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Abstract—This paper proposes a novel physics-data-driven
method for the linearization of AC power flow equations in
the context of topological remedial actions. As opposed to
physics-based works, the proposed method does not require
the re-establishment of the linear model to follow the system
changes induced by remedial actions, such as line switching
and phase shifting angle variations. By ingeniously leveraging
physics-driven aspects, such as hierarchical topology clustering,
as well as data-driven regression, the proposed approach can
establish a linear mapping between power flows and remedial
actions and estimate the new operating point in the event of a
remedial action with high accuracy and computational efficiency.
Numerical results on a real-world European power network
demonstrate the effectiveness of the proposed physics-data-driven
linear power flow method in a practical setting. Particularly, the
proposed method outperforms purely physics-driven and data-
driven methods when a topological remedial action occurs.

Index Terms—power flow, phase shifting transformer, remedial
action, topology clustering

I. INTRODUCTION

Modern power grids are characterized by increasing com-
plexity as a result of major transformations, including the ris-
ing decentralization through renewable energy supply and the
internationalization of the power market [1]. To enhance grid
reliability in light of unpredictable fluctuations of renewable
generation, the deployment of necessary remedial actions as
real-time preventive measures has significantly increased [2].
In particular, remedial actions, such as topological switching
or control of the Phase Shifting Transformer (PST) angle have
been widely adopted in practice due to their cost-effectiveness,
inducing real-time changes in branch impedances and the
overall topology of the targeted network [3].

Remedial actions have a substantial effect on the analysis
and operation of power grids, including the linearization of the
power flow. Yet, they are determined by operators based on
experience and their impact is rarely considered in Linearized
Power Flow (LPF) models [4]. In particular, linearization
techniques that are physics-driven lack the ability to account
for frequent topological changes introduced by remedial ac-
tions in an efficient manner. Such formulation would require
a re-establishment of the linear model to follow the system
changes induced by remedial actions, creating a considerable
computational burden [5]. Although data-driven LPF models
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that reduce the dependency on the network model have been
proposed [6], [7], remedial actions are not considered.

Limited work has been done to effectively integrate remedial
actions in LPF models. In [8], a decoupled LPF model that
integrates the PST influence in the admittance matrix and
branch flows is proposed. A linear representation of preventive
and corrective actions, including PST control and switching, in
an Optimal Power Flow (OPF) is presented in [9]. However, a
computationally efficient and practically feasible LPF method
that can accurately map topological changes and PST angle
variations as controllable variables to power flow states in the
context of remedial actions is still missing.

In this paper, an online hybrid physics- and data-driven,
i.e., physics-data-driven LPF model is proposed. Aiming to
integrate the real-time influence of remedial actions in the
LPF formulation, the proposed approach leverages the physics-
based model along with data-driven estimation to achieve sat-
isfactory computational efficiency and accuracy in the context
of LPF under remedial actions. The novelty and the main
contributions of the work are given as follows:

• To seamlessly take remedial actions into account and
eliminate the need for re-establishing the linear model,
the proposed approach integrates topology switching and
PST angles as controllable variables of the LPF model.
To the best of our knowledge, this is the first time
that parameters related to common remedial schemes are
directly treated as controllable variables in LPF studies.

• A data-driven regression analysis is proposed to find a
linear mapping between remedial actions and power flow
states and efficiently estimate new operating points under
altered topologies induced by remedial actions.

• A physics-driven hierarchical topology clustering tech-
nique is included in the data-driven scheme to enable
network partitioning and reduce computational time.

• A comprehensive numerical study on a real-world Euro-
pean power network consisting of more than 10,000 buses
demonstrates the practical feasibility and computational
efficiency of the proposed method.

The remainder of the paper is organized as follows: Section
II provides the physics-driven formulation under topological
remedial actions. In Section III, the proposed physics-data-
driven LPF algorithm considering topological remedial actions
is discussed. In Section IV, the proposed method is validated
in a case study. Section V summarizes the conclusions and



gives perspectives for future work.

II. PHYSICS-DRIVEN MODEL UNDER REMEDIAL ACTIONS

This section reviews the impact of remedial actions from
a physics-driven perspective. An extended version of the
power flow model that integrates topological remedial actions,
including the use of PSTs, is described in detail.

