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Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators,
which combine
® Governing equations

dive+ f=0
® Discretization techniques oc=D-¢
1
® Solvers e=2 (Vu+Tvu)

Computational models are used:

® To explore the design space (“virtual prototypes”)

® To optimize the system (e.g. minimize the mass) under
performance constraints

® To assess its robustness w.r.t uncertainty and its reliability
® Together with experimental data for calibration purposes S
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Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes quantities of interest (Qol)
(a.k.a. model responses) as a function of input parameters

Vector of input

Computatio Model response
parameters — M( ) c RQ
= T
x € RM &
® Geometry ® Analytical formula ® Displacements

® Material properties x ® Finite element model ® Strains, stresses
® |oading ® Comput. workflow

® Temperature, etc.
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Real world is uncertain

® Differences between the designed and the real system:
— Dimensions (tolerances in manufacturing)

— Material properties (e.g. variability of the stiffness or resistance)

® Unforecast exposures: exceptional service loads, natural hazards (earthquakes, floods, landslides),
climate loads (hurricanes, snow storms, etc.), accidental human actions (explosions, fire, etc.)

JunTIn
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Outline

Introduction
Uncertainty quantification: why surrogate models?

Basics of polynomial chaos expansions
PCE basis and coefficients
Sparse PCE
Post-processing

Recent developments in dynamics
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Global framework for uncertainty quantification

Step B
Quantification of

sources of uncertainty

Random variables

Step A
Model(s) of the system

Assessment criteria

Computational model

Step C’

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models — contributions to structural

= T
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Step C

Uncertainty propagation

Moments
Probability of failure

Response PDF

ility and ic spectral (2007)
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Uncertainty propagation using Monte Carlo simulation
Principle: Generate virtual prototypes of the system using random numbers
® Asample set X = {1, ... , .} is drawn according to the input distribution fx

® For each sample the quantity of interest (resp. performance criterion) is evaluated, say
y = {M($1)7 e 7M(m")}
® The set of model outputs is used for moments-, distribution- or reliability analysis

q "\ €.g., max. deflection
Computational model Fa
l' ‘\
NN NN B
X2
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Surrogate models for uncertainty quantification

A surrogate model M is an approximation of the original computational model M with the following
features:

® |t assumes some regularity of the model M and some general functional shape

® |t is built from a limited set of runs of the original model M called the experimental design
X = {w(i>,i=1, 771}

Simulated data

® |tis fast to evaluate!
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Surrogate models for uncertainty quantification

Name Shape Parameters
Polynomial chaos expansions M(zx) = Z o U () Go
acA

R
Low-rank tensor approximations = Zbl (H ”(a:l ) by, z,(j;

=1
Kriging (a.k.a Gaussian processes) M(x)=B"- f(x) + Z(x,w) B,0%,
Support vector machines M(z) = Z a; K(z;,2) + b a,b

i=1
(Deep) Neural networks (®)=fru (- falba+ fr (b1 +wi-x w,b

= T
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Ingredients for building a surrogate model

® Select an experimental design X that covers at best the domain of
input parameters:
— (Monte Carlo simulation)

— Latin hypercube sampling (LHS)

— Low-discrepancy sequences

® Run the computational model M onto X exactly as in Monte Carlo simulation
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Ingredients for building a surrogate model

® Smartly post-process the data {X', M (X)} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares
Kriging maximum likelihood, Bayesian inference
Support vector machines quadratic programming

¢ Validate the surrogate model, e.g. estimate a global errore = E [(M(X) — M(X))Q}
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Advantages of surrogate models

Usage -
hours per run seconds for 10° runs
Advantages Challenges
® Non-intrusive methods: based on runs of the ® Need for rigorous validation

computational model, exactly as in Monte

Carlo simulation ® Communication: advanced mathematical

background
® Suited to high performance computing:
“embarrassingly parallel”

Efficiency

® 6-8 orders of magnitude (!) less CPU for a single run

® 2-3 orders of magnitude less runs compared to a full Monte Carlo simulation
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Surrogate modelling vs. machine learning

