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A B S T R A C T

The proliferation of car sharing services in recent years presents a promising avenue for advancing sustainable
transportation. Beyond merely reducing car ownership rates, these systems can play a pivotal role in bolstering
grid stability through the provision of ancillary services via vehicle-to-grid (V2G) technologies - a facet that
has received limited attention in previous research. In this study, we analyze the potential of V2G in car
sharing by designing future scenarios for a national-scale service in Switzerland. We propose an agent-based
simulation pipeline that considers population changes as well as different business strategies of the car sharing
service, and we demonstrate its successful application for simulating scenarios for 2030. To imitate car sharing
user behavior, we develop a data-driven mode choice model. Our analysis reveals important differences in the
examined scenarios, such as higher vehicle utilization rates for a reduced fleet size as well as in a scenario
featuring new car sharing stations. These disparities translate into variations in the power flexibility of the
fleet available for ancillary services, ranging from 12 to 50 MW, depending on the scenario and the time of the
day. Furthermore, we conduct a case study involving a subset of the car sharing fleet, incorporating real-world
electricity pricing data. The case study substantiates the existence of a sweet spot involving monetary gains for
both power grid operators and fleet owners. Our findings provide guidelines to decision makers and underscore
the pressing need for regulatory enhancements concerning power trading within the realm of car sharing.
1. Introduction

The enormous challenges the world is facing due to climate change
necessitate the transformation of entire industries, especially the en-
ergy and transportation sectors. Innovative solutions are imperative
for a substantial reduction in CO2 emissions. Within the energy sec-
tor, renewable energies are increasingly adopted, but introduce new
challenges, such as strong fluctuations at limited storage capacity.
In the transportation sector, electric vehicles (EVs) are the preferred
alternative but involve high electricity demand. Furthermore, replacing
all personal vehicles with EVs will arguably not suffice, due to the high
CO2 emissions in vehicle production. New mobility concepts such as
Mobility as a Service (MaaS), micromobility [1], and shared electric
vehicles, present viable alternatives that reduce production and usage
emissions while continuing to provide individual transport options.

Shared EV fleets can, in addition, support the transition to renew-
able energies by offering ancillary services through smart charging or
vehicle-to-grid (V2G) technologies. The concept of V2G has received
much attention in recent years [2], as it simultaneously supports sus-
tainable transportation and robust renewable energy supply. Taiebat
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et al. [3] explore emerging technologies in this domain and explicitly
highlight the combination of V2G with shared (automated) vehicles
as a promising opportunity that requires further quantitative analysis.
V2G integration within car sharing presents several advantages: (1)
The car sharing service owner can coordinate and manage vehicle
availability to effectively integrate V2G technology, in contrast to less
predictable driving choices of private vehicle owners, (2) the large fleet
size in car sharing services, sometimes comprising more than thousand
vehicles, enables sizable profits from implementing V2G and substantial
benefits to the grid, and (3) the rental pricing structure can incentivize
vehicle usage for mobility and charging outside peak demand. Notably,
a stated-choice experiment by Gschwendtner et al. [4] indicates that
car sharing users are generally interested in supporting V2G initiatives.
Nevertheless, previous research on V2G has predominantly focused on
privately owned cars or commercial fleets [5] rather than car sharing.
For example, they analyze the potential of V2G of private vehicles un-
der varying energy production and consumption patterns [6–12]. The
car sharing literature, on the other hand, mainly evaluates the impact
of car sharing on car ownership rates [13–15], resource efficiency [16],
vailable online 3 July 2024
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CO2 emissions [17], and transport mode choices [18–20]. Only a
limited number of studies have integrated V2G or smart charging with
car sharing, primarily within the context of optimizing the charging and
relocation of car sharing fleets [21–24]. These algorithms are usually
tested on small fleets instead of realistic car sharing systems; only
Nespoli et al. [24] have recently optimized V2G for a national-scale
car sharing fleet. Meanwhile, there remains a lack of studies evaluating
future opportunities of V2G in car sharing. Given the rapid adoption
of electric vehicles and the potential expansion of car sharing services
in the near future, it is critical to estimate the potential monetary
benefits and peak-shaving potential of V2G in large car sharing fleets
with respect to possible future scenarios. These estimations are essential
to guide policymaking and accelerate the electrification process of the
mobility sector.

We fill this gap with a simulation study of V2G operations in future
car sharing scenarios. Given the prospect of high car sharing prevalence
in 2030 and beyond [25], as well as its potential growth with the rise
of autonomous driving [26], it is paramount to develop a better un-
derstanding of its compatibility with V2G. However, making long-term
projections of car sharing is challenging since there are a multitude of
influencing factors, including the growth of car sharing services and
their customer base, shifts in mobility behavior, the general adoption
of EVs, and the pricing dynamics of ancillary services. Here, we propose
and implement an agent-based simulation to capture the intricacies of
mobility behavior. Our approach to modeling transport mode choices is
data-driven and relies on machine learning techniques. The simulation
approach involves two key components: firstly, the scaling of the car
sharing system to simulate the additional number of vehicles and
stations in the future, and, secondly, the expansion of the customer
base through the creation of a synthetic population derived from census
data. Finally, we apply a V2G optimization algorithm to the simulated
car sharing data to quantify the potential for peak-shaving and the
associated monetary savings for the car sharing service.

To simulate a realistic and large-scale car sharing service, we lever-
age a dataset of one of the largest currently operating car sharing
fleets, run by the Swiss company Mobility. We find that additional car
haring stations induce more car sharing demand than simply adding
ore vehicles at existing car sharing stations. Furthermore, a larger

leet leads to higher charging and discharging flexibilities. We further
onducted a case study with real electricity pricing data from a regional
ower grid operator over all simulated future scenarios. The case study
emonstrates that V2G in car sharing can provide a substantial peak-
having effect given a reasonable price for ancillary service provision,
esulting in a win-win situation for both fleet and grid operators.

Our contributions are summarized in the following:

• Presenting a full pipeline to simulate future car sharing booking
patterns at the national population level

• Learning car sharing user mode choice behavior with a machine
learning-based mode choice model

• Developing algorithms to simulate station layout and booking
behavior

• Analyzing future opportunities for V2G technology to provide
ancillary services in car sharing businesses

In the following, we will discuss related work on car sharing simu-
ation and V2G scenarios in Section 2, before presenting our methods
n Section 3. Section 4 presents our experiments, where our car shar-
ng simulation is first validated, then applied to analyze car sharing
ehavior in six scenarios for 2030, and finally combined with V2G
ptimization. We conclude with discussion and outlook in Section 6
2

nd Section 7.
2. Related work

2.1. Car sharing services

Car sharing services have evolved rapidly in recent years [27], cre-
ating numerous novel research opportunities [28]. To simulate future
car sharing behavior, it is necessary to assess the characteristics of
(potential) target groups. For Switzerland, Juschten et al. [29], for
instance, discuss factors influencing car sharing membership rates, such
as proximity to public transport. [30,31] concentrate on sociodemo-
graphic variables and find that the proximity of the living location to
car sharing stations is a critical factor, alongside age, gender, mobility
behavior, car sharing membership and usage patterns. These insights
are implicitly used in predictive models (e.g. [32]) that aim to assist
car sharing operators by estimating future demand or potential demand
at new stations [33,34]. Being a niche market accounting for less than
0.1% of transportation activities in Switzerland, car sharing is hardly
considered in transport mode choice models, with few exceptions [35].

2.2. Car sharing simulation

To model car sharing behavior in 2030, we consider car sharing
simulators proposed in previous work. Agent-based models have been
extensively used in transportation as they provide a realistic repre-
sentation of human society, but they are oftentimes computationally
expensive. For car sharing specifically, the powerful MATSim traffic
simulator has been extended to both return- or one-way car sharing
trips [18–20,36]. For example, Giorgione et al. [37] use MATSim to
evaluate dynamic pricing schemes for car sharing in Berlin. How-
ever, MATSim is primarily suited for capturing competition between
transport modes via their respective utilities, and to model the effects
of interventions on a macroscopic level. In this study, we aim to
model realistic car sharing mode choice behavior with respect to the
characteristics of a future population and infrastructure, which is not
captured sufficiently in the utility function that determines agents’
choices in MATSim. Additionally, running a MATSim simulation for the
whole Swiss population is disproportionately computationally expen-
sive, considering the low share of car sharing among other transport
modes.

In contrast, event-based simulators are more efficient since they
avoid modeling individual agents in the system. Instead, they model
the spatial and temporal distribution of car sharing bookings via sam-
pling. [32,38,39] propose an event-based car sharing simulation ap-
proach in which they utilize a Poisson process to model the temporal
distribution and Kernel Density Estimation for the spatial distribution
of car sharing pick-ups or drop-offs. However, the transferability of
such a model to simulating future scenarios remains unclear. Relying
solely on the statistical distribution of events within the current car
sharing service, without considering population change, simulating
future scenarios would essentially entail making arbitrary alterations
to event rates and other statistical parameters. Since an agent-based
approach is essential to account for the evolving sociodemographics of
the population, we develop an agent-based simulator with improved
efficiency over MATSim by omitting transport modes other than car
sharing. In addition, our simulator includes a data-driven mode choice
model to simulate car sharing usage behaviors.

2.3. Future scenarios

Scenario-based analysis is an important research tool to explore
potential outcomes or determine pathways toward a desirable future,
offering a long-term view under uncertainties [40–42]. Abou et al. [43]
summarize scenario-based research and, building upon the study by
Börjeson et al. [44], distinguish between predictive/probable scenar-
ios, normative/preferable scenarios, and exploratory scenario planning
(XSP). Here, we focus on XSP, aiming to explore alternative future
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developments from various viewpoints [43]. XSP requires identifying
driving forces for future development and important stakeholders, se-
lecting factors of uncertainty, and discretizing their values in a scenario
matrix [45]. Most commonly, 3–5 scenarios are constructed to ensure
sufficient variety while limiting the complexity of the analysis [46].

Furthermore, scenario planning was integrated with road mapping
for business applications [47–49]. Geum et al. [50] extend these the-
oretical considerations with a practical framework for combining a
simulation of the system dynamics with scenarios from the techno-
logical and business perspectives. We build upon their work since
Geum et al. [50] demonstrate the applicability of their framework for
constructing car sharing service scenarios.

2.4. Analyses of the future potential of V2G

Among studies that evaluate future perspectives for V2G, the main
differences lie in the complexity of the simulation of mobility behavior
and the assumptions on charging opportunities. Most studies project
the energy consumption and production patterns of a population, and
simulate V2G operations to evaluate the potential impact on the grid,
e.g. for Germany [7,51], Morocco [10], the UK [9] or China [8]. [10],
for instance, find that V2G can provide up to 7.7 GW of controllable
and mobile loads for the Moroccan grid in 2030. Wang et al. [52]
argue that there are ‘‘four factors that could drive future V2G revenues:
future grid changes, large EV numbers, V2G interactions with electricity
prices, and V2G operational responses to shifts in electricity prices’’
(p. 1). They claim to consider all four factors in their analysis of
future revenues from V2G in California by 2030. However, such studies
may still be misleading as they oftentimes disregard the potential
change in people’s mobility behavior. [6] distinguish static and dynamic
simulations, where the energy demand is given as daily averages or as
dynamic mobility patterns respectively. They show that the dynamic
scenario reduces the power available for ancillary services by 40%.
Martin et al. [53] tackle this issue by using tracking data in their case
study on smart charging with photovoltaic-generated energy, and Xu et
al. [54] combine data from charging stations and mobile phone data to
account for mobility behavior, but both focus on private vehicles and
only smart charging instead of V2G. [55,56] propose an agent-based
simulation to realistically model (future) charging behavior, while Liu
et al. [57] use a similar approach to model EV and V2G adoption
behavior. A review of methods to model EV usage is given by Daina
et al. [58].

