 12 arcmin per side corresponding to 4200 pixels and overlap-

ping by 100 pixels. We use all the available DUD patches for tuning the model. The

dataset consists initially of roughly 1500 patches. We blacklist patches where:

• more than 30% of the image area is flagged as NO_DATA,

• more than 50% of the image area is covered by the BRIGHT_OBJECT mask,

• the image overlaps for more than 30% of the area with another patch.

NO_DATA and BRIGHT_OBJECT masks correspond to flags 8 and 9 in the mask layer

of the data. The overlap, on the other hand, is computed using the footprint of the

images and by masking the pixels on the top or upper edge of each coadd that are also

covered by another patch. After blacklisting, we retain a total of 746 patches.

3.2.2 COSMOS2020 catalog

The COSMOS2020 catalog [29] consists of nearly 1 million high quality photometric

redshifts derived via template fitting of many broad and narrow band observations

ranging from UV to IR wavelengths. There are four different publicly available catalogs,

which differ in the method used for extracting photometry (SEXTRACTOR, used in

CLASSIC, and THE FARMER) and for the photometric redshift template fitting code

(LePhare [85, 94] and EAZY [95]). Since we use SEXTRACTOR for the photometric

measurement on the HSC data in our pipeline, we also work with the COSMOS2020

CLASSIC catalog. We use both LePhare and EAZY photo-zs. We remove areas where

the photometry is unreliable or with partial coverage by means of the FLAG_COMBINED

parameter thus reducing the area to 1.27deg 2. We select objects that have MAG_AUTO

< 99, LePhare (lp_zBEST) or EAZY (ez_z_phot) photo-z between 0 and 8 (remov-

ing Nan values), LePhare object type galaxy (lp_type=0) and SEXTRACTOR FLAGS <

4. The COSMOS2020 catalog is used both for providing redshift information while

constraining the model and for validation. The validation sample is explained in the

following section, while the reweighting procedure used during the ABC analysis is

detailed in Section 3.3.4.
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3.2.3 Validation sample

In order to build our validation sample, we compare the COSMOS2020 COMBINED

footprint with the HSC DUD data in the COSMOS field and find 63 overlapping patches,

out of which 56 are almost fully covered. We perform SEXTRACTOR forced photometry

on these coadds using the i band for detection and match the obtained catalog with

objects in the COSMOS2020 catalog by position and magnitude (using the magnitude

MAG_APER measured in a 3′′ diameter apeture). The BRIGHT_OBJECT masks from HSC

PDR3 are very conservative and cause a loss of roughly one third of the COSMOS2020

objects, since COSMOS2020 uses the less conservative HSC PDR2 masks. We compare

the simulated final redshift distributions in the COSMOS field to both LePhare and

EAZY photo-zs. We take into account sample variance in COSMOS as described in

Section 3.3.4.

3.3 Method

The backbone of our forward modelling framework is an empirical parametric model

of the galaxy population, used to generate distributions of intrinsic properties of galax-

ies. Once a galaxy catalog is generated given a set of model parameters, we simulate

an image of the survey of interest, in our case the HSC DUD fields. In order to obtain

a realistic simulation, we include the effects of the instrument and the known ob-

servational systematics that impact the photometric measurement. The end-to-end

process from a set of model parameters to a realistic telescope image is implemented

in the Ultra Fast Image Generator (UFIG [188]). UFIG has been developed as a sim-

ulator for MCCL, with speed as one of the primary features. Computational speed

is critical for this task, since a large number of simulations is required to tune the

parameters of the model. The inference is performed by running an Approximate

Bayesian Computation (ABC), where the realism of our simulated images is increased

by minimizing a set of distance measures. In the following, we describe the galaxy

population model, how we extend UFIG to reproduce realistic HSC DUD images, how

we include redshift information from COSMOS2020 reducing the impact of cosmic
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variance and the details of our ABC scheme. We focus on the novelties introduced in

this work.

3.3.1 Galaxy population model

We include in our model two different populations of galaxies: red and blue, often

referred to as quiescent and star-forming galaxies. We sample absolute magnitudes M

and redshifts z from Schechter luminosity functions

φ(z, M) = 2

5
ln10φ∗(z)10

2
5 (M∗(z)−M)(α+1) exp(−10

2
5 (M∗(z)−M)), (3.1)

where the parameters M∗(z) and φ∗(z) are functions of redshift. We then assign a

spectral energy distribution (SED) to each galaxy as a linear combination of 5 spectral

templates from KCORRECT [195]

SED(λ) =
4∑

i=0
ci Ti (λ).

The coefficients of the templates are also different for blue and red galaxies and evolve

with redshift. We show the five KCORRECT template spectra for reference in Figure 3.1.

We assign sizes to galaxies using a log-normal distribution for the half light radius and a

Sersic light profile. The ellipticities are sampled from a Beta distribution. Furthermore,

we add stars to our simulations using the Besançon model of the Milky Way [199]. The

magnitudes from the catalog of pseudo-stars are sampled with replacement, and the

positions are assigned randomly within the HEALPIX pixel (nside=8, see [120, 127] for

more details). The positions of the bright end of the star distribution is taken from the

Gaia DR3 catalog [200, 201] and abundance-matched to the Besançon model. For an

extensive description of the galaxy population model, see [120, 186].

In the following, we highlight the modifications to the galaxy population model com-

pared to [120, 127, 186]: (i) modification of the luminosity function parametrization,

(ii) addition of new parameters in the morphology sector to allow different characteris-

tics for blue and red galaxies, (iii) small changes to the parametrization of ellipticities
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Figure 3.1: The five KCORRECT templates [202] which are combined linearly to obtain
the spectral energy distributions of galaxies. They are renormalized so that f (λ) = 1 at
λ= 5500(Å).

and Sersic indices, (iv) modification of parametrization for template coefficients of

the SED.

Luminosity function parametrization

We modify the redshift evolution of the luminosity function parameters, in accordance

with galaxy evolution models [67]. In the Pure Luminosity Evolution (PLE) scenario,

massive galaxies assemble and form most of their stars at high redshifts. They then

evolve without merging. This results in the functional form

M∗(z) = M∗
intcpt +M∗

slope log(1+ z) (3.2)

for the evolution of the characteristic absolute magnitude with different parameters

M∗
intcpt and M∗

slope for blue and red galaxies. In the Pure Density Evolution (PDE)

scenario, galaxies undergo mergers so that they are more massive but less numer-

ous at lower redshifts. This scenario can be modelled through the evolution of the
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normalization of the luminosity function as

φ∗(z) =φ∗
ampl(1+ z)φ

∗
exp (3.3)

where φ∗
ampl and φ∗

exp also depend on the galaxy population. We vary these 8 param-

eters during the ABC. Furthermore, αblue and αred, describing the steepness of the

faint-end slope of the luminosity function, are also varied in this analysis, differently

from previous work.

Updated galaxy morphology

We added new parameters in the morphology section. The relation between galaxy half

light radius r50 and absolute magnitude is described by three parameters: logr intcpt
50 ,

logr slope
50 and logr std

50 [120]. We sample logr50 from a normal distribution with mean

logr mean
50 = logr slope

50 M + logr intcpt
50

and standard deviation logr std
50 , where M is the absolute magnitude of the galaxy.

In our updated model we have a separate set of these parameters for red and blue

galaxies. We also vary the logr std
50 parameter, which was fixed in previous work.

Ellipticity and Sersic indices

The parameterization of ellipticity p(e) using a Beta distribution is slightly modified;

parameters emode, espread correspond to the mode and concentration of the Beta distri-

bution respectively (espread = a +b, where a and b are Beta parameters). This change

makes the parameters easier to interpret and allows for designing simpler priors. We

also modified the prescription for modelling the distribution of Sersic indices. We use

a Betaprime distribution with free parameter ns , which is the mode of the distribution.

It is related to parameter α of the Betaprime distribution: α= ns(β+1)+1. Parameter

β is responsible for the scatter, and fixed throughout the analysis, to the following

values: βblue = 5 and βred = 50. These values were chosen so that the distributions of
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Sersic indices match that of [203].

Spectral templates parametrization

In our model, the coefficients of the SED templates are drawn from a five-dimensional

Dirichlet distribution separately for blue and red galaxies, similarly to [120, 127, 186].

The Dirichlet distribution is used because the samples drawn from it sum to 1 and

the spectrum can then be rescaled to match the absolute magnitude of the galaxy.

The parameters of the Dirichlet distribution evolve with redshift: we use two separate

sets of parameters for z=0 and z=3, with parameters for other redshifts being an

interpolation between them

αi (z) = (
αi ,0

)1− z
3 × (

αi ,3
) z

3 .

In previous work the αi were constrained at redshifts z = 0 and z = 1; we now use z = 3

since the functional form is fixed (so that we do not need to have a large sample of

galaxies at z = 3 to pose limits on the parameters’ values) and this allows us to enforce

prior bounds at higher redshifts.

Previously, the prior on this distribution was also a Dirichlet variable with unity

weights, multiplied by a uniform number between [5,15], which accounted for the

variance. This way, the αi parameters were affecting both the mean and variance

of the Dirichlet variable. We change the model to capture the mode and variance

in separate parameters. Furthermore, [120] derived weights to apply to each tem-

plate using the New York University Value-Added Galaxy Catalog [202] thus effectively

using different template spectra for blue and red galaxies. We removed the weights

and reparametrized the template spectra to be normalized to 1 at wavelength 5500

Å. We use a redundant parametrization with modes of the Dirichlet distributions

ᾱi , i = 0, . . . ,4 and two new αstd,0/3 parameters. The parameters αstd,0/3 correspond

to the standard deviation of the 5-dimensional Dirichlet coefficients with equal con-

centrations at redshifts z = 0 and z = 3 and evolve in redshift the same way as the

template coefficients αi . We enforce the normalization
∑

i ᾱi = 1, and the final Dirich-
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let coefficients are calculated as

αi = 1+ ᾱi ·
[

1

N

(
1− 1

N

)
α−2

std −N −1

]
with N =5. This new parametrization reduces the number of local minima in the

problem and makes the ᾱi variables more interpretable. Finally, the template spectra

are the same for red and blue galaxies and we encapsulate the information about

the different galaxy populations in the ABC prior on the template coefficients. The

ABC prior on template coefficients was obtained in a preprocessing step where we

performed an ABC on catalog level using the COSMOS2015 catalog [86], as described

in Appendix 3.A.1. The final model has 46 parameters, out of which 4 are redundant

(see Table 3.A.1 in Appendix 3.A.1).

3.3.2 Image simulations of HSC DUD fields

The catalogs of intrinsic galaxy properties are used to create simulated HSC DUD

images. The image generation procedure, including realistic observational and instru-

mental effects, is as follows. We input the metadata provided by the HSC database5

about size of the image in pixels, pixel scale (0.168′′/pixel) and sky coordinates of the

images. We perform our simulations using the g , r , i , z and y broad-bands. HSC re-

placed the r and i filters with more uniform filters r 2 and i 2 which have been coadded

together with r and i . In our simulations, we use the filter throughputs from r 2 and i 2,

after checking that the magnitude shifts are small. In order to compute the apparent

magnitude of a galaxy in a specific broad-band, we integrate over its SED and the filter

throughput taking into account k-corrections and reddening due to galactic extinction.

The computation of arbitrary magnitudes in the AB system is described in Section

3.2.3 of [120] and the wavelength dependent extinction to account for reddening in

Appendix D of the same paper. The magnitude zeropoint is set to 27 mag/ADU for the

HSC coadds.

We simulate PDR3 coadded images directly, as introduced in Section 3.2.1. In order to

5https://hsc-release.mtk.nao.ac.jp/datasearch/
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Figure 3.2: Example of pixel histogram around the background values from tract 9813
patch 702. The simulated background is shown from 5 different ABC configurations.

simulate the coaddition process, we use systematic maps derived from the metadata.

We create a map of the exposure times and number of exposures per pixel for each

patch. The CCD gain of a single exposure multiplied by the number of exposures per

pixel gives us a rough estimate of the effective gain to convert between ADUs and

number of photons. Galaxies are randomly distributed on the image and rendered

by sampling individual photons according to the galaxy’s Sersic profile. This proce-

dure naturally includes Poisson noise [188, 190]. The Point Spread Function (PSF)

is rendered as a distortion to the light profile of the galaxy. In order to estimate the

impact of the PSF in the real images, we use a Convolutional Neural Network (CNN) as

presented in [204] and updated in [127]. The PSF is estimated at the position of stars

matched with Gaia DR3 [200, 201] with magnitudes included between 18 and 22 in

the i band, which have SEXTRACTOR FLAGS 0 or 16 and are not at the image boundary.

We perform this selection because stars with apparent magnitudes lower than 18 in

the i band are included in the bright objects masks of HSC. The matching is done

with a Balltree with a maximum distance of 1.5 pixels. We reserve 15% of the selected

stars for validation. Each PSF parameter is then interpolated across the coadd using a

Chebyshev polynomial basis of maximum order 4 (see Appendix C of [127] for details).

In order to simulate the background noise in an image, we first derive a map of the

root-mean-square of the noise from the real data using the Background2D function
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with SExtractorBackground estimator and 3σ sigma-clipping from photutils [205].

This map is derived from the data individually for each patch. We then add Gaussian

noise to the simulation with mean read off from the image header and standard devia-

tion taken from the map (different for each pixel). Since the standard deviation of the

noise that we apply is already different in each pixel and is estimated from background

subtracted images, we do not need to perform any background subtraction, including

local background subtraction which has the most impact in the surroundings of bright

objects, which are anyway masked. The resulting simulated background is in good

agreement with the background in the real data. We show an example of the pixel

histogram of an image for real data and simulations for low pixel values in Figure 3.2.

We observe that there is a slight overestimation of the background level due to the lack

of background subtraction.

An alternative approach to background estimation would amount to adding a Gaus-

sian background using the parameters in the image headers (both mean and standard

deviation) and then applying global and local background subtraction. In our tests

this procedure worsened the agreement between data and simulations. We create

masks of the areas with no data and surrounding bright stars using the bit flags 8 and

9 from the second layer of the fits files.

The final steps of the simulation process convert photons to ADUs by dividing out the

effective gain and saturate pixels that are above the maximum value of the real data.

This is a simplistic estimate of the saturation limit, which is good enough in practice

since the saturated areas are always masked. We show an example of a simulated

image compared to real data in Figure 3.3. The most noticeable difference between the

real image and the simulation is the presence of some large galaxies in the simulation.

These are not ruled out by our distance measures and need further investigation. The

lack of local background subtraction in the simulated image is noticeable around

bright objects.
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Figure 3.3: A comparison between a real and a simulated coadd for tract 9813, patch
702 in the HSC COSMOS field is shown. The bright star mask, as derived from the data,
is applied to both the real data and simulation.

3.3.3 Source extraction and matching

In order to proceed in our analysis, we run SEXTRACTOR in dual-image mode with the

same settings (reported in appendix 3.A.3) on real images and simulations. We use the

i band image as detection image. In the simulations, the SEXTRACTOR detections are

matched by position and magnitude to the true properties of the injected galaxies. This

procedure can have an impact on the resulting photometric properties of galaxies, on

the ABC posterior and on the redshift distribution since not all SEXTRACTOR detections

are matched to an injected galaxy or matched correctly. We use the segmentation map

produced by SEXTRACTOR and find, for each detection, the overlapping simulated

object that minimizes the sum of the differences ∆mag between MAG_AUTO and true

magnitude in all bands

∆mag = ∑
b∈g ,r,i ,z,y

|magb −MAG_AUTO_b|. (3.4)
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This matching procedure improves on our previous technique of matching each de-

tected object to the closest detected object below a predefined magnitude difference,

especially in the case of a crowded field. Nevertheless, the procedure to match true

and detected objects and the impact of blending will need further investigation in

the future. While in the matching procedure we use MAG_AUTO (which is closest to

the UFIG true magnitude), in the following we always use MAG_APER in a 3′′ aper-

ture (referred to as MAG_APER3 from here on, with related quantities MAGERR_APER3,

FLUX_APER3 and FLUXERR_APER3), unless otherwise specified. This induces photo-

metric biases for bright large objects (which are larger than the fixed 3′′ aperture)

but provides more reliable colours and reduces photometric biases for faint objects.

FLUX_AUTO is the sum of the pixel values assigned to the object and thus depends

on the adaptive determination of the object’s size. By injecting the same catalog in a

deep and ultradeep image, we observed a dependence of MAG_AUTO on exposure time,

since more pixels of an object rise above the background. A selection in MAG_AUTO

is undesirable in our case, since we calibrate the model on deep images and then

extrapolate it to ultradeep images.

3.3.4 COSMOS2020 redshift assignment to HSC deep fields

Before describing our ABC scheme, we show how we incorporate redshift information

from COSMOS2020 in the SEXTRACTOR catalogs obtained from other deep fields. We

apply the reweighting technique described in Section 4.2 of [179]. We start from the

validation sample introduced in Section 3.2.3 where we have galaxy photometry from

our own SEXTRACTOR run in the HSC COSMOS field overlapping with COSMOS2020

and LePhare and EAZY photo-zs derived from position matching the COSMOS2020

catalog. In order to assign a redshift estimate to a target galaxy in another deep field,

we first add Gaussian noise to the COSMOS galaxies’ fluxes until the noise level is

equal to that of the target galaxy (the images in the COSMOS field are UltraDeep and

thus less noisy than in the other fields). We discard COSMOS galaxies that have larger

flux errors than the target galaxy. We then match a COSMOS2020 galaxy to the target
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galaxy by minimizing the flux χ2

χ2 ≡∑
b

(
fb − f COSMOS

b

σb

)2

(3.5)

where b ∈ g ,r, i , z, y and fb is the FLUX_APER3 of an object in band b and σb its

FLUXERR_APER3. In this way, we reweight the COSMOS2020 n(z) to match the colour

distribution of galaxies in the image we are considering. We verify that a COSMOS2020

galaxy is never matched more than 5 times in the same image (multiple matches only

happen for very bright galaxies). In the following subsections, we present two contri-

butions to the uncertainties of the redshift distributions from COSMOS2020, beyond

the photo-z errors on individual objects. These are taken into account when vali-

dating the n(z) derived from our forward modelling approach against COSMOS2020

photo-zs.

Sample variance in COSMOS

The COSMOS field only spans 2 deg2 of the sky. This means that, while the volume

spanned by COSMOS observations is large due to the considerable depth [206], there

are notable sample variance effects at low redshifts. In order to estimate the impact

of sample variance, we assign COSMOS2020 photo-zs to all galaxies in the other

deep fields and look at the offset in mean redshift. This ensures that we span a

larger area and the difference in depth is negligible when only considering galaxies

with MAG_APER3 below 25 in the i band. In order to also measure the scatter due

to sample variance, we produce 10 subfields the size of COSMOS (56 images) and

measure the standard deviation of the 10 mean redshifts. We prefer this approach

to a standard Bootstrap in order to preserve the locality of the effect, which is due to

the inhomogeneity of large-scale structure on small scales. The redshift offsets are

reported in Table 3.3.1. We observe a mean redshift offset between the COSMOS field

and the other deep fields of ∆z = 〈zCOSMOS〉−〈zdeep〉 ≈ 0.015 when we cut at i band

magnitude of 23, meaning that sample variance causes a bias for the brightest sample.
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Value i band mag cut 23 i band mag cut 24 i band mag cut 25
∆z SV LePhare 0.014±0.012 0.001±0.019 0.002±0.019
∆z SV EAZY 0.015±0.012 0.001±0.019 0.003±0.018

∆z=〈zEAZY〉−〈zLePhare〉 0.014 0.018 0.0006

Table 3.3.1: Shifts in photometric redshift due to sample variance (SV) and difference
between the two photo-z codes used in COSMOS2020.

Offset between EAZY and LePhare

We notice that, when applying a simple magnitude cut in the i band and the selection

described in Section 3.2.2, there is a systematic offset between EAZY and LePhare

photometric redshifts from COSMOS2020. Similarly to sample variance, this effect has

a stronger impact on the brightest sample where EAZY predicts systematically higher

redshifts than LePhare. The systematic offset is ∆z = 〈zEAZY〉−〈zLePhare〉 = 0.014 for a

magnitude cut at MAG_APER3_i=23 and 0.018 for a magnitude cut at MAG_APER3_i=24.

