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Abstract: We consider the problem of estimating the covariance matrix
of a random vector by observing i.i.d samples, where entry of the sampled
vector is missing with probability p. Under the standard L4 − L2 moment
equivalence assumption, we construct the first estimator that simultane-
ously achieves optimality with respect to the parameter p and recovers the
optimal convergence rate for the classical covariance estimation problem
when p = 1.
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1. Introduction

High-dimensional covariance estimation is one of the most fundamental prob-
lems in the intersection of probability and statistics. On the applied side, it is a
fundamental task for PCA or linear regression [31]. On the theoretical side, the
non-asymptotic properties of isotropic sample covariance matrices have been
extensively studied [2, 20, 30, 29, 28, 10] due to a famous question by Kan-
nan, Lovász and Simonovits [11] and further generalized to the anisotropic case
[16, 14, 1]. Although the sample covariance matrix seems to be the most natural
choice of estimator, its performance is suboptimal when the input data lacks a
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strong decay in the tail. Specifically, the convergence rate with respect to the
confidence level δ is quite slow.

Motivated by this fact, a line of work in robust statistics, pioneered by Catoni
[5], studied the so-called sub-Gaussian estimators. These estimators are defined
to be estimators that perform as good as the empirical mean under the Gaussian
distribution. Many estimators have been proposed for the covariance estimation
problem (see [12] for a survey), in particular, there are now sub-Gaussian esti-
mators under minimal assumptions on the data distribution [1, 23].

On the other hand, data may be corrupted by noise. In [18], Lounici ad-
dressed the so-called covariance estimation problem with missing observations,
motivated by applications in climate change, gene expression and cosmology. His
work considers i.i.d observations, where each entry is “missing” with probability
p. We highlight that the missing observations model is a standard notion in the
literature, extending beyond the covariance estimation setting, see [9, 17] and
the references therein.

The goal of this work is to design an estimator that simultaneously achieves
the following properties:

• Missing Observations: We allow the data to have missing observations
and heavy tails. We construct an estimator with minimax optimal conver-
gence rate without assuming any knowledge of p. Remarkably, we show
that dependence on p is universal, meaning that it does not depend on the
distribution of the data.

• Dimension-Free: The convergence rate scales with the effective rank
r(Σ) rather than the dimension d,

r(Σ) := Tr(Σ)
‖Σ‖ .

This is an important aspect in high dimensional settings when the dimen-
sion d is at least the sample size N .

• Heavy-Tails: We allow the distribution to have heavy tails, requiring only
the existence of four moments satisfying minimal assumptions. Moreover,
the result is as sharp as if the data were Gaussian (up to an absolute
constant).

We begin with the rigorous definition of the model. We say that a centred
random vector X satisfies the L4 −L2 moment equivalence (hypercontractivity)
with constant κ ≥ 1, if for all v ∈ Sd−1,

(E〈X, v〉4)1/4 ≤ κ(E〈X, v〉2)1/2.

Here we always assume that the data satisfies the L4 −L2 moment equivalence
with an absolute constant κ > 0, i.e, the constant κ is a fixed real number that
does not depend on any other parameter. A vast class of distributions satisfies
the moment equivalence assumption mentioned above, with κ being a small ab-
solute constant. Examples include sub-gaussian random vectors, sub-exponential
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random vectors with bounded ψα norm, as well t-student distributions with a
sufficiently large degree of freedom [21].

We say that the sample Y1, . . . , YN is p-sparsified if it is obtained from the
sample X1, . . . XN of independent copies of X by multiplying each entry of the
Xi’s by an independent 0/1 Bernoulli random variable with mean p. In concise
terminology, we say that the data is sampled from X � p, where p ∈ {0, 1}d
is a random vector with i.i.d entries Bernoulli p, and the notation � simply
denotes the standard entrywise product. The choice of zero to represent missing
information is merely for convenience and could be replaced by any other value.
Now, we present the main result of this manuscript.

Theorem 1 (Main result). Assume that X is a zero mean random vector in Rd

with covariance matrix Σ satisfying the L4−L2 moment equivalence assumption
with an absolute constant κ. Fix the confidence level δ ∈ (0, 1). Suppose that
Y1, . . . , YN are i.i.d samples distributed as X�p, where p = (p1, . . . , pd) ∈ Rd is
a random vector with i.i.d Bernoulli entries with parameter p. Then there exists
an estimator Σ̂(N, δ) depending only on the sample Y1, . . . , YN and δ satisfying
that, with probability at least 1 − δ,

‖Σ̂ − Σ‖ ≤ C(κ)
p

‖Σ‖
(√

r(Σ) + log(1/δ)
N

)
.

Here C(κ) > 0 is an absolute constant depending only on κ.

Literature review: We remark that several results for covariance estima-
tion under missing observations were obtained in the literature, for example
[18, 27, 26, 25, 13, 3]. However, none of the previous results has been able to
simultaneously scale correctly with the factor of p and recover a sub-Gaussian
estimator when p = 1, as established in [1, 23], even when the data is Gaussian.
Moreover, the convergence rate is optimal up to an absolute constant: When
p = 1, a classical result by Lounici and Koltchinskii [14, Theorem 4] states that
if G1, . . . , GN are i.i.d mean zero Gaussian vectors with covariance matrix Σ
and N ≥ r(Σ), then

c‖Σ‖
√

r(Σ)
N

≤ E

∥∥∥∥∥ 1
N

N∑
i=1

Gi ⊗Gi − Σ

∥∥∥∥∥ ≤ C‖Σ‖
√

r(Σ)
N

.

This essentially shows optimality with respect to the effective rank, as we expect
that the empirical covariance for Gaussian distributions to be sharp in expecta-
tion. They also showed that that the expectation is tightly concentrated around
the mean, and our quantitative convergence rate with respect to δ matches their
result up to an absolute constant. Both are indeed optimal among all (measur-
able) estimators for the covariance; see [21, 1] for a more technical discussion.
Intuitively, it should be not surprising that we cannot beat the Gaussian decay.

