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City road infrastructure is a public good, and over-consumption by self-interested, rational individuals leads to traffic jams. Congestion pricing
is effective in reducing demand to sustainable levels, but also controversial, as it introduces equity issues and systematically discriminates
lower-income groups. Karma is a non-monetary, fair, and efficient resource allocation mechanism, that employs an artificial currency different
from money, that incentivizes cooperation amongst selfish individuals, and achieves a balance between giving and taking. Where money does
not do its job, Karma achieves socially more desirable resource allocations by being aligned with consumers’ needs rather than their financial
power. This work highlights the value proposition of Karma, gives guidance on important Karma mechanism design elements, and equips the
reader with a useful software framework to model Karma economies and predict consumers’ behaviour. A case study demonstrates the potential
of this feasible alternative to money, without the burden of additional fees.
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1 Introduction

1.1 Background and Motivation

Public goods are resources available to all in society without restric-
tion. The tragedy of the commons describes the situation, when
self-interest drives individuals to overuse, depletion, or damage these
goods (even this is not in anyone’s long-term interest) [1, 2]. Road
networks and congestion exemplify this problem. Road networks at-
tract many users, as they enable individual mobility, and provide ac-
cessibility to many useful destinations for work, shopping, education,
socialization, or recreation. Roads provide a diminishing utility for
a growing number of users; if too many vehicles enter the network,
traffic slows down and congestion arises. Congestion is a global is-
sue, with consequences for drivers, residents, and society. Noise, air
pollution, and security incidents, affect the living quality and health
of residents. A significant amount of a driver’s life-time is wasted
in traffic jams. Wasted consumption of energy and time cause finan-
cial damages to the economy, and avoidable emissions contribute to
global warming and the climate change [3–5].

Governmental intervention and regulation can help to solve con-
gestion, by aligning individual incentives with the collective good and
keeping consumption of the road infrastructure at sustainable levels.
Access-restricting regulations involve the establishment of property
rights, rationing (capping) [6], cap-and-trade mechanisms [7], taxa-
tion [8], or value pricing [9]. A broad variety of economic instruments
have been proposed to cope with the issue of congestion and can be
used to control traffic demand and supply. Traffic demand manage-
ment employs road pricing, such as tolled bridges and tunnels, urban
congestion pricing, and tolled highway lanes [10]. Besides, examples
to control the supply can be found in license plate rationing, trade-
able credit schemes and mobility permits [11, 12]. These economic
instruments can be designed and implemented in conjunction with
other traffic management strategies, such as infrastructure improve-
ments, public transport expansion and investments, traffic signal op-
timization, and information provision, to create a comprehensive and
effective transportation system.

Economic instruments introduce monetary, market-based incen-
tive mechanisms, for the allocation of resources. Despite poten-
tial benefits for solving the socially relevant question of traffic con-
gestion, economic instruments appear to enjoy little support outside
academia. Limited social and political support has caused many pro-
posed schemes to be abandoned before implementation, or postponed
for an undefined time [13]. Reasons for the lacking public acceptance
include equity concerns, lack of trust in government, perceived sever-
ity of congestion, and organized opposition by drivers. Economic

instruments can raise equity concerns; they may disproportionately
benefit higher-income travelers who can afford tolls, while imposing
additional costs on lower-income commuters with fewer transporta-
tion alternatives. Often, the public is not convinced about the severity
of congestion and the need for the implementation of economic instru-
ments, doubts technological feasibility, or is concerned with privacy
issues due to a lack of trust into the government [14, 15]. Moreover,
there is refusal by drivers to being charged for something they feel is
not their fault and ought to be free to them [13].

Monetary markets are not always the right tool for resource allo-
cation, and in many contexts the use of money is not desired, so-
cially not accepted, considered unethical, or even prohibited. There-
fore, a growing branch of literature is concerned with artificial cur-
rencies [16], which represent non-monetary markets and resource al-
location mechanisms. For isolated, single-stage resource allocation
problems, extensive work on non-monetary matching and combinato-
rial assignment problems has been conducted [17–22]. For repeated
resource allocation problems, there are few works on non-monetary
market mechanisms yet, among which Karma has evolved as an im-
portant narrative [23].

Karma employs a currency different from money; it can only be
gained by producing and only be lost by consuming a specific re-
source. It is a resource-inherent, non-monetary, non-tradeable, arti-
ficial currency for prosumer resources (produced and consumed by
market participants likewise). As a non-monetary mechanism, Karma
complements monetary markets and provides attractive properties.
For example, it is fairness-enhancing, near incentive-compatible, and
robust towards population heterogeneity [24–26]. Due to its design,
one can consider Karma as playing against your future self, as the
only way to consume is to put effort and produce first, and future
needs must be traded off against present needs when consuming. Last
but not least, Karma is reported to not only concern the efficiency and
fairness of resource allocation but also lead to a decrease in resource
scarcity in peer-to-peer markets [27–30].

Let us discuss Karma at the example of congestion pricing [31],
where vehicles need to pay a surcharge for driving in the city. Due to
the monetary disincentive, people will trade off their urgency to drive
to the city, and their willingness to pay. However, congestion pricing
can be problematic, as equity issues emerge in a society with unequal
distribution of economic power: the poorest will most likely not be
able to afford the charge, and thus consume significantly less. Karma
could make a difference here: not driving could be considered as pro-
ducing, and driving could be considered as consuming the resource
“right of driving to the city”. Instead of paying money as a conges-
tion pricing tax, Karma points could be used. These Karma points
cannot be bought, but only gained by not consuming. Therefore,
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Karma would create a balance between giving and taking, between
using and not using the public good. This would force individuals
not to trade off the price with other resources they could buy alter-
natively but to solely consider present versus future consumption of
this specific resource. Moreover, the socio-economic contexts, such
as income or wealth, and therefore the above-mentioned equity con-
siderations, would not play a role anymore. Finally, contrary to a
monetary pricing, Karma would not impose additional financial costs
to the society.

1.2 Objectives

The overall goal of this study is to demonstrate the potential of Karma
to address the equity issues of economic instruments when coping
with public goods. This work follows mainly two goals: (i) highlight
the value proposition of Karma as a non-monetary resource allocation
mechanism, (ii) equip the reader with the necessary tools and knowl-
edge to successfully apply Karma in various contexts and domains.
To achieve these objectives, we elaborate on the properties of Karma,
provide guidance on the design of Karma mechanisms, outline a game
theoretic model of Karma as a dynamic population game, and present
a software framework to model problems and predict user behaviour
in Karma economies. In addition, we compare Karma economies over
monetary markets in a case study on bridge tolling, to demonstrate its
usefulness.

This study contributes to the economic discussion of traffic demand
management by providing the perspective of non-monetary market
mechanisms to cope with equity issues. Furthermore, this study con-
tributes to the literature on Karma mechanisms, as it provides a unify-
ing framework of mechanism design elements, as well as a software
library to efficiently simulate Karma economies. Ultimately, it en-
ables more systematic research on Karma for resource allocation.

The brief remainder of this work is as follows. Section 2 reviews
related works on Karma, presents applications in transportation, high-
lights its value proposition, and presents mechanism design elements.
Section 3 outlines the modelling of Karma as a game, presents the
Software Framework and outlines its usage on a computation exam-
ple. Section 4 presents the case study of a tolled bridge and the un-
derlying assumptions we have made when comparing money with
Karma. Section 5 presents and discusses the results of comparing
money and Karma markets. Section 6 concludes this work and out-
lines future research directions.

2 Literature Review

2.1 Related Works on Karma

Karma is a concept that emerged from the domain of filesharing [32],
enjoyed popularity as a technological component to blockchain ap-
plications, and gained prominence as an artificial, non-monetary cur-
rency in the literature of economics. As a resource allocation mech-
anism, Karma was applied in a wide range of applications, including
file and computational resource sharing in peer-to-peer networks, al-
location of transmission bandwidth in telecommunication networks,
and distribution of food and organ donations [23].

