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Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators,
which combine

• Governing equations

• Discretization techniques

• Solvers

div σ + f = 0

σ = D · ε

ε =
1
2

(
∇u +T∇u

)
Computational models are used:

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under
performance constraints

• To assess its robustness w.r.t uncertainty and its reliability

• Together with experimental data for calibration purposes
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Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes quantities of interest (QoI)
(a.k.a. model responses) as a function of input parameters

Computational

model M

Vector of input

parameters

x ∈ RM

Model response

y = M(x) ∈ RQ

• Geometry

• Material properties

• Loading

• Analytical formula

• Finite element model

• Comput. workflow

• Displacements

• Strains, stresses

• Temperature, etc.
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Real world is uncertain

• Differences between the designed and the real system:
– Dimensions (tolerances in manufacturing)

– Material properties (e.g. variability of the stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes, floods, landslides),
climate loads (hurricanes, snow storms, etc.), accidental human actions (explosions, fire, etc.)
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Global framework for uncertainty quantification

Step A

Model(s) of the system

Assessment criteria

Step B

Quantification of

sources of uncertainty

Step C

Uncertainty propagation

Random variables Computational model
Moments

Probability of failure

Response PDF

Step C’

Sensitivity analysis

Step C’

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)
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Uncertainty propagation using Monte Carlo simulation

Principle: Generate virtual prototypes of the system using random numbers

• A sample set X = {x1, . . . ,xn} is drawn according to the input distribution fX

• For each sample the quantity of interest (resp. performance criterion) is evaluated, say
Y = {M(x1), . . . ,M(xn)}

• The set of model outputs is used for moments-, distribution- or reliability analysis
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M with the following
features:

• It assumes some regularity of the model M and some general functional shape

• It is built from a limited set of runs of the original model M called the experimental design
X =

{
x(i), i = 1, . . . , n

}
Simulated data

• It is fast to evaluate!
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Surrogate models for uncertainty quantification

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l (xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
m∑

i=1

ai K(xi,x) + b a , b

(Deep) Neural networks M̃(x) = fn (· · · f2 (b2 + f1 (b1 + w1 · x) · w2)) w, b
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Ingredients for building a surrogate model

• Select an experimental design X that covers at best the domain of
input parameters:

– (Monte Carlo simulation)

– Latin hypercube sampling (LHS)

– Low-discrepancy sequences

• Run the computational model M onto X exactly as in Monte Carlo simulation
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Ingredients for building a surrogate model

• Smartly post-process the data {X , M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming

• Validate the surrogate model, e.g. estimate a global error ε = E
[(

M(X) − M̃(X)
)2
]
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Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages

• Non-intrusive methods: based on runs of the
computational model, exactly as in Monte
Carlo simulation

• Suited to high performance computing:
“embarrassingly parallel”

Challenges

• Need for rigorous validation

• Communication: advanced mathematical
background

Efficiency

• 6-8 orders of magnitude (!) less CPU for a single run

• 2-3 orders of magnitude less runs compared to a full Monte Carlo simulation
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Surrogate modelling vs. machine learning

Features Supervised learning Surrogate modelling

Computational model M
✗ ✔

Probabilistic model of the input X ∼ fX

✗ ✔

Training data: X = {(xi, yi), i = 1, . . . , n}
✔ ✔

Training data set Experimental design
(big data) (small data)

Prediction goal: for a new x /∈ X , y(x) ?
m∑

i=1

yi K(xi,x) + b
∑
α∈A

yα Ψα(x)

Validation (resp. cross-validation)
✔ ✔

Validation set Leave-one-out CV
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• We assume here for simplicity that the input parameters are independent with
Xi ∼ fXi

, i = 1, . . . , M

• PCE is also applicable in the general case using an isoprobabilistic transform X 7→ Ξ

The polynomial chaos expansion of the (random) model response reads:

Y =
∑

α∈NM

yα Ψα(X)

where:

• Ψα(X) are basis functions (multivariate orthonormal polynomials)

• yα are coefficients to be computed (coordinates)
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Sampling (MCS) vs. spectral expansion (PCE)

Whereas MCS explores the output space /distribution point-by-point, the polynomial chaos expansion
assumes a generic structure (polynomial function), which better exploits the available information (runs of
the original model)

Example: load bearing capacity Pcr of a shallow foundation

Defined as a function of the soil cohesion c and friction angle φ

Thousands (resp. millions) of
points are needed to grasp the
structure of the response (resp.
capture the rare events)
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Visualization of the PCE construction

= “Sum of coefficients × basic surfaces”
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Visualization of the PCE construction

=y0,0× +y0,1×

+y1,0× +y1,1× +y2,0×

+· · · +y0,2× +y3,3× +y4,2×
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Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

Y = M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP −1} (P unknown coefficients)

Ψ(x) = {Ψ0(x), . . . ,ΨP −1(x)}

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

Ŷ = arg min E
[(

YTΨ(X) − M(X)
)2
]
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Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i)) − M(x(i))

)2

Procedure

• Select a truncation scheme, e.g. AM,p =
{

α ∈ NM : |α|1 ≤ p
}

• Select an experimental design and evaluate the model response

M =
{

M(x(1)), . . . ,M(x(n))
}T

• Compute the experimental matrix

Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM
Simple is beautiful !
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Error estimators
• In least-squares analysis, the generalization error is defined as:

Egen = E
[(

M(X) − MPC(X)
)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i)) − MPC(x(i))

)2

Leave-one-out cross validation

• From statistical learning theory, model validation shall be carried out using independent data

ELOO = 1
n

n∑
i=1

(
M(x(i)) − MP C(x(i))

1 − hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT
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Curse of dimensionality

• The cardinality of the truncation scheme AM,p is P = (M + p)!
M ! p!

• Typical computational requirements: n = OSR · P where the oversampling rate is OSR = 2 − 3

However ... most coefficients are close to zero !

Example

• Elastic truss structure with M = 10 independent input
variables

• PCE of degree p = 5 (P = 3, 003 coefficients)
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Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by ℓ1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i)) − M(x(i))

)2
+ λ ∥ yα ∥1

• Different algorithms: LASSO, orthogonal matching pursuit, LARS, Bayesian compressive sensing,
subspace pursuit, etc.

• State-of-the-art-review and comparisons available in:
Lüthen, N., Marelli, S. & Sudret, B. Sparse polynomial chaos expansions: Literature survey and benchmark,

SIAM/ASA J. Unc. Quant., 2021, 9, 593-649 https://doi.org/10.1137/20M1315774

–, Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications, Int.

J. Uncertainty Quantification, 2022, 12, 49-74

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021036153
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Post-processing sparse PC expansions

Statistical moments
• Due to the orthogonality of the basis functions (E [Ψα(X)Ψβ(X)] = δαβ) and using E [Ψα ̸=0] = 0

the statistical moments read:

Mean: µ̂Y = y0

Variance: σ̂2
Y =

∑
α∈A\0

y2
α

Distribution of the QoI

• The PCE can be used as a response surface for sampling:

yj =
∑
α∈A

yα Ψα(xj) j = 1, . . . , nbig

• The PDF of the response is estimated by histograms or kernel
smoothing

0 1 2 3 4 5 6

x

0
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F

Data
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Sobol’ indices

Global sensitivity analysis aims at quantifying which input parameter(s) (or combinations thereof) influence
the most the response variability

Variance decomposition

Var [Y ] =
M∑

i=1

Di +
∑

1≤i<j≤M

Dij + · · · +D12···M

Sobol’ indices

First order: Si = Di

Var [Y ]
Second order: Sij = Dij

Var [Y ]

Total: ST
i =

∑
u⊃i

Su
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Sobol decomposition of a PC expansion