Features Supervised learning Surrogate modelling
Computational model M

X v
Probabilistic model of the input X ~ fx

X v
Training data: X = {(xi,v:), it =1, ... ,n}

4

Training data set
(big data)
Prediction goal: foranew = ¢ X, y(x) ? Z yi K (i, ) +b Z Ya Va(x)
i=1 acA

Validation (resp. cross-validation)

v v

Validation set Leave-one-out CV
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Outline

Basics of polynomial chaos expansions
PCE basis and coefficients
Sparse PCE
Post-processing
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

® We assume here for simplicity that the input parameters are independent with
X~ fx;,i=1,..., M

® PCE is also applicable in the general case using an isoprobabilistic transform X — =

The polynomial chaos expansion of the (random) model response reads:
V=2 v
aeNM
where:
] are basis functions (multivariate orthonormal polynomials)

® 4. are coefficients to be computed (coordinates)

'll"l" T Surrogate modelling & Machine learning CEACM S4ML - June 19, 2024
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Sampling (MCS) vs. spectral expansion (PCE)

Whereas MCS explores the output space /distribution point-by-point, the polynomial chaos expansion
assumes a generic structure (polynomial function), which better exploits the available information (runs of
the original model)

Example: load bearing capacity P.. of a shallow foundation

Thousands (resp. millions) of
points are needed to grasp the

capture the rare events)

Defined as a function of the soil cohesion ¢ and friction angle ¢
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Visualization of the PCE construction

10000

= “Sum of coefficients x basic surfaces”

25 5000

0
True Model
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Visualization of the PCE construction

=Y0,0X u

+11.0X :, +‘//\_\><é:

+12,0X

i
w0

+0 402X

=
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Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)
Principle
The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:
Y = M(X) =) yala(X)+ep = Y ¥(X)+ep(X)
acA

where: Y ={ya, @ € A} ={yo, ... ,yp-1} (P unknown coefficients)

(z) = {Vo(z), ..., Up_1(z)}

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

Y = argmin E [(YT‘I’(X) - M(X))Q}

ATITN. oo cee
I|IIII|I
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Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

n

v — L To(2®) - M)
Y_argg§%7LZ(Y (z') — M(z ))

Procedure

* Select a truncation scheme, e.g. AM? = {a € N : |a|: <p}
® Select an experimental design and evaluate the model response . .
T St

M= {M@"), ... ,M@"™)} RS

® Compute the experimental matrix
A= (") i=1,...,n;j=0,...,P-1

® Solve the resulting linear system

Simple is beautiful !

,,,,,,, Y=(ATA)"'ATM
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Error estimators

® In least-squares analysis, the generalization error is defined as:
Bpen =B [(MX) = MPX)"] M) = Y ya Wa(X)
acA

® The empirical error based on the experimental design X is a poor estimator in case of overfitting

Eemp = %Z (M(a)(’)) — MPC(w(i)))Q

=1

Leave-one-out cross validation
® From statistical learning theory, model validation shall be carried out using independent data

1~ MzD) = MPC(a)\?
Froo =1 3 (M
i=1

where h; is the i-th diagonal term of matrix A(ATA) " *AT
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Outline

Basics of polynomial chaos expansions

Sparse PCE

A Risk, Safety &
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Curse of dimensionality
(M + p)!
M!p!
® Typical computational requirements: n = OSR - P where the oversampling rate is OSR =2 — 3

e The cardinality of the truncation scheme AM? is P =

However ... most coefficients are close to zero !