A. Integration of Remedial Actions

The well-known power flow equations describing the active
and reactive power injections at bus i, i = 1, ..., n are:

Pi = Vi

n∑
j=1

Vj(Gij cos θij +Bij sin θij) ∀i (1)

Qi = Vi

n∑
j=1

Vj(Gij sin θij −Bij cos θij) ∀i (2)

where Pi and Qi are the net active and reactive power
injections at bus i, respectively, Gij and Bij are elements
of the real and imaginary part of the nodal admittance matrix
Y , respectively, Vi is the voltage magnitude of bus i, θi is
the voltage angle of bus i, θij is the voltage angle difference
between buses i and j, and n is the number of buses.

To consider the impact of remedial actions in the power
flow formulation, the nodal admittance matrix elements that
include a model of the PST are given by:

Yii =

n∑
j=1

(t2ijyij + yshij ) + yfxshi (3)

Yij = −tijtji[(gij cos δij + bij sin δij)

+j(bij cos δij − gij sin δij
)
]

(4)

where tij∠ϕij , tji∠ϕji are the complex tap ratios of the
windings connected to buses i, j, respectively, δij is defined
as the angle difference δij = −ϕij + ϕji, y

fxsh
i is the fixed

shunt admittance of bus i, yij = gij + jbij is the branch
admittance of the line connecting buses i, j, and yshij is the
shunt admittance of the line connecting buses i, j. Note that
for branches without any transformer, tij = 1 and ϕij = 0.

By substituting the nodal admittance matrix elements (3)-
(4) in the power injections (1)-(2), the power flow equations
integrating the influence of the PSTs are obtained.

B. Impact of Remedial Actions

Following the integration of the PST impact on the power
flows, the nodal power balance mismatches at each bus i can
be expressed as a function of voltage magnitudes, voltage
angles, and PST angles as:

fi(x,ϕ) = Ss
i − Si(x,ϕ) ∀i (5)

where x = [V T ,θT ]T is the state vector including the voltage
magnitudes V and voltage angles θ, ϕ is a vector including
the PST angles, Si is the calculated apparent power injection,
Ss
i is the specified apparent power injection at bus i.

Next, by applying the first-order Taylor approximation to the
nodal power mismatch equations around the operating point
x0 = [V T

0 ,θT
0 ]

T and PST angles ϕT
0 , we have:

fP
i (x,ϕ) = P s

i − Pi(x0,ϕ0)−∇T
xPi(x0,ϕ0)(x− x0)

− ∇T
ϕPi(x0,ϕ0)(ϕ− ϕ0) ∀i (6)

fQ
i (x,ϕ) = Qs

i −Qi(x0,ϕ0)−∇T
xQi(x0,ϕ0)(x− x0)

− ∇T
ϕQi(x0,ϕ0)(ϕ− ϕ0) ∀i (7)

It is worth noting that by solving (6)-(7) ϕ is obtained and
considered in the same way as x, i.e., as an output vector rather
than as an input vector that includes controllable variables. In-
stead, a relationship to derive x based on the power injections
and ϕ as inputs is desirable. This fact indicates the complexity
of deriving an explicit linearized model from the AC model
(i.e., the physics-driven linearization) that can accurately map
PST angle variations or other topological changes to the power
flow solution x, as in the case of power injections. As will
be shown in the next sections, this paper overcomes this issue
using a hybrid physics-data-driven approach.

III. PROPOSED ACCELERATED PHYSICS-DATA-DRIVEN
LPF UNDER REMEDIAL ACTIONS

Section II has shown the complexity caused by the integra-
tion of remedial actions from a physics-driven perspective. In
this section, the proposed accelerated physics-data-driven LPF
method to conduct the linear mapping of topological remedial
actions to the corresponding operating point is presented. By
ingeniously leveraging physics-driven hierarchical topology
clustering along with data-driven regression, the proposed
hybrid physics-data-driven LPF model can provide an accurate
and computationally efficient estimation of the operating point
under remedial actions.
A. LPF Mapping Under Remedial Actions

To overcome the complexity brought by the consideration
of remedial actions in the AC model, a power flow model is
formulated to provide the mapping between power injections,
remedial actions and the operating point, i.e.,

x = h(P s, Qs, L, ϕ) (8)

where L represents line status (a.k.a., the flatten incidence
matrix), P s and Qs are injection set-points, ϕ refers to the
PST angles, and x (including θ, and V ) denotes the power
flow state. The mapping direction considered is in accordance
with the procedure of the deployment of remedial actions,
where the PST angles ϕ or the lines to be switched are known
and θ,V are to be calculated. Thus, (8) ingeniously takes
power injections and remedial actions, such as line switching
and PST angle variations, as controllable variables. In the next
step, we linearize (8).

