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Alice laughed: “There’s no use trying,” she said;
“one can’t believe impossible things.” “I daresay
you haven’t had much practice,” said the Queen.
“When I was younger, I always did it for half an
hour a day. Why, sometimes I’ve believed as
many as six impossible things before breakfast.”

Lewis Carroll, Through the Looking Glass, 1871
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Sommario

Questa tesi tratta due argomenti distinti: il problema isoperimetrico iperbolico e il sistema
semigeostrofico nel contesto sferico.

Nella prima parte, affrontiamo la Congettura di Gromov-Ros, che afferma che le sfere
geodetiche sono le regioni che minimizzano il perimetro per un determinato volume negli
spazi simmetrici di rango uno di tipo non compatto, quali gli spazi iperbolici reali, comp-
lessi, quaternionici e il piano Cayley ottionico (16-dimensionale). Nel Capitolo 1 dimostriamo
innanzitutto che le sfere di qualsiasi raggio sono quantitativamente stabili rispetto a qualsiasi
perturbazione C1 abbastanza piccola. Di conseguenza, tramite un argomento di riscalamento
e risultati di stabilità in Rn, dimostriamo che le sfere sono ottimali nel regime di piccoli vo-
lumi. Nel Capitolo 2 dimostriamo la congettura nella classe di insiemi che condividono una
simmetria radiale adeguata indotta dall’azione naturale correlata alla fibrazione di Hopf nello
spazio ambiente. Questa ipotesi ci consente di ridurre il problema a un problema isoperi-
metrico pesato nello spazio iperbolico reale. La parte principale di questo capitolo consiste
nel dimostrare la versione iperbolica della congettura di Brakke (recentemente dimostrata
da Chambers nel contesto Euclideo): le sfere centrate sono isoperimetriche in RHn con una
densità log-convessa radiale sui funzionali di perimetro e volume.

Nella seconda parte, affrontiamo il sistema semigeostrofico su una sfera rotante. Nel
Capitolo 3 dimostriamo l’esistenza locale nel tempo e l’unicità delle soluzioni lisce su qual-
siasi dominio semplicemente connesso e conformemente piatto, con un termine di Coriolis
non nullo abbastanza regolare. Nel Capitolo 4 ci occupiamo della singolarità che si forma
intorno all’equatore a causa della degenerazione del termine di Coriolis. Dimostriamo la sta-
bilità globale nel tempo dell’equazione linearizzata attorno a una nuova famiglia di soluzioni
statiche assialmente simmetriche. L’argomento si basa nell’estendere il dominio alla sfera
quadridimensionale S4, assorbendo la singolarità all’interno del peso derivante dalla metrica
indotta, e quindi effettuare un attento argomento di sezionamento.
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Abstract

This thesis discusses two distinct topics: the hyperbolic isoperimetric problem and the well
posedness of the semigeostrophic system in the spherical setting.

The first part adresses the Gromov-Ros Conjecture, which claims that geodesic balls are
the regions that minimize the perimeter for any given volume in rank one symmetric spaces
of non-compact type. These are the real, complex, quaternionic hyperbolic spaces, and 16-
dimensional octonionic (Cayley) plane. In Chapter 1 we first prove that spheres of any radius
are uniformly quantitatively stable with respect to any small enough C1-perturbation. As a
consequence, via a rescaling argument and deep stability results in Rn, we show that spheres
are optimal in the small volume regime. In Chapter 2 we prove the conjecture in the class
of sets enjoying a suitable radial symmetry induced by the natural action related to the
Hopf-fibration on the ambient space. This hypothesis allows us to reduce the problem to a
weighted isoperimetric problem in the real hyperbolic space. The main part of this chapter is
the hyperbolic version of Brakke’s conjecture (recently proved by Chambers in the Euclidean
setting): centered balls are isoperimetric in RHn endowed with a radial log-convex density
on the perimeter and volume functionals.

In the second part, we approach the well posedness of the semigeostrophic system over
a rotating sphere. In Chapter 3 we prove local-in-time existence and uniqueness of smooth
solutions over any simply connected and conformally flat domain, with regular enough non-
vanishing Coriolis term. In Chapter 4 we deal with the singularity forming around the
equator due to the degeneracy of the Coriolis term. We prove global-in-time stability of
the linearized equation around a new axially symmetric family of static solutions. The
argument relies on lifting the domain to the higher dimensional four sphere S4, absorbing
the singularity inside the weight coming from the lifted metric, and then perform a careful
slicing argument.
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Organization of the thesis

The content presented has been separated in two distinctive parts so to reflect the main sub-
jects of interest anticipated in the title: the isoperimetric problem and the semigeostrophic
system. Each part contains a specific introduction that highlights the historical origins, its
developments, relevance in the contemporary scientific panorama, and the state of the art at
the present day. The main part of the thesis consists in two subsequent chapters following
each introductory parts, in which we present a total of four original articles written during
the author’s doctorate.

The topics addressed in the two parts are quite far from each other: the isoperimetric
problem comes naturally as one of the earliest instance of geometric optimization, and the
semigeostrophic system is a set of equations arising in fluid mechanics in particular mete-
orological regimes. For this reason, the choice of providing two separate introductions was
made with the intention of increasing the clarity of exposition, and accentuate the different
goals and methods specific to each partThat said, as it will be apparent in the respective
introductions, both topics are incredibly rich and can be seen through a variety of different
lenses, involving Geometric Analysis, Calculus of Variations, Riemannian Geometry, Spec-
tral Theory, Functional Analysis, Optimal Transport, and Geometric Group Theory, just to
name a few. The connections and incursions with unexpected topics therefore provides a
great freedom in conceiving the problems arising in both thematic parts. The presentation
of the content has been carried out with the hope of bringing out the common geometric
approach employed in both domains.
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Part I
2

The isoperimetric problem
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Introduction

Devenere locos, ubi nunc ingentia cernis moenia
surgentemque novae Karthaginis arcem,
mercatique solum, facti de nomine Byrsam,
taurino quantum possent circumdare tergo.

Virgilius, Aeneis, Liber 1, versus 365-376

Historical Roots

The interested reader is invited to consult the very enjoyable and detailed historical introduc-
tion by Bl̊asjö [18], together with Ros [100], and the introduction of the book by Capogna,
Danielli, Paul, and Tyson [27].

The isoperimetric problem has its mythological roots in the tragic legend of queen Dido,
and more specifically in her presumed foundation of the city of Carthage in 814 BC. The
more ancient reference in this regard is attributed to Timaeus in 300 BC, and the myth is
further revised in Virgil’s Aeneid, written around 20 BC. Dido, first-born of Belus, king of the
Phoenician city-state of Tyre, flees her homeland after the murder of her husband Sychaeus
perpetrated secretly by her brother Pygmalion. After long wandering, passing from Cyprus
and Malta, queen Dido and her court dock their ships at the Libyan coast. Jarba, the local
king, allows the queen to settle his people on a land that could be enclosed by an ox-hide.
The mockery of this proposal does not frighten the intelligent queen, who asks her servants
to cut the skin in thin stripes, knot them together in a rope long enough to enclose an entire
hill on the shore. In this semicircular land Dido founded the city of Carthage (originally
Brisia, ox-hide in greek). Unfortunately, according to the ancient version of the myth, there
is no happy ending for the poor queen, who kills herself with a dagger invoking the name of
her late husband, Sicheus, after Jarba forced her into marriage.

In mathematical terms, Jarba’s offer, astutely addressed by Dido, reads as follows:

Problem. Given L > 0, find Ω ⊂ R2 with perimeter L and maximal area A.

With isoperimetric (is-perimetros, having the same perimeter), we denote all mathemat-
ical questions of this type. Notice that this problem has a natural and equivalent dual
formulation: given A > 0 find Ω ⊂ R2 with area A and minimal perimeter L. For Dido the
morphological constraint on the coast forced the walls of her city to draw a semicircle on the
land, and the accuracy of this solution can be empirically confirmed looking at any historical
map of European cities. Intuition tells us that the optimal set of the unconstrained problem
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must be the circle of diameter d = L/π (or d = 2
√
A/π in its dual reformulation), and this

is in fact the case. Indeed, the following elegant expression, called isoperimetric inequality
in the plane, summarized remarkably this fact.