In the context of traffic demand management, pilot studies on
Karma investigated its potential use for high occupancy and priority
toll lanes [25, 33], auction-controlled intersection management with
fully connected vehicles [24, 26], and transportation modality pric-
ing [34, 35].

When applied as a resource allocation mechanism, Karma can be
described by a population of agents, where each agent · · ·

• has a specific amount of Karma

• has a random, time-varying urgency (represents the agent’s cost
when not getting a specific resource)

• has an individual temporal consumption preference type (dis-
count factor, which represents the subjective trade-off between
consuming now versus later)

In a repeated, auction-like setup, agents are matched randomly in
rounds to compete for a specific resource, by bidding with Karma.
Depending on their urgency, Karma balance, and consumption type,
agents must determine an optimal bid to earn the resource when nec-
essary, while accounting for potential future competitions in follow-
ing rounds.

Table 1: Karma mechanism design elements

Design Element Option

Currency
Parity Price, Threshold, Binary
Balance limits Unlimited, Bounded (upper, lower)
Amount control Constant, Constant per capita, Uncon-

trolled, Expiry
Initialization Equal endowment, Weighted endow-

ment, Random endowment, None
Redistribution Property tax, Payment tax, Lottery, Ex-

piry, None

Interaction
Price control Auction, Centrally defined, None
Price limits Only positive, Fix , None
Resource provision By one agent, By all agents, By system
Resource allocation Auction winner, System decision,

Provider decision
Counter-party N agents, One agent, System
Peer selection Market, Neighbourhood, Randomly as-

signed, Active selection
Decision-making Free
Urgency process Homogeneous, Heterogeneous
Temporal preference Homogeneous, Heterogeneous

Transaction
Payment amount Bid, Peer’s bid, Difference in bids,

Fixed, Nothing
Payment receiver Resource provider, System, Equally

across population, Weighted across
population

Karma gain Resource provision, Resource consumption
Karma loose Resource consumption, Expiration,

Rule-violation

[23] identifies mechanism design elements based on a systematic
comparison of previous Karma applications. These mechanism de-
sign elements are outlined in Table 1, and cover three aspects of
Karma mechanisms: currency, interaction, and transaction. As it
turned out in many of the Karma applying works, a major design
complexity is choosing the right amount of Karma currency in circu-
lation [34–37]. If there are too few currency units, there will be hoard-
ing to save the scarce currency for very urgent situations to consume;
if there are too many currency units, the value of a single value is
not sufficient anymore to stimulate provision of resources. In case of
a time-variant resource supply, a dedicated amount control becomes
necessary.
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2.2 Value proposition of Karma

Karma has the potential to address the equity issues of economic in-
struments when coping with public goods. Governmental interven-
tion to cope with public goods is regulating the access to it, so that
consumption is limited to a sustainable amount. The access right to
consuming the public good can be considered as the resource of inter-
est. This resource can be considered as a prosumer resource, as each
system participant can produce and consume it. The allocation of this
resource can be done by a central coordinator (i.e. the government) or
a decentralized mechanism (i.e. the market). Monetary markets can
cause equity issues, as resource consumption is linked to economic
power, which is usually distributed unequally. Instead of monetary
markets, the use of the artificial currency mechanisms such as Karma
could be used when allocating resources.

Previous research has found that Karma provides useful features
that distinguish it from money. Karma is fairness-enhancing, as the
consumption of resources depends on the urgency and previous be-
haviour, and not on economic power. Karma is able to approach levels
of efficiency similar to centralized, efficiency-maximizing algorithms,
while outperforming in terms of fairness [24, 26, 38]. Karma has a
direct approach towards utility. As Karma is resource-inherent,
there is no other aspect besides the pure utility value of a specific
resource for participants when bidding at auctions. Hence, Karma
achieves high levels of incentive compatibility [26, 39–41]. In mone-
tary markets, the readiness to pay prices not only depends on utility,
but also on economic power, and the comparison of values with other
resources that could be bought alternatively for this price. Karma
is of substantial value here, as it enables an intuitive, direct, utility-
focused, comparison-free evaluation of a resource’s value. Rather
than to trade-off resources against resources as in monetary mech-
anisms, Karma allows only the resource-specific trade-off between
present and future needs. Besides, Karma decreases the scarcity
of resources, as it incentivizes cooperative behaviour and contribu-
tions amongst a population of rational, selfish individuals. This hap-
pens, when resources are not provided by a central coordinator, but
provided by prosumers themselves (e.g. services). The underlying
incentive scheme of Karma can cause significant increases of avail-
able resources; examples for this property include content sharing [32,
41, 42], computation power in distributed computing applications [32,
41–43], a better mobile network coverage [37, 44–48], and more food
and organ donations [27–30].

Applied as an economic instrument to the context of traffic demand
management, Karma mechanisms can be a valuable complement to
monetary markets. Karma-driven economic instruments can over-
come equity issues and contribute to public acceptance and support
of traffic demand management. Besides, Karma does not create ad-
ditional, financial costs or taxes to the users, which overcomes the
unwillingness to pay for road usage. Karma intrinsically embodies
a fairness enforcing scheme, that balances consumption and produc-
tion of resources, and ultimately controls a sustainable usage of public
goods.

3 Materials and Methods

3.1 Game Theoretic Formalism

In previous works, Karma was rather described verbally, which im-
pedes systematic, quantitative analysis. Modelling Karma as a game
is useful, as it allows to predict user behaviour, and to simulate Karma
economies as multi-agent-systems [23]. In this chapter we outline the
game theoretic formalism used for our software framework, and ex-
plain how the agent behaviour can be predicted using the social state
of the stationary Nash equilibrium for dynamic population games. A

detailed discussion of implicit assumptions of the Karma Game can
be found in Appendix A.

3.1.1 Notation

We define indexes as non-capitalized letters, e.g. i. We denote sets as
calligraphic letters, e.g. A. We denote scalars as non-capitalized, in-
dexed letters, e.g. τi or ut

i . We denote functions as capitalized letters,
with discrete arguments in square brackets and continuous arguments
in round brackets e.g. A[b](c) = d. We denote probabilistic functions
as Greek letter with subscript p, e.g. πp. We denote Pr(a|b) to de-
scribe the conditional probability of an event a given b. Table 2 sum-
marizes the notation used to describe the Karma game, and to model
the resource allocation problem for the software framework (see next
chapter).

3.1.2 Karma as a game

Karma is as a repeated, stochastic, dynamic population
Game, represented by a tuple G of parameters. G =
⟨N , T ,U ,K, C, T,Θp,Ωp,Ψp, πp, d⟩

In a Karma game, there is a population of n agents. For each point in
time t (epoch) of the game, each agent i of the population i ∈ N =
{1, ..., n} possesses a state consisting of a type τi, an urgency level
ut
i , and a Karma balance kt

i ≥ 0, ki(t) ∈ K.
During each epoch t, a subset of agents J ⊂ N is encountering

a competition e for a resource at hand (interaction). Each partici-
pating agent j ∈ J during the encounter makes a decision based
on its own type τj , urgency level ut

j , and Karma balance kt
j inde-

pendently from each other (as the state information of each agent is
private, invisible to others) using the policy πp = Pr(a|τ, u, k), and
thus executes an action ae

j ∼ πp during the encounter. As a result
of the interaction there is an outcome oej , that determines how the re-
source is distributed for agent j (e.g. if it receives the resource). The
outcome (resource allocation) affects the future states of the partic-
ipating agents ut+1

j , kt+1
j ∀j ∈ J . The subset J is randomly and

independently chosen from the population. In one epoch, there can
be multiple interactions.

The agent type τi ∈ T is time invariant and represents the agent’s
type of temporal preference. The agent urgency level ut

i ∈ U de-
termines the immediate costs (rewards) the agent experiences after
the interaction of an encounter e by the outcome oe. The immediate
cost an agent experiences is described by function C[u, o], that maps
the urgency level and interaction outcome to immediate costs. The
discount factor function T [τ ] maps the discount factor to a tempo-
ral preference type. The discount factor T [τ ] ∈ {R|0 ≤ T [τ ] < 1}
indicates how much the agent trades off future costs (rewards) over
present costs (rewards). T [τ ] = 0 would not consider future costs at
all, while T [τ ] = 1 would not consider present costs at all.