Although the possibility of applying V2G on car sharing fleets has
been discussed as a business model [59,60], only few case studies
were conducted on real car sharing data [21–23,61] or data from
other commercial vehicle fleets [62,63]. Similarly, there are hardly any
future projections of how profitable V2G could be for a car sharing
service, with few exceptions that focus on very specific cases such as
autonomous EV fleets [64]. We fill this gap with an analysis of a large
car sharing fleet in future scenarios.

3. Methods

We simulate car sharing usage for different scenarios for 2030,
varying the number of users, the station layout, and the vehicle fleet
composition. An overview of our pipeline for an agent-based simulation
of car reservations is shown in Fig. 1. We propose (1) to generate
a future population and their daily activities based on the national
Mobility Microcensus, (2) to train a mode choice model using a data-
driven approach based on labeled tracking data, and (3) to sample car
sharing users from the future population and model their mode choices
with the pre-trained model. Furthermore, we simulate the different
future scenarios of car sharing services by varying the size of the fleet
and stations. Our car sharing simulator is publicly available at https://
github.com/mie-lab/car_sharing_simulator. Each step will be described
in the following sections after introducing the main dataset used in the
study.
3

M

3.1. Car sharing dataset

We utilize a national-scale station-based car sharing service in
Switzerland. The car sharing service provider, Mobility, currently has
around 3000 vehicles deployed at more than 1500 stations.1 Their
business model is strongly based on station-based return trips (only
0.3% of the trips are one-way) and their customer base consists of
members of the Mobility cooperative and regular subscriptions. For the
purpose of this study, a dataset of all vehicle reservations for the whole
year 2019 was used. Overall, the dataset comprises 1,284,753 bookings,
but only 3.5% of those were done with electric vehicles. However, the
company aims to electrify its whole fleet by 2030. In addition to the
reservation data, we also utilize information about the location and size
of the car sharing stations, the user age group, gender and approximate
living locations (within a 200 m radius of the real residence), and
vehicle types (combi, budget, transporter, etc.) in this study.

3.2. Simulating activity patterns of a population in 2030

We utilize previous work in transport planning for synthesizing a
future population and their mobility behavior. Hörl et al. [65] pre-
sented a pipeline for deriving synthetic populations from census data.
It has been applied to regions such as Switzerland, Michigan [66], and
Sao Paulo [67]; usually for the purpose of generating input data for a
MATSim [68] simulation. Here, an implementation of the pipeline for
Switzerland is used2 [69]. The pipeline takes census data as input and
outputs daily trips and activities of a synthetic population. In detail,
the pipeline involves the following stages for our use case (see [69] for
methods):

1. Projecting population data to 2030 via iterative proportional
fitting (IPF) [70,71]. Population census data from the past five
years [72] are combined with official projections from the Fed-
eral Office of Statistics in Switzerland.

2. Subsampling the synthetic population.
3. Assigning samples from the Mobility Microcensus [73] (more

than 57k households) to the synthetic population by statistical
matching.

4. Assigning trips, activities and their spatial locations by sampling
from the Mobility Microcensus [73].

For steps 1, 3, and 4 we apply the implementation by [69] without
any modifications. However, rather than generating a random subset of
the population (step 2), our approach focuses on sampling the entire
population of car sharing users who hold a car sharing subscription. As
we are not reliant on MATSim but have developed our own agent-based
simulation exclusively modeling car sharing, the synthetic population
should comprise only those individuals who are potential car sharing
users. In other words, simplifying the supply side in our simulation
allows us to model a real-sized car sharing user population.

Since there is no information in the census data regarding car shar-
ing subscriptions, we design a stratified sampling strategy to sample
car sharing users. To determine this selection, we take into account the
characteristics of current car sharing users in Switzerland, using the
dataset from Mobility. In the following, we will refer to the car sharing
users in the real dataset as ‘‘Mobility users’’, short 𝑈𝑟𝑒𝑎𝑙, to distinguish
them from the synthetic car sharing users 𝑈𝑠𝑦𝑛 that we aim to sample.
Let 𝑄𝑠𝑦𝑛 be the synthetic population generated in step 1, and let 𝑄𝑟𝑒𝑎𝑙
e the Swiss population in 2019. To create a subsample of 𝑄𝑠𝑦𝑛 that
esembles car sharing users, we propose to control for age, gender, and
roximity to a car sharing station.3

1 https://www.mobility.ch/en/mobility-cooperative (accessed 14.2.2023).
2 Open-source code is available at https://gitlab.ethz.ch/ivt-vpl/population

/ch-zh-synpop#raw-data.
3 Further relevant characteristics, such as income, are not available for the

obility users.
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Fig. 1. Overview of synthetic car sharing data generation pipeline. A synthetic population with mobility profiles is generated from projected census data. On the other hand, a
mode choice model is trained on labeled tracking data, using features such as trip distance, day times, and car availability as input. This model is applied to the synthetic data,
yielding a set of synthetic car sharing trips.
For any person 𝑥, let 𝑎(𝑥) be the age of 𝑥, 𝑔(𝑥) its gender, and 𝑠(𝑥)
the car sharing station that is closest to the place of residence of 𝑥
(𝑥 ∈ 𝑄𝑠𝑦𝑛 or 𝑥 ∈ 𝑄𝑟𝑒𝑎𝑙 or 𝑥 ∈ 𝑈𝑟𝑒𝑎𝑙). The synthetic population is grouped
into six age groups to match the age attribute in the Mobility dataset.
The sample probabilities are derived from the prevalence of age group,
gender, and closest station among the Mobility users 𝑈𝑟𝑒𝑎𝑙, compared
to the prevalence in 𝑄𝑠𝑦𝑛 and 𝑄𝑟𝑒𝑎𝑙. The sample weight 𝑤𝑞 is set to

∀𝑞 ∈ 𝑄𝑠𝑦𝑛 ∶ 𝑤𝑞 =

∑

𝑢∈𝑈𝑟𝑒𝑎𝑙
1[𝑎(𝑢) = 𝑎(𝑞)]

∑

𝑞′∈𝑄𝑟𝑒𝑎𝑙
1[𝑎(𝑞′) = 𝑎(𝑞)]

⋅

∑

𝑢∈𝑈𝑟𝑒𝑎𝑙
1[𝑔(𝑢) = 𝑔(𝑞)]

∑

𝑞′∈𝑄𝑟𝑒𝑎𝑙
1[𝑔(𝑞′) = 𝑔(𝑞)]

⋅

∑

𝑢∈𝑈𝑟𝑒𝑎𝑙
1[𝑠(𝑢) = 𝑠(𝑞)]

∑

𝑞′∈𝑄𝑟𝑒𝑎𝑙
1[𝑠(𝑞′) = 𝑠(𝑞)]

(1)

Intuitively, person 𝑞 is sampled with higher probability (larger 𝑤𝑞) if
its age, gender, and the closest car sharing station are more prevalent
among car sharing users 𝑈𝑟𝑒𝑎𝑙 than among the general population
𝑄𝑟𝑒𝑎𝑙. By normalizing with the prevalence in 𝑄𝑟𝑒𝑎𝑙 instead of 𝑄𝑠𝑦𝑛,
the sociodemographics of 𝑈𝑠𝑦𝑛 can differ from the ones of 𝑈𝑟𝑒𝑎𝑙 (the
current car sharing users), subject to changes in general population
(𝑄𝑠𝑦𝑛 compared to 𝑄𝑟𝑒𝑎𝑙).

The weights 𝑤𝑞 are normalized to ensure ∑

𝑞∈𝑄𝑠𝑦𝑛
𝑤̂𝑞 = 1 and a set of

𝑁 car sharing users, 𝑈𝑠𝑦𝑛, is sampled from 𝑄𝑠𝑦𝑛 with 𝑤̂𝑞 as the sample
probabilities. 𝑁 is a parameter that is varied by scenario. As a result
of the stratified sampling, the age, gender, and distance to the closest
car sharing station of 𝑈𝑠𝑦𝑛 are similarly distributed as for the actual
Mobility customers 𝑈𝑟𝑒𝑎𝑙 (see Appendix B).

After generating the synthetic population 𝑈𝑠𝑦𝑛, executing step 3 and
4 of the pipeline by [69] yields the activity profiles for all 𝑢 ∈ 𝑈𝑠𝑦𝑛
for a single day. An activity profile is a sequence of activities and their
spatial locations (see Fig. 1), including start and end time, reflecting
a person’s activity schedule of one day. All activities have a start
time, a purpose (home/leisure/work/shopping/education/other), and a
location (spatial coordinates). For each user, we convert the activities of
a user into trips between activities. All trips have origin and destination
locations, origin and destination purpose, and origin and destination
start time. 𝑚 activities for one user result in 𝑚 − 1 trips, where the
transport mode is unknown.

3.3. Data-driven mode choice modeling for car sharing usage

Numerous factors influence an individual’s choice of transportation
mode, including trip distance, activity type, pricing, travel duration,
and proximity to public transport or car sharing. We propose a machine
learning model to capture the complex interplay of these features with
a data-driven approach. This model necessitates a labeled dataset in
which the mode of transport is known, and it must include car sharing
trips. We found the MOBIS dataset [74] to be highly suitable. MOBIS, a
GPS tracking study conducted in Switzerland in 2019, aimed to analyze
nudging and pricing incentives for mode choices. After the initial 14-
week tracking period with 3680 participants, the users were asked to
4

re-activate the app voluntarily to study travel behavior changes during
the COVID-19 pandemic [75,76]. Users were further asked to manually
label the transport mode and activity purpose. As a result, the MOBIS-
COVID studies offer a rich labeled dataset with tracking data over more
than one year. Crucially, the trips in the MOBIS dataset include Mobility
car sharing as a transport mode. We found 225 users with at least one
car sharing trip. In the following, we restrict ourselves to these users,
as our objective is to learn the likelihood of an agent booking a shared
vehicle when a car sharing subscription is in place. The 225 car sharing
users recorded 346 712 triplegs4 in total within the time period from
September 2019 until January 2022, and 2270 (0.65%) were labeled
as car sharing.

The MOBIS data are provided as activities and triplegs that were
derived from raw GPS data. We first aggregate the triplegs into trips
with the Trackintel library [77], following the data model described
by Schönfelder et al. [78]. For example, two consecutive triplegs that
are interrupted only by a negligible activity, such as waiting for a
bus, are merged into one trip. This aggregation step yields 102 282
trips. Since the triplegs comprising one trip may have different modes
of transport, we set the trip-wise transport mode to the one covering
the largest distance of the trip. For each trip, we extracted a set of
features that were determined based on availability (for both MOBIS
and synthetic data) and relevance to transport mode prediction. A full
list of features is shown in Table 1, and includes socio-demographics
of the user (age, gender), trip distance, activity features (start time and
purpose of current and next activity), and accessibility features (public
transport accessibility score, distance to closest car sharing station).

We aim to model mode choices of car sharing users by training a
machine learning model to predict the transport mode, given the trip
features as input. The model is trained on the MOBIS data but will be
applied to assign a mode to trips of the synthetic population. Therefore,
we first investigate whether the MOBIS data are sufficiently similar to
the synthetic trip data. Table 1 demonstrates that the distribution of
feature values of the synthetic trips aligns well with the distribution
in the MOBIS data, at least in terms of the first two moments. The
difference is also statistically estimated by means of z-scores, calculated
as the difference of the mean feature value divided by the standard
deviation within the MOBIS dataset.5 The z-scores are all below 0.6 in
absolute value, confirming the similarity in trip characteristics.

Recently, supervised ML approaches such as (Gradient Boosted)
Decision Trees or Artificial Neural Networks were increasingly used
for modeling mode choices [79], in contrast to previously popular
Random Utility Models [80]. Our task can be framed as a multi-class
classification with unbalanced class prevalence since the modes ‘‘car’’
or ‘‘walking’’ appear more often than other modes. Only modes with

4 For definition of triplegs, please refer to [77].
5 z-scores were computed as (mean(synthetic_population) − mean(MOBIS))

/std(MOBIS).
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Table 1
Comparing characteristics of trips in the MOBIS dataset (car sharing users) to the synthetically generated trips. The z-value indicates the difference between the respective mean
of the feature value, normalized by the standard deviation among the synthetic population. As desired, there are no significant differences.