Theorem. Let Ω ⊂ R2 be of perimeter L and area A. Then L2 − 4πA ≥ 0.

Notice that equality is attained when Ω is a circle, and this is indeed the only possible
case, implying that circles are uniquely optimal. This fact was known to the Greek math-
ematicians, and the first demonstration attributed to Zenodorus in the case of polygonal
shapes was transmitted to us by Pappus and Theon of Alexandria.

Over the centuries, an impressive variety of alternative proofs have been provided, spacing
from purely geometric arguments, integral rearrangements, convex geometry, Fourier series,
probability, calculus of variations, and optimal transport. Without claiming to be exhaustive
(or excessively rigorous), we sketch here three radically different and elegant solutions to the
isoperimetric problem in the plane, with the hope of convincing the reader of how fruitful
this elementary question has been in the history of mathematics.

Probabilistic proof by Santaló [103]. Let Ω be smooth, with perimeter L > 0, and area A.
By reflecting every ’valley’ of its boundary to the outside, we can assume Ω convex. For
r = L/2π define

X : R2 → [0,+∞], X(x, y) = #{∂Br(x, y) ∩ ∂Ω},

the map that counts how many intersection points does the circle centered at (x, y) and
radius r have with the boundary of Ω. We want to give two estimates of the integral

E(X) =

ˆ
R2

X dxdy,

that is the (unaveraged) expected value of intersection points when casting random circles
on Ω. Letting Ωr be the r-thickening of Ω, and κ the curvature of ∂Ω, we have that

E(X) =

ˆ
Ωr

X dxdy ≥
ˆ
Ωr

2 dx dy = 2
(
A+

ˆ r

0

ˆ
∂Ω

(1 + κτ) dℓ dτ
)
= 2
(
A+ rL+ r2π

)
,

where we took advantage of the Gauss-Bonnet Theorem to compute the area of Ωr. Notice
now that a circle or radius r crosses any given segment dℓ if and only if its center lies in
the union of all circles or radius r centered in dℓ. Moreover, the area of this region is at the
first order of size 4rdℓ (being essentially the symmetric difference of two intersected disks of
radius r). Hence, conceiving dℓ as an infinitesimal portion of ∂Ω we can compute

E(X) =

ˆ
∂Ω

4r dℓ = 4Lr.

Combining the two estimates, we get A + r2π ≤ Lr. Recalling that r = L/2π, so that the
perimeter of ∂Br is the same as Ω, we obtain the isoperimetric inequality in the plane as
wished.
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Optimal Transport proof by Gromov. Let Ω be smooth, with perimeter L > 0, and area A.
Since the isoperimetric inequality is scaling invariant, let us suppose that A = 1, and let
r = 1/

√
π so that A(Br) = 1. Let µ = χΩ dx and ν = χBrdx be the characteristic probability

measures of Ω and Br, respectively. By Brenier Theorem 1, see [25], there exists an optimal
transport map T , which is characterized by being the gradient of a convex function φ pushing
µ into ν: T#µ = ν. Notice that the latter property implies det(D2φ) = 1. We now perform
a chain of sharp inequalities:

rL =

ˆ
∂Ω

r dℓ ≥
ˆ
∂Ω

|T | dℓ ≥
ˆ
∂Ω

T · n dℓ =
ˆ
Ω

div(T ) dx =

ˆ
Ω

∆φdx

≥ 2

ˆ
Ω

det(D2φ)1/2 dx = 2,

where we used in order: T maps Ω in Br, Cauchy-Schwarz, the Divergence Theorem,
div(T ) = div(∇φ) = ∆φ, and lastly the arithmetic-geometric mean inequality applied to
the positive eigenvalues of D2φ. It follows that L2 ≥ 4/r2 = 4π = 4πA as wished.

Symmetrization proof by Steiner [113]. Let Ω be smooth, with perimeter P (Ω), and area
A(Ω). Let pr : R2 → R be the projection on the first coordinate, that is pr(x, y) = x.
As illustrated in Figure 1, we construct a new axially symmetric set Ω∗ by replacing at
every x ∈ R the intersection pr−1{x} ∩ Ω with the centered segment ℓx with same length.
By Fubini, this procedure is area preserving, meaning that A(Ω) = A(Ω∗). We claim that

Ω

Ω
∗

x

ℓx

pr
−1{x} ∩ Ω

Figure 1: Steiner symmetrization.

P (Ω∗) ≤ P (Ω). In fact, letting β and β∗ be the angles that the normal of ∂Ω and ∂Ω∗ make

1We decided to take T optimal for simplicity of exposition. It is worth saying that the original proof
employs an earlier class of transport maps developed by Knothe in the context of monotone rearrangements,
see for instance [49, Section 1.5]
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with ∂
∂y
, by the coarea formula and Jensen inequality we have that

P (Ω) =

ˆ
R

ˆ
pr−1{x}∩∂Ω

√
1 + tan(β)2 dH 0 dx

≥
ˆ
R

H 0(pr−1{x} ∩ ∂Ω)
√

1 +
( 

pr−1{x}∩∂Ω
tan(β) dH 0

)2
dx

≥
ˆ
R
2
√

1 + tan(β∗)2 dx

= P (Ω∗),

a wished. Clearly, this procedure can be performed not only with respect to the abscissa,
but to any line L ⊂ R2. We will denote the associated axially symmetric set with SL(Ω).
Iterating this operation on Ω with respect to suitable linearly independent lines L1, L2, . . .
intuition 2 tells us that the resulting sequence of sets SL1(Ω), SL2(SL1(Ω)), . . . should converge
to some shape that is invariant (up to rigid motion) under any symmetrization with respect
to any line, hence a circle. Since we know that SL(·) decreases the perimeter and preserves
the area, if perimeter and area pass to the limit continuously, we deduce that the circle is
in fact an isoperimetric region of the plane for any given area. We sketch this compactness
argument: suppose without loss of generality that Ω convex, and notice that SL(·) preserves
convexity. Define the space

S(Ω) := {SL1(SL2(. . . SLk
(Ω))) : L1, . . . , Lk ⊂ R2 linearly independent},

endowed with the Gromov-Hausdorff distance. Then, arguing by monotonicity of the cir-
cumradius under subsequent symmetrizations (see Chavel [32, Chapter VI.4]), it is possible
to show that there always exists a sequence (Ωj) ⊂ S(Ω) converging to a disk Br with same
area A(Br) = A(Ω). Consider now a minimizing sequence of compact and smooth sets (Kn)
such that

lim
n→+∞

P (Kn) = inf
{
P (K) : K compact, convex, smooth, A(K) = A(Ω)

}
.

By taking subsequent symmetrizations of Kn in S(Kn), one can modify the sequence so that

Kn ⊂ Br+1/n,

and hence, by the Blaschke selection principle, up to extracting a subsequence Kn → K∞
to some convex set K∞ in the Gromov-Hausdoff metric. One concludes the argument by
continuity of area and perimeter in the class of compact sets.

2The original proof by Steiner was completely formalized by Schwarz [108], and Carathéodory-Study [28],
closing a 70-year-old diatribe on the lack of its rigorous foundation, due to Steiner’s complete rejection of
adopting analytical arguments.
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The Modern approach

After the quick historical introduction in the previous section, let us outline how the isoperi-
metric problem is conceived from a more general point of view. Given some ambient space
M and a class of subsets X for which it makes sense to speak about perimeter P (·) and
volume V (·) (for instance M = Rn and X the space of smooth sets or more generally
(M, g) a Riemannian manifold and X the collection of Caccioppoli sets) approaching the
isoperimetric problem signifies essentially one of the following four things:

i. Characterize the minimal perimeter for a given volume v, that is investigate the isoperi-
metric profile

I(v) := inf
{
P (E) : E ∈ X , V (E) = v

}
.

ii. Determine whether the above infimum is attained by some optimal set, that is prove the
existence of isoperimetric regions.

iii. Establish qualitative properties of the isoperimetric regions, such as uniqueness, and
ultimately an explicit description.

iv. Obtain quantitative properties in the form of stability, meaning: if a set is very close (in
some suitable topology) to an isoperimetric region, is it also going to be almost optimal?