The offset is negligible when cutting at MAG_APER3_i=25. We report these offsets in

Table 3.3.1.

3.3.5 Factorised ABC inference

We constrain the 46 parameters of our galaxy population model using the HSC deep

data and the COSMOS2020 catalog described in Section 3.2. This data combination

constitutes a unique sample to precisely constrain our galaxy population model at

high redshift, given its completeness up to high magnitudes. We perform simulation-

based inference (SBI) to derive a posterior distribution of the parameters of the model,

since the likelihood of the observables is unknown, but we have the ability to sample

from it through simulations. Our ABC scheme is similar to the one used in [186], and

involves prior-to-posterior iterations. The base idea behind ABC is that the model

posterior p(θ|x), where x is the observed data and θ the parameters of the model, can

be approximated by p(θ|ρ(x, y) < ϵ), where ρ is a distance metric, y is the simulated

data and ϵ is a threshold.

The unique property of our problem is that the dataset comprises of a large number
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of images, which can be considered as semi-independent. We divide our full dataset d

into N smaller parts d = d1, . . . ,dN . This way we can factorize the posterior on the full

dataset into posterior from its parts:

p(θ|d) ∼
N∏

i=1
p(θ|di )p(θ), (3.6)

where p(θ) is the prior on the model parameters θ. Then we use the posterior of one

part of the data as prior for another part:

p(θ|d1) ∼ p(d1|θ)p(θ), (3.7)

p(θ|di+1) ∼ p(di+1|θ)p(θ|di ). (3.8)

This factorization allows for efficient application of the simple rejection ABC algo-

rithm, which allows for very low complexity of our high performance computing

implementation. In practice, we begin by sampling 10000 points from the model’s

prior p(θ) and using each model parameter configuration to simulate a part of the

data d1. We accept the parameters θ where the combined distance metric computed

from the simulations falls in the 20th percentile. We then resample the obtained

distribution and iterate the procedure.

We modify the ABC inference engine compared to [120, 127, 186] as follows: (i) up-

dated distance metrics, (ii) modifications to the ABC iteration engine and posterior

modelling, (iii) modification of model’s priors.

Distance metrics

We use the Maximum Mean Discrepancy (MMD), a kernel two-sample test for high

dimensional probability distributions [207], as our primary distance measure

dMMD = 1

N (N −1)

∑
i , j

k(xi , x j )+k(yi , y j )−k(xi , y j )−k(yi , x j ) (3.9)
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where xi is a property of the i th object in the real data and y j is a property of the j th

object in the simulated data. The kernel we use is Gaussian

k(xi , y j ) = exp

(
−||xi − y j ||2

2σ

)
(3.10)

with free parameterσ. We describe how we choose the value ofσ in Appendix 3.A.2. We

extend the input vector of the MMD compared to previous work to include magnitudes

MAG_APER3, sizes FLUX_RADIUS, the two photo-z estimates assigned as described in

Section 3.3.4, ellipticities calculated from windowed moments **_WIN_IMAGE, and a

new variable called the flux fraction fb , calculated as:

fb = FLUX_APER3_b∑
j FLUX_APER3_j

(3.11)

where FLUX_APER_b is the SEXTRACTOR flux in band b in a circular 3′′ aperture. Flux

fractions capture similar information as colours. This information is technically also

present in the magnitudes, but these mostly impact constraints on the luminosity

function parameters. We found that the addition of the flux fractions improved our

capacity to constrain the ᾱi parameters of the SED template coefficients distribution.

Since our main goal is redshift calibration, we decide to mostly focus on colours,

magnitudes and redshifts. For this reason, we include MAG_APER3 and fb in all 5

bands, but only include the ellipticity and FLUX_RADIUS in the reference i band. Our

model does not account for colour gradients in the galaxy size, so it is a reasonable

approximation to only constrain the size model in the reference band. The MMD input

vector is then 14-dimensional. Before calculating the MMD distance, each column is

scaled, so that its mean is close to zero and its standard deviation to 1. The scaling

is obtained from the real data and used throughout the analysis for both real and

simulated data.

Since the fraction of outliers in the COSMOS2020 catalog for galaxies above magnitude

25 is extremely large (≃ 25%), we only select objects with MAG_APER3 < 25 in the i band.

We also include the same MMD distance with a cut at i band MAG_APER3 of 23, in order

to upweight this sample of galaxies that is predominant in current large-scale structure

surveys. Other selection cuts to remove stars and objects with bad measurements are
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described in Appendix 3.A.2.

As the MMD does not capture the differences in number counts, which has an impor-

tant impact on the normalization of the luminosity function, we combine it with a

fractional difference in number of objects

dng = |NSIM −NHSC|
NHSC

(3.12)

where NSIM is the number of objects in the simulation and NHSC in the real data.

This distance is also included for both magnitude cuts at MAG_APER3_i < 23 and

MAG_APER3_i < 25.

The distance metrics in an iteration n are computed for all patches that are included

in that iteration (|dn |). We aggregate each distance using the median, which is robust

to outliers, so that we have four distances (dng,25,dng,23,dMMD,25 and dMMD,23) for each

parameter configuration. We then rescale the distribution of each distance across ABC

points so that it has minimum equal to zero and median equal to 1 and finally add the

distances with weights:

dcomb = 0.1 ·dng,25 +0.1 ·dng,23 +0.6 ·dMMD,25 +0.2 ·dMMD,23. (3.13)

The weights are chosen to rebalance the sample and upweight bright galaxies (below i

magnitude of 23), which are the target of Stage III cosmological surveys, and would

otherwise only account for 20% of the sample.

Iteration engine and posterior modelling

We use sets of HSC patches randomly selected without replacement and increase their

number in each iteration: the first set has |d1| = 10 patches. Using fewer images at the

beginning of the ABC allows us to eliminate very unlikely areas of parameter space

without wasting computing time. We then add 1 patch at every subsequent iteration.

In each iteration, we simulate the |dn | patches for 10000 parameter samples and

keep the 2000 samples with the lowest combined distance as the posterior. Then,
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we perform a density estimation for the posterior using a Gaussian Mixture Model

(GMM) with 20 components. We draw the new 10000 samples from this GMM to

create a resampled posterior, and pass it as a prior to the next iteration. The GMM

fitting is performed in a transformed space to make it easier for the GMM to capture

non-Gaussian distributions. We check that the GMM fitting accurately resamples

the posterior and monitor the evolution of the distance measures at each iteration.

When there is no more improvement in any of the distance metrics, we stop iterating

the algorithm. This stopping condition is similar to that of [186], where we look at

the evolution of each distance separately because the combined distance is rescaled

differently at each iteration. We ran 23 iterations of the algorithm. The details of these

iterations are summarised in Table 3.A.4 in Appendix 3.A.2. Appendix 3.A.1 introduces

the prior that we used for the ABC run, gives an overview of all model parameters and

reports the resulting mean and standard deviation of each parameter in the posterior.

3.4 Results

In this section, we present the results obtained from tuning our galaxy population

model. We iteratively performed ABC inference on randomly selected batches of

images taken from the HSC deep fields and complemented with reweighted COS-

MOS2020 many-band photometric redshifts as described in sections 3.3.4, 3.3.5 and

appendix 3.A.2. We show the resulting posterior distribution of the model parameters

in the following section. Then, we use samples from the posterior to run simulations in

the COSMOS field and compare the photometric properties obtained by running SEX-

TRACTOR with the same settings on simulations and real data. We choose to use these

patches as validation set, since we have redshift information for individual objects

from the photo-z codes LePhare and EAZY. We conclude with a comparison of the

obtained redshift distributions with the COSMOS2020 catalog at different magnitude

cuts.
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Figure 3.4: ABC posterior for the luminosity function parameters. The parameters for
blue and red galaxies are shown in light blue and red, respectively. The ABC prior is
shown in grey.

3.4.1 ABC posterior

Figures 3.4, 3.5, and 3.6 show the posterior distribution obtained after 23 iterations

of the ABC algorithm, where we fulfill our stopping condition (see Section 3.3.5).

The model has 46 parameters, that we show divided into three categories for clarity:

luminosity function parameters, SED template coefficients and galaxy morphology

parameters.
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Figure 3.5: ABC posterior for the parameters controlling the spectral energy distribu-
tions. The parameters for blue galaxies at redshift 0 are displayed in light blue and in
dark blue at redshift 3. Similarly, the parameters controlling red galaxies at redshift
0 are in red and at redshift 3 in dark red. The modes of the Dirichlet coefficients are
encoded in the first five parameters and one final parameter controls the standard
deviation of the Dirichlet distribution. The ABC prior is shown in grey.

The luminosity function parameters are the most relevant for determining the redshift

distribution. In Figure 3.4 we show the parameters for blue galaxies in the lower left

triangle and for red galaxies in the upper right triangle. We also plot the prior distri-

bution in grey. We notice that the parameters for blue galaxies are better constrained
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than those for red galaxies, possibly because blue galaxies are more abundant. The

parameters M∗
intcpt are generally very well constrained by the ABC, and we notice

several strong correlations between the luminosity function parameters, most notably

between M∗
intcpt and M∗

slope and between φ∗
amp and φ∗

exp.The parameter αblue we ob-

tain is very close to the fiducial value of −1.3 whereas αred ≈−0.35 is slightly higher

than the fiducial −0.5.

In Figure 3.5 we show the constraints on the SED templates coefficients. We show the

prior, obtained from the catalog level ABC run described in Appendix 3.A.1, in grey.

The posterior distribution of the parameters controlling the blue galaxy population is

shown in the lower triangle of Figure 3.5 (in dark blue at redshift z=0 and light blue

at redshift z=3) and that controlling red galaxies in the upper triangle (in dark red for

redshift z=0 and light red for redshift z=3). We notice that the red galaxies are less

constrained, especially at high redshift. The passive galaxy template (T3) is dominating

the SED of red galaxies, as imposed by the prior and there is a significant contribution

of the dusty red template (T0), more prominent at z = 3. The contribution of the

ELG template (T2) increases with redshift, whereas that of the ELG with strong star

formation template (T1) decreases with redshift. This contamination indicates that our

galaxy population coming from the red luminosity function is not completely passive

(probably includes galaxies from the green valley). The post-startburst template (T4)

contributes little and decreases with redshift. The blue galaxies are better constrained

and dominated by the ELG template (T2). The post-starburst template (T4) is also

present in the blue galaxy population at all redshifts, whereas the contribution of the

ELG template with strong star formation (T1) slightly decreases with redshift. The

contribution of the dusty red template (T0) increases with redshift, whereas that of

the passive red template (T3) decreases with redshift. We should not overinterpret the

mixture of modes of the template coefficients, since our model allows large freedom

due to the scatter parameters and the mixture of templates with redshift evolving

coefficients. The KCORRECT templates (shown in Figure 3.1) are derived from SDSS

data [208] and do not provide an accurate characterization of galaxies at high redshifts.

We also need to consider that there is a smooth transition between red and blue

galaxies and that these two categories might not provide a good description of high

redshift galaxies.
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Figure 3.6: ABC posterior for the parameters controlling galaxy morphology. In light
blue we show the parameters for blue galaxies and in red for red galaxies. The ABC
prior is shown in grey.

In Figure 3.6, we show the parameters describing galaxy morphology. These are

considerably more difficult to constrain for our distance metrics, since the effects

of the parameters are often degenerate and describe the full intensity profile of the

galaxies, which is not sufficiently captured by ellipticity and radius alone. We again

show the prior in grey and the posterior distributions for blue and red galaxies in

red and blue respectively. We note that the best constrained parameter is logr intcpt
50

for both blue and red galaxies, whereas other parameters are less constrained. The
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distribution of Sersic indices for red galaxies remains very broad, encompassing values

between 1.5 and 3, whereas the distribution for blue Sersic indices is centered at ≈ 1.

Sersic indices lack redshift evolution in our model, which is observationally measured

(high redshift galaxies have smaller Sersic indices [209]).

3.4.2 Comparison of simulations and real data

We sample 30 parameter configurations from the ABC posterior at random and simu-

late the 56 HSC images overlapping with the COSMOS2020 COMBINED footprint. We

run SEXTRACTOR consistently in dual-image mode using the i band image for detec-

tion on the 30 simulations and the real data and compare the obtained photometric

properties of galaxies. We show 2D contours and 1D histograms of selected photo-

metric properties of simulated galaxy samples and HSC real data up to MAG_APER3_i

of 25 in Figure 3.8. In the lower triangle we show MAG_AUTO in the r, i , z bands and

FLUX_RADIUS in the i band. The magnitudes show excellent agreement both in the 1D

projections and in the 2D contours. The sizes, on the other hand, are more discrepant:

there is a tail of large galaxies in the simulations and also a population of galaxies

smaller than the smallest galaxies in the data. This is an indication of limitations in the

modelling of galaxy morphology. Our model does not include size evolution with red-

shift at fixed absolute magnitude, which can cause a model bias in the size distribution.

The upper triangle of Figure 3.8 shows the colours of galaxies and their correlations.

Colours are very important, since they strongly correlate with redshift. We observe a

rather good agreement of the colour distributions between the simulations and the

real data, with some differences in the tails of the distributions.

In order to highlight the agreement and the discrepancies between colours, sizes and

magnitudes, and also display their evolution with redshift, we include a scatter plot in

Figure 3.7. We show the relation between i band MAG_AUTO and FLUX_RADIUS, r − i

and i − z colours and redshift (from the LePhare photo-z code for the real data). We

observe that many trends are present both in the data and simulations: in particular

the colour-redshift degeneracies are well reproduced by the simulations up to z ≈ 4.

Since simulating realistic galaxy colours is generally a challenging task, this highlights
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Figure 3.8: Comparison of selected photometric properties (MAG_AUTO in r , i and z
band, FLUX_RADIUS in the i band and colours) of HSC real data (in dark blue) and 30
simulations (in teal) in the COSMOS field.

99



Chapter 3. Simulation-based inference of deep fields: galaxy population model
and redshift distributions

M
A

G
A

U
T

O
i

3.0

6.0

9.0

F
L

U
X

R
A

D
IU

S
i

0.2

0.8

1.4

r-
i

-0.2

0.2

0.6

i-
z

18
.5

21
.0

23
.5

MAG AUTO i

1.0

3.0

5.0

re
d

sh
if

t

3.
0

6.
0

9.
0

FLUX RADIUS i

0.
2

0.
8

1.
4

r-i

-0
.2 0.
2

0.
6

i-z

1.
0

3.
0

5.
0

redshift

1

2

3

4

5

6

7

re
d

sh
if

t

(a) Scatter plot of selected photometric properties of the data in the COSMOS field. Redshift
refers to LePhare photo-zs.
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(b) Scatter plot of selected photometric properties of one simulation in the COSMOS field.

Figure 3.7: Scatter plots of real data and one of the simulations in the COSMOS field.
We include MAG_AUTO and FLUX_RADIUS in the i band, r − i and i − z colours and
redshift (from COSMOS2020 CLASSIC LePhare in the case of the real data). Each
point corresponds to a randomly selected galaxy from the catalog.
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the effectiveness and precision of this method. We note that the simulations include

an excess of galaxies at very high redshifts (z > 4.5) that are not observed in the

data. Due to the relation between absolute magnitude and size (and the evolution

of angular diameter distances with redshift), these objects are large enough to be

detected. This heavy high-z tail is likely to bias the redshift distribution. The current

parametrization of the luminosity function implies that the characteristic absolute

magnitude M∗(z) becomes brighter at higher redshifts (with a log(1 + z) redshift

dependence). In a Universe that grows hierarchically, this is not the case at high

enough redshifts. One possibility would be to truncate the growth of M∗(z) at a

redshift zmax so that M∗(z) = const for z > zmax but constraining this parameter

would be difficult since it would affect only a small fraction of the objects. We also

observe an abundance of large objects in the simulations at all redshifts (as already

observed in the 1D FLUX_RADIUS histogram and in the comparison between real and

simulated images). Our model does not account for the evolution of galaxy sizes with

redshift at fixed absolute magnitude, which is seen in observations where high redshift

galaxies are up to five times smaller than local galaxies (see [209] and references

therein). We leave high redshift model refinements for future work.

3.4.3 Redshift distributions

Since the photometric properties of the simulations are in statistical agreement with

the data, we derive the posterior redshift distributions. In Figure 3.9 we show the n(z)s

from 30 simulations in the COSMOS field together with those from the COSMOS2020

photometric redshift catalog in the same field. We also include the redshift distri-

butions obtained by assigning COSMOS2020 photo-zs to 10 sets of 56 continuous

patches selected at random in the HSC deep fields, using the reweighting procedure

presented in 3.3.4 to reduce the impact of sample variance. We show three different

magnitude cuts in the i band MAG_APER3 in the three columns (MAG_APER3_i < 23, 24,

25) and the two different photo-z codes used in COSMOS2020 (LePhare and EAZY)

in the two rows. We notice that the redshift distributions obtained from MCCL are

smooth due to the absence of clustering in the simulations.
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Figure 3.9: Redshift distributions in the COSMOS field, from 30 simulations from
the ABC posterior (in orange), from COSMOS2020 photo-zs and from the COSMOS
mocks generated by reweighting the COSMOS2020 photo-zs based on HSC deep fields
photometry (as explained in Section 3.3.4) in 10 sets of 56 patches. The top row shows
LePhare photo-zs (in dark grey for COSMOS and sea green for the mocks) and the
bottom row EAZY photo-zs (in dark blue for COSMOS and purple for the mocks).

We report mean redshift errors for our simulations, corresponding to the standard

deviation of the means of the 30 simulations. We estimate an error on the mean red-

shift of 0.002 at all magnitude cuts from COSMOS2020 using Bootstrap. Considering

sample variance and the systematic offsets between the two photo-z estimates in COS-

MOS2020 reported in Section 3.3.4 and 3.3.4, we expect a minimum error of 0.02 in

the mean redshift from COSMOS2020. By summing this in quadrature with the MCCL

errors, we obtain a rough estimation of the combined errors σ23 ≈ 0.02, σ24 ≈ 0.025

and σ24 ≈ 0.03 for the three magnitude cuts at MAG_APER3_i= 23,24,25. We report

the mean redshifts and errors in Table 3.4.2. Our estimated redshift distribution for i

band magnitude cut of 23 has low mean and is more concentrated around the mean

than the n(z) of COSMOS2020, especially when compared to EAZY photo-zs. This

can be partly explained by the fact that the simulations are only affected by shot noise

due to the limited number of objects, but do not include sample variance, since the
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MAG_APER3_i < 23 MAG_APER3_i < 24 MAG_APER3_i < 25
z̄MCCL 0.596 0.826 1.168

z̄LePhare 0.618 0.824 1.110
z̄LePhare, mocks 0.604 0.823 1.109

z̄EAZY 0.632 0.842 1.110
z̄EAZY, mocks 0.617 0.841 1.108
σMCCL 0.006 0.013 0.022

σcombined 0.02 0.025 0.03

Table 3.4.2: We report the mean redshifts obtained from MCCL in the COSMOS field,
together with the LePhare and EAZY mean redshifts from COSMOS2020 at three
different magnitude cuts (MAG_APER3_i < 23, 24, 25). We also report the LePhare and
EAZY mean redshifts obtained when reweighting according to HSC deep photometry
10 sets of 56 images (mocks), the MCCL errors and a rough estimation of the combined
errors.

objects are randomly distributed in space without accounting for clustering. When

considering the n(z) distributions reweighted according to deep field photometry in

Figure 3.9, we observe the shift of ≈ 0.015 towards lower redshift reported in Table 3.3.1.

To make sure that the systematic offset is not due to the reweighting methodology, we

also create mocks from the simulations by assigning the redshifts from a simulated

COSMOS field to equal area sets of patches from other simulated HSC deep fields.