Sudret,Global sensitivity analysis using polynomial chaos expansion, RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansion MPC(X) def=
∑

α∈A yα Ψα(X)

Interaction sets

For a given u def= {i1, . . . , is} : Au = {α ∈ A : k ∈ u ⇔ αk ̸= 0}

MPC(x) = M0 +
∑

u⊂{1, ... ,M}

Mu(xu) where Mu(xu) def=
∑

α∈Au

yα Ψα(x)

PC-based Sobol’ indices
Su = Du/D =

∑
α∈Au

y2
α/

∑
α∈A\0

y2
α

The Sobol’ indices are obtained analytically, at any order from the coefficients of the PC
expansion
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Example: strip foundation

Load bearing capacity

Pcr = B σcr = B

[
c Nc + γt Nq +

1
2

γ BNγ

]
with the load bearing factors:

Nq = eπ tan φ 1 + sin φ

1 − sin φ

Nc = (Nq − 1)/ tan φ

Nγ = 2 (Nq − 1) tan φ

V

B

t
c, φ

Variable Description Distribution Moments

γ Self-weight Gaussian µγ = 21 kN/m3, COVγ = 5%
c Cohesion Lognormal µc = 5 kP a, COVc = 30%
φ Effective friction angle Lognormal µφ = 30◦, COVφ = 8%
B Width Deterministic 3 m

t Depth Gaussian µt = 0.5 m, COVt = 20%
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PCE vs. Monte Carlo simulation: moments

Monte-Carlo simulation

NMCS 100 1, 000 10, 000 100, 000 1, 000, 000
Mean 3216 3082 3121 3125 3124
95% CI [2942 − 3378] [3057 − 3201] [3105 − 3150] [3115 − 3133] [3122 − 3127]
Std. dev 1109 1080 1188 1173 1174
95% CI [966 − 1565] [1099 − 1313] [1145 − 1207] [1163 − 1185] [1171 − 1178]

Polynomial chaos expansion

Experimental design of size NED = 100
Mean 3123
95% CI [3121 − 3125]
Std. dev 1169
95% CI [1162 − 1171]

Surrogate modelling & Machine learning CEACM S4ML - June 19, 2024 B. Sudret 26 / 37



PCE vs. Monte Carlo simulation: Sobol’ indices

Monte-Carlo simulation
NMCS 100 1,000 10,000 100,000 1,000,000

γ [0.007 − 0.020] [0.013 − 0.017] [0.014 − 0.015] [0.015 − 0.015] [0.015 − 0.015]
c [0.006 − 0.018] [0.013 − 0.019] [0.013 − 0.015] [0.014 − 0.015] [0.015 − 0.015]
φ [0.917 − 1.201] [0.872 − 1.014] [0.965 − 1.003] [0.958 − 0.969] [0.963 − 0.966]
t [0.004 − 0.012] [0.009 − 0.013] [0.011 − 0.012] [0.011 − 0.012] [0.012 − 0.012]

NTOT 600 6,000 60,000 600,000 6,000,000

Polynomial chaos expansion

Experimental design of size NED = 100
γ [0.015 − 0.016]
c [0.014 − 0.014]
φ [0.962 − 0.964]
t [0.011 − 0.012]

NTOT 100
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Models with time-dependent outputs

Problem statement

• Consider a computational model of a dynamical system:

DΞ × [0, T ] : (ξ, t) 7→ M(ξ, t)

where Ξ is a random vector of uncertain parameters with given
PDF fΞ

• Uncertainties may be in:
- The excitation, denoted by x(ξx, t)

- And/or in the system’s characteristics (ξs):

i.e.:

M(ξ, t) ≡ M(x(ξx, t), ξs)

Point-in-time PCE does not work!