Feature MOBIS car sharing users Synthetic car sharing population z-value
mean (std) mean (std)

User age 49.05 (13.24) 42.81 (13.33) −0.47
User gender 0.39 (0.49) 0.38 (0.49) −0.03
User has car access 0.85 (0.3) 0.78 (0.37) −0.24
User is employed 0.84 (0.37) 0.83 (0.37) −0.01
Half-fare public transport subscription 0.58 (0.49) 0.37 (0.48) −0.42
Full-fare public transport subscription 0.19 (0.39) 0.08 (0.28) −0.26
Distance from origin to destination 8725.35 (17 558.07) 6166.87 (14 247.3) −0.15
Purpose destination = home 0.4 (0.49) 0.4 (0.49) −0.01
Purpose destination = leisure 0.22 (0.41) 0.15 (0.36) −0.16
Purpose destination = work 0.23 (0.42) 0.24 (0.43) 0.03
Purpose destination = shopping 0.07 (0.26) 0.1 (0.3) 0.11
Purpose destination = education 0.01 (0.1) 0.01 (0.11) 0.02
Purpose origin = home 0.4 (0.49) 0.4 (0.49) 0.00
Purpose origin = leisure 0.22 (0.41) 0.15 (0.36) −0.16
Purpose origin = work 0.23 (0.42) 0.24 (0.43) 0.02
Purpose origin = shopping 0.08 (0.26) 0.1 (0.3) 0.11
Purpose origin = education 0.01 (0.1) 0.01 (0.11) 0.02
PT accessibility (origin) 2.11 (1.44) 2.7 (1.33) 0.40
PT accessibility (destination) 2.11 (1.44) 2.7 (1.33) 0.41
Distance to station (origin) 1426.53 (2403.34) 950.65 (1735.61) −0.20
Distance to station (destination) 1430.92 (2405.02) 950.68 (1735.83) −0.20
Start hour of activity at origin 13.88 (4.57) 14.25 (5.03) 0.08
Day of activity at origin 2.84 (1.9) 1.76 (0.43) −0.57
Start hour of activity at destination 13.93 (4.56) 13.58 (4.82) −0.08
Day of activity at destination 2.85 (1.89) 1.77 (0.45) −0.57
Fig. 2. Mode share among trips of MOBIS users with a car sharing subscription.
c

t least 500 occurrences in the dataset are included, excluding rare
odes such as boats or cable cars. The final selection of modes and

heir distribution is shown in Fig. 2. A model that was shown to be well-
uited for unbalanced datasets is XGBoost (XGB) [81], outperforming
ther methods in previous work [82]. We, therefore, train an XGB clas-
ifier from the xgboost Python package6 and tune the max_depth
arameter with grid search on a validation set from the MOBIS dataset.
he model is denoted as 𝑀 in the following.

Additionally, we tested an Inverse Reinforcement Learning (IRL)
pproach. IRL is suitable for problems where the reward function is
nknown, and one can only learn to imitate certain behaviors by ob-
erving expert demonstrations. Since the objective functions of humans
re usually unknown, IRL was used for modeling mobility patterns.
ang et al. [83], for example, use the maximum entropy IRL ap-
roach [84] to generate realistic human trajectories. Here, the task
f mode choice prediction can be modeled as an IRL problem where
he states correspond to the features of an upcoming trip and the
ctions correspond to mode choices. Since the states are continuous and
he reward function is non-linear, we employ an IRL approach named
uided Cost Learning [85], where the cost function is learned with a

6 https://xgboost.readthedocs.io/en/stable/python/index.html.
5

Neural Network. The cost function and the agent policy are trained in
alternating fashion. For details on the training, we refer to [85] and the
open-source implementation.7

3.4. Simulating car sharing users’ reservations

The trained mode choice model 𝑀 is then applied to the trips of the
synthetic population. Since there is no explicit information in either the
MOBIS data or the synthetic data regarding when the mode is chosen,
we assume that all users decide spontaneously prior to the upcoming
activity, with an adequate buffer. Specifically, we calculate the required
travel duration from the current to the next activity assuming 50 km/h
speed, and add an extra 10 min as buffer. For instance, if the next
activity is 25 km away and is scheduled to begin at 3 pm, the ‘‘mode
decision time’’ 𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 would be set to 2:20 pm.

A formal explanation of this process is given in Algorithm 1. The
trips, denoted as 𝑝1,… , 𝑝𝑛, are considered in the order of their respec-
tive decision time 𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝). At the designated decision time of a trip 𝑝,
the distance to the nearest car sharing station with an available vehicle is
omputed. Together with other features of 𝑝, this distance serves as an

7 https://github.com/nishantkr18/guided-cost-learning.

https://xgboost.readthedocs.io/en/stable/python/index.html
https://github.com/nishantkr18/guided-cost-learning
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Algorithm 1: Simulate car sharing reservations
Input: Mode choice model 𝑀
Input: Planned trips 𝑝1,… 𝑝𝑛 (without mode of transport)
Input: Trip information: user 𝑢(𝑝𝑖), origin and destination location
𝑙𝑜𝑟𝑖𝑔𝑖𝑛(𝑝𝑖), 𝑙𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑖), start time of the activity at the destination
𝑡𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑖), and distance 𝑑𝑡𝑟𝑖𝑝(𝑝𝑖)

Initialize:
𝑚𝑜𝑑𝑒(𝑝𝑖) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ∀𝑝𝑖
car_reserved(𝑢) = 0 ∀𝑢 ; // Initialize users to no car
𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑖) = 𝑡𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑖) −

𝑑𝑡𝑟𝑖𝑝(𝑝𝑖)
1000⋅50𝑘𝑚∕ℎ ⋅ 60 − 10min

𝑃 = 𝑠𝑜𝑟𝑡𝑒𝑑(𝑝1,… , 𝑝𝑛) ; // Sort trips by 𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑖)
𝑅 = {} ; // Initialize car sharing reservations
for 𝑝𝑖 ∈ 𝑃 do
if car_reserved(𝑢(𝑝𝑖)) = 0 ; // if no car, predict mode
then

Compute 𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑝𝑖), the distance to the closest free vehicle
𝑚𝑜𝑑𝑒(𝑝𝑖) = 𝑀

(

𝑑𝑡𝑟𝑖𝑝(𝑝𝑖), 𝑑𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑝𝑖), other trip features
)

;
// Apply mode choice model
if 𝑚𝑜𝑑𝑒(𝑝𝑖) = 𝑠ℎ𝑎𝑟𝑒𝑑 then

car_reserved(𝑢(𝑝𝑖)) = 1 ; // Save car rental
𝑅 = 𝑅 ∪ 𝑝𝑖 ; // Add trip to car sharing bookings

end if
else

𝑚𝑜𝑑𝑒(𝑝𝑖) = 𝑠ℎ𝑎𝑟𝑒𝑑 ; // Option 2: keep shared car
car_reserved(𝑢(𝑝𝑖)) = 1
if 𝑙𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑖) is equal to start location of reservation then

Return car to station at time 𝑡𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑖)
car_reserved(𝑢(𝑝𝑖)) = 0

end if
end if

end for
return 𝑅

input to the mode choice model 𝑀 (see Table 1). 𝑀 is then employed
to predict the mode of 𝑝 and, whenever 𝑀 predicts car sharing as the
chosen transport mode, a shared vehicle is assigned to the user of the
respective trip.

Since the Mobility car sharing service only offers return trips, our
simulation is designed so that the synthetic users keep the shared
car until they return to the location where the car was borrowed.
As a result, if a user was assigned a shared vehicle for the previous
trip and it was not returned, the shared vehicle is simply reassigned
for the next trip, and this process continues until the user re-visits
the location where the car was borrowed for another activity. An
alternative approach to modeling return trips involves introducing
new trips into the user’s mobility profiles to return the car after a
certain duration (e.g. sampled durations). However, we opt for strictly
following the synthetic mobility profiles to avoid deviating from the
agent-based viewpoint and the given synthetic data. In future work, this
challenge can be approached by learning the mode choice for a com-
plete sequence of activities, in order to account for mode dependencies
between trips.

The output of the simulation (Algorithm 1) is a set of car sharing
reservations 𝑅. They are merged temporally if the same vehicle was
assigned for multiple sequential trips of the same person. 𝑅 is a dataset
similar to the available Mobility data, listing vehicle reservations with
start and end time, driven kilometers, duration, and user ID.

3.5. Simulating the car sharing service

Following the announced goal of Mobility, we assume a fully electric
fleet by 2030. In consultation with the company, we assign one EV
6

model to each vehicle category, e.g. the e-up model by Volkswagen for
the ‘‘Budget’’ category, the Tesla Model 3 for the ‘‘Premium’’ category,
the eVito by Mercedes Benz for the ‘‘Transporter’’ category, etc. While
this does not reflect the potential vehicle diversity in the future fleet,
it simplifies the modeling of user behaviors.

Second, we generate scenarios with a larger number of vehicles per
station, to account for a potential increase of supply at each station.
Given a desired fleet size 𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , e.g. 3000 vehicles, the number of
vehicles per station is scaled accordingly by a factor of 𝑐 = 𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡
.

Due to the discrete nature of the vehicle count per station, we scale
the station-wise vehicle count by a factor 𝑐 that is normally distributed
around 𝑐, 𝑐 ∼  (𝑐, 0.3), and round the result, such that the expected
umber of vehicles is the desired number of vehicles, E[𝑉 ] = 𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑 .
e redo this sampling process until the deviation from 𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is lower

han 0.5%. The new vehicles are assigned to a category of car sharing
ehicles (e.g., Budget, Premium, Transporter, etc.) by sampling from a
ategorical distribution with probabilities corresponding to the current
hare of the respective category in the Mobility dataset.

Finally, we propose an algorithm to simulate the placement of new
stations, which is crucial for scenarios that assume an expansion of
the car sharing service. Since simulating a realistic allocation of new
stations is out of scope for this study, we adopted a simplistic model
that assumes new stations are placed based on the population density
while avoiding existing stations. This scenario bears a resemblance to
the well-known KMeans clustering problem [86], where the goal is
to minimize the distance of samples (i.e. potential customers) to the
cluster centers (i.e. car sharing stations). The KMeans objective function
is NP-hard, but an iterative algorithm by [87] generally yields good
solutions. In contrast to the KMeans clustering problem, our situation
assumes that some of the cluster centers remain fixed, corresponding
to the existing stations. Thus, we adapt Lloyds algorithm to update
only a subset of the cluster centroids during each iteration, preserving
the existing station locations. In detail, we sample 500k residential
locations from the synthetic population, denoted as 𝑋, to represent the
spatial distribution of potential customers. The new stations, 𝜇0,… , 𝜇𝑘,
are initially randomly placed by sampling from 𝑋 and are subsequently
relocated iteratively to areas with higher population density and min-
imal proximity to existing car sharing stations. The full algorithm is
provided in Algorithm 2.
Algorithm 2: KMeans for new station placement
Input: Customer home locations 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛}
Input: Number of desired new stations 𝑘
Input: Set of fixed station locations 𝑆𝑓𝑖𝑥
𝑡 = 0
𝐶 = 𝑆𝑓𝑖𝑥 ∪ {𝜇0

1 , 𝜇
0
2 ,… , 𝜇0

𝑘} ; // Initialize cluster
centroids at 𝑡 = 0 (sample 𝜇0 from X)
repeat

Assign each data point 𝑥𝑖 to the closest cluster centroid from 𝐶
𝜇𝑡+1
𝑖 = 1

𝑛
∑𝑛

𝑖 𝑥𝑖 ⋅ 1[𝑥𝑖 was assigned to 𝜇𝑡
𝑖] ; // Update

non-fixed cluster centroids
𝐶 = 𝑆𝑓𝑖𝑥 ∪ {𝜇𝑡+1

1 , 𝜇𝑡+1
2 ,… , 𝜇𝑡+1

𝑘 } ; // Update full set of
cluster centroids
𝑡 = 𝑡 + 1

until convergence

Fig. 3 depicts an illustrative output obtained by applying Algorithm
2 to deploy 1000 new stations in Switzerland. The population density
is shown in blue. As intended, the newly placed stations align with
the population density, effectively bridging gaps in the distribution of
existing stations.