In addition to this, the dependence with respect to p is also optimal thanks
to a minimax lower bound from Lounici [18, Theorem 2]. In a nutshell, his result
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shows that there exist absolute constants c1, c2 > 0 for which

inf
Σ̂

sup
P

P

(
‖Σ̂ − Σ‖ ≥ c1

p
‖Σ‖

√
r(Σ)
N

)
≥ c2.

Here, the infimum is taken with respect to all estimators that depend only on the
data, and the supremum is taken over all possible distributions with covariance
matrix Σ. This implies that our main result captures the optimal dependence
with respect to p as well.

It is important to note that the main drawback of our result is that our
estimator is not computationally tractable. The primary focus of this work is on
the information-theoretic limits of covariance estimators, specifically our main
contribution is demonstrating the possibility of constructing an optimal data-
driven estimator for covariance under minimal assumptions on the data (albeit
it is computationally infeasible).

To the best of our knowledge, there are no computable estimators for the co-
variance matrix under heavy tails, even in the case without missing observations.
We leave it as an important open problem.

Proposed estimator: The startpoint to construct our estimator is the follow-
ing observation: The expectation of the covariance matrix of Y scales differently
for the diagonal part and the off-diagonal part of its covariance matrix. More
accurately,

EY ⊗ Y = pDiag(Σ) + p2 Off(Σ).

We can “invert” the equality above to get the dependence between the true
covariance and the data, namely

Σ = p−1 Diag(EY ⊗ Y ) + p−2 Off(EY ⊗ Y ).

A natural approach would be to replace the unknown term EY ⊗ Y by its
sample covariance, but this is not enough when we consider heavy tailed data
X1, . . . , XN , as discussed above. In fact, we define the truncation function

ψ(x) =
{
x, for x ∈ [−1, 1],
sign(x), for |x| > 1,

(1.1)

to robustify our estimator in each direction of the sphere. The idea here is to es-
timate the matrix through its quadratic form. Next, we describe the estimator’s
final form. We estimate the diagonal and off-diagonal part separately,

Σ̂1(λ1) := argmin
Σ1∈Sd

+|Off(Σ1)=0
sup

v∈Sd−1
|vTΣ1v −

1
nλ1

n∑
i=1

ψ(λ1v
T Diag(Yi ⊗ Yi)v)|,

Σ̂2(λ2) := argmin
Σ2∈Sd

+|Diag(Σ2)=0
sup

v∈Sd−1
|vTΣ2v −

1
nλ2

n∑
i=1

ψ(λ2v
T Off(Yi ⊗ Yi)v)|,
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where Sd
+ is the set of d by d positive semi-definite matrices and Sd−1 denotes

the unit sphere in Rd, and the final estimator becomes

Σ̂ = 1
p̂

Diag(Σ̂1) + 1
p̂2 Off(Σ̂2).

Here, p̂ is an estimator for the parameter p, and the choice of the truncation
levels λ1, λ2 will be clarified in what follows.

As mentioned before, the main drawback of our estimation is that it is not
computational tractable. Indeed, Σ̂1, Σ̂2 does not seem to be computable in
polynomial time as a (sub)-gradient descent/ascent type method might get stuck
in local optima, and analyzing it is out of the scope of this text. We remark that a
similar optimization problem appears in [15], with the quadratic forms replaced
by linear forms. Unfortunately, even in that case it is an open problem to come
up with an (analyzable) algorithm.

From a more practical perspective, it might be possible that, under some
stronger concentration assumption on the data, we can avoid evaluating the
truncation function ψ in each direction v on the Euclidean sphere, and replace
the supremum over the Euclidean sphere in the definition of Σ̂1, Σ̂2 by other
(more tractable) quantity. This would make the optimization problem much
easier to be solved in polynomial time. We leave this as an interesting question
to pursue in a future work.

The construction of the estimator and its analysis share similarities with the
“trimmead covariance” estimator proposed by Zhivotovskiy and the author [1].
However, we need to break into diagonal and off-diagonal parts to take in ac-
count the different scales with p. Indeed, the main technical difficulty arises in
controlling the random quadratic form to get the optimal dependence with re-
spect to p, mainly in the off-diagonal case. A direct approach faces the difficulty
that we no longer have a positive semidefinite matrix, making it challenging
to capture cancellations. Conversely, an indirect approach, expressing the off-
diagonal part as the total part minus the diagonal part, leads to sub-optimality
with respect to p. Thus, we need to carefully balance these two approaches.

Organization The rest of the paper is organized as follows: In Section 2, we
assume the knowledge of certain parameters to simplify the analysis of the es-
timator and derive sharp convergence rates. We then systematically relax these
assumptions in Section 3 by estimating each parameter separately in individual
subsections. The last subsection of Section 3 is devoted to the formal construc-
tion of the estimator and the proof of the main result.

Notation Throughout this text C, c > 0 denote an absolute constant that
may change from line to line. For an integer N , we set [N ] = {1, . . . , N}. For
any two functions (or random variables) f, g defined in some common domain,
the notation f � g means that there is an absolute constant c such that f ≤ cg
and f ∼ g means that f � g and g � f . Let Sd

+ denote the set of d by d
positive-definite matrices. The symbols ‖ · ‖, ‖ · ‖F denote the operator norm
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and the Frobenius norm of a matrix, respectively. Let KL(ρ, μ) =
∫

log
(

dρ
dμ

)
dρ

denote the Kullback-Leibler divergence between a pair of measures ρ and μ.
We write ρ � μ to indicate that the measure ρ is absolutely continuous with
respect to the measure μ. For a vector X ∈ Rd, the tensor product ⊗ is defined
as X ⊗X := XXT ∈ Rd×d.

2. Oracle estimator

In this section, we prove our main result under the assumption that we know the
effective rank of the covariance matrix r(Σ), the trace of the covariance matrix
Tr(Σ), and the sparsifying factor p. These assumptions will be further relaxed
in the next section. Our main goal is to prove the following result.

