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Abstract: Structures designed using modern performance-based seismic design procedures are expected to 
present different structural behaviors at different earthquake intensity levels, i.e. seismic hazard levels. The 
structural behaviors can be classified into flexure, shear, sliding, and rocking categories. Controversially, most 
current design methods are rooted in the single-degree-of-freedom surrogate model that only addresses one 
structural behavior: flexure. The surrogate is central in the design method because the statistics of its response 
to multiple ground motions are used as a proxy of the expected structural response (e.g., through design 
equations, R-μ-T relations, or the seismic design spectra). This paper proposes a new seismic design method 
that enables simultaneous consideration of multiple structural behaviors (flexure, shear, sliding, and rocking) 
at different seismic hazard levels. It is based on a surrogate model with two degrees of freedom so as to 
represent different structural behaviors and their interaction. The objective is to bring the conventional single-
degree-of-freedom and the new two-degree-of-freedom surrogates into a unified risk-based framework for 
performance-based seismic design. We present the core of this unified framework herein, which consists of 
the equations that define each two-degree-of-freedom surrogate model and the transition between the 
behavior modes supported by the model. Furthermore, we present an application example of the proposed 
method for a seismic design with multiple performance objectives which are attained by the structure 
developing different behavior modes, e.g., flexure then sliding.  

1. Introduction 
The seismic design framework aims to guide structural engineers in building structures that are safe against 
earthquakes. Structural safety relates to risk metrics such as the probability of a collapse in the lifetime of a 
structure. The current seismic design frameworks try to address a large range of structures in a rather simple 
way. Herein, we highlight two aspects simplified in the current seismic design frameworks: 1) structures often 
present complex behavior, with two or more behaviors occurring simultaneously or consecutively; and 2) the 
need to cover the entire risk spectrum, currently assessed at one discrete earthquake return period. Both 
simplifications have been the focus of recent research 

Statistical relationships between capacity and demand of single-degree-of-freedom (SDOF) oscillators are 
available to design a structure that has a predominant behavior, namely: flexure (and yielding), sliding, or 
rocking. For example, Ruiz-Garcia & Miranda (2007) describe the response of simple elastic-perfect-plastic 
oscillators to different ground motions. Meanwhile, the SPO2IDA tool (Vamvatsikos & Cornell 2005) covers 
different yielding backbone curves. For rocking blocks, Reggiani Manzo & Vassiliou (2021) developed closed-
form expressions for overturning displacement capacity and Kazantzi, Lachanas & Vamvatsikos (2021) 
developed equations for the statistics of the rocking angle given peak ground velocity (PGV) intensity. For 
sliding, O’Reilly et al. (2022) developed design equations and a risk-based design framework for single friction 
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pendulum bearings. Furthermore, studies have shown that we can do full-range risk assessment in preliminary 
design. For example, the Yield Frequency Spectra (Vamvatsikos & Aschheim 2016), the uniform risk spectra 
for rocking oscillators (Reggiani Manzo et al. 2022), and the base-isolation design example given by O’Reilly 
et al. (2022). 

Structures that present two behaviors simultaneously or consecutively were also studied in depth. The work 
of Naem & Kelly (1999) covers the multiple-degrees-of-freedom (MDOF) structures on top of sliding and shear 
bearings. Yim & Chopra (1985) and Psycharis (1981) studied the behavior of flexible MDOF structures on top 
of a rocking base. We can cite many other and more recent studies that cover multiple-behavior structures 
(e.g., Acikgoz & DeJong 2016; Vassiliou Truniger & Stojadinović 2015; Vassiliou, Tsiavos & Stojadinović 2013; 
Kikuchi, Black & Aiken 2008). 

Nevertheless, until today, no single design framework covers the full-range risk-based design approach and 
structures presenting multiple behaviors. Our work aims to bring those concepts together into a unified risk- 
and performance-based seismic design framework. 

This paper presents the theoretical basis of this new design framework, which are the equations of motion of 
the structure under design, and the conditions to initiate different behaviors. Those equations are the basis to 
form surrogate models, both single and two-degrees-of-freedom (2DOF) systems that represent the dynamics 
of the designed structure. We end by presenting a design example in which we use the risk-based approach 
and the proposed 2DOF surrogate models. 