B. PLS Regression

To extract the LPF model from (8), the generalized re-
gression equation is formulated using the datasets of x and
P s,Qs,L,ϕ. Assuming Z ∈ RNZ×Ns includes Ns samples
of the independent variables, i.e., P s,Qs,L,ϕ, X ∈ RNX×Ns



includes Ns samples of dependent variables, i.e., x, and β is
the regression parameter matrix, we have:

X = βZ (9)

Once the sufficient and representative window of samples
is included in Z,X , Partial Least Squares (PLS) regression
is applied to find β [10], [11]. Beyond traditional Least
Squares regression which falls short in addressing practical
complexities, PLS regression has demonstrated effectiveness
in managing collinearity of data and overfitting [10], [11].
Specifically, PLS decomposes Z,X into Np components by

Z = CTT + E (10)
X = RUT + F (11)

where T ∈ RNs×Np and U ∈ RNs×Np consist of Np com-
ponents extracted from Z and X , called score components;
C ∈ RNZ×Np and R ∈ RNX×Np denote the so-called loading
matrices of Z and X so that the scores form an orthogonal
basis; E ∈ RNZ×Ns and F ∈ RNX×Ns represent the matrices
of residuals for Z and X . Finally, the solution to (9) is:

β̂ = ZTU
(
TTZZTU

)−1
TTX (12)

C. Accelerated PLS Regression with Topology Clustering

Sections III-A, III-B have shown that PLS regression can
establish a linear data-driven mapping of topological remedial
actions to the corresponding operating point and power flows.
However, directly using the PLS regression on a complete
network model is computationally challenging due to the scale
of the system, especially for large systems. To overcome the
computational complexity, an accelerated PLS regression on
the basis of hierarchical topology clustering is proposed.

In fact, assuming that a remedial scheme, e.g., topology
variation, occurs, it is expected that only specific groups of
buses of a large network will be affected non-negligibly. Thus,
applying a clustering algorithm to a power system network
can enhance the regression analysis in the context of remedial
actions, as it reduces network complexity and facilitates the
selection of appropriate or crucial actions.

In this work, hierarchical clustering is embedded in the PLS
regression. Briefly speaking, the concept of electrical distances
is applied to identify bus coupling and divide a power system
network into clusters [12]. It is worth noting that the network
partitioning procedure is done offline and it is flexible, as no
a priori specification of the number of clusters is needed.

1) Electrical Distance: The calculation of the electrical
distance is based on the matrix ∂Q

∂V which is a part of the power
flow Jacobian [12]. By taking its inverse ∂V

∂Q , the attenuation
aij reflecting the voltage coupling between buses i and j can
be computed as follows:

aij =
∂Vi
∂Qj/

∂Vj
∂Qj

∀i, j (13)

and
∆Vi = aij∆Vj ∀i, j (14)

To ensure matrix symmetry, the electrical distance dij between
buses i and j is defined and normalized to obtain values in

the range between 0 and 1 as:

dij = dji = − log(aij · aji) (15)

dij =
dij

max(di1, ..., din)
(16)

It should be highlighted that a small value of the electrical
distance signifies a strong coupling between buses i, j, i.e.,
buses i, j should be grouped within the same cluster.

2) Agglomerative Hierarchical Clustering: Once the elec-
trical distances between all pairs of buses i, j are calculated,
the Agglomerative Hierarchical Clustering (AHC) algorithm
is applied [13]. Initially, each bus forms an independent
cluster. Subsequently, an iterative merging process of similar
clusters is deployed until one cluster or m desired clusters are
formed. The maximum electrical distances between buses in
the different clusters are utilized as the merging criteria at each
iteration, i.e., the two clusters where the minimum among the
maximum electrical distances is observed are merged into a
new cluster. The resulting dendrogram visually portrays the
cluster hierarchy and can be used to determine the number of
considered clusters m. Finally, buses are grouped into specific
clusters, denoted as Cl for l ∈ {1, ... ,m}.