Proposition 1. Assume that X is a mean zero random vector in Rd with co-
variance matrix Σ satisfying the L4 − L2 moment equivalence assumption. Fix
the confidence level δ ∈ (0, 1). Suppose that Y1, . . . , YN are i.i.d samples from
X � p. Then there exists λ1, λ2 > 0 depending only on Tr(Σ), ‖Σ‖ and p for
which, with probability at least 1 − δ,

max{‖p−1Σ̂1(λ1) − Diag(Σ)‖, ‖p−2Σ̂2(λ2) − Off(Σ)‖}

≤ C(κ)
p

‖Σ‖
(√

r(Σ) + log(1/δ)
N

)
.

Here C(κ) > 0 is an absolute constant depending only on κ.

Our analysis is based on the variational principle pioneered by O. Catoni
[5, 4, 8] and further developed in many applications related to high dimensional
probability and statistics [4, 6, 7, 8, 32, 22]. In most of the applications of the
variational principle, the following lemma serves as a key stepping stone.

Lemma 1. Assume that Xi are i.i.d. random variables defined on some measur-
able space. Let Θ be a subset of Rp for some p ≥ 1, μ be a a fixed distribution on
Θ, and ρ be any distribution on Θ satisfying that ρ � μ. Then, simultaneously
for any such ρ, with probability at least 1 − δ,

1
N

N∑
i=1

Eρf(Xi, θ) ≤ Eρ log(EXef(X,θ)) + KL(ρ, μ) + log(1/δ)
N

.

Here θ is distributed according to ρ.

The proof can be found in [4, 32] and will be omitted. The next lemma is
a technical fact that allow to “convexify” the truncation function ψ. Indeed, it
is easy to see that the function eψ(x) is bounded by (1 + x + x2) that still not
convex, but if we add a suitable quadratic term, then it becomes convex.
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Lemma 2. Let ψ be the truncation function from (1.1), and let Z be a random
variable with finite second moment. Then the following holds

ψ(EZ) ≤ E log(1 + Z + Z2) + min
{

1, EZ2

6

}
.

Moreover, for any a > 0,

E log(1 + Z + Z2) + amin
{

1, EZ2

6

}
≤ E log

(
1 + Z +

(
1 + (7 +

√
6)(exp(a) − 1)

6

)
Z2

)
.

This result has been previously used in [4, 32, 1]. For the sake of completeness,
we include a proof at the end of this section. Now we start with the facts
specifically derived for the missing observation case. The next result is crucial
to establish the right dependence on p. The proof is deferred to the end of this
section.

Lemma 3. Let Y as above. For every v ∈ Sd−1, we have

E(vT Diag(Y ⊗ Y )v)2 ≤ 2pκ4‖Diag(Σ)‖2

and
E(vT Off(Y ⊗ Y )v)2 ≤ 4p2κ4‖Σ‖2.

The main idea behind the proof of Proposition 1 consists in using the vari-
ational principle twice, one for the diagonal part and the other for the more
delicate off-diagonal part.

Proof. Diagonal Part: We start by defining the parameter space of interest,
namely

Θ = Rd × Rd.

Choose μ to be a product of two zero mean multivariate Gaussians with mean
zero and covariance β−1Id, where β > 0 will be chosen later. For each v ∈ Sd−1,
let ρv be the product of two multivariate Gaussian distribution with mean v and
covariance β−1Id. By construction, (θ, ν) is distributed according to ρv, therefore
it satisfies that Eρv (θ, ν) = (v, v). The standard formula for the KL-divergence
between two Gaussian measures [24] implies that

KL(ρv, μ) = β.

Let λ1 > 0 be a free parameter to be optimized later. By the first part of
Lemma 2, we have

ψ
(
λ1v

T Diag(Y ⊗ Y )v
)

= ψ
(
λ1Eρvθ

T Diag(Y ⊗ Y )ν
)

≤ Eρv log(1 + λ1θ
T Diag(Y ⊗ Y )ν + λ2

1(θT Diag(Y ⊗ Y )ν)2) + R.
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where R := min{1, λ2
1Eρv (θT Diag(Y ⊗ Y )ν)2/6}. Notice that Eθ2

i = β−1 + v2
i

and Eθiθj = vivj for all i ∈ [d], therefore

Eρv (θT Diag(Y ⊗ Y )ν)2 = Eρv

(
d∑

i=1
〈Y, ei〉2θiνi

)2

= β−2
d∑

i=1
〈Y, ei〉4 +

d∑
i,j=1

〈Y, ei〉2〈Y, ej〉2v2
i v

2
j + 2β−1

d∑
i=1

〈Y, ei〉4v2
i

= β−2‖Diag(Y ⊗ Y )‖2
F + (vT Diag(Y ⊗ Y )v)2 + 2β−1‖Diag(Y ⊗ Y )v‖2

2,

By symmetry, P
(
θT Diag(Y ⊗ Y )ν ≥ vT Diag(Y ⊗ Y )v

)
≥ 1

4 . To see this, ob-
serve that it is equal to

P(〈Diag(Y ⊗ Y )θ, (ν − v)〉 + 〈Diag(Y ⊗ Y )v, (θ − v)〉 ≥ 0).

The second term is positive with probability one half. Conditioned on this event,
the first term is positive with probability one half, and it is independence from
the first term. We obtain that the probability of both are positive is at least one
quarter. Therefore,

min
{

1, λ
2
1
6 (vT Diag(Y ⊗ Y )v)2

}
≤ 4Eρv min

{
1, λ

2

6 (θT Diag(Y ⊗ Y )ν)2
}
.

By the second part of Lemma 2, we have

ψ(λ1v
T Diag(Y ⊗ Y )v)

≤ Eρv log(1 + λθT Diag(Y ⊗ Y )ν + C1λ
2(θT Diag(Y ⊗ Y )ν)2) + R(Y, β),

where R(Y, β):= min{1, 2λ2
1β

−1‖Diag(Y⊗Y )v‖2
2/6}+min{1, λ2

1β
−2‖Y⊗Y ‖2

F /6}.
For instance, let us focus on the first term. The goal is to apply Lemma 1 to
the function f defined below

f(Y, θ, ν) := log(1 + λ1θ
T Diag(Y ⊗ Y )ν + C1λ

2
1(θT Diag(Y ⊗ Y )ν)2).

