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Abstract

The lack of cycling infrastructure in urban environments hinders the adoption of cycling
as a viable mode for commuting, despite the evident benefits of (e-)bikes as sustainable,
efficient, and health-promoting transportation modes. Bike network planning is a tedious
process, relying on heuristic computational methods that frequently overlook the broader
implications of introducing new cycling infrastructure, in particular the necessity to
repurpose car lanes. In this work, we call for optimizing the trade-off between bike and
car networks, effectively pushing for Pareto optimality. This shift in perspective gives rise
to a novel linear programming formulation towards optimal bike network allocation. Our
experiments on six real urban street networks testify the effectiveness and superiority of
this optimization approach compared to heuristic methods. In particular, the framework
provides stakeholders with a range of lane reallocation scenarios, illustrating potential
bike network enhancements and their implications for car infrastructure. Crucially, our
approach is adaptable to various bikeability and car accessibility evaluation criteria,
making our tool a highly flexible and scalable resource for urban planning. This paper
presents an advanced decision-support framework that can significantly aid urban planners
in making informed decisions on cycling infrastructure development.
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1 Introduction
The transportation sector plays a pivotal role in combating climate change, accounting for
around 20.7 % of CO2 emissions worldwide (EDGAR/JRC, 2022). In urban environments,
a viable alternative to motorized transport is cycling, promising sustainable traffic in
addition to substantial health benefits (Oja et al., 2011). The emergence of e-bikes in recent
years has further democratized cycling for the general population. Nevertheless, in most
cities cycling only accounts for a minority of transport activity so far. A crucial factor in
the adoption of bicycle commuting is the availability and density of bike networks (Schoner
and Levinson, 2014). Previous research has provided compelling evidence for the positive
impacts of bike lane infrastructure on cycling (Buehler and Dill, 2016), encompassing its
effects on public health (Mueller et al., 2018), the importance of physical separation from
car lanes (Fraser and Lock, 2011), and the incorporation of green spaces (Ta et al., 2021).
These findings collectively underscore the importance of well-designed bike infrastructure
in promoting sustainable and healthy urban transportation choices.

Many cities around the world have recently promoted the construction of large-scale cycling
infrastructure. Implementation often suffers from practical difficulties and a complex
planning process that involves many stakeholders. Computational methods can serve
as decision support systems, including topology-based methods aiming to improve the
connectivity of bike networks (Natera Orozco et al., 2020), cost-benefit analyses (Paulsen
and Rich, 2023; Szell et al., 2022), or data-driven planning methods based on data from
bike sharing systems (Steinacker et al., 2022; Duthie and Unnikrishnan, 2014; Bao et al.,
2017; Liu et al., 2022), travel surveys (Mauttone et al., 2017) or mobile phones (Olmos
et al., 2020). Methods range from simple heuristics, e.g. based on the betweenness
centrality of edges in the network (Steinacker et al., 2022; Ballo et al., 2023), to linear
programming (LP) (Duthie and Unnikrishnan, 2014; Lin and Yu, 2013) or mixed integer
linear programming (MILP) (Liu et al., 2022) approaches.

However, most approaches that propose large scale changes of the existing infrastructure
do not consider the impact of these changes on other transport modes (Gerike et al., 2022).
As cities have a (mostly) fixed street infrastructure, an improved cycling infrastructure is
only attainable by allocating existing streets or lanes from car to bike usage. Thus, every
improvement in bike infrastructure comes at the cost of worsening the car network (Burke
and Scott, 2016). As such an essential factor for the practical feasibility and public
acceptance of a radical network restructuring in favour of cycling is its impact on the car
network.

The contribution of this work is two-fold. First we propose a framework to evaluate bike
network planning approaches that takes into account both the improvement of the bike
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infrastructure as well as the car reachability in the modified network. This is achieved by
comparing planning methods in terms of their Pareto frontier, trading off the bikeability
against the car travel times. We supplement this quality measure with a novel optimization
framework for bike network planning. The framework can provide stakeholders with a
multitude of possible reallocations, showing which improvements of the bike network can
be achieved at what cost for the car infrastructure.

