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Abstract

R ecent experimental breakthroughs [1–4] have brought levitated optome-
chanics under the limelight as a compelling candidate for probing the

laws of Nature at the interface between classical and quantum mechanics.
Particularly ambitious proposals envision the use of massive microparticles for
the preparation of large delocalized states, on scales comparable to the particles’
size [5].

The use of a levitated system, relying on the engineering of electromagnetic
fields for the confinement and control of macroscopic objects in vacuum,
is promising in all of those protocols that require highly tunable confining
potentials, and low coupling to the surrounding environment [6].

With this work, we address two fundamental requirements for the realization
of delocalized states with large objects, namely how to initialize their center-
of-mass modes in a pure state, and how to implement a reliable protocol to
generate a coherent delocalization of the wave function.

Our main probing tool is a femtogram silica nanoparticle composed by
several billions of atoms, levitated in a harmonic optical trap.

We first study how to carefully control the center-of-mass motion of an
electrically charged 100 nm nanoparticle below single mean phonon occupation.
We suppress excess decoherence by working in a cryogenic environment, and
rely on a highly efficient interferometric measurement of the particle’s motion
to create a linear electric feedback to damp the center-of-mass energy to the
quantum ground state.
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Abstract

We then move to a room-temperature system, and experimentally realize
controlled and repeatable free evolutions of a free falling neutral nanoparticle
prepared in a thermal state. We engineer a steerable intermittent trap to actuate
a release-recapture protocol, completely freeing the nanoparticle from any
confining potential for up to 270 µs, and across distances over 350 nm, more
than three times its size. We steer the recapture tweezer to overlap its center
with the position of the falling nanoparticle at the moment of recapture, and
use it to verify a two-hundred-fold expansions of the thermal state’s probability
distribution in space.

Lastly, we discuss the possibility of merging the two experiments together,
to achieve a nanometer-scale delocalization of the center-of-mass wave function
of a levitated nanoparticle.
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Sinossi

R ecenti innovazioni sperimentali [1–4] hanno portato la levitazione op-
tomeccanica sotto i riflettori come candidata promettente per sondare le

leggi della Natura all’interfaccia tra la meccanica classica e quantistica. Alcune
proposte particolarmente ambiziose immaginano l’utilizzo di microparticelle di
massa non trascurabile per la preparazione di stati delocalizzati su grande scala,
di dimensioni comparabili a quelle delle particelle stesse [5].

L’utilizzo di un sistema in levitazione, basato sulla manipolazione di campi
elettromagnetici per il confinamento e il controllo di oggetti macroscopici
nel vuoto, è promettente per tutti quei protocolli sperimentali che richiedono
potenziali confinanti altamente controllabili, e un basso accoppiamento tra
l’oggetto intrappolato e l’ambiente circostante [6].

Con questo lavoro di ricerca, rispondiamo a due requisiti fondamentali
per la realizzazione di stati delocalizzati su grande scala, in particolare
l’inizializzazione dei modi del centro di massa in uno stato quantistico puro,
e l’implementazione di un protocollo affidabile per la realizzazione di una
delocalizzazione coerente della funzione d’onda.

Il nostro strumento d’investigazione principale è una nanoparticella di silice
dalla massa di un femtogrammo e composta da miliardi di atomi, levitata in una
trappola armonica ottica.

Per prima cosa investighiamo come controllare il moto del centro di massa
di una nanoparticella elettricamente carica, del diametro di 100 nm, per portare
l’occupazione fononica media sotto l’unità.
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Sinossi

Sopprimiamo la decoerenza in eccesso lavorando in ambiente criogenico,
e sfruttiamo una misura interferometrica ad alta efficienza del moto della
particella per creare una forza con cui dissipare l’energia del centro di massa
fino a raggiungere lo stato fondamentale.

Ci spostiamo poi a temperatura ambiente, e realizziamo sperimentalmente,
in maniera ripetibile e controllabile, l’evoluzione libera di uno stato termalizzato
preparato a partire da una nanoparticella neutra in caduta libera.

Progettiamo una trappola ottica intermittente e pilotabile per attuare un
protocollo di rilascio-ricattura, liberando completamente la nanoparticella da
qualunque potenziale confinante fino a 270 µs, e per distanze di caduta oltre i
350 nm, di tre volte più grandi della dimensione della particella.

Muoviamo la trappola in modo da sovrapporla alla particella in caduta al
momento di ricattura, e la usiamo per verificare un’espansione della probabilità
di distribuzione nello spazio dello stato termalizzato di oltre duecento volte.

Infine, discutiamo la possibilità di unire i due esperimenti, per ottenere
una delocalizzazione su scala nanometrica della funzione d’onda del centro di
massa di una nanoparticella levitata.

xii



Introduction

Tests of quantum mechanics with massive objects represent one of Nature’s
most fascinating challenges. A particularly exciting idea is the realization
of large superposition states with micrometer-sized particles, with masses in
the range of 109 AMU to 1012 AMU, delocalizing their wave functions over
distances on the micrometer scale [5]. This is akin to reproducing Young’s
double-slit experiment, but with the added complexity of dealing with objects
composed by several billions of atoms.

The key ingredients for reaching this goal are the following:

• the ability to prepare a pure state with a massive object;

• a coherent evolution, to preserve the purity of the state during expansion;

• a "double slit", meaning a nonlinear interaction to create the superposi-
tion;

• a way to detect the fringes arising from the interference of the two
superposed states.

A mechanical oscillator with mass m and eigenfrequency Ω in its quantum
ground state will be localized in space over its zero-point-fluctuation qzpf =pħ/(2mΩ). For femtogram masses and 100 kHz eigenfrequencies, we calculate
qzpf ∼ 10 pm. One possibility to create a big delocalized state is thus to remove
the confining potential, to allow for the state’s free expansion [7].
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Introduction

The fulfilment of all of these conditions requires a system capable of
delivering high levels of control over mechanical motion for state preparation,
excellent decoupling from the environment to ensure long coherence times, and
a high tunability of the confining potentials.

Our optically levitated nanoparticles in ultrahigh vacuum offer a platform
combining an extreme degree of environmental isolation with a fully con-
trollable trap potential. Because of this, they are an attractive candidate for
experiments at the interface between classical and quantum physics [6].

In levitated optomechanics the oscillators are not tethered, but rather held
by fields, either optical, electrical or magnetic. In such systems the oscillator is
trapped in a confining volume where it experiences a restoring force. The
trapping potentials are usually Gaussian-shaped, but for small oscillation
amplitudes the dynamics of the trapped objects are well described by harmonic
motion [8, 9]. The eigenfrequencies of the center-of-mass (COM) oscillations
along the three axes of motion depend on the characteristics of the trapping
field and the trapped object, and range from a few hertz to several kilohertz [6].

Here, we use a optically levitated femtogram nanoparticle as our main tool
to approach the first two challenges on the road towards large superposition
states.

In the first part of this work, we show how we exert quantum control over the
motional degrees of freedom of a 100 nm nanoparticle (> 109 AMU) levitated
in an optical trap.

Quantum control has already been achieved with tethered mechanical
oscillators embedded in optical resonators [10–14]. The use of an optical
cavity to enhance the optomechanical interaction constrains the bandwidth at
which the system can operate. Moreover, the non tunable restoring force (due
to the physical clamping) limits the range of expansion of the oscillator’s wave
function.

To overcome such restrictions, our experiments are carried out in a free
space system, where the optical trap is created by strongly focusing a laser
beam through an aspheric lens.

Two requirements need to be satisfied to reach quantum control over the
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mechanical motion of the nanoparticle [15].
Firstly, we need to work in the backaction limited regime, meaning that

the dominant noise contribution to our measurement is photon recoil from the
measurement itself, and all excess noise sources (gas damping, vibrations, etc.)
are suppressed.

Secondly, the optical readout of the nanoparticle’s position must be shot-
noise limited, and the overall measurement efficiency ηmeas must be higher
than 11%. This represents the minimum threshold to reach average phonon
occupations n lower than unity, according to the relation n = (1/

p
ηmeas −1)/2.

With our research, we demonstrate how we exploit a highly efficient
interferometric measurement (ηmeas = 24%) to generate an electric feedback
force to damp the oscillations of an electrically charged femtogram nanosphere.
We place the setup inside a cryostat, to suppress decoherence due to gas
interactions and blackbody radiation. Working at the backaction limited regime,
we reduce the nanoparticle’s COM energy close to its quantum ground state,
with a mean residual population of 0.65 phonons, and a purity of 43%.

Our result represents a milestone for the levitodynamics community, as it is
one of the earliest examples [4] of extreme control reached on a femtogram
mass’s motion in a free-space system.

In the second part of this work we engineer a reliable protocol to generate a
coherent delocalization of the COM wave function of a nanoparticle.

We mentioned how the presence of a restoring force limits the maximum
achievable state expansion. Our strategy is hence to perform free state evolutions
by completely shutting off the optical trap.

The implementation of this idea is not trivial: without the confining potential
the nanoparticle is accelerated by external forces (due to stray electric fields,
gravity etc.) and quickly falls out of the trapping volume.

State expansion protocols based on free evolution are routinely performed
in cold atom experiments [7, 16], and with molecular beams [17]. However,
when working with nanoparticles one cannot rely on a reservoir from which
to draw identical samples for each experiment realization. We thus need to
engineer a system to reliably "recycle" the same particle for multiple iterations,
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Introduction

while still achieving long evolution times.
In one of our standard platforms, based on a single fixed optical tweezer with

waist w ∼ 1 µm, up to now the action of gravitational acceleration has limited
the maximum achievable free fall time to 140 µs [18]. Suggested protocols
thus prescribe carrying out the experiments in microgravity, using free falling
elevators [16], or by launching full setups in space [19].

Coming back to Earth, another approach envisions the use of hybrid traps,
meaning a combination of optical and radio-frequency (RF) traps [20]. These
systems rely on the nanoparticle’s net electrical charge to keep it confined in
the shallower "dark" electric potential during the state evolution, in absence
of optical tweezer. The drawback is of course that the RF potential, although
shallow, still limits the achievable state expansion [21]. Moreover, the presence
of stray electric fields strongly impacts the success rate of the experiment [22],
and further limits the achievable evolution times.

Instead of simply accepting the antagonistic role of gravity, here we show
how we work around it, through the use of a steerable intermittent tweezer. We
shut off the trapping beam to completely free a neutral nanoparticle from any
confining potential, and then vertically shift the position of the trap focus to
overlap it with the trajectory of the free falling particle, and ensure its recapture.

We experimentally prove that through control of the position of the tweezer,
we realize repeatable free falling experiments on the same nanoparticle, over a
wide range of distances and free evolution times. Here we test the protocols
with a thermal state, verifying its expansion by a factor of two hundred, from
0.51 nm up to 115 nm.

Our experiment provides a reliable and controllable tool for the realization
of true free evolutions, towards the objective of achieving large delocalized
states with a femtogram levitated nanoparticle, starting from its quantum ground
state.

This introduction is partially based on the publication [3].
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Outline of this thesis

This work is structured as follows.
In Chapter 1 we delve in the description of how to obtain quantum control

of the COM motion of a 100 nm silica nanoparticle, and reach a mean phonon
occupation below unity. We first discuss the setup, and the importance of
working in a cryogenic environment with a shot-noise limited detection scheme.
Lastly, we describe how to measure the mean phonon population, and present
our experimental results.

In Chapter 2 we present our novel platform for the realization of repeatable
free evolutions with a 120 nm silica nanoparticle. We first study the phenomena
governing the motion of the falling nanoparticle, to better understand its
dynamics during the free evolution. Then, we describe the on/off and steering
mechanism that controls power and position of the tweezer. Lastly, we test the
protocol at room temperature, demonstrating a thermal state expansion of a
factor >200 between tweezers displaced over distances wider than the size of
the particle itself.
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1
Quantum control of a levitated nanoparticle

This chapter is based on the publication
F. Tebbenjohanns1, M. L. Mattana1, M. Rossi1, M. Frimmer, and L.

Novotny, Quantum control of a nanoparticle optically levitated in cryogenic
free space, Nature 565, 378 (2021), doi: 10.1038/s41586-021-03617-w, URL
https://www.nature.com/articles/s41586-021-03617-w.

A prerequisite for investigating quantum effects with a macroscopic object
is to prepare it in a quantum mechanically pure state, such as its motional
ground state. To this end, a great effort has been made in recent years towards
the realization of cavity-mediated ground state cooling of the center-of-mass
motion of a levitated particle [1, 2, 23–25].

Borrowing techniques developed for tethered optomechanical systems [14,
26–28], a possible approach to purify the particle’s motional state relies on an
active, measurement-based feedback which does not necessitate the aid of an
optical resonator, but nevertheless achieves single digit phonon occupations [29].
Such cavity-free optomechanical systems are unrestricted by the limitations

1These authors contributed equally
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1 Quantum control of a levitated nanoparticle

regarding bandwidth, stability, and mode-matching associated with an optical
resonator.

Operating these techniques in the quantum regime relies on performing
measurements whose quantum backaction represents the dominant disturbance
of the system [30, 31], and also on high detection efficiency to compensate the
measurement backaction with the feedback system [14, 28, 32]. Furthermore,
one should take care of eliminating possible sources of decoherence, like
collisions with gas molecules and recoil from blackbody photons [5, 33]. In this
context, the use of a cryogenic environment is particularly beneficial, providing
at the same time the required extreme high vacuum and the sufficiently low
thermal population of the electromagnetic continuum.

In this work, we optically levitate a nanoparticle in a cryogenic environment,
which renders decoherence due to gas collisions negligible. We exploit a
highly efficient quantum measurement of the particle’s position and exert
quantum control over its dynamics. This is achieved through a free space
feedback cooling technique which relies on an optical measurement of the
particle’s position that approaches the minimum of the Heisenberg relation to
within a factor of two. We use the measurement-based feedback to cool the
particle’s center-of-mass motion to an average occupancy of 0.65 motional
quanta, corresponding to a state purity of 43%.

The absence of an optical resonator and its bandwidth limitations holds
promise to transfer the full quantum control available for electromagnetic
fields to a mechanical system. Together with the fact that the optical trapping
potential is highly controllable, our experimental platform offers a route to
investigating quantum mechanics at macroscopic scales [34].

In this chapter we will give a detailed overview of the setup and cooling
feedback mechanism, before discussing the main experimental achievements.
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1.1 Trapping a dipolar scatterer inside a cryostat

1.1 Trapping a dipolar scatterer inside a cryostat
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Figure 1.1: Schematic view of the setup. We optically trap a nanoparticle inside a cryogenic
vacuum chamber using a telecom laser. In the forward direction, we employ a libration and
position detection system. In the backward direction, we place both a homodyne and a heterodyne
photodetector. AOM: acousto-optic modulator. DAQ: data acquisition card. EOM: electro-
optic modulator. λ/2: half-wave plate. LO: local oscillator. PBS: polarizing beam-splitter. R:
reflection. T: transmission.

In Fig. 1.1 we show our experimental system. We trap a dipolar dielectric
scatterer in the focus of a linearly polarized laser beam, where it experiences a
three-dimensional confining potential. For small displacements of the object
from the focal center, the potential can be described as harmonic. The trap is
generated by a single-beam laser (power Pt ≈ 1.2 W, wavelength λ= 1550 nm,
linearly polarized along the x axis) strongly focused through an aspheric
trapping lens (numerical aperture 0.75).
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1 Quantum control of a levitated nanoparticle

Our dipolar scatterer is a single spherical silica nanoparticle of 100 nm

Figure 1.2: Power spectral density of the parametrically pre-cooled center-of-mass oscillation
modes (purple) along the z, x, and y axis (at 77 kHz, 202 kHz, and 249 kHz, respectively). The
information on the particle’s position along the z axis is predominantly encoded in the phase
of the light scattered back into the trapping lens [35], while the information on the x and the
y modes is equally distributed along the positive and the negative axis of propagation of the
laser. As a result, by collecting the light backscattered by the particle, the detection efficiency is
higher for the z mode, while we lose at least half of the information on the x and y modes, thus
reducing their signal-to-noise ratio.

diameter, and a mass of about 1 fg. The resonance frequency of the particle’s
COM motion along the optical axis z is Ωz/(2π) = 77.6 kHz (see Fig. 1.2).
The resonance frequencies in the focal plane are Ωx/(2π) = 202 kHz along the
polarization axis, and Ωy/(2π) = 249 kHz perpendicular to it.

To stabilize the particle inside the trap and to avoid nonlinearities of the
trapping potential, we pre-cool the particle’s motion in the three dimensions
using optical parametric feedback [36]. Throughout this chapter, we will focus
our attention on the motion along the optical z axis.

The silica nanoparticle has a net charge, which we exploit to deliver a
stronger electrical feedback to exert quantum control on the z COM mode.

We operate our optical trap inside a commercial 4 K closed-cycle cryostat,
and take advantage of the cryogenic pumping effect to work in ultra-high
vacuum conditions without the need for a bake-out. An ionization gauge
located in the outer chamber (at 295 K) of the cryostat reads a pressure of
3×10−9 mbar, which we treat as an upper bound for the pressure at the location
of the particle.

10



1.1 Trapping a dipolar scatterer inside a cryostat

Our main goal with this setup’s design is to obtain the highest possible
efficiency for the interferometric measurement with which we evaluate the
position of the particle. In fact, our detection of the particle’s motion relies on
the fact that the information on its position along the z axis is predominantly
encoded in the phase of the light scattered back into the trapping lens [35]. We
use an optical circulator to direct this backscattered light to our detection setup,
where 90% (10%) of the signal is sent to a homodyne (heterodyne) receiver.
These receivers convert the phase of the optical field into an electrical signal.
We use the homodyne measurement for feedback-control, and the heterodyne
signal for an independent out-of-loop measurement of the particle’s motion.