The obtained redshift shifts are negligible (∆z ≈ 0.001 at all magnitude cuts). The

sample variance reduction procedure leads to a 1σ agreement between the redshift

distribution of the simulations and the COSMOS2020 data at magnitude cut of 23

in the i band. The redshift distribution for objects below i band magnitude of 24

is in excellent agreement with COSMOS2020. The presence of heavier high redshift

tails in the simulations, originating from the extrapolated redshift growth of M∗(z)

in the luminosity function parametrization, as explained in Section 3.4.2, reduces

the mean redshift agreement for the MAG_APER3_i < 25 sample to 2σ. Removing all

simulated objects at z > 4.5 reduces the MCCL mean redshift estimate of this sample

to z̄MCCL,25 = 1.131±0.014, in better agreement with COSMOS2020.
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3.5 Conclusions

Redshift calibration is one of the key systematics affecting cosmic shear measurements.

Shifts in the mean of the n(z) lead to biased cosmological constraints from large-scale

structure surveys [174–181]. It is therefore important to explore and combine a wide

range of different methodologies to infer accurate photometric redshift distributions.

In this work, we presented a simulation-based inference approach to obtain redshift

distributions from coadded telescope images, extending the result from [120] to deep

HSC data and increasing the accuracy of the method. We developed several extensions

of the methodology, both in terms of modelling and inference. We calibrated the pa-

rameters of our galaxy population model using photometric properties from galaxies

in the HSC deep fields and accurate photometric redshifts from COSMOS2020, and

obtained realistic simulations. We report the resulting parameters of the model in

Table 3.A.1. We compared our results with photometric properties and photo-zs from

the COSMOS2020 catalog, simulating the same area with the Subaru telescope in five

broad bands, and found good agreement. We showed how sample variance in COS-

MOS has a strong impact on bright magnitude limited samples. We found a systematic

redshift offset in the COSMOS field for objects below magnitude 23 in the HSC i band,

common to both photometric redshift methods (LePhare and EAZY). Previous work

[112, 180] found that the use of the COSMOS field high quality photo-zs alone for

redshift calibration could bias low the mean retrieved redshift. This is not in contrast

with our results, since redshift calibration strongly depends on the selection function

and we are only estimating the sample variance in the COSMOS field itself, and not

assessing the impact of using COSMOS2020 as a calibration sample within a method-

ology. Once this effect is taken into account, our simulations achieve 1σ agreement

with the mean of the redshift distribution of COSMOS2020 up to MAG_APER3_i=24,

and 2σ agreement up to MAG_APER3_i=25. The overall shape of the n(z) agrees well.

The presence of a high redshift tail at z > 4.5 requires further investigation and is an

indication of model bias in the luminosity function.

Forward modelling has several advantages that can benefit cosmological large-scale

structure surveys in different ways. On one hand, realistic simulations can be used to
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optimize the survey strategies and model the selection function to the needed level

of accuracy. On the other hand, as done in this work, simulations can be used for

calibration and to study effects that are difficult to model otherwise, for example the

impact of blending and how unrecognized blends can affect the shear measurement.

The MCCL method has good prospects of applicability to data from upcoming Stage IV

surveys such as the Legacy Survey of Space and Time (LSST) [21] and Euclid [22, 210],

which will have depths comparable to the HSC deep fields. The error on the mean

redshift per tomographic bin required by these surveys is ∆z < 0.001(1+ z), about

an order of magnitude tighter than the current work. In order to make this possible,

a number of extensions and improvements are desirable. First of all, imaging of

wider deep fields with many band photometry in order to reduce sample variance

or deeper spectroscopy with clean selection cuts would greatly benefit photometric

redshift calibration in general and forward modelling methods in particular. Secondly,

it will be necessary to investigate the evolution of the luminosity function at high

redshifts and find a suitable parametrization in order to avoid an excess of high redshift

galaxies. This also includes designing good distance metrics to constrain the tail of the

distribution using simulation-based inference. It would be beneficial to extend our

galaxy population model to include effects that are well understood but not currently

modelled, for example the size evolution of galaxies with redshift at fixed absolute

magnitude and a relation between the absolute magnitude and colour of red galaxies

(more massive galaxies are redder [211]). Another possible improvement of the model

of morphologies is the inclusion of bulges and disks instead of a single Sersic profile,

as well as the redshift evolution of the Sersic index. A very promising path to a more

physically motivated modelling is the use of stellar population synthesis (SPS) models

instead of spectral templates to model the galaxies’ SEDs. This entails sampling a

stellar mass function rather than two luminosity functions and constructing SEDs

directly from physical properties of galaxies (such as star formation rates, metallicities

and gas properties). This has become feasible in terms of computing time through the

emulation of SPS models [121, 212–214]. Emulators can also be used to speed up the

UFIG simulations, by mapping the transfer function between catalogs obtained from

the galaxy population model and realistic detections. This requires a more detailed

understanding of selection effects and the impact of blending. Faster simulations
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would allow us to test extensions of the model more extensively. Finally, we have

discussed how sample variance can impact redshift distributions, when the area

considered is limited. In order to obtain realistic sample variance in our simulations,

we need to distribute galaxies following the underlying large-scale structure. This

can be achieved with the required computational speed by using Subhalo Abundance

Matching (SHAM) and approximate simulations as described in [215].

3.A Appendix of chapter 3

3.A.1 Galaxy population model priors

We use a similar model as [27, 120, 186], with a number of modifications, described in

Section 3.3. We summarize the model with a description of model parameters, prior

distributions and allowed ranges in Table 3.A.1. The model has 46 parameters, but

4 of them are redundant: modes of the template coefficients ᾱi are always forced

to sum to
∑
ᾱi = 1. The luminosity function parameters use the same prior as [186],

with standard deviation scaled by a factor of ×3. The prior column in Table 3.A.1

shows the distribution (Normal, Uniform, or Dirichlet) of the prior, as well as the

additional bounds applied. For all variables using the Uniform distribution, a joint

Sobol sequence was used to generate the prior. A suitable prior for the template

coefficients ᾱi is obtained through a catalog level ABC using the COSMOS2015 catalog

[86]. We describe this procedure in the next subsection. Table 3.A.1 also lists the mean

and standard deviation of each parameter’s 1D posterior distribution.

Template coefficient priors from COSMOS2015 catalog

As mentioned in Section 3.3.1, we do not rely on the weights derived in [120] using the

New York University Value-Added Galaxy Catalog to differentiate the SED between red

and blue galaxies, but impose different priors on the Dirichlet ᾱi parameters for the

two galaxy types. This is motivated by the changes to the spectral energy distribution
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Parameter Meaning Prior Posterior

Lu
m

in
o

si
ty

fu
n

ct
io

n
s

(1
0)

M∗
b,slope Slope of the redshift evolution of the parameter M∗

in the Schechter LF for blue galaxies, see Equation 3.2
Prior from [186] ×3,
∈ [−6,1.5]

−4.0±0.3

M∗
b,intcpt Intercept of the redshift evolution of the parameter

M∗ in the Schechter LF for blue galaxies, see Equa-
tion 3.2

Prior from [186] ×3,
∈ [−23,−16]

−19.9±0.1

M∗
r,slope Slope of the redshift evolution of the parameter M∗

in the Schechter LF for red galaxies, see Equation 3.2
Prior from [186] ×3,
∈ [−4,3]

−0.3±0.3

M∗
r,intcpt Intercept of the redshift evolution of the parameter

M∗ in the Schechter LF for red galaxies, see Equa-
tion 3.2

Prior from [186] ×3,
∈ [−23,−17]

−21.0±0.1

φ∗
b,exp Exponent of the redshift evolution of the parameter

φ∗ in the Schechter LF for blue galaxies, see Equa-
tion 3.3

Prior from [186] ×3,
∈ [−2,1.5]

−0.31±0.09

φ∗
b,amp Amplitude of the redshift evolution of the parameter

φ∗ in the Schechter LF for blue galaxies, see Equa-
tion 3.3

Prior from [186] ×3,
∈ [1.1−5,1.2−2]

0.0044±0.0004

φ∗
r,exp Exponent of the redshift evolution of the parameter

φ∗ in the Schechter LF for red galaxies, see Equa-
tion 3.3

Prior from [186] ×3,
∈ [−11,7]

−1.7±0.2

φ∗
r,amp Amplitude of the redshift evolution of the parameter

φ∗ in the Schechter LF for red galaxies, see Equa-
tion 3.3

Prior from [186] ×3,
∈ [2−8,2.5−2]

0.009±0.001

αblue Steepness of the faint-end slope in the Schechter LF
for blue galaxies, see Equation 3.1

U [−1.5,−1.1] −1.29±0.02

αred Steepness of the faint-end slope in the Schechter LF
for red galaxies, see Equation 3.1

U [−0.7,−0.1] −0.36±0.05

G
al

ax
y

m
o

rp
h

o
lo

gy
(1

2)

logr50
blue/red
slope Slope of the evolution of the average intrinsic physi-

cal size of galaxies with absolute magnitude
U [−0.4,−0.1] b: −0.15±0.01

r: −0.21±0.02

logr50
blue/red
intcpt Intercept of the evolution of the average intrinsic

physical size of galaxies with absolute magnitude
U [0,2] b: 0.84±0.02

r: 0.81±0.05

logr50
blue/red
std Standard deviation of the normal distribution we use

to sample intrinsic physical galaxy sizes
U [0.4,0.75] b: 0.56±0.03

r: 0.44±0.02

nblue
s Mode of the Sersic index distribution of blue galaxies U [0.2,2] 1.0±0.2

nred
s Mode of the Sersic index distribution of red galaxies U [1,4] 2.0±0.4

eblue/red
mode Ellipticity distribution mode for blue/red galaxies U [0.01,0.99] b: 0.83±0.04

r: 0.69±0.08

eblue/red
spread Ellipticity distribution spread for blue/red galaxies U [2,4] b: 2.7±0.1

r: 2.14±0.06

SE
D

co
ef

f.
(2

4) ᾱblue/red
i ,0/3 Normalized Dirichlet concentration parameters at

z=0/3 from which the template coefficients for
blue/red galaxies are sampled, i=0, . . . ,4,

∑
i ᾱi=1

5-dimensional
Dirichlet, see 3.A.1
for details

See Table 3.A.3

αblue/red
std,0/3 Standard deviation of the normalized Dirichlet con-

centration parameters at z=0/3 from which the tem-
plate coefficients for blue/red galaxies are sampled

U [1e−4,0.16] See Table 3.A.3

Table 3.A.1: Table with galaxy population model parameters, priors and resulting 1D poste-
riors. Luminosity function is shortened as LF. The details of the prior ranges of the Dirichlet
distributions for the template coefficients are explained in subsection 3.A.1.
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modelling described in Section 3.3.1, that make the model more interpretable. To

capture redshift-colour dependencies of higher redshift galaxies, we derive these

priors from a comparison with the COSMOS2015 catalog [86].

First, we select galaxies from this catalog using the following cuts: z ∈ [0.3,4],

magip ∈ [10,24.5], TYPE== 0. The comparison between the simulated and observed

galaxies is performed using their redshift and colours, defined with respect to the refer-

ence band. We use colour and redshift to avoid constraining the luminosity function,

and exploit just the colour-redshift information. We use the reference band ip and

compute the colours as a difference with bands NUV,u,B,V,r,zpp,Y,J,H,Ks. For the

simulated galaxies, these magnitudes are calculated using UFIG up to catalog gener-

ation, with the use of filters provided in the COSMOS2015 dataset. The comparison

is performed for red and blue galaxies separately. In the real data we use the CLASS

provided by COSMOS2015 to separate between star-forming and quiescent galaxies

(classified using NUV–r /r – J diagram). We use the nearest-neighbour estimator of

Universal Divergence [216] as a distance metric between simulations and real data.

We do not intend to create a posterior on the template coefficient values, but rather

find the upper and lower limits on the Dirichlet modes of template coefficient values

ᾱi . We then perform an iterative procedure of progressively narrowing down the

ranges for all coefficients. Starting with a uniform range for ᾱi ∈ [0,1], we generate

10000 samples from the luminosity function prior described in Section 3.3.1. We then

calculate Universal Divergence between the redshifts and colours from the simulated

and COSMOS galaxies. The columns are scaled before the comparison, using a robust

scaler from the scikit-learn package. We select 2000 best points and calculate

the lower and upper limits on ᾱi . We then input these new limits and generate

another 10000 samples with them. We repeat this process 20 times. The ranges for the

coefficients obtained from this procedure define the prior in the main ABC run and are

shown in Table 3.A.2, with coefficients rounded roughly to 0.1. The obtained ranges

agree with expectations for both blue and red galaxies, with ᾱ2 and ᾱ3 dominating for

the blue and red galaxies, respectively. We report the means and standard deviations

of the obtained posterior of the SED template coefficients in Table 3.A.3.
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parameter ᾱblue
0,z ᾱblue

1,z ᾱblue
2,z ᾱblue

3,z ᾱblue
4,z ᾱred

0,z ᾱred
1,z ᾱred

2,z ᾱred
3,z ᾱred

4,z
lower limit 0 0 0 0 0 0 0 0 0.6 0
upper limit 0.25 0.25 1 0.7 1 0.3 0.1 0.3 1 0.3

Table 3.A.2: Upper and lower limits on the modes of the Dirichlet coefficients ᾱi for
blue and red galaxies derived from the catalog level ABC. The same boundaries are
imposed at redshifts z = 0 and z = 3. These are the upper and lower limits of the
Dirichlet priors of the subsequent ABC run on HSC DUD data.

type, z ᾱ0 ᾱ1 ᾱ2 ᾱ3 ᾱ4 αstd

blue, z = 0 0.021±0.005 0.09±0.01 0.50±0.03 0.14±0.02 0.25±0.03 0.099±0.005
blue, z = 3 0.07±0.02 0.06±0.01 0.55±0.03 0.04±0.02 0.28±0.04 0.075±0.009
red, z = 0 0.08±0.02 0.07±0.01 0.006±0.004 0.80±0.02 0.04±0.02 0.08±0.02
red, z = 3 0.13±0.02 1e −5±2e −5 0.10±0.03 0.76±0.03 0.016±0.008 0.04±0.02

Table 3.A.3: ABC posterior means and standard deviations of the SED coefficients for
red and blue galaxies at redshift z = 0 and z = 3.

3.A.2 Details of the ABC runs

In this Appendix, we describe the details of our ABC analysis that were omitted in

Section 3.3.5. The ABC iteration engine is similar to the one presented in [186] and

depends on a sequence of prior-to-posterior iterations.

Iterations We start by sampling 10000 parameter configurations from the prior de-

fined in Table 3.A.1, with limits in the Dirichlet coefficients ᾱi from Table 3.A.2. We

discard samples when the simulation fulfills one of the rejection criteria: (i) having

more than 1 million blue or red galaxies (ii) having less than 300 or more than 20000 ob-

jects below magnitude 24 in the i band. These are considered extreme conditions,

that no simulation that is similar to the real data would fulfil and help us restrict to

more likely parts of parameter space, without an excessive use of computing time. For

each of the 10000 configurations, we simulate 10 HSC patches in the first iteration,

as described in Section 3.3.5. In the following iterations, we increase the number of

simulated patches by 1, whereas the number of parameter configurations is fixed

to 10000. Table 3.A.4 shows the number of patches simulated per iteration and the

corresponding sky area in deg2.
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iteration Np,sim sky area
1 10 0.38 deg2

2 11 0.42 deg2

3 12 0.46 deg2

4 13 0.5 deg2

5 14 0.54 deg2

6 15 0.58 deg2

7 16 0.61 deg2

8 17 0.65 deg2

9 18 0.69 deg2

10 19 0.73 deg2

11 20 0.77 deg2

12 21 0.8 deg2

13 22 0.85 deg2

14 23 0.88 deg2

15 24 0.92 deg2

16 25 0.96 deg2

17 26 1 deg2

18 27 1.04 deg2

19 28 1.08 deg2

20 29 1.11 deg2

21 30 1.15 deg2

22 31 1.19 deg2

23 32 1.23 deg2

Table 3.A.4: Number of patches used in each iteration and corresponding sky area
covered by the HSC DUD patches.

Sample selection The distance measures described in Section 3.3.5 are computed

using the SEXTRACTOR catalogs, created in all g r i z y bands, based on the detection

in the i band. We perform the PSF estimation using a Convolutional Neural Network

[204], in the same way as in [127]. We run SEXTRACTOR on the HSC data first, and

then on the simulated images during the ABC iterations. From the catalogs, we select

galaxies with the following set of cuts applied in all bands with strict and conditions:

FLAGS< 4, 14 < MAG_APER3< 30, MAG_AUTO< 99, 0.1 < FLUX_RADIUS< 100,

−3 < log10 (SNR) ≡ log10

(
FLUX_AUTO

FLUXERR_AUTO

)
< 4, 0 < ELL< 1,
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N_EXPOSURES> 0, 0.5 < r50/PSF_FWHM, CLASS_STAR< 0.95

where ELL is the absolute ellipticity calculated from windowed moments **_WIN_IMAGE,

N_EXPOSURES is the number of exposures in the coadd at the position of the object,

r50 is the object size defined as r50 = 2 · ln(2) · (X2_WIN_IMAGE+Y2_WIN_IMAGE)1/2, as

in [127]. Both the PSF size cut and the CLASS_STAR cut are applied to create a pure

galaxy sample. In addition, we impose MAG_APER3< 25 in the i band. Note that the

SEXTRACTOR detections are matched in the simulations to the true properties of the

injected galaxies, as explained in Section 3.3.2, so that a further criterion for simulated

objects to be selected for the MMD distances is that the detection has been matched

to a true simulated object. We additionally require that the objects do not lie on the

image mask. When computing dMMD,23 we additionally impose MAG_APER3_i < 23.

Optimization of the kernel radius parameter To obtain the most sensitive MMD

distance, it is common to optimize the parameters of the kernel used to compute

it [207]. We use a Gaussian kernel with a single parameter σ, corresponding to the

correlation scale. We compute σ for the different MMD distances as the median

distance between samples drawn from the same probability distribution (the real

data) [120, 207].

Modelling of posterior distributions We create the posterior distribution at each

iteration by setting the 20th percentile as a threshold, thus selecting the 2000 out

of 10000 samples with the smallest combined distance. We then create a model

of this posterior using a Gaussian Mixture Model (GMM), from the scikit-learn

implementation6. We use 20 Gaussians to fit the distribution. Before fitting, we

transform the model parameter samples to a gaussianized space. This is done to

make the GMM more suited for fitting the distribution, especially for parameters with

uniform priors. First we rescale the parameters to lie between ∈ [1−8,1−1−8], and

then apply a Gaussian inverse-CDF transform. We draw 10000 new samples in the

6scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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SEXTRACTOR parameter Value
CATALOG_TYPE FITS_1.0
DETECT_TYPE CCD

DETECT_MINAREA 5
THRESH_TYPE RELATIVE

DETECT_THRESH 1.5
ANALYSIS_THRESH 1.5

FILTER Y
FILTER_NAME gauss_3.0_5x5.conv

DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.00001

CLEAN Y
CLEAN_PARAM 1.0

MASK_TYPE CORRECT
MAG_ZEROPOINT 27

PIXEL_SCALE 0.168
STARNNW_NAME default.nnw

BACK_SIZE 128
BACK_FILTERSIZE 3

BACKPHOTO_TYPE LOCAL
BACKPHOTO_THICK 24

WEIGHT_TYPE NONE

Table 3.A.5: SEXTRACTOR configuration used in this work both on real images and
simulations. The missing parameters change per patch and band and are described in
the text.

gaussianized space using Sobol sampling and invert them back to the original space.

We verify that the GMM model in the transformed space is a good representation of the

posterior by comparing the 2D marginal projections of all parameter combinations

for the original 2000 samples and 10000 new GMM samples. The GMM samples from

the model posterior are passed as priors to the next iteration of the ABC algorithm.

3.A.3 SEXTRACTOR settings

We report in Table 3.A.5 the SEXTRACTOR configuration.
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3.B Contributions

For Chapter 3, I was the main contributor. I devised the project, extended the code-

base, ran the Approximate Bayesian Computation and the final simulations. I created

the figures, interpreted the results and wrote the majority of the manuscript.