2 Problem definition
We propose a multi-modal view on bike network planning that considers the impact of
new bike lanes on the car network. It is based on the following assumptions: 1) The
input is a given street network of an urban area. It is not possible to build entirely new
infrastructure, but the type and division of existing road space can be changed, including
lane directions. 2) The allocation of bike lanes inevitably involves the reduction of street
space available to other modes.

This planning problem, here termed the “bike network allocation problem” (BNAP), can
be modeled as a graph division problem. The initial graph is a simplified version of the
existing street network, corresponding to an undirected graph G = (V,E), where the nodes
V are intersections and the edges E are streets between two intersections. Geographic
properties of the network are expressed in attributes of the street edges e, specifically the
length of the street d(e), its gradient δ(e), the speed limit θ(e) and its capacity λ(e). The
capacity can be set to the width of the street or the number of lanes.

Solving the BNAP involves dividing G into two graphs: the bike lane network Gb = (V,Eb)

and the car lane network Gc = (V,Ec). Both are directed multi-graphs, since their edges
now represent lanes. The car network Gc must be strongly connected; i.e., every node
must be reachable from any other node, since disconnected subgraphs are unrealistic in
an urban environment. The design of Gb and Gc is mainly constrained by the street
capacities, ensuring that the car and bike lanes fit into the existing infrastructure:

∀e = (u, v) ∈ E : λc
(u,v) + λc

(v,u) + 0.5(λb
(u,v) + λb

(v,u)) ≤ λ(e) (1)

Here, λc
(u,v) denotes the capacity of a directed edge e = (u, v) in the car network Gc and

λb
(u,v) the capacity in the bike network. If the edge (u, v) is not part of the car network,

we define λc
u,v = 0 and accordingly for the bike network. Equation 1 defines a division

of the total capacity of the undirected street into directed car and bike lanes. The bike
capacities are multiplied by 0.5 to express the lower space necessary for bikes. We follow
common guidelines for bicycle infrastructure that recommend a bike lane width of 1.5
m (Parkin, 2018; Yan et al., 2018), corresponding to about half of a car lane.
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3 Methods
3.1 An evaluation framework based on Pareto optimality
While a plethora of metrics has been proposed for evaluating “bikeability” (Weikl and
Mayer, 2023; Grisiute et al., 2023), they largely ignore the impact of proper bike lanes
on motorized travel, with the exception of Burke and Scott (2016) who propose the
Network Robustness Index to measure the effect of wider bike lanes on traffic. For
simultaneously evaluating the goodness of the bike and car network, we leverage the
concept of Pareto optimality. We compute network-based travel times, i.e., weighted
shortest paths, but build on previous work from Steinacker et al. (2022) by taking a
demand-driven view on street network goodness by incorporating an origin-destination
(OD) matrix. Let Ω be a set of OD pairs where the origin and destination are nodes in
the graph, Ω = {(u1, v1), (u2, v2), . . . }. Ω is derived from travel surveys, GPS trajectories,
or bike sharing data. Let tc(e) and tb(e) be the travel times by car or bike along edge
e, and let P c(u, v) and P b(u, v) be the edge set of a weighted shortest path from u to
v, based on the edge weights tc and tb respectively. The Pareto frontier is computed to
trade-off the goodness of the car network, T (Gc), with the goodness of the bike network
T (Gb), defined as

T (Gc) =
∑

(u,v)∈Ω

( ∑
e∈P c(u,v)

tc(e)
)

T (Gb) =
∑

(u,v)∈Ω

( ∑
e∈P b(u,v)

tb(e)
)

(2)

The edge-wise travel times tb(e) and tc(e) are set based on the lane’s length d(e) in km, its
gradient δ(e) in % and its speed limit θ(e) in km/h, which are available from Open Street
Map (OSM) data. The car travel times are simply set tc(e) = d(e)

θ(e)
since the gradient does

not have a strong impact on the car speed in urban areas. Bike speed is estimated as
21.6km/h on flat lanes (excluding acceleration and breaking), with an increase of 0.86km/h
per negative percent gradient (downhill acceleration) and an increase of 1.44km/h per
positive percent gradient (uphill) (Parkin and Rotheram, 2010):

tb(e) =
d(e)

vb(e)
=


d(e)

max{1, 21.6−1.44·δ(e)} if δ(e) > 0 (uphill)

d(e)
21.6−0.86·δ(e) else (downhill or flat).

