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ABSTRACT: 
 
An algorithm for the least squares matching of overlapping 3D surfaces is presented. It estimates the transformation parameters of 
one or more fully 3D surfaces with respect to a template one, using the Generalized Gauss-Markoff model, minimizing the sum of 
squares of the Euclidean distances between the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 3D 
surfaces simultaneously, without using explicit tie points. Besides the mathematical model of the procedure, we discuss the 
computational aspects. We give practical examples to demonstrate the method.  
 
 

1. INTRODUCTION 

In the literature, several attempts have been described 
concerning the registration of 3D pointclouds. One of the most 
popular methods is the Iterative Closest Point (ICP) algorithm 
developed by Besl and McKay (1992), Chen and Medioni 
(1992) and Zhang (1994). The ICP is based on the search for 
pairs of nearest points in two data sets and estimates the rigid 
body transformation that aligns them. Then, the rigid body 
transformation is applied to the points of one set and the 
procedure is iterated until convergence is achieved.  
 
In Besl and McKay (1992) and Zhang (1994) the ICP requires 
every point in one surface to have a corresponding point on the 
other surface. Alternatively, the distance between the 
transformed points in one surface and the corresponding tangent 
planes on the other surface was used as a registration evaluation 
function (Chen and Medioni, 1992; Bergevin et al., 1996; Pulli, 
1999). The point-to-tangent plane approach gives a better 
registration accuracy than the point-to-point approach. It was 
originally proposed by Potmesil (1983).  
 
The outliers due to erroneous measurements (e.g. points on the 
object silhouette) and occlusions may significantly impair the 
quality of the registration. The following strategies have been 
proposed for localization and elimination of outliers and 
occlusions: rejection of pairs based on predefined (constant) 
distance threshold (Turk and Levoy, 1994; Zhang, 1994; Blais 
and Levine, 1995; Guehring, 2001; Dalley and Flynn, 2002) or 
variable distance thresholds adapted from Robust Estimation 
Methods (Masuda and Yokoya, 1995; Neugebauer, 1997; 
Fitzgibbon, 2001; Gruen and Akca, 2005), rejection of pairs 
based on the orientation threshold for surface normals (Zhang, 
1994; Guehring, 2001), rejection of pairs containing points on 
mesh boundaries (Turk and Levoy, 1994; Pulli, 1999; Guehring, 
2001), rejection of pairs based on the reciprocal correspondence 
(Pajdla and Van Gool, 1995), rejection of the worst n% of pairs 
(Pulli, 1999), employing the least median of squares (LMS or 
LMedS) (Masuda and Yokoya, 1995) and the least trimmed 
squares estimators (Chetverikov et al., 2005).  
 

In the ICP algorithm and its variants, main emphasis is put on 
the estimation of a 6-parameter rigid body transformation 
without uniform scale factor. There are a few reports in which 
higher order geometric transformations are formulated (Feldmar 
and Ayache, 1996; Szeliski and Lavallee, 1996).  
 
The parameters of the rigid body transformation are generally 
estimated by the use of closed-form solutions, mainly singular 
value decomposition (SVD) (Arun et al., 1987; Horn et al., 
1988) and quaternion methods (Faugeras and Hebert, 1986; 
Horn, 1987). Eggert et al. (1997) and Williams et al. (1999) 
provide an extensive review and comparison. The closed-form 
solutions can only estimate the parameters of a rigid body or a 
similarity transformation.  
 
The closed-form solutions cannot fully consider the statistical 
point error models. Zhang (1994) and Dorai et al. (1997) 
weighted the individual points based on a priori noise 
information. Williams et al. (1999), Guehring (2001) and 
Okatani and Deguchi (2002) proposed methods that can model 
the anisotropic point errors.  
 
The gradient descent type of algorithms can support full 
stochastic models for measurement errors, and assure a 
substantially lower number of iterations than the ICP variants 
(Szeliski and Lavallee, 1996; Neugebauer, 1997; Fitzgibbon, 
2001). The Levenberg-Marquardt method is usually adopted for 
the estimation.  
 