The possible actions ae
j that the agent can choose from during

the encounter e, is determined by its Karma balance ae
j ∈ Aj,e =

{1...kj}. The decision making process of the agent to choose an
action ae

j from the set of possible actions Aj,e based on its own,
private state τj , uj and kj is modelled by the policy πp. The pol-
icy πp is a probabilistic function that maps from a given private
state to a probability distribution over actions πp[τj , uj , kj , aj ] =
Pr(aj |τj , uj , kj).

The actions of all participants Be = {ae
j∀j ∈ J } cause one

outcome oe, which is the vector of outcomes for each participant j
oej ∈ O that is determined by the probabilistic outcome function Θp.
The outcome function Θp[oe,Be] = Pr(oe|Be) maps from all partic-
ipants’ actions Be to the probability of different possible outcomes.
The outcome oe of interaction e affects the participant’s next Karma
balance kt+1

j according to a probabilistic function Ωp, that represents

3
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Symbol Description

Indexes & Scalars
i Index of agent in population
j Index of participant in interaction
t Index of time/epoch of the game
e Index of interaction
n Number of agents in population

Sets
N Set of agents in population
T Set of possible agent types
U Set of possible urgency levels
K Set of possible Karma balances
J Set of participants in interaction
Ak Set of possible actions for participant (with

Karma balance k)
O Set of possible outcomes from an interac-

tion
Be Set of participants’ actions (in interaction e)

Agent state
τi Type
ut
i Urgency level

kt
i Karma balance

Interaction
ae
j Action of participant j in encounter e

oe Outcome of interaction
oej Outcome of interaction e for participant j

Modelling (Probabilistic Functions)
Θp[o,B] Probability of outcome o given the partici-

pant actions B
Ωp[k

t+1
j , kt

j ,Be, o
e
j ] Probability of next Karma kt+1 given cur-

rent Karma kt, participant’s actions Be and
the participant’s outcome oej

Ψp[τ, u
t+1
j , ut

j , o
e
j ] Probability of next urgency ut+1

j given cur-
rent urgency ut

j , outcome oej , type τ
Modelling (Logic Functions)

C[u, o] The immediate costs for a given urgency
level and outcome

T [τ ] The discount factor for a given agent type
(of temporal preference)

Z Karma overflow account
δkt

i Karma payment (positive means receiving)
Social State

πp[τ, u, k, a] Probability of action a given the state
τ, u, k

dp[τ, u, k] Share of population that has specific type τ ,
urgency level u and Karma balance k

Optimization (Intermediate Products)
νp[a] Probability of action a (average agent)
γp[o, a] Pr(o|a) (average agent)

κp[k
∗, k, a] Pr(k∗|k, a)

ξ[u, a] Immediate cost for agent
ρp[τ, u

∗, k∗, u, k, a] Pr(u∗, k∗|k, u, a, τ)
R[τ, u, k] Expected immediate cost

Pp[τ, u
∗, k∗, u, k] Pr(u∗, k∗|k, u, τ)

V [τ, u, k] Expected infinite horizon cost
Q[τ, u, k, a] Single-stage deviation reward
π̃p[τ, u, k, a] Perturbed best response policy

Optimization (Hyper Parameter)
η Change speed of πp relative to d
ϖ Change speed of πp

λ Greediness when calculating Q

Table 2: Notation for Karma game and modelling.

the Karma transition probability, referred to as the Karma payment
rule: Ωp[k

t+1
j , kt

j ,Be, o
e
j ] = Pr(kt+1

j |kt
j ,Be, o

e
j). The outcome oe

of interaction e affects the agent’s next urgency level ut+1
j according

to a probabilistic transition function Ψp, that represents the urgency
transition probability, respectively the τ -dependent urgency process:
Ψp[τ, u

t+1
j , ut

j , o
e
j ] = Pr(ut+1|ut, oej , τ).

The distribution of types, urgency levels, and Karma balances in
the population is the state distribution dp. dp[τ, u, k] describes the
share of the population that has a specific type τ , urgency level u, and
Karma balance k. Together with the policy, the state distribution is
called the social state of the Karma game (πp, dp).

3.1.3 Agent behaviour prediction

In order to simulate the Karma mechanism as a multi-agent-system,
it is of crucial importance to predict the behaviour πp[τ, u, k, a] of
agents. Usually one assumes that each agent is rational and acts in
its best self-interest, meaning an agent achieves the best possible out-
come for itself. The rational behaviour of an agent is described by
the optimal policy π∗

p [τ, u, k, a]. The Nash-equilibrium of a game
describes the optimal policy, where no agent can improve its situ-
ation from deviating from the policy [24, 26, 49]. A population of
rational agents following this optimal policy will lead to a stationary
state distribution d∗p. For dynamic population games, the concept of a
stationary Nash-equilibrium describes the social state, that consists of
the optimal policy and stationary state distribution (π∗

p , d
∗
p). At least

one stationary Nash-equilibrium for each Karma game is guaranteed
to exist when the circulating amount of Karma is preserved [24, 26,
49]. The optimal social state can be calculated in an iterative way, as
outlined in Fig. 1, by computing intermediate products.

νp[a] represents the probability distribution of an average agent’s
actions.

νp[a] =
∑
τ,u,k

dp[τ, u, k]πp[τ, u, k, a] (1)

γp[o, a] represents the probability of an interaction outcome for an
agent given its action a, and the action(s) of randomly chosen oppo-
nent(s) a′.

γp[o, a] =
∑
a′

νp[a
′]Θp[o, a, a

′] (2)

κp[k
∗, k, a] represents the probability, that an agent will have a

Karma balance k∗ after the interaction, given a previous Karma bal-
ance k and action a. Depending on the Ωp[k

t+1
j , kt

j ,Be, o
e
j ] logic

defined in the Karma game, e.g. highest vs. second highest bid wins,
winner pays bid to peer vs. to society, Karma redistribution etc., the
modelling of this function is a non-trivial task (see Appendix A).

ξ[u, a] represents the immediate costs an agent of type τ , with ur-
gency level u, Karma balance k performs action a in an interaction.

ξ[u, a] = −
∑
o

C[u, o]γp[o, a] (3)

ρp[τ, u
∗, k∗, u, k, a] represents the probability, that an agent of

type τ will have an urgency level u∗ and Karma balance k∗ after the
interaction, given a previous urgency level u, Karma balance k, and
action a.

ρp[τ, u
∗, k∗, u, k, a] =

∑
o

Ψp[τ, u
∗, u, o]γp[o, a]κp[k

∗, k, a] (4)

4
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𝜋𝑝 𝜏, 𝑢, 𝑘, 𝑎 𝑑𝑝 𝜏, 𝑢, 𝑘

𝜋𝑝
′ 𝜏, 𝑢, 𝑘, 𝑎 𝑑𝑝

′ , 𝑢, 𝑘

𝜈𝑝 𝑎 𝛾𝑝 𝑜, 𝑎 𝜅𝑝 𝑘∗, 𝑘, 𝑎

𝜉 𝑢, 𝑎 𝜌𝑝 𝜏, 𝑢∗, 𝑘∗, 𝑢, 𝑘, 𝑎

𝑅 𝜏, 𝑢, 𝑘 𝑃𝑝 𝜏, 𝑢, 𝑘

𝑉 𝜏, 𝑢, 𝑘 𝑄 𝜏, 𝑢, 𝑘, 𝑎

෤𝜋𝑝 𝜏, 𝑢, 𝑘, 𝑎

Figure 1: Stationary Nash Equilibrium Calculation.
The consumption behaviour of rational, selfish individuals in Karma
economies can be predicted by calculating the stationary Nash Equi-
librium. The stationary Nash Equilibrium [26] consists of two com-
ponents: (i) a probabilistic policy matrix πp, that describes how much
an individual would be willing to pay a, given his temporal preference
type τ , urgency u, and Karma balance k; (ii) a population distribution
dp, that describes the share of the population with given τ , u, and
k. The stationary Nash Equilibrium can be calculated in an iterative
process via intermediate results, as shown in this figure.