(3)

However, a crucial component of cycling is safety, as a lack of dedicated infrastructure
prevents people from cycling. This can be expressed in terms of a perceived bike travel time
that amends the physical travel time with a psychological component. The perceived bike
travel time is computed from the actual travel time, tb(e), by penalizing the discomfort of
cycling on car lanes. The penalty is zero for edges equipped with dedicated bike lanes.
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To set the penalty for roads without proper bike lanes, we follow the study by Meister
et al. (2023), who recently studied route choices of cyclists in Zurich and found a “value of
distance” of −0.66 for bike lanes and −0.36 for bike paths. Taking the average of both,
we assume that the perceived distance is approximately halved on proper bike lanes, and
we thus set perceived travel time for cycling on car lanes to tβ(e) = 2 · tb(e).

3.2 A linear programming approach towards solving the BNAP
The goal of minimizing both bike and car travel times gives rise to an integer programming
(IP) formulation with a multi-criteria objective function. To express travel times in an IP,
we first revisit a flow formulation of the all-pairs shortest path problem:

min
∑
s,t∈V

∑
e∈E

fs,t,e · t(e) (4)

s.t. ∀v ∈ V, ∀s, t ∈ V :
∑

e∈δ+(v)

fs,t,e −
∑

e∈δ−(v)

fs,t,e =


−1 if v = t

1 if v = s

0 else,

(5)

where t : E → R≥0 encodes the travel times along the edges, and fs,t,e is the flow allocated
on edge e for the path from s to t. Additionally δ+(v) denotes the set of outgoing edges
of node v and δ−(v) its incoming edges. The flow constraints, together with the integer
constraint fs,t,e ∈ Z, guarantee that there is a flow of value 1 between every (s, t)-pair,
corresponding to a path. The objective computes the total travel time along each path,
leading to the all-pairs shortest path in G.

We adapt the objective and constraints to model the BNAP. First, the undirected street
graph G is converted into a directed graph G′ by replacing every edge e = (u, v) ∈ E by a
pair of reciprocal directed edges, −→e = (u, v) and←−e = (v, u). The construction of G′ allows
to optimize the capacity for bike and car lanes in both directions. The edge properties
of −→e and ←−e are inherited from e; i.e., d(−→e ) = d(←−e ) = d(e), θ(−→e ) = θ(←−e ) = θ(e),
δ(−→e ) = −δ(←−e ) and λ(−→e ) = λ(←−e ) = λ(e).

In the following, the adaptation of this formulation to the BNAP is explained in detail.
An overview of all variables is given in Table 1 (Appendix A).

3.2.1 Introducing bike, car and shared flow

In contrast to the general shortest path formulation, we distinguish between the car flow
f c and the bike flow f b along every edge, and frame the objective as a multi-criteria
optimization problem. A weight γ can be set by the user to specify the desired importance
of the car travel times relative to the bike travel times, resulting in the following preliminary
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objective function min
∑

e∈E′
∑

(s,t)∈Ω f b
s,t,et

b(e) + γ · f c
s,t,et

c(e) Varying γ yields Pareto-
optimal solutions; i.e., scenarios where improving the bike network increases the car travel
times and the other way around. Importantly, we compute the travel times over the
s-t-pairs in an OD-matrix Ω, as motivated in subsection 3.1, instead of considering all
node pairs. Additionally considering an OD-matrix reduces the runtime significantly.
Specifically, with n = |V | and m = |E ′|, the all-pairs-shortest path formulation requires
to optimize n2m bike and car flow variables, since n2 s-t-paths are considered, each with
one variable per edge. This reduces to |Ω|m variables with the demand-driven approach.
A drawback of this approach is that the resulting car network is not guaranteed to be
strongly connected. To alleviate this problem, we add auxiliary pairs to Ω that form a
chain of all vertices ((v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)).