The most popular instance regarding the first point is controlling the isoperimetric profile
I from below by some geometrically interesting explicit function. This type of equations
are called today isoperimetric inequalities à la Levy-Gromov, in honor of the seminal work
of Levy [71] and Gromov [57] in the class of spaces with positive Ricci curvature, and are
extensively studied at present. Regarding the second point, existence is usually proven by
mean of compactness arguments in the frame of Calculus of Variations as first proven (and
never published) in Rn by Weierstrass during a lecture (collected after in [120]). If M is a
compact manifold, existence is always ensured. The non-compact case is very subtle, and
existence may fail (see the recent work by Glaudo and Antonelli [7]). If the isometry group
acts cocompactly3 on M however, existence is ensured by an ingenious ’volume trapping’
argument by Morgan [83], later generalized by Galli and Ritoré [54].

The explicit description of the isoperimetric sets remains however an extremely hard
question since it requires most of the times ad-hoc methods tailored to solve very specific
’well behaved’ situations. The symmetrization method by Steiner introduced in the previous
section extends to the Euclidean space Rn, the sphere Sn−1, and the hyperbolic plane RHn

proving that geodesic spheres are the unique isoperimetric regions. Apart from the model
spaces, we report here a list of spaces in which the isoperimetric sets are known:

3Meaning that every point on M can be displaced in a fixed compact subset of M via an isometry.
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Authors M
Steiner 1842, Schwarz 1890, Schmidt 1930s,
De Giorgi 1958 [37, 105, 106, 107, 108, 113]

Rn, Sn−1, RHn

Hsiang-Hsiang 1989 [65] R× RH2

Ritoré, Ros 1992-1996 [97, 98] RP 3, T 2 × R
Howards, Hutchings, Morgan 1999 [63] S1 × R, flat T2 and Klein bottle
Pedrosa, Ritoré 1999 [94] S1 × Rn, S1 × RHn, S1 × Sn, 2 ≤ n ≤ 7
Benjamini, Cao, Howards, Hutchings, Mor-
gan, Pansu, Topping, Ritoré 1990s [14, 85,
92, 96, 118]

Certain surfaces of revolution

Pedrosa 2004 [93] R× S2

Viana 2018 [119] Some lens spaces

Many elementary spaces are missing: what about S2 × R2, the complex hyperbolic and
projective planes CH2 and CP 2, Lie groups like the smooth Heisenberg group N 3? Even
allowing some (pretty sure) forgetfulness, this list shows that we are awfully far from classi-
fying isoperimetric sets in general4.

Establishing stability results of analytic-geometric inequalities is today an active area of
research. In our context, the question of stability reads generally as follows: given a region E
and an isoperimetric region B of the same volume, is it possible to estimate the isoperimetric
deficit δ(E) = P (E)− P (B) by some appropriate distance between E and B? Fuglede [52]
did a first result in this direction showing that in Rn there exists c(n) > 0, such that for
every convex E ⊂ Rn with barycenter o the following holds:

P (E)− P (B(o))

P (B(o))
≥ c(n)

(V (E△B(o))

V (B(o))

)2
,

where B(o) is the ball centered in o with same volume as E, and △ denotes the symmetric
difference. Thirteen years later, Fusco, Maggi, and Pratelli [53] showed the sharp stability
result for general Caccioppoli sets in Rn with the Fraenkel asymmetry distance in the right
hand side:

P (E)− P (B)

P (B)
≥ c(n)

(
inf
x∈Rn

V (E△B(x))

V (B(x))

)2
.

The proof, that relies on a delicate symmetrization technique, was further simplified through
a penalization argument by Cicalese and Leonardi in [34], and extended to the real hyperbolic
space by Bögelein, Duzaar and Scheven in [19].

The results presented in the following two chapters concern stability and optimality of
geodesic spheres in a class of manifolds called rank one symmetric spaces of non-compact
type. Despite the cumbersome name, they constitute a natural generalization of the more
familiar real hyperbolic space RHn, which is one of its simplest members. In the next
section we introduce those spaces, discussing their main properties and finally formulating
the conjecture of interest.

4It is not surprising that allowing boundaries on M has wild consequences: a complete classification of
the isoperimetric regions in the cube [0, 1]× [0, 1]× [0, 1] is still missing!
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Symmetric Spaces and Gromov-Ros Conjecture

As references on symmetric spaces we cite the books of Eberlein [40] and Helgason [61].
Symmetric spaces are a rich class of manifolds characterized by the following property:

every geodesic symmetry extends to a global isometry, or said otherwise, they are invariant
with respect to every geodesic reflection (for instance consider Rn or Sn−1). Locally, this
property is equivalent to the parallel nature of the Riemann tensor ∇R = 0. Their complete
classification is due to the monumental work of Élie Cartan in the ’30s and Marcel Berger in
the late ’50s. Surprisingly, symmetric spaces can be realized in an elegant algebraic fashion
as the quotient of a symmetric pair (G,K), where G is a semisimple Lie group acting
transitively on M , and K represents the isotropy group, that is defined as all elements in
G fixing an arbitrarily chosen point in M . The classification follows a duality between two
categories: compact and non-compact symmetric spaces, and is delineated by a parameter
known as the rank, representing the maximum dimension of a subspace within the tangent
space at any given point, where the sectional curvature is zero.

We are interested in the class of rank one symmetric spaces of non-compact type, which
are the real RHn, complex CHm, quaternionic HHm hyperbolic spaces, and the Cayley plane
OH2. Algebraically, they can be realized as the following quotients:

M = G/K G K
RHm SO(m, 1) SO(m)
CHm SU(m, 1) SU(m)
HHm Sp(m, 1) Sp(m) Sp(1)
OH2 F−20

4 Spin(9)

where F−20
4 is the real form of rank one of the exceptional Lie group F4. There is however a

more geometric construction, that extends the usual projective model of the real hyperbolic
space (Mostow [87, Chapter 19], Bridson and Haefliger [26, p. 300]): for K ∈ {R,C,H} a
real division algebra of dimension d ∈ {1, 2, 4}, we endow the space Km+1 with the pseudo-
Hermitian product

⟨z, w⟩ := −z0w̄0 +
m∑
k=1

zkw̄k.

The space KHm is obtained by projectivizing the subspace

{z ∈ Km+1 : ⟨z, z⟩ < 1}

via π : (z0, . . . , zm) 7→ (z1z
−1
0 , . . . , zmz

−1
0 ), endowing the quotient with the Bergmann metric

d defined as

cosh2
(
d(πz, πw)

)
:=

⟨z, w⟩⟨w, z⟩
⟨z, z⟩⟨w,w⟩

.

The construction of the Cayley plane is more subtle due to the lack of associativity of the
octonions. We invite the interested reader to consult [87, p. 139].

In general, rank one symmetric spaces enjoy some additionally properties: we know that
up to renormalization the sectional curvature lies in [−4,−1], and they are simply connected
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(hence diffeomorphic to Rn). Moreover, they are two-point homogeneous and harmonic (they
allow a non-trivial radial solution of the Laplacian in small punctured balls [70]). For this
reason they are often considered as the natural generalization of space forms (Rn, Sn−1,
RHn) in the context of non-constant curvature manifolds.

Drawing inspiration from the classical symmetrization procedures by Steiner and Schwarz
that we have seen at the beginning of this introduction, a rich isometry group of the am-
bient space should imply several symmetric invariances of the optimal sets. Following this
principle, balls are good candidates, since the isotropy group of their center acts transitively
on their boundary. From this philosophical reasoning, the conjecture of interest is

Conjecture. (Gromov-Ros, [58]) Geodesic spheres are isoperimetric regions in all rank one
symmetric spaces on non-compact type.

Before giving some additional background in the next section, it is worth spending some
words on the differential anatomy of KHm and its spheres. Let us describe the complex
hyperbolic space M = CHm, which is in particular a Kähler manifold with constant holo-
morphic negative curvature. Let J be the complex endomorphism, and v ∈ ToM any vector
inM . Then, the sectional curvature ofM is distributed according to the underlying complex
structure, meaning sec(v, Jv) = −4 and sec(v, w) = −1 for every w orthogonal to v and Jv,
see Figure 2.

v

Jv

w

sec = −4

sec = −1

TMo

o

vJv
wo

x

S2m−1 ∼= S(o, r) ⊂ M

Figure 2: The anatomy of CHm.