The early stages of the project were carried out by Dominic Grimm during his Master

thesis, which I supervised. He contributed mostly to the design of the forward model

of HSC deep images and the creation of a first version of the systematic maps. Tomasz

Kacprzak also contributed to the project by designing and running the catalog level

ABC on COSMOS2015, reworking parts of the code and participating to writing of

the manuscript. Silvan Fischbacher helped with the optimization of the code and

discussion of the results. Further contributors are Alexandre Refregier and Luca

Tortorelli, who contributed mostly to the interpretation of the results and early code

developments. The mentioned contributors are also the co-authors of the submitted

work (Moser et al., 2024 [32]) upon which this chapter is based.
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CHAPTER 4
REDSHIFT CALIBRATION: A COMPARISON BETWEEN SOMPZ

AND MCCL FOR DES Y3

All you really need to know for the moment is that

the universe is a lot more complicated than you

might think, even if you start from a position of

thinking it’s pretty damn complicated in the first

place.

— DOUGLAS ADAMS, Mostly Harmless

4.1 Introduction

Current and future large-scale cosmological imaging surveys such as the Dark Energy

Survey1 (DES; [18]), the Kilo-Degree Survey2 (KiDS; [19]), the Hyper Suprime-Cam

Subaru Strategic Program3 (HSC; [20]) , the Vera C. Rubin Observatory Legacy Survey

of Space and Time4 (LSST; [21]) and Euclid5 [217] are imaging a growing area of the

1http://www.darkenergysurvey.org/
2http://kids.strw.leidenuniv.nl/
3https://hsc.mtk.nao.ac.jp/ssp/survey/
4https://www.lsst.org/
5https://www.euclid-ec.org/
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sky with unprecedented depth. These surveys combine different probes in order to

deliver stringent constraints on the cosmological models. Cosmic shear, the weak

deformation of galaxies due to the large-scale structure of the Universe intervening

between the source and the observer, is currently one of the most promising probes of

the content of the Universe and growth of structure, with the potential to shed light

on the nature of dark energy [79]. The combination of cosmic shear, galaxy clustering

and galaxy-galaxy lensing (known as 3×2-point analysis) is reaching a constraining

power close to that of the CMB temperature anisotropies and E mode polarization in

the S8 −Ωm plane ([170, 171]).

Weak lensing, despite its simple theoretical framework, is a demanding probe in

terms of control of systematics. Among the main sources of systematic uncertainty

are the errors in the measurement of the redshift distribution of galaxies on noisy

photometry [218]. Ideally, the measurement of spectra of all galaxies in a sample

would yield an accurate redshift determination but the large number of galaxies

in wide field surveys and their faintness make this infeasible. Wide field surveys

thus need to rely on photometric redshift estimates derived from a small number of

broad-band filters [173, 219]. Since cosmological parameter estimation can be biased

by systematic effects in the redshift distribution (e.g. [175]), it is crucial to develop

and compare different redshift calibration methodologies. Many of the methods

rely on per object photo-z estimates, obtained either by template-fitting (e.g. [94–

96, 220]) or machine learning methods (e.g. [100, 105, 221]), which are then stacked

to obtain a distribution. Direct calibration methods estimate the overall redshift

distribution of a sample of galaxies by reweighting the distribution of a subsample with

good quality spectroscopic or many-band photometric redshifts [107, 179, 222]. One

recent approach to reweighting makes use of Self-Organizing Maps (SOMs) [223], an

unsupervised dimension reduction algorithm, that discretizes the magnitude-colour

space of a galaxy sample in two dimensions and creates an empirical relation between

the desired wide field redshift distribution and a sample with well characterized

redshifts. This method was proposed for redshift calibration by [109] and is currently

used in KiDS [113, 183] and DES [110, 112]. We refer to this method as Self-Organizing

Map p(z) (SOMPZ). The methodology can be used in combination with clustering

redshifts, the exploitation of spatial cross-correlations between a target sample and a
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sample with known redshifts [183, 224, 225]. A different approach to the calibration of

the overall redshift distribution of a sample of galaxies was proposed by [120] in the

context of the Monte Carlo Control Loops (MCCL) framework. This approach derives

the redshift distribution from realistic simulations, which are tuned via simulation-

based inference to agree statistically with survey images.

In this chapter, we perform a blinded comparison between the tomographic redshift

distributions obtained by applying the SOMPZ and MCCL methodologies to the same

target sample of galaxies from DES Year 3 (DES Y3) data. This allows us to cross

compare the two methodologies and assess the agreement of the retrieved redshift

distributions, which leverage different sources of information. A bias in the mean

redshift, which contains most of the necessary information for an integrated probe

such as weak lensing, could lead to distortions in the retrieved cosmological parame-

ters and is considered one of the possible drivers of the discrepancies found between

different surveys [111].

The chapter is organised as follows. In Section 4.2 we present the DES Y3 data on

which we perform the analysis and the simulated data employed by the two pipelines.

Section 4.3 describes the two methodologies and compares their features. We dis-

cuss the implementation details of the two methods in Section 4.4, which includes

some intermediate results, and the blinding strategy in Section 4.5. We show the

unblinded results of the analysis in Section 4.6, where we gain deeper insight into

the two methodologies with detailed comparisons. In Section 4.7 we rerun the MCCL

simulations using the ABC posterior from Chapter 3, constrained using HSC deep

data and photo-zs from COSMOS2020. We show the global redshift distributions in

Section 4.8. We present our conclusions in Section 4.9.

4.2 Data

The two different methodologies are applied to DES Y3 wide field data, with the same

selection applied. Furthermore, each methodology uses additional data: SOMPZ relies

on the deep and redshift samples, complemented with the Balrog artificial data to
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calibrate the redhsift distribution. On the other hand, MCCL does not use additional

calibration data, but relies on complete simulations of the DES Y3 images.

4.2.1 Wide field data

We compare the two redshift calibration methodologies on Dark Energy Survey Year

3 data [226]. The wide field images cover ∼ 5000 deg2 of area, representing a large

increase in area compared to the ∼ 1500 deg2 of DES Year 1 [30] with a similar depth.

After masking foregrounds and bad regions, the effective area is ∼ 4143 deg2 [225]. In

the MCCL methodology, we produce a SEXTRACTOR [189] catalog by running, for each

coadd in each band, forced photometry on a r i z CHI-MEAN detection image. This

image is created by a weighted linear combination of the r, i , z images following the

procedure of [226]. We rerun the detection image creation in our pipeline in order

to be able to perform exactly the same procedure for survey images and simulations.

Additionally, we use information about the single exposures, to create noise maps

and coaddition patterns that are used as systematic maps in the PSF estimation

procedure, similarly to [127]. SOMPZ instead is run directly on DES Y3 Gold, the

photometric dataset assembled for DES Y3 cosmological analyses [227]. We apply to

both catalogs the selection presented in the next subsection. We deploy data taken in

the g r i zY bands for MCCL, even though the g and Y band data are excluded while

training the self-organizing maps for SOMPZ. The g band images present difficulties

in adequately modelling the point spread function with PIFF [228]. Since we do not

rely on METACALIBRATION photometry [229] in this analysis, it is not necessary to

exclude this band, but we still exclude it from the SOM in order to match the analysis

choices of [112]. This choice allows us to avoid repeating the uncertainty estimation

for the SOMPZ methodology. Furthermore, as will be shown in section 4.6, the g band

is the most discrepant in the comparison between the simulations used in MCCL

and survey data. The Y band is noisier than other bands, as the exposure time for a

single exposure in this band is 45 s compared to 90 s for other bands. For this reason,

the Y band is only used in the tuning of the simulation parameters for MCCL via

Approximate Bayesian Computation (see Sections 4.3.1 and 4.4.3), but only appears

as a diagnostic in the rest of the analysis.
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Target sample

In order to fairly compare the SOMPZ and MCCL redshift distributions, we apply both

methods to the same sample of galaxies, which we call the target sample. We design the

target sample to resemble the DES Y3 weak lensing source catalog [119], but without

relying on METACALIBRATION photometry which is not available in the MCCL pipeline.

The redshift distribution of the weak lensing source catalog is calibrated in [112].

We base the simplified selection for the target sample on SEXTRACTOR photometric

quantities, which are easily accessible to both pipelines. Note that in the case of

SOMPZ, the cuts are applied to the DES Y3 Gold catalog [230] with

FLAGS_FOOTPRINT == 1 and FLAGS_FOREGROUND == 0 and

FLAGS_BADREGIONS < 2 and FLAGS_GOLD < 8,

to which we refer as unmasked Y3 Gold. In MCCL we first run SEXTRACTOR on both

real and simulated images and then mock the unmasked Y3 Gold selection. This

implies selecting the survey footprint using the systematic maps of single exposures,

removing the tiles near the Large Magellanic Clouds, the objects matched with the

Sky2000 catalog of bright stars (below 8.0 mag) [231] and imposing FLAGS_g,r,i,z

≤ 3. The selection for the target sample is then defined as follows:

2.5 < FLUX_RADIUS_i < 7 and 0 < FLUX_RADIUS_g,r,z < 10 and

17 < MAG_AUTO_i < 23.5 and 17 < MAG_AUTO_g < 99 and

17 < MAG_AUTO_r,z < 25.5 and

SNR = FLUX_AUTO / FLUXERR_AUTO > 7 in r , i or z band.

The conditions on MAG_AUTO and FLUX_RADIUS are imposed to mock the magnitude-

radius distribution of the weak lensing catalog. The last selection cut in signal-to-noise

ratio is designed for removing false detections of faint galaxies. Many of the stars are

excluded from the sample due to the cuts in FLUX_RADIUS_i and we remove most of

the remaining stars using a random forest trained on UFIG simulations, as explained

in Section 4.4.1. Target sample will thus refer to the two samples with simplified cuts

and star-galaxy separation applied, one for SOMPZ and one for MCCL.
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Figure 4.1: We show the 68%, 95% and 99% contours of the MAG_AUTO - FLUX_RADIUS
distribution of galaxies in the g ,r, i , z bands with different selections: the WL source
galaxies from DES Y3 (dark blue dash-dotted line), the target sample of SOMPZ (light
blue solid line) and the target sample of MCCL (dashed orange line).

Y3 Gold WL source catalog target sample SOMPZ target sample MCCL

319,296,026 100,208,944 104,491,927 103,822,956

Table 4.2.1: Number of galaxies in the whole Y3 Gold, the weak lensing source catalog
and the target samples of this analysis for SOMPZ and MCCL.

The target samples distribution in the g ,r, i , z magnitude-radius plane is displayed in

Figure 4.1. We observe that the i band, where the more restrictive selection is defined,

shows sharp cuts in magnitude and radius, while the magnitude-radius distributions

in the other bands resemble the weak lensing source catalog closely. In Table 4.2.1

we report the number of galaxies in the weak lensing source catalog compared to our

target samples and the total number of galaxies in the unmasked Y3 Gold catalog.

4.2.2 Deep and redshift samples for SOMPZ

The SOMPZ methodology relies on observations from deep fields, which allow us to

break degeneracies between redshift and colours due to the larger number of filter

bands and are more reliable in terms of density estimation due to their depth. The

deep data is available for the DES deep fields which have measured photometry in the

ug r i z J HKs bands. The DES deep fields cover areas of 3.32, 3.29, 1.94, and 1.38 deg2,

for a total overlap of 5.2 deg2 after masking the bad regions. A detailed description of

the data products is provided in [232] and [233]. SOMPZ also requires samples with
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accurate redshift estimation, such as spectroscopic samples or precise many-band

photometric samples. In this analysis we use both public and private spectra from

the spectroscopic catalogs zCOSMOS [234], C3R2 [235], VVDS [236], and VIPERS [237].

We additionally use photo-z estimates from two multi-band catalogs: COSMOS2015

30-band catalog [86] that includes optical, UV and mid-infrared data from the 2 deg2

COSMOS field and PAUS+COSMOS, which is a 66-band catalog that combines 26

COSMOS bands (excluding the infrared) and 40 PAU narrow bands [238]. Our fiducial

redshift sample for the SOMPZ analysis in this work is the SPC sample from [112] which

ranks the spectroscopic catalogs first, followed by PAUS+COSMOS and COSMOS2015

many band photo-zs. We also use three other redshift samples to check for robustness:

PC (photometric only, ranks PAUS+COSMOS first and then COSMOS2015), SC (ranks

spectroscopic redshifts first and combines them with COSMOS2015) and C (only

COSMOS2015). Due to the different selection in the wide fields, the contribution

from the different redshift samples in SPC changes slighty from [112]: we have 40.5%

redshifts from spectra, 44% from PAUS+COSMOS and 15.5% from COSMOS2015.

4.2.3 Artificial wide data for SOMPZ: Balrog

SOMPZ uses Balrog [233, 239] to link the deep sample and wide field target sample by

characterizing the property modulation and selection effects of deep sources in DES

wide field imaging. The Balrog sofware is used to inject simulated galaxies, which

are model fits of randomly sampled DES Y3 deep galaxies, in the wide field single-

epoch images multiple times at different positions on a grid. By processing these

artificial images with injected sources through the photometric pipeline, one obtains a

catalog that contains different wide realizations of the same deep galaxy. The injection

procedure and the processing through the coaddition and measurement pipeline

allows the Balrog catalog to inherit systematic effects that are either too difficult

to forward model, positionally-dependent on the sky or unknown. This catalog is

used to reconstruct the transfer function that relates deep photometry with wide field

observations and is a key ingredient of the SOMPZ redshift calibration for DES.
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4.2.4 Artificial wide data for MCCL: UFIG simulations

The forward modelling approach of MCCL requires a reliable fast image simulator. The

Ultra Fast Image Generator (UFIG) is a software for simulating realistic survey images

based on a parametric description of the galaxy population and the observational and

instrumental effects of the specific survey. The galaxy population model is introduced

in [188] and further explained and extended in [32, 120, 186]. Red and blue galaxies

are drawn from two Schechter luminosity functions that evolve with redshift and

are assigned a Spectral Energy Distribution (SED), which is a linear combination of

the five KCORRECT template spectra [208] built using the Bruzual and Charlot stellar

population synthesis models [240]. The coefficients are sampled from two Dirichlet

distributions of order five, one for blue and one for red galaxies. The parameters of

the Dirichlet distribution evolve with redshift to account for the evolution in galaxy

colours. The galaxies are distributed randomly in the image, as clustering is currently

not present. The simulated galaxies are then assigned a flux in the desired filter bands,

as well as a Sersic light profile, with index n (different for red and blue galaxies) and

half-light radius r50. These radii come from a log-normal distribution with fixed stan-

dard deviation and absolute magnitude dependent mean. Galaxies are also assigned

ellipticity components (e1,e2), based on a Beta distribution p(|e|) with parameters

emode and espread. The bright stars are assigned positions from Gaia Data Release

2 [241] and magnitude from the Besançon model of the Milky Way [199]. Fainter

stars have random positions and come from the Besançon model. The bright stars

(MAG_AUTO between 17 and 22) are used to estimate the PSF patterns using Convolu-

tional Neural Networks as described in [204], which are then rendered on simulated

images at pixel level. We produce DES coadds but simulate the coaddition process

using the information about single exposures and CCD boundaries as described in

section III.C of [127]. Other instrumental and observational effects such as gain of

the detector, read-out noise and reddening are also rendered in the simulated images,

with the aim of making them approximately comparable to real telescope images

while maintaining a fast runtime. The UFIG simulations are heavily employed in the

MCCL approach.
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4.3 Methods

We apply the MCCL and SOMPZ methods to the described target sample in order

to compare them and assess their agreement when constraining the tomographic

redshift distributions of the same sample of galaxies. In the following subsections we

outline the two methodologies and highlight some common features and differences.

4.3.1 MCCL

The MCCL method was first proposed by [27] as a forward modelling approach for

calibrating cosmic shear measurements. The method was successfully applied for

shear calibration in [191], determining the redshift distribution of a galaxy sample

in [120] and for an end-to-end cosmic shear analysis in [127]. At the heart of the

MCCL methodology lies the possibility of performing fast and realistic simulations

of the survey of interest, that include instrumental and observational effects. This

makes use of simulated survey images produced with UFIG [188, 190]. The simulator

implements a parametric model of the galaxy population, summarised in Section 4.2.4

and described more extensively in Section 3.3.1 of Chapter 3. The key requirement for

this simulation software is computational speed since the whole survey footprint is

simulated multiple times throughout the analysis. The tuning of the parameters of the

model is performed through an Approximate Bayesian Computation (ABC) analysis

since the likelihood functions are intractable [242, 243]. We start from a conservative

prior on the parameters and use UFIG to simulate several DES coadds, sampling the

parameters from the prior. By evaluating the difference between the real images and

simulations in terms of distance measures and selecting the parameters that minimize

them, we are able to iteratively constrain the model. The ABC scheme is similar to that

used in [186] and in the previous chapter. We underline the implementation details

in Section 4.4.3. Once our ABC posterior is converged, we perform 40 simulations of

the full survey of interest with parameters sampled from the posterior. We call the

first simulation fiducial since it uses the posterior point that minimizes the combined

distance measure. The simulations are analysed in the same way as the real images.
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We extract magnitudes, sizes, ellipticities and colour distributions using SEXTRACTOR,

which is run with the same settings on real and simulated images. We make sure that

the simulated distributions span the same space of the DES real images. This step

is crucial because it enables us to trust the fidelity of the UFIG simulations, identify

the sources of discrepancies and possible extensions of the model. The redshift

distributions are constructed from the true redshifts in the UFIG simulations matched

with SEXTRACTOR detections, which depend on the ABC posterior parameters of the

luminosity function, on the selection applied and on the colours for tomographic bin

assignment. We summarize the steps of the MCCL redshift calibration:

1. use parametric models to describe the galaxy properties, observational and

instrumental effects and generate realistic simulated images;

2. starting from an observationally motivated prior, constrain the galaxy popula-

tion model parameters via simulation-based inference;

3. run several simulations of the full DES area with parameters sampled from the

ABC posterior and check statistical agreement with real images;

4. obtain redshift distribution for each simulation, accounting for uncertainty.

4.3.2 SOMPZ

SOMPZ is a photometric approach to redshift calibration: it constructs a mapping

between redshift and observed magnitudes and colours in a limited number of broad-

band filters. The method is characterized by the use of self-organizing maps to facili-

tate redshift calibration, by reducing the dimensionality in magnitude-colour space.

In particular, we make use of the DES deep fields that overlap with near-infrared

surveys to break degeneracies in the statistical colour-redshift relation [110, 112, 232].

This method is used with three main galaxy samples: the wide field DES Y3 target

sample consisting of r i z photometry for ∼100 million galaxies, the DES deep fields

consisting of ug r i z J HKs photometry for ∼3 million galaxies [232], and a redshift

sample consisting of the intersection of the DES deep fields and spectroscopic and
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many-band photometric redshift surveys. SOMPZ uses the deep fields to determine

the abundance of galaxies in ug r i z J HKs-band colour space and the redshift distri-

butions in those regions of colour space to avoid selection biases introduced when

reweighting redshifts according to only their abundance in (g )r i z colour space (see,

e.g. [244]).