The ICP, and in general all surface registration methods, require 
heavy computations. Strategies, mainly employed to reduce the 
computation time are: reduction of the number of iterations, 
reduction of the number of employed points, and speeding up 
the correspondence computation. Extensive surveys on 
commonly used methods are given in Akca and Gruen (2005b), 
Jost and Huegli (2003) and Park and Subbarao (2003).  
 
Several reviews and comparison studies on surface registration 
methods are available in the literature (Jokinen and Haggren, 
1998; Williams et al., 1999; Campbell and Flynn, 2001; 
Rusinkiewicz and Levoy, 2001; Gruen and Akca, 2005).  
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In Photogrammetry, the problem statement of surface patch 
matching and its solution method was first addressed by Gruen 
(1985) as a straight extension of Least Squares matching 
(LSM).  
 
There have been some studies on the absolute orientation of 
stereo models using Digital Elevation Models (DEM) as control 
information (Ebner and Strunz, 1988; Rosenholm and 
Torlegard, 1988). This work is known as DEM matching. This 
method basically estimates the 3D similarity transformation 
parameters between two DEM patches, minimizing the sum of 
squares of differences along the z-axes. Schenk et al. (2000) 
showed the clear advantage of minimization of distances along 
surface normals against to minimization of elevation 
differences. Beside the many other applications it has been used 
for the registration of airborne laser scanner strips as well 
(Maas, 2000; Postolov et al., 1999). The DEM matching 
corresponds mathematically to Least Squares image matching, 
but can only be applied to 2.5D surfaces, which is of limited 
value in case of generally formed objects.  
 
In our previous work an algorithm for Least Squares matching 
of overlapping 3D surfaces was given (Gruen and Akca, 2005). 
It estimates the transformation parameters of one or more fully 
3D surfaces with respect to a template one, using the 
Generalized Gauss-Markoff model, minimizing the sum of 
squares of the Euclidean distances between the surfaces. This 
formulation gives the opportunity of matching arbitrarily 
oriented 3D surfaces simultaneously, without using explicit tie 
points. Our mathematical model is a generalization of the Least 
Squares image matching method, in particular the method given 
by Gruen (1985). We gave further extensions of the basic 
model: simultaneous matching of multi sub-surface patches, and 
matching of surface geometry and its attribute information, e.g. 
reflectance, color, temperature, etc. under a combined 
estimation model (Akca and Gruen, 2005a). 
 
In this study we focus on the computational aspects with regard 
to outlier and occlusion detection and the optimization of the 
run-time of the correspondence computation. The details of the 
mathematical modeling of the proposed method and the 
execution aspects are explained in the following section. The 
two strategies for the fast correspondence computation are 
given in the third section. Practical examples to demonstrate the 
feasibility of the method are presented in the fourth section. 
 

2. LEAST SQUARES 3D SURFACE MATCHING 

2.1 The basic estimation model  

Assume that two partial surfaces of an object were digitized at 
different times or from different viewpoints or by different 
sensors. f (x, y, z) and g (x, y, z) are conjugate regions of the 
object in the template and search surfaces, respectively. Both of 
them are discrete 3D approximations of the continuous function 
of the object surface. The surface representation can be carried 
out in any piecewise form. f (x, y, z) and g (x, y, z) stand for any 
surface element of this representation.  
 
The problem is estimating the parameters of a 3D 
transformation, which satisfies the Least Squares matching of 
the search surface g (x, y, z) to the template f (x, y, z). In an 
ideal situation one would have 
 

),,(),,( zyxgzyxf =  (1) 
 

Because of the effects of random errors, Equation (1) is not 
consistent. Therefore, a true error vector e (x, y, z) is added, 
assuming that the template noise is independent of the search 
noise.  
 