We opted for a modular design, building the different stages of beam
preparation, trapping, and detection on separated and self-contained
breadboards, connected via optical fibers. Each block is designed to be
as much as possible independent from the rest, which makes the setup more
adaptable.

In the following sections we give a detailed overview of the core components
of the setup.

1.1.1 Cryogenic setup

The imprecision on the measurement of the particle’s position is affected by
the fluctuating force S

tot
F F ∝ TgasPgas arising from the interactions with the gas

particles inside the vacuum chamber at temperature Tgas and pressure Pgas.
We optically trap the nanoparticles inside a vacuum chamber connected to a

closed-cycle cryostat2 to lower both the temperature and the pressure of the gas
around the particle, thus reducing the fluctuating force disturbing its motion.

The optical tweezers are formed by focusing a linearly polarized laser3.
We use an asymmetric lens system, with a 0.75 NA trapping lens4, with clear
aperture CA = 0.79 mm, and a 0.6 NA collection lens5 (CA = 5.2 mm) to

2attocube attoDRY800, nominal cold-plate temperature 4 K
3NKT Photonics Koheras Adjustik E15, amplified by a NKT Photonics Koheras Boostik
4LightPath 355617
5Lightpath 355330
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1 Quantum control of a levitated nanoparticle

collimate the beam after the trap. The larger clear aperture of the output
lens simplifies its alignment to the axis of the trapping lens, ensuring a good
collimation of the light even in presence of small tilts between the surfaces of
the two lenses. Nevertheless, due to the NA mismatch, about 25% of the light
does not exit the trapping volume and is at least partly absorbed by the cryostat,
increasing the temperature of the volume around the trap, next to which we
measure a temperature of ∼ 57 K.
The lenses are encased in a threaded steel mount, and screwed into a threaded
holder machined out of electrically insulating polyether ether ketone (PEEK).
The PEEK holder is mounted on top of a solid copper post in thermal contact
with the cold plate of the cryostat. Although the use of PEEK limits the
efficiency of the thermal contact between the cold plate and the trap assembly,
its insulating properties are a necessity when performing linear feedback
cooling. In fact, we control the particle’s motion through Coulomb forces,
taking advantage of the nanoparticle’s net charge. The feedback can thus be
applied directly on the lenses’ metal mounts [37, 38], since they sit very close to
the particle, and are electrically insulated from each other by the PEEK coupler.

The main effect through which we reduce the impact of the fluctuating
force on the particle is by limiting the amount of hot gas molecules in its
surroundings. To this end, we installed two concentric metallic cylinders inside
the vacuum chamber, each of them connected to one of the two cold stages
of the cryostat. Additionally to screening from blackbody radiation from the
external surfaces of the chamber at room temperature, another one of their
purposes is to also shield the innermost trapping volume from hot gas particles
in thermal equilibrium with the vacuum chamber. The outer cylinder made
of aluminium is thermally connected to the first stage of the cryostat, with a
nominal temperature of 40 K. The inner shield, made of oxygen-free copper,
contains the trapping assembly and is in thermal contact with the cold plate of
the cryostat (nominal temperature 4 K).

More details on the design and fabrication of the components installed
inside the vacuum chamber are available in Appendix A.
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1.1 Trapping a dipolar scatterer inside a cryostat

1.1.2 Optical detection

We use four photodetectors to characterize, stabilize, and localize the particle
in the optical trap.

First, in the forward direction, we make use of a quadrant photodetector6

(QPD) and a polarisation sensitive libration detector7. We exploit their signals
in the characterisation procedure of the particle as detailed below.

Second, we do homodyne and heterodyne detection on the field scattered
by the particle back into the trapping lens. We employ a combination of a
Faraday rotator and a polarizing beamsplitter to deflect the backscattered field
from the forward direction. We derive our feedback signal for cold damping
of the particle motion from a balanced, homodyne detector8, for which the
backscattered light is mixed with a local oscillator (LO) beam whose phase we
control with a piezo mirror. This is done to counteract the effect of slow drifts
of the interferometer arms’ length due to temperature fluctuations in the room,
and to keep the phase of the LO locked to a difference of π/2 with respect to
the backscattered light. This ensures our detection of the backscattered light is
optimally phase-sensitive.

To maximize the detection efficiency, it is essential to properly overlap the
signal beam (which has a dipolar scattering pattern collimated by the trapping
lens) and the local oscillator, which has a Gaussian mode shape. To this end,
we adjust the beam size of the local oscillator with a telescope and carefully
tune the propagation distance of signal and reference beam to the detector.

To perform the out-of-loop analysis and sideband thermometry, we use a
fiber-coupled balanced heterodyne detector9. Here, the LO beam is frequency
shifted using two acousto-optic modulators10. The first AOM downshifts the
laser frequency by 80 MHz, while the second upshifts it by 81 MHz (79 MHz)
to blueshift (redshift) the LO by Ωrf/(2π) = 1 MHz. The resulting detuned LO
beam is mixed with the signal in a 50:50 fiber coupler.

6Thorlabs PDQ30C
7homemade balanced detector
8Thorlabs PDB210C, quantum efficiency 0.88 at 1550 nm
9Newport 2117-FC-M

10Gooch&Housego 3080-1912
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1 Quantum control of a levitated nanoparticle

Detection noise characterization

Figure 1.3: Variance of the laser noise as a function of local oscillator power in homodyne
detection. The variance, expressed in dB, is normalized to the variance of the electronic noise
floor of the detector (grey). The dotted blue line provides a guide for the eyes for the linear
dependence between variance and power of the beam.

For feedback-based ground-state cooling, it is critical that our in-loop,
homodyne detection noise is limited by the shot noise of the optical field. In
Fig. 1.3 we show the measured noise power on the homodyne detector when
only the LO beam is switched on (and the particle signal is blocked) as a
function of the LO power. The noise power is obtained by integrating the
measured PSD from 60 to 90 kHz and normalizing it by the detector electronic
background-noise power (indicated by the grey line). The LO power is tuned
by rotating a half-wave plate in front of a polarizer. We observe that the noise
power increases linearly with the LO power, thus indicating that our detection
is shot-noise limited. In the experiment, we operate at 560 µW of LO power,
where the optical shot noise is 14 dB above the electronic noise floor.

1.1.3 Characterization of the nanoparticle’s shape

Our silica nanoparticles have a nominal diameter of 100 nm11. They are
provided in an aqueous solution, which we dilute in isopropanol and load into
the optical trap with a nebulizer.

We work with single spherical nanoparticles, without rotational degrees of
freedom, to eliminate the possibility of any coupling between the COM and

11Nanocomposix
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1.1 Trapping a dipolar scatterer inside a cryostat

the rotational modes, which would disturb the experiment. To this end, we
characterize the geometry of each trapped object to ensure it is isotropic.

In the following, we describe the two procedures we use for the characteri-
zation.

Damping rates of transverse motion

The first method consists in comparing the damping rate of the transverse x and
y modes of oscillation, as we expect that spherical objects have equal damping
rates along both axes [39].

At a pressure of a few mbar and at room temperature, we record a time
trace of the x and y oscillation modes on our QPD placed in forward detection.
Next, we estimate the PSDs from the time traces and fit them to a Lorentzian
model. From the fit we extract the linewidths, and thus the damping rates, of
the corresponding modes. Hence, we compute the ratio between the extracted
damping rates and use it to identify spherical particles. Additionally, we
estimate the size of the particle using the measured (absolute) damping rate at
known pressure and temperature [40] (see also Section 2.2.3.1 for a detailed
example). We perform this characterization at pressures ranging from 4 mbar

to 8 mbar.
For the particle used in the particular realization of the experiment that we

discuss in this chapter, we estimated a diameter of (106±5) nm, and a ratio of
the damping rates of 0.98±0.04.

Libration motion

A second characterization method is the detection of a libration motion of the
trapped object. In a linearly polarized electromagnetic field, an anisotropic scat-
terer aligns itself to the polarization axis and oscillates around this equilibrium
position. This libration motion is encoded in fluctuations of the polarization of
the scattered light, which we measure using our polarization sensitive balanced
photodetector in the forward direction [41]. If the scatterer is anisotropic, a
libration mode is visible at frequencies between 400 kHz and 700 kHz [42, 43].
The particle used in the present work did not show any signature of a libration
mode.
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1 Quantum control of a levitated nanoparticle

1.1.4 Parametric particle stabilization

Throughout our experiment, we stabilize the particle’s position along all three
axes using parametric feedback cooling [36]. This reduction of the thermal
motion suppresses any coupling of the three center-of-mass degrees of freedom
(which can arise due to anharmonicities of the optical potential), leading
to a three-dimensional, effectively harmonic trapping configuration with the
eigenfrequencies Ωx, Ωy, and Ωz.

We implement parametric feedback cooling using three phase-locked loops
(PLLs), integrated in a lock-in amplifier12. Each PLL generates an oscillating
signal with constant amplitude and a fixed phase relation to the particle motion
along one direction (x, y , or z). We feed the sum of all signals (oscillating
at Ωx, Ωy, and Ωz) to a digital squaring unit13, which effectively doubles the
frequencies, and use this signal to modulate the intensity of the laser beam using
an electro-optic modulator, thereby implementing ‘PLL-based feedback cooling’
[31]. We note that on top of the signals at twice the oscillation frequencies, our
squaring unit also generates all sum and difference frequencies between the
axes. These spurious signals do not affect the particle’s motion in practice since
they are off resonant.

1.1.5 Data acquisition and postprocessing

We acquire both the homodyne and heterodyne detector signals by demodulating
them at our frequencies of interest using lock-in amplifiers. The homodyne
detector provides the signal which we use to actuate the linear feedback cooling
(more details in Section 1.2), while the heterodyne is used to measure the
temperature of the z COM mode through sideband asymmetry.

We demodulate our homodyne signal close to the eigenfrequency Ωz,
and denote the demodulated, complex-valued time trace by ihom[t ]. The
square brackets indicate the discrete nature of the time trace. We furthermore
demodulate our heterodyne signal close to the two sidebands generated by the
particle’s motion around the LO frequency (acquired time traces ir [t ] atΩrf−Ωz

and ib[t ] at Ωrf +Ωz), and at the LO frequency itself (acquired time trace ilo[t ]

12Zurich Instruments MFLI
13STEMLab Red Pitaya
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1.1 Trapping a dipolar scatterer inside a cryostat

at Ωrf). We use 8th order demodulation filters with a 3 dB low-pass frequency
of 5 kHz and a sample frequency of 53.57 kHz. For a typical experiment,
we acquire 100-second-long demodulated time traces. In addition, we also
acquire the homodyne detector signal at baseband (idc[t ]), which we use both
for locking our interferometer with a PI loop integrated into the MFLI and to
aid in the postprocessing of the data, as described below.

Postselecting the data

1 2 3 4

Time (s)

1

0

1

S
ig
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a
l 
(a

.u
.)

(idc[t])

cryocooler cycles

postselection

(ihom[t])/

Figure 1.4: The compression cycles of the cryocooler are visible in our interferometric signal
at baseband (idc[t ] in grey). We identify the cycles (red dotted lines) and postselect 300 ms
long intervals (indicator function in orange) of the time traces containing the particle motion
(exemplary for ihom[t ] in blue).

Roughly every second the cryocooler compresses and expands the helium gas
in the cold head, generating periodic mechanical vibrations on the optical table
and the trap itself at ∼ 1 Hz. These vibrations disturb both the interferometric
read-out of the particle’s position and its motion. In our recorded measurements,
we hence postselect the time intervals in between the compression cycles.
In Fig. 1.4 we show an example of the homodyne detector signal at baseband
(idc[t ], grey). We also show the real part of the particle’s signal ihom[t ] (blue).
We identify the helium compression cycles from idc[t ] as burst signals with
a repetition period of 1 s (marked as red dotted lines in Fig. 1.4). Finally,
we postselect our demodulated time traces (ihom[t ], ir [t ], ib[t ], and ilo[t ]) by
choosing intervals of 300 ms duration at a fixed delay in between the bursts
(indicated by the orange indicator function). We note that the interval length of
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1 Quantum control of a levitated nanoparticle

300 ms is much longer than any time scale of the particle motion.

1.2 Feedback cooling to the ground state

Our experimental platform is a cavity-free optomechanical system, performing a
continuous measurement of the displacement of the particle [13, 44]. According
to quantum theory, this measurement inevitably entails a backaction. For the
levitated particle, this quantum backaction is associated with the radiation
pressure shot noise arising from the quantization of the light field’s linear
momentum [31]. Importantly, with a sufficiently efficient detection system in
place, it is possible to apply a feedback force to the particle that fully balances
the effect of the backaction [14, 26, 32].

We use a feedback method termed cold damping [32]. In this scheme, a
viscous feedback force is derived from the measurement signal, increasing the
dissipation while adding a minimum amount of fluctuations. Our feedback
circuit is a digital filter that electronically processes the homodyne signal in
real-time. The filter mainly comprises a delay line to shift the phase of the
frequencies near Ωz by π/2. This procedure exploits the particle’s harmonic
motion to estimate the velocity from the measured displacement, and to first
order acts as an optimal filter for a high-Q harmonic oscillator [45]. The filtered
feedback signal is applied as a voltage to a pair of electrodes located near the
nanoparticle. The particle is charged, and thus the feedback can be actuated via
the Coulomb force [37].

1.2.1 Cold damping electronic filter characterization

Here we characterize the transfer function Hfb of the electronic feedback loop
used to create the cold damping signal (see Fig. 1.1).

In Fig. 1.5 we plot the results of a network-analyzer measurement of the
electronic components in the loop. Our designed digital filter contains several
elements. First, we have a first-order high-pass filter with a 9 kHz cut-off
frequency, which we use to remove any DC component to prevent saturation
of the electronics. Second, we implement two digital 2nd-order notch filters
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1.3 Quantum ground state

Figure 1.5: Measured magnitude (a) and phase (b) response of the experimentally used delay
filter. The dotted, dashed, and dot-dashed vertical lines mark the location of the resonance
frequency of motion along the z, x, and y axes, respectively.

at Ωx/(2π) ≈ 200 kHz and Ωy/(2π) ≈ 250 kHz with a quality factor of 5. This
way we prevent the feedback from heating the transverse mechanical modes.
We also observe two copies of such filters at around 750 kHz. This is due to
aliasing of the signal during the frequency sweep measurements. In fact, the
sampling rate is at ≈ 977 kHz, resulting in a Nyquist frequency of 488.5 kHz.
Finally, we introduce a time delay such that at Ωz the phase response is −π/2.
Supposing that the phase contributions of the high-pass and the notch filters are
negligible at Ωz, one can tune the delay time such that Ωzτ=π/2+2πn, where
n is an integer. For any n > 1, the larger phase slope lowers the value of the
feedback gain at which the closed-loop system becomes unstable, limiting the
cooling performance. Therefore, we choose to implement the smallest possible
time delay, which in our case is τ≈ 3.2 µs.

1.3 Quantum ground state

We now turn to the analysis of the particle’s motional energy under feedback. In
particular, in this work we extract the average phonon population of the z COM
mode for different feedback gains, and corroborate our findings by comparing
the results of two estimation methods based on the out-of-loop detection,
namely sideband thermometry and sideband cross-correlation evaluation.

In the following section we will briefly discuss each technique, and demon-
strate how an effective dissipation rate of γeff/(2π) = 11.1 kHz is the optimal
one for ground-state cooling of our system.
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1 Quantum control of a levitated nanoparticle

1.3.1 Sideband thermometry
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Figure 1.6: Stokes (a) and anti-Stokes (b) sidebands, at different electronic feedback gains,
normalized to the estimated background level (grey line). Each sideband pair is simultaneously
fitted to a theoretical model. c. Mechanical occupations (green squares) at different feedback
gains. The black solid line is a theoretical model based on an ideal delay filter with parameters
estimated from the in-loop spectra. The error bars are obtained by propagating the fit uncertainties
(s.d.) of the areas.

The first method is Raman sideband thermometry [29, 46, 47]. Here, the ratio
between the areas under the Stokes and anti-Stokes sidebands is used to extract
the phonon population of the particle’s z COM mode. We note that the method
of Raman thermometry does not rely on any calibration of the system. Instead,
it is the zero-point energy of the oscillator which serves as the absolute scale all
energies are measured against.

To resolve the Stokes and anti-Stokes sidebands form each other we analyze
the signal recorded on the heterodyne receiver presented in Fig. 1.6, which
provides an out-of-loop measurement of the motion of the particle [48]. The
power spectral density (PSD) of both the red-shifted Stokes sidebands Sr r (Ω)

and of the blue-shifted anti-Stokes sidebands Sbb(Ω) (Fig. 1.6a) shows a
Lorentzian lineshape on top of a white noise floor. Importantly, the total noise
power in the two sidebands is visibly different. From this sideband asymmetry,
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1.3 Quantum ground state

we extract the phonon occupation by fitting our data to the expressions

Sr r (Ω) = S
r
bg +R|χeff(Ω)|2(n +1), (1.1a)

Sbb(Ω) = S
b
bg +R|χeff(Ω)|2n, (1.1b)

with S
r,b
bg the spectral background floor, R = mγeffħΩz/π a scaling factor, ħ

the reduced Planck constant, χeff(Ω) = 1/[m(Ω2
z −Ω2 − iγeffΩ)] the effective

mechanical susceptibility modified by the feedback, γeff the effective linewidth
including the broadening due to feedback, and n the average phonon occupation
of the mechanical state. In the fit model, we allow the two sidebands to assume
different force noise and background values, but we constrain them to have the
same resonance frequency Ωz, and linewidth γeff.

The fitted force-noise values are a direct measure of the enclosed area in
the two sidebands. Thus, the occupation n can be extracted according to

S
r
F F

S
b
F F

= 1+ 1

n
, (1.2)

with S
r
F F = R|χeff(Ω)|2(n +1), and S

b
F F = R|χeff(Ω)|2(n).