R[τ, u, k] represents the expected immediate cost for an agent of
type τ , urgency level u, and Karma balance k that follows the policy
πp[τ, u, k, a].

R[τ, u, k] =
∑
a

πp[τ, u, k, a]ξ[u, a] (5)

Pp[τ, u
∗, k∗, u, k] represents the probability, that an agent of type

τ will have an urgency level u∗ and Karma balance k∗ after the in-
teraction, given a previous urgency level u and Karma balance k, as-
suming that the agent follows the policy πp[τ, u, k, a].

Pp[τ, u
∗, k∗, u, k] =

∑
a

πp[τ, u, k, a]ρp[τ, u
∗, k∗, u, k, a] (6)

V [τ, u, k] represents the expected infinite horizon cost for an agent
of type τ , urgency level u and Karma balance k. V [τ, u, k] can be
computed by the recursive, Bellman-equation as shown below, and is
guaranteed to converge due to contraction-mapping.

V [τ, u, k]← R[τ, u, k] + T [τ ]
∑
u∗,k∗

Pp[τ, u
∗, k∗, u, k]V [τ, u∗, k∗]

(7)
Q[τ, u, k, a] is the single-stage deviation reward, when deviating

from the current iteration’s policy. This intermediate computation
product highlights where deviating from the current iteration’s pol-
icy is profitable and guides the process of improving the policy. In the
stationary Nash equilibrium, Q would not deviate from the policy any
more.

Q[τ, u, k, a] = ξ[u, a] + T [τ ]
∑
u∗,k∗

ρp[τ, u
∗, k∗, u, k, a]V [τ, u, k]

(8)
π̃p[τ, u, k, a] represents the perturbed best response policy. The

hyper parameter λ controls for how strong (greedy) the single-stage
deviation reward of this iteration should be taken into account when

improving the policy.

π̃p[τ, u, k, a] =
exp(λQ[τ, u, k, a]−maxa′ λQ[τ, u, k, a′])∑
a′ exp(λQ[τ, u, k, a]−maxa∗ λQ[τ, u, k, a∗])

(9)
Finally, the update of social state consists of two steps based on the

computed, intermediate products P and π̃p. Two hyper parameters,
control the speed of change for the distribution (ϖ), and for the policy
relative to the distribution (η ).

πp ← (1− ηϖ)πp + (ηϖ)π̃p (10)

dp ← (1−ϖ)dp + (ϖ)dpPp (11)

Further information on the computation of the Stationary Nash
Equilibrium can be found in Appendix B.

3.2 Software Framework

In this work, we present a well-documented, open-source, software
framework (Python, PEP8, GPL 3.0) to equip the reader with the
toolset to apply Karma as a resource allocation mechanism. It im-
plements the game theoretic formalism, allows for the computation
of the stationary Nash-equilibrium, provides a rich template library to
model Karma, and enables the simulation of Karma as a multi-agent-
system.

To use the software, users will need to follow a three-step approach:
(i) defining their Karma game (modelling), (ii) predicting the be-
haviour of market participants (optimization), and (iii) simulation of
a multi-agent-system Karma economy (simulation). In the following
we will outline how the reader can model a resource allocation prob-
lem, how the optimal policy at the stationary Nash equilibrium can be
computed using the optimization module, and finally how to simulate
the resource allocation as a multi-agent-system. For more information
and details, please refer the to GitHub page and documentation.

3.2.1 Modelling

In order to model a Karma resource allocation problem with the soft-
ware framework, the user needs to specify general parameters, logic
functions (for simulation) and probabilistic functions (for optimiza-
tion). The probabilistic functions need to be provided to capture how
an individual agent would model reality and make decisions, in order
to predict the optimal behaviour of a rational agent, by computing the
stationary Nash equilibrium. The logic functions need to be defined
in order to simulate the Karma game as a multi-agent-system. The
software framework offers a rich library of predefined templates and
examples for the probabilistic and logic functions.

To begin with, the user needs to specify the average initial Karma,
number of agents n, number of participants in an interaction ∥J ∥,
initial distribution dp[τ, u, k], set of temporal preferences T , set of
urgency levels U , set of valid Karma balances K, and set of possible
interaction outcomes O.

Next, the user needs to specify probabilistic functions, namely
the probabilistic outcome function Θp (Pr(o|B)), the probabilistic
Karma transition function Ωp (Pr(kt+1|kt,Be, oe,j)), and the prob-
abilistic urgency transition function Ψp (Pr(ut+1|ut, o, τ)).

Afterwards, the user needs to specify logic functions, that de-
termine payments between participants δki and/or a Karma over-
flow account Z that can be redistributed: the cost function
C([uj , oj ] → R), the temporal preference function T ([τi] →
[0; 1] ∈ R), the outcome function (Be → oe), the pay-
ment function ([aj , oj ] → [{δki∀i ∈ N} , Z]), the urgency tran-
sition function ([ui, oi] → ui), the overflow distribution function
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([{ki∀i ∈ N} , Z] → {δki∀i ∈ N}), and the Karma redistribution
function ({ki∀i ∈ N} → {δki∀i ∈ N}).

Design Parameter Modelling Aspect

Currency
Parity Ak, O
Balance limits K
Amount control Constant
Initialization Initial distribution
Redistribution Redistribution function

Interaction
Price control Payment function
Price limits Ak, Payment function
Resource provision Problem-specific
Resource allocation Outcome function
Counter-party J
Peer selection (Options by simulation module)
Decision making Optimal policy πp[τ, u, k, a]
Urgency process Ψp, Urgency transition function
Temporal preference T [τ ], Discount factors

Transaction
Payment amount Payment function
Payment receiver Payment function,

Overflow Distribution function
Karma gain & Payment function,
Karma loose Overflow distribution function,

Redistribution function

Table 3: Karma Design and Modelling

Table 3 connects the design parameters of the Karma mechanism
with the modelling aspects of the software framework. Please note,
the framework encodes the outcome oe,j = 0 as not receiving a re-
source (costs appear) and oe,j = 1 as receiving the resource (no costs
appear).

3.2.2 Optimization

In this section, we showcase the optimization process, which rep-
resents the computation of the Karma Game’s stationary Nash-
equilibrium, as described in Algorithm 1. For further information
on the optimization process and alternatives, review Appendix B.

Algorithm 1 Behaviour prediction

1: Init social state
2: while not AbortionCriterion do
3: Adjust state space
4: Validate social state
5: Compute intermediate products (in this order)
6: Update social state
7: end while

Init social state: To initialize the state distribution, one needs to
define an initial distribution across agent types, urgency levels and
Karma balances. The distribution will determine the average Karma
amount in the population, which needs to stay constant over the run-
time of the algorithm. To initialize the policy, the software framework
offers three possible initializations by default: “bottom”, “even” and

“top”, that represents initial policies in which the agents always bid
0 (bottom), always bid the maximum Karma amount (top) or an even
distribution between them (even). We recommend “even” as we ob-
served the convergence to proceed faster.

AbortionCriterion: As mentioned in the game theoretic model,
we employ an iterative approach to calculate the stationary Nash equi-
librium. Over many iterations, the difference of the social state after
and before the iteration decreases. While the algorithm will converge
towards the stationary Nash equilibrium, at some point, when the pre-
cision of the social state is sufficient, one can abort the computation.
A certain abortion criterion defines the sufficiency in this context.
In our software framework, we recommend the user to have a dual
abortion criterion: maximum number of iterations, and a convergence
threshold for the differences of social states between iterations.

Adjust state space: While the Karma game, as defined in this
work, could have an infinite state (possible Karma balances K) and
thus action space (possible actions A), in practice it is impossible
and unnecessary to calculate dp and πp for infinite spaces. In the
software framework, we store dp and πp in arrays (tensors) of finite
dimensions. We define initial state and action space based on the
average initial Karma, and then dynamically expand the spaces when
certain conditions are met, which make expansion necessary.