In practice, this inference method is facilitated by the use of two SOMs which classify

the galaxies in the deep and wide samples into discrete classes, called cells, of colour

and colour-magnitude space. The discrete classes are sometimes referred to as galaxy

phenotypes ([110, 124]). The redshift distribution of a given galaxy assigned to wide

SOM cell ĉ is then given by:

p(z|ĉ, ŝ,θ) =∑
c

p(z|c)pBalrog(c|ĉ, ŝ,θ)p(ĉ|ŝ,θ) (4.1)

where z is redshift, c represents deep SOM cell indices, ĉ represents wide SOM cell

indices, ŝ is the sample selection function, and θ represents any additional conditions

such as position on the sky. By assigning wide SOM cells to tomographic bins, the

redshift distribution of the tomographic bin can be computed by marginalizing (i.e

summing) over the n(z) of its constituent cells:

p(z|b̂, ŝ) = ∑
ĉ∈b̂

p(z|ĉ, ŝ)p(ĉ|ŝ, b̂) (4.2)

= ∑
ĉ∈b̂

∑
c

p(z|c, ĉ, ŝ)pBalrog(c|ĉ, ŝ)p(ĉ|ŝ, b̂). (4.3)

In this inference method, the Balrog image simulation software [233] plays the

key role of determining the likelihood of a given deep many-band colour to be ob-

served at a given region of noisier wide colour-magnitude space. The middle factor

pBalrog(c|ĉ, ŝ,θ), called the transfer function, encapsulates this information using

multiple wide-field realizations of deep-field galaxies across the DES footprint to
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express the likelihood of a deep colour to be observed at a certain region of wide

colour-magnitude space. This transfer function serves to correctly weight the well-

constrained redshift distribution p(z|c) of each deep SOM cell according to the proba-

bility of detecting those galaxies.

In addition to breaking degeneracies in the colour-redshift relation, this scheme

facilitates avoiding otherwise prohibitive selection biases resulting from the use of

spectroscopic redshifts for weak lensing redshift calibration (see, e.g. [244]) because

it uses spectroscopic redshifts only of galaxies for which 8 bands of DES deep field

photometry provide relatively well-constrained p(z). In this work we use the pipeline

from the application of SOMPZ to the DES Y3 source catalogue [112], with minimal

changes presented in section 4.4.2.

4.3.3 Complementarity

The two methods are complementary, since they use different sources of information

to calibrate the redshift distribution. A common aspect is the fact that both methods

are aimed at measuring the redshift distribution of a sample of galaxies, rather than

the redshift of a single galaxy.

MCCL relies on wide field images and on the possibility to simulate populations

of galaxies that statistically agree with the ones in survey images. The parametric

functions that are used in UFIG to model galaxy properties, such as magnitudes, sizes,

spectral energy distributions and radial profiles, and render the objects on the image,

are based on simple assumptions. The key modelling steps for redshift calibration

are the luminosity functions and the construction of SEDs, parametrized in UFIG

as a linear combination of 5 KCORRECT templates, with coefficients sampled from a

Dirichlet distribution, with parameters evolving with redshift. This model has been

validated against PAUS many band photometry [194] and spectroscopic data. [196]

presented USPEC, a spectra generator which, following the same working principle

as UFIG, successfully simulated a sample of luminous red galaxies comparable to

SDSS/CMASS. Furthermore, [197] showed that the same galaxy population model

can also reproduce galaxy properties (spectroscopic redshift distributions and stellar
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population properties) of bluer galaxies such as those in SDSS/CMASS Sparse. As the

method uses the entire wide field imaging for constraining the ABC posterior, it is not

sensitive to cosmic variance, as it is common for methods that use deep but small

areas as redshift calibration samples.

Many cosmological and astrophysical phenomena are not yet accounted for, for in-

stance the clustering of galaxies, which is currently being implemented [215]. The

simple galaxy population model does not include galaxy morphological features, such

as bulges and spiral arms, gas physics and time-varying objects such as AGNs. The

simplifying assumptions could lead to biases, and one needs to be careful in check-

ing the agreement with real images and whether it is necessary to extend the model.

Furthermore, the method is designed to be fast and optimized for high performance

computing but computationally expensive, since it requires multiple realistic simula-

tions of the whole survey footprint. An advantage is that the methodology naturally

produces a family of redshift posterior distributions.

SOMPZ leverages information from the deep fields, where deep photometry is avail-

able in more bands, in order to relate accurate redshifts to noisy wide field galaxies

statistically. The galaxies in deep fields may be affected by cosmic variance, and this

effect is quantified [112, 245]. A crucial improvement over other methods is the possi-

bility to build a transfer function using Balrog that accounts for selection effects in the

wide fields. Balrog injects model fits of deep galaxies in the wide field single-epoch

images multiple times, and then performs coaddition and processing steps similarly

to the DES Data Management team (DESDM) [246]. In this way, Balrog inherits

systematics effects that are difficult to model and that could vary across the survey

footprint. Due to the computational cost of injecting into single-epoch images, the

Balrog run used for DES Y3 covers ∼20% of the survey footprint and thus does not

sample the full Y3 observing conditions. UFIG and Balrog have different approaches

and serve different purposes: UFIG focuses on simulation speed and allows to capture

systematic effects globally, limited to our understanding of the survey properties. The

aim of the simulations is to forward model the sample and match its global properties.

Balrog, on the other hand, captures local and unknown effects in the images, at a

large computational cost and is aimed at characterizing measurement biases and
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selection effects.

A simplifying approximation required by the SOMPZ method is p(z|c, ĉ, ŝ) ≃ p(z|c, b̂, ŝ),

since very few galaxies belong to both c and ĉ, given the large number of possible cell

combinations [112]. This causes a systematic offset in the estimated mean redshift

in each bin, when validated against BUZZARD simulations ([112, 247]), which could

be mitigated by injecting more deep galaxies in a wider footprint of the survey. The

method could also benefit from targeted spectroscopic follow-ups, since some deep

SOM cells remain empty or scarcely populated, or more narrow-band imaging which

avoids selection biases. The characterization of the uncertainty requires modelling

several contributions that affect mainly the deep and redshift samples and is highly

non trivial [112].

4.4 Implementation

This section summarizes the changes to the two redshift calibration pipelines im-

plemented in this work. We start by introducing the procedure to exclude most of

the stars that remain in our target sample after the selection cuts. We proceed by

describing the minor modifications to SOMPZ with respect to [112] and the changes

to MCCL since [127] and [186], which include extensions of the galaxy population

model in UFIG and improvements of the ABC scheme similar to Chapter 3. We show

the resulting ABC posterior and the comparison between photometric properties of

real and simulated data. Furthermore, we present the tomographic bin assignment

strategy which is the same as [112] but is applied also to the MCCL pipeline, in order

to assign the same galaxies to the same bins in the two methodologies to allow the

comparison. We conclude with sections briefly discussing the n(z) computation and

uncertainty estimation.
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4.4.1 Star galaxy separation

The selection used to define the target sample described in Section 4.2 excludes many

of the stars, especially due to the FLUX_RADIUS cut in the i band. Nevertheless, we

need to define a framework for star-galaxy separation which is applicable to both

methodologies in order to reduce the stellar contamination of the target sample. In

order to classify objects as stars or galaxies, we train a random forest classifier from

scikit-learn [248] on the UFIG simulations, where we know which objects are simu-

lated stars (star_gal flag). The classifier is trained using g , r , i and z band MAG_AUTO,

FLUX_RADIUS and colours of 6 million objects balanced so that 50% of the objects

are stars and 50% galaxies from a simulation of 1000 randomly selected tiles. In the

training we do not apply any cuts. We validate the classifier on 3 million objects from

the UFIG target sample (with SEXTRACTOR cuts). Purity and completeness of the

galaxy sample are both ∼ 99.3%. When we evaluate the classifier on real data from

the unmasked Y3 Gold catalog, after selection and star-galaxy separation are applied,

we observe that the fraction of objects with EXTENDED_CLASS_MASH_SOF == 0 (high

confidence stars and QSOs, see [230] for definition) is 0.3% whereas ∼ 99% of the ob-

jects have EXTENDED_CLASS_MASH_SOF == 3. We thus obtain a stellar comtamination

comparable to that of the weak lensing source catalog.

4.4.2 SOMPZ modifications

The SOMPZ methodology is used in the same way as in [112], with few exceptions.

The first difference is the selection of the target sample, which requires updating the

Balrog sample and implied transfer function with the same cuts. Furthermore, we

use FLUX_AUTO from SEXTRACTOR instead of METACALIBRATION fluxes to compute the

luptitudes (see [249] for definition and [110] for the usage in SOMPZ) used to train

the wide SOM. This is motivated by the fact that the cuts are designed in SEXTRACTOR

quantities, and the selected objects do not necessarily have well measured METACALI-

BRATION photometry. Furthermore, the usage of SEXTRACTOR photometry allows us

to assign galaxies from UFIG simulations to the SOM for tomographic bin assignment

and for cross-comparisons. The usage of SEXTRACTOR photometry also implies that
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we do not apply response and lensing weights, described in section 4.2 of [112], but

only weigh by number of injections for the Balrog sample. We visualize the wide and

deep self-organizing maps in Appendix 4.A.3.

4.4.3 MCCL modifications

The galaxy population model and ABC inference engine are very similar to those used

in the HSC deep field analysis presented in Chapter 3. The updates to the morphology

sector and to the parameters of the spectral energy distribution are implemented in

this work, whereas the luminosity function parametrization follows [120, 127, 186].

We use the ABC procedure from Chapter 3, with slight modifications in the distance

measures and MMD kernel width optimization. Changes that are unique to this work

are the addition of a new parameter capturing the uncertainty in the number of faint

stars and the use of imputation to fill in missing columns in galaxy catalogs during the

ABC.

We describe each of these updates in greater detail below and show the resulting ABC

posterior. After constraining the galaxy population model via ABC, we simulate the

whole survey footprint 40 times, sampling the parameters from the ABC posterior. We

compare the resulting photometric properties of the simulated galaxy target samples

to DES real data in order to assess the agreement. The comparison is displayed at the

end of Section 4.4.3.

Updated galaxy population model

The galaxy population model consists of two populations of galaxies: red and blue.

Each of these types is modeled by dedicated set of parameters for luminosity, size,

Sersic index, and ellipticity. The galaxies are sampled from two separate Schechter

luminosity functions where the parameters M∗(z) and φ∗(z) evolve with redshift with

the functional forms

M∗(z) = M ∗slope z +M∗
intcpt (4.4)
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φ∗(z) =φ∗
amp exp(φ∗

expz). (4.5)

The steepness of the faint-end slopes of the Schechter luminosity function are fixed

to the default values αred = −0.5 and αblue = −1.3. The morphology of galaxies is

described by three parameters logr intcpt
50 , logr slope

50 and logr std
50 separately for blue and

red galaxies, as in the previous chapter. The Beta distribution describing galaxy ellip-

ticities and the Betaprime distribution of Sersic indices is also unchanged. We draw

the coefficients of the SED templates from a five-dimensional Dirichlet distribution

separately for blue and red galaxies. The redshift evolution of the template coefficients

is encoded in two sets of parameters at redshift z = 0 and z = 1 that we interpolate be-

tween. We use the new redundant parametrization of the SED coefficients presented

in the previous chapter and separate the mean and variance of the Dirichlet distribu-

tion, with some minor modifications. We use parameters ᾱi , i = 0, . . . ,4 describing the

mean (instead of the mode) of the Dirichlet distributions and αstd. This parameter

corresponds to the standard deviation of the 5-dimensional Dirichlet coefficients

with equal concentrations. The ᾱi are normalized
∑

i ᾱi = 1, and the final Dirichlet

coefficients are calculated as αi = ᾱi ·0.16α−2
std −1. We keep the weights derived from

[120] using the New York University Value-Added Galaxy Catalog, instead of using the

prior derived in the ABC catalog-level preprocessing using the COSMOS2015 catalog

presented in Section 3.A.1. We expect these choices to have small impact in a wide

field, where most galaxies are relatively low redshift.

A parameter δσbkg scales the background noise level added to the simulated images,

which is different in each pixel and derived from single exposures as in [127]. A new

parameter δN⋆ controls the total number of stars. It simply multiplies the number of

stars that are being drawn from the Besançon model by δN⋆. The magnitudes of stars

are sampled with replacement, and the positions are assigned randomly within the

HEALPIX pixel (nside=8, see [120, 127] for more details).

The priors were modified to save computing time by starting the inference in more

plausible regions of parameters space. The summary of the model and priors is shown

in Table 4.A.1 in Appendix 4.A.1. The final model has 46 parameters (compared to the

previous chapter we fix αred and αblue and add δσbkg and δN⋆), out of which 4 are
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redundant.

Factorised ABC inference

We perform an Approximate Bayesian Computation in order to constrain the parame-

ters of the galaxy population model. Our primary distance measure is the Maximum

Mean Discrepancy (MMD) [207], which uses mean embeddings to measure distances

between multi-dimensional probability distributions. The input vector of the MMD

consists of magnitudes MAG_AUTO, radii FLUX_RADIUS, ellipticities computed using

SEXTRACTOR windowed moments and flux fractions, which encode colours. The MMD

distance is similar to the previous chapter but uses the total magnitude MAG_AUTO,

includes radii and ellipticities in all bands g r i zY and no redshift information, thus

making the MMD input vector 20-dimensional. We complement the MMD with the

fractional difference between the number of objects detected in the real data and sim-

ulations. Additional information is provided in Appendix 4.A.2, which also contains

the description of the optimization procedure for the MMD kernel size.

We run prior-to-posterior iterations of the ABC algorithm, each on a unique subset

of images. We divide all tile images into N sets di . These sets consist of increasing

number of tiles: the first set has |d1| = 200 tiles, and the last |d17| = 1204 tiles. During

an iteration i , for each parameter set θ j that we sample, we randomly draw (without

replacement) a small random subset s j
i of tiles from di , s j

i ∼ di , and we simulate

them. For the first iteration, we chose |s1| = 4 tiles, and the last |sN | = 48. We compute

distances between the simulated tile and the corresponding DES tile (same tile identi-

fiers). Then, the distance for a given sample is the average of distances of individual

tiles. Due to this fact, the final distance can be considered a draw from a noisy version

of the distance computed using all tiles in di , with noise reducing as |si |→ |di |. This

way, we randomize both in the model parameter space and in the data space.

We ran 17 iterations of the algorithm with increasing number of tiles simulated. The

details of these interations are shown in Table 4.A.2 in Appendix 4.A.2. In each iteration,

we simulated 10000 samples from the prior and kept the 1000 samples with the lowest

distance as the posterior. We then resampled the posterior using a Gaussian Mixture
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Model (GMM) with 20 components and drew the 10000 samples that serve as prior for

the next iteration. Before fitting the GMM, we performed a transformation to make

the features more Gaussian.

We use a sub-selection of objects from the SEXTRACTOR catalogs to calculate the

distances in order to remove stars and measurement failures. This selection is done

imposing conditions in all bands g r i zY on the FLAG field, the magnitudes, sizes, and

shapes. With this number of strict conditions, the remaining selected sample is small.

To address this, we require the object to be selected in at least 3 bands and use an

imputation [250] algorithm6 to fill in missing columns. This procedure increases the

number of objects used in distance measure calculation by ≈ 30%. See Appendix 4.A.2

for more details on the configuration of ABC runs, sample selection, imputation and

GMM density estimation of the posterior.

Finally, we removed a number of tiles due to two reasons: general SEXTRACTOR failures

giving extremely high number of detections, and tiles in the area of the Large Mag-

ellanic Cloud. We were left with 10041/10338 tiles. Moreover, there were some tiles

which always gave very high distances due to unknown effects. To account for this, we

used the median as an averaging method for combining distances from multiple tiles.

This way, our combined distances are more robust to outliers.

ABC posterior

We present the obtained ABC posterior in Figures 4.2, 4.3 and 4.4. We performed 17

iterations of the ABC algorithm (see Section 4.4.3 and Appendix 4.A.2). The model has

46 parameters, which we separate into: luminosity function parameters, SED template

coefficients and galaxy morphology parameters.

Figure 4.2 shows the luminosity functions constraints for red and blue galaxies sepa-

rately. The gray and coloured contours show the prior and the posterior, respectively.

The posterior is generally fully contained in the prior, which indicates that our choice

of prior should not affect the results significantly. The luminosity function parameters

6github.com/epsilon-machine/missingpy
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Figure 4.2: Luminosity function parameters from the prior (grey) and posterior
(coloured) distributions. In the bottom triangle parameters for blue galaxies are
shown in light blue, parameters for red galaxies are shown in red in the top triangle.
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exhibit correlations between parameters M∗slope and M∗intcpt, and φ∗amp and φ∗exp,

both for red and blue galaxies. We cannot directly compare the constraints to the

previous chapter since the parametrization of the luminosity function parameters is

different.

Figure 4.3 shows the SED template coefficients distribution, split into red and blue

galaxies. The darker and lighter colours show the distribution at redshift z = 0 and

z = 1, respectively. The parameters correspond to the following templates from KCOR-

RECT: ᾱ0 to the overall passive galaxy spectrum with contribution from young stars, ᾱ1

to the emission line galaxy with strong Star Formation Rate (SFR), ᾱ2 to the emission

line galaxy, ᾱ3 to the typical passive galaxy and ᾱ4 to the post-starburst galaxy as indi-

cated on the top of Figure 4.3. The five KCORRECT templates are shown in Chapter 3

in Figure 3.1. We note that for the blue galaxies, the weight of the two emission line

galaxy templates ᾱ1 and ᾱ2 are larger than the prior mean and the post-starburst ᾱ4

is also well represented. For red galaxies, the posterior is well within the prior range,

with the strength of the passive galaxy template ᾱ3 being increased. The evolution of

the template coefficients is notable for the blue galaxies, especially for the dusty red

template (ᾱ0). That is expected from the galaxy evolution models, given the higher

rate of star formation at higher redshift. We find very little evolution of the red galaxies

with redshift, consistently with [251]. The parameters responsible for the variance

of the template coefficients αstd differ with redshift for blue galaxies and is relatively

stable for red galaxies. The distribution of coefficients at z = 0 is qualitatively similar to

that obtained in the previous chapter but less constrained and in some cases bimodal.

Figure 4.4 shows the morphology parameters for red and blue galaxies. Additional

panels for the parameters controlling the background noise level δσbkg and number of

stars δN⋆ are duplicated in both corners. These two panels show additional secondary

modes in the distribution. The intercept of the size-magnitude relation logr intcpt
50 is

similar for the two populations, but we find a large difference in the slope logr slope
50 .

This is not unexpected, since red and blue galaxies undergo different processes in their

formation. The Sersic index for blue galaxies peaks at nblue
s = 0.7 and for red galaxies at

nred
s = 3.5, which is consistent with the literature. Ellipticity distribution mode emode

is higher for blue galaxies, and the spread espread is slightly lower. The distributions
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Figure 4.3: SED template coefficients from the prior (grey) and posterior (coloured)
distributions. The bottom and top triangles show parameters for the blue and red
galaxies, respectively. The dark colour shows the values of the z=0 parameters, while
the lighter colour those for the z=1 parameters. Other redshifts use a linear interpola-
tion/extrapolation between these two. Parameters ᾱi are responsible for the means of
the Dirichlet distributions, while αstd for the variance.
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Figure 4.4: Galaxy morphology parameters from the prior (grey) and posterior
(coloured) distributions. Additional parameters δσbkg and δN⋆ are duplicated in
both corners: δσbkg captures uncertainty in the level of pixel noise on the images,
while δN⋆ captures the uncertainty in the number of stars. Colours as in Figure 4.2.
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for blue galaxies are broadly consistent with what we found in the previous chapter,

whereas we find a difference in terms of logr slope
50 and logr std

50 for red galaxies. The

Sersic index nred
s is also considerably larger here than in the ABC posterior constrained

on HSC deep fields. The differences are not unexpected since the sample used in

the previous chapter is considerably deeper and constraining galaxy morphology is

challenging.

Comparison between UFIG simulations and real survey data

We verify that the ABC posterior is able to produce a galaxy sample that statistically

agrees with the one extracted from real images. The distributions of photometric

properties that we compare are obtained by running SEXTRACTOR in dual-image

mode using an r i z detection image both for the real images and for 40 UFIG simulated

surveys obtained by sampling the parameters from the ABC posterior. We show a

tomographic comparison of magnitudes, radii and colour distributions in Figure 4.5.

The assignment of galaxies to tomographic bins is outlined in Section 4.4.4. Under

each histogram we display the percent residual in order to quantify the agreement.

We only display a subset of the bands here for the tomographic setting and report the

full g r i zY corner plot in a non tomographic setting in appendix 4.A.4. We notice that

the magnitudes agree in the global distribution to a better than 10% degree in most

of the interval and the DES real data distribution lies in the space of the simulations.