The uncertainties of these areas crucially depend on the precision of the
background-noise estimation from the fitting routine, especially at the largest
feedback gain where the signal-to-noise ratio becomes small. Another possible
source of systematic error is a frequency-dependent response of the acquisition
chain (photodetector and DAQ). To rule out this effect, we measure the motional
sidebands both using a positive and a negative frequency for the heterodyne
local oscillator ωLO = ωL −Ωrf, where ωL is the frequency of the laser and
Ωrf/(2π) =±1 MHz denotes the frequency shift induced with the AOMs [29].
We then extract the phonon occupation according to

n =

√√√√Sr,+

F F Sb,−
F F

Sb,+
F F Sr,−

F F

−1

−1

, (1.3)

where the ± superscripts stand for the sign of the LO frequency shift. Using
this method, any frequency dependence of the transfer function of the measure-
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1 Quantum control of a levitated nanoparticle

ment chain is cancelled. In Fig. 1.6c, we show as green squares the phonon
occupations estimated from the asymmetry of the measured heterodyne spectra.
We also show as a black line the theoretical cooling model extracted from the
analysis of the signals collected from our in-loop detector (the homodyne one,
from which we derive the feedback). More details on the in-loop detection
theory can be found in the supplementary information to the publication [3].
The error bars are obtained by propagating in Eq. (1.3) the fit uncertainties (s.d.)
of the four areas extracted from the fits (two areas per each frequency of the
local oscillator). The larger error bars for lower occupations reflect the reduced
signal-to-noise ratio in the PSDs.

In Fig. 1.7a we plot the Stokes (in red) and anti-Stokes (in blue) sidebands
measured at the largest electronic feedback gain gel = 45 dB. From the fit of our
data (solid lines in Fig. 1.7a), we extract a linewidth of γeff/(2π) = 11.1 kHz
together with a residual occupation of n = 0.66± 0.08, corresponding to a
ground-state occupancy of 1/(n +1) = 60%.
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Figure 1.7: a. Stokes (red circles) and anti-Stokes (blue circles) sidebands measured by the
out-of-loop heterodyne detector, at the largest electronic feedback gain. The black lines are fits
to Eqs. (1.1), from which we extract the sideband powers. From their ratio, we extract a final
occupation of n = 0.66±0.08. b. Real (purple circles) and imaginary (green circles) parts of
the cross-power spectral density between the Stokes and anti-Stokes sideband, together with
theoretical fits (black lines). We calibrate the vertical axis using the imaginary part, and we
extract a final occupation of n = 0.64±0.09 from the real part.
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1.3 Quantum ground state

1.3.2 Cross-correlations between Stokes and anti-Stokes sidebands

As mentioned in the previous section, the estimation of the spectral background
floor S

r,b
bg heavily affects the uncertainties on the areas under the Stokes and

anti-Stokes sidebands. The estimation of the occupation through analysis of the
spectral cross-correlation between the two sidebands is instead robust against
this possible source of error.The cross-PSD between these two sidebands can
be expressed as [49]

Sr b(Ω) ∝ Szz (Ω)+ iħ
2π

Re{χeff(Ω)}, (1.4)

which we simplify to [50]

Sr b(Ω) = R|χeff(Ω)|2
(
n + 1

2
+ i

2

Ω2 −Ω2
z

γeffΩz

)
. (1.5)

where R is a constant proportionality factor. Importantly, the imaginary part
of the cross-correlation is independent of the phonon population n. It arises
purely from the zero-point fluctuations and can thus serve to calibrate the real
part.

In Fig. 1.7b, we show the real part of the measured cross correlation Re(Srb)

(purple) and its imaginary part Im(Srb) (green), fitted with Eq. 1.5. With this
method we extract a phonon occupation of n = 0.64±0.09, well in agreement
with the value extracted from the sideband asymmetry. The error is obtained
from the propagation of the uncertainties (s.d.) in the fitted parameters.
More details on cross-correlation thermometry can be found in [49, 50] and in
the supplementary information to [3].

Estimation of spectral densities.

In the following, we give some more details on how we compute the power
spectral densities (PSDs) of the measured time traces.
We estimate the PSD of the acquired homodyne data according to

Shom[Ω] = 〈|ihom[Ω]|2〉, (1.6)
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1 Quantum control of a levitated nanoparticle

where ihom[Ω] is the discrete Fourier transform (DFT) multiplied by
p

T (T

being the total acquisition time of each realization) and 〈. . .〉 is the ensemble
average over the different realizations.

In contrast to homodyne detection, the heterodyne detector’s arm lengths are
not actively stabilized, and we have to correct for phase drifts in postprocessing.
These phase drifts are reflected in the phase of the demodulated LO frequency
ilo[t ]. Since the frequency components of both motional sidebands have a
definite phase relative to the LO, we can remove the drifts from the time
traces by redefining i j [t ] → i j [t ]e−iarg(ilo[t ]), where j = r,b. After this phase
correction, we estimate the PSDs of each sideband as well as the cross-PSD
between them as

Sr r [Ω] = 〈|ir [−Ω]|2〉, (1.7)

Sbb[Ω] = 〈|ib[Ω]|2〉, (1.8)

Sr b[Ω] = 〈ir [−Ω]ib[Ω]〉. (1.9)

We note that the phase correction described above only affects the cross-PSD
Sr b[Ω].

1.4 Estimation of the measurement efficiency

Efficient quantum measurement is a prerequisite for stabilizing the levitated
nanoparticle in its quantum ground state via feedback. In the following, we
perform a detailed analysis of our measurement system. To this end, we analyze
the measurement record of our in-loop homodyne receiver and derive the
measurement efficiency ηmeas, representing the amount of information gathered
per disturbance incurred [15].

In Fig. 1.8a we show, in dark red, the homodyne spectrum acquired at the
lowest feedback gain labelled by the set gain gel = 0 dB (γeff = 2π×21.9 Hz).
At such low gain, the measured fluctuations on resonance largely exceed the
noise floor and the feedback solely leads to a broadening of the mechanical
susceptibility. In this regime, the detection noise fed back as a force does not
play any role, and can be safely ignored. We calibrate our in-loop measurement
by performing sideband thermometry on the out-of-loop detector at a moderate
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1.4 Estimation of the measurement efficiency

gain of gel = 25 dB. Subsequently, we fit the calibrated in-loop spectrum to

S
hom
zz (Ω) = Simp +|χeff(Ω)|2S

tot
F F , (1.10)

where S
tot
F F =ħ2Γtot/(2πz2

zpf) is the total force noise PSD, Simp = z2
zpf/(8πΓmeas)

is the imprecision noise PSD of the detection, and z2
zpf =ħ/(2mΩz) denotes the

zero-point fluctuations of the oscillator. We note that these two spectral densities
can be equivalently written in terms of a measurement rate Γmeas = ηdΓqba

(with Γqba the decoherence rate due to the quantum backaction, and ηd the
overall detection efficiency), and a total decoherence rate Γtot = Γqba +Γexc =
γeff(n +1/2) (with Γexc the decoherence rate in excess of quantum backaction).
From the fit, we extract a measurement rate of Γmeas/(2π) = (1.33±0.04) kHz
and a total decoherence rate of Γtot/(2π) = (5.5±0.3) kHz. The measurement
rate approaches the total decoherence rate, giving a measurement efficiency of
ηmeas = Γmeas/Γtot = 0.24±0.02, which is bounded by ηmeas ≤ 1 according to
the Heisenberg measurement-disturbance relation [15, 46]

Next, we characterize the role of the feedback gain in our system. To
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Figure 1.8: a. Single-sided displacement spectra measured by the in-loop homodyne detector
at different electronic gains gel. We exclude three narrow spectral features from the analysis.
The black lines are fits to a theoretical model (see Methods to [3]). b. Mechanical occupations
extracted from integrating the computed position and momentum spectra, which are based
on parameters estimated from the in-loop spectra. The solid back line is a theoretical model
assuming an ideal delay filter. The dotted grey line assumes ideal cold damping. The horizontal
grey line corresponds to the occupation of the conditional state, stemming from the performed
measurements. The error bars reflect the standard deviation (s.d.) in the fitted parameters, as
well as the statistical error on the calibration method.
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1 Quantum control of a levitated nanoparticle

this end, we record homodyne spectra at increasing gain settings, as shown in
Fig. 1.8a. For small gain values, the feedback only increases the mechanical
linewidth. For high gain values, however, the spectra flatten and even dip
below the imprecision noise, an effect known as noise squashing [26]. In this
case, the feedback-induced correlations become dominant and increase the
displacement fluctuations, rather than reducing them. Having characterized the
transfer function of the electronic loop, we can fit each spectrum to a full in-loop
model (see Methods in [3]). Then, we use the results of the fits to compute the
effective linewidths and the phonon occupations, shown in Fig. 1.8b. At the
highest gain, we estimate an occupation of n = (0.65±0.04), consistent with
both other methods described previously. The good agreement between our
three methods to extract the phonon occupation suggests that the contribution
of classical laser noise to the sideband asymmetry is negligible [51].

Based on the estimated measurement and total decoherence rates, we
calculate a theoretical model for the occupations under a pure delay filter
(black line in Fig. 1.8b). For comparison, we show the theoretical results
achievable under ideal cold damping [32] in the limit of γeff ≪Ωz (dotted grey
line). In this case, an induced linewidth of γeff corresponds to an occupation
n = Γtot/γeff +γeff/(16Γmeas)−1/2 [48], dependent only on the measurement
and decoherence rates.

1.5 Conclusions

In summary, we have achieved quantum control over the motion of a levitated
nanosphere. This control relies on the high reported measurement efficiency
of 24%, comparable to what has been achieved with tethered micromechanical
resonators [14], atomic systems [52], and superconducting circuits [53].

As an example of measurement-based quantum control, we have experimen-
tally stabilized the nanoparticle’s motion in its quantum ground state via active
feedback. The prepared quantum state has a residual occupation of n = 0.65

phonons, corresponding to a purity of 1/(1+2n) = 43%. Under optimal control,
achievable by optimization of the feedback circuit, we expect to reach the same
occupation as the conditional state [15], that is, ncond ≈ (1/

p
ηmeas −1)/2 = 0.5

(see Fig. 1.8b). Our experiment approaches this limit to within 30%.
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Notably, this is the first time that quantum control of mechanical degrees
of freedom has been achieved without the use of an optical resonator. In a
study conducted in parallel to ours, similar results have been achieved with an
optimal-control approach [54].

Importantly, we conduct levitated-optomechanics experiments in a cryo-
genic environment for the first time. This represents a milestone towards the
generation of genuine macroscopic quantum states of a nanosphere, which
would require extremely low levels of decoherence [5].
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2
Free evolution of a thermal state

There are two main ways of performing a coherent state expansion of the
center-of-mass mode of an oscillator [55, 56].

One option is parametric amplification, in which the COM oscillation
frequency is modulated in time. This approach has been realized in a variety
of systems, both with charged and neutral objects [55, 57, 58]. Restricting
ourselves to the domain of levitated nanoparticles, successful implementations
of parametric amplification have been achieved by abruptly changing the
oscillation eigenfrequency modulating the stiffness of the trap [21], to provide
a strong confining potential for state preparation, and a shallower one for the
state evolution. The shallow potential keeps the nanoparticle weakly confined
in a volume later addressable by the optical tweezers for state verification,
ensuring the same object can be used for multiple runs of the experiment. The
disadvantage is that the confinement limits the maximum achievable state
expansion, depending on the ratio of the eigenfrequencies of the oscillator in
the two potentials [21, 58].

Another way to achieve coherent expansion is through free evolution,
by releasing the state from any confining potentials. Such protocols have
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2 Free evolution of a thermal state

already been successfully implemented with atoms and molecules, to reach
delocalizations up to the meter scale [7, 16, 17].

In levitated systems, a truly free evolution is interesting because it eliminates
photon backaction from the optical trap. In addition, the state expansion would
scale linearly in time, and be limited only by decoherence originating from
background gas and blackbody radiation.

Nevertheless, the total absence of a trapping potential makes a charged
nanoparticle particularly sensitive to stray electric fields, and to the gravitational
pull. These forces accelerate the particle outside the trapping volume, and limit
the maximum achievable evolution time. Therefore, earlier works towards free
evolutions with nanoparticles were limited to free fall times of 140 µs [59].

Here we pursue this promising second approach to state expansion using a
nanoparticle with zero net electrical charge to avoid any influence from stray
electric fields. Furthermore, we deal with the effect of gravitational acceleration
by implementing a release-and-catch geometry with vertically shifting tweezers.
The ability to move the recapturing trap and overlap it with the position of
the free falling particle allows us to achieve free evolution times up to 270 µs,
across distances of 350 nm, bigger than three times the particle’s size.

We prepare a neutral 120 nm nanoparticle in a thermal state, with root-mean-
square oscillation amplitude of 0.51(7) nm, and evaluate the state evolution
through phase space reconstruction at recapture. For a free fall time of 250 µs,
we observe an expansion of a factor 223(45), achieving a broadening of the
position phase space distribution up to 115(16) nm.

Importantly, our platform enables controllable an repeatable free evolution
experiments with the same nanoparticle, over thousands of realizations.

In this chapter we present our protocol in detail. We study the equations
that govern the dynamics of the particle during the free fall, and at recapture,
and determine which parameters affect the controllability and repeatability of
the protocol. We then give an overview of the setup, before presenting the
experimental results.
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2.1 Protocol for repeatable free evolutions

2.1 Protocol for repeatable free evolutions

Figure 2.1: a. Illustration of the trap’s configuration along the vertical axis y . b. Free fall
protocol. First, the COM mode is initialized in a thermal state. Then, the particle is released and
let free fall for a time τ, after which it is recaptured in a trap sitting below the starting position.
After studying its dynamics at recapture, the particle is brought back in the upwards position, for
re-initialization.

The free fall protocol consists of four steps, represented in Fig. 2.1b.

• Step 1: the particle is confined in the optical trap and its COM motion is
pre-cooled via parametric feedback along all axes.

• Step 2: at time t = 0 the feedback and the trap are switched off. The parti-
cle undergoes a free fall under the influence of gravitational acceleration.

• Step 3: at time t = τ, the particle is recaptured by a displaced trap whose
center is roughly aligned with the particle COM position after the free
fall (see Section 2.1.2).

• Step 4: the trap is moved back in the initial release position, dragging
the particle along so that it can be recycled to perform the experiment for
several times.

The position of the particle is encoded in the phase of the scattered field.
Between steps 3 and 4, after recapture in the optical trap, we read out the
particle’s motion with a quadrant photodetector (QPD) placed in forward
detection. From the QPD signal we can extract information on the evolution of
the thermal state at the instant of recapture τ.
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2 Free evolution of a thermal state

2.1.1 Langevin equation: free fall of an object surrounded by gas

In this section we address the main parameters influencing the dynamics during
the free fall. We consider an initial thermal state with effective temperature Ti ,0,
undergoing a free fall in presence of residual gas, modelled as a thermal bath
with temperature Tgas and pressure Pgas.

The thermal state is prepared through parametric cooling. Since the
feedback is non-linear, we apply it with a very mild gain, to reduce the effect of
the non-linearities induced in the potential, such that we can neglect them in
our analysis. We thus assume that the COM behaves as a harmonic oscillator,
and we describe it in phase space as a thermal state identified by Gaussian
probability density distributions in position (P (qi )) and momentum (P (pi )).
We want to determine how P (qi ) expands during the fall, by analyzing the
evolution of its mean and variance. Finally, we determine the optimal recapture
conditions to ensure a high repeatability of the experiment. In particular, we
study how do Ti ,0 and Pgas affect the probability of recapturing the nanoparticle.

The evolution of the system during step 2 is described by the Langevin
equation

q̈ =−γq̇−∇V (q)+η(t ). (2.1)

Here η(t ) = Ffluct(t )/m is proportional to the fluctuating force originating from
the interactions between the nanoparticle of mass m and the background gas.
This stochastic parameter is a Gaussian white noise, with magnitude f given
by the autocorrelation function 〈ηi (t )ηi (t + t ′)〉 = f δ(t ′). The magnitude f

is linked to the gas damping rate γ by the fluctuation-dissipation theorem,
according to f = 2γkBTgas/m in one dimension [60].

During the free fall, the nanoparticle is subjected to the gravitational force
mg =−∇V (q), with acceleration g = (gx, gy, gz) = (0,−g ,0). The force acts only
along the vertical axis y , and we assume that the magnitude of the gravitational
acceleration g ≈ 9.81 m/s2 stays constant during the fall.

From the Langevin equation we derive velocity and position of the object
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2.1 Protocol for repeatable free evolutions

in one dimension along the axis i = x, y, z:

vi (t ) = vi ,0eγt + gi

γ
(1−e−γt )+

∫ t

0
e−γ(t−t ′)ηi (t ′)d t ′, (2.2)

qi (t ) = qi ,0 + vi i ,0

γ
e−γt + gi

γ
t − gi

γ2 (1−e−γt )

+1

γ

∫ t

0
(1−e−γ(t−t ′))ηi (t ′)d t ′.

(2.3)

Here vi ,0 and qi ,0 denote respectively velocity and position along axis i at time
t = 0. The detailed derivation of our results can be found in Appendix B.

At t = 0, the COM modes of the nanoparticle are each represented by
a thermal state characterized by an effective temperature Ti ,0, related to the
kinetic (K ) and potential (U ) energy of the mode according to

K +U = kBTi ,0

= 1

2
m

(
〈v2

i ,0〉+Ω2
i ,0〈q2

i ,0〉
)
= kBTi ,0,

(2.4)

in which 〈v2
i ,0〉 and 〈q2

i ,0〉 are the second moments of velocity and position of
the COM mode i , with Ωi ,0 denoting its eigenfrequency.