2. Methodology 
We propose a set of surrogate models and transition equations to perform seismic design accounting for 
multiple behaviors. The structure under design is a multiple-degrees-of-freedom system (MDOF) with N 
lumped masses 𝑚𝑚𝑖𝑖, assembled into a diagonal mass matrix 𝒎𝒎𝒔𝒔. The structure is fixed to a rigid base plate of 
mass 𝑚𝑚0  and width 2B. Each structural mass is associated with a horizontal degree of freedom 𝑢𝑢𝑖𝑖, that is 
parallel to the base plate and relative to its vertical centerline. The vector of displacements  𝑢𝑢𝑖𝑖 is named 𝒖𝒖𝒔𝒔. 
The height of each structure’s mass relative to the base is described by the vector of heights 𝜾𝜾𝒉𝒉. The structure 
stiffness is described by the elastic stiffness matrix 𝒌𝒌𝒔𝒔. The structure’s damping matrix 𝒄𝒄𝒔𝒔 is assembled by 
superposition of modal damping (Chopra 2017, p. 445) with a fixed damping ratio for all modes (𝜁𝜁). The system 
moves in its own plane and is excited by a horizontal ground motion (𝑢̈𝑢𝑔𝑔).  

 

 
Figure 1. Multiple-behavior surrogates for seismic design and transitions among them. 

Initially, the response of this MDOF structure to the horizontal excitation is elastic bending. We use the 
response of a single degree of freedom (SDOF) surrogate to estimate the response of the MDOF structure. 
But, as soon as a trigger condition for non-linear behavior is met, one of three different additional responses 
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can be expected: rocking, yielding, or sliding (Figure 1). In each case, a two-behavior surrogate is needed to 
estimate the response of the MDOF structure. In the following, we present the equations of motion for such 
2DOF surrogate models. 

2.1 Equations of motion of the fixed-base structure and its SDOF surrogate 
The fixed-base MDOF structure described previously has the equation of motion (Chopra 2017): 

 𝒎𝒎𝒔𝒔𝒖̈𝒖𝒔𝒔 + 𝒄𝒄𝒔𝒔𝒖̇𝒖𝒔𝒔 + 𝒌𝒌𝒔𝒔𝒖𝒖𝒔𝒔 =  −𝒎𝒎𝒔𝒔𝜾𝜾𝑢̈𝑢𝑔𝑔 (1) 

where 𝜾𝜾 is a column vector of ones. We apply modal analysis (𝒌𝒌𝒔𝒔𝚽𝚽 = 𝒎𝒎𝒔𝒔𝚽𝚽𝛀𝛀𝟐𝟐) to obtain the matrix of eigen 
vectors 𝚽𝚽 = [𝛟𝛟𝟏𝟏𝛟𝛟𝟐𝟐 …𝛟𝛟𝒏𝒏] and the matrix of natural frequencies squared 𝛀𝛀𝟐𝟐 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔12,𝜔𝜔2

2, … ,𝜔𝜔𝑛𝑛2). We pre-
multiply Equation 1 by (𝚽𝚽𝐓𝐓𝒎𝒎𝒔𝒔𝚽𝚽)−1𝚽𝚽𝐓𝐓 and apply the modal coordinate change 𝒖𝒖𝒔𝒔 = 𝚽𝚽𝒒𝒒. The result is: 

 𝒒̈𝒒𝒔𝒔 + 2𝜁𝜁𝛀𝛀𝒒̇𝒒𝒔𝒔 + 𝛀𝛀𝟐𝟐𝒒𝒒𝒔𝒔 = −𝚪𝚪𝑢̈𝑢𝑔𝑔 (2)  

where 𝚪𝚪 = (𝚽𝚽𝑇𝑇𝒎𝒎𝒔𝒔𝚽𝚽)−1(𝚽𝚽𝑇𝑇𝒎𝒎𝒔𝒔𝛊𝛊). As 𝛀𝛀 is a diagonal matrix, the set of N equations contained in Equation 2 are 
independent. To build a surrogate model, we consider only the first mode coordinate and apply a coordinate 
scaling q1 = Γ1D1, resulting in: 