Since ∇R = 0, the arrangement of curvatures is preserved when transporting v, Jv, and
w along the geodesic determined by v by any distance r > 0, so that on the surface of the
sphere centered at o and of radius r there are exactly two principal curvatures: coth(r) of
multiplicity 1 along Jv, and 2 coth(2r) with multiplicity 2m−2 along all possible w’s. Hence,
we infer that spheres in CHm are isometric to Berger’s spheres, which are round Euclidean
spheres of radius sinh(r), with the metric rescaled by a cosh(r) factor along the characteristic
direction given by Jν, where ν is the normal to the sphere. More generally, a sphere of radius
r in KHm is isometric to a Euclidean sphere of radius sinh(r) with the metric rescaled by a
cosh(r) factor along the horizontal distribution induced by the Hopf-fibration:

Sd−1 → Sn−1(r) → KPm−1.
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State of the Art

Ensured by the cocompact action of the isometry group on KHm (recall that rank one
symmetric spaces are two-point homogeneous), existence of isoperimetric sets for all volumes
is a classic fact, as we have seen in the previous section. It is also known that spheres are
stable under infinitesimal volume preserving perturbations, that is

d2

dε2

∣∣∣
ε=0

P (B + εu) = δ2P (B)[u] ≥ 0, (1)

for every smooth normal volume preserving perturbation u. This was shown for CHm by
Barbosa, do Carmo and Eschenberg in their celebrated article [10] (see [99] for the general
case). Their proof is a natural consequence of the following variational principle: let Σ be
an oriented, closed and immersed submanifold of KHm, and let RicΣ and IIΣ be the induced
Ricci curvature tensor and second fundamental form of Σ. If

RicΣ+∥IIΣ∥2 = constant = λ, (2)

then Σ is stable if and only if λ = λ1, the first eigenvalue of the induced Laplacian ∆Σ.
Thanks to a peculiar characterization of the Laplace spectrum over fibre bundles with totally
geodesic immersed fibres (about this the work by Bergery and Bourguignon [15]), and the
Riemannian structure of the spheres in KHm described by the Hopf-fibration

Sd−1 → Sn−1(r) → KPm−1,

the first eigenvalue of the Laplacian is explicitly computable, reducing the proof of stability
to a direct check of Equation (2).

In [29], Carron extended this stability result to all geometrically stable hypersurfaces
(surfaces that realize the strict inequality in (1) whenever u does not represent an isometry)
within the general framework of Riemannian manifolds. The proof, which is based on an im-
plicit argument, applies in particular to space forms, and complex hyperbolic and projective
spaces.

It is known that for all Riemannian manifolds with cocompact isometry group, all isoperi-
metric regions with sufficiently small volume are invariant under the action of the stabilizer
of their center of mass. This result was mentioned first by Tomter in the context of the
Heisenberg group in [117], referring to an unpublished article by Kleiner. Later, we can find
the complete proof as a corollary of a more general result in the article by Nardulli intro-
ducing the concept of pseudo-bubbles, see [88]. Since spheres are the only surfaces preserved
by the action of the isotropy group in KHm, we have as a direct implication that they are
the unique isoperimetric regions in the small volume regime. This proof relies as well on an
implicit argument.

It is worth saying that since optimality at the first order implies constant mean curvature
at regular points, this problem is close to the celebrated Alexandrov Theorem [3], which in
CHm is only conjectured (about this [11, 16, 21, 82]).



14

Contributions

For clarity we restrict to the space CHm the presentation of the results contained in the
following two chapters. Similar results hold for all rank one symmetric space of non-compact
type, as we will see in detail later on.

In Chapter 1 we prove the Gromov-Ros conjecture in the small volume regime via C1-
quantitative stability of spheres [111]. In contrast with [29, 89], the proof does not rely on
an implicit argument.

Theorem (see Theorem 1.1). For every R0 > 0 there exists ε0 > 0, such that ∀R ∈ (0, R0] if
in normal coordinates ∂E = {R(1+ρ(ω))ω : ω ∈ S2m−1} is a volume preserving perturbation
of B(R) and ∥ρ∥C1(S2m−1) ≤ ε0, then

P (E)− P (B(R)) ≥ C∥ρ∥W 1,2(S2m−1), C = C(R,R0) > 0.

The key is using the characterization of the Laplace spectrum on fiber bundles with im-
mersed geodesic fibers (Bergery and Bourguignon [15]), and effectively managing the weights
arising in the perimeter seen as an anisotropic functional in normal coordinates. The uni-
formicity in ε0 allowed the following consequence.

Theorem (see Theorem 1.3). There exists a possibly computable v0 > 0 such that geodesic
balls with volume less than v0 are uniquely isoperimetric in CHm.

The proof is made by rescaling lifted isoperimetric sets on a tangent plane. The theory of
almost-minimizing currents enters then into play to prove first L1, then L∞-proximity with
a centered ball. Finally, regularity theory as developed by Figalli in [48] and deep stability
results in Rn [53] made the conclusion of the argument possible.

In Chapter 2 we prove the Gromov-Ross conjecture in a new class of sets called Hopf-
symmetric [109]: subsets of CHm ∼= SU(m, 1)/U(m) invariant under the action of S1 ∼=
eiθidm ⩽ U(m).

Theorem (see Theorem 2.1). Balls are uniquely isoperimetric in the class of Hopf-symmetric
sets.

The proof relies on a new comparison argument between CHm and RH2m that makes it
a consequence of the following weighted isoperimetric result in the real hyperbolic space.

Theorem (see Theorem 2.5). Centered geodesic balls are uniquely isoperimetric in RHn

with respect to the weighted volume and perimeter

Vf (E) =

ˆ
E

f dH n, Pf (E) =

ˆ
∂E

f dH n−1,

if f is radial and strictly log-convex.

This result, which is of independent interest, is the hyperbolic version of Brakke’s con-
jecture in the Euclidean space (see notably [51, 69, 86, 101]) which was recently proved by
Chambers in [30]. For a partial contribution in RHn, see [72]. We overcome major geometric
obstructions in the application of Chamber’s strategy by taking advantage of the hyperbol-
icity of the underlying space. Notably, we develop a new curvature comparison result for
curves in RH2.
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Chapter 1

2
C1-Stability and small volume regime

1.1 Main results
The goal of this chapter is to show the following results.

Theorem 1.1. Let M = KHm be a rank one symmetric space of non-compact type and
R0 > 0 any fixed radius. Let E ⊂M be a volume preserving perturbation of the ball Bn(R),
0 < R ≤ R0, with boundary of the form

∂E = {expo(R(1 + ρ(φ))φ) : φ ∈ Sn−1 ⊂ ToM},

where o ∈M is a fixed base-point, and ρ ∈ C1(Sn−1, (−1,+∞)). Denote with ρ : Sn−1(R) →
(−1,+∞) the perturbation ρ viewed as a function from the geodesic sphere in M , given in
normal coordinates as

ρ(Rφ) = ρ(φ), φ ∈ Sn−1.

Then, there exist ε = ε(M,R0) > 0 and C = C(M,R0, R) > 0, such that

Perg(E)− Perg(B
n(R)) ≥ C

(
∥ρ∥2L2(Sn−1(R)) + ∥∇gρ∥2L2(Sn−1(R))

)
,

provided ∥ρ∥C1 ≤ ε. In particular, if E is isoperimetric, then E = Bn(R).

To establish this result, we will demonstrate the following explicit lower bound under
the technical assumption that ρ is barycenter preserving. To obtain Theorem 1.1 we can
compensate for this assumption with a small transvection (that amounts to a translation
obtained via a composition of central symmetries) of the perturbed set.

Theorem 1.2. Under the same assumptions of Theorem 1.1, suppose additionally that E has
barycenter in o ∈M . Denote with λR2 the second eigenvalue of the Laplacian over Sn−1(R).
Then, there exists ε = ε(M,R0) > 0 such that

Perg(E)− Perg(B
n(R)) ≥ R2λR2

48
∥ρ∥2L2(Sn−1(R)) +

R2

32
∥∇gρ∥2L2(Sn−1(R)),

provided ∥ρ∥C1 ≤ ε.
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As an application of Theorem 1.2, we will give a new quantitative proof of the isoperi-
metric theorem in the small volume regime.