For a given Ti ,0, we define two probability density functions P (vi ) and
P (qi ), which indicate the probability of finding the particle with velocity v

and at position q along axis i . Because the COM behaves like a harmonic
oscillator, the distributions are Gaussian, and are fully characterized by only
two parameters: mean µ and variance σ2:

P (X (t )) = 1√
2πσ2

X (t )
e
− (X−µX (t ))2

2σ2
X (t ) , (2.5)

where we used the following definitions of mean µX (t ) and variance σ2
X (t ) of a

variable X :
µX (t ) = 〈X (t )〉 ; σ2

X (t ) = 〈X 2(t )〉−〈X (t )〉2, (2.6)

with 〈X 2(t )〉 being the second moment of X .
From Eq. 2.2 and Eq. 2.3, we derive the mean and the variance of velocity
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2 Free evolution of a thermal state

and displacement as a function of time (see Appendix B), thus also describing
the evolution of the two Gaussian distributions P (vi ) and P (qi ).

For the initial conditions of the system, we assume that

• 〈vi ,0〉 = 0; 〈qi ,0〉 = 0 at equilibrium;

• 〈v2
i ,0〉 = kBTi ,0/m; 〈q2

i ,0〉 = kBTi ,0/(Ω2
i ,0m) from the equipartition theo-

rem, form which follows that 〈v2
i ,0〉 =Ω2

i ,0〈q2
i ,0〉.

We find
µvi (t ) = gi

γ
(1−e−γt ); (2.7)

σ2
vi

(t ) = 〈v2
i ,0〉e−2γt + f

2γ
(1−e−2γt ); (2.8)

µqi (t ) = gi

γ
t − gi

γ2 (1−e−γt ); (2.9)

σ2
qi

(t ) = 〈q2
i ,0〉+

〈v2
i ,0〉
γ2 (1−e−γt )2

+ f

γ2 t − f

2γ3 (3−e−γt )(1−e−γt ).

(2.10)

When friction due to the background gas is negligible, the standard deviation of
P (vi ) stays constant, while σqi evolves linearly in time, for Ω2

i ,0t 2 ≫ 1:

lim
γ→0

σvi (t ) =
√

〈v2
i ,0〉, (2.11)

lim
γ→0

σqi (t ) =
√

〈q2
i ,0〉(1+Ω2

i ,0t 2), (2.12)

The mean velocity and position of the nanoparticle evolve as expected in the
case of uniform acceleration:

lim
γ→0

µvi (t ) = gi t . (2.13)

lim
γ→0

µqi (t ) = 1

2
gi t 2. (2.14)
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2.1 Protocol for repeatable free evolutions

Figure 2.2: The particle’s position along the vertical axis is represented by a Gaussian probability
density P (qy) =P (µy(t ),σy(t )), with mean µy and standard deviation σy that evolve during the
free fall. For small gas damping σy increases linearly with time.

2.1.2 General conditions for recapture after the free fall

We now analyze which parameters determine the success of the recapture.
Ideally, we want to turn on the recapturing trap when the particle is close to
its center. We expect this minimizes the amplitude of the oscillatory motion,
increasing the chances of keeping the particle in the new trap after the free fall.

Let’s assume an extreme case of a free fall time of 1 ms. We consider a
nanoparticle with diameter 143 nm (the nominal size indicated by the manufac-
turer), and a mass m = 3.4 fg. The conditions for recapture are:

• the kinetic energy at the recapture time t = τ must be less than the depth
of the optical trap, which we estimate to be U0 ≈ 50kBTgas [8];

• the particle must have a high probability of being located inside the
trapping volume, delimited by the trap waist radius ωi . We summarize
this imposing 3σqi (τ) ≪ωi .

The first condition implies that 〈v2
i (τ)〉 = σ2

vi
(τ) + µ2

vi
(τ) < 2U0/m ≈

(35 cms−1)2, where 〈v2
i (τ)〉 is the second moment of velocity. Here we

assume a gas temperature of 300 K, and pressure 1×10−6 mbar.
We use Eq. 2.7 and Eq. 2.8 to calculate 〈v2

i (τ)〉 along the y axis at τ= 1 ms,
as a function of different initial temperatures Ti ,0 and gas pressures Pgas.
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2 Free evolution of a thermal state

Figure 2.3: a. Expected final velocity
√
〈v2

y 〉 at recapture time τ= 1 ms. b. Standard deviation
σy of the position distribution along the y axis, at recapture time τ= 1 ms. The red dotted line
represents the width ωy of the recapturing trap. For both graphs we plot the relevant quantities
evaluated as a function of initial effective temperature Ty,0 and gas pressur, after a free fall time
τ= 1 ms. Here, we assume the nanoparticle has mass m = 3.4 fg.

In Fig. 2.3a we observe how even starting with a "hot" COM mode (meaning
a high initialization temperature), the velocity stays small enough to satisfy
the first requirement. We also notice how the interactions with the gas are a
negligible contribution to the overall kinetic energy after the fall.

The depth of the trap is the main parameter that limits the maximum
achievable free fall, which in our case is of 37 ms. This can be increased by
simply increasing the trap depth.

The second condition limits how much the initial state can expand before
P (qi ) becomes larger than the trapping volume. To ensure high probability of
recapture, after τ the standard deviation of P (qi ) must be smaller than the waist
radius ωi of the focused trapping beam along the respective axis. Knowing the
laser power and the focusing lens’ characteristics (see Section 2.2), we estimate
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2.1 Protocol for repeatable free evolutions

that ωz ≈ 1.1 µm, ωx ≈ 0.7 µm, and ωy ≈ 0.6 µm [8, 18]. The requirement is
stricter along the y axis. In Fig. 2.3b we plot σy(τ) after a 1 ms free fall, as a
function of Ty,0, and for different Pgas. The red dotted line indicates the width
of the trap. Here we clearly see an influence of Ty,0 and Pgas over the evolution
of the state.

The results give an estimate on the initial requirements. At pressures
< 1×10−6 mbar, with Ty,0 < 1 mK, the probability of losing the particle would
be less than 10−6, or once every one billion repetitions of the experiment, as we
explain in detail in the next section.

We work with nanoparticles pre-cooled to COM temperatures of 10 mK <
Ty,0 < 50 mK (see Section 2.2.4). Conducting the experiments at 1×10−6 mbar,
we estimate a maximum achievable τ of less than 0.5 ms (See Fig. 2.4). We
can extend it by working at lower Pgas and Ti ,0.

Let’s consider the case of a particle cooled to its motional quantum ground
state, with qy,zpf = 10 pm. Referring to Eq. 2.12, we impose the condition that
3σy(t ) < 0.6 µm, and obtain

τ<
√√√√ω2

y −9〈q2
y,0〉

9〈v2
y,0〉

<

√√√√√ (0.6 µm)2 −9q2
y,zpf

9Ω2
y,0q2

y,zpf

< 23 ms,

(2.15)

with Ωy,0 = 2π ·140 kHz.
This threshold can be increased by making the waist of the trap bigger, or

by initializing the state in a momentum-squeezed configuration, to reduce the
speed of its the expansion.

2.1.3 Recapture probability

Based on the considerations of Section 2.1.2, we will now quantify the proba-
bility ϱ of recapturing the particle after a free fall of duration τ, as a function
of
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2 Free evolution of a thermal state

• the initial temperature Ti ,0 of the COM mode;

• temperature Tgas and pressure Pgas of the gas in the chamber;

• the geometric properties of the recapturing trap, namely its depth U0, and
center coordinates d.

The probability of finding a particle in phase space with position qi and
momentum pi = mvi is [61]

W (qi , pi ) ≈P (qi )P (pi ), (2.16)

where P (pi ) = P (mvi ), and W (qi , pi ) is normalized over integration across
the whole phase space. The approximation holds only if correlations between qi

and pi are negligible. For the evolution times considered in this work (∝ 100 µs)
this condition is verified, since the major and minor axis of the elongated phase
space distribution are well aligned with the axes of phase space. Referring to Eq.
2.11 and Eq. 2.12, we normalize σvi by the eigenfrequency Ωy,0 to calculate the
angle θ between the major axis of the elongated distribution, and the horizontal
axis of phase space:

tan(θ) = 1

Ωy,0

σvi (t )

σqi (t )
(2.17)

For t = 100 µs, we calculate θ = 0.1 mrad, indicating that the off-diagonal
terms of the covariance matrix of σqi and σvi /Ωy,0 are vanishingly small, and
the two quantities can be treated as not correlated.

We calculate the recapture probability ϱi by integrating W (qi , pi ) over the
portion of the phase space domain that satisfies the recapture conditions.

The kinetic energy K of the particle recaptured at position qi must be
smaller than the depth of the recapturing potential U (qi −di ), shifted from the
origin of axis i by the distance di :

K ≤U (qi −di ) → p2
i

2m
≤U (qi −di ). (2.18)
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Eq. 2.18 sets a lower and upper boundary to the particle’s momentum:

pi ∈ [−p̃(qi ), p̃(qi )], (2.19)

with
p̃(qi ) =

√
2mU (qi −di ), (2.20)

and the recapturing Gaussian potential expressed as

U (qi −di ) =−U0e(qi−di )2ξ = k

2ξ
e(qi−di )2ξ

=−
mΩ2

i ,0ω
2
i

4
e
−2

(qi −di )2

ω2
i ,

(2.21)

where k = mΩ2
i ,0 is the spring constant, and ξ=−2/ω2

i is a measure of the non-
linearity of the trapping potential, according to the radius ωi of the Gaussian
beam waist along the considered axis [62].

We integrate Eq. 2.16 over the interval [−p̃(qi ), p̃(qi )] of the momentum
domain, and across all the space domain, to find the recapture probability as

ϱi =
∫
R

P (qi )d qi

∫ p̃(qi )

−p̃(qi )
P (pi )d pi

=
∫
R

P (qi )d qi · 1

2

{
erf

[
p̃(qi )−µpip

2σpi

]
+erf

[
p̃(qi )+µpip

2σpi

]}
.

(2.22)

The total recapture probability is given by the product of the contributions of
all axes:

ϱtot =Πiϱi , (2.23)

where i = x, y, z, and Πi indicates the product across the three indexes.

In the following we focus on the one-dimensional probability. We solve
Eq. 2.22 numerically to evaluate the loss probability, 1−ϱy, as a function of
Ty,0 and τ. In Fig. 2.4a and b we compare respectively the cases in which the
recapturing trap is fixed at the initial position (solving Eq. 2.22 with dy = 0

∀τ), and when it is shifted to follow the trajectory of the falling particle (setting
dy =µy(τ)).
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Figure 2.4: Loss probability 1−ϱy(Ty,0,τ) as a function of initial temperature Ty,0 and free fall
time τ. We compare (a) the cases of a fixed tweezer, and (b) a moving tweezer overlapping with
the particle’s position at time τ, which we computed imposing dy =µy(τ).

As expected, for a fixed Ty,0, moving the trap along the particle’s trajectory
allows to perform longer free falls while keeping the loss probability low.

These calculations give us another confirmation of the range of Ty,0 and
τ in which we can operate, although they do not take into account the failure
rate due to external factors, such as the electronics or hardware that govern the
experiment. Working with 10 mK < Ti ,0 < 50 mK, we aim for τ≥ 250 µs.

2.1.4 Expected energy at recapture

In the previous sections we investigated the time evolution of the probability dis-
tributions for velocity P (vi ) and displacement P (qi ) of an object surrounded by
gas and subjected to uniformly accelerated motion along the axis i . Additionally,
we described how to tune the initial parameters of the experiment (particle
kinetic energy, gas pressure etc.) to grant a high recapture probability of the
particle for a chosen distance and fall time.

Now we analyze the third part of the protocol, in which the particle is
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recaptured. Assuming the distance between the two tweezers is fixed, we
calculate the optimal time between the switching of the two traps, ensuring the
particle is recaptured with the least total energy. Later, we use this information
to calibrate the actual displacement of the movable trap, which in our setup we
can only estimate from geometric considerations (see Section 2.2.1.1).

The expectation value for the total energy 〈Hi (τ)〉 along a specific axis i as
a function of tweezer displacement di and fall time τ, is [63]

〈Hi (τ)〉 =
∫
R′

d pi
p2

i

2m
P (pi ,τ)

+
∫
R

d qiU (qi −di )P (qi ,τ)

−
∫
R

d qi mgi qi P (qi ,τ)

= 2 · 1

2
mΩ2

i 〈q2
i (τ)〉,

(2.24)

in which pi = mvi indicates momentum, qi is the particle’s displacement and
di is the center of the recapturing trap. The last contribution is non-zero only
along the vertical axis y .

On the right-hand side of the equation we applied the virial theorem [64] to
link 〈Hi (τ)〉 to the second moment 〈q2

i (τ)〉 of the position of the fallen object,
which is what we measure from the data. Upon recapture, the COM resumes
its oscillatory motion in the optical trap, with a total energy which depends
on the kinetic energy gained during the free fall. The virial theorem allows
us to link the total kinetic energy of the COM with its total potential energy.
The theorem is applicable to systems not at thermal equilibrium, provided all
acting forces are conservative. Experimentally, we evaluate the mean energy at
recapture by averaging our signals over many oscillation periods of the COM.
Working at 1×10−6 mbar, the time of observation (10 ms) is much smaller
than the characteristic time 1/γ≈ 1×103 s of the non-conservative, relaxational
dynamics of the system. Therefore, their effect on the average energy can be
neglected.
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Solving the integral yields:

〈Hi (τ)〉 = m

2

{
µ2

vi
(τ)+σ2

vi
(τ)

−
Ω2

i ,0ω
2
i

2

ωi√
ω2

i +4σ2
qi

(τ)
exp

[
−2

(di −µqi )2

ω2
i +4σ2

qi
(τ)

]

−2giµqi (τ)
}
+U0,

(2.25)

in which U0 is the depth of the recapturing trap, and µ and σ refer to mean
values or standard deviations, and depend on τ.
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Figure 2.5: Expected energy 〈Hy(τ)〉 at recapture along the y axis. We analyze the dynamics as a
function of recapture time τ, for different vertical displacements dy, and fixed initial temperature
Ty,0 = 10 mK. The dotted lines indicate at what time the falling nanoparticle reaches the center
of the trap. The crosses indicate the minimum 〈Hy,min〉 of each curve.

In Fig. 2.5 we plot the theory curves for the expected energy along the y

axis, with Ty,0 = 10 mK, for different trap displacements. We observe how,
depending on dy, for too short or too long evolution times the energy is higher,
as the particle is recaptured far from the center of the trap, with higher potential
energy. We notice that the predicted minimum recapture energy 〈Hy,min〉 is
achieved earlier than expected if assuming an average null initial velocity 〈vi ,0〉.
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Figure 2.6: Expected energy at recapture along the z and x axes, as a function of τ and
displacement di along the respective axis, with fixed initial temperature Ti ,0 = 10 mK. The
crosses indicate the minimum 〈Hi , min〉 of each curve. Here, gx = gz = 0.

This is because the second moment 〈v2
i ,0〉 of velocity at t = 0 is not null, and

contributes to the energy of the state.
In Fig. 2.6 we plot the curves of the expected energies at recapture along

the z and x axis, as a function of different displacements. In absence of any
force acting on the falling object, the minimum energy is always at time t = 0.
This can be deduced from Eqs. 2.10 and 2.24: as the free fall time increases, the
linear evolution of σqi in time steadily increases the energy of each mode. For
small displacements of the trap center along z or x, this is also the dominating
contribution to the total energy at recapture.
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2.2 The setup

Here we discuss the technical details of the free fall setup.
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FPGA

DAQ

fdrive
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Figure 2.7: Schematic view of the setup. A solid state switch selects between two RF tones,
f1 and f1, to drive an AOM and generate an optical trap from the first diffracted order beam. A
telescopic system images the resulting beam onto the trapping lens installed inside the vacuum
chamber. The nanoparticle is trapped at the focus, which will be at different vertical coordinates
depending on the driving frequency. We use a QPD to analyze the light forward-scattered by the
particle, and detect its motion. A set of electrodes lets us control the net charge of the particle.
AOM: acousto-optic modulator. DAQ: data-acquisition. EOM: electro-optic modulator. PFC:
parametric feedback cooling. QPD: quadrant photodiode.

The nanoparticle is trapped in a 100 mW, 1064 nm beam supplied by a free-
space laser1. The polarization is aligned to the horizontal axis of the laboratory,
and has a 20◦ ellipticity.

The core element of the setup is an acousto-optic modulator (AOM). A solid
state switch selects between two radio-frequency (RF) tones, f1 and f2, to drive
the AOM, creating the optical trap from the first diffracted order beam (see
Section 2.2.1). A telescopic system images the tilted beam onto the trapping
lens2, with clear aperture CA = 0.9 mm, and numerical aperture NA = 0.75. We
use a collecting lens3 to collimate the light scattered from the particle, and send
it to a QPD placed in forward detection.

1Mephisto, Coherent
2LightPath, model 355617, working distance 0.19 mm
3LightPath, model 355330, NA = 0.6 at 1064 nm, CA = 5.2 mm, working distance 1.6 mm
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The optics are fitted in a custom PEEK mount including a set of three
low voltage electrodes, and a high voltage (HV) electrode pointed towards
the trapping volume. The HV electrode generates ionized gas molecules to
neutralize the charge of the particle in a controlled way. The low-voltage
electrodes are used to confirm the particle’s charge, by trying to electrically
drive the COM motion along the three axes of space, and verifying the absence
of a response.

The trapping assembly is mounted inside a vacuum chamber, which can
reach pressures of 1×10−7 mbar at room temperature. A small amount of the
collimated light is reflected by the exit port of the vacuum chamber, and is
coupled back into the collimating lens creating a standing wave at the trapping
site. This is detrimental for the stability of the trapped particles, as the depth of
the standing wave changes with the distance between the exit port and the trap,
depending on temperature fluctuations or mechanical vibrations. To mitigate
the problem we place a 3 dB absorptive filter (ND = 0.3) inside the vacuum
chamber, just before the back optical port, tilted by 30◦. The filter attenuates the
signal-to-noise ratio (SNR) of our detection by a factor 10−N D = 0.5, reducing
the overall measurement efficiency, but its use is necessary to stabilize the
eigenfrequencies of the COM modes for the whole length of the experiment.