3.6. Simulating V2G

Finally, we simulate V2G operations using an optimization ap-

proach. While substantial research exists on optimizing charging and
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Fig. 3. Exemplary distribution of new stations in the simulated car sharing service. For visualization purposes, the population locations are displayed as a distribution (blue)
ia Kernel Density Estimation. The new stations generated with our algorithm (yellow) follow the distribution of former stations (orange) and cover additional regions with high
opulation density.
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ischarging of vehicles, even in car sharing contexts [21–23], hardly
ny approach scales to a large, national-scale car sharing fleet, as in
ur scenarios. To address this issue, [24] have recently developed a
cheduling approach for EV fleet control that scales to thousands of
ehicles, leveraging the Alternating Direction Methods of Multipliers
ADMM). The method allows the decomposition of the problem by car
haring station while still optimizing a fleet-level objective. For details
n the mathematical formulation, see [24].

. Results

To validate our simulation, we first compare a simulated dataset to
he real car sharing dataset from 2019. We then generate scenarios for
030 and discuss the resulting opportunities for V2G.

.1. Validation

.1.1. Performance of the mode choice model
The training accuracy of the XGB model (see Section 3.3) is 81.7%

80.0% balanced accuracy over classes). When tested on a separate
old-out dataset from MOBIS, the model achieved an accuracy of
7.9% (65% balanced accuracy). Fig. 4 shows the confusion matrices
ormalized by ground truth and by the predicted label. Notably, we
chieved a specificity of 45% in predicting car sharing trips, a high
alue considering the similarities car sharing shares with conventional
ar trips. However, the sensitivity for car sharing predictions was lower,
ith only 16% of actual car sharing trips correctly identified (Fig. 4(a)).
his is partly attributed to the relatively low prevalence of car sharing
rips within the broader transportation options landscape, as illustrated
n Fig. 2, which naturally increases the challenge of identifying car
haring trips. Nevertheless, for our simulation, what holds paramount is
hat the model replicates the distribution of travel modes. It is evident
hat car sharing is mainly confused with car trips, aligning with our
xpectations, and all travel modes are represented in the predictions.
his capability makes our model well-suited for generating realistic
ode shares within synthetic populations. When applied to a synthetic
opulation for 2019 (without considering vehicle availability), car shar-
ng has a share of 0.926%, aligning closely with the share in the MOBIS
ata (0.965%). Appendix C further confirms the model’s stability over
ime, reinforcing its suitability for generating projections to 2030.

Since XGBoost models rely on decision trees as base estimators,
7

he importance of each input feature can be estimated in terms of the a
relevance of the feature in branching the trees. Fig. 5 illustrates that the
trip distance emerges as the most pivotal feature in our model. User
attributes such as car access, the availability of full-fare or half-fare
public transport subscriptions in Switzerland, and age exhibit notable
relevance. This property is advantageous for simulating future car
sharing behavior as it enables the model to reflect sociodemographic
changes in a population.

4.1.2. Calibration of the agent-based simulator
To validate our simulation pipeline, we apply it to 2019. Using

the pipeline by [69], we generate a synthetic population, apply the
pre-trained mode choice models, and derive synthetic car sharing reser-
vations for 2019. The car sharing behavior is then compared to the real
car sharing dataset from 2019. If our simulation is realistic, we would
expect that the reservation variables are similar to the real data in
istribution. In particular, we can compare car reservation start and end
imes, their distance and duration, and the distribution over stations.
ote that the following comparison is between one day of simulated
ata and a full year of real reservations, since the pipeline by [69]
nly generates activity profiles of a synthetic population for a single
ay. Bookings longer than one day are excluded from the real data for
fair comparison.

First, we report the total number of reservations of the simulated
ay compared to the typical daily reservation count in the Mobility
ataset in Fig. 6(a). The number of reservations is directly influenced by
he number of simulated car sharing users 𝑁 . However, the frequency
f car sharing bookings for MOBIS users differs significantly from the
obility users. TheMobility dataset comprises 270k users, yet only 117k
sers appear at least once in the entire year of 2019, indicating a
onsiderable number of inactive users. As a result, it is necessary to
alibrate 𝑁 to attain a reservation count that aligns with reality. By
alibration, 𝑁 = 100 000 was established as a realistic estimate for the
umber of users who actively consider car sharing in their daily mode
hoices.

Secondly, in Fig. 6(b) we compare the distribution of bookings
y stations to the real data in 2019. In this case, we compute a z-
core for each individual station 𝑠, since the number of bookings per
tation is highly variable. Let 𝜇𝑠 be the real average daily number of
eservations for station 𝑠 and 𝜎𝑠 its standard deviation, and let 𝑦𝑠 be the
umber of reservations for 𝑠 in the simulation. We compute a z-score

s 𝑧 = (𝑦𝑠−𝜇𝑠)∕𝜎𝑠. The distribution of z-scores is shown in Fig. 6(b). As
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Fig. 4. Confusion matrix of mode choice model on test set.
desired, the z-scores are mainly low and are distributed similarly as for
an event-based simulation (see Appendix A). There is a small negative
bias; i.e., there are more stations with a lower number of trips than in
the real dataset. This is due to the large number of stations with only
one car, which is not used in a single day.

Third, we validate the mode choice model by comparing the modal
share of the simulated population to the modal share of MOBIS users. As
Fig. 7 shows, the mode share is very similar, with a slight shift from car
trips to bike and walking trips. However, the MOBIS data only includes
225 users that are not representative of the real population.

Last, in Fig. 8 the data generated with our simulation is contrasted
to the real data and to data sampled from an event-based simulator,
following [38] (for implementation details, see Appendix A). The sim-
ulated bookings align well with the real bookings in terms of start
8

and end time distribution, reservation duration, and driving distance
in kilometers. The driving distance is underestimated by our agent-
based simulation, since the beeline distance between agents’ activities
is used, which can be further refined by applying map-matching. The
distribution of the duration deviates from the real data, with a larger
fraction of 5–15 h car sharing rentals. This can be attributed to our
simulation of return trips (see Section 3.4) leading to long rentals until
a person returns to the starting location of their trips. However, it
is worth noting that this discrepancy in distribution, while present,
remains within acceptable bounds for our study. Importantly, it leads to
a conservative estimation of vehicle availability for V2G applications.

In Figs. 6(b) and 8, we observe that our approach generates realistic
data of similar quality as an event-based simulator. Note that it is
unclear how to transfer an event-based simulator to future populations
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Fig. 5. Importance of feature in the XGBoost model. The distance is most important as expected, but also socio-demographic features play an important role.
Fig. 6. With 100 000 car sharing users in the simulated population, the number of simulated car sharing reservations lies within the expected range (a). The z scores over stations
show that most stations are used with similar frequency with few exceptions (b).
Fig. 7. Applying the trained mode choice model to the simulated population yields a
similar mode share as for the MOBIS data, apart from a smaller fraction of car trips
and a larger fraction of walk trips.

since it does not consider population statistics. Instead, one would
have to vary the event rate and other parameters for simulating future
9

scenarios. We, therefore, argue that 1) our approach yields comparable
results for 2019 and 2) more feasible than an event-based approach to
simulate realistic data for 2030.

4.2. Comparison to inverse reinforcement learning

For the sake of comparison, we perform the same analysis for
the simulation with an Inverse Reinforcement Learning mode choice
model. Our best-performing IRL agent shows inferior performance in
predicting the correct action (accuracy of 42%). It, however, also yields
realistic data in distribution, although they diverge further from the
real data than the data simulated with the XGB model. For brevity,
we do not visualize these distributions but only provide corresponding
metrics in Table 2. Specifically, we quantify the difference between the
real and simulated distribution of duration, distance, and reservation
start and end time, by means of the Wasserstein distance [88], a metric
from Optimal Transport theory that is commonly used to compare
probability distributions. Comparing IRL and XGB, we observe that the
Wasserstein distances are higher for IRL, together with a mode share
that diverges more from the MOBIS data, and a different distribution of
reservations over stations (i.e., higher z-scores). These results indicate
that the IRL model cannot grasp travel behavior, or particularly the
factors that affect car sharing behavior, as precisely as a supervised
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Fig. 8. Comparing simulated to real data from 2019 in distribution.
model. We hypothesize that the advantages of an IRL approach, namely
to learn realistic state transitions over longer episodes, are negligible
in our problem because the states are hardly affected by the action
in our setting. Therefore, we use the supervised XGB approach for the
following experiments.
10
4.3. Car sharing scenarios for 2030

4.3.1. Scenario design
To design realistic yet diverse scenarios for 2030, we adopt an ap-

proach by Geum et al. [50] who propose to combine growth scenarios
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Table 2
Comparing the simulated data with the XGB model to the data simulated with IRL, in terms of their match with the real car sharing data. The Wasserstein distances between
real and simulated distributions are higher for IRL, indicating a better fit of the XGB model. Similarly, the accuracy of predicting the correct mode on test data is better for the
supervised XGB model, and mode share and the distribution over stations closer match the real data.

Model Wasserstein distance between real and simulated Avg. abs. Avg. mode Accuracy Balanced

Duration Driven km Start time End time station z-score share ratio Accuracy

IRL 1.62 17.00 4931.43 8470.77 1.21 2.41 0.42 0.14
XGB 1.05 14.62 2350.14 4973.33 1.04 1.52 0.78 0.66
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with possible technological roadmaps of a company. Geum et al. [50]
use a car sharing business as an illustrative example and simulate
three scenarios for the prospective demand (pessimistic, optimistic,
and neutral) and four scenarios as strategic roadmaps (‘‘defender’’,
‘‘prospector’’, ‘‘reactor’’ and ‘‘analyzer’’). The scenarios correspond to
all possible combinations of these two parts, leading to 12 scenarios
in the example. Following this approach, we assume different growth
rates for the customer base (slow, intermediate, and fast growth), and
design four possible roadmaps for the company, listed in the following:

• User-centered: The number of vehicles is increased proportionally
to the number of users.

• V2G-affine: More vehicles than necessary are deployed, in order
to enable ancillary services.

• Restrictive: Less vehicles are deployed to increase the utilization
rate.

• Expand: New stations are installed.

Since the analysis of 12 scenarios (3 × 4) becomes convoluted, we
only combine the user-centered roadmap with the three business-growth
scenarios and simulate the other business roadmaps only for the fast-
growth scenario. This procedure yields the following scenarios, where
we abbreviate the number of users with 𝑈 , the number of deployed
vehicles with 𝑉 , and the number of stations with 𝑆:

• Scenario 1: Slow growth - User-centered (×1.15): 115k U, 3500
V, 1750 S

• Scenario 2: Intermediate growth - User-centered (×1.5): 150k
U, 4500 V, 1750 S

• Scenario 3: Fast growth - User-centered (×2.5): 250k U, 7500 V,
1750 S

• Scenario 4: Fast growth - Restrictive: 250k U, 5000 V, 1750 S
• Scenario 5: Fast growth - V2G-affine: 250k U, 10 000 V, 1750

S
• Scenario 6: Fast growth - Expand: 250k U, 7500 V, 3000 S

In order to specify the exact number of users for each scenario, we
considered the past growth rates of the car sharing business. Currently,
there are around 3000 vehicles deployed at 1750 stations, and the
validation study showed that the current user behavior matches with
a scenario of around 100k users. In the past years,8 the car sharing
service has successfully increased its customer base (8% growth per
year on average), while only slowly deploying more stations and ve-
hicles (yearly growth rates of 0.4% and 0.9% respectively). However,
in discussion with the company it was decided that a proportional
growth of vehicle and customer number should be considered as the
base scenarios for the next years. Furthermore, it is unlikely that the
high customer growth rate of 8% can be maintained over the next years.
Instead, the most pessimistic scenario should assume growth of 15%
until 2030 (i.e., a yearly increase of 1.76%), while the most optimistic
scenario should assume fast growth to 2.5 times the current customers
in 2030, corresponding to a yearly increase of 12.1%.