Theorem 1.3. Let M = KHm be a rank one symmetric space of non-compact type. Then,
there exists a possibly computable volume v̄ = v̄(M) > 0 such that all geodesic balls Bn(R) ⊂
M with volume Volg(B(R)) < v̄ are uniquely isoperimetric in M .

Remark 1.4. With exactly the same arguments, the results of Theorem 1.1 and Theorem 1.2
hold true under the weaker assumption of ρ belonging to the Sobolev spaceW 1,∞(S1, (−1,+∞)).

1.1.1 Distributions and spectral decomposition on spheres

Recall that geodesic spheres

Sn−1(o,R) := {x ∈M : distg(x, o) = R},

centered at o ∈ M with radius R > 0, are homogeneous submanifolds (that is admitting a
transitive action of the isometry group) of constant mean curvature. Since all spheres with
the same radius are isometric, we will often denote with Sn−1(R) a generic geodesic sphere in
M of radius R > 0 with induced metric that we will keep calling g. Analogously, we denote
with

Bn(o,R) := {x ∈M : distg(x, o) < R},

the open geodesic ball centered in o ∈M with radius R > 0, and with Bn(R) a generic open
geodesic ball of radius R > 0 in M .

For every non-zero vector Nx at x ∈M , the Jacobi operator

R(·, Nx)Nx : TxM → TxM,

has exactly three eigenvalues: {−4,−1, 0}. Denoting with Hx and Vx the eigenspaces asso-
ciated to the eigenvalues −4 and −1 respectively, the tangent plane TxM splits orthogonally
as

TxM = Hx ⊕ Vx ⊕ RNx, (1.1)

where dimR(Hx) = d − 1, and dimR(Vx) = d(n − 1). Hence, for every non-vanishing vector
field N ∈ Γ(TU) defined on an open set U ⊂M , the maps x 7→ Hx and x 7→ Vx induce two
well defined distributions H and V on U . We will denote the orthogonal projections with

(·)h :TU → H,
(·)v :TU → V ,
(·)n :TU → RN.

Notice that when K = R, then H = ∅. In this exceptional case we set (·)v ≡ 0. In particular,
when N is a radial vector field emanating from a base point o ∈M (that is the vector field ∂

∂r

in normal coordinates (r, φ) centered at o), then the orthogonality of (1.1) implies that the
tangent bundle of any sphere Sn−1(o,R) splits orthogonally with respect to g as the direct
sum of H and V restricted to Sn−1(o,R). It turns out that this splitting also arises from the
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vertical and horizontal distribution associated to the celebrated Hopf fibration of Euclidean
spheres

Sd−1 → Sm−1(R) → KPm−1,

where KPm−1 is the real, complex, quaternionic and octonionic projective space of complex
dimension dimK(KPm−1) = m − 1, respectively. This particular structure allows computa-
tions about the spectral decomposition of L2(Sn−1(R), g) with respect to the induced Rie-
mannian Laplacian, see [10, 15, 99] and very recently [17]. In our case, it will be sufficient
to know that the associated eigenvalues {λRi }i∈N satisfy the bound

λRj ≥ j(j + d− 2) + j(n− d) cosh2(R)

sinh2(R) cosh2(R)
, (1.2)

with equality when j = 1. We will denote with

{fRj,k ∈ L2(Sn−1(R), g) : 1 ≤ k ≤ nj}j≥0

the spherical harmonics with muliplicity nj ≥ 1 constituting an orthogonal basis of L2(Sn−1(R), g),
so that

∥∇gfRj,k∥2L2(Sn−1(R),g) = λRj ∥fRj,k∥2L2(Sn−1(R),g),

where ∇g denotes the Riemannian gradient with respect to g on Sn−1(R).

1.1.2 Useful geometric identities by comparison

Denote with ge = ⟨·, ·⟩ and |·| the usual Euclidean metric and norm on Rn, and with
Sn−1(x, r) and Bn(x, r) the Euclidean spheres and open balls centered in x ∈ Rn with
radius r > 0. As usual, Sn−1 and Bn denote generic unit spheres and balls. In order to do
computations in (M, g) we decided to work in normal coordinates (r, φ) ∈ (0,+∞)× Sn−1.
Let P(·) and V(·) be the perimeter and volume operators in Rn with respect to the Euclidean
metric. Set

ωn := V(Bn).

From now on, o ∈M will be an arbitrarily fixed base-point, if not stated otherwise. Taking
the pullback metric exp∗

o g we can identify isometrically M with Rn. Let N ∈ Γ(M \ {o})
be the radial, unit vector field emanating from o. Thanks to the previous discussion, we can
find an explicit formula relating ge with g.

Lemma 1.5. For every x = (r, φ) ∈M \ {o}, the splitting

TxM = Hx ⊕ Vx ⊕ RNx,

is orthogonal with respect to ge. In particular, one has that

g(X, Y ) = ⟨Xn, Y n⟩+ cosh2(r) sinh2(r)

r2
⟨Xh, Y h⟩+ sinh2(r)

r2
⟨Xv, Y v⟩, (1.3)

for all X, Y ∈ TxM .
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Proof. Fix an arbitrary unit direction No ∈ ToM , and let Vo ∈ ToM be any vector orthogonal
to it with respect to g|o = ge|o. Since the radial geodesics emanating from o with respect to
g are the same as the Euclidean ones, the Jacobi field Y (t) along the geodesic σ : t 7→ tNo,
determined by the initial conditions Y (0) = 0, Ẏ (0) = Vo is the same for both metrics. Let
V (t) and Ve(t) be the parallel transport of Vo along σ with respect to g and ge, respectively.
By the very definition of symmetric spaces, the curvature tensor R is itself parallel along
geodesics. This implies that

tVe(t) = Y (t) =
sinh(

√
−κt)√

−κ
V (t),

provided Vo belongs to the κ-eigenspace of the Jacobi operator R(·, No)No. Therefore, par-
allel vector fields in the eigenspaces are collinear for the two metrics. Hence, for t > 0 the
linear subspaces Hσ(t) and Vσ(t) are nothing else than the parallel transport of the corre-
sponding eigenspaces of R(·, No)No along σ. It follows that the splitting TxM = Hx ⊕ Vx
is orthogonal not only with respect to g, but also with respect to the Euclidean metric ge.
Equation (1.3) is a direct consequence of this fact and the definition of the distribution H
and V .

In particular, the volume density on M associated to the metric g is radial and given by

ωg(r, φ) = ωg(r) =
sinhn−1(r) coshd−1(r)

rn−1
. (1.4)

Let Perg(·) and Volg(·) be the perimeter and volume operators in M . As a consequence of
the previous Lemma we have the following formulae.

Lemma 1.6. Let E be a subset of M with smooth boundary. Then, in normal coordinates
we have that

Volg(E) =

ˆ
E

ωg(r) dH
n, (1.5)

and

Perg(E) =

ˆ
∂E

ωg(r)
(
|νn|2 + r2

cosh2(r) sinh2(r)
|νh|2 + r2

sinh2(r)
|νv|2

)1/2
dH n−1, (1.6)

where ν denotes the normal vector field to ∂E with respect to ge.

Proof. Equation (1.5) is tautological. We prove Equation (1.6). Denoting with

volg := ωg(r)dx = ωg(r)dx
1 ∧ · · · ∧ dxn,

the volume form in M , and with νg and ν the normal vector field of ∂E with respect to g
and ge respectively, we have that

Perg(E) =

ˆ
∂E

ινg volg =

ˆ
∂E

ωg(r)ινg vol,
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where we denote the interior product (ινg volg)(·) = volg(νg, ·) ∈ Ωn−1(∂E). Now, for a fixed
x ∈ ∂E, choose an orthonormal basis {v2, . . . , vn} of Tx∂E orthogonal to ν with respect to
ge. Then,

(ινg vol)x(v2, . . . , vn) = volx(νg, v2, . . . , vn) = ⟨νg, ν⟩ volx(ν, v2, . . . , vn)
= ⟨ν, νg⟩(ιν vol)x(v2, . . . , vn),

showing that

Perg(E) =

ˆ
∂E

ωg(r)⟨ν, νg⟩ιν vol =
ˆ
∂E

ωg(r)⟨ν, νg⟩ dH n−1.