Using the numeric inequality log(1 + y) ≤ y, valid for all y ≥ −1, followed by
Fubini’s theorem and Lemma 3, we have

Eρv log E
(
1 + λ1θ

T Diag(Y ⊗ Y )ν + C1λ
2
1(θT Diag(Y ⊗ Y )ν)2

)
≤ EρvE

(
λ1θ

T Diag(Y ⊗ Y )ν + C1λ
2
1(θT Diag(Y ⊗ Y )ν)2

)
≤ pλ1v

T Diag(Σ)v + C1λ
2
1(pβ−2κ4 Tr2(Σ) + 2β−1pκ4‖Diag Σ‖2 + pκ4‖Σ‖2)

≤ pλ1v
T Diag(Σ)v + C1λ

2
1(pβ−2κ4 Tr2(Σ) + 2β−1pκ4‖Σ‖2 + pκ4‖Σ‖2).

Next, setting β := r(Σ) (which is at least one) and applying Lemma 1, it follows
that with probability at least 1 − δ, for all v ∈ Sd−1,

1
Nλ1

N∑
i=1

ψ(λ1v
T Diag(Y ⊗ Y )v)

≤ pvT Diag(Σ)v + Cλ1p‖Σ‖2κ4 +
n∑

i=1

Ri

Nλ1
+ r(Σ) + log(1/δ)

λ1N
.
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Here Ri is an independent copy of R. We proceed to estimate the third term
in the right-hand side. Clearly, since min{1, 2λ2

1β
−1‖Diag(Y ⊗ Y )v‖2

2/6} is
bounded by one, its variance is bounded by its expectation. Therefore, by Bern-
stein’s inequality it follows that with probability 1 − δ,

1
λ1N

N∑
i=1

min{1, β−2λ2
1‖Y ⊗ Y ‖2

F /6} � Eβ−2‖Y ⊗ Y ‖2
F + log(1/δ)

λ1N

� λ1pκ
4‖Σ‖2 + log(1/δ)

λ1N
.

An analogous computation shows the same estimate holds (up to an absolute
constant) for the term min{1, 2β−1‖Diag(Y ⊗ Y )v‖2

2/6}. Finally we conclude
that, there exists an absolute constant C > 0 such that, with probability at
least 1 − δ,

1
Nλ1

N∑
i=1

ψ(λ1v
T Diag(Yi ⊗ Yi)v)

≤ pvT Diag(Σ)v + C

(
λ1p‖Σ‖2κ4 + r(Σ) + log(1/δ)

λ1N

)
.

We optimize the right-hand side over λ1 > 0. More accurately, setting

λ1 = 1
‖Σ‖κ2p

√
r(Σ) + log(1/δ)

N

we obtain that, with probability at least 1 − δ,

1
Nλ1

N∑
i=1

ψ(λ1v
T Diag(Yi ⊗ Yi)v) ≤ pvT Diag(Σ)v + Cκ2√p

√
r(Σ) + log(1/δ)

N
.

We repeat the same arguments above for ρ2,v being a product measure between
two Gaussians θ ∼ N(v, β−1Id) and ν ∼ N(−v, β−1Id). The argument follows
exactly the same steps because ψ is symmetric. Therefore, it also holds that
with probability 1 − δ,

− 1
Nλ1

N∑
i=1

ψ(λ1v
T Diag(Yi⊗Yi)v) ≤ −pvT Diag(Σ)v+Cκ2√p

√
r(Σ) + log(1/δ)

N
.

By union bound, we obtain a two-sided bound: With probability at least 1− δ,

‖p−1Σ̂1 − Diag(Σ)‖ � 1
√
p
κ2‖Σ‖

√
r(Σ) + log(1/δ)

N
.

Off-diagonal part: We now proceed to the second part of the proof to deal
with the off-diagonal part. We choose μ and ρ(v) as before, and write

ψ
(
λ2v

T Off(Y ⊗ Y )v
)

= ψ
(
λ2Eρvθ

T Off(Y ⊗ Y )ν
)

≤ Eρv log(1 + λ2θ
T Off(Y ⊗ Y )ν + λ2

2(θT Off(Y ⊗ Y )ν)2) + R.
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where R2 := min{1, λ2
2Eρv (θT Off(Y ⊗ Y )ν)2/6}. We have to deal with the

quadratic form of the off-diagonal that requires a more delicate analysis. In
fact,

Eρv (θT Off(Y ⊗ Y )ν)2 = Eρv

∑
i �=j;k �=l

〈Y, ei〉〈Y, ej〉〈Y, ek〉〈Y, el〉θiνjθkνl

By independence between θ and ν, it remains to analyze the term EθiθkEνjνl.
We split the analysis in three cases: The first one when k = i and j = l, the
second when either k = i and j = l or k = i and j = l, and finally the third one
when k = i and j = l. In the first case, the summation becomes∑

i �=j

〈Y, ei〉2〈Y, ej〉2(β−1 + v2
i )(β−1 + v2

j ).

In the second case, the summation becomes∑
i �=j �=l

〈Y, ei〉2〈Y, ej〉〈Y, el〉(β−1+v2
i )vjvl+

∑
i �=j �=k

〈Y, ei〉〈Y, ej〉2〈Y, ek〉(β−1+v2
j )vivk.

The third case is simpler,∑
i �=j �=k �=l

〈Y, ei〉〈Y, ej〉〈Y, ek〉〈Y, el〉vivjvkvl.