8 based on annual reports from 2017–2022, available at https:
/www.mobility.ch/en/mobility-cooperative/company-reports (last accessed:
.9.2023)
11
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4.3.2. Vehicle and station utilization in future scenarios
Table 3 compares the scenarios in terms of their induced booking-

and utilization rates. When scaling the number of customers and ve-
hicles proportionally (Scenarios 1–3, User-centered), the number of
reservations also increases proportionally. Fig. 9 visualizes the number
of reservations for all scenarios and contrasts them in terms of the
reservation start and end time. The distributions are similar for all
scenarios, but a higher number of stations (Scenario 6 Expand - yellow)
as a stronger effect than increasing the fleet size (Scenario 5 V2G-
ffine - orange). We further evaluate the scenarios by their vehicle
tilization rate as proposed by Gonzalez et al. [89]. In Table 3, the
ehicle utilization rate is given in terms of count (what fraction of
ehicles is booked at least once during that day) and time (how many
ours those vehicles are booked on average). When the number of users
nd vehicles increases simultaneously (Scenarios 1–3, User-centered),
he utilization rate is constant (61%–64% of the vehicles are used
round 34% of the time). Other attributes of the reservations, such as
he start and end time, also remain similar in distribution (see Fig. 9).

Interestingly, reducing or increasing the number of vehicles (Sce-
ario 4 Restrictive and Scenario 5 V2G-affine) only has a minor effect
n the number of reservations in one day, decreasing and increasing
t by 3.12% and 2.0% respectively in comparison to Scenario 3 (User-
entered). As a result, the vehicle utilization rate changes in these
cenarios, as shown in Fig. 10. While the shape of the distribution over
day is similar, Scenario 4 with only 5000 deployed vehicles leads

o utilization rates of more than 50% (see Fig. 10(b)). In other words,
limited availability of vehicles makes users choose other vehicles

possibly at other stations) that are still available. The main effect
f Scenario 4 is an increase of the number of vehicles that are used
n the simulated day (75% compared to 58%, see Table 3), together
ith an increase of the duration they are used on average (Fig. 10(a)).
owever, the simulation does not consider the time necessary for

efueling or recharging the car in between its usage. High utilization
f vehicles, as in Scenario 4, might therefore be infeasible in practice.
hus, we hypothesize that in a real environment, reducing the number
f deployed vehicles can result in lower reservation numbers than in
ur simulation.

Fig. 11 analyzes the effect of new stations instead of additional
ehicles by comparing Scenario 3 (User-centered, orange), 5 (V2G-affine,
ink) and 6 (Expand, yellow). In contrast to deploying more vehicles
Scenario 5), adding new stations (Scenario 6) causes significantly
ore bookings, namely 7763 instead of 7156 (+8.5%), as shown in

ig. 11(a). The reason is the dependency of the user’s mode choice on
he distance of the closest available vehicle. When placing new stations,
he activities of the synthetic population are located closer to a car
haring station. This is quantified in the column ’’Average distance to
tation (trip origin)’’ in Table 3. In Scenario 6 (3000 S), the location of
he trip origin is 512 meters away from the closest station on average,
hereas it is more than 730 meters in other scenarios (1750 S). The

orresponding distribution is shown in Fig. 11(b). Despite the large
umber of stations, the station utilization of Scenario 6 is still high,
ith 85% of the stations being visited at least once during the simulated
ay (see Table 3). The vehicle utilization of Scenario 6 is only surpassed
y Scenario 4 (Restrictive).

https://www.mobility.ch/en/mobility-cooperative/company-reports
https://www.mobility.ch/en/mobility-cooperative/company-reports
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Fig. 9. Distribution of reservation start and end time for all scenarios. If the number of users and vehicles increases, there are more reservations, which are distributed similarly
over the day. A higher or lower number of vehicles does not have a strong effect (compare red (5000 V) and orange (10 000 V) to pink (7500 V)). Additional stations (yellow)
lead to more bookings at peak times.

Fig. 10. Comparing utilization rates by the number of deployed vehicles. All three scenarios assume 250k active users and 1750 stations. As expected, the utilization rate decreases
if more vehicles are deployed.

Fig. 11. Comparing scenarios with 1750 stations and varying vehicle numbers to a scenario with 3000 stations. The new stations cause many new reservations, since the distance
of the user to the closest station decreases (b). The effect of new stations is larger than the one of more available vehicles (a).
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Table 3
Comparing scenarios for 2030 in terms of reservation count and vehicle utilization.

Scenario Users Vehicles Stations Number of Vehicle utilization Station utilization Average distance to
reservations (time) (count) (count) station (trip origin)

1 115 3500 1750 3437 0.34 0.64 0.85 741.23
2 150 4500 1750 4450 0.34 0.61 0.88 748.31
3 250 7500 1750 7156 0.35 0.58 0.93 782.47
4 250 5000 1750 6933 0.39 0.75 0.96 738.65
5 250 10 000 1750 7300 0.33 0.47 0.92 801.35
6 250 7500 3000 7763 0.34 0.65 0.85 512.24
Fig. 12. Flexibility.

. Future opportunities for vehicle-to-grid in car sharing fleet

It was demonstrated that the roadmap of the car sharing business,
ogether with its general growth rate, will strongly impact the utiliza-
ion rates and the spatio-temporal distribution of mobility demand.
aking this one step further, we aim to analyze the resulting potential
or ancillary services. We consider the same scenarios for 2030 and
chedule V2G operations to understand its maximum potential under
he constraints of user reservations. As explained above, we use the
ptimization framework by Nespoli et al. [24] to schedule charging
nd discharging operations over one day. The objective function in
his framework is flexible and can be designed to minimize costs and
harging times, to make maximum use of an associated photovoltaic
ystem, or to achieve peak shaving for the (regional) Distribution
ystem Operator (DSO). Here, we consider the business case where the
leet provides ancillary services to a DSO. The services are paid based
n a preceding bidding process; i.e., the fleet owner bids the capacity
f the fleet on the electricity market and the DSO agrees on a price
er megawatt (MW) to compensate for the power flexibility supplied
y the fleet. Note that the optimization of the prices by itself is a
eparate research field [90,91]; here, we simply test the effect for a
ange of prices. We first quantify how much flexibility can be provided
aximally throughout the day, which can help specify the available
ower in the bidding process. Secondly, we conduct a case study in a
ingle DSO to quantify the peak shaving effect.

.1. Potential flexibility of the car sharing fleet

We follow [24,92] to implement an experiment that aims to answer
he following question: How much power is available for ancillary
13

ervices, at what time and at which price? For this purpose, the
optimization problem is solved for every hour of the day with respect
to a fleet-level objective that minimizes the distance to a reference
profile of the power consumption [92]. Fig. 12 provides an example
of the response of the fleet in Scenario 1 (150k users, 3500 vehicles,
1750 stations) for a single hour. The higher the price paid to the fleet
operator, the more power is provided. With a very large price of 1000
CHF/MW, up to 12 MW can be provided by the car sharing fleet. Note
that the optimization algorithm guarantees that all user reservations
remain feasible in terms of sufficient State-of-Charge (SOC) and vehicle
availability.

Computing the flexibility response for each hour of the day yields an
envelope that bounds the upward and downward flexibility as shown
in Fig. 13. The baseline scenario (no payment for ancillary services)
simply reflects the charging behavior of the fully-electric car sharing
fleet. The charging power peaks in the evening at 6pm. With a low price
of 10 CHF/MW, up to 10 MW charging flexibility is feasible, depending
on the scenario; however, V2G is not profitable for the fleet owner
at that price. The lowest flexibility is achieved in the afternoon due
to the peak usage of cars (compare Fig. 10(b)). With 1000 CHF/MW,
there is a strong V2G response of up to 50 MW discharging. In general,
the more vehicles in the system, the higher the potential for charging
and discharging control. It is further shown that scenarios with a lower
number of vehicles, especially Scenario 4 (Restrictive, 5000 vehicles),
result in less flexibility, in particular at peak times. Finally, scenario
6 with 1250 additional stations achieves almost the same flexibility as
scenario 5 with 10 000 vehicles, despite the induced demand that leads
to a higher number of car sharing reservations in this scenario (see
Table 3. The reason is the higher number of charging stations, which
simplifies V2G scheduling.

5.2. Peak-shaving potential

Secondly, we analyze the peak-shaving potential of V2G in future
car sharing scenarios. Since the energy demand data are not publicly
available for every region in Switzerland, we restrict this experiment
to stations within the Distribution System Operator (DSO) of Zürich,
named Elektrizitätswerk der Stadt Zürich (EWZ), which is the DSO
that covers the most car sharing stations (246 out of 1750 car sharing
stations, with 726 vehicles in 2019) and that provides public data [93].
To incentivize peak shaving, the fleet-level objective is designed to
punish any increase in the DSO’s peak load and to reward a reduction of
the peak load in the considered period. Note that there is no reward if
the current energy demand is lower than at an earlier point in the time
period. The results must be taken with a grain of salt since the one-day
simulation is not representative of the realistic scenario of peak-shaving
on a monthly basis.

Fig. 14 visualizes the peak shaving on a simulated day. While the
effect appears small with respect to the overall power consumed in
the DSO, the high cost of peak loads justifies the business case. The
peak can be shaved by up to 4.6 MW in scenario 5 (10 000 vehicles),
where the baseline peak load of 317.12 MW is reduced to 312.52 MW.
This is remarkable in a single DSO that covers only a minor part of
the car sharing fleet. Meanwhile, there is a smaller peak shaving effect
in Scenario 6 (1250 additional stations), contradicting the previously
reported results testifying a high flexibility for this scenario. The reason
for this mismatch is the higher demand for vehicles in the urbanized
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Fig. 13. Up- and downward flexibility of the fleet in different price levels and car sharing scenarios.
Fig. 14. Peak shaving case study by the example of the DSO of Zurich. The power flexibility at a price level of 1000 CHF/MW is shown for all scenarios.
areas within the DSO in Zürich, leading to lower energy flexibility at
the peak time in the evening.

Furthermore, Fig. 15 distinguishes the peak-shaving effect by the
price level. Only minor effects (<1 MW) are achieved when the price is
less or equal to 100 CHF/MW. The peak is even visibly reduced simply
by a lower number of deployed electric vehicles in Scenario 1 (blue
line), in contrast to actual peak shaving. With 500 or more CHF/MW,
there is a strong response that converges to a peak load with as low as
312.5 WM.

Finally, we quantify the gains from peak shaving in terms of mone-
tary savings for the car sharing fleet and the DSO in Fig. 16. The DSO
benefits from the lower peak energy demand but must pay the fleet for
the ancillary services. The fleet earns from the compensation, but has
increased energy costs, if the grid tariffs are not reimbursed for V2G
services.9 This trade-off is shown in Fig. 16. The DSO benefits most

9 Reimbursement for grid tariffs is not in place in Switzerland, but exists
in other countries, for example, Italy [94], and might therefore be available
in 2030.
14
when the agreed price is 500 CHF/MW, where up to 20k CHF is saved
in the scenario with 10 000 vehicles. On the other hand, the fleet earns
more with increasing compensation, and, considering the energy costs,
only profits for prices of more than 500 CHF/MW. Together, a sweet
spot is between 500 and 2000 CHF where both fleet and DSO clearly
benefit from implementing V2G for the car sharing fleet.