 𝐷̈𝐷1 + 2𝜁𝜁𝜔𝜔1𝐷̇𝐷1 + 𝜔𝜔12𝐷𝐷1 = −𝑢̈𝑢𝑔𝑔 (3) 

2.2 Transition to multiple behavior 
For the fixed-base elastic MDOF structure, the condition to start rocking is: 

 ∓𝜾𝜾𝒉𝒉𝑻𝑻𝒎𝒎𝒔𝒔(𝒖̈𝒖𝒔𝒔 + 𝜾𝜾𝑢̈𝑢𝑔𝑔)  >  𝜾𝜾𝑻𝑻𝒎𝒎𝒔𝒔(𝜾𝜾𝐵𝐵 ∓ 𝒖𝒖𝒔𝒔)𝑔𝑔 +  𝑚𝑚0𝑔𝑔𝑔𝑔 (4) 

where 𝑔𝑔 is the gravity, and the upper and lower signs indicate rocking around right and left pivot respectively. 
We account for only the first mode degree of freedom to obtain the following condition for the surrogate to start 
rocking: 

 ∓(𝑚𝑚1
∗ℎ1∗𝐷̈𝐷1 + 𝐿𝐿0𝑟𝑟 𝑢̈𝑢𝑔𝑔)  > 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔 ∓  𝑚𝑚1

∗𝑔𝑔𝐷𝐷1 (5) 

where 𝐿𝐿0𝑟𝑟 = ∑ 𝑚𝑚𝑖𝑖ℎ𝑖𝑖𝑁𝑁
𝑖𝑖=0  , 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑚𝑚𝑖𝑖

𝑁𝑁
𝑖𝑖=0  , 𝑚𝑚1

∗ = �∑ 𝑚𝑚𝑖𝑖ϕ𝑖𝑖,1
𝑁𝑁
𝑖𝑖=1 �2/∑ 𝑚𝑚𝑖𝑖ϕ𝑖𝑖,1

2𝑁𝑁
𝑖𝑖=1  , and ℎ1∗ = ∑ 𝑚𝑚𝑖𝑖ℎ𝑖𝑖𝜙𝜙𝑖𝑖,1𝑁𝑁

𝑖𝑖=1 /∑ 𝑚𝑚𝑖𝑖𝜙𝜙𝑖𝑖,1𝑁𝑁
𝑖𝑖=1 . 

In parallel, the simplified condition for the fixed-base MDOF structure to start yielding is: 

 𝜾𝜾𝑻𝑻𝒌𝒌𝒔𝒔𝒖𝒖𝒔𝒔 > 𝑉𝑉𝑏𝑏,𝑦𝑦 (6) 

where 𝑉𝑉𝑏𝑏,𝑦𝑦 is the base shear at yield, which can be determined by a modal pushover analysis (Chopra & Goel 
2002). The condition for the surrogate model to start yielding is: 

 𝜔𝜔12𝐷𝐷1 > 𝑉𝑉𝑏𝑏,𝑦𝑦 / 𝑚𝑚1
∗ (7) 

The translation of the pushover curve from MDOF structure’s parameters to SDOF system’s parameters is 
explained in detail in the work of Chopra & Goel (2002). 

Lastly, also in parallel, the condition for the MDOF structure to start sliding is: 

 𝜾𝜾𝑻𝑻𝒎𝒎𝒔𝒔(𝒖̈𝒖𝒔𝒔 + 𝜾𝜾𝑢̈𝑢𝑔𝑔)  +  𝑚𝑚0𝑢̈𝑢𝑔𝑔 > 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝜇𝜇𝑓𝑓𝑔𝑔 (8) 

where 𝜇𝜇𝑓𝑓 is the base friction coefficient. We account only the first mode to obtain the condition for the surrogate 
model to start sliding:  

 𝑚𝑚1
∗𝐷̈𝐷1 + 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑢̈𝑢𝑔𝑔 > 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝜇𝜇𝑓𝑓𝑔𝑔 (9) 