Observe that summing all terms that do not contain any β factor, we obtain
(vT Off(Y ⊗ Y )v)2. As before, the goal is to apply Lemma 1 to the function f ,

f(Y, θ, ν) := log(1 + λ2θ
T Off(Y ⊗ Y )ν + C2λ

2
2(θT Off(Y ⊗ Y )ν)2),

where C2 > 0 is a sufficiently large absolute constant. Using again the numeric
inequality log(1 + y) ≤ y, Fubini’s theorem, and Lemma 3, we have

Eρv log E
(
1 + λ2θ

T Off(Y ⊗ Y )ν + C2λ
2
2(θT Off(Y ⊗ Y )ν)2

)
≤ EρvE

(
λ2θ

T Off(Y ⊗ Y )ν + C2λ
2
2(θT Off(Y ⊗ Y )ν)2

)
.

The first term is equal to p2λ2v
T Off(Σ)v. We know that all terms in the ex-

pansion of θT Off(Y ⊗ Y )ν without a β factor add up vT Off(Y ⊗ Y )v and
its expectation is at most 4p2κ4‖Σ‖2 by Lemma 3. Next, we estimate the terms
containing β systematically. Using Cauchy-Schwarz inequality together with the
moment equivalence for X, we obtain

β−2
∑
i �=j

E〈Y, ei〉2〈Y, ej〉2 = β−2p2
∑
i �=j

E〈X, ei〉2〈X, ej〉2 ≤ p2β−2κ4
∑
i �=j

ΣiiΣjj

≤ p2β−2κ4 Tr2(Σ).

Similarly, we obtain

E
∑
i �=j

〈Y, ei〉2〈Y, ej〉2(β−1+v2
i )(β−1+v2

j ) � p2κ4β−2 Tr2(Σ)+β−1p2κ4‖Σ‖Tr(Σ).
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It remains to analyze

E
∑
i �=j �=l

〈Y, ei〉2〈Y, ej〉〈Y, el〉β−1vjvl +
∑

i �=j �=k

〈Y, ei〉〈Y, ej〉2〈Y, ek〉β−1vivk.

We estimate the first term on the right-hand side as the second term is identically
distributed. To this end, we apply Hölder’s inequality with conjugate exponents
4/3 and 4, and the moment equivalence to obtain that

E
∑
i �=j �=l

〈Y, ei〉2〈Y, ej〉〈Y, el〉β−1vjvl ≤ p3
∑
i �=j �=l

E〈X, ei〉2〈X, ej〉〈X, el〉β−1vjvl

≤ p3
∑
i;j �=l

E〈X, ei〉2〈X, ej〉〈X, el〉β−1vjvl +

∣∣∣∣∣∣2p3
∑
j �=l

E〈X, ej〉3〈X, el〉β−1vjvl

∣∣∣∣∣∣
� p3

β

⎛⎝E

[
(vT Off(X ⊗X)v)

(
d∑

i=1
〈X, ei〉2

)]
+ κ4

∑
j �=l

(Σll)1/2(Σjj)3/2vlvj

⎞⎠
� p3

[
(vT Off(X ⊗X)v)

(
d∑

i=1
β−1〈X, ei〉2

)]
+ p3β−1κ4‖Σ‖Tr(Σ)

≤ p3E(vTX ⊗Xv − vT Diag(X ⊗X)v)(β−1 Tr(X ⊗X)) + 2p3κ
4

β
‖Σ‖Tr(Σ)

≤ p3E〈X, v〉2β−1 Tr(X ⊗X) + 2p3β−1κ4‖Σ‖Tr(Σ)
� p3κ4(‖Σ‖2 + β−2 Tr2(Σ) + β−1‖Σ‖Tr(Σ)),

where the last inequality follows from the arithmetic-geometric inequality.
Putting all together, we conclude that

EEρv (θT Off(Y ⊗ Y )ν)2 � p2β−2κ4 Tr2(Σ) + p2κ4‖Σ‖2 + p3β−1κ4 Tr(Σ)‖Σ‖.

Therefore, setting β = r(Σ), it follows that

Eρv log E
(
1 + λ2θ

T Diag(Y ⊗ Y )ν + C2λ
2
2(θT Diag(Y ⊗ Y )ν)2

)
≤ λ2v

T Off(Y ⊗ Y )v + C2λ
2
2δ

2κ4‖Σ‖2.

Finally we conclude that there exists an absolute constant C ′
2 > 0 for which,

with probability at least 1 − δ,

1
Nλ2

N∑
i=1

ψ(λ2v
T Off(Yi ⊗ Yi)v)

≤ p2vT Off(Σ)v + C ′
2

(
λ2p

2‖Σ‖2κ4 +
N∑
i=1

R2(Yi)
λ2N

+ r(Σ) + log(1/δ)
λ2N

)
.

By Bernstein inequality the remainder terms R2(Yi) are absorbed by the last
term in the sum exactly in the same way as in the diagonal case. We optimize
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over λ2 > 0 by setting

λ2 := 1
p‖Σ‖κ2

√
r(Σ) + log(1/δ)

N
.

Therefore, with probability 1 − δ,

1
Nλ2

N∑
i=1

ψ(λ2v
T Off(Yi ⊗ Yi)v) ≤ p2vT Off(Σ)v + Cκ2p

√
r(Σ) + log(1/δ)

N
.

We repeat the arguments by changing the mean of ν to −v. This gives the other
side of the inequality in the same way it was done for the diagonal part. We
conclude that, with probability 1 − δ,

‖p−2Σ̂(λ2) − Off(Σ)‖ � 1
p
κ2‖Σ‖

√
r(Σ) + log(1/δ)

N
.

By triangular inequality, union bound and re-scaling the multiplicative constant
in δ, the following holds. The estimator Σ̂ satisfies, with probability 1 − δ,

‖Σ̂ − Σ‖ � κ2

p
‖Σ‖

√
r(Σ) + log(1/δ)

N
.

To end this section, we prove some technical facts, Lemma 2 and 3. We start
with the proof of Lemma 3.