6. Discussion

V2G has long been discussed as a promising technology in the
transition to sustainable energy and transportation, but its potential for
shared vehicles has been neglected so far. To the best of our knowledge,
our scenario-based study is the first attempt to quantitatively assess
the future potential of V2G in car sharing. Overall, we have found
strong evidence supporting a business case of V2G for large car sharing
fleets. Even in a slow-growth scenario (with 115k users, 3500 vehicles,
1750 stations), the car sharing service can provide more than 10 MW
flexibility for ancillary services, even at times of high vehicle demand.
More optimistic scenarios for the car sharing service lead to a V2G
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Fig. 15. Peak shaving for one DSO, by the price per MW.
Fig. 16. Monetary savings for DSO and fleet owner involved in V2G.
otential of up to 50 MW on a national scale, which marks a significant
ontribution to the power system stability. A more in-depth analysis
f a local DSO, covering 246 car sharing stations, revealed a peak-
having potential with benefits for both the car sharing fleet and DSO.
n all scenarios, there is a sweet spot where both DSO and the car
haring operator benefit from the trade. In our case study, the sweet
pot is between prices of 500 CHF/MW and 2000 CHF/MW; however,
he optimal price level depends strongly on the peak load costs of the
SO, as well as the involved electricity costs for the car sharing fleet,

hat might be lowered due to regulatory measures in the future.
Our methodological contribution is a data-driven pipeline that sim-

lates car sharing with consideration of the complex interplay between
opulation socio-demographics, user behavior, system changes, and
usiness decisions. In contrast to event-based (sampling-based) simu-
ations, our agent-based framework reflects changes in the population
nd spatial factors, such as the proximity of agents to a car sharing
tation. In contrast to other agent-based simulators, we implemented a
ata-driven approach that captures the complexity of human decision-
aking with state-of-the-art ML techniques, considering a wealth of

eatures affecting transport mode choices, such as the availability of
ther transport modes, daytime, and trip purpose. It remains worth-
hile for follow-up work to use more generic traffic simulators such
s MATSim to account for the interplay between different transport
odes, such as congestion. It is worth noting that this probably comes

t the cost of requiring to subsample of the population. The results
f our car sharing simulation revealed interesting patterns in the uti-
ization of car sharing vehicles. In particular, the number of deployed
ehicles mainly affected the utilization rate, instead of the number
f reservations. Our simulation further shows a positive side effect
f deploying additional stations, inducing an 8.5% increase in the
15
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reservation count. Therefore, the installation of new stations may be a
promising endeavor for the car sharing operator, leading to higher car
sharing demand coupled with more flexibility for V2G due to additional
charging stations.

The scenarios analyzed aim to encompass a diverse range of growth
scenarios, business changes, and electricity price levels. However, the
scenarios are not extensive and cannot account for shifts in travel
behavior unrelated to demographic or infrastructure-induced changes.
Most importantly, the usage patterns of electric car sharing may differ
from those observed for combustion engine vehicles in our dataset,
where only 3.5% of trips involved EVs. Therefore, replicating our study
using an electric car sharing dataset could be a valuable next step.
Furthermore, the MOBIS dataset, utilized in this study for mode choice
modeling, was collected before and during the COVID-19 pandemic.
Our experiments on test data from 2022 verified the model’s appli-
cability for predicting post-COVID mobility behavior, in accordance
with other studies that report only small changes in Switzerland’s
modal split due to the pandemic [95,96] (see Table 4 in Appendix C).
Considering that commuting accounts for merely 1% of station-based
car sharing trips [97], the pandemic-induced increase in remote work
has minimal impact on car sharing patterns. These observations support
the applicability of the mode choice model to scenarios in 2030; yet
future research should aim to capture attitude changes or trends that
alter car sharing usage or adoption beyond an increasing number of
users; e.g., car sharing attracting new target groups.

Furthermore, a key question for future research is the impact of
V2G operations on spontaneous bookings. The scheduling algorithm
employed in this work assumes all bookings to be known with the
goal of quantifying the maximum potential for V2G. However, in the
wiss car sharing system, around 20% of the bookings are made less
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than half an hour before the reservation time. Ancillary services might
in this case prevent the reservation and reduce customer satisfaction
when the SOC is insufficient for the desired trips. While ensuring the
transparency of the SOC via digital platforms is one promising solution,
there still exists the additional challenge for the car sharing service to
dynamically reschedule V2G services if a specific vehicle is suddenly
desired by a customer. Thus, an optimal planning strategy, like Model
Predictive Control [98], is required, where control algorithms also need
to scale to a national-sized fleet.

While our results do not directly generalize to other types of car
sharing systems (e.g., one-way car sharing) or other countries, they
provide a justification for the potential business opportunity of V2G
in car sharing. More broadly speaking, our study implies a significant
contribution of car sharing for sustainable transportation, since it not
only reduces car ownership, but can also support power grid stability
and reduce the challenges involved in the upcoming large-scale elec-
trification of transportation. Considering the central management of
the car sharing fleet, the feasibility of implementing V2G for the car
sharing fleet is higher than for private vehicles. This calls for policies
regulating the electricity market with improved conditions for fleet
owners, especially for car sharing fleets, considering their additional
contribution to sustainable transport.

7. Conclusion

The transition towards a sustainable economy is hardly feasible
without new technologies in the energy and transportation sectors.
Our study demonstrates that V2G is not only promising for decar-
bonizing individual transport, but also integrates well with shared
services; a business model that might become more prevalent with
the adoption of autonomous driving [99]. This finding opens many
research opportunities, including further scenario studies, developing
scalable scheduling algorithms, leveraging predictive models for esti-
mating transport and power demand, or improving the bidding process
with digital platforms.
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Appendix A. Comparing to an event-based car sharing simulation

To implement an event-based simulation, we follow the work by
[32,38,39], and simulate booking-events from a Poisson process. In
their work, the spatial distribution of bookings is approximated with
Kernel Density Estimation, since they work on a free-floating car shar-
ing dataset. For our purposes, a categorical distribution over the sta-
tions is sufficient. Last, the duration and distance are approximated
best with an exponential power distribution of the form 𝑝(𝑥; 𝜆, 𝑘) =
𝑥𝑘 ⋅ exp (−𝜆𝑥). All distributions are fitted on the real data separately for
every hour of the day and distinguishing weekdays from weekend, to
reflect temporal differences in the booking behavior. This process yields
48 Poisson distributions, 48 categorical distributions over the stations
and two times 48 power exponential distributions that comprehensively
reflect the booking behavior at each hour of the day.

The bookings for one day are simulated by drawing the number
of bookings 𝑛(𝑡) from the correct Poisson distribution at every half an
hour, and then drawing 𝑛(𝑡) durations, distances and stations from the
respective distribution. Note that the vehicle ID are not simulated, and
it must be assumed that sufficient vehicles are available per station.
In addition to Fig. 8, we provide the z-scores of the station-wise
bookings here in Fig. 17. The distribution is very similar to the one
of our simulator (Fig. 6), confirming that our approach yields similarly
realistic behavior as an event-based simulation.

Fig. 17. Station-wise z-score of the event-based simulator.

Appendix B. Validating distribution of simulated car sharing user
population

We validate our stratified sampling approach by providing the
distribution of age, gender and the distance to the closest car sharing
station among the simulated users in Fig. 18.
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Fig. 18. Comparison of general population, simulated and real car sharing users. The simulated car sharing users match the real ones in distribution.
Appendix C. Applicability of the mode choice model for future
populations

Since we train the mode choice model on data from 2019, but apply
it for a simulated population in 2030, we need to validate its stability
over time. For this purpose, we take the latest available excerpt of the
MOBIS dataset [74], namely from June 2022 to December 2022, called
2022-data in the following. The data was collected from participants in
the original MOBIS study who agreed to collect tracking data via the
installed app beyond the study period. We test the mode choice model
17
on 491 users and 153 301 trips available in the 2022-data, where we
selected only users that do not appear in our training data. Neverthe-
less, the accuracy of the model in classifying the transport mode is still
68%, compared to 79% test accuracy on a split of the original data. On
further investigation, we noted that seasonal effects lead to significantly
more bike rides during this period. It must be noted, therefore, that our
model is better applicable in winter periods. Furthermore, difficulties
in the prediction may also stem from different mobility behavior of the
new users compared to car sharing users (the model was fitted only on
trips of car sharing subscribers). When filtering the 2022-data for car
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Table 4
Comparison of trip features of MOBIS car sharing users between different phases of the pandemic.
Feature Trips of MOBIS car sharing users

Pre-COVID During COVID Post-COVID

Distance 12 004.61 (19 207.51) 11 851.52 (19 751.06) 12 147.27 (20 781.36)
Purpose destination home 0.36 (0.48) 0.38 (0.48) 0.37 (0.48)
Purpose destination leisure 0.25 (0.43) 0.23 (0.42) 0.26 (0.44)
Purpose destination work 0.24 (0.43) 0.22 (0.41) 0.18 (0.39)
Purpose destination shopping 0.07 (0.25) 0.09 (0.29) 0.07 (0.25)
Purpose destination education 0.02 (0.15) 0.0 (0.07) 0.0 (0.07)
Purpose origin home 0.35 (0.48) 0.37 (0.48) 0.37 (0.48)
Purpose origin leisure 0.25 (0.43) 0.23 (0.42) 0.26 (0.44)
Purpose origin work 0.24 (0.43) 0.22 (0.41) 0.19 (0.39)
Purpose origin shopping 0.07 (0.25) 0.09 (0.29) 0.07 (0.25)
Purpose origin education 0.02 (0.15) 0.0 (0.07) 0.0 (0.07)
PT accessibility (origin) 2.13 (1.47) 2.12 (1.44) 2.54 (1.46)
PT accessibility (destination) 2.12 (1.47) 2.11 (1.44) 2.56 (1.45)
Distance to station origin 1188.56 (1909.57) 1485.12 (2496.11) 1125.32 (2205.6)
Distance to station destination 1200.12 (1919.74) 1488.22 (2497.3) 1117.58 (2226.92)
Origin hour 14.18 (4.79) 13.98 (4.43) 14.4 (4.51)
Origin day 2.8 (1.89) 2.81 (1.9) 2.83 (1.88)
Destination hour 14.07 (4.93) 13.91 (4.53) 14.06 (4.66)
Destination day 2.82 (1.87) 2.82 (1.88) 2.85 (1.86)
sharing users, the accuracy increases to 75%. Since we aim to capture
typical behavior of car sharing subscribers, this bias is intended.

Table 4 further shows that the COVID-19 had only minor influence
on travel patterns of car sharing users in the MOBIS dataset. Apart
from a marginally lower travel distance during the pandemic, the trip
purpose, time, and the PT or car sharing accessibility hardly changed.

References

[1] Reck DJ, Haitao H, Guidon S, Axhausen KW. Explaining shared micromobility
usage, competition and mode choice by modelling empirical data from Zurich,
Switzerland. Transp Res C 2021;124:102947.

[2] Ravi SS, Aziz M. Utilization of electric vehicles for vehicle-to-grid services:
progress and perspectives. Energies 2022;15(2):589.

[3] Taiebat M, Xu M. Synergies of four emerging technologies for accelerated
adoption of electric vehicles: Shared mobility, wireless charging, vehicle-to-grid,
and vehicle automation. J Clean Prod 2019;230:794–7.

[4] Gschwendtner C, Krauss K. Coupling transport and electricity: How can vehicle-
to-grid boost the attractiveness of carsharing? Transp Res D 2022;106:103261.

[5] Tepe B, Figgener J, Englberger S, Sauer DU, Jossen A, Hesse H. Optimal pool
composition of commercial electric vehicles in V2G fleet operation of various
electricity markets. Appl Energy 2022;308:118351.