We are left to compute ⟨ν, νg⟩. By Lemma 1.5 we have that

ν̃g := νn +
r2

cosh2(r) sinh2(r)
νh +

r2

sinh2(r)
νv,

realizes g(ν̃g, vi) = ⟨ν, vi⟩ = 0 for all i = 2, . . . , n, implying that ν̃g is collinear to νg. Since
g(ν̃g, ν̃g) = ⟨ν, ν̃g⟩ we get that

⟨ν, νg⟩ = ⟨ν, ν̃g⟩g(ν̃g, ν̃g)−1/2 = ⟨ν, ν̃g⟩1/2

=
(
|νn|2 + r2

cosh2(r) sinh2(r)
|νh|2 + r2

sinh2(r)
|νv|2

)1/2
,

concluding the proof of the lemma.

Define the barycenter of E as

Barg(E) := argminp∈M

{ˆ
E

dist2g(x, p) d volg(x)
}
∈M.

It is always unique and well defined since the negative curvature ofM implies that the above
functional is strictly convex in p ∈ M , see [19, Section 2.5]. Differentiating, we have that
p = Barg(E) if and only if

−2

ˆ
E

exp−1
p (x) d volg(x) = 0. (1.7)

In the normal coordinates pointed at Barg(E), this reads as

0 =

ˆ
E

x d volg(x) =

ˆ
E

rφωg(r) dH
n. (1.8)

In the particular case in which ∂E is a C1-radial perturbation of Sn−1(R)

∂E = {expo(R(1 + ρ(φ))) : φ ∈ Sn−1} = {(R(1 + ρ(φ)), φ) : φ ∈ Sn−1}, (1.9)

for some C1-function ρ : Sn−1 → (−1,+∞), then the normal ν with respect to ge is given by

ν =
(
φ− ∇ρ

1 + ρ

)(
1 +

|∇ρ|2

(1 + ρ)2

)−1/2

,
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where ∇ denotes the gradient with respect to the round metric on Sn−1. Applying Equation
(1.6) of Lemma 1.6 one gets that

Perg(E) =

ˆ
Sn−1

ωg(r)r
n−1
(
1 +R2 |∇hρ|2 + cosh2(r)|∇vρ|2

sinh2(r) cosh2(r)

)1/2∣∣∣
r=R(1+ρ(φ))

dφ, (1.10)

where ∇hρ and ∇vρ are the projections of the vector ∇ρ ∈ T(R(1+ρ(φ)),φ)M on H and V
respectively. To simplify the exposition, define

ϕ(r) :=

ˆ r

0

τn−1ωg(τ) dτ, (1.11)

and

ψ(r) :=

ˆ r

0

τnωg(τ) dτ, (1.12)

where we recall that ωg(r) is the volume density defined in (1.4). Then, we obtain the
formula

Volg(E) =

ˆ
Sn−1

ϕ(R(1 + ρ)) dφ, (1.13)

and when the barycenter is at zero

0 =

ˆ
Sn−1

φψ(R(1 + ρ(φ)))dφ. (1.14)

Setting ρ ≡ 0, we recover the volume and perimeter of the geodesic ball Bn(R):

Volg(B
n(R)) = nωnϕ(R), Perg(B

n(R)) = nωnϕ
′(R).

For example, when K = C, we can compute

Volg(B
n(R)) = ωn sinh

n(R), Perg(B
n(R)) = nωn sinh

n−1(R) cosh(R).

1.1.3 Finite perimeter sets

We recall the definition and some properties of finite perimeter sets in a general Riemannian
manifold. We refer to [76] for a detailed presentation in the Euclidean space.

Definition 1.7 (Sets with finite perimeter). Let (M, g) be a smooth Riemannian manifold
with volume element d vol, and E ⊂M be a measurable subset. For any open subset O ⊂M
we will denote with Γc(TO) the set of smooth vector fields on M compactly supported in O.
We define the relative perimeter of E in O as

Perg(E,O) := sup
{ˆ

O

divg(ξ) d volg, : ξ ∈ Γc(TO), sup
x∈O

g(ξ, ξ) ≤ 1
}
.

If Perg(E,O) < +∞ for all O ⊂⊂ M we say that E is a set with locally finite perimeter,
and if Perg(E) := Perg(E,M) < +∞ we say that E is a set with finite perimeter.
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Letting DχE be the distributional gradient of the characteristic function χE, then

Perg(E,O) = |DχE|(O),

where |DχE| denotes the total variation of the measure DχE.

Definition 1.8. Let E ⊂ M be a set of locally finite perimeter. We define its reduced
boundary as

∂∗E :=
{
x ∈ spt(|DχE|) : ∃ νg(x) := lim

r→0+
− DχE(Bx(r))

|DχE(Bx(r))|
unit tangent vector at x

}
.

The next theorem allows us to express Perg(E) as an integration over the reduced bound-
ary, where νg(x), the measure theoretic outwards unit normal to E, is well defined. For the
proof we refer to [6].

Theorem 1.9 (De Giorgi structure theorem). Let E ⊂M be a set with locally finite perime-
ter. Then,

DχE = νg(x)dH n−1|∂∗E, and P (E) = |DχE|(M) = H n−1(∂∗E).

This characterization allows us to generalize Equation (1.6) of Lemma 1.6 for the class
of finite perimeter sets.

Lemma 1.10. Let E ⊂ M be a finite perimeter set. Then, for all open subset O of M we
have that

Perg(E,O) =

ˆ
∂∗E∩O

ωg(r)
(
|νn|2+ r2

cosh2(r) sinh2(r)
|νh|2+ r2

sinh2(r)
|νv|2

)1/2
dH n−1, (1.15)

where ν is the measure theoretic outwards unit normal to E with respect to the flat metric
ge.

1.2 Uniform C1-strong stability

Fix any upper bound R0 > 0 and a radius R ∈ (0, R0] for the perturbed sphere given in
normal coordinates

∂E = {(R(1 + ρ(φ)), φ) : φ ∈ Sn−1} ⊂M,

where ρ ∈ C1(Sn−1, (−1,+∞)) is a volume and barycentric preserving perturbation, in the
sense that

Volg(E) = Volg(B
n(R)),

and
Barg(E) = Barg(B

n(R)) = 0.

We suppose

∥ρ∥C1 := ∥ρ∥C1(Sn−1) = sup
φ∈Sn−1

(
|ρ(φ)|+ |∇ρ(φ)|

)
≤ ε,
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for some small ε ∈ (0, 1
2
) yet to define. To simplify the exposition, denote

ρ̄(φ) := R(1 + ρ(φ)),

and with ρ : Sn−1(R) → (−1,+∞) the perturbation viewed as a function from the geodesic
sphere in M , given in normal coordinates as

ρ(Rφ) = ρ(φ), φ ∈ Sn−1.

Notice that

∥ρ∥2L2(Sn−1(R)) := ∥ρ∥2L2(Sn−1(R),g) =

ˆ
Sn−1

|ρ(φ)|2ϕ′(R) dφ,

and

∥∇gρ∥2L2(Sn−1(R)) := ∥∇gρ∥2L2(Sn−1(R),g) =

ˆ
Sn−1

|∇hρ|2 + cosh2(R)|∇vρ|2

sinh2(R) cosh2(R)
ϕ′(R) dφ. (1.16)

For k ∈ {1, 2, 3}, define the auxiliary functions ωk : R → R by

ωk(r) :=
ϕ(k)(r)

rn−k
, (1.17)

where ϕ(r) is defined as in (1.11). Notice that ω1 = ωg. We need the next three lemmas to
start with the estimates.

Lemma 1.11. For k ∈ {1, 2, 3}, the function ωk defined in (1.17) is positive, even and
strictly convex with removable singularity at zero equal to

lim
r→0

ωk(r) =


1, k = 1,

(n− 1), k = 2,

(n− 1)(n− 2), k = 3.