Furthermore, the car flow constraints are set as in the all-pairs shortest-path formula-
tion:

∀v ∈ V, ∀(s, t) ∈ Ω :
∑

e∈δ+(v)

f c
s,t,e −

∑
e∈δ−(v)

f c
s,t,e =


−1 if v = t

1 if v = s

0 else.

(6)

However, this constraint is unsuitable for bike flow, since simultaneously guaranteeing bike
and car flow along each path in Ω is oftentimes infeasible in a real-world street network.
Thus, we introduce the concept of shared flow, denoted fβ, representing that cyclists can
also use car lanes. Equation 7 expresses that a bike paths between all pairs of nodes s, t

is only required with a combination of f b (bike-on-bike-lane flow) and shared flow fβ

(bike-on-car-lane flow).

∀v ∈ V, ∀(s, t) ∈ Ω :
∑

e∈δ+(v)

(f b
s,t,e + fβ

s,t,e)−
∑

e∈δ−(v)

(f b
s,t,e + fβ

s,t,e) =


−1 if v = t

1 if v = s

0 else.

(7)

3.2.2 Constraining the space for bike and car lanes

Since the space on urban streets is limited, the goal of our approach is to decide which
space to allocate to car and bike travel respectively. We model the space limitation with
bike and car capacities, denoted λb

e and λc
e. The bike and car flow are constrained by the

capacity: ∀(s, t) ∈ Ω,∀e ∈ E ′ : f c
s,t,e ≤ λc

e f b
s,t,e ≤ λb

e

In turn, λb
e or λc

e are bounded by the total street capacity λe, which is given by the number
of available lanes or the street width. Thus, the final constraint is in alignment with the
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BNAP definition (Equation 1): ∀e = (u, v) ∈ E ′ : λc
(u,v)+λc

(v,u)+0.5(λb
(u,v)+λb

(v,u)) ≤ λ(e).
When λe is the number of lanes, it is useful to require bidirectional bike lanes (∀e ∈ E ′ :

λb−→e = λb←−e ) to take up all available space. Notably, the shared flow fβ is not constrained.
Instead, we penalize fβ, the undesired bike traffic on car lanes, in the objective function
based on the higher perceived travel time tβ(e). The objective function thus becomes

min
∑

(u,v)∈E′

∑
(s,t)∈Ω

f b
s,t,et

b(e) + fβ
s,t,et

β(e) + γ · f c
s,t,et

c(e).

Solving the problem with the proposed constraints and objective yields the optimal bike
and car capacities per street and direction, which can be interpreted as the number of
lanes or the street width to allocate per transport mode.

3.3 Linear relaxation
The solution of the provided problem formulation can only be translated into bike and
car lane-allocations if the problem is solved as an IP. However, the number of variables to
optimize remains large even with the proposed relaxations, rendering IP computationally
prohibitive for real-world instances. Therefore, we solve the problem as a linear program,
resulting in fractional flow values for the bike and car capacities (λb

e, λc
e). We propose an

iterative process of rounding the capacities and re-computing the optimal solution. For an
algorithmic description of the post-processing, see also algorithm 1 (Appendix B). Let Λ

be a set of the indices and values of all fixed capacities, Λ = {(e, i, λi
e) | i ∈ {b, c}, e ∈ E}.

Initially, Λ is empty (Λ = ∅), or Λ corresponds to a set of lanes that are fixed due
to real-world constraints such as compulsory car lanes that are used by bus services.
In each iteration, the LP is solved subject to the fixed bike capacities Λ, yielding the
optimal capacities λ∗, where ∀(i, e, λi

e) ∈ Λ : λi
e = λ∗,ie (i.e., the fixed capacities remain

unchanged). The algorithm then rounds up the k largest bike capacity values and fixes
them. Afterwards the solution is recomputed to optimize the remaining capacities. Before
fixing a bike lane, it is ensured that the remaining car network remains strongly connected.
Each iteration results in a feasible graph division into car and bike network, assuming all
lanes aside from the fixed bike lanes are car lanes.