2.3 2DOF rocking-flexure surrogate equations of motion 
The equations of motion of a MDOF structure that rocks on its base are presented by Acikgoz & DeJong 
(2016). The derivation of those equations and the conversion to a 2DOF surrogate model are presented in 
Silva & Stojadinović (2023) in the same notation as herein. Also, Silva & Stojadinović (2023) analyze different 
assumptions for the impact model and possible simplifications to the surrogate model. For completeness and 
brevity, we re-write the simplified equations of motion of the 2DOF surrogate model of a structure that rocks 
on its base: 
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 𝐼𝐼θθ̈ + 𝑚𝑚1
∗ℎ1∗𝐷̈𝐷1 − 𝐿𝐿0𝑟𝑟𝑔𝑔θ ± 𝑀𝑀𝑟𝑟 = −𝐿𝐿0𝑟𝑟 𝑢̈𝑢𝑔𝑔 

ℎ1∗θ̈ + 𝐷̈𝐷1 + 2ζω1𝐷𝐷1̇ + ω1
2𝐷𝐷1 = −𝑢̈𝑢𝑔𝑔 

(10a) 

(10b) 

where 𝐼𝐼θ = ∑ 𝑚𝑚𝑖𝑖(ℎ𝑖𝑖2 + 𝐵𝐵2)𝑁𝑁
𝑖𝑖=0  and 𝑀𝑀𝑟𝑟 = 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔 . In Equation 10, it is assumed small angles and small 

displacements, therefore 𝑠𝑠𝑠𝑠𝑠𝑠 θ ≈ θ, 𝑐𝑐𝑐𝑐𝑐𝑐 θ ≈ 1, 𝐵𝐵 − 𝐷𝐷1 ≈ 𝐵𝐵 and the Coriolis forces are neglected. 

2.4 Yielding SDOF surrogate equation of motion 
As soon as the condition of Equation 6 is met, the structure yields and its equation of motion is non-linear. The 
elastic modal shapes cease to be orthogonal to the now non-linear stiffness matrix 𝒌𝒌𝒔𝒔 which creates modal 
coupling. Nevertheless, such modal coupling is weak for regular fixed-base buildings behaving inelastically 
(Chopra 2017; Chopra & Goel 2002) and the modal pushover procedure can be applied to define a first-mode 
inelastic SDOF surrogate model. The equation of motion of this model is:   

 𝐷̈𝐷1 + 2𝜁𝜁𝜔𝜔1𝐷̇𝐷1 + 𝑓𝑓(𝐷𝐷1,𝐷𝐷𝑦𝑦) = −𝑢̈𝑢𝑔𝑔 (11) 

where 𝑓𝑓(𝐷𝐷1,𝐷𝐷𝑦𝑦) is the inelastic force-displacement function (Chopra 2017, p. 822).  

2.5 2DOF sliding-flexure surrogate equations of motion 
The equation of motion of the 2DOF surrogate model that slides on its base is (Naem & Kelly 1999, p. 31-34): 

 (𝑚𝑚1
∗/𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡)𝐷̈𝐷1 + 𝑢̈𝑢0 + 𝑓𝑓𝑏𝑏(𝑢𝑢0, 𝑢̇𝑢0, 𝜇𝜇𝑓𝑓 ,𝑢𝑢𝑦𝑦,𝑏𝑏 ,𝑇𝑇𝑏𝑏 , 𝜁𝜁𝑏𝑏) = −𝑢̈𝑢𝑔𝑔 

𝑢̈𝑢0 + 𝐷̈𝐷1 + 2𝜁𝜁𝜔𝜔1𝐷̇𝐷1 + 𝜔𝜔12𝐷𝐷1 = −𝑢̈𝑢𝑔𝑔 

(12a) 

(12b) 

where 𝑓𝑓𝑏𝑏(𝑢𝑢0, 𝑢̇𝑢0, 𝜇𝜇𝑓𝑓 ,𝑢𝑢𝑦𝑦,𝑏𝑏 ,𝑇𝑇𝑏𝑏 , 𝜁𝜁𝑏𝑏) is the force in the isolation system, that can be described by a yield function 
(e.g., Sayani & Ryan 2009) or by a Bouc-Wen model (e.g., Vassiliou, Tsiavos & Stojadinović 2013). 