),,(),,(),,( zyxgzyxezyxf =−  (2) 
 
Equation (2) are observation equations, which functionally 
relate the observations f (x, y, z) to the parameters of g (x, y, z). 
The matching is achieved by Least Squares minimization of a 
goal function, which measures the sum of the squares of the 
Euclidean distances between the surfaces. The final location is 
estimated with respect to an initial position of g (x, y, z), the 
approximation of the conjugate search surface g0(x, y, z). 
 
To express the geometric relationship between the conjugate 
surface patches, a 7-parameter 3D similarity transformation is 
used:  
 

)( 013012011 zryrxrmtx x +++=  
)( 023022021 zryrxrmty y +++=  

)( 033032031 zryrxrmtz z +++=  (3) 
 
where rij = R(ω,ϕ,κ) is the orthogonal rotation matrix, 
[tx  ty  tz ]T is the translation vector, and m is the uniform scale 
factor. This parameter space can be extended or reduced, as the 
situation demands it. 
 
In order to perform a Least Squares estimation, Equation (2) is 
expanded using the Taylor series, of which only the linear terms 
are retained:  
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where pi ∈{tx , ty , tz , m, ω, φ, κ} is the i-th transformation 
parameter in Equation (3). Differentiation of Equation (3) gives: 
 

κ+ϕ+ω++= dddddd 13121110 aaamatx x  
κ+ϕ+ω++= dddddd 23222120 aaamaty y  

κ+ϕ+ω++= dddddd 33323130 aaamatz z  (6) 
 
where aij are the coefficient terms whose expansions are trivial.  
 
Using the following notation 
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and substituting Equations (6), Equation (4) results in the 
following:  
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In the context of the Gauss-Markoff model, each observation is 
related to a linear combination of the parameters, which are 
variables of a deterministic unknown function. The terms 
{gx , gy , gz} are numeric first derivatives of this function 
g (x, y, z).  
 
Equation (8) gives in matrix notation  
 

PA       lxe ,−=−  (9) 
 
where A is the design matrix, P = Pll is the a priori weight 
matrix, xT= [dtx   dty   dtz   dm   dω   dφ   dκ] is the parameter 
vector, and l = f (x, y, z) – g0(x, y, z) is the discrepancy vector 
that consists of the Euclidean distances between the template 
and correspondent search surface elements. In our 
implementation, the template surface elements are 
approximated by the data points. On the other hand, the search 
surface elements are represented by user selection of one of the 
two different type of piecewise surface forms (planar and bi-
linear). In general, both surfaces can be represented in any kind 
of piecewise form.  
 
With the statistical expectation operator E{} and the 
assumptions 
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the system (9) and (10) is a Gauss-Markoff estimation model. 
Qll and Kll stand for a priori cofactor and covariance matrices, 
respectively.  
 
The unknown transformation parameters are treated as 
stochastic quantities using proper a priori weights. This 
extension gives advantages of control over the estimating 
parameters. We introduce the additional observation equations 
for the system parameters as 
 

bbb PI       lxe ,−=−  (11) 
 
where I is the identity matrix, lb is the (fictitious) observation 
vector for the system parameters, and Pb is the associated 
weight coefficient matrix. The weight matrix Pb has to be 
chosen appropriately, considering a priori information of the 
parameters. An infinite weight value ((Pb)ii → ∞) excludes the 
i-th parameter from the system assigning it as constant, whereas 
zero weight ((Pb)ii = 0) allows the i-th parameter to vary freely 
assigning it as free parameter in the classical meaning.  
 
The Least Squares solution of the joint system Equations (9) 
and (11) gives as the Generalized Gauss-Markoff model the 
unbiased minimum variance estimation for the parameters 
 

)()(ˆ T1T
bbb llx PPAPPAA ++= −  solution vector (12) 

rbbb )(ˆ TT2
0 vvvv PP +=σ  variance factor (13) 

lxv −= ˆA  residual vector for surface observations (14) 

bb lxv −= ˆI  residual vector for parameter observations (15) 
 
where ^ stands for the Least Squares Estimator, and r is the 
redundancy. Since the functional model is non-linear, the 
solution is obtained iteratively. In the first iteration the initial 
approximations of the parameters must be provided. After the 
solution vector (Equation 12) is solved, the search surface 
g0(x, y, z) is transformed to a new state using the updated set of 
transformation parameters, and the design matrix A and the 
discrepancies vector l are re-evaluated. The iteration stops if 
each element of the alteration vector x̂  in Equation (12) falls 
below a certain limit: | dpi |<ci .  
 