The initial state and action space need to be set by the user. We rec-
ommend an initial action space with a size equal to the average initial
Karma, and an initial state space with a size equal to four times the
average initial Karma (as within the first iterations the Karma distribu-
tion at the average initial Karma sinks and spills over to neighbouring
Karma balances on the left and rights).

The action space is expanded, if the sum of the policy’s action prob-
abilities of the boundary action (highest action in the space) across all
types, urgencies and Karma balances, exceed a threshold value. The
state space is expanded, if the sum of the distribution’s shares for the
highest four boundary states (highest Karma balances in the space)
across all types, and urgencies, exceeds a threshold value. We do so,
to make sure there is always enough space for the distribution to ex-
pand. Based on our computations, we have found the distribution to
react sensitive and convergence decelerates significantly if the distri-
bution hits the boundaries.

Validate social state: The numerical computations of the algo-
rithm with decimal floating point numbers can cause rounding errors
that accumulate over the iterations. Thus, it is important to regu-
larly validate whether the social state is correct, and if not, to correct
through normalization. The d[τ, u, k] is valid, if: (i) all the shares
for different types, urgency levels, and Karma balances add up to 1.0,
and (ii) the average Karma balance equals the average initial Karma
balance:

∑
τ,u,k

dp[τ, u, k] = 1.0 ∧
∑
τ,u,k

k × dp[τ, u, k] = const. (12)

The policy πp[τ, u, k, a] is valid, if the probabilities of all actions
for a given agent type, urgency level, and Karma balance adds up to
1.0: ∑

a

πp[τ, u, k, a] = 1.0 ∀ τ, u, k (13)

Compute intermediate products: The intermediate products are
calculated using an evolutionary, best-response dynamic, as described
in the game theoretic formalization. Please note, the iterative calcu-
lation of V is initialized as V [τ, u, k] = 0, and aborted based on two
criteria: (i) maximum number of iterations, (ii) convergence thresh-
old.

Update social state: The update of the social state follows the
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elaboration in the game theoretic formalization. The hyper parameters
can be tweaked for specific optimization problems, and also changed
adaptively over the iterations to accelerate convergence. Based on our
experiences, we recommend the values λ = 1000, ϖ = 0.20, η =
0.50 as a good set of hyper parameters to start with.

3.2.3 Simulation

The time-discrete simulation of Karma as a multi-agent system is out-
lined in Algorithm 2. The implemented simulator can be integrated
seemlessly with other simulators, and offers storage and computa-
tion for all Karma related population values. At all times, the soft-
ware framework records the population related information (type, ur-
gency level, Karma balance, cumulated costs, number of encounters),
and provides useful methods to retrieve information on the simulation
progress.

Algorithm 2 Simulation

1: Init social state
2: while not AbortionCriterion do
3: Begin epoch
4: Execute interactions

a: Participant selection
b: Decision making process
c: Determine outcome
d: Karma transactions (payments & overflow)

5: Close epoch
a: Urgency transition
b: Karma overflow distribution
c: Karma redistribution

6: end while

Init social state: In addition to the game parameters specified
during modelling and optimization, the number of agents n, an initial
state distribution d[τ, u, k], and the optimal policy πp[τ, u, k, a] need
to be provided. By default, an initial state distribution will be derived
from the computed stationary Nash equilibrium, in order to simulate a
multi-agent-system that already is in its steady state. However, there
are options to initiate the system by equally distributing Karma units.

AbortionCriterion: The simulation happens in discrete periods
of time (epoch), and can be repeated until a user-defined abortion
criterion is met. Each epoch consists of three computation steps.

Begin epoch: The first step of an epoch is to record of the states
before interactions.

Execute interactions: The second step of an epoch consists of
executing one or multiple interactions. Each interaction requires a list
of participating agents, to predict the actions of the participants based
on the optimal policy, and to compute an outcome of the interaction
based on the participant actions. The outcome of the interaction will
then cause the Karma transaction which includes the update of costs,
and Karma balances. The list of participating agents could originate
from a domain specific simulator, or could it be generated randomly.

Close epoch: The third step of an epoch includes the update of
states: urgency transition, Karma overflow distribution and Karma
redistribution (and internal recording).

3.3 Computation Example

3.3.1 Modelling

In this example, we will discuss the optimization and simulation of
a resource allocation problem, where there is one type of user with a
temporal preference of 0.8, and two urgency levels with costs 0 and
3. The initial Karma balance is set to 6. In terms of logic, the highest
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Figure 2: Social State in Stationary Nash Equilibrium.
The results of calculating the stationary Nash Equilibrium for an ex-
emplary Karma auction, after thousand iterations. We can observe
that the Karma balance across the population follows a t-like distribu-
tion (top left), and that the action of a random encountering competi-
tor will be a zero bid with a chance of more than 50% (top right). The
bids (action) for individuals, that do not experience any costs (u=0),
are always zero bids. Rather, they save their Karma for an urgent sit-
uation (middle left). The bids for individuals, that experience costs
when not winning the auction (u=1), are higher for larger Karma bal-
ances, but not higher than 9, as the chance of meeting a random com-
petitor with a larger bid are almost zero (middle right). The infinite
horizon reward (bottom left) shows, that the expected costs (nega-
tive rewards) for an individual depend on its Karma balance. The
perturbed best response (bottom right) exhibits, that the policy above
(middle right) is the best possible bidding strategy, and that one can-
not improve its own outcome by deviating from it.

bidding participant in an interaction of two agents wins, and pays the
bid to the peer. Also, let us assume there is no Karma redistribution.

3.3.2 Optimization

Figure 2 shows the results of the optimization process after 1000 iter-
ations. Starting from an average initial Karma of 6, we can observe,
that the state space expanded up to a Karma balance of 40 units, and
the action space expanded to 11 units for bidding (more is irrational
for the given set-up) (Figure 2, first row). The distribution dp[τ, u, k]
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Figure 3: Simulation as multi-agent-system.
The simulation of a Karma economy as a multi-agent-system of 200
rational individuals over 10,000 epochs, leads to a Karma distribution
similar to the one predicted by the stationary Nash Equilibrium. The
encounters (auctions) between two random participants per epoch,
happen normally distributed, where on average each individual par-
ticipated around 75 interactions. The cumulative cost distribution
demonstrates, that the chance of experiencing high costs over time
is very low. The Karma balance transitions exhibit, that Karma bal-
ances either increase by the bid of the opponent, shrink by one’s own
bid, or stay the same (both zero bids).

of Karma across the population is right skewed, meaning that there
is no incentive to hoard large amounts of Karma. The Karma poli-
cies (Figure 2, second row) show, that if there is an urgency of zero
πp[τ, u = 0, k, a], and thus no costs incurred with not getting the
resource, there is little incentive to bid anything except for 0, in or-
der to save the Karma units for situations when the urgency is not
zero. If there are costs incurred to not getting the resource however
πp[τ, u = 1, k, a] we can observe a bidding behaviour, up to 9 Karma
units. Above that, it doesn’t make sense for the participant to bid
higher and rather save its Karma units, as there are almost no agents
owning more than 20 Karma units, and no competitor will bid more.
Moreover, not all available Karma units are used in bidding in order
to save the units for future encounters. These two policies lead to the
average action distribution of a randomly selected competitor. The in-
finite horizon reward V [τ, u, k] (Figure 2, third row) shows, that the
expected reward (negative costs) increases (costs decrease) the larger
the Karma balance. This means, that participants with higher Karma
balances are more likely to win the auctions. The single stage devia-
tion Q[τ, u, k, a] matches almost completely with the derived Karma
policy after the 1000 iterations, which means the optimal policy is
reached, as there is no benefit anymore in deviating from it.