3. Preliminary seismic design example 
We want to design a 3-story hospital building in San Jose (California) at a site type D (hazard curves are shown 
in Figure 2). The building structural system is a reinforced concrete (RC) frame, either as fixed-base or 
seismically isolated using single friction pendulum sliding bearings. The main performance objective is: the 
mean annual frequency (MAF) of the roof exceeding the yield displacement is 0.002 (1/500). If the building is 
base-isolated, an additional performance objective is: the MAF of the base isolation reaching its maximum 
displacement is 0.0004 (1/2500). 

 

 
Figure 2. Hazard Curves for San Jose, California at a site type D. Data from the 2018 US National Seismic 

Hazard Model (Petersen et al. 2020). 

3.1 Seismic design tools 
The seismic design is displacement based and it follows the premise that the yield displacement is a stable 
parameter during the design iterations (Priestley 2000; Aschheim 2002; Aschheim, Hernandez-Montes & 
Vamvatsikos 2019; Silva, Tsiavos & Stojadinović 2023). A good initial guess for the yield displacement of an 
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RC frame is 0.55% of its height (Hernández-Montes & Aschheim 2019). Therefore, the yield displacement of 
the surrogate is: 𝐷𝐷𝑦𝑦∗ = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 0.0055/Γ1 = 3 ⋅ 3.2 ⋅ 0.0055/1.24 =  0.0426𝑚𝑚. 

The design of the fixed-base inelastic structure is performed with the Yield Frequency Spectra (Vamvatsikos 
& Aschheim 2016). We compute the YFS with the hazard curves for San Jose (Figure 2) and the probabilistic 
estimation of inelastic displacement ratios from Ruiz-Garcia and Miranda (2007). The resultant YFS are in 
Figure 3 with the performance objective marked with a red X. 

 

 
Figure 3. Yield Frequency Spectra for San Jose (site type D), California, for a SDOF yield displacement of 

0.0426m. 

To design the base isolated building, we use the 2DOF surrogate model described in Section 2.5 with a Bouc-
Wen spring for the base isolation force-displacement function (𝑓𝑓𝑏𝑏). Equation 12 becomes: 

 (𝑚𝑚1
∗/𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡)𝐷̈𝐷1 + 𝑢̈𝑢0 + 2ω𝑏𝑏ζ𝑏𝑏𝑢̇𝑢0 + ω𝑏𝑏

2𝑢𝑢0 + �(ω𝑏𝑏
2/α𝐵𝐵𝐵𝐵) −ω𝑏𝑏

2�𝑢𝑢𝑦𝑦,𝑏𝑏𝑧𝑧0 = −𝑢̈𝑢𝑔𝑔 

𝑢̈𝑢0 + 𝐷̈𝐷1 + 2𝜁𝜁𝜔𝜔1𝐷̇𝐷1 + 𝜔𝜔12𝐷𝐷1 = −𝑢̈𝑢𝑔𝑔 

 𝑧̇𝑧0𝑢𝑢𝑦𝑦,𝑏𝑏 = 𝑢̇𝑢0 − 𝛾𝛾𝐵𝐵𝐵𝐵 |𝑢̇𝑢0| 𝑧𝑧0 |𝑧𝑧0|𝑛𝑛𝐵𝐵𝐵𝐵 − 1 − 𝛽𝛽𝐵𝐵𝐵𝐵𝑢̇𝑢0 |𝑧𝑧0|𝑛𝑛𝐵𝐵𝐵𝐵 

(13a) 

(13b) 