The numerical derivative terms {gx , gy , gz} are defined as local 
surface normals n. Their calculation depends on the analytical 
representation of the search surface elements. The derivative 
terms are given as x-y-z components of the local normal 
vectors: [gx  gy  gz]T

 = n = [nx  ny  nz]T.  
 
The surface representation is carried out in two different forms 
optionally: a TIN form, which gives planar surface elements, 
and a grid mesh form, which gives bi-linear surface elements. 
Both of these are first degree C0 continuous surface 
representations. Surface topology is established simply by 
reading the standard range scanner output files in ASCII format 
and loading them in the scan-line order. For the pointclouds 
which have an irregular or unconventional sampling principle 
(or pattern), a more complex surface mesh generation algorithm 
can be utilized. For the details we refer to Gruen and Akca 
(2005).  
 
2.2 Error detection and execution aspects  

The standard deviations of the estimated transformation 
parameters and the correlations between themselves may give 
useful information concerning the stability of the system and 
quality of the data content (Gruen, 1985):  
 

1T
0 )(,ˆˆ −+=∈σ=σ bxxppppp qq PPAAQ       (16) 

 
where Qxx is the cofactor matrix for the estimated parameters. 
 
Detection of false correspondences with respect to the outliers 
and occlusions is a crucial part of every surface matching 
method. We use the following strategies in order to localize and 
eliminate the outliers and the occluded parts.  
 
A median type of filtering is applied prior to the matching. For 
each point, the distances between the central point and its k-
neighborhood points are calculated. In our implementation, k is 
selected as 8. If most of those k-distance values are much 
greater than the average point density, the central point is likely 
to be an erroneous point on a poorly reflecting surface (e.g. 
window or glass) or a range artifact due to surface discontinuity 
(e.g. points on the object silhouette). The central point is 
discarded according to the number of distances, which are 
greater than a given distance threshold.  
 
In the course of iterations a simple weighting scheme adapted 
from Robust Estimation Methods is used: 
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In our experiments K is selected as >10, since it is aimed to 
suppress only the large outliers. It can be changed according to 
a desired confidence level. Because of the high redundancy of a 
typical data set, a certain amount of occlusions and/or smaller 
outliers do not have significant effect on the estimated 
parameters. As a comprehensive strategy, Baarda’s (1968) data-
snooping method can be favorably used to localize the occluded 
or gross erroneous measurements.  
 
Finally, the correspondences coinciding to mesh boundaries are 
excluded from the estimation. The mesh boundaries represent 
the model borders, additionally the data holes inside the model. 
The data holes are possibly due to occlusions. Rejecting the 
correspondences on the mesh boundaries effectively eliminates 
the occlusions. 
 
The convergence behaviour of the proposed method basically 
depends on the quality of the initial approximations and quality 
of the data content. For a good data configuration case it usually 
achieves the solution after 5 or 6 iterations.  
 

3. ACCELERATION STRATEGIES 

3.1 Fast correspondence computation with boxing 
structure  

The computational effort increases with the number of points in 
the matching process. The main portion of the computational 
complexity is to search the corresponding elements of the 
template surface on the search surface, whereas the parameter 
estimation part is a small system, and can quickly be solved 
using Cholesky decomposition followed by back-substitution. 
Searching the correspondence is guided by an efficient boxing 
structure (Chetverikov, 1991), which partitions the search space 
into cuboids. For a given surface element, the correspondence is 
searched only in the box containing this element and in the 
adjacent boxes. In the original publication (Chetverikov, 1991) 
it was given for 2D point sets. We straightforwardly extend it to 
the 3D case. For the implementation details we refer to (Akca 
and Gruen, 2005b). The access procedure requires O(q) 
operations, where q is the average number of points in the box. 
It is easy to implement and time-effective for accessing the 
data.  
 