In particular, minωk = ωk(0), which is strictly positive, unless (n, k) = (2, 3). The constants

Ak := (n− k) + max
r∈[0,R0]

r
ω′
k(r)

ωk(r)
,

Bk := 2n max
r∈[0,R0]

ωk(2r)

ωk(r)
,

Ck := ωk(2R0),

are finite, depend only on (n, d, k, R0), and realize the following inequalities

ϕ(k)(R(1 + τ)) ≥ (1− Ak|τ |)ϕ(k)(R), (1.18)

ϕ(k)(R(1 + τ)) ≤ Bkϕ
(k)(R), (1.19)

ωk(R(1 + τ)) ≤ Ck, (1.20)

uniformly in R ∈ [0, R0] and τ ∈ R, |τ | ≤ 1, where ϕ(r) is as in (1.11).
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Proof. We explicitly compute

rn−1ω1(r) = ϕ′(r) = sinhn−1(r) coshd−1(r),

rn−2ω2(r) = ϕ′′(r) = (n− 1) sinhn−2(r) coshd(r) + (d− 1) sinhn(r) coshd−2(r),

rn−3ω3(r) = ϕ′′′(r) = (n− 1)(n− 2) sinhn−3(r) coshd+1(r)

+ (2dn− d− n) sinhn−1(r) coshd−1(r) + (d− 1)(d− 2) sinhn+1(r) coshd−3(r).

Since the functions r−1 sinh(r) and r sinh(r) are even, strictly convex functions with positive
(removable singularity) at zero, sinh(r) is odd and cosh(r) is even, we can infer that ωk is
itself convex, even and positive. Developing by Taylor we get that

rn−1ω1(r) = rn−1 + o(rn),

rn−2ω2(r) = (n− 1)rn−2 + o(rn−1),

rn−3ω3(r) = (n− 1)(n− 2)rn−3 + (2dn− d− n)rn−1 + o(rn),

proving that ωk can be extended at zero with value 1, (n− 1) and (n− 1)(n− 2), according
to k being equal to 1, 2 or 3 and that

lim
r→0

r
ω′
k(r)

ωk(r)
=

{
2, if (n, k) = (2, 3),

0, otherwise,
and lim

r→0

ωk(2r)

ωk(r)
=

{
4, if (n, k) = (2, 3),

1, otherwise.

This shows that Ak and Bk are well defined finite constants. To prove Equation (1.18), since
ωk is convex and (1 + τ)l ≥ 1 + lτ for all |τ | ≤ 1 and l ∈ Z, we can estimate

ϕ(k)(R(1 + τ)) = Rn−k(1 + τ)n−kωk(R(1 + τ))

≥ (1 + (n− k)τ)Rn−k(ωk(R) + ω′
k(R)Rτ

)
= (1 + (n− k)τ)

(
1 +R

ω′
k(R)

ωk(R)
τ
)
ϕ(k)(R)

≥ (1− Ak|τ |)ϕ(k)(R).

Equations (1.19) and (1.20) are immediate, given the nature of ωk and the bound on τ .

Lemma 1.12. For every function ρ ∈ C1(S1, (−1,+∞)) and 0 < R ≤ R0 there exists a
constant D > 0, depending only on R0, such that

|∇ρ|2 ≥ ρ̄2
|∇hρ|2 + cosh2(ρ̄)|∇vρ|2

sinh2(ρ̄) cosh2(ρ̄)
≥ (1−D|ρ|)R2 |∇hρ|2 + cosh2(R)|∇vρ|2

sinh2(R) cosh2(R)
, (1.21)

where ρ̄ ∈ C1(Sn−1, (0,+∞)) is defined as ρ̄(φ) = R(1 + ρ(φ)).

Proof. Setting

ω1
1(r) :=

sinh2(r)

r2
,

ω2
1(r) :=

sinh2(r) cosh2(r)

r2
,
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and arguing as in Lemma 1.11, we notice that ω1
1 and ω2

1 are strictly convex, even and equal
to one at zero. Setting

ξ(r) :=
|∇hρ|2

ω2
1(r)

+
|∇vρ|2

ω1
1(r)

,

we get that

ξ(r) ≤ 1

ω1
1(r)

(|∇hρ|2 + |∇vρ|2) ≤ |∇ρ|2,

which is the first inequality of Equation (1.21) when r = ρ̄. For the second inequality, for
i = 1, 2 we have by convexity of ωi1 that

ωi1(R) ≥ ωi1(ρ̄)− (ωi1)
′(ρ̄)Rρ,

implying that

ωi1(ρ̄) ≤ ωi1(R) + (ωi1)
′(ρ̄)Rρ ≤ ωi1(R)

(
1 +R

(ωi1)
′(ρ̄)

ωi1(R)
|ρ|
)

≤ ωi1(R)(1 +R0(ω
i
1)

′(2R0)|ρ|),

and
1

ωi1(ρ̄)
≥ 1

1 +R0(ωi1)
′(2R0)|ρ|

1

ωi1(R)
≥ (1−R0(ω

i
1)

′(2R0)|ρ|)
1

ωi1(R)
.

Hence, setting D := maxi∈{1,2}{R0(ω
i
1)

′(2R0)}, we can estimate

ξ(ρ̄) ≥ (1−D|ρ|)ξ(R),

completing the proof of the Lemma.

Recall that we denote with λR1 the first non-zero eigenvalue of the Laplacian operator on
the sphere Sn−1(R).

Lemma 1.13. Let ϕ(r) as in (1.11). For all r > 0 we have the following identity

ϕ′′′(r) = ϕ′(r)
(ϕ′′(r)2

ϕ′(r)2
− λr1

)
, (1.22)

where λr1 is the first eigenvalue of the Laplacian on the sphere Sn−1(r).

Proof. Since ϕ′(r) = rn−1ωg(r) = sinhn−1(r) coshd−1(r) we can compute

ϕ′′(r) = (n− 1) sinhn−2(r) coshd(r) + (d− 1) sinhn(r) coshd−2(r)

= (n− 1) coth(r)ϕ′(r) + (d− 1) tanh(r)ϕ′(r),
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and

ϕ′′′(r) = ϕ′′(r)
(
(n− 1) coth(r) + (d− 1) tanh(r)

)
+ ϕ′(r)

( d− 1

cosh2(r)
− n− 1

sinh2(r)

)
=
ϕ′′(r)2

ϕ′(r)
+ ϕ′(r)

(d− 1) sinh2(r)− (n− 1) cosh2(r)

cosh2(r) sinh2(r)

=
ϕ′′(r)2

ϕ′(r)
+ ϕ′(r)

(d− 1)− (n− 1− d+ 1) cosh2(r)

cosh2(r) sinh2(r)
=
ϕ′′(r)2

ϕ′(r)
− ϕ′(r)λr1,

as wished.

We are now ready to prove a first estimate.

Proposition 1.14 (Intermediate estimate). Under the assumptions of Theorem 1.2 one has
that

Perg(E)− Perg(B
n(R)) ≥ −

((B3C2C3

3
+ A3C

2
2

)
∥ρ∥C0 +R2λR1

)1
2
∥ρ∥2L2(Sn−1(R))

+R2(1− (D + 2)∥ρ∥C1)
1

2
∥∇gρ∥2L2(Sn−1(R)).

(1.23)

Here the constants Ak, Bk, Ck and D have been defined in Lemma 1.11 and Lemma 1.12.

Proof. Setting

ξ(r) := r2
|∇hρ|2 + cosh2(r)|∇vρ|2

sinh2(r) cosh2(r)
,

we have by Equation (1.10) that

Perg(E) =

ˆ
Sn−1

(
1 +

ξ(ρ̄)

(1 + ρ)2

)1/2
ϕ′(ρ̄) dφ.