3) Accelerated PLS Sample Generation: In this work, sam-
ples are generated offline by modifying power injections and
topology through line switching or PST angle variations and
computing and storing the corresponding operating point. To
improve efficiency and accelerate PLS regression, samples are
partitioned into clusters, i.e., we collect the sample vectors
ζ̂
(k)
Cl

, k = 1, ..., Ns including the topological remedial actions
and the sample vectors x̂

(k)
Cl

including the operating points,
for each cluster Cl, l = 1, ...,m as follows:

ζ̂
(k)
Cl

= [P̂
s,(k)T

Cl
, Q̂

s,(k)T

Cl
, L̂

(k)T

Cl
, ϕ̂

(k)T

Cl
]T ∀ k,Cl (17)

x̂
(k)
Cl

= [V̂
(k)T

Cl
, θ̂

(k)T

Cl
]T ∀ k,Cl (18)

Hence, by collecting the sample data matrices for each
cluster, i.e., ZCl

= [ζ̂
(1)
Cl

...ζ̂
(k)
Cl

...ζ̂
(Ns)
Cl

] and XCl
=

[x̂
(1)
Cl

...x̂
(k)
Cl

...x̂
(Ns)
Cl

], an accelerated PLS regression scheme
can be applied and solved for each cluster using (12) as:

β̂Cl
= ZT

Cl
UCl

(
TT
Cl
ZCl

ZT
Cl
UCl

)−1
TT
Cl
XCl

∀l (19)

D. Proposed Physics-Data-Driven LPF Algorithm

A flowchart of the proposed physics-data-driven LPF model
in the context of remedial actions is illustrated in Fig. 1. Steps
1–6 constitute the offline phase, where the PST integration,
topology clustering process and the accelerated PLS regression
model training are conducted. Steps 7–8 correspond to the
online phase, where the proposed LPF model computes the
estimated operating point in the event of a topological remedial
action.

Remarks: In the PLS regression training process, there
is a trade-off between creating an indicative dataset with a
balanced representation across the clusters while keeping the
accuracy and the number of samples in a reasonable range.
Although the combination of remedial actions to be reflected in



Read System DataStep 1

Modify Y according to (3)-(4)Step 2

Compute Electrical Distances
by (15)-(16)Step 3

Offline

Create Clusters ClStep 4

Generate Samples
as in (17)-(18)Step 5

Train PLS Regression ModelStep 6

Topological Remedial ActionStep 7

OnlineEstimate Operating Point
x using (19)Step 8

Fig. 1: Flowchart of the proposed physics-data-driven LPF.

the input data can be very high, the issue can be addressed by
either collecting as samples available results from simulations
or metering devices [14], or by focusing on specific topologies,
as typically done in realistic case studies [15].

IV. NUMERICAL RESULTS

In this section, numerical results of the proposed physics-
data-driven LPF model under remedial actions are presented.
First, the results of the offline phase, including clustering and
PLS regression training, are provided. Next, the online phase
of the proposed approach is validated and its performance is
compared to purely physics-driven or data-driven methods.

A. Network Model

A modified version of the real-world European power
network model provided by Swissgrid AG, the Swiss Trans-
mission System Operator, is utilized to demonstrate the perfor-
mance of the proposed method. The extensive network consists
of more than 11,000 busbars connected through over 18,000
branch connections, and over 3,000 transformers. Around 150
of those are modeled as PSTs (Steps 1-2). The implementation
is carried out in Python in combination with Power System
Simulator for Engineering (PSS®E) by Siemens [16].

B. Offline Topological Clustering and PLS Regression Results

To reduce the network complexity under remedial actions
and enhance the computational efficiency of the PLS regres-
sion training, the hierarchical clustering based on electrical
distances is applied (Steps 3-4). The resulting dendrogram
reflecting the different clusters is shown in Fig. 2. Specifically,
four notably large partitions can be observed, with the largest
one including 2,498 buses. Note that selecting clusters that
include over 6,000 buses may cause memory errors in the PLS
regression, which further highlights the importance of applying
techniques like topology clustering in real-world LPF models.
Based on this result, the number of clusters is set to m = 30.

Next, the PLS cluster-based regression training is con-
ducted (Steps 5-6). As highlighted in the Remarks of Sec-
tion III-D, an equal distribution of topological actions, e.g.,
line switching and PST angle variations, is implemented to
ensure representative samples within each cluster. Inspired by
one-dimensional Latin hypercube sampling [17], an iterative

sampling process is performed to collect the random samples
within each cluster. Branch outages and PST angle variations
are randomly selected within each cluster, whereas power
injection modifications are applied by scaling the power of
generators and loads for each sample.