In our implementation, the correspondence is searched in the 
boxing structure during the first few iterations, and in the 
meantime its evolution is tracked across the iterations. 
Afterwards the searching process is carried out only in an 
adaptive local neighborhood according to the previous position 
and change of correspondence. In any step of the iteration, if 
the change of correspondence for a surface element exceeds a 
limit value, or oscillates, the search procedure for this element 
is returned to the boxing structure again. 
 
3.2 Simultaneous multi-subpatch matching  

The basic estimation model can be implemented in a multi-
patch mode, that is the simultaneous matching of two or more 
search surfaces g i(x, y, z), i =1,…, k to one template f (x, y, z).  
 

11111 , PA       lxe −=−  

22222 , PA       lxe −=−  
MM                          

kkkk PA       lxe k ,−=−  (18) 
 
Since the parameter vectors x1 ,…, xk do not have any joint 
components, the sub-systems of Equation (18) are orthogonal to 
each other. In the presence of auxiliary information, those sets 
of equations could be connected via functional constraints, e.g. 
as in the geometrically constrained multiphoto matching 
(Gruen, 1985; Gruen and Baltsavias, 1988) or via appropriate 
formulation of multiple (>2) overlap conditions. 
 
An ordinary pointcloud includes enormously redundant 
information. A straightforward way to register such two 
pointclouds could be matching of the whole overlapping areas. 
This is computationally expensive. We propose multi-subpatch 
mode as a further extension to the basic model, which is 
capable of simultaneous matching of sub-surface patches, 
which are interactively selected in cooperative surface areas. 
They are joined to the system by the same 3D transformation 
parameters. This leads to the observation equations  
 

1111 , PA       lxe −=−  

2222 , PA       lxe −=−  
MM                        

kkkk PA       lxe ,−=−  (19) 
 
with i =1,…, k subpatches. They can be combined as in 
Equation (9), since the common parameter vector x joints them 
to each other. The individual subpatches may not include 
sufficient information for the matching of whole surfaces, but 
together they provide a computationally effective solution, 
since they consist of only relevant information rather than using 
the full data set.  
 

4. EXPERIMENTAL RESULTS  

Two practical examples are given to show the capabilities of the 
method. All experiments were carried out using own self-
developed C/C++ software that runs on an Intel® P4 2.53Ghz 
PC. In all experiments the initial approximations of the 
unknowns were provided by interactively selecting 3 common 
points on both surfaces before matching. The scale factor m was 
fixed to unity by infinite weight value ((Pb)ii → ∞).  
 
The first example is the registration of two point clouds of a 
newspaper page (Fig. 1). The scanning was performed by using 
the stereoSCAN3D system developed by Breuckmann GmbH 
(Germany). It is a high accurate scanner system based on the 
fringe projection technique.  
 
The average point spacing is 150 ~ 170 microns. The surface of 
Figure 1a was matched to the one in Figure 1b by use of the 
LS3D surface matching. The iteration criteria values ci were 
selected as 1 micron for the translation vector and 10cc for the 
rotation angles. Although it is a difficult example due to very 
little changes in surface curvature, the matching is successful 
(Fig. 1c). Totally 377,234 points were used for matching. The a 
posteriori sigma value was 11.3 microns, with 13 iterations in 
36.7 seconds. Interestingly, the letters are clearly visible on the 
surface model (Fig. 1c). However, they are due to range 
artifacts created by the pixel-discretization on the chip level, 
leading to intensity discontinuities. For a detailed discussion of 
the range artifacts we refer to Blais et al. (2005).  



 

A comparison against the non-accelerated version was made. 
The non-accelerated version exhaustively searches the 
correspondence in a large portion of the search surface during 
the first few iterations. In the following iterations it uses the 
same adaptive local neighborhood search as in the accelerated 
version. For a fair comparison same number of points were 

employed in the matching. The non-accelerated version found 
the same solution in 106.1 seconds. As seen in this experiment, 
the accelerated version speeds the computation up typically by 
factor 2 to 3 (Akca and Gruen, 2005b). This is the sole effect of 
the space partitioning technique.  
 