Proof. We start with the diagonal case. Observe that

E(vT Diag(Y ⊗ Y )v)2 = E
d∑

i,j=1
〈Y, ei〉2〈Y, ej〉2v2

i v
2
j

=
d∑

i=1
E〈Y, ei〉4v4

i +
d∑

i �=j

E〈Y, ei〉2〈Y, ej〉2v2
i v

2
j := (I) + (II).

Clearly, (I) is at most pκ4 ∑d
i=1 Σ2

iiv
4
i ≤ pκ4‖Diag(Σ)‖2. Next, by the arithmetic-

geometric inequality

(II) ≤ p2

2
∑
i �=j

E(〈X, ei〉4v2
i v

2
j + 〈X, ej〉4v2

i v
2
j ) ≤ p2κ4‖Diag(Σ)‖2.

For the off-diagonal term, we need to proceed carefully as the natural idea to
decompose the off-diagonal matrix into the matrix itself minus the diagonal part
leads to suboptimal dependence on p. We first expand it directly,

E(vT Off(Y ⊗ Y )v)2 =
∑

i �=j;k �=l

E〈Y, ei〉〈Y, ej〉〈Y, ek〉〈Y, el〉vivjvkvl

≤ p2
∑

i �=j;k �=l

E〈X, ei〉〈X, ej〉〈X, ek〉〈X, el〉vivjvkvl = p2E(vT Off(X ⊗X)v)2,
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where the term p2 comes from the fact that at least two indices are distinct in
each summand. Now, we split the off-diagonal term E(vT Off(X ⊗X)v)2. More
accurately,

E(vT Off(X ⊗X)v)2 = E(vT (X ⊗X)v)2

+ E(vT Diag(X ⊗X)v)2 − 2E(vT (X ⊗X)v)E(vT Diag(X ⊗X)v)
:= (a) + (b) + (c).

The last term (c) is negative because both matrices are positive semidefinite, so
we can safely ignore it. The first term (a) on is at most κ4(vTΣv)2 ≤ κ4‖Σ‖2

by the moment equivalence assumption. Finally, the second term (b) is at most
κ4‖Σ‖2 by the same argument used above.

Next, we proceed to prove Lemma 2.

Proof. Notice that ψ(x) ≤ log(1 + x + x2) holds trivially, and we add x2/6 to
make the latter function convex. It follows that

ψ(EZ) ≤ min{log(1 + EZ + EZ2) + EZ2/6, 1}.

Now, we apply Jensen’s inequality to conclude the proof of the first part. For
the second part, notice that by Taylor series expansion, if t ∈ [0, a] then we have
the following inequality,

et ≤ 1 + t

a

( ∞∑
i=1

ai

i!

)
≤ 1 + t

a
(ea − 1),

therefore

E log(1 + Z + Z2) + aEmin{1, Z2/6}
= E log

((
1 + Z + Z2) exp(min{a, aZ2/6})

)
≤ E log

((
1 + Z + Z2) (1 + min{1, Z2/6} (ea − 1)

))
.

To get the inequality in the statement, we only need to split into the cases where
|Z|2/6 is smaller than one and where it is greater than one.

3. Proof of Theorem 1

In the previous section, we showed in Proposition 1, that the proof of the main
result boils down to estimate the trace of the covariance matrix, the operator
norm, and the sparsifying parameter p. For the trace and operator norm, it
is enough to estimate it with a multiplicative absolute constant. On the other
hand, for the parameter p, we need a more accurate estimator. In fact, since we
need to divide the estimator by p, an estimator p̂ that do not convergence to p
would insert a bias.
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Remark 1. The best possible convergence rate is at least

‖Σ̂ − Σ‖ ≤ ‖Σ‖
(

1
p

√
r(Σ) + log(1/δ)

N

)
.

The trivial estimator Σ̂ = 0 satisfies ‖Σ̂ − Σ‖ ≤ ‖Σ‖, so in order to have a

meaningful result we need
(

1
p

√
r(Σ)+log(1/δ)

N

)
< 1. Therefore, without making

any further comments, we may assume that

N ≥ C

(
r(Σ) + log(1/δ)

p2

)
,

for some well-chosen C > 0.

3.1. Estimation of p

The idea here is to explore the proportion of non-zeros entries in the observed
data. In any standard data set, a missed value does not appear with zero; we
set it to zero for convenience, as we have done throughout the entire manuscript
until now. As it happens, when estimating the proportion of missing values, it
could be the case that the distribution of the random vector X has non-trivial
mass at zero. Clearly, we can distinguish between the zero that comes from the
distribution and the zero from the missing value. Equivalently, we may assume
that the marginals of X, namely 〈X, v〉 (for every v ∈ Sd−1), do not have mass
at zero.

The starting point is the following. We collect Y1, . . . , YN , and compute
Z1, . . . , ZN , where Zi(j) = 1 if and only Yi(j) = 0 and zero, otherwise. The
goal is to estimate the mean of the random variable

R(Z) := 1
d
‖Z‖�1 ,

as it is equal to ER(Z) = p.

Lemma 4. Let Y1, . . . , YN be i.i.d copies of X � p. There exists an estimator
p̂ depending only on the sample and the confidence level δ satisfying that, with
probability at least 1 − δ,

|p̂− p| ≤ Cp

√
log(1/δ)

N
.

As an immediate consequence, if N ≥ C log(1/δ), then (with the same probability
guarantee)

1
2p ≤ p̂ ≤ 3

2p.

Before we proceed to the proof, we remark that if p̂ > 1, then we round it,
p̂ = 1.
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Proof. Following the notation above, we collect R(Z1), . . . , R(ZN ) i.i.d copies of
R(Z). We invoke a standard sub-Gaussian mean estimator for R(Z) (e.g trim-
mead mean estimator [19, Theorem 1]) together with the fact that Var(R(Z)) ≤
p2, to obtain that, with probability at least 1 − δ,

|R̂(p) − ER(Z)| ≤ C

√
log(1/δ)VarR(Z)

N
≤ Cp

√
log(1/δ)

N
.

3.2. Estimation of the trace

To simplify the analysis, we can safely assume that p is known because we can
accurately estimate it using Lemma 4. Clearly,

pTr(Σ) = E
d∑

i=1
〈Y, ei〉2.