3.3.3 Simulation

Figure 3 shows the results of the simulation process after 10,000
epochs with one random interaction of two participants per epoch,
and a population of 200 individuals. On average, each agent has had
around 75 interactions as a result. The shape of the Karma distribution

resembles the predicted stationary Nash equilibrium. Furthermore,
we can see that the cumulative costs of the agents are right-skewed,
with an average of 0.7, meaning that agents rarely experience severely
high costs after multiple interactions. The Karma balance transition
shows the probabilities that an agent with a Karma balance before
(abscissa) ends up with a Karma balance after (ordinate), averaged
across all types and urgencies. One can observe three main diagonals,
as participants either do not participate in an interaction (remain with
the same amount of Karma), or participate and either win the resource
(loose Karma) or loose the resource (win Karma).

4 Case Study

New York City is the most populous and most densely populated city
in the United States of America, with an estimated population of 8.3
million people, and a land area of 1.2 square kilometers. New York
is located at the southern tip of New York State, and divided into
five boroughs, that are separated by rivers and the sea. Culturally
and economically, it is one of the most vibrant cities, being home
to financial institutions (Wall Street, the New York Stock Exchange),
and to headquarters of international corporations and organizations
alike (e.g. United Nations). Due to its flourishing economy, New York
and especially the borough Manhattan attract many visitors and com-
muters.

Holland Tunnel

Lincoln Tunnel

George 

Washington 

Bridge

Manhattan

New Jersey

A

B

Figure 4: Case Study: New Jersey and Manhattan (New York)
Manhattan (New York) attracts a large workforce from the neigh-
bouring state of New Jersey, that travel via interstate 95, and can
choose between Holland tunnel, Lincoln tunnel, and George Wash-
ington Bridge, to cross the Hudson river. In this case study, we ex-
plore the distributional effects of pricing the Lincoln tunnel, assuming
the Holland tunnel is closed, and the traffic must distribute across the
remaining two routes.

The neighbouring state of New Jersey is home to a large share of
Manhattan’s commuting workforce, per day around 1.23 million peo-
ple. New Jersey and Manhattan are separated by the Hudson river.
There are mainly three connections, drivers can use to cross the river:
the Holland Tunnel (Interstate 78), the Lincoln Tunnel (Route 495),
and the George Washington Bridge (Interstate 95), as shown in Fig.4.
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Together, these three connections transport more than 493,000 vehi-
cles per day. The Holland Tunnel consists of two tubes, has an op-
erating speed of 56 km/h, a length of around 2.5 km, 9 lanes, and
transports around 89,792 vehicles per day. The Lincoln Tunnel con-
sists of three tubes, has an operating speed of 56 km/h, a length of
around 2.4 km, 6 lanes, and transports around 112,995 vehicles per
day. The George Washington Bridge consists of two decks (levels),
has an operating speed of 72 km/h, a length of around 1.4 km, 14
lanes, and transports around 289,827 vehicles per day, making it the
world’s busiest vehicular bridge. The connections are separated by
4,37 km and 10.87 km respectively [50].

Currently, all bridges and tunnels in New York city follow a unified
toll rate scheme by the New York Port authority, with prices per ve-
hicle types, and time (on- and off-peak hours). The tolls are collected
when entering New York, and not when entering New Jersey. Special
discounts apply for taxis, or ride-sharing vehicles. Normal passenger
vehicles pay between $13.38 and $15.381.

Unfortunately, New York is not only known as an attractive city,
but also is it known as the city with the worst traffic in America. On
a daily average, vehicles spent 154 seconds per kilometer travelled in
New York City (average speed 20km/h) during rush hour, which sums
up to 112 wasted hours per year and vehicle due to congestion2. Be-
sides, constructions, planned maintenance, scheduled overnight clo-
sures, and security incidents cause the regular closure of these impor-
tant bottlenecks.

In this case study, let us discuss static road pricing with monetary
markets and Karma schemes for a scenario, where only two of the
three passages are available. Let us assume, that there is a fire haz-
ard due to an accident in the Holland Tunnel, and that the tunnel is
blocked for a week. A drive from A to B in our case study map
(Fig. 4) would be around 26.55 kilometers (35 minutes free flow) via
the Lincoln Tunnel, and 49.89 kilometers (40 minutes free flow) via
the George Washington Bridge. Before closure, it was only around
17.38 kilometers (24 minutes free flow) via the Holland Tunnel. The
traffic that came from Interstate 95 and used to go over the Holland
Tunnel, will try to go over the next closest passage nearby: the Lin-
coln Tunnel. As s a consequence, the Lincoln Tunnel is facing con-
gestion. Therefore, the New York City Port authority decides to price
the Lincoln Tunnel higher, and to stop charging for the George Wash-
ington Bridge. Doing so, the authority aims to distribute the addi-
tional traffic more efficiently between the two connections. In order to
mitigate congestion, the authority will choose a price that minimizes
the total travel time. We will compare the effects of road pricing be-
tween monetary markets and Karma markets.

Fig. 5 depicts the population urgency model. We model the popu-
lation with ten urgency levels (1 to 10), where the urgency levels are
assumed to be randomly-geometrically distributed in three different
scenarios (p=0.6, p=0.5, p=0.4). The n-th urgency level represents
delay costs of n times the hourly wage3 (value of time, VOT).

Fig. 6 depicts the travel time model. We assume a traffic of 10000
veh/h, which is split across the two routes. While the Lincoln Tunnel
has a shorter travel time upfront, it gets congested quickly, and af-
ter 6000 veh/h it is much slower when compared with the alternative
route. The route via George Washington Bridge offers slower travel
times, but higher capacity and less congestion and delays for even
higher flows. From a system optimal point of view, a minimum total
travel time of 6791 vehicle hours (40.75 minutes average travel time)
can be achieved, if the total flow (10000 veh/h) splits to 3983 veh/h

1New York Port Authority, Toll rates for all Port Authority bridges & tunnels. 2024
Toll Rates. https://www.panynj.gov/bridges-tunnels/en/tolls.html.

2TomTom Traffic Index Ranking 2023. https://www.tomtom.com/traffic-
index/ranking/?country=US.

3The salary distribution of New York city according to 2022 US Census data is as-
sumed: https://en.wikipedia.org/wiki/Household_income_in_the_United_States#Distribution
_of_household_income .
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Figure 5: Case Study: Population Urgency Model
Combining salary and urgency distribution results in a value of time
(VOT) distribution, that can be used to analyse the distributional ef-
fects using monetary road pricing. The urgency of an individual rep-
resents its willingness to pay n-times its salary for using the Lincoln
tunnel. We assume three, geometrically-distributed urgency scenarios
for this investigation.
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Figure 6: Case Study: Travel Time Model
The travel times per route depend on the traffic (flow) on each route.
While the Lincoln tunnel is a faster route in general, it reacts more
sensitive to higher traffic, and gets much slower due to congestion.
The George Washington Bridge is a slower route, but has a higher
capacity and therefore does not react to higher traffic flows. From
a system perspective, the optimal traffic flow split can be achieved,
when the total travel time (vehicle hours) are minimized, meaning
around 3983 veh/h on the tunnel route, and the rest via the bridge.
However, rational individuals, that try to achieve the best outcome for
themselves, lead to a tunnel usage (Wardrop equilibrium), where the
travel times of both routes are equal. As a result, the selfish behaviour
of rational individuals causes 4.26 minutes of additional travel time
per vehicle on average.
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on the Lincoln route and 6017 veh/h on the George Washington route.
Unfortunately, rational (selfish) individuals would optimize their indi-
vidual outcome, leading to an user equilibrium (Wardrop equilibrium)
at a split of 6169 veh/h on the Lincoln tunnel, as there is no way to
improve one’s individual outcome by changing anymore. The split at
the user equilibrium (45.01 minutes average travel time) causes 4.26
minutes of additional travel time to every vehicle on average. With
the right pricing of the Lincoln Tunnel, the total travel time could be
reduced by almost 10%.

5 Results

In this case study we aim to compare the distributional effects of
money and Karma based markets, and try to understand when Karma
works better than money.

For monetary markets, we calculate the user equilibrium following
[51]; when drivers choose between taking the Lincoln Tunnel or the
George Washington Bridge route they will minimize their costs. Each
driver experiences three types of costs: for paying the fee if using
Lincoln, paying fuel, and delay costs based on their VOT. We assume
an average vehicle consumption of 6.5 l/100km (36 mpg) 4, and a fuel
price of 0.96 $/l 5.