[6] Dallinger D, Krampe D, Wietschel M. Vehicle-to-grid regulation reserves based
on a dynamic simulation of mobility behavior. IEEE Trans Smart Grid
2011;2(2):302–13.

[7] Loisel R, Pasaoglu G, Thiel C. Large-scale deployment of electric vehicles in
Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts.
Energy Policy 2014;65:432–43.

[8] Ji Z, Huang X, Zhang Z, Jiang M, Xu Q. Evaluating the vehicle-to-grid potentials
by electric vehicles: A quantitative study in china by 2030. In: 2020 IEEE power
& energy society general meeting. PESGM, IEEE; 2020, p. 1–5.

[9] Knupfer M, Sprake D, Vagapov Y, Anuchin A. Cross impact analysis of vehicle-
to-grid technologies in the context of 2030. In: 2016 IX international conference
on power drives systems. ICPDS, IEEE; 2016, p. 1–5.

[10] Sassi HB, Alaoui C, Errahimi F, Es-Sbai N. Vehicle-to-grid technology and its
suitability for the Moroccan national grid. J Energy Storage 2021;33:102023.

[11] Cai H, Xin Y, Martin H, Raubal M. Optimizing electric vehicle charging schedules
based on probabilistic forecast of individual mobility. AGILE: GISci Ser 2022;3:3.

[12] Lauvergne R, Perez Y, Françon M, De La Cruz AT. Integration of electric vehicles
into transmission grids: A case study on generation adequacy in europe in 2040.
Appl Energy 2022;326:120030.

[13] Mishra GS, Clewlow RR, Mokhtarian PL, Widaman KF. The effect of carsharing
on vehicle holdings and travel behavior: A propensity score and causal mediation
analysis of the San Francisco Bay Area. Res Transp Econ 2015;52:46–55.

[14] Martin E, Shaheen S. The impact of carsharing on household vehicle ownership.
Access Mag 2011;1(38):22–7.

[15] Liao F, Molin E, Timmermans H, van Wee B. Carsharing: the impact of system
characteristics on its potential to replace private car trips and reduce car
ownership. Transportation 2020;47(2):935–70.

[16] Glotz-Richter M. Reclaim street space!–exploit the European potential of car
sharing. Transp Res Procedia 2016;14:1296–304.
18
[17] Sun L, Wang S, Liu S, Yao L, Luo W, Shukla A. A completive research on the
feasibility and adaptation of shared transportation in mega-cities–A case study
in Beijing. Appl Energy 2018;230:1014–33.

[18] Ayed H, Khadraoui D, Aggoune R. Using MATSim to simulate carpooling and car-
sharing trips. In: 2015 world congress on information technology and computer
applications. WCITCA, IEEE; 2015, p. 1–5.

[19] Balac M, Ciari F, Axhausen KW. Carsharing demand estimation: Zurich,
Switzerland, area case study. Transp Res Rec 2015;2563(1):10–8.

[20] Ciari F, Schuessler N, Axhausen KW. Estimation of carsharing demand using an
activity-based microsimulation approach: model discussion and some results. Int
J Sustain Transp 2013;7(1):70–84.

[21] Zhang Y, Lu M, Shen S. On the values of vehicle-to-grid electricity selling in
electric vehicle sharing. Manuf Serv Oper Manag 2020;23(2):267–545.

[22] Caggiani L, Prencipe LP, Ottomanelli M. A static relocation strategy for
electric car-sharing systems in a vehicle-to-grid framework. Transp Lett
2021;13(3):219–28.

[23] Xu M, Wu T, Tan Z. Electric vehicle fleet size for carsharing services con-
sidering on-demand charging strategy and battery degradation. Transp Res C
2021;127:103146.

[24] Nespoli L, Wiedemann N, Suel E, Xin Y, Raubal M, Medici V. National-scale
bi-directional EV fleet control for ancillary service provision. Energy Inform
2023;6(1):40.

[25] Zhou F, Zheng Z, Whitehead J, Perrons R, Page L, Washington S. Projected
prevalence of car-sharing in four Asian-Pacific countries in 2030: What the
experts think. Transp Res C 2017;84:158–77.

[26] Narayanan S, Chaniotakis E, Antoniou C. Shared autonomous vehicle services: A
comprehensive review. Transp Res C 2020;111:255–93.

[27] Shaheen SA, Cohen AP. Carsharing and personal vehicle services: Worldwide
market developments and emerging trends. Int J Sustain Transp 2013;7(1):5–34.

[28] Ferrero F, Perboli G, Rosano M, Vesco A. Car-sharing services: An annotated
review. Sustainable Cities Soc 2018;37:501–18.

[29] Juschten M, Ohnmacht T, Thao VT, Gerike R, Hössinger R. Carsharing in
Switzerland: identifying new markets by predicting membership based on data
on supply and demand. Transportation 2019;46(4):1171–94.

[30] Amirnazmiafshar E, Diana M. A review of the socio-demographic characteristics
affecting the demand for different car-sharing operational schemes. Transp Res
Interdiscip Perspect 2022;14:100616.

[31] Becker H, Ciari F, Axhausen KW. Comparing car-sharing schemes in Switzerland:
User groups and usage patterns. Transp Res A 2017;97:17–29.

[32] Cocca M, Teixeira D, Vassio L, Mellia M, Almeida JM, Couto da Silva AP.
On car-sharing usage prediction with open socio-demographic data. Electronics
2020;9(1):72.

[33] Kumar P, Bierlaire M. Optimizing locations for a vehicle sharing system. In: Swiss
transport research conference. 2012.

[34] Mühlematter DJ, Wiedemann N, Xin Y, Raubal M. Spatially-aware car-sharing
demand prediction. 2023, arXiv preprint arXiv:2303.14421.

[35] Kim J, Rasouli S, Timmermans HJ. The effects of activity-travel context and
individual attitudes on car-sharing decisions under travel time uncertainty: A
hybrid choice modeling approach. Transp Res D 2017;56:189–202.

[36] Ciari F, Balac M, Axhausen KW. Modeling carsharing with the agent-based
simulation MATSim: State of the art, applications, and future developments.
Transp Res Rec 2016;2564(1):14–20.

http://refhub.elsevier.com/S0306-2619(24)01114-0/sb1
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb1
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb1
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb1
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb1
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb2
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb2
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb2
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb3
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb3
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb3
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb3
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb3
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb4
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb4
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb4
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb5
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb5
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb5
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb5
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb5
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb6
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb6
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb6
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb6
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb6
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb7
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb7
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb7
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb7
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb7
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb8
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb8
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb8
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb8
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb8
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb9
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb9
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb9
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb9
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb9
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb10
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb10
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb10
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb11
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb11
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb11
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb12
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb12
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb12
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb12
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb12
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb13
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb13
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb13
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb13
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb13
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb14
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb14
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb14
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb15
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb15
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb15
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb15
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb15
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb16
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb16
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb16
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb17
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb17
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb17
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb17
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb17
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb18
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb18
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb18
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb18
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb18
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb19
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb19
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb19
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb20
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb20
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb20
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb20
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb20
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb21
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb21
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb21
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb22
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb22
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb22
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb22
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb22
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb23
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb23
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb23
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb23
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb23
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb24
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb24
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb24
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb24
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb24
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb25
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb25
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb25
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb25
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb25
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb26
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb26
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb26
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb27
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb27
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb27
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb28
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb28
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb28
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb29
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb29
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb29
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb29
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb29
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb30
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb30
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb30
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb30
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb30
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb31
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb31
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb31
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb32
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb32
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb32
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb32
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb32
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb33
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb33
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb33
http://arxiv.org/abs/2303.14421
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb35
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb35
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb35
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb35
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb35
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb36
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb36
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb36
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb36
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb36


Applied Energy 372 (2024) 123731N. Wiedemann et al.
[37] Giorgione G, Ciari F, Viti F. Dynamic pricing on round-trip carsharing services:
travel behavior and equity impact analysis through an agent-based simulation.
Sustainability 2020;12(17):6727.

[38] Cocca M, Giordano D, Mellia M, Vassio L. Free floating electric car sharing:
A data driven approach for system design. IEEE Trans Intell Transp Syst
2019;20(12):4691–703.

[39] Fassio E, Ciociola A, Giordano D, Noussan M, Vassio L, Mellia M. Environ-
mental and economic comparison of ICEV and EV in car sharing. In: 2021
IEEE international intelligent transportation systems conference. ITSC, 2021, p.
1621–6.

[40] Schoemaker PJ. Scenario planning: a tool for strategic thinking. MIT Sloan Manag
Rev 1995.

[41] Schwartz P. The art of the long view: planning for the future in an uncertain
world. Currency; 2012.

[42] Abbott J. Understanding and managing the unknown: The nature of uncertainty
in planning. J Plann Educ Res 2005;24(3):237–51.

[43] Abou Jaoude G, Mumm O, Carlow VM. An overview of scenario approaches: a
guide for urban design and planning. J Plan Lit 2022;37(3):467–87.

[44] Börjeson L, Höjer M, Dreborg K-H, Ekvall T, Finnveden G. Scenario types and
techniques: towards a user’s guide. Futures 2006;38(7):723–39.

[45] Stapleton J. Exploratory scenario planning - how to navigate an uncertain future.
JSTOR 2020. URL https://www.jstor.org/stable/resrep29280.

[46] Avin U, Goodspeed R, Murnen L. From exploratory scenarios to plans: Bridging
the gap. Plan Theory Pract 2022;23(4):637–46.

[47] Strauss JD, Radnor M. Roadmapping for dynamic and uncertain environments.
Res-Technol Manag 2004;47(2):51–8.

[48] Gerdsri N. An analytical approach to building a technology development en-
velope (TDE) for roadmapping of emerging technologies. Int J Innov Technol
Manag 2007;4(02):121–35.

[49] Saritas O, Aylen J. Using scenarios for roadmapping: The case of clean
production. Technol Forecast Soc Change 2010;77(7):1061–75.

[50] Geum Y, Lee S, Park Y. Combining technology roadmap and system dynamics
simulation to support scenario-planning: A case of car-sharing service. Comput
Ind Eng 2014;71:37–49.

[51] Hartmann N, Özdemir E. Impact of different utilization scenarios of electric
vehicles on the german grid in 2030. J Power Sources 2011;196(4):2311–8.

[52] Wang M, Craig MT. The value of vehicle-to-grid in a decarbonizing California
grid. J Power Sources 2021;513:230472.

[53] Martin H, Buffat R, Bucher D, Hamper J, Raubal M. Using rooftop photovoltaic
generation to cover individual electric vehicle demand—A detailed case study.
Renew Sustain Energy Rev 2022;157:111969.

[54] Xu Y, Çolak S, Kara EC, Moura SJ, González MC. Planning for electric ve-
hicle needs by coupling charging profiles with urban mobility. Nat Energy
2018;3(6):484–93.

[55] Gschwendtner C, Knoeri C, Stephan A. The impact of plug-in behavior on the
spatial–temporal flexibility of electric vehicle charging load. Sustainable Cities
Soc 2023;88:104263.

[56] Egbue O, Uko C. Multi-agent approach to modeling and simulation of microgrid
operation with vehicle-to-grid system. Electr J 2020;33(3):106714.

[57] Liu J, Zhuge C, Tang JHCG, Meng M, Zhang J. A spatial agent-based joint model
of electric vehicle and vehicle-to-grid adoption: A case of Beijing. Appl Energy
2022;310:118581.

[58] Daina N, Sivakumar A, Polak JW. Modelling electric vehicles use: a survey on
the methods. Renew Sustain Energy Rev 2017;68:447–60.

[59] Fournier G, Lindenlauf F, Baumann M, Seign R, Weil M. Carsharing with electric
vehicles and vehicle-to-grid: a future business model? In: Radikale innovationen
in der mobilität. Springer; 2014, p. 63–79.