The agreement is prominent in the first bin and we observe some discrepancies in the

higher redshift bins, mostly in the tails of the distributions, for a small percent of the

galaxies. The distribution of FLUX_RADIUS in the r band, but the same applies to the

other bands which are not included in Figure 4.5, is more discrepant: the agreement is

limited to the peak of the distribution and degrades quickly in the tails where the real

DES data is offset from the space of the simulations. The same trend was observed in

the previous chapter, where the size distribution of simulated galaxies showed a tail

of large objects that is not present in the data. The limited agreement in the tails is

acceptable since the bulk of the distribution is consistent with simulations and sizes

are a second order effect in the determination of the redshift distribution: their only

impact on the n(z) comes from the cuts determining which galaxies enter the target
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Figure 4.5: Tomographic comparison between the 1D distributions of photometric
properties of 40 samples of simulated UFIG galaxies from the ABC posterior (in blue)
and the real DES target sample (in red). In the rows we show normalized distributions
of MAG_AUTO in r , i and z band, the FLUX_RADIUS in the r band followed by the g − r ,
r − i and i − z colours. The columns comprise of the global distributions and the 4
tomographic bins. Below each plot we show the percent discrepancy between each
simulation and real DES data. The shaded grey area goes from −10% to +10%.
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sample. We verify that the discrepancy in the size distribution has a negligible impact

on mean redshifts in section 4.A.4, as this is part of our unblinding conditions. In

future work, we plan to extend the model for galaxy sizes to include size evolution with

redshift at fixed absolute magnitude. Figure 4.5 also shows a tomographic comparison

of g −r , r −i and i −z colours. The r −i and i −z colour distributions agree sufficiently

between real images and UFIG simulations, with a better than 10% agreement in

most of the colour interval, with the exception of the i − z colour at low redshift. The

g −r colour distribution shows considerable inconsistencies, especially at low redshift.

Since the g band is not used for tomographic bin assignment and the g band selection

is very broad, this is acceptable for the current work but requires further investigation

in the future. It might point to the need to reassess the template spectra at the low

wavelength end. We performed the tomographic comparison in all 5 bands (g r i zY )

for magnitudes, sizes, colours and ellipticities. In Figure 4.6 we show the 68% and 95%

contours of the global 2 dimensional magnitude-colour distributions. As expected

from the 1D comparison, the main discrepancies involve the g - r colour whereas the

other bands are in statistical agreement between real images and UFIG simulations.

Given the overall agreement, this allows us to rely on the UFIG simulations from the

ABC posterior to calibrate the redshift distribution.

4.4.4 Tomographic binning

Current cosmological surveys split both the source and the lens sample into tomo-

graphic bins. This improves the precision of the measurement of cosmological param-

eters by retrieving part of the three dimensional information. In order to compare the

two redshift calibration methodologies in a tomographic setting, we need to assign

the same galaxies to the same tomographic bins. We use 4 tomographic bins as in the

fiducial DES Y3 source sample redshift calibration [112]. This is achieved by using the

SOMPZ binning methodology in MCCL. We fix 5 bin edges, sort the galaxies from the

redshift sample by their spectroscopic redshift or the median of their p(z) (in case of

many band photo-z) and split them according to the bin edges. We use the Balrog

catalog matched with the redshift sample which contains wide and deep photometry

and fiducial redshifts in order to assign wide cells to tomographic bins. In this matched
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Figure 4.6: Two dimensional comparison of real survey data and 40 UFIG simulations.
We show the 68% and 95% level contours of the global magnitude-colour distributions:
g , r , i and z MAG_AUTO are on the x axis and g − r , r − i and i − z colours on the y axis.

catalog, each galaxy is assigned both to a wide cell ĉ (which can differ for different

wide realizations of the same deep galaxy) and to a deep cell c . We assign a wide cell ĉ

to the redshift bin to which most of its galaxies’ redshifts belong. The bin edges are

manually adjusted and the procedure is iterated until the 4 bins have roughly 25% of

the wide-field galaxies each. The final boundaries of the 4 tomographic bins are [0.0,

0.37, 0.625, 0.86, 2.0].

Once we have trained the SOMs and we have determined which wide cells belong

to each tomographic bin, we can import this information into MCCL. We do this

by assigning both the simulated UFIG galaxies and the real galaxies from the target

sample to the wide SOM cells and to bins according to ĉ. This tomographic bin

assignment strategy differs to the fiducial MCCL method for assigning galaxies to bins,

which is based on a random forest classifier.
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4.4.5 Redshift distribution estimation

After defining the SOM cell assignment to redshift bins and their boundaries, we com-

pute the n(z) distributions. For SOMPZ this means making use of the approximated

equation

p(z|b̂, ŝ) ≈ ∑
ĉ∈b̂

∑
c

p(z|c, b̂, ŝ)pBalrog(c|ĉ, ŝ)p(ĉ|ŝ, b̂). (4.6)

p(ĉ|ŝ, b̂) is estimated by the wide field cell occupation, pBalrog(c|ĉ, ŝ) is the transfer

function, which is computed using the Balrog sample, and p(z|c, b̂, ŝ) uses the overlap

between the Balrog and redshift samples, where reliable redshifts, deep and wide

photometry are available. The approximation takes the name of bin conditionalization

because p(z|c, b̂, ŝ) is conditioned on b̂, instead of ĉ, due to the large number of c, ĉ

pairs and thus scarcity of galaxies belonging to them. For MCCL, we simply use the

true redshifts of the selected simulated galaxies that fall into a given wide SOM cell,

assigned to bin b.

4.4.6 Redshift uncertainty estimation

The way to account for uncertainties in the redshift distribution is different in the two

methodologies. MCCL reconstructs the n(z) posterior by using the redshifts obtained

from UFIG simulations, which are sampled from the ABC luminosity functions for red

and blue galaxies. By taking different samples of parameters from the ABC posterior,

we produce a set of simulations and thus a family of possible redshift distributions.

This naturally incorporates the uncertainty and recovers smooth large-scale redshift

distributions, since clustering is not accounted for in UFIG simulations.

By contrast, SOMPZ produces both a fiducial and an ensemble of redshift distributions

whose variation encodes the uncertainty due to biases in the redshift samples used,

shot noise and sample variance in the deep fields, photometric calibration uncertainty,

uncertainties due to the Balrog image simulation procedure, and the inherent limita-

tions of the SOMPZ method [112]. Due to the significant differences in the origins of

142



4.4 Implementation

Uncertainty Bin 1 Bin 2 Bin 3 Bin 4

Combined Uncertainty: SOMPZ (from 3sDir) 0.012 0.008 0.006 0.009
MCCL: uncertainty from ABC posterior 0.029 0.018 0.011 0.022

Table 4.4.2: In the first row, we report the combined uncertainty (comprising of shot
noise, sample variance, redshift sample uncertainty, Balrog uncertainty, photomet-
ric calibration uncertainty and method uncertainty) on the mean redshift in each
tomographic bin from table 2 of [112] for SOMPZ. In the second row, the uncertainty
in mean redshift obtained by running 40 simulations in MCCL. The edges of the
tomographic bins are [0.0, 0.37, 0.625, 0.86, 2.0].

these uncertainties and the way they are constrained, each of them is incorporated

using a different methodology. We defer the reader to [112] for details on how these

sources of uncertainty are estimated and propagated.

Since our wide sample is designed to match the weak lensing source catalog closely

and we use the same deep and redshift samples with the exact same deep photometry,

we expect the uncertainties on mean redshift obtained in [112] to be a good estimate

for our SOMPZ uncertainties. The use of these uncertainties is appropriate because

the change from METACALIBRATION photometry to SEXTRACTOR photometry only

affects the wide field fluxes, which are not a predominant contribution to the error

budget. The only differences that could impact the uncertainty estimation is the wide

field selection which alters the Balrog transfer function and the minor modification

of the bin edges. We report the SOMPZ combined uncertainty from [112] in Table 4.4.2,

together with the MCCL uncertainties.

To assess the fact that changing the redshift sample we calibrate on has a limited

impact on mean redshift, we reproduce Figure 8 from [112] in Figure 4.7. We display

the shift in mean redshift of our target sample in the four bins when calibrated on the

SPC, PC, SC and C redshift samples relative to the mean of SPC, PC and SC. The shift

in each bin is close to the result displayed in [112], with a less pronounced redshift

dependence of ∆z .
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Figure 4.7: Mean redshift changes in the wide field redshift distribution in each to-
mographic bin, when calibrating on different redshift samples (SPC, PC, SC and C),
relative to the average mean redshift of SPC, PC and SC.

4.5 Blinding

In order to avoid confirmation bias, which would make us favor analysis choices that

lead to an agreement between redshift distributions from SOMPZ and MCCL, we

performed a blind analysis. The blinding scheme we introduced was a simple shift

of the redshift distribution in each tomographic bin by a random number uniformly

distributed in [−0.1,0.1]. This prevented us from comparing the mean redshifts but did

not modify the overall shapes of the distributions. We defined a set of conditions that

needed to be met by the two redshift calibration techniques before we could proceed

to unblinding. The satisfaction of these conditions is verified in Appendix 4.A.4, where

we explain the conditions more rigorously.

1. MCCL:

a) the distances between simulations from ABC posterior and the DES data

are consistent with the distances between ABC posterior simulations them-

selves;
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b) the distribution of photometric quantities of the real images lies in the

space of the UFIG simulations;

c) the residual discrepancies between the photometric distributions of real

data and simulations have a negligible effect on mean redshift in each

tomographic bin.

2. SOMPZ:

a) the change in mean redshift, when switching between redshift samples is

for each bin smaller than 0.015;

b) the fraction of wide galaxies that come from deep cells without redshift is

below 2%.

4.6 Unblinded results

The analysis was performed blinded and unblinded only when the unblinding criteria,

qualitatively outlined in Section 4.5 and explained and verified in Appendix 4.A.4, were

met. In this section we present the unblinded tomographic redshift distributions of the

target sample obtained by running the SOMPZ and MCCL pipelines on a target sample

from DES Y3 data. We show the retrieved n(z) distributions, assess their consistency

and then perform cross-comparisons of the two methodologies.

4.6.1 Tomographic redshift distributions

The tomographic redshift distributions of the target sample obtained with the SOMPZ

and MCCL methodologies are displayed in Figure 4.8. We report the mean redshifts,

the uncertainties of the two methodologies and the combined uncertainty in Ta-

ble 4.6.3. We observe that the error bars of MCCL are roughly twice the error bars from

SOMPZ. The estimation of uncertainties has already been explained in Section 4.4.6. A

noticeable feature of Figure 4.8 is the fact that, while the MCCL redshift distributions

are smooth, the shape of the SOMPZ n(z) shows spikes due to the sample variance of
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Figure 4.8: Redshift distributions in the four tomographic bins obtained with MCCL
(solid line) and SOMPZ (dashed line). The MCCL lines show the posterior n(z) from 40
simulations. For SOMPZ, the most visible dashed line is calibrated on the SPC redshift
sample and the fading lines on SC, PC and C.

the redshift and deep samples. The redshift distributions are in good agreement at

low redshift in the first two tomographic bins. For these two bins the means agree at

the ≈ 1σ level. Tomographic bins 3 and 4 show a mean offset and also a difference in

the shapes. MCCL predicts consistently lower mean redshifts in the higher redshift

bins than SOMPZ, leading to a disagreement between the two methods. The third

bin in particular shows a ≈ 7σ disagreement in the mean. Such a mean redshift offset

has the potential to strongly impact the cosmological constraints from weak lensing,

especially since most of the cosmological information comes from faint high redshift

objects. We show and discuss the global redshift distributions in Section 4.8.
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Tomographic bin z̄SOMPZ z̄MCCL σcombined

Bin 1 0.404±0.012 0.428±0.029 0.031
Bin 2 0.550±0.008 0.537±0.018 0.019
Bin 3 0.735±0.006 0.661±0.011 0.012
Bin 4 0.920±0.009 0.843±0.022 0.024

Table 4.6.3: Means of the redshift distributions from SOMPZ and MCCL are reported
per tomographic bin, together with their uncertainty. The combined error σcombined is
reported in the last column.

4.6.2 Detailed comparison

We perform cross-comparisons between the two methods in order to gain deeper

understanding and shed light on the disagreement at high redshifts. We use the

wide self-organizing map trained by SOMPZ as described in Section 4.3.2, which is

displayed in Appendix 4.A.3, and assign UFIG simulated galaxies to it. In this way,

we can use the SOM to explore the colour distribution of wide field galaxies and the

colour-redshift relation implied by the two methodologies.

Figure 4.9 shows the mean and standard deviation of the redshift distributions in

each wide SOM cell (first and second rows), as well as the wide cell occupation as

a percentage of the total number of galaxies (third row). The left column of Fig-

ure 4.9 is populated with the DES Gold target sample and shows redshifts calibrated

by SOMPZ, whereas the central column is populated with the simulated target sam-

ple of galaxies from the fiducial UFIG simulation and thus calibrated by MCCL. The

last column on the right shows the difference between the first two. The cells there-

fore contain the same galaxy phenotypes, since the DES and UFIG target samples

are simply assigned to the trained wide SOM, but the redshift determination is per-

formed using the two different techniques. We observe that the mean redshift has

a very similar structure in both SOMs, with maxima and minima in approximately

the same locations. The maximum redshift difference in a cell is ∆z ≈ 0.15, and

the negative ∆z = 〈z|ĉ〉UFIG −〈z|ĉ〉SOMPZ are more abundant and have higher values.

Furthermore, the standard deviation is similar between SOMPZ and MCCL, with a

prevalence of higher variance cells in SOMPZ. The cell occupation is in good agree-

ment overall but shows some local differences. In order to assess the impact of the
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σ(z|ĉ)SOMPZ

A
C

B D

σ(z|ĉ)UFIG
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Figure 4.9: Mean redshift, standard deviation of the redshift distribution and percent
cell occupation in each wide SOM cell obtained by SOMPZ and from the target sample
from the fiducial UFIG simulation assigned to the same SOM. The third column
displays the difference between the two approaches. We highlight cells of which we
show the redshift distribution in Figure 4.11.

differences in the distribution of the abundance of galaxies in three-band colour-

magnitude space between UFIG simulations and real data, we use the UFIG popu-

lated wide SOM to reweigh the SOMPZ n(z)s in the four tomographic bins. We repeat

this procedure for the 40 UFIG simulations and obtain mean shifts from z̄SOMPZ of

[0.018±0.005,0.004±0.001,−0.002±0.001,−0.022±0.001] in the four redshift bins.

These shifts are only significant in bins 1 and 4 and, while they ameliorate the agree-

ment between SOMPZ and MCCL, they only partly explain the mean offset in bin 4 and

do not impact the disagreement in bin 3. Differences in wide field colour-magnitude

distribution alone cannot explain the offset between the two methods at high redshifts.
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Figure 4.10: The differences in mean redshift between SOMPZ and MCCL are displayed
in each SOM cell. Each heatmap shows the cells assigned to one of the tomographic
bins.

We show the ∆z separately for different tomographic bins in Figure 4.10. We see

that, while the first two bins contain both positive and negative ∆z , bins 3 and 4 are

dominated by negative ∆z . Furthermore, the area where the standard deviation of

redshift in MCCL is very smooth (around label D in Figure 4.9) is almost fully contained

in bin 3, which is the most constrained redshift bin in MCCL and the most discrepant

when compared to SOMPZ. We only showed a comparison between real data and

the fiducial UFIG simulation but very similar conclusions can be drawn for the other

simulations from the ABC posterior.

We now look at the redshift distributions in wide SOM cells highlighted in Figure 4.9:

• A: with consistent mean redshift and standard deviation estimation;

• B: where the redshift estimate is different but the standard deviation is very

similar;

• C: where both the mean redshift and standard deviation disagree;

• D: which is contained in the low standard deviation area of MCCL.

In Figure 4.11 we show for each of the four cells the calibrated SOMPZ n(z)s (dark green

line), and the redshift distributions of UFIG galaxies from the target sample assigned

to the same cell in two different UFIG simulations: the fiducial simulation (orange)

and a second simulation (sim 1, purple). Overall, we observe very similar distributions

for cells A, B and C, including the bimodalities. Cell D has both a mean offset and a
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Figure 4.11: Redshift distributions in the four wide SOM cells highlighted in Figure 4.9
calibrated by SOMPZ (dark green line) and from the galaxies assigned to the cell by
two UFIG simulations (fiducial, solid orange line - simulation 1, purple). The mean
redshift in the cell is displayed as a orange dashed line (UFIG fiducial), a dashddotted
purple line (UFIG simulation 1) and a green solid line (SOMPZ).

discrepant shape. We notice that the discrepancy in mean redshift in cell B is driven by

the bimodality of the n(z) in the cell, which contains a bulk of galaxies at low redshift

and a high redshift tail. Since the number of galaxies in a single wide cell is limited,

∼ 10000 objects per wide cell, the mixtures of the two modes can differ, causing the

observed mean redshift discrepancies. We also observe a variability between different

UFIG simulations in the composition of the two modes of the distribution, as can be

seen by comparing the fiducial simulation and simulation 1 in cell B. Sample variance,

especially in the deep sample, can have an impact on the redshift calibration. In cell

C, we observe that the n(z) estimated by SOMPZ and MCCL are roughly in agreement,

but the difference in mean redshift is driven by a small but very high redshift tail in the
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Figure 4.12: Histograms of galaxies’ redshifts from the fiducial UFIG simulation (solid
purple line) in the four wide SOM cells highlighted in Figure 4.9. The redshift distribu-
tions of blue and red galaxies are shown in blue and red respectively.

SOMPZ n(z). Cell D displays discrepant n(z)s, which we investigate in the remaining

part of the section.

In Figure 4.12 we show the histograms of UFIG redshifts from the fiducial simulation

in the same cells as Figure 4.11 but additionally separate galaxies coming from the

red and blue luminosity functions. We use a logarithmic scaling on the y-axis to make

small populations of galaxies visible and only show the fiducial simulation to avoid

overcrowding the plot (the conclusions for other simulations are similar with minimal

composition changes). Cells A, B and C are dominated by blue galaxies. Cell D, on

the other hand, contains both blue and red galaxies, with a majority of reds. The

bulk of blue galaxies is at redshift z ≈ 0.8 thus aligning with the SOMPZ calibration,

whereas the red galaxies peak at z ≈ 0.5. We only show this for cell D but several cells

dominated by red galaxies display the same behaviour. This points to the red galaxy

population as the driver of the discrepancy between SOMPZ and MCCL.
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Figure 4.13: Fraction of blue galaxies in the fiducial UFIG simulation in each wide
SOM cell, separated into tomographic bins. The colour goes from dark red (100% red
galaxies) to dark blue (100% blue galaxies).

In order to verify this hypothesis, we show in Figure 4.13 the fraction of blue galaxies

per wide cell in each tomographic redshift bin from the fiducial UFIG simulation. We

observe that, while most objects in bin 1 are blue, the red galaxies are dominating

some parts of the wide SOM in bins 2, 3 and 4. In particular, the low standard deviation

area of MCCL around cell D consists of red galaxies and is mostly assigned to bin 3

and, for a smaller part, to bin 4. By looking at Figures 4.10 and 4.13, we notice that cells

that are predominantly populated by red galaxies have large negative ∆z , especially in

bins 2 and 3. In bin 4 the cells with most negative ∆z contain a mixture of red and blue

galaxies. The colour-redshift relation of red galaxies is thus identified as a main driver

of the discrepancy between MCCL and SOMPZ at high redshifts, in combination with

the wide-field abundance of objects in colour-magnitude space in the case of bin 4.