For Karma markets, we assume a pairwise auction between two
consumers, where the highest bid is paid to the society, and no Karma
redistribution to take place. The bidder wins the auction, if his auction
is above a certain Karma threshold price and the highest bid. The
consumer population is initiated with an average budget of 10 Karma
points. The costs are modelled similar to the monetary markets.

Fig. 7(A) shows how different prices for the Lincoln Tunnel will
affect the consumer behaviour in monetary markets. Without the pres-
ence of pricing, the user equilibrium lies at the Wardrop equilibrium
(around 60% will take the Lincoln tunnel). For an increasing price,
the demand drops. For a price of $ 18.42 the user equilibrium lies ex-
actly at the system optimum in scenario 1 ($ 21.36 and $ 25.54 for the
other two scenarios). Similarly, a price in Karma Markets can reduce
consumption, as shown in Fig. 7(B). Without the presence of pricing,
the highest-bid auctions with exactly two players will result in always
50% of the population to win. For a price of around 5.36 Karma,
the user equilibrium can be controlled to sustainable levels as well in
scenario 1 (6.27 Karma and 7.71 Karma for the other two scenarios).

Fig. 7(C) shows the share of consumers and travel times across dif-
ferent incomes and urgencies at the optimal price for scenario 1. Mon-
etary markets enable consumers with higher incomes (higher salary
levels) to use the Lincoln tunnel, and to thus achieve significantly
lower travel times. For instance, only ∼20% of the consumers at the
lower end of income are willing (or able) to pay for using the Lin-
coln Tunnel, while the consumers at the upper end of income almost
all (∼95%) are willing to pay for usage. Therefore, consumers with
lower income have a noticeably higher travel time (∼45 min) when
compared with those of higher incomes (∼34 min). These results
exemplify the equity issues related to road pricing using monetary
markets. Even though the pricing mechanism allows for achieving
more efficient usage of the road infrastructure, it embodies the dis-
crimination based on income, which is unevenly distributed across
consumers. Contrary to that, we can observe that Karma markets are
completely indifferent to the income of consumers, as Karma follows
its own, non-monetary logic. In Karma markets, 39.83% of all con-
sumers, indifferent from the salary, will get access to the Lincoln tun-
nel, and therefore achieve on average 40.75 minutes.

With regard to different levels of urgency, we find that monetary

4Average US fleet fuel consumption in 2021, according to US transportation
secretary Pete Buttigieg. https://edition.cnn.com/2022/04/01/energy/fuel-economy-
rules/index.html.

5Average US fuel price. https://tradingeconomics.com/united-states/gasoline-prices.

markets guarantee access to the resource of interest to the highest
levels of urgency (almost 100%), while only ∼22% of consumers
of lower urgency use the tunnel. Compared to money, the Karma
mechanism deviates slightly; in the lowest urgency level 1 ∼17% (so
∼5% less) of the consumers get access to the tunnel, and at urgency
level 3∼70% (so∼5% more) of the consumers can access the tunnel.
For higher levels of urgency, the Karma mechanism only guarantees
∼75% (25% less) of the consumers access to the tunnel. At first sight,
these results might imply, that Karma does not align as well to the ur-
gencies of consumers, as money does. However, one must take into
account, that most consumers are in the lower urgency regimes (e.g.
95% of consumers with urgency less than level 5).

Therefore, we have analysed the distribution of urgency levels
within the preferred route (Lincoln tunnel) and the alternative route
(George Washington bridge), as shown in Fig. 7(D). The results show,
that the Karma mechanism leads to a situation, where consumers of
higher urgency are present in the Lincoln tunnel, and consumers of
lower urgency are present on the George Washington bridge, when
compared with the monetary market. The Karma mechanism achieves
an average urgency level of 2.32 in the Lincoln tunnel (2.14 for
money), and an average urgency level of 1.24 on the George Wash-
ington bridge (1.35 for money).

Next, we analysed the costs and benefits of the road pricing strategy
(for scenario 1). Table 4 contrasts resource usage, travel times, and
cost breakdown for a situation where there is no pricing, where pric-
ing with monetary markets is applied, and where pricing with Karma
markets is applied. Due to the introduction of pricing, resource us-
age can be reduced and therefore total travel time (and average travel
time) can be reduced to a possible minimum. The cost breakdown re-
veals, that the total financial costs per user, that consist of fuel costs,
fees for the usage of the Lincoln tunnel, and travel time costs (due
to the VOT), can be reduced from $89.03 (unpriced) down to $81.20
(9% less). Thus, controlling the access to the resource yields sig-
nificant improvements for the drivers. While the fuel costs increase
only slightly from $2.19 up to $2.53 (as more consumers drive the
longer route via the George Washington bridge), the pricing intro-
duces financial fee costs in case of the monetary markets of $7.33 on
average to the consumer. Karma has an advantage here, as no addi-
tional financial costs due to fees are generated. With regards to the
costs due to travel times (VOT), we can observe that monetary mar-
kets can achieve stronger cost reductions from $86.84 down to $71.97
(17% less), as the money mechanism takes salaries and VOTs into ac-
count. Au contraire, Karma focuses on consumer needs (urgencies)
only, and hence achieves solely 9% travel time cost reductions. Es-
sentially, Karma and money both yield improvements when compared
to the unpriced situation, with almost similar total cost improvements
per user. The cost reductions from the monetary mechanism originate
from a better alignment to the VOTs, at the cost of an additional fee,
while the cost reductions from the Karma mechanism originate from
a better alignment to the urgencies.

Finally, we have tried to better understand when Karma outper-
forms money. A major determinant of the distributional effects of the
monetary mechanism is the distribution of financial power. There-
fore, we sampled synthetic salary distributions with different levels of
evenness measured by the Gini coefficient. The Gini coefficient as-
sumed salary distribution of New York from the case study lies around
0.375. We generated salary distributions with Gini coefficients be-
tween 0.20 and 0.50, as most nations possess income distributions in
that range. We then determined optimal prices to achieve system op-
timal resource usage of the Lincoln tunnel, and quantified the average
urgency levels of consumers in the Lincoln tunnel as a measure for
how well the mechanism allocates resources and how strongly it is
aligned to the consumer needs. The results for the three different sce-
narios are shown in Fig. 8, where alignment with needs (urgency) is
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Figure 7: Case Study: Resource Allocation with Monetary vs. Karma Market
A systematic comparison of the distributional effects when using money and Karma road pricing of the Lincoln tunnel. (A) Increasing monetary
prices incentivizes the population of rational individuals to transition from the Wardrop Equilibrium towards the system optimum for a price of
around $ 20-30. (B) Increasing minimum bids (prices) in Karma auctions leads to the migration of the stationary Nash Equilibrium from 50%
using the tunnel route, to a system-optimal traffic flow split for a threshold between 5 and 8 Karma points. (C) When optimal-pricing the tunnel
route with monetary mechanisms, individuals with higher incomes (salary class) experience significantly shorter travel times, as they can afford
to access the faster route more often. When pricing with Karma mechanisms, the access to the faster route and travel times are not related to the
individuals’ income. With regards to the urgency levels, for both mechanisms it can be observed, that individuals with higher urgency experience
shorter travel times. In monetary mechanisms, individuals of very high urgencies (beginning from level 6) almost all access the faster route, while
in Karma mechanisms, this is not the case. (D) The urgency level distribution of individuals (conditional probability) on both routes reveals, that
Karma achieves a greater alignment with the needs, than money does (higher resp. lower average urgency level on faster resp. slower route).
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measured as the average urgency level in the Lincoln tunnel.
In societies with more even distributions (smaller Gini coeffi-

cients), monetary markets can achieve a larger alignment to the con-
sumer needs. The larger the inequalities in financial power become,
the less alignment with consumer needs can be achieved. The Karma
mechanism instead does not react sensitive to the salary distribution.
The superiority of Karma over money depends on the urgency distri-
bution as well. In our case study, it turns out that the Karma mecha-
nism works better than money for scenarios 1 and 2. In the fictional
scenario 3 however, when urgency regimes become more evenly dis-
tributed, the Karma mechanism is slightly worse. In scenario 1, less
than 5% of the consumer population is urgent enough to be willing
to pay more than three times hourly salary in exchange for the same
amount of time, while in scenario 3 it is already 30%, which can be
considered to occur rarely in practice.