[60] Barahona B, Nowak S, Friedli M, Bowler B, Papaemmanouil A. Providing grid
services with an electric car-sharing fleet-a swiss case study. In: 7th e-mobility
power system integration symposium. EMOB 2023, Vol. 2023, IET; 2023, p.
75–82.

[61] Prencipe LP, van Essen JT, Caggiani L, Ottomanelli M, de Almeida Cor-
reia GH. A mathematical programming model for optimal fleet management
of electric car-sharing systems with vehicle-to-grid operations. J Clean Prod
2022;368:133147.

[62] Zhao Y, Tatari O. A hybrid life cycle assessment of the vehicle-to-grid application
in light duty commercial fleet. Energy 2015;93:1277–86.

[63] Figgener J, Tepe B, Rücker F, Schoeneberger I, Hecht C, Jossen A, Sauer DU.
The influence of frequency containment reserve flexibilization on the economics
of electric vehicle fleet operation. J Energy Storage 2022;53:105138.

[64] Liao Z, Taiebat M, Xu M. Shared autonomous electric vehicle fleets with vehicle-
to-grid capability: Economic viability and environmental co-benefits. Appl Energy
2021;302:117500.

[65] Hörl S, Balac M. Synthetic population and travel demand for Paris and
Île-de-France based on open and publicly available data. Transp Res C
2021;130:103291.

[66] Kagho GO, Hensle D, Balac M, Freedman J, Twumasi-Boakye R, Broaddus A,
Fishelson J, Axhausen KW. Demand responsive transit simulation of Wayne
19

County, Michigan. Transp Res Rec 2021;2675(12):702–16.
[67] Sallard A, Balać M, Hörl S. An open data-driven approach for travel demand
synthesis: an application to são paulo. Reg Stud Reg Sci 2021;8(1):371–86.

[68] Axhausen KW, Horni A, Nagel K. The multi-agent transport simulation MATSim.
Ubiquity Press; 2016.

[69] Tchervenkov C, Kagho GO, Sallard A, Hörl S, Balać M, Axhausen KW. The
Switzerland agent-based scenario. Arb. Verk. Raumplan. 2022;1802.

[70] Fienberg SE, Meyer MM. Iterative proportional fitting. Encycl. Stat. Sci.
1983;4:275–9.

[71] Choupani A-A, Mamdoohi AR. Population synthesis using iterative proportional
fitting (IPF): A review and future research. Transp Res Procedia 2016;17:223–33.

[72] Federal Statistical Office. Statistik der Bevölkerung und haushalte (STATPOP).
2021, https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-
statistics-geodata/population-buildings-dwellings-persons/population-housholds-
from-2010.assetdetail.19106709.html.

[73] Federal Office for Spatial Development (ARE), Federal Statistical Office (FSO).
Mobility and transport microcensus (MTMC). 2017, https://www.are.admin.ch/
are/en/home/mobility/data/mtmc.html.

[74] Molloy J, Castro A, Götschi T, Schoeman B, Tchervenkov C, Tomic U, Hinter-
mann B, Axhausen KW. The MOBIS dataset: a large GPS dataset of mobility
behaviour in Switzerland. Transportation 2022;1–25.

[75] Molloy J, Tchervenkov C, Schatzmann T, Schoeman B, Hintermann B, Ax-
hausen KW. MOBIS-covid19/78: Results as of 14/02/2022 (fifth wave). Arb.
Verk. Raumplan. 2022;1720.

[76] Heimgartner D, Axhausen KW. Understanding modal splits before, during, and
after the pandemic. Arb. Verk. Raumplan. 2022;1766.

[77] Martin H, Hong Y, Wiedemann N, Bucher D, Raubal M. Trackintel: An open-
source python library for human mobility analysis. Comput Environ Urban Syst
2023;101:101938.

[78] Schönfelder S, Axhausen KW. Urban rhythms and travel behaviour: spatial and
temporal phenomena of daily travel. Routledge; 2016.

[79] Hillel T, Bierlaire M, Elshafie MZ, Jin Y. A systematic review of machine learning
classification methodologies for modelling passenger mode choice. J Choice
Model 2021;38:100221.

[80] McFadden D. Econometric models of probabilistic choice. In: Structural analysis
of discrete data with econometric applications. Vol. 198272, MIT Press; 1981.

[81] Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data
mining. 2016, p. 785–94.

[82] Wang F, Ross CL. Machine learning travel mode choices: Comparing the
performance of an extreme gradient boosting model with a multinomial logit
model. Transp Res Rec 2018;2672(47):35–45.

[83] Pang Y, Tsubouchi K, Yabe T, Sekimoto Y. Modeling and reproducing human
daily travel behavior from GPS data: A Markov decision process approach. In:
Proceedings of the 1st ACM SIGSPATIAL workshop on prediction of human
mobility. 2017, p. 1–9.

[84] Aghasadeghi N, Bretl T. Maximum entropy inverse reinforcement learning in
continuous state spaces with path integrals. In: 2011 IEEE/RSJ international
conference on intelligent robots and systems. IEEE; 2011, p. 1561–6.

[85] Finn C, Levine S, Abbeel P. Guided cost learning: Deep inverse optimal control
via policy optimization. In: International conference on machine learning. PMLR;
2016, p. 49–58.

[86] MacQueen J, et al. Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth berkeley symposium on mathematical
statistics and probability. 1, Oakland, CA, USA; 1967, p. 281–97, (14).

[87] Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory
1982;28(2):129–37.

[88] Vallender S. Calculation of the wasserstein distance between probability
distributions on the line. Theory Probab Appl 1974;18(4):784–6.

[89] González ABR, Wilby MR, Díaz JJV, Pozo RF, Ávila CS. Utilization rate of the
fleet: a novel performance metric for a novel shared mobility. Transportation
2021.

[90] Sortomme E, El-Sharkawi MA. Optimal combined bidding of vehicle-to-grid
ancillary services. IEEE Trans Smart Grid 2011;3(1):70–9.

[91] Ansari M, Al-Awami AT, Sortomme E, Abido M. Coordinated bidding of ancillary
services for vehicle-to-grid using fuzzy optimization. IEEE Trans Smart Grid
2014;6(1):261–70.

[92] Oldewurtel F, Sturzenegger D, Andersson G, Morari M, Smith RS. Towards a
standardized building assessment for demand response. In: 52nd IEEE conference
on decision and control. 2013, p. 7083–8.

[93] Zürich S. Ewz bruttolastgang stadt Zürich. 2023, URL https://data.stadt-
zuerich.ch/dataset/ewz_bruttolastgang_stadt_zuerich/resource/2c45d83b-e835-
4f78-86b1-c71974f5a36a. [Accessed 26 April 2023].

[94] Autorità di Regolazione per Energia Reti e Ambiente (ARERA). Delibera
285/2022/r/eel - approvazione dell’Allegato A.78 al codice di trasmissione,
dispacciamento, sviluppo e sicurezza della rete in materia di algoritmi di misura
per il calcolo dell’energia immessa negativa e modifiche alla deliberazione

dell’autorità 109/2021/r/eel. 2022.

http://refhub.elsevier.com/S0306-2619(24)01114-0/sb37
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb37
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb37
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb37
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb37
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb38
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb38
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb38
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb38
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb38
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb39
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb40
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb40
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb40
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb41
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb41
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb41
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb42
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb42
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb42
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb43
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb43
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb43
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb44
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb44
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb44
https://www.jstor.org/stable/resrep29280
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb46
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb46
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb46
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb47
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb47
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb47
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb48
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb48
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb48
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb48
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb48
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb49
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb49
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb49
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb50
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb50
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb50
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb50
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb50
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb51
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb51
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb51
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb52
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb52
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb52
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb53
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb53
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb53
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb53
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb53
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb54
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb54
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb54
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb54
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb54
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb55
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb55
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb55
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb55
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb55
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb56
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb56
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb56
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb57
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb57
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb57
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb57
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb57
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb58
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb58
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb58
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb59
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb59
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb59
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb59
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb59
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb60
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb61
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb62
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb62
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb62
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb63
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb63
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb63
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb63
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb63
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb64
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb64
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb64
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb64
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb64
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb65
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb65
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb65
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb65
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb65
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb66
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb66
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb66
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb66
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb66
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb67
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb67
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb67
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb68
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb68
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb68
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb69
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb69
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb69
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb70
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb70
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb70
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb71
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb71
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb71
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/population-buildings-dwellings-persons/population-housholds-from-2010.assetdetail.19106709.html
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/population-buildings-dwellings-persons/population-housholds-from-2010.assetdetail.19106709.html
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/population-buildings-dwellings-persons/population-housholds-from-2010.assetdetail.19106709.html
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/population-buildings-dwellings-persons/population-housholds-from-2010.assetdetail.19106709.html
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/population-buildings-dwellings-persons/population-housholds-from-2010.assetdetail.19106709.html
https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html
https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html
https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb74
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb74
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb74
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb74
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb74
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb75
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb75
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb75
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb75
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb75
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb76
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb76
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb76
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb77
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb77
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb77
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb77
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb77
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb78
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb78
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb78
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb79
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb79
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb79
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb79
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb79
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb80
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb80
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb80
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb81
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb81
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb81
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb81
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb81
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb82
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb82
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb82
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb82
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb82
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb83
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb84
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb84
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb84
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb84
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb84
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb85
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb85
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb85
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb85
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb85
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb86
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb86
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb86
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb86
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb86
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb87
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb87
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb87
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb88
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb88
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb88
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb89
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb89
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb89
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb89
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb89
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb90
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb90
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb90
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb91
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb91
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb91
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb91
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb91
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb92
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb92
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb92
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb92
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb92
https://data.stadt-zuerich.ch/dataset/ewz_bruttolastgang_stadt_zuerich/resource/2c45d83b-e835-4f78-86b1-c71974f5a36a
https://data.stadt-zuerich.ch/dataset/ewz_bruttolastgang_stadt_zuerich/resource/2c45d83b-e835-4f78-86b1-c71974f5a36a
https://data.stadt-zuerich.ch/dataset/ewz_bruttolastgang_stadt_zuerich/resource/2c45d83b-e835-4f78-86b1-c71974f5a36a
https://data.stadt-zuerich.ch/dataset/ewz_bruttolastgang_stadt_zuerich/resource/2c45d83b-e835-4f78-86b1-c71974f5a36a
https://data.stadt-zuerich.ch/dataset/ewz_bruttolastgang_stadt_zuerich/resource/2c45d83b-e835-4f78-86b1-c71974f5a36a
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb94


Applied Energy 372 (2024) 123731N. Wiedemann et al.
[95] Molloy J, Schatzmann T, Schoeman B, Tchervenkov C, Hintermann B, Ax-
hausen KW. Observed impacts of the Covid-19 first wave on travel behaviour in
Switzerland based on a large GPS panel. Transp Policy 2021;104:43–51.

[96] Heimgartner D, Axhausen KW. Modal splits before, during, and after the
pandemic in Switzerland. Transp Res Rec 2023;03611981231212192.

[97] Becker H, Ciari F, Axhausen KW. Comparing car-sharing schemes in Switzerland:
User groups and usage patterns. Transp Res A 2017;97:17–29.
20
[98] Garcia CE, Prett DM, Morari M. Model predictive control: Theory and practice—A
survey. Automatica 1989;25(3):335–48.

[99] Liu Z, Li R, Dai J. Effects and feasibility of shared mobility with shared
autonomous vehicles: An investigation based on data-driven modeling approach.
Transp Res A 2022;156:206–26.

http://refhub.elsevier.com/S0306-2619(24)01114-0/sb95
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb95
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb95
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb95
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb95
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb96
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb96
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb96
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb97
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb97
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb97
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb98
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb98
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb98
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb99
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb99
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb99
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb99
http://refhub.elsevier.com/S0306-2619(24)01114-0/sb99