Example
P, P, P, P, P, P, 10 ° ;'Iialll
N N U W “h=3
l 3 p>3
Fip A, Ep A,
A A, D —10°
S
S
— 10
® FElastic truss structure with M = 10 independent input
variables 10
® PCE of degree p = 5 (P = 3,003 coefficients) 10 e 3000

AT . = &
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Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Sargsyan et al. (2014); Jakeman et al. (2015)

® Sparsity in the solution can be induced by ¢, -regularization:
1N (T ()y)2
Yo argmmn;( (@) = M@"))"+ A | wa I
e Different algorithms: LASSO, orthogonal matching pursuit, LARS, Bayesian compressive sensing,
subspace pursuit, etc.

e State-of-the-art-review and comparisons available in:
Lathen, N., Marelli, S. & Sudret, B. Sparse polynomial chaos expansions: Literature survey and benchmark,

SIAM/ASA J. Unc. Quant., 2021, 9, 593-649 https://doi.org/10.1137/20M1315774

—, Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications, Int.
J. Uncertainty Quantification, 2022, 12, 49-74

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021036153

AT, s
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Outline

Basics of polynomial chaos expansions

Post-processing

A Risk, Safety &
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Post-processing sparse PC expansions

Statistical moments
® Due to the orthogonality of the basis functions (E [V« (X)¥5(X)] = dag) and using E [¥q-0] = 0
the statistical moments read:

Mean: [y = Yo
Variance: 6% = y2

acA\0

0.5
Distribution of the Qol 045

0.4
® The PCE can be used as a response surface for sampling: 035
03
y; = Zya\Pa(mj) J=1,... g 20
acA 0.15
® The PDF of the response is estimated by histograms or kernel 000:

smoothing o ! ; > T—
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Sobol’ indices

Global sensitivity analysis aims at quantifying which input parameter(s) (or combinations thereof) influence
the most the response variability

Variance decomposition

Sobol’ indices

First order:

Second order:

||IIII||

Var [Y ZD + > Dij+-+Din
1<i<j<M
‘7 Var[Y] Total: A Su
D;; Z
Sm' u>i
Var [Y]
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Sobol decomposition of a PC expansion

Sudret, Global sensitivity analysis using polynomial chaos expansion, RESS (2008)

def

Obtained by reordering the terms of the (truncated) PC expansion M™°(X) = Y aen Yo Ya(X)

Interaction sets

Foragivenud:ef{z'l,...,is}: Ai={aceA: keus o, #0}
MPO@)=Mo+ Y Mu(m) where  Mu(za) Z Y yaVa(2)
uC{1,...,M}

PC-based Sobol” indices

Su=Du/D =Y v/ Y va

acA\O

The Sobol’ indices are obtained analytically, at any order from the coefficients of the PC
expansion

I|IIII|I
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Example: strip foundation

Load bearing capacity

1
P.r = Boer =B |:CNC+’yth+§'yBN.Y:| Vv
with the load bearing factors: =

quewtanglers%nW (T) c, @
1 —sing
Ne = (Nq —1)/tane
Ny =2(Ng—1)tanep
Variable Description Distribution = Moments
v Self-weight Gaussian pry =21 kN/m3, COVy = 5%
c Cohesion Lognormal e =5 kPa, COV. = 30%
) Effective friction angle  Lognormal e = 30°, COV, = 8%
B Width Deterministic 3 m
t Depth Gaussian ue = 0.5m, COV; = 20%
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PCE vs. Monte Carlo simulation: moments

Monte-Carlo simulation

Nwues 100 1,000 10,000 100, 000 1,000, 000
Mean 3216 3082 3121 3125 3124
95% Cl [2942 — 3378]  [3057 —3201] [3105 — 3150] (3115 — 3133] [3122 — 3127]
Std. dev 1109 1080 1188 1173 1174
95% ClI [966 — 1565]  [1099 — 1313]  [1145 —1207] [1163 — 1185]  [1171 — 1178]

Polynomial chaos expansion

I|IIII|I

Experimental design of size Ngp = 100

Mean 3123
95% Cl [3121 — 3125]
Std. dev 1169
95% ClI (1162 — 1171]
Surrogate modelling & Machine learning CEACM S4ML - June 19, 2024 B. Sudret 26/37