2.2.1 Creating a steerable trapping beam

Here we describe in detail how we exploit the AOM to create a movable trapping
beam.

The AOM 4 has a center frequency of 80 MHz, and a RF bandwidth of
30 MHz. The angle at which the diffracted beams emerge from the AOM
depends on the frequency fn of the driving RF tone, according to the Bragg
condition

θB ≈ a
λ fn

2V
(2.26)

in which a ∈ Z is the order of diffraction (a = 1 in our case), λ is the laser
wavelength, and V the acoustic velocity in the AOM crystal. Changing fn , we
thus control the angle of incidence of the beam onto the trapping lens, after

4Gooch&Housego 3080-197, designed for 1550 nm light
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imaging through the telescope. As a consequence, the focus is shifted vertically
along the trapping plane.

The transfer function of the AOM has a finite bandwidth, so different RF
tones have different diffraction efficiencies. By controlling the amplitude of
the tones we compensate for this effect, and make sure the trapping beam has a
constant power no matter the frequency chosen (see Appendix C).

We characterize the response time of the AOM to be ∼ 300 ns, much faster
than the particle’s dynamics. Hence, using the AOM we can easily tune the
particle’s free evolution time, by using the solid state switch to shut off (turn
on) the RF drive to extinguish (shine on) the corresponding diffracted beam
which creates the trap.

Moreover, this configuration makes it easy to reinitialize the system after
each completed protocol. Once the particle is recaptured in the lower tweezer,
the frequency f2 of the second driving tone can be shifted towards that of the
first RF tone, f1, thus bringing the particle back to the drop point.

2.2.1.1 Estimation of the trap displacement

Here we estimate by how much we displace the focus of the optical tweezer
as a function of the difference ∆ fAOM between the frequencies f1 and f2 of the
driving tones. We use geometrical considerations knowing the magnification of
the telescope used to image the beam onto the trapping lens, and the effective
focal length of the lens itself.

For our estimation, we drive the AOM with two tones, at 65 MHz and
85 MHz, and measure their distance after the first lens of the telescope with a
beam profiler5, yielding a beam separation of 1.1(1) mm between their centers.
Knowing the focal length of the second lens in the telescopic system (F2 =
30 cm) and the effective focal length of the trapping lens (FEFL = 0.53 mm), we
can work out the reduction factor M for the distance between the centers of the
foci:

M = FEFL

F2
≈ 1.77 ·10−3 . (2.27)

From this, we estimate that for each MHz of difference between the two driving

5Thorlabs BP209-VIS/M
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Figure 2.8: Imaging system for the vertically diffracted beams. We can roughly estimate the
distance between the tweezers’ foci by knowing the focal length of each lens, and the angular
displacement between the beams.

tones, the separation between the foci will be ∼ 100 nm:

dy ≈ 100 nm

MHz
∆ fAOM. (2.28)

We check the validity of this calibration a posteriori from the free fall experi-
mental data in Section 2.3.3.

2.2.2 Discharging the particle

The particle’s electrical charge is neutralized before starting the experiment, to
avoid disturbances from electric stray fields. We use an high voltage generator
(−1.5 kV, designed by Karol Luszcz) to ionize the air in the chamber at a
pressure of 0.4 mbar. As the ionized gas molecules collide with the particle,
they will change the net charge on its surface.

The HV signal is brought close to the particle with a thin copper wire
placed inside the vacuum chamber, and connected to the voltage generator via
a feedthrough in one of the viewports. One extremity of the copper wire is
sharpened, and taped in place so that it sits 1 cm from the trapping volume.
When the particle is still charged, we drop the pressure in the chamber to
0.4 mbar, and drive the particle motion with a coherent electrical tone. We
then switch on the HV generator, and monitor the response of the particle to
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Figure 2.9: Neutralization of the particle’s electrical charge. We drive the charged particle with
a coherent electrical tone, and demodulate the QPD signal at the drive’s frequency to study the
amplitude response (in blue) and phase (in orange). The smaller discrete steps in the amplitude
response indicate a variation of the total charge by an elementary unit |e−|.

the electrical drive. As the ionized molecules strike the particle, we can resolve
single charging/discharging events from the amplitude of the response at the
driving tone (Fig. 2.9) [65]. When the amplitude response to the electrical drive
is null, the particle has reached charge neutrality.

2.2.3 Detecting the particle’s dynamics

The motion of the particle is encoded in the phase of its scattered field. We read
it out using a high power QPD (designed and built by Erik Hebestreit [18]) to
measure the particle’s motion along all axes simultaneously.

The QPD features a bandwidth (BW) of ≈ 1 MHz, and can withstand up
to 50 mW of total incident light. It can be directly placed in forward detection
without the need to dramatically attenuate the beam power, which would reduce
the SNR. Due to the NA mismatch between the trapping and collimating lens,
and the 3 dB attenuation in front of the output port of the vacuum chamber,
27 mW of light reach the QPD diodes. When performing longer free fall
experiments (τ> 200 µs) we attenuate the incident power by an additional 3 dB,
to prevent the voltage signal from saturating the detector output. The magnitude
of the signal is proportional to the amplitude of the COM motion. When the
particle’s oscillations become too big at recapture, attenuating the incident laser
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power ensures the voltage signal does not exceed the detector output range,
which would lead to loss of information on the particle’s dynamics.

With this amount of incident light, the overall detection noise is close to the
shot noise limit, but still dominated by the detector’s electronic noise, and by
the AOM pointing noise, due the phase noise of its driving source.

Traps created by different RF tones are not vertically overlapped. After
propagation through the trapping and collimating lens, the signals reach the
quadrants of the detector at different heights, giving rise to an imbalance in
the QPD y channel. This results in a suppressed common-mode rejection ratio
(CMMR), and thus an increase in the noise floor due to classical laser noise.
We observed that when the traps are switched on or off, this also generates a
significant DC offset of the output. The sudden change sometimes induces a
temporary ringing of the amplification circuit, saturating the outputs for a few
milliseconds. To solve the problem we built an imaging system in forward
detection, so that no matter the angle of the beam (i.e. the displacement between
the traps), the signals are all co-aligned on the same spot of the QPD, reducing
the sudden electronic saturation effects while improving the overall CMMR
stability.

Nevertheless, the outputs still saturate after the second trap is switched on,
so the information about the particle’s motion is lost or severely distorted in the
first few hundreds of microseconds after the particle’s recapture. This data is
then excluded from the analysis.

2.2.3.1 Calibrating the signal to displacement units

The signals collected for this experiment are derived from the photocurrents
generated by the QPD, and converted to voltages. To have a quantitative idea
of the magnitude of the particle’s displacement, we convert the voltage values
to units of displacement (i.e., meters) [40]. To do so, we rely on a reference
signal acquired at high pressures, where we assume the particle to be thermal
equilibrium with the surrounding gas bath at T = 300 K. From the equipartition
theorem we estimate the second moment 〈q2

i 〉 of the COM displacement along
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the axis i :
1

2
kBT = 1

2
mΩ2

i 〈q2
i 〉. (2.29)

We analyze the system’s dynamics in frequency domain, by calculating the
power spectral densities (PSDs) of the signals, shown in Fig. 2.10. We measure
the energy in each COM mode by integrating the area under the relative peak in
the PSD curve, corresponding to 〈q2

i 〉. This value is in V2. At high pressures,
we apply Eq. 2.29 (with T = 300 K) to the integral values extracted for each
mode, thus retrieving a calibration factor which we then use to convert the
signals acquired at lower pressures from volts to meters.

The x and y modes are very close to each other. To get a better result, we fit
a double Lorentzian, with a peak at Ωx and one at Ωy. We do the same also for
the z COM mode, which we fit together with the x peak. With this we estimate
the damping ratio across all three axis.

In Tab. 2.1 we present a summary of the values calculated for all three COM
modes from the calibration signal acquired at 10 mbar with the particle used in

Figure 2.10: PSDs S̄hom
x,y of the x and y channels QPD photocurrents acquired at 9.8 mbar. We

fit double Lorentzians (dotted lines), to extract the parameters relevant to each of the three modes
(amplitude, linewidth, central frequency). In solid lines, we plot the fitted Lorentzians for each
mode. We do not record the output from the QPD’s z channel, so we use the x channel signal to
calibrate also the motion along the z axis.
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this work. We denote with c the conversion factor from Volts to meters, with
γ the damping ratio, and with Ωi ,HP /(2π) the eigenfrequency of each mode
at high pressure. At lower pressures, when we apply the parametric feedback
cooling (see Section 2.2.4), the eigenfrequencies all increase by 1%, as the
thermal state is confined to the steeper bottom of the Gaussian potential well.
From the fitted linewidths γ we also estimate radius R and mass m of the
particle, knowing that [40]

R = 0.619
9p

2πρpart.

√
M

NAkBTgas

Pgas

γ
, (2.30)

where ρpart. = 2200 kg/m3 is the density of silica, M = 28.97×10−3 kg/mol is
the molar mass of air, and NA the Avogadro number.

We find that the radius is 58(8) nm, for a diameter of 116 nm. The mass
has an uncertainty of 40% its own value. This will be relevant for the analysis
of the data based on Eq. 2.25, where we will reformulate our model to simplify
the mass out of the equations.

2.2.4 Cooling the particle’s motion

We use parametric feedback cooling (PFC) to reduce the COM oscillation
amplitudes [66]. The technique relies on detecting the oscillations of the COM,
and modulating the intensity of the trapping beam at double their frequency.
By choosing the correct phase, we exploit the stiffening and relaxing of the
trapping potential to reduce the energy of the COM modes, effectively damping
the oscillations. The COM oscillates along three different axes, so we perform

Ωi ,HP /(2π) c γ m R

[kHz] [V/µm] [kHz] [fg] [nm]
x 111.99(2) 18.8(5) 9.43(4) 1.6(6) 59(8)
y 136.38(3) 23.9(6) 9.18(4) 1.7(8) 57(8)
z 38.36(3) 2.2(6) 8.87(4) 1.9(8) 59(8)

Table 2.1: Summary of the conversion factor c and gas damping ratio γ extracted from a signal
acquired at 10 mbar with the nanoparticle used in this work. We also estimate its mass m and
radius R.
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2 Free evolution of a thermal state

PFC across all of them by summing up the signals. At high pressures, the COM
modes are thermalized with the surrounding gas, at 300 K. We apply PFC from
1×10−3 mbar and below, to reduce the effective temperature along each axis
to the millikelvin range.

We keep track of the instantaneous oscillation frequencies with the use of
three phase-locked loops (PLLs). Each loop takes as input the signal detected
by the QPD, looks for the tone with the highest amplitude in the appropriate
BW (chosen depending on which axis we want to cool), then outputs a signal
at double the frequency of the mode. The phase offset of each output tone is
set experimentally, observing the response of the particle to different phases,
and choosing the one that minimizes the energy in the mode (i.e., minimizes
the area under the PSD peak). A comprehensive overview of PFC can be found
in [9].

Figure 2.11: PSDs of the PLL-cooled COM modes at 1× 10−6 mbar. With our system’s
parameters (100 mW of 1064 nm light focused by a 0.75 NA lens) our modes have frequencies
Ωz,0 = 2π ·40.6(1) kHz, Ωx,0 = 2π ·116.6(1) kHz and Ωy,0 = 2π ·141.6(1) kHz. At double these
frequencies we apply the PFC tones, which can be seen in the graph above at ≈ (81, 234, 282) kHz
respectively, due to the imperfect balancement of the signal.

Minimizing the COM energy ensures that the recapture probability after
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the drop is large, as shown in Fig. 2.4. Another (more technical) parameter that
strongly constraints the repeatability of the experiment is how reliably the PLLs
stay locked on the COM signals, since this heavily influences how many times
the experiment can be performed without losing the particle after recapture.
The greatest challenge is to keep a stable lock on the COM y eigenfrequency
when it abruptly changes at recapture due to the nonlinear potential [67] as
the particle’s oscillations become of the order of ∼ 100 nm. This induces a
sudden redshift of the COM eigenfrequencies of as much as 10 kHz along the
vertical axis. Occasionally, this causes the PLLs to lose lock to the actual signal,
applying the PFC at the wrong frequency, thus further exciting the particle and
kicking it out of the trap.

Throughout this project great effort has been dedicated to increasing the
overall performance of the cooling, by improving the SNR of the detection, but
especially the reliability of the PLLs that generate the cooling feedback.

We apply the PFC by modulating the laser intensity with a dedicated
electro-optic modulator (EOM). The PFC signals are generated by two Zurich
Instrument MFLI boxes. Originally, we experimented with the PLLs integrated
in the Zurich Instrument HF2LI box. However, such digital PLL loops struggle
to lock to signals that have sudden changes over a large bandwidth. Finally,
we implemented our PFC entirely with the MFLI PLL/PID modules. Their
software offers a phase unwrap option, which automatically corrects for phase
discontinuities bigger than π, originating when the oscillator frequency has a
sudden change. This greatly increases the stability of the loop, and its bandwidth
[68]. The COM modes across all axes can now be cooled reliably to < 50 mK

for initialization and after recapture. More importantly, we reduced the particle
loss rate to well below 1×10−3, meaning that we can complete more than one
thousand repetitions of the experiment before accidentally dropping the particle,
and having to load a different one.
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2 Free evolution of a thermal state

Figure 2.12: Simulation of the effect of phase unwrap correction on the MFLI PLL frequency
output (top panel) and error (bottom panel). We control a reference oscillator Ωref to simulate
the abrupt redshift of the COM y frequency during our experiment. We try to lock two identical
MFLI PLLs to this signal, but disable the phase unwrap correction for one of them. As a result,
this PLL cannot lock back to Ωref after the frequency jump.

2.3 Free fall of a nanoparticle

2.3.1 Measuring protocol

We use a field-programmable gate-array6 (FPGA) to create digital (TTL) signals
that coordinate the action of all the electronics involved in the experiment,
timing its various stages.

The process is initialized from the computer via Ethernet, through a custom
Python interface, which modifies the registers on the FPGA according to the
user’s inputs. When the FPGA is prompted to start the protocol, it generates
four trigger signals, with relative delays between each other.

One of them is the "master" trigger, used to start the data acquisition; the
other three are connected to solid state switches, and control either the status of
the traps, or the feedback cooling. The delays between each pair of trigger can

6RedPitaya STEMlab 125-14, programmed with custom code
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2.3 Free fall of a nanoparticle

Figure 2.13: Status of the FPGA outputs during the different phases of the experiment. During
the re-initialization phase, the frequency f2 of the recapturing beam is shifted towards f1. The
particle is dragged along the vertical axis, to bring it to its initial position. The two tweezers are
then instantaneously swapped, and f2 reset to its original value, to start the protocol again.

be set by the user.

The algorithm controlling the experiment works as follows.
First, we record a spectrum of the COM motion to calculate the effective

temperature of the initial state, from the PSD integral. If the temperature is
above 50 mK, the protocol is paused, the PLLs reset, and the procedure is halted
until the COM temperature drops again. This step is optional, and lengthens
the total acquisition time, but increases the experiment’s chances of success.

When the COM’s temperature is low enough, a signal prompts the FPGA
to start the free fall protocol. The master trigger is engaged, and the data
acquisition starts. At the same time, a second trigger controls a solid state
switch that stops the PLL cooling, which we switch off before the optical trap to
prevent any spike of the detector signal to be fed back through the electronics.

After 1 µs, a third trigger sends the input to shut off the primary trap, thus
starting the particle’s free fall.

After a delay τ, a fourth trigger gives the input to turn on the second trap,
recapturing the particle. Light reaches the detector again, and the particle’s
oscillations are visible in the signal. The particle can now be cooled, and
brought up to its initial position by shifting the tweezer upwards, terminating
one repetition of the experiment.
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2 Free evolution of a thermal state

2.3.2 Free fall and recapture between overlapped foci

Figure 2.14: Dynamics of a nanoparticle in free evolution for 200 µs, released and recaptured
over overlapped tweezers.

We first test the protocol working in the geometry already studied in [59], in
which the release and recapture tweezer are overlapped.

We choose a nanoparticle with diameter of 122(17) nm, and run the protocol
at pressures of 1×10−6 mbar. Currently, we reliably achieve 200 µs of free
evolution between release and recapture of the particle. In Fig. 2.14 we plot a
single shot timetrace of the QPD signals after a free fall of 200 µs. The particle
should have travelled ≈ 200 nm from the center of the tweezer, whose radius
we estimate to be ωy = 700 nm. To the best of our knowledge, it is the first time
that such a free evolution has been realized at a pressure of 1×10−6 mbar on
these timescales, and with nanoparticles of this dimensions.

2.3.3 Free fall between separated tweezers

We now describe the measurements realized by dropping the particle between
displaced tweezers. We use a nanoparticle with a diameter of 116(16) nm

(see Tab. 2.1), and drop it at 1×10−6 mbar across tweezers that are displaced
across estimated distances that range from 50 nm to 150 nm. The datasets are
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2.3 Free fall of a nanoparticle

acquired with the Scope module of a Zurich Instruments MFLI, triggered on
the master trigger generated by our FPGA. Following the experimental protocol

Figure 2.15: Example of a recorded timetrace, with highlighted protocol phases. On the bottom
panel we show the details of a realization with free fall time of 250 µs, between tweezers
displaced by −222 nm (∆ fAOM = 2.5 MHz).

detailed in Section 2.3.1, each timetrace can be divided in different sections,
highlighted in Fig. 2.15, corresponding to each block of the protocol.