4.7 Results with HSC deep fields ABC posterior

Following the developments from Chapter 3, we run 40 simulations of DES Y3 from the

ABC posterior constrained using HSC deep fields data and COSMOS2020 photometric

redshifts (from here on HSC ABC posterior) [32]. In order to save computing time, we

only run on 10% of the DES tiles chosen at random. We verify that this is sufficient

by running the fiducial simulation both for the full area and 10% of the tiles and

comparing the results. We process the data and extract the target sample. The tomo-

graphic comparison of photometric properties of the target sample in 1D is shown in

Figure 4.14 and the global 2D contours in Figure 4.15. The level of agreement with real
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Figure 4.14: Tomographic comparison between the 1D distributions of photometric
properties of 40 samples of simulated UFIG galaxies from the HSC ABC posterior
(in blue) and the real DES target sample (in red). In the rows we show normalized
distributions of MAG_AUTO in r , i and z band, the FLUX_RADIUS in the r band followed
by the g − r , r − i and i − z colours, the columns comprise of the global distributions
and 4 tomographic bins. Below each plot we show the percent discrepancy between
each simulation and real DES data. The shaded grey area goes from −10% to +10%.
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Figure 4.15: Two dimensional comparison of real survey data (in red) and 40 UFIG

simulations from the HSC ABC posterior (in blue). We show the 68% and 95% level
contours of the global magnitude-colour distributions: g , r , i and z MAG_AUTO are on
the x axis and g − r , r − i and i − z colours on the y axis.

data is similar to what we obtained in Section 4.4.3 using the ABC posterior calibrated

on DES wide field data, with magnitudes in the r and i band agreeing marginally

worse and magnitudes in the z band moderately better. The agreement between the

radii in the higher redshift bins is also improved, possibly due to the smaller impact of

the PSF in HSC deep fields allowing better constraints on the size model. The colours

maintain a similar level of agreement to Section 4.4.3, with g − r showing the largest

discrepancies. Overall, the simulations are in quite good agreement with real data in

terms of photometry, indicating that the galaxy population model as constrained in

the HSC ABC posterior can be used to simulate realistic DES Y3 wide field data.

We now look at the tomographic redshift distributions obtained using the HSC ABC

posterior. We show the four n(z) distributions of the target sample from SOMPZ and

the new MCCL run in Figure 4.16. We notice that the overall trends and shapes

of the MCCL redshift distributions do not differ substantially from those obtained

from the ABC posterior constrained using DES Y3 data shown in Figure 4.8. There
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Figure 4.16: Redshift distributions in the four tomographic bins obtained with MCCL
using the HSC ABC posterior (solid line) and SOMPZ (dashed line). The MCCL lines
show the posterior n(z) from 40 simulations. For SOMPZ, the most visible dashed line
is calibrated on the SPC redshift sample and the fading lines on SC, PC and C.

are improvements in the third and fourth redshift bins concerning the shape of the

distributions: the low redshift bumps (respectively at z ≈ 0.25 in bin 3 and z ≈ 0.5

in bin 4) are now less prominent. We report the resulting mean redshifts and error

Tomographic bin z̄SOMPZ z̄MCCL σcombined

Bin 1 0.404±0.012 0.426±0.015 0.019
Bin 2 0.550±0.008 0.533±0.011 0.013
Bin 3 0.735±0.006 0.680±0.005 0.008
Bin 4 0.920±0.009 0.867±0.010 0.014

Table 4.7.4: The means of the redshift distributions from SOMPZ and MCCL are re-
ported per tomographic bin, together with their uncertainty. The MCCL run consists
of 40 simulations using the ABC posterior calibrated on HSC deep data and COS-
MOS2020 photo-zs. The combined error σcombined is reported in the last column.
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Figure 4.17: Mean redshift, standard deviation of the redshift distribution and percent
cell occupation in each wide SOM cell obtained by SOMPZ and from the target sample
from the fiducial UFIG simulation from the HSC ABC posterior assigned to the same
SOM cell. The third column displays the difference between the two approaches.

bars in Table 4.7.4, together with the unchanged SOMPZ results. The change in mean

redshift between the two runs is most significant in bin 3. While the mean redshifts

per tomographic bin of MCCL and SOMPZ are now closer, the decreased uncertainty

in the MCCL mean redshift estimates makes the disagreement similarly significant.

We present the SOM-level comparisons between SOMPZ and the MCCL fiducial

simulation from the HSC ABC posterior in Figures 4.17 and 4.18. We highlight cells for

which we show the redshift distributions in Figures 4.A.6 and 4.A.7 in Appendix 4.A.5

and in Figure 4.19 for cell E.

We report the mean redshifts and standard deviations of redshifts in each wide SOM
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(a) The differences in mean redshift between SOMPZ and MCCL are displayed in each SOM
cell. Each heatmap shows the cells assigned to one of the tomographic bins.
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(b) Fraction of red and blue galaxies in the fiducial UFIG simulation in each wide SOM cell,
separated into tomographic bins.

Figure 4.18: We show the SOM-level comparisons between SOMPZ and the fiducial
UFIG simulation from the HSC ABC posterior.

cell from both the SOMPZ direct calibration and the fiducial UFIG simulation using

the HSC ABC posterior in the first two rows of Figure 4.17. The third row displays

the wide cell occupation as a percentage of the total number of galaxies from the

DES target sample and the target sample from the fiducial UFIG simulation. The

last column displays the difference between the first two columns per wide SOM

cell. We repeat our test of the wide-field three-band colour-magnitude abundance

by reweighting the SOMPZ tomographic redshift distributions according to the cell

occupation found in the 40 UFIG simulations. We obtain mean shifts from z̄SOMPZ of

[0.002±0.002,0.001±0.001,0.001±0.001,−0.016±0.001] in the four redshift bins. In

this case the shift is only significant in bin 4, where it ameliorates the mean redshift

agreement but does not completely explain the discrepancy between the two methods.

In Figure 4.18 (a) we show the differences in mean redshift in each cell∆z separetely in

the four tomographic bins. In Figure 4.18 (b), we display the fraction of blue galaxies

per wide SOM cell and also separate the four tomographic bins. We notice that the

positive ∆z between SOMPZ and MCCL are now larger (up to ∆z ≈ 0.45), especially in
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Figure 4.19: On the left, the redshift distributions in wide SOM cell E highlighted in
Figure 4.17 from the SOMPZ calibration (dark green) and two UFIG simulations (solid
orange and purple lines) from the HSC ABC posterior. The redshift distributions from
the blue and red UFIG galaxies are shown in blue and red respectively in the figure on
the right, together with the overall distribution in purple.

the SOM cells assigned to the first tomographic bin. This discrepancy in the mean does

not affect the overall agreement of the first tomographic redshift bin, probably due to

the small number of galaxies assigned to these cells or because they are compensated

by other cells with negative ∆z . We look at the n(z) in one of these cells (highlighted

with the new label E) in Figure 4.19. On the left hand side we display the redshift

calibration from SOMPZ and two UFIG simulations, and on the right hand side we

split red and blue galaxies from UFIG. We see that the cell is populated by blue galaxies

in UFIG and presents a very strong bimodality. UFIG produces more galaxies in the

high redshift mode compared to the weight assigned to it by SOMPZ. Since the galaxies

extend to redshift z ≈ 4, the mean of the distribution in this wide SOM cell is strongly

affected. We noticed an excess of high redshift galaxies in the tail of the distributions

in Chapter 3, which will be investigated in future work.

4.8 Global redshift distributions

To highlight the changes between the two MCCL runs and assess the agreement

between MCCL and SOMPZ regardless of tomographic bin assignment, we show in
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Figure 4.20: The global redshift distribution of the target sample obtained from SOMPZ
(in purple) and MCCL ran using both ABC posteriors calibrated on DES (orange) and
HSC+COSMOS2020 (dark blue) is shown on the left. On the right hand side, we display
the histograms of red and blue galaxies from MCCL from 40 simulations sampled from
the two posteriors, normalized so that the total number of galaxies is set to 10 millions.

Figure 4.20 the calibrated global redshift distributions of the target sample. In the

left panel of Figure 4.20, we display in purple the global n(z) obtained from SOMPZ

calibrated on the SPC redshift sample and in orange and blue the MCCL n(z)s obtained

from the two different ABC posteriors, constrained by DES wide field photometry

and HSC deep field data and COSMOS2020 photo-zs. We estimate the error in mean

redshift from SOMPZ approximately using a number weighted quadrature sum of the

errors in the four tomographic bins and report means and uncertainties in Table 4.8.5.

We notice that the change in the MCCL mean redshift resulting from changing to

the HSC ABC posterior is ≈ 1σ. As already observed for the tomographic redshift

distributions, the agreement between the means of the global redshift distributions

obtained by MCCL and SOMPZ is roughly unchanged when changing ABC posterior

(≈ 2σ), but the shape of the global n(z) from the HSC ABC posterior resembles the

z̄SOMPZ z̄MCCL,DES z̄MCCL,HSC

0.652±0.018 0.610±0.018 0.625±0.009

Table 4.8.5: Mean and uncertainty of the global redshift distribution of the DES Y3
target sample, as obtained by SOMPZ and MCCL. In the case of MCCL we report the
results obtained using the two different ABC posteriors, calibrated on DES wide data
and HSC deep data complemented with COSMOS2020 photometric redshifts.
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SOMPZ redshift distribution to a better degree.

We also plot on the right hand side of Figure 4.20, the global redshift distributions for

red and blue galaxies separately from both ABC posteriors. We observe a change in the

red population, which has a higher mean redshift and larger redshift variance when

we calibrate the galaxy population model on HSC deep fields and COSMOS2020. The

blue population varies less in terms of shape of the n(z), but the ratio of blue to red

galaxies is different, with a larger abundance of red galaxies.

4.9 Conclusions

We presented a blind comparison between the phenotypic SOMPZ redshift calibration

and the MCCL simulation-based inference method on DES Year 3 data. We compared

the two methodologies to highlight similarities and differences and applied both to

the same target sample. In the case of SOMPZ, we applied the method presented in

[112] with minor changes determined by the selection cuts and the use of SEXTRACTOR

photometry. In the case of MCCL, we introduced some modifications of the galaxy

population model and ABC inference. After fulfilling the unblinding conditions, we

compared the redshift distributions from the two methodologies in four tomographic

bins, obtained by assigning wide SOM cells to each bin and populating the wide SOM

with UFIG galaxies within the MCCL methodology. We found good agreement in

the means and shapes of the distributions in the two lower redshift bins, whereas

we found a discrepancy in mean and shape in tomographic bins 3 and 4. We further

investigated the disagreement and found that the red galaxy population seems to drive

it, in combination with differences in the three-band colour-magnitude distribution of

galaxies. Finally, we repeated our analysis with the ABC posterior calibrated with HSC

deep data and COSMOS2020 photometric redshifts from Chapter 3. We observed that

the photometric properties of the DES Y3 target sample are reproduced reasonably

well with this posterior. The tomographic redshift distributions from MCCL are shifted

to higher redshifts but the tension between the two methodologies is not relieved

due to the increase in precision. The agreement for the mean of the global redshift

distribution remains at the 2σ level. The discrepancy is thus not significant for the
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global redshift distribution but is exacerbated by tomographic bin assignment for the

higher redshift bins. This indicates a difference in the colour-redshift relation implied

by SOMPZ in the DES deep fields and UFIG simulations.

One way to further investigate the origin of the discrepancy between the two methods

would be to run SOMPZ on UFIG simulations. As opposed to Buzzard [251], UFIG

generates full image simulations, so that the same SOMPZ procedure could be applied

to real data and simulations. The Balrog injection could be mocked by producing the

same images with different exposure times in UFIG to reduce computational costs.

Deep and redshift samples could also be created with UFIG. This would require the

extension of UFIG to infrared bands, which is currently under development for the

simulation of KiDS-VIKING data [252].

As described in the conclusion of the previous chapter, there are several possible

improvements of the MCCL methodology. One promising extension consists in the use

of Stellar Population Synthesis (SPS) instead of empirical template spectra to generate

galaxy SEDs (e.g. [212, 213]). This can affect the n(z)s and particularly have an impact

on tomographic bin assignment, since it modifies the redshift-colour relation. We

found that red galaxies in the third redshift bin have a limited variance in redshift; this

could be caused by a lack of flexibility of the spectral templates, which were derived at

low redshift from SDSS spectroscopic data, and their redshift evolution. An advantage

of SPS is the possibility to compare the inferred constraints to recent measurements

of physical properties of galaxies, such as the stellar mass function up to high redshifts

(e.g. [253]). This approach has been applied successfully at catalog level by [121, 254]

for the calibration of redshift distributions and other galaxy evolution observables.

Furthermore, the addition of infrared bands in UFIG can be powerful for breaking the

colour-redshift degeneracies via simulation-based inference of many-band data. One

possibility would be to use self-organizing maps as distance measures between data

and simulations.

The SOMPZ direct calibration will be enriched in the near future through the collec-

tion of targeted spectroscopic data to span the deep SOM introduced by [255]. This

effort is already underway with multiple instruments, including DEIMOS, LRIS, and

MOSFIRE on the Keck telescopes [256], the VLT optical and near-infrared multi-object
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spectrographs, FORS2 and KMOS [257], and DESI [258]. The 4MOST Consortium7

though the complementary WAVES [259] and 4C3R2 [260] surveys will further con-

strain the colour-redshift relation by populating the deep SOM with high multiplicity.

The addition of redshifts above z ≈ 1.6 will be increasingly important, in view of LSST

and Euclid. Other crucial aspects include the understanding and optimization of the

selection functions of different surveys and the availability of deep field photometric

data with equivalent depth in the infrared wavelengths.

4.A Appendix of chapter 4

4.A.1 Galaxy population model

We use a similar model as in [27, 120, 186] and the previous chapter, with some

differences, described in Section 4.4.3. Here, we summarize the meaning of the

different model parameters, report priors and allowed ranges in Table 4.A.1.

4.A.2 Details of the ABC runs

In this appendix, we describe the details of the ABC analysis. This consists of prior-to-

posterior iterations, similarly to [194] and the previous chapter [32].

Optimization We start with the prior defined in Table 4.A.1. Then, we simulate a

number of random tiles s j
1 for each of the samples j in the prior. The tiles are chosen

from a unique set di for each iteration i , s j
i ∼ di , as described in Section 4.4.3. In each

iteration, we vary the number of simulated tiles |si |, the size of the tile set |di |, the

composition of the combined distance, and the random seeds. Table 4.A.2 shows the

details of this process. Each iteration consisted of 10000 simulated samples, for which

we calculated the distance measures (see Section 4.4.3). We selected the posterior by

7https://www.4most.eu/cms/home/
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Par. Meaning Prior

Lu
m

in
o

si
ty

fu
n

ct
io

n
s

(8
)

M∗
b,slope Slope of the redshift evolution of the parameter M∗ in the Schechter

luminosity function for blue galaxies
Prior from [186] ×3,
∈ [−4,1.5]

M∗
b,intcpt Intercept of the redshift evolution of the parameter M∗ in the Schechter

luminosity function for blue galaxies
Prior from [186] ×3,
∈ [−22,−18]

M∗
r,slope Slope of the redshift evolution of the parameter M∗ in the Schechter

luminosity function for red galaxies
Prior from [186],
∈ [−4,3]

M∗
r,intcpt Intercept of the redshift evolution of the parameter M∗ in the Schechter

luminosity function for red galaxies
Prior from [186],
∈ [−23,17]

φ∗
b,exp Decay constant of the redshift evolution of the parameter φ∗ in the

Schechter luminosity function for blue galaxies
Prior from [186],
∈ [−2,1.5]

φ∗
b,amp Amplitude of the redshift evolution of the parameter φ∗ in the Schechter

luminosity function for blue galaxies
Prior from [186],
∈ [1.1−5,1.2−2]

φ∗
r,exp Decay constant of the redshift evolution of the parameter φ∗ in the

Schechter luminosity function for red galaxies
Prior from [186],
∈ [−11,−7]

φ∗
r,amp Amplitude of the redshift evolution of the parameter φ∗ in the Schechter

luminosity function for red galaxies
Prior from [186],
∈ [2−8,3.5−2]

G
al

ax
y

m
o

rp
h

o
lo

gy
(1

2)

logr50
blue/red
slope Slope of the evolution of the average intrinsic physical size of galaxies

with absolute magnitude
U [−0.4,−0.1]

logr50
blue/red
intcpt Intercept of the evolution of the average intrinsic physical size of galaxies

with absolute magnitude
U [0.6,1.5]

logr50
blue/red
std Standard deviation of the normal distribution we use to sample intrinsic

physical galaxy sizes
U [0.55,0.6]

nblue
s Mode of the Sérsic index distribution of blue galaxies U [0.2,2]

nred
s Mode of the Sérsic index distribution of red galaxies U [1,4]

eblue/red
mode Ellipcitiy distribution mode for blue/red galaxies U [0.01,0.99]

eblue/red
spread Ellipcitiy distribution spread for blue/red galaxies U [2.05,10.0]

SE
D

co
ef

f.
(2

4) ᾱblue/red
i ,0/1 Normalized Dirichlet concentration parameters at z=0/1 from which

the template coefficients for blue/red galaxies are sampled, i=1, . . . ,5,∑
i αi=1

D[1,1,1,1,1]

αblue/red
std,0/1 Standard deviation of the normalized Dirichlet concentration parameters

at z=0/1 from which the template coefficients for blue/red galaxies are
sampled

U [0.005,0.35]

O
th

er
(2

) σbkg Scale factor for the background noise level in the simulations U [0.8,2.0]

δN⋆ Multiplicative scaling of the number of stars U [0.8,1.2]

Table 4.A.1: Table with galaxy population model parameters. The model has 46
parameters, but 4 of them are redundant: template coefficients ᾱi are always forced
to sum to

∑
ᾱi = 1. The luminosity function parameters use same prior as [186],

with standard deviation scaled by a factor of ×3 for blue LF M∗ parameters. The last
column shows the distribution (Normal, Uniform, or Dirichlet) of the prior, as well
as the additional bounds applied. For all variables using the Uniform distribution, a
joint Sobol sequence was used to generate the prior.
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iteration Nt ,sim Nt ,reserved sky area distances
1 - 4 4 200 100 deg2 dng ·0.1 + dMMD·0.9
5 - 6 8 401 200 deg2 dng ·0.1 + dMMD·0.9
7 - 8 12 502 251 deg2 dng ·0.1 + dMMD·0.9

9 - 10 16 602 301 deg2 dng ·0.1 + dMMD·0.9
11 - 12 20 803 401 deg2 dng ·0.1 + dMMD·0.9
13 - 14 24 803 401 deg2 dng ·0.2 + dMMD·0.8
15 - 16 32 903 451 deg2 dng ·0.2 + dMMD·0.8

17 48 1204 602 deg2 dng ·0.1 + dMMD·0.9

Table 4.A.2: Iterations of the ABC algorithm, including number of reserved and simu-
lated tiles, sky area and combination of distance measures.

choosing the 1000 samples with the lower distances. We used these samples to train a

Gaussian Mixture Model of the posterior, and then used it to draw new 10000 samples.

This resampled posterior is passed to the next iteration as the prior, and the process is

repeated.

Sample selection The distance measures were calculated using the SEXTRACTOR

catalogs, created in all g r i zY bands, based on the r i z detection image. This process

is described in Section 4.2.1. We then ran the PSF estimation using the Convolutional

Neural Networks [204], in the same way as in [127] and [32]. We ran SEXTRACTOR for

the DES data first, and then for the simulated images during the ABC iterations. From

the catalogs, we selected galaxies with a special set of cuts. These cuts are different

from the ones defining the target sample presented in Section 4.2.1. The ABC distance

selection cuts were as follows:

FLAGS< 4, 15 < MAG_AUTO< 30, 0.1 < FLUX_RADIUS< 10,

0 < ELL< 1, N_EXPOSURES> 0, 0.65 < r50/PSF_FWHM< 2, (7)

where ELL is the absolute ellipticity calculated from windowed moments **_WIN_IMAGE,

and N_EXPOSURES is the number of exposures in the coadd at the position of the object,

r50 is the object size defined as r50 = 2 · log(2) · (X2_WIN_IMAGE+Y2_WIN_IMAGE)1/2, as

in [127]. The last cut is applied to create a pure galaxy sample by selecting objects

larger than the PSF. Note that we use forced photometry from a detection image, so
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for some bands the coadd image may be empty for a galaxy detected in the stack.