PCE vs. Monte Carlo simulation: Sobol’ indices

Monte-Carlo simulation

Nucs 100 1,000 10,000 1,000,000
y [0.007 — 0.020]  [0.013 — 0.017]  [0.014 — 0.015) [0.015 — 0.015]
c [0.006 — 0.018]  [0.013 — 0.019]  [0.013 — 0.015) [0.015 — 0.015]
¢ [0.917—1.201] [0.872—1.014] [0.965 — 1.003] [0.963 — 0.966]
t [0.004 — 0.012]  [0.009 — 0.013]  [0.011 — 0.012)] [0.012 — 0.012]
Nror 600 6,000 60,000 600,000 6,000,000

Polynomial chaos expansion

Experimental design of size Ngp = 100

v [0.015 — 0.016]
c [0.014 — 0.014]
© [0.962 — 0.964]
t [0.011 — 0.012]
Nror 100
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Outline

Recent developments in dynamics
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Models with time-dependent outputs

Problem statement
® Consider a computational model of a dynamical system:

D= x [07 T] : (&,t) = M(Evt)

where E is a random vector of uncertain parameters with given
PDF f=

® Uncertainties may be in:
- The excitation, denoted by x (&, t)

- And/or in the system’s characteristics (§,):

M(§,t) = M(x(&,,1), &)

Point-in-time PCE does not work!

|||III||
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Probability density function

5

1 05 0 o5 1 15
Time-dependent output PDF

CEACM S4ML - June 19, 2024 B. Sudret

28/37



Stochastic time warping

Kraichnan Orszag model

Problem Mai & Sudret, SIAM J. Unc. Quant. (2017)

The various trajectories are “similar” yet not in phase, thus the
complex point-in-time response

Principles of the method

® A specific warped time scale 7 is introduced for each trajectory so Original trajectories
that they become “in phase” Ty

® Point-in-time PCE is carried out in the warped time scale using u»\\ Il Iﬂ\ l”\ In\ n\ /l
reduced-order modelling (principal component analysis) = VRVATATATAY

® Predictions are carried out in the warped time scale and D \v, \v’ ’ \ \v’ \vl
back-transformed in the real time line g )

()
Trajectories after time warping
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Example: Oregonator model

Le Maitre et al. (2010)

The Oregonator model represents a well-stirred, homogeneous chemi-
cal system governed by a three species coupled mechanism

Governing equations

i(t) = b y(t) — ko 2(0) y(t) + ks 2(t) — ka 2(1)°
Jt) = k1 y(t) — k2 o(t) y(t) + ks 2(1)

2(t) = ks x(t) — ks 2(t) Original trajectories
Input reaction parameters
Parameter Distribution Values _
ky Uniform U[1.8, 2.2] =
ko Uniform 1[0.095, 0.1005]
k3 Gaussian N(104,1.04) J
ka Uniform 1[0.0076, 0.0084] 95 6 7 18 15 2
ks Uniform U[23.4,28.6] e

Trajectories after time warping
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Oregonator model: trajectories

t =5.00
o

—Reference
—Time-warping PCE

15000 8000

10000 6000
e £4000
N N

0 0
10000 15000 6000 6000

A trajectory in the state-space Standard deviation (¢ ~ 107%)
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Dynamics in the frequency domain: frequency warping

Premise Vaghoubi, Marelli & Sudret, Prob. Eng. Mech. (2017)

® Frequency response functions (FRF) allow one to compute the
response to harmonic excitation

® |n case of uncertain system properties (masses, stiffness
coefficients) the resonance frequencies are shifted S |

Frequency (Hz)

102

[FRF|
EO
—
R
/
|
|
|
[FRF|
ED

f \|
\ | — True model | v —True model
rrogate model rrogate model

107
0.5 1 15 2 25 3 35 4 0.5 1 15 2 25 3 35 4
Frequency (Hz) Frequency (Hz)
(a) Typical FRF prediction (b) Worst FRF prediction
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Nonlinear transient models: PC-NARX