• First section: the particle sits in the upper trap, and its motion is cooled
via parametric feedback. This section thus contains information on the
initial state of the particle, before the free fall.

• Second section: starts when the first tweezer is shut off, and ends when
the second tweezer is turned on. It varies in length accordingly with the
free fall time chosen. It does not contain any information on the particle’s
dynamics, since no light is reaching the detector.

• Third section: is the one we use to verify the state after the free fall. It
starts as soon as the second tweezer is turned on, and carries information
on the energy and dynamics of the particle right after recapture. The
first 150 µs are discarded, due to being distorted by the saturation of the
QPD’s amplification chain.
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2 Free evolution of a thermal state

• Fourth section: starts when the parametric cooling is reactivated, and is
recorded for diagnostics reasons in the event that the PLLs fail to engage.

We analyse the data by taking the ratio H̃i (τ) between the energy at
recapture 〈Hi (τ)〉, and the energy of the initialized state 〈Hi (0)〉. Starting
from Eq. 2.25, which we evaluate for γ→ 0, we recall that 〈Hi ,0〉 = mΩi ,0〈q2

i ,0〉,
and obtain

H̃i (τ) = 〈Hi (τ)〉
〈Hi ,0〉

= mΩ2
i (τ)〈q2

i (τ)〉
mΩ2

i ,0〈q2
i ,0〉

= 1

2
− A

ω2
i

4〈q2
i ,0〉

ωi√
ω2

i +4σ2
qi

(τ)
exp

[
−2(di −µqi )2

ω2
i +4σ2

qi
(τ)

]

− A
ω2

i

4〈q2
i ,0〉

.

(2.31)

The normalization simplifies the mass m out of the equation, to suppress
uncertainties due to the imprecision on the estimated particle mass (Tab. 2.1).

For the same reason, we introduced a scaling factor A to account for the
error in the conversion of 〈q2

i ,0〉 to meters. In fact, we measure 〈q2
i ,0〉 in V2

from the first section of the acquired data, by integrating the area under the
peak of the i -th mode of the signal’s PSD. The conversion to meters relies on
the calibration factor c we extracted previously, in Tab. 2.1, which also has a
significant uncertainty.

We do not include a scaling factor for σ2
qi

(τ), as it appears only in terms
summed in quadrature with ωi . Since ωi ≫σqi (τ), those terms are dominated
by the size of the waist of the beam, which we take as fixed, recalling that
ωy = 0.6 µm, ωz = 1.1 µm, and ωx = 0.7 µm [8].

The frequencies Ωi ,0 and Ωi (τ) are evaluated from the data. Note how
in general Ωi (τ) ̸= Ωi ,0, because of the redshift at recapture due to the
Duffing nonlinearities. Before release, we measure Ωz,0 = 2π · 40.6(1) kHz,
Ωx,0 = 2π ·116.6(1) kHz and Ωy,0 = 2π ·141.6(1) kHz.

In Fig. 2.16 we plot H̃i (τ) as a function of recapture time τ and tweezer
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Figure 2.16: Normalized average recapture energy H̃y(τ) as a function of τ and dy. All three
datasets were acquired with the same particle. The dots represent experimental data, and the
error bars the unbiased standard error calculated over the average of one hundred acquisitions.
The dotted lines are fits of Eq. 2.31 with dy, 〈q2

y,0〉 and A as parameters. On the left side of the
figure we rescale the ratio, assuming an initial temperature Ty,0 = 37 mK, which we extrapolate
by comparing the average integral under the PSD y peak at recapture with the PSD acquired at
high pressure (Fig. 2.10).

y COM mode

0.5 MHz 1.0 MHz 1.5 MHz

dy [nm] -45(2) -85(4) -137(3)
〈q2

y,0〉 [nm2] 1.13(1)

A [adim.] 1.4(2)

Table 2.2: Fitted values of the trap displacement dy, the scaling factor A, and 〈q2
y,0〉.

separation dy, set by changing ∆ fAOM from 0.5 MHz to 1.5 MHz.
The three datasets were acquired using the same particle. Each point in the

graph is the result of averaging over one hundred realizations of the experiment,
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2 Free evolution of a thermal state

for each configuration of free fall time and displacement.
The error bars represent the unbiased standard error over the hundred

averaged ratios (i.e., the standard deviation divided by the square root of the
number of samples minus one).

The dotted lines in Fig. 2.16 are fits of Eq. 2.31, with dy, A, and 〈q2
y,0〉 as

parameters. We summarize the results in Tab. 2.2.
On the right side of the graph we rescale the ratio by the temperature

Ty,0 of the thermal state at initialization, which we evaluate from the PSD by
comparing the average of the one hundred integrals under the y peak for all one
hundred realizations, with the integral of the PSD acquired at high pressures.
We find Ty,0 = 37 mK, Tx,0 = 16 mK and Tz,0 = 45 mK.

From Fig. 2.16 we identify at which τ do we find the minima of the
experimental curves. For different tweezer displacements, we observe that the
recapture energy is minimized for τ that approach the expected time needed for
an object accelerated by gravity to cross the distance dy. The minima lie slightly

before t =
√

2dy/gy, as expected from the theory model presented in Fig. 2.5.
For increasing free fall times, the total energy grows again, as the particle
crosses the center of the recapturing trap and samples areas characterized by a
higher potential energy.
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Figure 2.17: Trap separation dy as a function of frequency difference ∆ fAOM between the AOM
driving tones. The values extrapolated from the data lie on a line with slope of −89(3) nm/MHz,
and intercept of 0(3) nm.

We use the position of the minima to calibrate the distance between the
center of the tweezers (Fig. 2.17). Each megahertz of difference between
the frequency tones corresponds to 89(3) nm of separation between the traps’
centers, close to the value we estimated.
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2.3 Free fall of a nanoparticle

We use this information for later acquisitions, in which we push the free
fall time up to 270 µs, moving the tweezer by −356(12) nm.

From the data in Fig. 2.16, and the fit results summarized in Tab. 2.2, we
conclude that although there is a systematic error in the conversion of 〈q2

i (τ)〉
to meters, due to the imprecision on the estimate of the factor c in Tab. 2.1, the
experimental data is well described by our model.

2.3.4 Along z and x
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Figure 2.18: Measured normalized energy H̃z(τ) at recapture along the axis z, as a function of
τ and ∆ fAOM. The black dotted line is a fit of Eq. 2.31. We assume dz = 0, and leave only the
scaling factor A = 2.2(1) as a free parameter. On the left, the vertical axis is rescaled assuming
an initial temperature Tz,0 = 45 mK, which we extrapolate from the data.

z COM mode

0.5 MHz 1.0 MHz 1.5 MHz

A [adim.] 2.2(1)

Table 2.3: Fitted values of the scaling factor A for the z COM mode analysis.

We now focus on the experimental analysis of H̃i (τ) at recapture along the
axes z and x, perpendicular to the free fall.

In Fig. 2.18 we plot the data relative to the z axis. We see that independently
of ∆ fAOM the points follow a trend which increases monotonically with τ. This
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Figure 2.19: Measured H̃x(τ) at recapture, as a function of τ and ∆ fAOM. The dotted lines are
fits of Eq. 2.31, with dx and A as parameters. On the right side, we rescale the axis considering
Tx,0 = 16 mK, which we extrapolate from the PSD.

x COM mode

0.5 MHz 1.0 MHz 1.5 MHz

dx [nm] -18(2) -15(4) -36(6)
A [adim.] 1.4(2)

Table 2.4: Fitted values of the displacement between the tweezers dx, and the scaling factor A,
for the x COM mode.

is congruent with our model, in which the center of the release and recapturing
tweezers are coincident along z, such that the least recapture energy is at τ= 0.
The main contribution to H̃z(τ) is the expansion of σz(τ). We fitted the data
with Eq. 2.31, leaving as only fit parameter the scaling factor A, and assuming
an initial temperature of Tz,0 = 45 mK, which we extrapolate comparing the
interval of the PSD z peak with our reference at high pressure. We find
A = 2.2(1).

Similarly, we analyze the information collected along the x axis, which is
perpendicular to the gravitational acceleration. Also in this case, the model

62



2.4 Phase space reconstruction

follows a general trend of increasing H̃x(τ) for increasing τ.
Here we left both dx and A as fit parameters, assuming an initial temperature

of Tx,0 = 16 mK which we measure from the PSDs.
From the results in Tab. 2.4 we conclude that by changing ∆ fAOM we

are moving the trap diagonally, so also along the x axis. This influences the
potential landscape, ad highlighted by Fig. 2.6, but does not determine a change
of momentum along x, since the gravitational acceleration acts only along y .

Overall, a diagonal displacement of the trap is not a problem for our
measurements, and can eventually be corrected by more carefully tilting the
AOM.

2.4 Phase space reconstruction

We now reconstruct the phase space distribution of the state before release,
and at the recapture instant τ, to experimentally verify how do the probability
distributions P (qi ) and P (pi ) evolve as a function of free fall time. We do
so using the information contained in the timetraces, to extrapolate phase and
amplitude of the COM dynamics just before release of the particle from the
trapping field, and at the instant of recapture.

The thermal state is described by Gaussian probability distributions both in
position domain qi , and momentum domain pi , with i = z, x, y . As mentioned
before, a Gaussian is characterized by its mean and its standard deviation, so
we can reconstruct the trajectory of the thermal state in phase space by knowing
the mean µ(t ) and standard deviation σ(t ) for both the position and momentum
distributions.

The only force acting during the free fall is gravity. Along the vertical axis
we expect a deterministic drift of the mean position µy(t ) and momentum µpy (t )

of the nanoparticle, while the center of the distributions for the z and x COM
modes stay centered around the origin of phase space for the whole evolution.
Regarding the width of the distributions (i.e., their standard deviations σ), we
expect that points that have positive (negative) momentum in phase space at the
start of the free evolution, will keep moving at constant speed along the positive
(negative) position axis, in absence of an external force. After a time τ, the
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2 Free evolution of a thermal state

Figure 2.20: Montecarlo simulation of the evolution of a thermal state (Ti,0 = 50 mK, Ωi ,0 =
2π ·140 kHz), at different observation times. The black arrows represent magnitude and direction
of the velocity of the phase space points, according to their coordinate on the vertical axis.

phase space distribution will be elongated along qi . Effectively, the size σqi of
the state will have expanded.

In the following paragraphs, we briefly describe how to reconstruct the phase
space distributions from the data, before showing the experimental results.

2.4.1 Extracting phase and amplitude from the data

As soon as the particle is released from the upper tweezer, it starts its evolution
under gravitational acceleration with an initial displacement qi ,0 and velocity
vi ,0 which depend on the phase φ0 and amplitude r0 of the oscillation at the
moment of release. Similarly, as soon as the particle is recaptured it starts
oscillating in the new trapping potential, with φτ and rτ now depending on
the final values of qi (τ) and vi (τ) reached after the evolution (Eqs. 2.3 and
2.2). To reconstruct the phase space distributions before release and just
before recapture, we extract amplitude and phase of the COM modes from the
timetraces. In the following, we explain our procedure for the reconstruction of
phase space before release of the nanoparticle.

First, we identify the part of each timetrace that contains information on
the COM’s oscillation just before release. For this analysis we use only the last
5 ms recorded before the detector becomes blind. We refer to this signal as
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2.4 Phase space reconstruction

Figure 2.21: Example of a filtered timetrace, where we use a bandpass filter to extract information
on phase and amplitude of the particle’s COM oscillations at release and recapture. The portion
of the timetrace recorded at t < 0 has been multiplied by a factor of 10 to make it more visible.

vsig.(t ). We calculate the PSD of the trace, and find the exact eigenfrequency
Ωi ,0 for each mode. We demodulate vsig.(t ) around the carrier frequency Ωi ,0

by mixing it in postprocessing with a unit amplitude tone at Ωi ,0. We then filter
the mixed signal with a first order lowpass Butterworth filter. The output of this
process are the quadratures I and Q of the filtered signal, vfilt.(t ), which can be
reconstructed considering that

vfilt.(t ) =F (vsig.(t )) = I + iQ, (2.32)

where F denotes the full filtering process, and i is the imaginary unit.
We retrieve phase and amplitude of the signal from the quadratures I and Q

simply considering that
φ0 = tan−1 (Q/I ),

r0 = 2
√

I 2 +Q2.
(2.33)

Here, the factor of 2 is needed because our filter erases the information on the
negative frequencies.

The post-processing of the data is completely done in Python. We use
the Scipy library to create a Butterworth filter, setting as parameters its order,
center frequency and BW. We work with first order filters, and tailor the cutoff
frequency case by case. Usually, we need a BW between 1 kHz and 2 kHz to
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2 Free evolution of a thermal state

Figure 2.22: Phase space reconstruction of the cooled COM modes before release, at t = 0.
The axes are converted to displacement and velocity units by using the factor c in Tab. 2.1.
Compared to x and y , the phase space reconstruction for the z mode looks larger along the
position axis. This is due to the lower eigenfrequency Ωz,0 = 2π ·40.6(1) kHz, compared to
Ωx,0 = 2π ·116.6(1) kHz and Ωy,0 = 2π ·141.6(1) kHz.

optimize the filtering for the x and y COM mode signals, while the z mode
requires a narrower BW between 50 Hz and 100 Hz. Once r and φ are known,
we find the phase space coordinates of each realization of the experiment by
noting that, for harmonic motion, at t = 0 we have

qi = r0 cos(φ0)/c,

pi = q̇i m =−r0mΩi ,0 sin(φ0)/c,
(2.34)

where m is the mass of the particle, Ωi ,0 the eigenfrequency of the mode along
axis i and c (in V/m) the calibration factor that converts our signals from volts
to meters (see Tab. 2.1).

In Fig. 2.22 we show the reconstructed phase space of the cooled COM
modes at t = 0, where each point represents one of the hundred realizations.
Here the position frame of reference is centered on the first tweezer. As
expected, the states lay roughly around the origin of the frame. The spread of
each state is proportional to the standard deviation along the relative axis (i.e.,
the initialization temperature Ti ,0).
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2.4 Phase space reconstruction

Figure 2.23: Phase space reconstruction of the thermal state at recapture, for a particle dropped
between traps separated by −89(3) nm (∆ fAOM = 1 MHz). The center of the P (qy) distribution
at τ≈ 120 µs (optimal recapture time, as seen in Fig. 2.16) lies above the origin of the trap, as
predicted by Eq. 2.25.

2.4.2 Phase space reconstruction after the free evolution

The reconstruction of the phase space distributions just before recapture requires
some extra care. Due to saturation of the QPD’s amplification electronics, the
first few microseconds of recorded data are distorted (Fig. 2.15) and cannot be
used to directly recover information on the particle’s motion. We exploit the
part of the timetrace that is not corrupted by the electronic artefacts to perform
a retrodiction process, back propagating the signal in time until τ, to reconstruct
the unreadable parts of the trace and infer from them r and φ at τ.

To do so, we apply the Butterworth filter on the time-reversed demodulated
quadratures I and Q, which we then back-propagate in time until τ. We
reverse the demodulated signal in time again, and obtain φτ, rτ, qi (τ) and vi (τ)

according to Eqs. 2.33 and 2.34.
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2 Free evolution of a thermal state

Fig. 2.23 shows the experimental reconstructions of P (qi ) and P (pi /m)

at recapture as a function of free evolution time, for all three COM modes. The
blue crosses indicate the center of each distribution. We are "looking" at the
particle from the second tweezer’s reference frame, so the origin of phase space
is now coincident with the center of the recapturing trap.

As expected, the reconstructed distributions for the z and x mode stay
roughly centered on the same point during the evolution, since the particle’s
COM is not subjected to any acceleration along these axes. The phase space
distribution of the x mode also shows increasing levels of squeezing for longer
free fall times, as the points lying at the extremities of the P (pi /m) distribution
increase their displacement linearly in time. We note that points with positive
velocities seem to move towards the negative x axis. This effect can be attributed
to a phase delay of the x QPD signal, different with respect to the y channel,
which rotates the distribution in phase space with an angle proportional to the
delay. Looking at the evolution of the distributions reconstructed for the z axis,
it is more difficult to unambiguously infer the squeezing effect, also due to
the low SNR for this mode. As expected though, as the time increases, the
distributions expand.

Along the y axis, for increasing τ the mean displacement changes from
positive to negative values, meaning form above to below the center of the
recapturing trap.

x y z

q ′
i ,0 [nm] -27(5) 113 (11) 11(3)

gi [m/s2] 0.0(7) -12(1) 0.0(6)

Table 2.5: Fit results of the parameters defining the phase space trajectories of the x, y and z
COM mode. Here q ′

i ,0 is measured from the center of the recapturing trap.

In Fig. 2.24 we plot the behavior of the mean µqi of P (qi ) as a function of
τ. The black dotted lines are fits of the data according to the model of uniformly
accelerated motion

µqi ≈ q ′
i ,0 +

1

2
giτ

2. (2.35)
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Figure 2.24: Evolution of the mean µqi of P (qi ), as a function of free fall time, for a trap
separation of −89(3) nm (∆ fAOM = 1 MHz). The error bars represent the unbiased standard error
calculated over the one hundred samples. The red curves are theory model trends (Eq. 2.35),
evaluated assuming q′

0 = (0,89,0) nm, and g = (0,−9.81,0) m/s2. In black dotted lines, we
fit the data to the model with q′

0 and g as fit parameters. Along the y axis, the center of the
distributions behave congruently with uniformly accelerated motion. Along z and x, the center
of the distributions are offset from the origin of the recapturing trap.

Here q ′
i ,0 ̸= 0 is the initial average position measured from the center of the

recapturing trap. We fitted the trajectories of all three COM modes leaving
q ′

i ,0 and gi as fit parameters, and present the results in Tab. 2.5. The grey
shaded areas picture the interval defined by Eq. 2.35 form the fit results and
their associated errors. The red traces represent the expected behavior of the
distributions in time, according to our model, assuming q′

0 = (0,89,0) nm, and
g = (0,−9.81,0) m/s2.