To invoke a mean estimator, we need to compute the standard deviation of the
random variable in the right hand side. To this end, we have

E

(
d∑

i=1
〈Y, ei〉2

)2

≤ p

d∑
i=1

E〈X, ei〉4 + p2
∑
i �=j

E〈X, ei〉〈X, ej〉2 � pκ4 Tr(Σ)2.

The latter step follows from moment equivalence and Hölder’s inequality (as
we have been doing several times in this manuscript). Since p is know, one
may invoke Theorem 1 [19] to obtain an estimator T̂r(Σ) satisfying that, with
probability 1 − δ,

|T̂r(Σ) − pTr(Σ)| ≤ Cκ2pTr(Σ)
√

log(1/δ)
N

.

If the sample size N satisfies that N ≥ Cκ2 log(1/δ) then for sufficiently large
C, we have

|T̂r(Σ) − pTr(Σ)| ≤ pTr(Σ)
2 ,

and consequently
1
2 Tr(Σ) ≤ p−1T̂r(Σ) ≤ 3

2 Tr(Σ). (3.1)

3.3. Estimation of the operator norm

The most delicate part of this section is the estimation of the operator norm.
The main lemma is the following
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Lemma 5. Let Y1, . . . , YN be i.i.d copies of X�p. There exist an absolute con-
stant CN and an estimator ‖̂Σ‖ depending only on the samples and κ satisfying
that, with probability at least 1 − δ,

c2(κ)‖Σ‖ ≤ ‖̂Σ‖ ≤ c1(κ)‖Σ‖,

provided that N ≥ CNp−2(log(1/δ) + r(Σ)). Here c1, c2 > 0 are two absolute
constants depending only on κ.

The key idea is to repeat the same analysis as before for each part with an
additional parameter α, and show that if certain inequalities are satisfied then
α needs to be of same order as the operator norm. Along the proof C1 > 0 is an
explicit constant that can be computed by just keeping track of the constants
in the proofs of Section 2.

Proof. Diagonal Part: As before, we set

Θ = Rd × Rd.

Now, we slightly change the choice of measures. More accurately, we choose the
measure μ to be a product of two zero mean multivariate Gaussians with mean
zero and covariance β−1Id. For v ∈ Sd−1, let ρv be a product of two multivariate
Gaussian distribution with mean αv and covariance β−1Id. The KL-divergence
becomes

KL(ρv, μ) = α2β.

To simplify the notation, we write ρv,α = ρv. Following the same lines for the
proof of the diagonal part, we have with probability at least 1 − 3δ,

1
N

N∑
i=1

ψ(α2vT Diag(Yi ⊗ Yi)v) ≤ α2pvT Diag(Σ)v

+ C1p‖Diag(Σ)‖2κ4(α4 + β−1α2)

+ (C1β
−2pκ4)Tr(Σ)2 + 2 log(1/δ)

N
+ α2β

N
.

Next, we choose β = cβ Tr(Σ) where cβ > 0 is an absolute constant to be
chosen later. By the Remark 1, we may define a constant CN > 0 for which
N ≥ CNp−2 max{r(Σ), log(1/δ)}, and then

1
pN

N∑
i=1

ψ(α2vT Diag(Yi ⊗ Yi)v) ≤ α2vT Diag(Σ)v + C1‖Σ‖2κ4α4

+ C1κ
4c−1

β α2‖Σ‖ + C1c
−2
β κ4 + 2C−1

N

+ α2‖Σ‖cβC−1
N .

Off-Diagonal Part: We use the same choice of the measures and proceed
analogously. We obtain that, with probability at least 1 − 5δ, the following



Covariance estimation under missing and L4 − L2 2681

holds

1
p2n

n∑
i=1

ψ(α2vT Off(Yi ⊗ Yi)v) ≤ α2vT Off(Σ)v

+ C1α
4κ4‖Σ‖2 + C1c

−2
β κ4

+ C1c
−1
β κ4α2‖Σ‖ + 2C−1

N + C−1
N cβα

2‖Σ‖.

Everything Together: We define the function g(α) : R → R to be equal to

1
Np

sup
v∈Sd−1

N∑
i=1

ψ(α2vT Diag(Yi⊗Yi)v)+
1

Np2 sup
v∈Sd−1∪0

N∑
i=1

ψ(α2vT Off(Yi⊗Yi)v).

From above, we obtain that, with probability at least 1 − 8δ,

g(α) ≤ C1‖Σ‖2α4κ4 + ‖Σ‖α2(κ2 + κ4C1c
−1
β + cβC

−1
N ) + C1κ

4c−2
β + 4c−1

n .

Notice that the constants C1c
−1
β + cβC

−1
N and C1κ

4c−2
β + 4C−1

N can be made
arbitrarily small by increasing CN . In particular, we choose cβ and CN so that

g(α) ≤ C1‖Σ‖2α4κ4 + ‖Σ‖α2(1 + L1) + L2, (3.2)

where L1, L2 > 0 are two absolute constants satisfying the following conditions:

1.1L2 < 1 and (1 − L1)2 − 8.4κ4C1L2 > 0 (3.3)

The reason for such choice will become clear in what follows. Next, without loss
of generality, we assume that P(Yi = 0) = 0. This is always possible by adding
a small amount of Gaussian noise without changing the covariance too much.
We construct a vector w ∈ Sd−1 such that mini∈[n]〈Yi, w〉 = 0 by sampling
the vector from an isotropic Gaussian distribution, and normalizing it to have
Euclidean norm exactly one.