Comparison Unpriced Money Karma
Resource Usage
...Consumers on Lincoln Route 61.79% 39.83% 39.83%
Times
...Av. Travel Time [min] 45.01 40.75 40.75
...TotalTravelTime [veh x h] 7511 6791 6791
Costs per User
...Fuel $2.19 $2.53 $2.53
...Fees $0.0 $7.33 $0.0
...Travel Time $86.84 $71.97 $78.66
Total Costs per User $89.03 $81.84 $81.20

Table 4: Case Study: Cost & Benefit Analysis of Karma Pricing

To summarize, Karma is a fair and efficient resource allocation
mechanism that has the potential to address the equity issues of eco-
nomic instruments when coping with public goods. The results of the
case study indicate, that similar to money, Karma can be used as a re-
source pricing mechanism, to control the user equilibrium to sustain-
able levels of consumption. Contrary to money, Karma embodies fair-
ness, as it does not discriminate based on financial power (income),
but orients resource allocation on the urgency of consumers. Karma
is an efficient and robust resource allocation mechanism, that works
independently of the distribution of financial power in a society. The
results indicate, that Karma achieves a resource allocation that is bet-
ter aligned with the urgencies of consumers than money does. This is
especially the case for societies with higher inequalities in financial
power. Furthermore, Karma pricing does not impose additional costs
to the users, and generates significant improvements both in travel
times and total costs per user.

6 Conclusions

This study set out to demonstrate the potential of Karma to ad-
dress equity issues of economic instruments when coping with public
goods. Within this work, we reviewed important design elements and
challenges when designing Karma mechanisms, discussed the value
proposition of Karma as a non-monetary resource allocation mecha-
nism, model Karma as a game, and equip the reader with a useful soft-
ware framework to predict consumer behaviour in Karma economies.
At the example of a case study on bridge tolling, we systematically
compare the distributional effects and related equity issues of mone-
tary and Karma resource allocation mechanisms and demonstrate the
potential of this concept. The results show, that Karma outperforms
money, especially in situations where financial power is unequally
distributed across the population, as Karma achieves a stronger align-
ment to consumer needs. The Karma mechanism embodies fairness,
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Figure 8: When Karma Works Better
The superiority of Karma over money in terms of needs-alignment
depends on the distribution of salaries. For a certain level of inequality
in the income distribution, Karma performs better than money (Gini
coefficient between 0.35 and 0.38).

as it does not discriminate based on financial power (income), and
furthermore it does not generate an additional financial burden to the
consumers.

Future research could investigate the effects of different urgency
distributions, and populations with heterogeneous temporal prefer-
ences (discount rates). Moreover, empirical studies could be con-
ducted to determine more realistic distributions of urgencies and tem-
poral preferences across populations.
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A Assumptions of Karma Game

Karma is a repeated, dynamic population game, as the Karma game
is not played once but multiple times and the time is split into discrete
epochs (rounds). As argued in previous works, a time horizon of at
least multiple rounds is crucial to incentivize cooperation amongst
selfish participants [26, 37, 38, 52, 53]. The formalism describes a
stochastic game, as the state and state transitions of agents depend
upon probabilities. Besides, the behaviour of agents, such as their bids
or accepting resource provision requests, is modelled as a Markov de-
cision process [26, 49]. The formalism describes a population game,
as the Karma mechanism aims to represent the strategic interplay in
large societies of rational (selfish) agents (participants) [49].

The Karma game makes certain assumptions in order to facilitate
simulation and computation of the stationary Nash equilibrium. In
this chapter, we will discuss these assumptions, as well as provide
guidance on how intelligent modelling can achieve complex Karma
games despite these restricting assumptions:

• The selection of participants for an interaction is randomly cho-
sen from the population.

• The Karma balance of each agent must be greater or equal to
zero. There is no such thing as a Karma debt allowed.

• The total amount of Karma in circulation remains constant over
time.

• The total amount of agents in the population remains constant
over time.

• The possible actions of an agent in an interaction solemnly de-
pends on its Karma balance.

• The decision making process of agents to choose an action dur-
ing an interaction solemnly depends on its own, private state
(type, urgency, Karma), and not the states of others.

• The decision making process of agents to choose an action dur-
ing an interaction solemnly depends on its own, current state,
and not on its previous states.

• The agents have an identical decision making process by follow-
ing the same, state-specific policy, assuming that the policy de-
scribes the best possible choice (optimum) for an egoistic, self-
ish, rationally acting agent.

Important implications of these assumptions, guidance on mod-
elling, and how intelligent modelling can achieve complex Karma
games despite the restricting assumptions is discussed in the follow-
ing.

• The selection of participants is not discriminatory in terms of
agent type, urgency or Karma balance. This means, that the
probability to be selected in an interaction is proportional to the
share in the distribution defined by d. There must be at least two
participants selected. In certain contexts, it could be possible to
more than two participants, or even the whole population as in
[25].

• A negative Karma balance is not possible. The set of possible
Karma balances however could be defined as infinite, choosing
the positive natural numbers.

• A changing number of agents could be modelled by introducing
a specific type and urgency, for agents that have no cost and
no temporal preference, and thus will act in an interaction with
the specific action type “no action” (e.g. refusing any action), so
that they always result in a specific outcome type (not receive
resource).

• Only sealed bid auctions as a form of interaction are possible in
the Karma system, as the state of agents is private to others and
the system. This is particularly important, as it enables this form
of decentralized, parsimonious control to work without a large
overhead, and without the need to exchange any information ex-
cept for the action. Of course this assumes that certain forms of
smart contracts enforce all participants to act according to the set
of possible actions.

• An important assumption this model makes is, that the agent’s
decision making is a Markov decision process chain, meaning
that the decision making of the agent at a specific stage only
depends upon the agent’s current exogenous state and available
actions, but not a history on past states or actions [45].

• The action of an agent must at least be the bid in a sealed bid
auction, but can in addition include other actions. As an exam-
ple, in [25] the action is the bid and the decision when (timeslot)
to start driving to work in the morning.

• The outcome of the interaction oe is the vector of outcomes oe,j
for each participant j. It could be modelled binary, where oe,j =
1 represents that participant j receives the resource, and oe,j = 0
represents that participant j does not receive the resource.

• Multi-agent control systems aim to find mechanisms to align
selfish behaviour with global, societal goals. One can assume,
that a population of rational agents, be it human or autonomous,
will always try to express a behaviour that will maximize their
own, expected reward. Therefore, once proven that the policy is
the optimal policy for a rational, selfish agents, we can conclude
that all agents will follow the identical, state specific policy. Of
course, this does not necessarily mean that each agent has the
(cognitive) ability to identify the optimal policy, but this can be
discussed in future research. Besides, one could either assume
an algorithmic bidding assistant for humans.

The interested reader is recommended to look in further modelling
peculiarities in [24–26, 54].

B Stationary Nash-Equilibrium Computation

In order to calculate the optimal social state at the stationary Nash
equilibrium, previous works used optimization algorithms that are it-
erative, heuristic and numeric. [24] suggests fixed point computation,
momentum method and simulated annealing. [25, 26, 33] use evolu-
tionary dynamics inspired optimization algorithms. [38] employs the
Smith protocol. The choice of a suitable optimization algorithm is
important, as the state-space is large and the dynamics are rigid [38].
In this work, we compute the stationary Nash equilibrium employing
an evolutionary dynamics inspired optimization algorithm [26]. The
interested reader is highly recommended to review further optimiza-
tion approaches in [55], such as the Replicator-approach, Brown-von-
Neumann-Nash, Smith, and the Projection.
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