The evolution of the y COM mode shows the clear signature of an accelera-
tion acting along the axis. The nanoparticle crosses the center of the recapturing
trap at t = 136(5) µs.

Along z and x we observe an offset of the center of the distributions with
respect to the trap origin, respectively by 11(3) nm, and −27(5) nm. Along
the x axis, this indicates that the displaced tweezer is moving diagonally in
the laboratory frame of reference. Along z, the effect indicates a shift of the
focus’ position along the beam propagation axis. The displacement seems to
depend on the recapture time, so we speculate it might be due to drifts of the
lens’ temperature during the protocol, which would affect the diffraction index
of the glass and thus the lens’ effective focal length.
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2 Free evolution of a thermal state

2.5 State expansion as a function of free evolution time
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Figure 2.25: Evolution of σqi (τ), for all three axis, normalized by the initial state width σqi (0).
The dotted black lines are free parameter theory curves for the expected trend, in Eq. 2.36.

We now analyze how the standard deviation of P (qi ) evolves as a function
of τ. In Section 2.1.1 we have seen that for γ→ 0 we expect σqi to evolve
linearly in time, according to the square root of the initial second moment of
velocity 〈v2

qi
(0)〉 =Ω2

i ,0〈σ2
qi

(0)〉. We are interested in the ratio σ̃qi (τ) between
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2.5 State expansion as a function of free evolution time

the standard deviation of P (qi ) at release time t = 0, and at τ:

σ̃qi (τ) = σqi (τ)

σqi (0)
≈

√√√√1+
〈v2

i ,0〉
σqi (0)

τ2

=
√

1+Ω2
i ,0τ

2.

(2.36)

Note how a stiffer potential implies a faster expansion, because of the higher
Ω2

i ,0.
In Fig. 2.25 we plot the ratios between the horizontal projections σqi (τ) and

σqi (0) of the reconstructed phase space distributions, representing the standard
deviations of P (qi ) at recapture time and before release.

The blue, orange and green data are extrapolated from the three datasets
presented earlier. The pink data point is the average over 100 free evolutions
realized with a different nanoparticle, for which we increased both the tweezer
displacement (∆ fAOM = 2.5 MHz, for 222 nm of tweezer separation) and free
fall time (250 µs).

The error bars are the total error evaluated from the propagation of the
uncertainties on σqi (τ) and σqi (0), which we calculate as the standard deviation
itself multiplied by

p
2/(100−1).

The black dotted lines are our model, from Eq. 2.36. The eigenfrequencies
depend on the laser power and the particle’s density. The power is constant
for all acquisitions, and we assume the two particles have identical density,
since they come from the same supply. We measure Ωi ,0 from the data at
t < 0, and find that each mode’s eigenfrequency lies within 1.5% form the
average calculated over all sets. In Eq. 2.36 we thus choose Ωi ,0 as the average
calculated across all four sets.

We see how for all axes σ̃qi (τ) grows linearly in time, as expected.
We note that in the back-propagation of the signal until time τ we are not

correcting for delays introduced by the electronics and the AOM’s response
time. We use the properties of harmonic motion to link qi and pi (Eq. 2.34), to
extrapolate them at the recapture time, so any error δt in the timing will result
in a distribution rotated in phase space by an angle Ωi ,0δt , which is negligible
for small δt .
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2 Free evolution of a thermal state

Here we extract only the projection of the rotated ellipse along the axis qi ,
and not its major axis. Hence, we might be underestimating the state expansion.

Figure 2.26: Phase space reconstruction of the thermal state at recapture, for a free fall of 250 µs,
between traps separated by −222 nm.

t σx(t ) σy(t ) σz(t )

[µs] [nm] [nm] [nm]
0 0.38(5) 0.51(7) 1.9(3)

250 86(12) 115(16) 93(13)
σ̃qi (250 µs) [adim.] 224(45) 223(45) 49(10)

Table 2.6: Standard deviation of the thermal state as a function of free evolution time, extracted
for all COM modes at release time t = 0, and after a free evolution time of 250 µs.

Now we focus on the analysis of the expansion rate along the different axes.
Compared to the y and x axes, the expansion along z is much smaller, with
σ̃z(250 µs) = 49(10). This is due to the lower eigenfrequency of the COM mode
along the axis of propagation of the laser, where the confining potential has a
larger waist.

Along the y axis instead, just before releasing the particle from the confining
potential, the width of the thermal state is σy(0) = 0.51(7) nm. From the data
we extract σy(250 µs) = 115(16) nm. We thus achieved an expansion for the
thermal state along the y axis of a factor σ̃y(250 µs) = 223(45).

Similarly, along the x axis we measure σx(0) = 0.38(5) nm before release,
and σx(250 µs) = 86(12) nm at τ = 250 µs, indicating an expansion factor of
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2.6 On the scalability of the setup

224(45).

We thus experimentally realized a free fall expansion of a thermal state
by more than two-hundred-fold its initial size. In Tab. 2.6 we summarize our
findings for all three axis.

2.6 On the scalability of the setup
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Figure 2.27: Energy of the y COM mode at recapture measured for free falls up to 270 µs, and
trap displacements up to 356 nm. The datasets were acquired with three different particles. The
dotted lines are free parameter theory curves, assuming an initial temperature of 10 mK. The
error bars represent the unbiased sample error calculated over the N < 50 samples of each set.

Here we show some of the data that we did not include in our previous
analysis. In Fig. 2.27 we plot the normalized y COM mode energy at recapture
(Eq. 2.31) measured for four datasets acquired with different nanoparticles. We
tuned the tweezers’ displacement from 178 nm to 356 nm, achieving a record
free fall time of 270 µs.

The dotted lines are not fits, but free parameter curves calculated from
Eq. 2.31, assuming an initial temperature of 10 mK, and a scaling factor A = 0.7.

The datasets are omitted from the previous sections because for each
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2 Free evolution of a thermal state

Figure 2.28: QPD y signal of a 270 µs free fall. We use different colors to highlight the various
sections of the timetrace, according to what described in Sec. 2.3.3.

configuration of dy and τ we could complete only between thirty and fifty
repetitions, due to failure of the PFC. The particles were recaptured each time,
but heated out of the trap by the unlocked PLLs. In the future, we plan on using
linear feedback cooling, which according to our experience is more resistant to
sudden frequency shifts due to the higher bandwidth of the filter. The particle
has no charge, so we will deliver the feedback by adding a secondary laser
beam, to apply the viscous force by tuning the radiation pressure acting on the
particle [69, 70].

For the longer free falls we observed saturation of the detector output. As
the oscillation amplitude of the particle increases, the detection becomes non
linear. In some cases the voltage signal saturates the output, resulting in a
clipped timetrace. This leads to an underestimation of 〈q2

i (τ)〉, making the data
unusable for our analysis.

We plan on upgrading the detector to one with a higher dynamic range.

As of today, the PLL performance and the dynamic range of the detector
are the two factors that constrain the repeatability of our protocol. Nevertheless,
the data in Fig. 2.27 shows how our platform is scalable to a wide range
of configurations, allowing us to drop and recapture the nanoparticle over a
distance more than three times its diameter.
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2.7 Conclusions

To summarize, with this project we developed a platform for the study of free
state evolutions with a femtogram nanoparticle, with a mass over 109 AMU.

With our experimental protocol based on the release and recapture of a
neutral nanoparticle between separated optical tweezers, we let a thermal state
evolve in absence of confining potentials, accelerated by gravity across distances
bigger than the particle’s dimensions, and for timescales up to 270 µs.

More importantly, our platform fulfills the condition of making such free
evolution protocols controllable and repeatable with the same particle. This is
of utmost importance to test quantum protocols with levitated nanoparticles, as
each one is unique, therefore imposing that all repetitions of the experiment
necessary for statistical verification must be done with the same object.

As of today, the maximum achievable free evolution time is limited by
the performance of the parametric feedback cooling. Longer evolution times
mean higher energies at recapture. The consequent redshift of the COM
eigenfrequencies challenges the PLL’s limited bandwidth, causing it to lose
lock, and heating the particle out of the trap. In the future, we plan on
implementing a linear feedback cooling scheme, to take advantage of the higher
bandwidth around the eigenfrequencies, and increase the reliability of the
cooling at recapture.

With respect to what has been achieved up until today in the levitodynamics
community [21], one advantage of our system is that the state expansion is
unbounded. We experimentally demonstrate that the evolution happens linearly
in time, and calculate an expansion factor of 223(45) of the y COM mode for
a free evolution of 250 µs. To our knowledge, it is the first time that such a
state expansion factor has been realized with femtogram levitated masses, on
sub-millisecond timescales.

The combination of all these factors makes our platform a viable candidate
for the experimental realization of large quantum state expansions with massive
levitated objects.



2 Free evolution of a thermal state
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3
Levitated optomechanics for coherent state
expansion

Our work demonstrates how levitated optomechanics is a promising platform
for the realization of big delocalized states with massive objects, due to its
excellent versatility and low-dissipation properties.

In particular we discussed two settings that highlight the capabilities of
levitated systems.

In Chapter 1 we demonstrated how to bring a silica nanoparticle (> 109

AMU) to the quantum regime, by trapping it in a cryogenic environment and
cooling one of its COM modes below single phonon occupation, exerting active
control on its motion derived from a high-efficiency measurement.

In Chapter 2 we answered the necessity of working in absence of confining
potentials, to achieve arbitrarily large state expansions in absence of photon
recoil. We did so by taking advantage of the action of gravitational acceleration,
and letting a nanoparticle with zero net charge free fall between separated
intermittent tweezers. We experimentally verified the expansion of a thermal
state up to a factor of 224(45) during the free fall, and proved a high level of
controllability and repeatability of the experiment.
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3 Levitated optomechanics for coherent state expansion

The natural evolution of this work is to combine the two projects together,
and experimentally conduct free evolution protocols with a nanoparticle cooled
to its ground state, in free fall between displaced tweezers.

Compared to other platforms, which rely on Coulomb interaction to keep
the nanoparticle in a confined volume during the evolution, working with neutral
objects has the intrinsic advantage of being insensitive to stray electric fields.

One point to address is how to efficiently cool a neutrally charged nanopar-
ticle to the quantum regime. To this end, we stress that parametric feedback
is delivered through light intensity modulations, and acts independently of the
particle’s charge. Mean occupations below 100 phonons have already been
reported in the past [31, 43].
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Figure 3.1: Loss probability 1−ϱy as a function of trap displacement dy and free fall time τ.
Comparison between (a) our experiment, in which Ty = 50 mK, and (b) a case-study in which a
nanoparticle is cooled to 50 µK. The red dotted line indicates an interval of two time the trap’s
waist ωy from the particle’s average position (µq , Eq. 2.9). The orange shadowed area represents
the state’s expansion as a function of free evolution time. See Sections 2.1.2 and 2.1.3 for more
details.

Nevertheless, linear feedback cooling is the more efficient tool for reaching
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single digit phonon populations. In our work, we demonstrated ground-state
cooling of a charged nanoparticle through the use of an electric linear feedback,
but cold damping can also be applied through optical fields, without recurring to
Coulomb interaction. The feedback is delivered either by moving the tweezer’s
focus, inducing a linear force on the particle [71], or through the modulation of
radiation pressure with the introduction of additional laser beams [69, 70].

Initializing the particle’s COM in lower mean phonon occupations would
dramatically increase the parameter domain in which a free fall protocol could
in principle be operated with high repeatability, as we show in Fig. 3.1.

Here, we illustrate the loss probability for experiments conducted with a
particle cooled to 50 mK, and 50 µK, for trap displacements up to 5 µm, and
free evolutions times up to 1 ms. From our calculations, the lower initial COM
temperature, corresponding to ∼ 10 phonons of mean occupation, would grant
high repetition rate (1 particle lost every billion realizations) even for 1 ms free
falls. In red dotted lines we delimit an area twice as wide as the trap, centered
around the average position of the free falling particle. In orange we picture the
expansion of the state. A higher initial temperature determines a faster state
expansion (Eq. 2.10), which in turn limits the maximum achievable evolution
time due to the limitations on the system’s total potential energy imposed by
the trap’s characteristics.

In the future, we envision working with a setup that combines the detection
efficiency and decoherence properties of our cryogenic system, together with
the high level of control over the tweezers’ power and position of our room-
temperature system.

We would still use an AOM (or a deflector) to control the trap’s coordinates,
and adopt a backscattering detection scheme to improve the efficiency of the
measurement. We expect a better SNR compared to forward detection, by
avoiding the need to attenuate the signal due to the intense LO (> 100 mW).

Similar to what we do now in forward detection, we would use a telescope
to image the fields onto the detector, keeping the signals centered on its diodes
regardless of beam orientation. The measured signal would then be used to
create the light-activated active feedback for state initialization.
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3 Levitated optomechanics for coherent state expansion

The use of a cryostat, although susceptible to higher mechanical noise, is
useful to limit decoherence due to interactions with residual gas molecules, and
blackbody radiation emission.

We can think of minimizing the time for which the optical trap is on, to
maintain the internal temperature of the nanosphere in equilibrium with the
surrounding cryogenic environment. Assuming the particle’s environment to be
equilibrated at 60 K, and at a pressure of 10−12 mbar, well within the reach of
state-of-the-art cryostats [72], we estimate a coherent evolution time of around
50 ms [5].

For a conservative estimation, let us constrain ourselves to 1 ms of evolution.
Starting from the ground state, with yzpf ≈ 10 pm, in 1 ms we could expand the
state by a factor 880, to 8.8 nm.

Considering the scalability of our system, we are confident that the pa-
rameter range of operation of our setup could be expanded in the future, to
achieve free evolutions even longer than 1 ms. A free fall of 10 ms would be
sufficient to coherently expand the wave function up to a size comparable with
the nanosphere itself, bringing the exploration of macroscopic quantum effects
within experimental reach.

This outlook is partially based on the publication [3].
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A
Design of the mechanical components

This section is partially based on the supplementary information to the publica-
tion [3].
Both experiments presented in this work require highly specialized setups.
During the development of each project, custom mechanical parts were designed
and manufactured ad hoc to accommodate the needs of the experiments, whether
they be related to vacuum compatibly, mechanical stability, thermal performance
etc.

In the following sections, we will give more details on the fabrication of
some of the mechanical elements. We tried to engineer solutions which would
be easiest to manufacture, and most cost-effective, while still satisfying all of
the necessary specifications. All parts are also designed with ease of use (and
replacement) in mind.

A.1 Lens mounts

The trapping lens of our choice for both projects is the C-coated LightPath
355617, due to its high NA of 0.75. The lens is sold bare, without any enclosure.
It has a relatively small form factor, with just 1.4 mm of diameter and less
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A Design of the mechanical components

than 1 mm of thickness. In both experiments, we also use a collecting lens
(LightPath, model 355330, C coated), with a lower NA of 0.6 at 1064 nm

wavelength, and bigger dimensions (6.3 mm diameter, 2.7 mm thickness). This
model is sold already glued in a steel enclosure, with a M9×0.5 thread.

iai ibi ici

Figure A.1: a. Trapping (left) and collimating (right) lens, installed in their respective metal
casings. b. Section view of the custom mount for the trapping lens. On the top flat surface, a
round aperture with a ledge allows the lens to be dropped in, with the curved surface facing the
inside of the mount. c. Dark field image of the trapping lens glued to the mount. The microscope
is focused on the ledge of the aperture, to check if the lens is centered. In the top right corner, a
drop of glue keeps the lens in place.

We designed a custom casing to mount the trapping lens in our setup,
which allows us to also easily tune its distance from the collecting lens, hence
increasing the performance of our forward detection by maximising the light
collimated outside the chamber.

The mount (in Fig. A.1b) is of stainless steel. It features a 8 mm body with
M9×0.5 threading. The trapping lens rests above a circular ledge milled around
an aperture in the top flat surface of the mount. The lens is then secured in
place with a drop of vacuum-compatible glue1. The gluing process is performed
under the microscope, to ensure that the lens is concentric with the mount.

The choice of the material is functional to the experiment. We drive the
levitated nanoparticle’s motion with electrical signals: since the lens mounts
are made of conductive metal, we tape the electrodes directly on them. The
closeness of the mounts’ surfaces to the particle ensures that the resulting
electric field is strong enough to drive the particle’s motion.

1Norland Optical Adhesive 83H
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A.2 Trap couplers

A.2 Trap couplers

Once the lenses are glued on a proper mount, we position them at the right
distance to each other by screwing them in a trap coupler, and then fix them
inside the vacuum chambers.

The two projects required the design of different trap couplers, but key
characteristics are common to both. In fact, we need a trap holder that:

• ensures the two lenses are well co-aligned;

• allows to easily tune the distance between the lenses;

• is made of a non-conductive, vacuum-compatible material;

• is stable, both against mechanical vibrations and temperature fluctuations;

• has an access port for the nebulized particles to reach the trapping volume.

The couplers are made of polyether ether ketone (PEEK), a plastic material
easily machinable, and with enough chemical and thermal stability for our
applications. A horizontal bore with M9×0.5 threading accepts the two lenses,
each screwed in from either side of the coupler. This design grants the co-
alignment of the lenses, and allows fine adjustments of their relative distance,
while a tight thread clearance prevents accidental movements. On the top of
each holder, a 4 mm vertical channel is cut out to allow access to the volume
between the two lenses. Here the nebulized particles can be dropped, and
trapped. Both trap holders were machined by the D-ITET Workshop2 of ETH
Zurich.