Notice that g(0) = 0 and g is a continuous function. Moreover, if we show that
g assumes values greater or equal to one then by intermediate value theorem,
the function g assumes any value within this range. Since w is a unit vector for
which mini∈[n]〈w, Yi〉 = 0, and for every i ∈ [N ],

〈Yi, w〉2 = wTYi ⊗ Yiw = wT Diag(Yi ⊗ Yi)w + wT Off(Yi ⊗ Yi)w,

it follows that at least one of the terms in the right-hand side is non-zero. In
the case that both are non-zero, we evaluate g at the point

min
{

min
i∈[n]|

|wT Diag(Yi ⊗ Yi)w|,min
i∈[d]

|wT Off(Yi ⊗ Yi)w}|
}
. (3.4)

It is clear that g is at least one at such point. Moreover, observe that the
function g is non-negative as we are allowed to take v = 0 in the supremum
of the off-diagonal part. In the case that one term is zero, we just remove it
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from (3.4). Finally, regardless the case, we choose α̂ such that g(α̂) = 1.1L2.
This is a valid choice. Indeed, recall from (3.3) that 1.1L2 is strictly smaller
than one, therefore existence of such α̂ is guaranteed by the intermediate value
theorem as argued before.

Next, (3.2) implies that

C1‖Σ‖2α̂4κ4 + ‖Σ‖α̂2(1 + L1) − 0.1L2 ≥ 0.

The expression above can be interpreted as a parabola in the variable x :=
α̂2‖Σ‖ that has two real roots. One root is negative, and it does not play any
role. The other one is a positive absolute constant implying that there exists a
constant cmin(κ) such that

α̂2‖Σ‖ ≥ cmin(κ). (3.5)

This translates in a lower bound for ‖Σ‖. We now need an upper bound for ‖Σ‖
in terms of α̂. We repeat the same argument above for the product measure
ρ2,v between θ and ν, where θ ∼ N(αv, β−1Id) and ν ∼ N(−αv, β−1Id). There-
fore, if v1 ∈ Sd−1 is the normalized eigenvector corresponding to the maximum
eigenvalue of Σ, then

−g(α) ≤ − 1
np

n∑
i=1

ψ(α2vT1 Diag(Yi ⊗ Yi)v1) −
1

np2

n∑
i=1

ψ(α2vT1 Off(Yi ⊗ Yi)v1).

Moreover, since −g(α) is non-increasing in the interval [0, α̂], we have

−1.1L2 = −g(α̂) ≤ C1‖Σ‖2α̂4κ4 − ‖Σ‖α2(1 − L1) + L2

Setting x = ‖Σ‖α2, the inequality above holds for all α ∈ [0, α̂]. It follows that,

C1κ
4x2 − (1 − L1)x + 2.1L2 ≥ 0.

The discriminant of the quadratic equation is Δ = (1−L1)2−8.4C1κ
4L2 which is

(strictly) positive by (3.3). It follows that the inequality above is true if x ≤ x1 or
x ≥ x2, where 0 < x1 < x2 are the positive roots of the corresponding quadratic
equation. We claim that x ≥ x2 cannot happen. Otherwise, since the inequality
above holds for all α ∈ [0, α̂], it must hold for α∗ such that ‖Σ‖α∗ ∈ (x1, x2),
but this contradicts the fact that the parabola assumes negative values between
(x1, x2). Therefore, we obtain that there exists a constant cmax(κ) > 0 such
that α̂2‖Σ‖ ≤ cmax(κ). Putting together with (3.5), we obtain that

cmin(κ) ≤ α̂2‖Σ‖ ≤ cmax(κ).

We conclude the proof by setting ‖̂Σ‖ := α̂−2.

3.4. Completion of the proof of Theorem 1

The final construction of our estimator is the following:
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1. Split the sample Y1, . . . , YN into four parts of size at least �N/4�
each.

2. Estimate the parameter p with the first quarter of the sample using
Lemma 4.

3. Estimate the trace Tr(Σ) with the second quarter using (3.1) and
the operator norm ‖Σ‖ with the third quarter using Lemma 5.

4. For the last quarter of the sample, use the estimator from Propo-
sition 1 to estimate the covariance matrix.

Before proceeding to the proof, we highlight some features about the data-
splitting approach. From a theoretical perspective, it only affects the conver-
gence rate by a constant. However, from a practical standpoint, it might be
of interest to avoid wasting one quarter of the sample if there are only a few
observations missing. This means that we use the complete data to estimate the
covariance by setting p̂ = 1.

Moreover, it might be more appropriate to use a smaller fraction of the data
to estimate the trace, as it is a one-dimensional quantity, and its convergence
rate is faster than the convergence rate of the estimator itself. Unfortunately,
due to the intractability of our estimator, we are unable to implement these
ideas in a real dataset.

We are now in position to prove our main result, Theorem 1.

Proof. As discussed in Section 2, the proof follows easily once we estimate the
parameters of the truncation level. Indeed, the truncation levels in Proposition 1
only requires the knowledge of Tr(Σ), ‖Σ‖ and p up to an absolute constant. The
error that we need to take in account is to use the estimated value of p instead
of the true value when we divide by p. This is the only reason why we have to
estimate the precise value of the parameter p. To this end, by triangle inequality∥∥∥∥1

p̂
Σ̂1 − Diag(Σ)

∥∥∥∥ ≤
∥∥∥∥1
p̂

(
Σ̂1 − pDiag(Σ)

)∥∥∥∥ +
∥∥∥∥1
p̂

(pDiag(Σ) − p̂Diag(Σ))
∥∥∥∥ .

We apply Lemma 4 to estimate both terms. The first term in the right hand
side is, with probability at least 1 − δ, at most

√
p

p̂
C‖Σ‖

√
r(Σ) + log(1/δ)

N
� 1

√
p
‖Σ‖

√
r(Σ) + log(1/δ)

N
.

The second term also satisfies, with probability 1 − δ,∥∥∥∥1
p̂

(pDiag(Σ) − p̂Diag(Σ))
∥∥∥∥ ≤ ‖Diag(Σ)‖1

p̂
|p− p̂| � ‖Σ‖

√
log(1/δ)

N
.

The same argument holds for the off-diagonal part as clearly ‖Off(Σ)‖ ≤ 2‖Σ‖.
We omit it for the sake of simplicity. Finally, the desired probability guarantee
holds by union bound a constant number of times.
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