Goal Mai, Spiridonakos, Chatzi & Sudret, Int. J. Uncer. Quant. (2016)
Address uncertainty quantification problems for earthquake

engineering, which involves transient, strongly non-linear
mechanical models

PC-NARX

® Use of non linear autoregressive with exogenous input models
(NARX) to capture the dynamics:

y() = F (@@), -2t —ng),y(t —1), ... y(t —ny)) + & = F(2(2) +

® Expand the NARX coefficients of different random trajectories
onto a PCE basis

Y68 =D Y Viatal€)gi(=(t) +(t,€)

i=1 a€A;

lI“"IIH S Surrogate modelling & Machine learning

]

o 2

H |

E 1

=

ko
§ 1 Tt

Ll 1 ‘
-3 I
b 5 10 15 20 25 30
t(s)
Earthquake ground motion
0.04
0.03 bidd
| MV

ol I
Ll

-0.01 U

-0.0;

-0.08]

—PC-NARX|

0 5 10 15 20 25 30
t(s)

Structural response
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Wind turbine simulations: mNARX surrogate

Movie-to-time series surrogate

Blade flapwise bending moment

[MNm)]

1 /Bld
Bl

time [s]

1.2
=
=
£ 100
o

mNARX
0.50 .
(] 30 40 80 60 70 80 90 100 110 120

time s
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Wind turbine simulations: mNARX surrogate
Movie-to-time series surrogate

Blade flapwise bending moment

Z
=5
=
=18
=
time [s]
Blade pitch
18
& mNARX
=
—16
=
=
g
=2
30 40 50 60 70 80 90 100 110 120
time s
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Conclusions

= T
|||III||

Surrogate models are unavoidable for solving uncertainty quantification problems involving costly
computational models (e.g. finite element models)

Sparse polynomial chaos expansions are extremely efficient for distribution- and sensitivity analysis

Extensions using time warping, PC-NARX, etc. allow us to address a wide range of engineering
problems, including dynamics and Bayesian inverse problems

Techniques for constructing surrogates are versatile, general-purpose and field-independent

All the presented algorithms are available in the general-purpose uncertainty quantification software
UQLab
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UQLab
The Framework for Uncertainty Quantification

OVERVIEW FEATURES DOCUMENTATION DOWNLOAD/INSTALL ABOUT COMMUNITY

"Make uncertainty quantification available for anybody,
in any field of applied science and engineering”

www.uglab.com
Step B Step A Step C
Quantification of Model(s) of the system Uncertainty propagation « MATLAB®-based Uncenainty
sources of uncertainty Assessment criteria

Quantification framework

(" computational model | Moments « State-of-the art, highly optimized open
Probabilty of filure

nal Y | W kMoot
( J | « Fast learning curve for beginners

Random variables )
source algorithms

AL

* Modular structure, easy to extend
Step C « Exhaustive documentation

Sensitivity analysis
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UQLab: The Uncertainty Quantification Software Country # Users
China 1232
[ - H -
BSD 3-Clause license: United States 983
Free access to academic, industrial,
governmental and non-governmental users France 534
ver -gov!
UQLab ‘ _ Germany 417
® ~7,200+ registered users from 94 countries )
since 2015 (450 in 2024) Switzerland 453
United Kingdom 277
http://www.uqlab.com g
India 269
Brazil 247
® The cloud version of UQLab, accessible via an Iltaly 248
UQCIoud API (SaaS) Canada 133
® Available with python bindings for beta testing Belgium 127

uQ[pyltab
The Netherlands 119

https://ugpylab.ug-cloud.io/

As of May 21, 2024
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http://www.uqlab.com
https://uqpylab.uq-cloud.io/

Questions ?

The Uncertainty Quantification
Software

www.uqlab.com

@
UQLab

www.ugpylab.ug-cloud.io

uQlpyltab

The Uncertainty Quantification

Chair of Risk, Safety & Uncertalnty Quanllflcatlon .
Community

www.rsuq.ethz.ch
www.uqworld.org

Thank you very much for your attention !
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