A.3 Cryostat 4 K shield

The vacuum chamber of the cryostat setup is divided in three main volumes,
each delimited by a "shield". With this term, we refer to a metal casing which is
thermalized at a specific temperature, and blocks "hot" molecules from reaching
the inner volume of the cryogenic chamber. The most external shield (which
we call "the 300 K" shield) is simply provided by the vacuum chamber3, which

2https://werkstatt.ee.ethz.ch/en/
3Kimball Physics, model MCF800-ExtOct-G2C8
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Figure A.2: a. 3D model of the lens coupler for the second project. b. Lens coupler installed in
the chamber, fitted with lenses and electrodes. Initially, we had prepared the assembly with six
electrodes, two for each axis of motion, so that electrical tones could drive the particle from all
directions. c. Lens coupler for the cryogenic setup, mounted on a solid copper post to ensure
good thermal contact with the cold plate of the cryostat.

fully encloses the cold breadboard of the cryostat4.
The cold breadboard itself sits flush with the table, and comprises of two

stages: an innermost round 4 K plate, surrounded by the outermost 40 K base.
On top of this external base we screw the "40 K shield", a cylinder made of
aluminum, closed at the top with a removable lid. The innermost volume is

Figure A.3: Section (a) and top (b) view of the cryostat vacuum chamber, with the shields
and trap assembly positioned in place (here seen before installation of the electrodes for linear
feedback cooling).

protected by the 4 K shield, also cylindrical, but manufactured out of oxide-free
copper. The 4 K shield’s base is in direct thermal contact with the cold plate

4attocube attoDRY800

84



A.3 Cryostat 4 K shield

of the cryostat. At the top, the shield is closed with a removable lid. Four
perpendicular round cut outs allow optical access to the inside of the volume.
Here is where the trap sits, fastened on top of a cylindrical post also made of
oxide-free copper.

The shields block blackbody radiation from the external environment,
and help achieving low pressures inside the innermost volume through the
cryopumping effect. As the temperatures drop below 60 K, residual molecules
in the chamber stick and freeze onto the metal surfaces. At the 300 K shield we
read pressures of ∼1×10−9 mbar. We estimate that the pressure at the core of
the assembly should be lower by several orders of magnitude [72].
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B
Detailed solution to the Langevin Equation

In this section, we present in more detail the calculations that lead to the
equations in Sections 2.1.1 and 2.1.4.

B.1 Velocity as a function of time

We start considering the equation of motion of the nanoparticle’s COM. At time
t = 0 we switch off the optical trap. The equation of motion along a generic
axis y reads:

ÿ(t )+γẏ(t ) = g y +η(t ), (B.1)

in which g y is the acceleration along the considered axis, γ is the damping due
to gas interactions, and η(t ) = F (t )/m is a Gaussian distributed white noise,
proportional to the fluctuating force F (t ) acting on a particle of mass m. Its
magnitude f is given by the autocorrelation function 〈ηi (t )ηi (t + t ′)〉 = f δ(t ′).
It is linked to the damping rate γ by the fluctuation-dissipation theorem: f =
2γkBTgas/m in (one-dimensional case) [60].

We solve to equation for ẏ by observing that

d

d t

(
eγt ẏ(t )

)= eγt (ÿ(t )+γẏ(t )). (B.2)
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B.1 Velocity as a function of time

We use this relation to solve Eq. B.1 for the velocity, by multiplying the terms
by eγt , then rearranging them and integrating in time domain:

d

d t
(eγt ẏ(t )) = eγt (g y +η(t ))∫ t

0

d

d t

(
eγt ẏ(t )

)
d t =

∫ t

0
g y eγt +eγtη(t )d t

ẏ(t )eγt − ẏ0 = g y
1

γ

(
eγt −1

)+∫ t

0
eγtη(t )d t

ẏ(t ) = ẏ0e−γt + g y

γ

(
1−e−γt )+∫ t

0
e−γ(t−t ′)η

(
t ′

)
d t ′.

(B.3)

Taking the average of the result of Eq. B.3, we find that a particle subjected to a
free fall for a time t , will have average velocity 〈ẏ(t )〉

〈ẏ(t )〉 = 〈ẏ0〉e−γt + g y

γ

(
1−e−γt ) . (B.4)

For t → ∞, we see that the dominating contribution is the one due to the
acceleration g y . Thus, for a free particle moving of Brownian motion, the mean
velocity is null [73]. We also want to calculate the variance of this quantity, as
σ2

ẏ = 〈ẏ2(t )〉−〈ẏ(t )〉2. We first evaluate 〈ẏ2(t )〉. To simplify the notation, we
write

A = ẏ0e−γt + g y

γ

(
1−e−γt )

B =
∫ t

0
e−γ(t−t ′)η

(
t ′

)
d t ′

〈ẏ2(t )〉 = 〈A2 +B 2 +2AB〉 = 〈A2〉+〈B 2〉+〈2AB〉.

(B.5)

We first focus on the term 〈A2〉:

〈A2〉 =
〈[

ẏ0e−γt + g y

γ

(
1−e−γt )]2〉

= 〈ẏ2
0〉e−2γt +

g 2
y

γ2

(
1−e−γt )2 +2g y

〈ẏ0〉
γ

e−γt (
1−e−γt ) .

(B.6)
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B Detailed solution to the Langevin Equation

We now evaluate the time correlation function 〈B 2〉:

〈B 2〉 =
〈∫ t1

0

∫ t2

0
e−γ(t−t ′)η(t ′)d t ′e−γ(t−t ′′)η(t ′′)d t ′′

〉
(B.7)

We move the averaging sign inside the integral, knowing that 〈η(t ′)η(t ′′)〉 =
f δ(t ′− t ′′). Hence, the integral is non-zero only if t ′ = t ′′:

〈B 2〉 = f
∫ t1

0
e−2γ(t−t ′)d t ′

= f

2γ

(
1−e−2γt1

)
.

(B.8)

Finally, we get

〈ẏ2(t )〉 = 〈A2〉+〈B 2〉+〈2AB〉

= 〈ẏ2
0〉e−2γt +

g 2
y

γ2

(
1−e−γt )2 +2g y

〈ẏ0〉
γ

e−γt (
1−e−γt )+

+ f

2γ

(
1−e−2γt ) ,

(B.9)

recalling that 〈2AB〉 = 0 because 〈B〉 = 0. As a check, we observe that the
behavior over long timescales is

〈
ẏ2(t →∞)

〉≃ g 2

γ2 + f

2γ
. (B.10)

The variance of the velocity as a function of time is thus

σ2
ẏ = 〈ẏ2(t )〉−〈ẏ(t )〉2

= 〈ẏ2
0〉e−2γt −〈ẏ0〉2 + f

2γ

(
1−e−2γt ) .

(B.11)

At equilibrium (i.e. over long timescales), we use the equipartition theorem to
write

σ2
ẏ (t →∞) = f

2γ

= kB T

m

(B.12)
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B.2 Position as a function of time

from which we find that f = 2γkB T /m in accordance with the fluctuation
dissipation theorem.

B.2 Position as a function of time

We now turn to evaluating the position y(t ). We integrate over the velocity, to
obtain

y(t ) = y0 +
∫ t

0
ẏ(t )d t

= y0 +
∫ t

0

[
ẏ0e−γt + g y

γ

(
1−e−γt )+∫ t

0
e−γ(t−t ′)η

(
t ′

)
d t ′

]
d t

= y0 + ẏ0

γ

(
1−e−γt )+ g y

γ
t − g y

γ2

(
1−e−γt )+

+
∫ t

0

∫ t

0
e−γ(t−t ′)η

(
t ′

)
d t ′d t

= y0 + ẏ0

γ

(
1−e−γt )+ g y

γ
t − g y

γ2

(
1−e−γt )+

+ 1

γ

∫ t

0
η

(
t ′

)(
1−e−γ(t−t ′)

)
d t ′.

(B.13)

Similar to before, we calculate how the average 〈y(t )〉 and variance σ2
y =〈

y2(t )
〉−〈y(t )〉2 of the position evolve in time.

〈y(t )〉 = 〈y0〉+ 〈ẏ0〉
γ

(
1−e−γt )+ g y

γ
t − g y

γ2

(
1−e−γt ) . (B.14)

We redefine

A = y0 + ẏ0

γ

(
1−e−γt )+ g y

γ
t − g y

γ2

(
1−e−γt ) ;

B = 1

γ

∫ t

0
η

(
t ′

)(
1−e−γ(t−t ′)

)
d t ′;

〈y2(t )〉 = 〈A2 +B 2 +2AB〉 = 〈A2〉+〈B 2〉+〈2AB〉.

(B.15)

89



B Detailed solution to the Langevin Equation

We calculate the non-null contributions 〈A2〉 and 〈B 2〉, putting to 0 all terms
depending on 〈ẏ0〉:

〈A2〉 =
〈[

y0 + ẏ0

γ

(
1−e−γt )+ g y

γ
t − g y

γ2

(
1−e−γt )]2〉

=
〈[

y0 + ẏ0

γ

(
1−e−γt )]2

+
[

g y

γ
t − g y

γ2

(
1−e−γt )]2

+

+ 2

[
y0 + ẏ0

γ

(
1−e−γt )][

g y

γ
t − g y

γ2

(
1−e−γt )]〉

= 〈
y2

0

〉+ 〈
ẏ2

0

〉
γ2

(
1−e−γt )2+

+
g 2

y

γ2 t +
g 2

y

γ4

(
1−e−γt )2 −2

g 2
y

γ3 t
(
1−e−γt )+

+ 2

γ
〈y0〉g y t − 2g y

γ2 〈y0〉
(
1−e−γt ) ;

〈B 2〉 =
〈∫ t

0

1

γ

(
1−e−γ(t−t ′)

)
η

(
t ′

)
d t ′

∫ t

0

1

γ

(
1−e−γ(t−t ′′)

)
η

(
t ′′

)
d t ′′

〉
= f

γ2

∫ t

0

(
1−e−γ(t−t ′)

)2
d t ′

= f

γ2

[
t + 1

2γ

(
1−e−2γt )− 2

γ

(
1−e−γt )]

= f

γ2 t − f

2γ3

(
3−e−γt )(1−e−γt ) .

(B.16)

Finally, after taking the square of Eq. B.14, we obtain the variance

σ2
y =

〈
y2

0

〉−〈y0〉2 +
〈

ẏ2
0

〉
γ2

(
1−e−γt )2 + f

γ2 t − f

2γ3

(
3−e−γt )(1−e−γt ) .

(B.17)
Also in this case, we observe that on long timescales [73]

σ2
y (t →∞) = 〈

y2
0

〉+ f

γ2 t

≈ f

γ2 t = 2kB T

mγ
t = 2Dt .

(B.18)
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C
Stabilization of the optical trap depth

We perform the free evolutions by implementing a catch-and-release protocol,
using an AOM to tilt the trapping beam by driving it with different RF tones. It
is important that the depth of the optical trap stays constant while displacing it.
Two main factors influence this.

First, the diffraction efficiency of the AOM (which depends on the RF
frequency) affects the mean power of the trapping beam. Second, as the beam
is tilted, a misalignment from the center of the trapping lens can change the
shape of the focused field.

In the following paragraphs we study the stability of the optical trap depth.

The first step is to characterize how the beam power changes as a function
of RF tone frequency and amplitude. To analyze this, we sweep the RF signal
amplitude while measuring the power of the beams emerging from the AOM,
repeating the procedure for different RF frequencies.

In Fig. C.1a we plot an example of the data acquired with this procedure.
The curves describe how to change the amplitude of the RF tones as a function
of the chosen RF frequency, to stabilize the trapping beam power. Once the
relation between RF frequency, amplitude and trap power is known, we trap a
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C Stabilization of the optical trap depth

Figure C.1: a. Power of the trapping beam as a function of the RF tone frequency and amplitude
(for a previous iteration of the setup). At the time, we were working with trapping powers of
150 mW. b. Mechanical eigenfrequencies Ωi as a function of AOM input RF frequency.

particle and sweep the RF tone parameters, while monitoring the stability of
the COM eigenfrequencies. The data in Fig. C.1b was acquired with a 177 nm

particle, trapped with a 150 mW beam. We swept the RF frequency from
65 MHz to 85 MHz, stabilizing the trapping power according to the curves in
Fig. C.1a, and measured an eigenfrequency drift of 4 % across the whole range.

This check also indicates how well the tilted beams stay aligned on the
trapping lens. As the particle is dragged up and down with the trap focus, if
the imaging telescope (see Fig. 2.8) is well aligned on the CA of the lens, we
expect Ωi to stay constant.
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D
Notation

Symbols used in this work, listed by chapter.

Table D.1: List of symbols used in Chapter 1.

m Mass of the particle

Ωz Eigenfrequency of the particle along the optical axis

zzpf Zero-point fluctuation size: zzpf =
√ħ/(2mΩz)

γeff Effective feedback-induced mechanical damping rate

γth Damping rate due to thermal bath: γth ≪ γeff

T Bath temperature

Γth Thermal decoherence rate (phonons/s): Γth = γthkB T /(ħΩz)

Γqba Decoherence rate due to quantum backaction

Γexc Excess decoherence rate including Γth

Symbol Description

Continued on next page
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D Notation

Table D.1: List of symbols used in Chapter 1. (Continued)

Γtot Total decoherence rate: Γtot = Γqba +Γexc = Γqba(1+1/Cq )

Cq Quantum cooperativity: Cq = Γqba/Γexc

ηd Detection efficiency

Γmeas Measurement rate: Γmeas = ηdΓqba

ηmeas Measurement efficiency: ηmeas = Γmeas/Γtot = ηd /(1+1/Cq )

n Phonon occupation number of the particle’s z-motion

χeff(Ω) Effective mechanical susceptibility: χeff(Ω) = m−1/(Ω2
z −Ω2 −

iγeffΩ)

S
tot
F F Two-sided, symmetrized total force noise PSD: S

tot
F F =

ħ2Γtot/(2πz2
zpf)

Simp Detector imprecision noise PSD: Simp = z2
zpf/(8πΓmeas)

SimpS
tot
F F Measurement-disturbance relation: SimpS

tot
F F = (ħ/4π)2/ηmeas

Szz (Ω) Two-sided, symmetrized particle position PSD:
〈z2

∣∣ = 〉∫ dΩ Szz (Ω)

S
hom
zz (Ω) Measured in-loop position PSD on the homodyne detector

Sr r (Ω) Heterodyne detector position PSD at the Stokes (red) sideband

Sbb(Ω) Heterodyne detector position PSD at the anti-Stokes (blue)
sideband

Sr b(Ω) Cross-PSD between Stokes and anti-Stokes sidebands

Symbol Description
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Table D.2: List of symbols used in Chapter 2.

m Mass of the particle

Ωi (t ) Eigenfrequency of the COM mode along axis i = x, y, z, at time
t

Ωi ,0 Eigenfrequency of the COM mode along axis i = x, y, z, at time
t = 0

τ Recapture time

Pgas Gas pressure

Tgas Gas bath temperature

γ Gas damping rate

Ti ,0 Initialization temperature for the COM mode along axis i =
x, y, z, at time t = 0

qi Position along axis i = x, y, z

vi Velocity along axis i = x, y, z

pi Momentum along axis i = x, y, z

η(t ) Fluctuating force normalized by the mass of the particle: η(t ) =
Ffluct(t )/m

f Magnitude of η(t ): f = 2γkBTgas/m

g Gravitational acceleration: g = (gx, gy, gz) = (0,−g ,0)

K Kinetic energy

U Potential energy

〈q2
i ,0〉 Second moment of position at t = 0

〈v2
i ,0〉 Second moment of velocity at t = 0

P (qi ) Position probability density distribution along axis i

P (vi ) Velocity probability density distribution along axis i = x, y, z

Symbol Description

Continued on next page
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D Notation

Table D.2: List of symbols used in Chapter 2. (Continued)

P (pi ) Momentum probability density distribution along axis i :
P (pi ) =P (mvi )

µqi (t ) Mean of P (qi )

µvi (t ) Mean of P (vi )

σ2
qi

(t ) Variance of P (qi )

σ2
vi

(t ) Variance of P (vi )

U0 Trap depth; U0 ≈ 50kBTgas

ωi Trap waist radius along axis i

d Trap displacement: d = (dx,dy,dz)

ϱi Recapture probability along axis i

W (qi , pi ) Probability of finding a particle in phase space with position qi

and momentum pi = mvi

U (qi −di ) Trapping potential displaced by di along axis i

c Conversion factor, in V/m

〈Hi (τ)〉 Expected average energy of mode i at recapture

〈Hy,min〉 Minimum recapture energy

θB Bragg angle

f1 and f2 RF frequencies of the AOM driving tones

∆ fAOM Difference between f1 and f2

H̃i (τ) Normalized recapture energy: H̃i (τ) = 〈Hi (τ)〉/〈Hi ,0〉
φ0 Phase of the oscillatory motion at t = 0

r0 Amplitude of the oscillatory motion at t = 0

φτ Phase of the oscillatory motion at t = τ
rτ Amplitude of the oscillatory motion at t = τ

Symbol Description

Continued on next page
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Table D.2: List of symbols used in Chapter 2. (Continued)

I and Q Demodulated, filtered quadratures

q ′
i ,0 Initial phase space coordinate along the position domain,

calculated from the recapturing trap

σ̃qi (τ) Normalized state expansion along axis i at time τ: σ̃qi (τ) =
σqi (τ)/σqi (0)

Symbol Description
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E
Abbreviations

List of abbreviations used in this work.

Table E.1:

adim. Adimensional

a. u. Arbitrary units

AOM Acousto-optic modulator

BW Bandwidth

CA Clear aperture

CMMR Common-mode rejection ratio

COM Center-of-mass

EOM Electro-optic modulator

FPGA Field-programmable gate array

Abbreviation Description

Continued on next page
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Table E.1: (Continued)

NA Numerical aperture

PFC Parametric feedback cooling

PLL Phase-locked loop

QPD Quadrant photodiode

RF Radio frequency

SNR Signal-to-noise ratio

Abbreviation Description



E Abbreviations
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[2] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and
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