 

(a)     (b) 
 

 
Figure 1: Example “newspaper”. (a) Search and (b) template surfaces, (c) shaded view of the final composite surface after the LS3D 
surface matching. Zoom-in part of (c) shows the range artifacts due to intensity discontinuities. Note that the scanner derived 
intensities are back-projected onto the surfaces (a) and (b) only for the visualization purposes, they are not used in matching.  
 
 
The second experiment refers to the matching of point clouds of 
a wooden Buddha statue (ca 30x40x20 cm3). It has a very shiny 
polished surface (Fig. 2a), which is not an optimal surface 
reflectivity case. In a recent study Remondino et al. (2005) have 
modeled the same object using the photogrammetric technique 
and additionally the BIRIS laser scanner. In our experiment the 
point clouds were acquired by the triTOS system, which is 
another structured light-based scanner product of Breuckmann 
GmbH. It is mainly used for art and cultural heritage 
applications.  
 
The data set contains 15 scans, each of which has ca 1.4 million 
points. The average point spacing is 0.3 ~ 0.5 millimeters. 

Nineteen consecutive matching processes were performed using 
the simultaneous multi-subpatch approach of the LS3D 
matching method. The iteration criteria values ci were selected 
as 0.1 micron for the translation vector and 10cc for the rotation 
angles. The average numerical results of the matching are given 
in Table 1.  
 
The first scan was selected as the reference, which defines the 
datum of the common coordinate system. Since it is a closed 
object, there is need for a global registration, which distributes 
the residuals evenly among all the scans, and also considers the 
closure condition, i.e. matching of the last scan to the first one. 
For this purpose we used the block adjustment by independent 
model solution, which was formerly proposed for global 

(c) 



 

registration of laser scanner point clouds, but for the case of 
retro-reflective targets as tie points (Scaioni and Forlani, 2003). 
In the LS3D matching processes, the final correspondences 
were saved to separate files. Then all these files were given as 
input to a block adjustment by an independent model procedure, 
which concluded with 42 microns a posteriori sigma value. At 
this step the model contains ca. 9.5 million triangles. Using 
Geomagic Studio v.6 (Raindrop Geomagic) all surfaces were 
merged as one manifold, in parallel reducing the number of 
triangles to ca. 3 million and applying a low level noise 
reduction (Fig. 2b). 
 

 
Figure 2: Example “wooden Buddha”. (a) The wooden Buddha 
statue, (b) shaded view of the generated 3D model.  
 
 
Table 1: The matching (use of subpatch technique) results of 
the “wooden Buddha” example.  

Average no. 
of employed 
points 

Average 
no. of 
iterations 

Average 
CPU times 
(sec.) 

Average a 
posteriori sigma 
values (micron)  

100 ~ 400K 4 ~ 11 9 ~ 52 66 ~ 105 
 

5. CONCLUSIONS  

An algorithm for the least squares matching of overlapping 3D 
surfaces is presented. Our proposed method, the Least Squares 
3D surface matching (LS3D), estimates the transformation 
parameters of one or more fully 3D surfaces with respect to a 
template one, using the Generalized Gauss Markoff model, 
minimizing the sum of squares of the Euclidean distances 
between the surfaces. The mathematical model is a 
generalization of the least squares image matching method and 
offers high flexibility for any kind of 3D surface 
correspondence problem. The least squares concept allows for 
the monitoring of the quality of the final results by means of 
precision and reliability criterions.  
 
The practical example shows that our proposed method can 
provide successful matching results in reasonable processing 
times. The use of our space partitioning technique alone leads 
to a speed up of computing times by factor 2-3. Another aspect 
of our experiment is that registration task can be performed 
automatically without using retro-reflective or other special 
kinds of targets even for the surfaces with little geometric 
information. 
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