4 Experiments
We test the presented evaluation and optimization framework on real data from Zurich
(Switzerland), Cambridge MA(US) and Chicago (US). From each city, two districts
were selected, and their street network was extracted from Open Street Map (OSM)
and pre-processed with the SNMan Python library1 by Ballo and Axhausen (2024) (see
Appendix C). An overview of the six instances is shown in Figure 1 (for numerical

1https://github.com/lukasballo/snman
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properties, see Table 2 in Appendix C). The OD-matrices Ω are derived from public
bike sharing data (Chicago & Cambridge) or census data (Zurich); see Appendix C for
details. In the following, we report the travel times over OD-paths in Ω if not denoted
otherwise. All tests were executed on a standard machine with 16 GB RAM, using a
Gurobi solver. The source code is available at https://github.com/mie-lab/bike_

lane_optimization.

Figure 1: Network layout of the real instances used to test our algorithm

Zurich
(Affoltern)

500 m

Zurich
(Birchplatz)

500 m

Cambridge MA
 (east)

500 m

Cambridge MA
 (mid-east)

500 m

Chicago
(Logan Square west)

500 m

Chicago
(Logan Square east)

500 m

To benchmark the novel algorithm with respect to prior work, we compare to three
heuristic methods based on the betweenness centrality. Since Steinacker et al. (2022) do
not consider the impact of bike lanes on the car network, we adapt their algorithm in three
ways. First, we assume a full network of bike priority lanes, where cars are restricted to
10km/h, and iteratively assign edges to the car network (betweenness-top-down). Secondly,
starting from a car network without any bike lanes, edges are iteratively allocated for
cycling, starting with the lanes with lowest betweenness centrality in the car network
(betweenness-bottom-up (car)). Third, the same process is repeated but starting the
reallocation-process with lanes that have high betweenness centrality with respect to bike
travel (betweenness-bottom-up (bike)). For implementation details, see Appendix D.

Figure 2 presents the Pareto frontier for each method and instance, visualizing the achieved
trade-off between bike and car travel time. Each point on the Pareto frontier is one bike
network. For example, for Zurich-Affoltern our algorithm yields a network where the
perceived bike travel time is decreased by 40% while increasing the car travel time only by
17%. The bike travel time can be reduced by at most 50% due to the setting of tβ(e) = tb(e).
In five instances, the Pareto frontier of our optimization approach dominates over the
heuristic solutions. The bike-focused bottom-up method usually yields better networks
when many bike lanes are allocated, whereas the car-focused bottom-up method yields
better solutions when few bike lanes are allocated (see intersections of green and yellow
lines for Cambridge MAand Chicago). The framework thus also provides recommendations
about the use cases for the respective methods.

9
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Figure 2: Pareto optimality of bike networks. Top: Algorithms are compared by their
Pareto frontier. In five out of six instances, our linear programming approach outperforms
methods based on the betweenness centrality. Bottom: Each point on the Pareto frontiers
(top) corresponds to one plausible street network. Three examples in Cambridge MAare
shown, where the bike networks differ dependent on the planning method and the number
of allocated bike lanes. This is also reflected in the distance of shortest paths, where the
existence of dedicated cycling infrastructure is rewarded in the perceived bike travel time.
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Furthermore, Figure 2 (bottom) illustrates three resulting bike networks for Cambridge
MA(east), varying due to the planning method and the number of allocated bike lanes.
The heuristic method (C) places a greater number of bike lanes on main roads compared to
our optimization approach (B). When allocating more bike lanes (250 instead of 150) with
the optimization approach, the car network transitions into a complex one-way system.
This change leads to increased car travel times, as depicted in Figure 2 (bottom), where
travel times increase from 1.82 to 2.03 for a specific route. Although the overall bike travel
time remains consistent across all algorithms - since cyclists have access to all roads - the
perceived bike travel time varies significantly, and it is considerably longer when using the
betweenness algorithm compared to the optimization method, highlighting the impact of
planning approaches on travel efficiency.

5 Discussion
Our study introduces a novel perspective on bike network planning by prioritizing the trade-
off between car and bike travel times through Pareto optimality. The aim of minimizing
the impact of bike lanes on other modes is formalized in the bike lane allocation problem
(BNAP) and addressed with our IP formulation that yields Pareto-optimal solutions.
To enable the application to real-world scenarios, we developed several relaxations and
post-processing schemes, while also integrating key innovations such as demand-driven
aspects and the assessment of perceived bike travel times.