Time-dependent output PDF
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Stochastic time warping

Problem Mai & Sudret, SIAM J. Unc. Quant. (2017)

The various trajectories are “similar” yet not in phase, thus the
complex point-in-time response

Principles of the method

• A specific warped time scale τ is introduced for each trajectory so
that they become “in phase”

• Point-in-time PCE is carried out in the warped time scale using
reduced-order modelling (principal component analysis)

• Predictions are carried out in the warped time scale and
back-transformed in the real time line

Kraichnan Orszag model

Original trajectories

Trajectories after time warping
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Example: Oregonator model

The Oregonator model represents a well-stirred, homogeneous chemi-
cal system governed by a three species coupled mechanism

Governing equations

ẋ(t) = k1 y(t) − k2 x(t) y(t) + k3 x(t) − k4 x(t)2

ẏ(t) = −k1 y(t) − k2 x(t) y(t) + k5 z(t)
ż(t) = k3 x(t) − k5 z(t)

Input reaction parameters

Parameter Distribution Values

k1 Uniform U[1.8, 2.2]
k2 Uniform U[0.095, 0.1005]
k3 Gaussian N (104, 1.04)
k4 Uniform U[0.0076, 0.0084]
k5 Uniform U[23.4, 28.6]

Le Maître et al. (2010)

Original trajectories

Trajectories after time warping
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Oregonator model: trajectories
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Dynamics in the frequency domain: frequency warping

Premise Vaghoubi, Marelli & Sudret, Prob. Eng. Mech. (2017)

• Frequency response functions (FRF) allow one to compute the
response to harmonic excitation

• In case of uncertain system properties (masses, stiffness
coefficients) the resonance frequencies are shifted
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Nonlinear transient models: PC-NARX

Goal Mai, Spiridonakos, Chatzi & Sudret, Int. J. Uncer. Quant. (2016)

Address uncertainty quantification problems for earthquake
engineering, which involves transient, strongly non-linear
mechanical models

PC-NARX
• Use of non linear autoregressive with exogenous input models

(NARX) to capture the dynamics:

y(t) = F (x(t), . . . , x(t − nx), y(t − 1), . . . , y(t − ny)) + ϵt ≡ F (z(t)) + ϵt

• Expand the NARX coefficients of different random trajectories
onto a PCE basis

y(t, ξ) =
ng∑
i=1

∑
α∈Ai

ϑi,α ψα(ξ) gi(z(t)) + ϵ(t, ξ)
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Wind turbine simulations: mNARX surrogate
Movie-to-time series surrogate

Blade flapwise bending moment

Generated power
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Wind turbine simulations: mNARX surrogate
Movie-to-time series surrogate

Blade flapwise bending moment

Blade pitch

Surrogate modelling & Machine learning CEACM S4ML - June 19, 2024 B. Sudret 35 / 37



Conclusions

• Surrogate models are unavoidable for solving uncertainty quantification problems involving costly
computational models (e.g. finite element models)

• Sparse polynomial chaos expansions are extremely efficient for distribution- and sensitivity analysis

• Extensions using time warping, PC-NARX, etc. allow us to address a wide range of engineering
problems, including dynamics and Bayesian inverse problems

• Techniques for constructing surrogates are versatile, general-purpose and field-independent

• All the presented algorithms are available in the general-purpose uncertainty quantification software
UQLab
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www.uqlab.com
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UQLab: The Uncertainty Quantification Software

• BSD 3-Clause license:

Free access to academic, industrial,
governmental and non-governmental users

• ∼7,200+ registered users from 94 countries
since 2015 (450 in 2024)

http://www.uqlab.com

• The cloud version of UQLab, accessible via an
API (SaaS)

• Available with python bindings for beta testing

https://uqpylab.uq-cloud.io/

Country # Users

China 1232

United States 983

France 534

Germany 417

Switzerland 453

United Kingdom 277

India 269

Brazil 247

Italy 248

Canada 133

Belgium 127

The Netherlands 119

As of May 21, 2024
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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