Table I presents a comparison of the proposed regression
approach that integrates topology clustering with the complete
regression approach over the entire network where no cluster-
ing is considered. Based on the coefficient of determination
(R-squared) and the Mean Squared Error (MSE), the proposed
cluster-based regression can accurately map remedial actions
to the operating point. The proposed approach is also com-
putationally efficient compared to the complete regression ap-
proach. Indeed, thanks to the proposed cluster-based method,
a significant decrease in the training time of the regression
model can be achieved (∼30 minutes are required for the
clustered-based PLS regression training, whereas ∼14 hours
are required for the PLS regression training on the complete
network). Hence, although the regression on the complete
model achieves higher accuracy in estimating voltage angles,
the cluster-based method can effectively reduce the problem
scale, allowing for the implementation of the PLS algorithm
on smaller subgroups of large practical power systems. It is
however important to note that the performances of the two
algorithms are likely dependent on the specific system. Nev-
ertheless, for the considered test system, it can be concluded
that the accuracies are similar with a clear advantage in terms
of computational efficiency for the cluster-based method.

C. Online Physics-data-driven LPF Results

Following the offline successful mapping of topological
remedial actions to the operating point through the clustered-
based PLS regression, the proposed physics-data-driven LPF
method is tested online (Steps 7-8). Several topological reme-
dial actions are simulated and the estimated operating point
is computed. Since the testing cases can vary depending on
the possible combinations of remedial actions, we present the
results for 30 topological remedial actions of interest that
commonly occur in real-world grid operations.

To evaluate the performance of the proposed approach,
different methods for the calculation of the operating point are
considered. Particularly, the result of the proposed physics-
data-driven LPF approach is compared to the results of the
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Fig. 2: Topology clustering of the European network.

TABLE I
COMPLETE VS CLUSTER-BASED REGRESSION

Estimation Complete Regression Proposed Clustered Regression
Variables R-squared MSE R-squared MSE

V 0.9998 2.43 · 10−8 0.9999 1.36 · 10−8

θ 0.9999 4.61 · 10−7 0.9998 3.04 · 10−6



data-driven complete regression introduced previously as well
as to the following physics-driven approaches:

1) Baseline Method: The result of the baseline method is
obtained by solving (6), (7), where x0 is the operating point
before any remedial action is taken.

2) Average Method: The result of the average method is
obtained by solving (6), (7), where x0 is an average of the
actual operating points after the topological remedial actions
are taken. This method is typically employed in practice to
provide a quick estimation of the operating point on the basis
of common actions and historical data.

The solver Gurobi [18] is used to compute the result of
the Baseline and Average methods. For each method, the
computed operating points are compared to the actual ones
obtained from the simulation in PSS®E. The results in terms
of the estimation error of voltage magnitudes (in %), voltage
angles (absolute difference in radians), and current magnitudes
I (absolute difference in p.u.), are presented in Table II and
Fig 3. The % estimation errors of θ, I are not defined as
many have close to zero values. It can be observed that
the proposed approach demonstrates a significantly improved
performance in terms of accuracy and outperforms the physics-
driven Baseline and Average methods. Moreover, the accuracy
of the proposed clustered-based LPF model is similar to the
one of the complete data-driven model, yet the performance of
the proposed method is superior with respect to computational
efficiency. Indeed, as shown in Table III, thanks to the cluster-
ing, the proposed approach is four times faster in the online
phase. We conclude that the proposed physics-data-driven LPF
model can accurately and efficiently predict the new operating
points under topological remedial actions and the estimation
errors for V ,θ are within expected and acceptable ranges [7].

TABLE II
ESTIMATION ERROR FOR V ,θ, I

Estimation Baseline Average Complete ProposedVariables
V 2.63 · 10−1 4.89 · 10−2 7.81 · 10−4 6.82 · 10−4

θ 1.09 · 10−3 1.98 · 10−4 4.58 · 10−4 7.16 · 10−4

I 1.63 · 10−1 7.31 · 10−2 6.29 · 10−2 6.57 · 10−2

TABLE III
AVERAGE RUNTIME TO ESTIMATE OPERATING POINTS

Runtime Baseline Average Complete Proposed
online (s) 2.023 1.930 7.626 1.892

Fig. 3: The % voltage magnitude estimation errors. The proposed hybrid
approach outperforms purely physics-driven and data-driven approaches.

V. CONCLUSION

In this paper, a novel physics-data-driven LPF method
considering topological remedial actions is proposed. The
proposed approach leverages information embedded in the
physics-based model along with data-driven training based on
regression to map topological remedial actions and power flow
results with high accuracy and computational efficiency. The
proposed method represents the first attempt to consider reme-
dial actions, such as line switching and PST angle variation as
controllable variables, overcoming the need of re-establishing
the linear model under such events. A study on a real-world
European grid validates the effectiveness of the proposed
method compared to purely physics-driven and data-driven
methods when a topological action occurs. Future work may
focus on enriching training and testing cases and integrating
the proposed approach in remedial action optimization.
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