Addressing actual traffic flow remains a significant hurdle. Accurately modeling traffic flow
typically requires sophisticated simulators, making it challenging to employ optimization
algorithms without resorting to a bi-level formulation. However, ignoring traffic flow has
certain effects on the optimal solution. For example, our algorithm is predisposed to
allocate one lane of any double-lane road to bicycles, not accounting for the impact on
car travel times due to reduced road width.

Future work should thus focus on accurately modeling traffic flow and on adapting our
algorithm to account for factors critical to real-world traffic dynamics, such as intersection
layouts. Additionally, there are straightforward extensions, such as incorporating parking
space allocation constraints or incentivizing bike lanes near green spaces, that could further
refine the model. To make our algorithm more accessible, developing a user interface that
allows parameter adjustments through sliders and visualizes the resultant street networks
is crucial. Such a tool would empower urban planners with limited technical expertise to
leverage our algorithm for informed decision-making.
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A Overview of all variables

Table 1: List of variables and explanation

Variable Description
Optimized variables

f c
s,t,e Car flow on car lane along edge e for the path from s to t
f b
s,t,e Bike flow on bike lane along edge e for the path from s to t

fβ
s,t,e Bike flow on car lane (shared lane) along edge e for the path from s to t
λc
e Capacity allocated for cars on edge e

λb
e Capacity allocated for bikes on edge e

Inputs
G = (V,E) Street graph with one edge per street
G′ = (V,E ′) Auxiliary street graph with a pair of reciprocal directed edges per street

n Number of nodes
m Number of edges
Ω Set of considered origin-destination pairs, given as pairs of node (u, v) ∈ V 2

tb(e) Travel time by bike along edge e
tc(e) Travel time by car along edge e
tβ(e) Perceived travel time for cycling on a car lane along edge e

γ Weighting (desired importance) of the car travel time
λe Overall given capacity of edge e

B Post-processing algorithm
Algorithm 1: Post-processing scheme to round the LP solution

Input: Street network G with edge attributes d(e), δ(e), θ(e)
Input: Set of fixed capacities Λ
Input: Ω, ω, γ, k
i = 0
repeat
λ∗ = LP (G,Λ,Ω, ω, γ)
Sort λ∗b ; // Round edges with largest bike capacity
for k iterations do
ê = edge with largest λ∗b that is not in Λ yet
if G remains strongly connected then
Λ = Λ ∪ {(ê, b, 1)} ; // Fix as bike lane

else
Λ = Λ ∪ {(ê, c, 1)} ; // Fix as car lane

end if
end for
i = i+ 1

until |Λ| = 2m ; // Until all edges are fixed as bike or car lanes
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C Preprocessing of real network data
The SNMan library builds up on the networkx and OSMnx (Boeing, 2017) packages and
first constructs a street graph with one node per intersection and one edge per street. It
further provides functionality to convert the street graph into the lane graph, a directed
multigraph. Each node in the lane graph is defined by geographic coordinates and elevation,
and the edges are enriched with attributes for their distance, speed limit and the type of
lane based on available OSM data, allowing to derive δ(e), tc(e) and tb(e).

An origin-destination Ω expressing real-world travel demand is derived from public bike
sharing or census data. For districts in Zurich, we take all trips in the Mobility Microcensus
from Switzerland that intersect with the district region. The Mobility and Transport
Microcensus is a statistical survey on travel behaviour that is published by the Federal
Office for Spatial Development. Overall, it contains travel survey data for more then 57k
participants. After intersecting the origin-destination-lines with the city district, 1061 and
508 trips remain for Birchplatz and Affoltern respectively. The trip origin and destination
are matched to nodes in the graph by selecting the node closest to their geographic
coordinates, yielding 498 and 267 unique OD-pairs respectively (see Table 2).