(13c) 

where 𝜔𝜔𝑏𝑏 = �𝛼𝛼𝐵𝐵𝐵𝐵𝑘𝑘𝑖𝑖/𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 is the base nominal frequency, 𝑘𝑘𝑖𝑖 = 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝜇𝜇𝑓𝑓/𝑢𝑢𝑦𝑦,𝑏𝑏  is the initial stiffness, 𝛼𝛼𝐵𝐵𝐵𝐵 is the 
post-yield stiffness ratio, 𝑢𝑢𝑦𝑦,𝑏𝑏 is the base’s yield displacement, 𝜁𝜁𝑏𝑏 is the base's damping ratio and 𝑛𝑛𝐵𝐵𝐵𝐵, 𝛾𝛾𝐵𝐵𝐵𝐵, 
and 𝛽𝛽𝐵𝐵𝐵𝐵 are the Bouc-Wen model’s parameters. We choose a single friction pendulum (SFP) isolation system, 
therefore we adopt: 𝑢𝑢𝑦𝑦,𝑏𝑏  =  0.0005𝑚𝑚, 𝜁𝜁𝑏𝑏 = 0, 𝛾𝛾𝐵𝐵𝐵𝐵  =  0.5 , 𝛽𝛽𝐵𝐵𝐵𝐵  =  0.5 , 𝑛𝑛𝐵𝐵𝐵𝐵  =  8, 𝛼𝛼𝐵𝐵𝐵𝐵 =  𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡  𝜔𝜔𝑏𝑏

2 / 𝑘𝑘𝑖𝑖. For the 
3-story frame building, we estimate 𝑚𝑚1

∗/𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡  =  0.6, and we fix the structure’s damping ratio 𝜁𝜁 = 0.02. We run 
the non-linear dynamic analysis (solution of Equation 13) for multiple options of structural period (𝑇𝑇1  =
 [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]s), base period (𝑇𝑇𝑏𝑏 = 2π/ωb = [3 3.5 4 4.5 5 5.5 6.0]𝑠𝑠), friction coefficient 
(μ𝑓𝑓  =  [0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.14 0.18] ), and for a ground motion set of 105 earthquake 
records scaled by 0.5, 1.0, 2.0, 3.0, 4.0. Those records are classified as ordinary, with no-pulse neither long-
duration characteristics (Kazantzi, Lachanas & Vamvatsikos 2021; Reggiani Manzo et al. 2022). For each 
2DOF system we perform two cloud analysis: one for 𝑚𝑚𝑚𝑚𝑚𝑚(|𝐷𝐷1|) and 𝑆𝑆𝑑𝑑(𝑇𝑇1) (spectral displacement) and other 
for 𝑚𝑚𝑚𝑚𝑚𝑚(|𝑢𝑢0|) and PGV (peak ground velocity). Based on the cloud analysis, we obtain the parameters 𝑐𝑐𝑖𝑖 and 
𝛽𝛽 of the following equations:  

 𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚𝑚𝑚(|𝐷𝐷1|)) = 𝑐𝑐1 + 𝑐𝑐2 𝑙𝑙𝑙𝑙�𝑆𝑆𝑑𝑑(𝑇𝑇1)�  + 𝜀𝜀𝛽𝛽𝑙𝑙𝑙𝑙(𝐷𝐷1) 

𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚𝑚𝑚(|𝑢𝑢0|)) = 𝑐𝑐3 + 𝑐𝑐4 𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃) + 𝜀𝜀𝛽𝛽𝑙𝑙𝑙𝑙(𝑢𝑢0) 

(14a) 

(14b) 

where 𝛽𝛽 is the dispersion and 𝜀𝜀~𝑁𝑁(0,1). With the cloud linear models, we build fragility functions (Shome et 
al. 1998; Jalayer 2003). In the following step, the MAF of exceeding different performance parameters is 
computed by integrating the product of the respective fragility function with the derivative of the hazard curve. 
The whole procedure is illustrated in Figure 4. 
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Figure 4. 2DOF surrogate model use for risk-based seismic design. 

3.2 Preliminary design decision 
The possible design solutions for a fixed-base building, according to Figure 3, require T1 ~ 0.3s. Conversely, 
the minimum spectral acceleration at yield is 𝐶𝐶𝑦𝑦∗ =  𝑢𝑢𝑦𝑦∗  (2𝜋𝜋/𝑇𝑇1)2/𝑔𝑔 =  1.9𝑔𝑔 . Therefore, the building lateral load 
resisting system should be able to carry about 2 times its total weight.  