We additionally require that the galaxy image did not lie on an image boundary in

the coadd, setting flags: FLAG_COADD_BOUNDARY= 1 and FLAG_IMAGE_BOUNDARY= 1.

These fields were calculated the same way as in [127].

Dealing with missing columns These criteria have to be satisfied in at least three

out of the five bands, otherwise the object is removed from the catalog. For objects

that have missing data in some bands, we use an imputation method from [250],

using the K-Nearest Neighbours algorithm from the MISSINGPY8 package. The neigh-

bours are calculated in a transformed space, where the columns were scaled using

scikit-Learn Robust Scaler9. The imputation process gives ≈ 30% more objects

than a strict cut in all bands.

Distance measures The distances were calculated similarly to [32, 120, 186]. We use

the following distances, with dcomb being the combined distance used to select the

samples for the posterior:

• dng = (NSIM −NDES)/NDES is the fractional distance between number of objects

in the DES data NDES and simulations NSIM that pass the cuts in Equation 7;

• dMMD is the MMD distance between the simulated catalog and DES catalog. This

distance was calculated using an array containing MAG_AUTO, FLUX_RADIUS, ELL,

and flux fraction fi (see Section 4.4.3), in each band. That gives a 20-dimensional

vector for each object. Before calculating the MMD distance, each column was

scaled, so that its mean and standard deviations are close to 1. We use the same

scaling throughout the analysis for both DES and simulated data. The kernel

size for this distance was optimized, see paragraphs below;

• dcomb = w1·dng+w2·dMMD, the final combined distance, is a combination of dng

and dMMD. To combine distances, we first rescale them to have the minimum

8https://github.com/epsilon-machine/missingpy
9scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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equal to zero and median equal to 1. The final distance is a weighted sum with

weights specified in Table 4.A.2.

Optimization of the kernel radius parameter To obtain the most sensitive MMD

distance, it is common to optimize the parameter of the kernel used to compute it

[207]. We use a Radial Basis Function (RBF) kernel with a single parameter σRBF,

corresponding to the correlation scale. To optimize the value of this parameter, we

simulate the entire survey footprint of 10041 tiles at a single parameter set, taken as

the median of the prior for each parameter. We compute the MMD distance for an

array of 50 values in range σRBF ∈ [0.1,10] for each tile. We then select the value of

σRBF that maximizes the signal-to-noise ratio of the MMD distance distribution from

all tiles, defined using robust statistics as:

SN [σRBF] = Md[dMMD(σRBF)]/Mad[dMMD(σRBF)], (8)

where Md is the median and Mad is the median absolute deviation. We found the

value of σRBF = 1 to be optimal and used it throughout the rest of the analysis.

Modeling of posterior distributions The posterior is resampled in the same way

as in the HSC analysis in the previous chapter, with the exception of the fact that we

select 1000 out of 10000 ABC points in the posterior, rather than 2000. The resampling

is a Gaussian Mixture Model with 20 Gaussians and is performed in a gaussianized

space. The resampled posterior is then passed as a prior to the following iteration.

4.A.3 Self-organizing maps visualization

We show the mean i band magnitude and colours in all bands in each cell of the wide

and deep SOM in Figures 4.A.1 and 4.A.2.
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Figure 4.A.1: We visualize the mean of the i band magnitude and of the r − i and
z − i colours per wide SOM cell. The map is toroidal so that the left and right edges
correspond to the same areas of colour-magnitude space, as do top and bottom.
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Figure 4.A.2: We visualize the mean of the i band magnitude and of the seven colour
combinations in each deep SOM cell. The map is toroidal so that the left and right
edges correspond to the same areas of colour-magnitude space, as do top and bottom.
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Figure 4.A.3: Distribution of distance measures dMMD and dng between the simulations
themselves (blue) and between the DES data and the simulations (red). Each of the
1000 simulations in the histogram was taken from a different random ABC posterior
point. Each distance is an average of 48 tiles (see Appendix 4.A.2 for details on runs
and distance calculation).

4.A.4 Unblinding validation

We define the following unblinding criteria and check if they are met:

1.a) First, we verify that the DES data lies somewhere inside the space spanned by the

UFIG simulations. In a general way, this can be achieved by comparing distance

measures between real and simulated data (DES -vs-SIM), and between SIM-vs-

SIM pairs, drawn from the ABC posterior. If the DES-vs-SIM distances lie in a

space covered by SIM-vs-SIM distances, then we consider the observed data to

lie inside the simulation space according to this distance measure. We calculate

the distance measures between simulations themselves dMMD(SIMi,SIMj) and

between the simulations and the DES data dMMD(SIMi,DES). The distances

dMMD(SIMi,SIMj) are calculated at random samples i , j in the posterior. If the

SIM-vs-SIM distances were much smaller than the SIM-vs-DES distances, that

could be a sign of overfitting. The SIM-vs-DES distances are contained within

the SIM-vs-SIM ones, which indicates that our simulations are consistent with

the DES data in the distance space. The result of this test for the last iteration is

shown in Figure 4.A.3.

1.b) We make sure that there is good agreement between UFIG simulations and real
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Figure 4.A.4: We display the shift in mean redshift obtained by two different reweight-
ings: the dot indicates the ∆z obtained by reweighting r i z magnitudes and colours
using the SOM and the diamond making i band FLUX_RADIUS match between simu-
lations and real images in each tomographic bin. The shaded regions and error bars
show the standard deviation of the mean redshift in each of the cases.

images in terms of photometric quantities. We show a tomographic comparison

of magnitudes, colours and radii in Figure 4.5, as well as global 2D colour-

magnitude distributions in Figure 4.6. In Figure 4.A.5 we display an extended

comparison, which includes more global distributions of properties in all g r i zY

bands. We note that the real images lie in the span of the UFIG simulated images

for most of the properties. As we already observed in Figure 4.5, the colours

involving the g band show some discrepancies similarly to the FLUX_RADIUS

in all bands, which differs in the tails. We mostly focus on r , i , z magnitudes

and r − i and i − z colours and notice that the distributions of real data lie in

the space of the simulations, with some small remaining differences. We use 10
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Figure 4.A.5: Corner plot comparing the 68% and 95% level contours of sizes, magni-
tudes and colour-colour distributions of the target sample from real data (red solid
line) and 40 UFIG simulations (blue solid lines).

170



4.A Appendix of chapter 4

million galaxies from the target sample in Figure 4.A.5.

1.c) Since our galaxy population model relies on some simplifying assumptions, we

expect a small residual dependence of mean redshift on the difference between

real images and simulations. Indeed, we notice some of these differences in

magnitudes, sizes, and colours, with the most pronounced difference in the

g − r colour. We test the significance of this differences in terms of their impact

on the final n(z). We do this by reweighting the distributions of photometric

properties of simulations to better agree with real images and verify the impact

of the reweighting on mean redshift in each tomographic bin. We achieve

this in two different ways for magnitudes and galaxy sizes. In the magnitude

case, we make use of the wide SOM, since the galaxies from UFIG simulations

have been already assigned to it for tomographic bin assignment. By weighting

each galaxy with the ratio between the occupation of the wide cell it belongs

to in real data and in the UFIG simulation, we obtain a weighting scheme that

makes simulations perfectly match real data in r i z magnitudes and colours. We

can then verify the shift in mean redshift obtained by this reweighting in each

bin. Notice that each bin will contain a fraction of the wide SOM cells. In the

galaxy size case, we perform a simple reweighting based on the 1D FLUX_RADIUS

histogram in each band. We require the shift in redshift in each bin to be within

the uncertainty in all cases, condition which is met and displayed in Figure 4.A.4

for the SOM reweighting and the FLUX_RADIUS leading to the largest shift (i

band). The shift is insignificant, even though there are differences in the shapes

of the reweighted n(z)s. As expected, the SOM reweighting slightly tightens the

constraints on mean redshift since we expect the shape of the n(z) to be strongly

driven by the magnitude-colour distributions.

2.a) The difference in mean redshift when changing the redshift sample is shown in

Figure 4.7 and is of comparable size to [112] (and below 0.015 in each bin).

2.b) The fraction of wide galaxies coming from deep cells without redshift is always

under 2%, and typically 1%.
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Figure 4.A.6: Redshift distributions in the four wide SOM cells highlighted in Fig-
ure 4.17 calibrated by SOMPZ (dark green line) and from the galaxies assigned to
the cell by two UFIG simulations (fiducial, solid orange line - simulation 1, purple).
The mean redshift in the cell is displayed as a orange dashed line (UFIG fiducial), a
dashddotted purple line (UFIG simulation 1) and a green solid line (SOMPZ).

4.A.5 n(z) in selected wide SOM cells from HSC ABC posterior

We present the redshift distributions derived from SOMPZ and MCCL in the wide SOM

cells highlighted in Figure 4.17. The MCCL simulations are from the HSC ABC posterior.

In Figure 4.A.6 we show for each of the four cells the calibrated SOMPZ n(z)s (dark

green line), and the redshift distributions of UFIG galaxies from the target sample

assigned to the same cells in two different UFIG simulations: the fiducial simulation

(orange) and a second simulation (sim 1, purple). In Figure 4.A.7, we show the binned
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Figure 4.A.7: Redshift distribution in the four wide SOM cells highlighted in Figure 4.17
from the fiducial UFIG simulation (solid purple line). The redshift distributions from
the blue and red UFIG luminosity functions is shown in blue and red respectively.

galaxy counts in the UFIG simulations and separate galaxies from the red and blue

luminosity functions. The y-axis is logarithmic. When compared to the MCCL run

using the ABC posterior calibrated on DES Y3 data, we observe similar trends in cells

A and D. Wide SOM cell B shows a bimodal behaviour, with a more pronounced high

redshift mode which increases the mean of the redshift distribution (high ∆z between

SOMPZ and MCCL). In cell C we see a difference between the fiducial simulation

and simulation 1: while the fiducial simulation is very similar to that in Figure 4.11,

simulation 1 assigns some high redshift galaxies to the cell, moving the mean towards

the SOMPZ prediction. Finally, we observe some changes in the red-to-blue galaxy

ratio: cells A, B and C are dominated by blue galaxies, whereas cell D by red galaxies.

This was already the case in the run using the DES ABC posterior but the red/blue

galaxies separation is now more pronounced.
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4.B Contributions

For Chapter 4, I was the main contributor. The project was conducted within the

redshift and weak lensing working groups of the Dark Energy Survey collaboration. I

designed the target sample, modified and ran both the MCCL and SOMPZ pipelines

for the comparison. Furthermore, I produced the plots, drew the results, wrote most

of the manuscript and presented and discussed the results with the DES collaboration.

Tomasz Kacprzak worked on MCCL developments and ran the ABC inference on DES

wide field data. He also contributed to the interpretation of the results and the writing

of the manuscript. Justin Myles, Daniel Grün, Alexandra Amon and Jamie McCullough

helped me with adapting the SOMPZ pipeline for the comparison, providing the

needed data products and writing small sections of the text. Alexandre Refregier and

Luca Tortorelli contributed to the interpretation and discussion of the results. Michael

Troxel extended the DES data products to make this project possible. Will Hartley

provided useful insights into SED fitting and deep fields. Alex Alarcon, Spencer Everett

and Joe DeRose reviewed a preliminary version of the chapter as internal reviewers

within the DES collaboration and approved the unblinding once the conditions were

met. Finally, the past and present conveners of the redshift and weak lensing working

groups (Carles Sanchez, Alex Alarcon, Huan Lin, Alexandra Amon, Judit Prat, Daniel

Grün and Ami Choi) provided valuable comments.
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CHAPTER 5
CONCLUSIONS

I may not have gone where I intended to go, but I

think I have ended up where I needed to be.

— DOUGLAS ADAMS, The Long Dark Tea-Time of the Soul

TheΛCDM cosmological model is successful at describing the distribution of structure

in our Universe, as well as other observables. While this is a remarkable achievement,

the nature of dark energy and dark matter is still unknown and tensions have arisen

between the model parameters constrained by late-time and early-time cosmological

probes. Cosmological galaxy surveys are a well-established tool to investigate the na-

ture of dark energy and the possibility of modifications of the theory of gravity, through

the combination of cosmic shear, galaxy clustering and galaxy-galaxy lensing. In the

near future, a number of cosmological wide-field surveys will yield an unprecedented

amount of imaging and spectroscopic data, which will require improved accuracy and

flexibility of the theoretical predictions and careful control of systematics in order to

be deployed to its full potential. Approximations will need to be reconsidered and ef-

fects that were negligible in previous analyses will need to be included or marginalized

over.

In this thesis, we addressed some of the challenges posed by large-scale structure

analyses, both in terms of theoretical predictions and observational systematics.
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In Chapter 2 we extended the PyCosmo framework for the solution of the Einstein-

Boltzmann system of ordinary differential equations. We showcased the possibility

to easily implement new systems of equations thanks to the symbolic Python imple-

mentation, that is automatically converted into optimized C/C++ code. We started

from a simple model of dark energy with constant equation of state and then intro-

duced the equations for massive neutrinos, which require numerical integrations

and enlarge the ODE system considerably. Finally, we added the radiation streaming

approximation, which makes the execution speed remarkably faster with negligible

loss in accuracy. The strength of this approach is that it reduces the time between the

theoretical development of a new theory and its numerical implementation, allowing

to test and constrain state-of-the-art models.

We then turned our focus to observations. Cosmic shear measurements are affected

by a number of systematic uncertainties, such as nonlinear corrections in the matter

power spectrum, intrinsic alignments of galaxies, imperfect modelling of the PSF and

other shape measurement biases. One of such systematics is the determination of the

redshift distributions of source and lens galaxies from noisy photometry in a limited

number of broad-band filters. The redshift distribution appears in the derivation of

large-scale structure observables, so that its imperfect calibration can induce biases

in the inferred cosmological parameters. We use forward modelling to calibrate the

redshift distribution of a galaxy sample: we constrain an empirical galaxy population

model with observations and produce realistic image simulations, process them in the

same way as the survey data and retrieve the redshift distribution of interest, naturally

including sample selection.

In Chapter 3 we used this approach, part of the Monte Carlo Control Loops (MCCL)

framework, to simultaneously constrain the galaxy population model parameters and

the redshift distribution of a magnitude limited galaxy sample. We derived a poste-

rior for the model parameters via Approximate Bayesian Computation (ABC) using

HSC deep field imaging data, complemented with accurate many-band photometric

redshifts from COSMOS2020. We obtained realistic simulations of the HSC deep field

images, that reproduce the photometric properties of the real data well, including the

colour-redshift relation up to z ≈ 4. Deep fields are limited in angular size, but have
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a depth comparable to upcoming surveys. For this reason, they constitute an ideal

dataset for testing the applicability of our method for Stage IV surveys. We obtained a

good agreement of the redshift distributions up to magnitude 24 in the i band and

proposed several model updates to further improve our forward model.

In Chapter 4 we performed a blind tomographic comparison between the redshift

distributions obtained from MCCL and Self-Organizing Maps p(z) (SOMPZ), a direct

redshift calibration methodology employed by state-of-the-art surveys. We applied

both methods to the same target sample of galaxies from DES Y3. The methodologies

are complementary. MCCL relies on image simulations that include realistic observa-

tional and instrumental effects and are calibrated on wide-field data via simulation-

based inference. SOMPZ leverages eight-band photometry from the DES deep fields,

image injection to measure the survey transfer function, a sample of galaxies with

known redshifts and a dimensionality reduction technique to obtain the wide-field

redshift distribution probabilistically. We found a good level of agreement between

the means of the first two tomographic redshift bins. The two higher redshift bins

show a significant mean offset. We investigated the discrepancy and found indications

of a difference in the implied colour-redshift relation, particularly for red galaxies.

Forward modelling presents a promising strategy for redshift calibration, as it naturally

incorporates otherwise difficult to treat selection effects. Future developments of the

MCCL framework include the implementation of realistic clustering of galaxies in the

simulations, which can be a source of systematic uncertainty and will allow the study

of effects such as blending, the interplay between blending and photometric redshifts

and source clustering. Furthermore, we identified limitations in the size model, which

could be extended to include size evolution with redshift at fixed absolute magnitudes,

more complex morphologies (such as bulges and disks) or redshift evolving Sersic

indices. The inclusion of a physically motivated modelling of the spectral energy

distributions using stellar population synthesis is desirable, both to enhance the

flexibility of the colour evolution with redshift and to compare our galaxy population

model constraints to recent measurements from galaxy evolution studies. Finally,

emulators have the potential to speed up the simulation process and facilitate testing

of model extensions.
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Chapter 5. Conclusions

5.A Contributions

I wrote Chapter 5 as a summary of the main findings of this thesis and outlook for

future work.
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CHAPTER 6
CONTRIBUTIONS

The contributions to the different parts of this thesis are shown below, and they are

also reported in the Appendix of each Chapter.

• Chapter 1

I wrote the introductory Chapter 1 based on my review of the cited literature.

• Chapter 2

For Chapter 2, I was the main contributor. I translated the equations to the cor-

rect formalism and implemented the massive neutrinos and radiation streaming

approximation equations in the PyCosmo framework. I also contributed to the

documentation of the code for the release on PyPi, drawing and interpretation

of the results and writing the manuscript. The work on massive neutrinos was

initiated as part of my Master’s thesis, of which this chapter constitutes a major

extension.

Further contributors: Christiane S. Lorenz, Uwe Schmitt, Alexandre Refregier,

Janis Fluri, Federica Tarsitano and Lavinia Heisenberg. They contributed in

particular to the interpretation of the results and manuscript preparation. Chris-

tiane S. Lorenz derived in the appropriate formalism and implemented the

equations for the wcdm model and Uwe Schmitt developed the sympy2c frame-

work [141] for symbolic manipulation of equations that is used throughout the

chapter. Janis Fluri set up the PyCosmoHub. The mentioned contributors are
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also the co-authors of the published work [31] upon which this chapter is based.

• Chapter 3

For Chapter 3, I was the main contributor. I devised the project, extended the

code-base, ran the Approximate Bayesian Computation and the final simula-

tions. I created the figures, interpreted the results and wrote the majority of the

manuscript.

The early stages of the project were carried out by Dominic Grimm during his

Master thesis, which I supervised. He contributed mostly to the design of the

forward model of HSC deep images and the creation of a first version of the

systematic maps. Tomasz Kacprzak also contributed to the project by designing

and running the catalog level ABC on COSMOS2015, reworking parts of the code

and participating to writing of the manuscript. Silvan Fischbacher helped with

the optimization of the code and discussion of the results. Further contributors

are Alexandre Refregier and Luca Tortorelli, who contributed mostly to the

interpretation of the results and early code developments. The mentioned

contributors are also the co-authors of the submitted work (Moser et al, 2024,

[32]) upon which this chapter is based.

• Chapter 4

For Chapter 4, I was the main contributor. The project was conducted within the

redshift and weak lensing working groups of the Dark Energy Survey collabora-

tion. I designed the target sample, modified and ran both the MCCL and SOMPZ

pipelines for the comparison. Furthermore, I produced the plots, drew the

results, wrote most of the manuscript and presented and discussed the results

with the DES collaboration. Tomasz Kacprzak worked on MCCL developments

and ran the ABC inference on DES wide field data. He also contributed to the

interpretation of the results and the writing of the manuscript. Justin Myles,

Daniel Grün, Alexandra Amon and Jamie McCullough helped me with adapting

the SOMPZ pipeline for the comparison, providing the needed data products

and writing small sections of the text. Alexandre Refregier and Luca Tortorelli

contributed to the interpretation and discussion of the results. Michael Troxel

extended the DES data products to make this project possible. Will Hartley
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provided useful insights into SED fitting and deep fields. Alex Alarcon, Spencer

Everett and Joe DeRose reviewed a preliminary version of the chapter as internal

reviewers within the DES collaboration and approved the unblinding once the

conditions were met. Finally, the past and present conveners of the redshift and

weak lensing working group (Carles Sanchez, Alex Alarcon, Huan Lin, Alexandra

Amon, Judit Prat, Daniel Grün and Ami Choi) provided valuable comments.

• Chapter 5

I wrote Chapter 5 as a summary of the main findings of this thesis and outlook

for future work.
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