On the other hand, to the best of our knowledge there is no public travel data for Chicago
or Cambridge. Instead, we utilize public data from their respective local bike sharing
services. It is worth noting that this biases the OD-data to cycling movement; however, it
can be assumed that the data still reflect typical mobility behaviour within the district,
irrespective of the transport mode. For Chicago, data is available from Divvy bike sharing2,
whereas in Cambridge, the operating service is Bluebikes3. In both cases, we download
and merge all trip data from the whole year of 2023 and only filter out stations that are
marked as charging or maintenance stations. The origin-destination data is intersected
with the respective district based on their beeline connection, and the resulting subset
of OD-pairs is mapped to graph nodes by their geographic locations, yielding a set of
node-based OD-pairs. Due to the large number of resulting pairs, we select only the
OD-pairs that collectively account for 75% of the trips from 2023, resulting in the counts
listed in Table 2.

D Heuristic baselines
To demonstrate our evaluation framework based on Pareto optimality, we compare our
LP algorithm to three heuristic methods inspired by previous work. Steinacker et al.

2https://divvybikes.com/system-data
3https://bluebikes.com/system-data
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Table 2: Overview of real-world instances. The runtime for solving the LP one time is
given as “Runtime optimization”, in contrast to the runtime for computing the whole
Pareto frontier (“Runtime Pareto”).

Zurich Cambridge Chicago
Affoltern Birchplatz east mid-east L.S. west L.S. east

Nodes 213 301 283 504 345 371
Streets 290 431 506 775 601 603
Lanes 535 799 883 1253 934 1126
OD-paths 219 383 456 677 175 281
OD-paths extended 430 684 738 1180 520 648
Runtime optim. [min] 4 36 20 146 26 38
Runtime Pareto [h] 0.28 4.3 2.74 7.91 5.35 7.07

(2022) proposed to generate a sequence of bike networks, starting from a network with
bike lanes at every edge, and iteratively removing bike lanes based on their betweenness
centrality, an index measuring how frequently an edge is part of a shortest path (Brandes,
2008). In their work, the betweenness centrality is computed with respect to the shortest
paths of an OD-matrix derived from the pickups and drop-offs in a bike sharing system.
Our work builds up on this demand-driven approach; however, Steinacker et al. (2022)
ignore the effect of new bike lanes on other traffic, which impedes the comparability of
the networks resulting from their and our algorithm. Nevertheless, we implemented three
baseline approaches that are based on their approach and that utilize the betweenness
centrality measure. For the first one, we follow (Steinacker et al., 2022) closely and start
from a network where all streets are bike lanes. To express the negative impact of proper
bike lanes on the car network, we exploit the concept of bike priority lanes, where cars
are required to give priority to bikes and are slowed down accordingly. Specifically, it is
assumed that cars can drive 10 km/h on bike lanes. The initial network is thus a full
bike lane network with a car speed of 10km/h throughout the city. As in (Steinacker
et al., 2022), edges are iteratively removed from the network (and designated as proper
car lanes), starting from the edge with lowest betweenness centrality with respect to the
shortest bike travel times. The same OD-matrix and (perceived) travel times as for our
optimization approach are used to ensure comparability. Since this method starts from a
full bike network, we call this approach betweenness-top-down.

In contrast, for the second and third baseline, we start from a network with car lanes
only and add bike lanes iteratively, termed betweenness-bottom-up in the following. There
are two ways to re-assign lanes to cycling: 1) a car-prioritizing approach, where the
first edges to be converted to bike lanes are the ones with lowest betweenness centrality,
computed with respect to the car travel time (betweenness-bottom-up (car)), and 2) a
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bike-prioritizing approach, where the edges with highest betweenness centrality with
respect to the bike travel time are converted first (betweenness-bottom-up (bike)). In
both cases, we iteratively select the edge with the lowest/highest betweenness centrality
computed on the OD-matrix, and convert this edge into a bidirectional bike lane, setting
the car travel time along this edge to ∞ as in our optimization approach. In summary,
we compare our approach to three strong heuristic methods based on the betweenness
centrality, where the first one (top-down) is designed to be as similar as possible to
(Steinacker et al., 2022) while the second and third one (bottom-up) are constructed for
better comparability to our method. The method betweenness-bottom-up (car) resembles
the approach taken in Ballo and Axhausen (2024).

18