For the base-isolated structure there are many possible design solutions as there are many parameters under 
design. The first step is to choose the base isolation size. We choose the SFP size of 1m, therefore the base 
isolation performance objective is MAF(𝑢𝑢0>0.5m) = 1/2500. From the 700 combinations of design parameters 
(𝑇𝑇1, 𝑇𝑇𝑏𝑏, 𝜇𝜇𝑓𝑓), only 290 satisfy the aforementioned performance objective. For those, we plot the MAF(𝐷𝐷𝑦𝑦∗) in 
Figure 4. 

 

 
Figure 4. Mean Annual Frequency of D1>0.0426m for different structural periods (𝑇𝑇1), base friction coefficient 

(𝜇𝜇𝑓𝑓) and base period (𝑇𝑇𝑏𝑏). Given by the 2DOF surrogate model and a site type D in San Jose (California). 

In Figure 4, the friction coefficient must be high to accommodate the base displacement restriction (i.e., 𝜇𝜇𝑓𝑓 >
0.08 ). Moreover, the highest period that satisfies 𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝑦𝑦∗) < 0.002  is T1 = 0.7s. This is already an 
improvement since 𝐶𝐶𝑦𝑦∗ = 0.35𝑔𝑔 in this case (5.7 times lower than the fixed-base building). A good design 
candidate is: T1 = 0.6s, 𝜇𝜇𝑓𝑓 = 0.08, and Tb = [3.0 – 4.5]s. In Figure 4, this design option is represented by a pink 
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downward-pointing triangle. This solution is very attractive given the 𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝑦𝑦∗)  <  0.0004 , i.e., the 
superstructure remains elastic for a 2500-year return period event, which is ideal for a hospital building. 

3.3. Discussion 
It is still possible to optimize the preliminary design options with the tools we used in this design example. For 
the fixed-base building, one can find which T1 between 0.3s and 0.4s satisfies the performance objective. For 
the base-isolated building, one can increase the size of the isolator to possibly reduce the friction coefficient, 
which would help to reduce the demand on the superstructure and lead to a more economical design of the 
superstructure. 

In addition, there are further applications of the proposed tools. With the use of surrogate models for different 
behavior structures, it is possible to compare, in the preliminary design phase, the seismic risk and 
performance of two different structural systems (e.g., Sayani & Ryan 2009). With some further steps, it is 
possible to create a simplified life cycle assessment of the design options (Terzic, Merrfield & Mahin 2012) to 
convince shareholders to adopt a long-term less risky structure. That is made possible using multi-behavior 
surrogates in only a few steps, but bearing in mind the trade-off between accuracy and simplicity. 

Lastly, we can develop probabilistic seismic design equations with the 2DOF surrogate models to improve the 
current design practice (e.g., for SDOF, Ruiz-Garcia & Miranda 2007; Vamvatsikos & Cornell 2005, O’Reilly 
et al. 2022; Kazantzi, Lachanas & Vamvatsikos 2021). Those equations are part of the toolset necessary to 
move toward fully risk- and performance-based seismic design. 

4. Conclusion 
This paper introduces a new seismic design method for structures presenting multiple behaviors based on 
two-degrees-of-freedom (2DOF) surrogate models. We show how a multiple-degrees-of-freedom (MDOF) 
structure that may present different simultaneous or consecutive behavior modes during its seismic response 
can be represented by different surrogate models and we introduce the conditions for transition between 
different behaviors and models. The surrogates are based on modal analysis and simplifications of the 
equations of motion. We use the proposed surrogates in a seismic design example to compare two different 
design solutions: a fixed-base yielding structure and a sliding base-isolated structure. The surrogate simplicity 
allows us to estimate the seismic performance of both structures (i.e., the mean annual frequency of exceeding 
capacity parameters) in the preliminary design phase. Therefore, the proposed design method is risk-based. 
The main contribution of this work is to bring together different design methods and models to a unified 
framework that comprises many possible behaviors and novel risk-based preliminary seismic design 
techniques. 
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