By the elementary inequalities

1

(1 + t)2
≥ (1− 2t), for all t > −1, and (1 + t)1/2 ≥ 1 +

t

2
− t2

8
for all t ≥ 0,

we have that

Perg(E) ≥
ˆ
Sn−1

(1 + ξ(ρ̄)(1− 2ρ))1/2ϕ′(ρ̄) dφ

≥
ˆ
Sn−1

(
1 + (1− 2ρ)

(
1− (1− 2ρ)

ξ(ρ̄)

4

)ξ(ρ̄)
2

)
ϕ′(ρ̄) dφ

≥
ˆ
Sn−1

ϕ′(ρ̄) dφ+

ˆ
Sn−1

(
1− 2ρ− ξ(ρ̄)

)ξ(ρ̄)
2
ϕ′(ρ̄) dφ

≥
ˆ
Sn−1

ϕ′(ρ̄) dφ+ (1− 2∥ρ∥C1)(1−D∥ρ∥C0)

ˆ
Sn−1

ξ(R)

2
ϕ′(ρ̄) dφ

≥
ˆ
Sn−1

ϕ′(ρ̄) dφ+ (1− (D + 2)∥ρ∥C1)

ˆ
Sn−1

ξ(R)

2
ϕ′(ρ̄) dφ

=

ˆ
Sn−1

ϕ′(ρ̄) dφ+ (1− (D + 2)∥ρ∥C1)
1

2
R2∥∇gρ∥2L2(Sn−1(R)),

(1.24)
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where at the end we took advantage of Equations (1.16) and (1.21). We need to treat the
first term ˆ

Sn−1

ϕ′(ρ̄) dφ.

Now, by Taylor expansion there exists η : Sn−1 → [0, 1] such that

ϕ′(ρ̄) = ϕ′(R) + ϕ′′(R)Rρ+
R2ρ2

2
ϕ′′′(R(1 + ηρ)).

On the other side, thanks to Lemma 1.11 and Lemma 1.13 we have that

ϕ′′′(R(1 + ηρ)) ≥ (1− A3∥ρ∥C0)ϕ′′′(R) = (1− A3∥ρ∥C0)
(ϕ′′(R)2

ϕ′(R)2
− λR1

)
ϕ′(R)

≥ ϕ′′(R)2

ϕ′(R)
−
(
A3

(Rn−2ω2(R)

Rn−1ω1(R)

)2
∥ρ∥C0 + λR1

)
ϕ′(R)

≥ ϕ′′(R)2

ϕ′(R)
−
(
A3C

2
2R

−2∥ρ∥C0 + λR1

)
ϕ′(R),

which gives the following estimate

ˆ
Sn−1

ϕ′(ρ̄) dφ ≥ Perg(B
n(R)) +

ˆ
Sn−1

ϕ′′(R)Rρ+
ϕ′′(R)2

ϕ′(R)

R2ρ2

2
dφ

−
(
A3C

2
2∥ρ∥C0 +R2λR1

)ˆ
Sn−2

ρ2

2
ϕ′(R) dφ.

(1.25)

Now, by the volume preserving constraint over ρ, we can integrate the Taylor expansion

ϕ(ρ̄)− ϕ(R) = ϕ′(R)Rρ+
R2ρ2

2
ϕ′′(R) +

R3ρ3

6
ϕ′′′(R(1 + η̄ρ)), (1.26)

where η̄ : Sn−1 → [0, 1] is suitably chosen, to obtain∣∣∣∣ˆ
Sn−1

ϕ′(R)Rρ+
R2ρ2

2
ϕ′′(R) dφ

∣∣∣∣ = ∣∣∣∣ˆ
Sn−1

R3ρ3

6
ϕ′′′(R(1 + η̄ρ)) dφ

∣∣∣∣
≤ ∥ρ∥C0B3

R

3

ˆ
Sn−1

ρ2

2
R2ϕ′′′(R) dφ

= ∥ρ∥C0B3
R

3

ˆ
Sn−1

ρ2

2
R2ϕ

′′′(R)

ϕ′(R)
ϕ′(R) dφ

= ∥ρ∥C0B3
R

3

ˆ
Sn−1

ρ2

2
R2R

n−3ω3(R)

Rn−1ω1(R)
ϕ′(R) dφ

≤ ∥ρ∥C0B3C3
R

3

ˆ
Sn−1

ρ2

2
ϕ′(R) dφ.
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This precious estimate allows us to treat (1.25):

ˆ
Sn−1

ϕ′′(R)Rρ+
ϕ′′(R)2

ϕ′(R)

R2ρ2

2
dφ ≥ −

∣∣∣∣ϕ′′(R)

ϕ′(R)

∣∣∣∣∣∣∣∣ˆ
Sn−1

ϕ′(R)Rρ+
R2ρ2

2
ϕ′′(R) dφ

∣∣∣∣
≥ −∥ρ∥C0B3C3

R

3

∣∣∣∣ϕ′′(R)

ϕ′(R)

∣∣∣∣ ˆ
Sn−1

ρ2

2
ϕ′(R) dφ,

≥ −∥ρ∥C0B3C3
R

3
R−1C2

ˆ
Sn−1

ρ2

2
ϕ′(R) dφ,

= −∥ρ∥C0

B3C2C3

3
∥ρ∥2L2(Sn−1(R)),

which combined with (1.24) and (1.25) gives the desired inequality.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Recall from Section 1.1.1, that there exists an orthogonal decompo-
sition of L2(Sn−1(R), g) in spherical harmonics of the form

{fRj,k ∈ L2(Sn−1(R), g) : 1 ≤ k ≤ nj}j≥0.

Choosing the renormalization so that

1

Perg(Bn(R))
∥fRj,k∥2L2(Sn−1(R)) = 1,

fR0 ≡ 1, and the eigenspace associated to λR1 is spanned by restricting on Sn−1(R) the
harmonic polynomials of degree one

fR1,k(x) :=
√
n
xk

R
, k = 1, . . . , n,

given in the cartesian coordinates chart x = Rφ. We develop ρ on the spherical harmonics
of Sn−1(R) by setting for all j ≥ 0 and 1 ≤ l ≤ nj the coefficients

cj,k :=
1

Perg(Bn(R))
⟨ρ, fRj,k⟩L2(Sn−1(R)),

so that
1

Perg(Bn(R))
∥ρ∥2L2(Sn−1(R)) =

∑
j≥0

nj∑
k=1

c2j,k,

and
1

Perg(Bn(R))
∥∇gρ∥2L2(Sn−1(R)) =

∑
j≥1

nj∑
k=1

λRj c
2
j,k.

To simplify the exposition, we will write
∑

j,k instead of the double sums, and
ffl
Sn−1 the

mean with respect to (Sn−1(R), g), that is (Perg(B
n(R)))−1

´
Sn−1 . To take advantage of the
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spectral gap to control the negative term in (1.23), we have to estimate the zero and first
harmonics c0 and c1,k. From Equation (1.26), the volume preservation implies the following
estimate ∣∣∣∣ˆ

Sn−1

ρϕ′(R)dφ

∣∣∣∣ = ∣∣∣∣ˆ
Sn−1

Rρ2

2
ϕ′′(R) +

R2ρ3

6
ϕ′′′(R(1 + ρη)) dφ

∣∣∣∣
≤ (C2 + C3)

ˆ
Sn−1

ρ2

2
ϕ′(R) dφ,

(1.27)

allowing us by Cauchy-Schwarz inequality to treat the first harmonic as

c20 =

∣∣∣∣ 
Sn−1

ρϕ′(R) dφ

∣∣∣∣2 ≤ (C2 + C3)
2∥ρ∥2C0

 
Sn−1

ρ2

2
ϕ′(R) dφ. (1.28)

The barycentric preservation and Equation (1.14) give us the analogue for the second har-
monics: first, by Taylor approximation there exists θ : Sn−1 → [0, 1] such that

ψ(ρ̄)− ψ(R) = ψ′(R)Rρ+ ψ′′(R(1 + θρ))
R2ρ2

2

= ϕ′(R)R2ρ+
(
ϕ′(R(1 + θρ)) +R(1 + θρ)ϕ′′(R(1 + θρ))

)R2ρ2

2
.

Then, for any k ∈ {1, . . . , n}, we have that∣∣∣∣ˆ
Sn−1

xk

R
ρϕ′(R) dx

∣∣∣∣ = ∣∣∣∣ˆ
Sn−1

xk

R

ρ2

2

(
ϕ′(R(1 + θρ)) +R(1 + θρ)ϕ′′(R(1 + θρ))

)
dx

∣∣∣∣
≤ (B1 + 2C2)

ˆ
Sn−1

ρ2

2
ϕ′(R) dx,

which implies by Cauchy-Schwarz inequality that

n∑
k=1

c21,k =
n∑
k=1

( 
Sn−1

√
n
xk

R
ρϕ′(R) dφ

)2
≤ n2(B1 + 2C2)

2
( 

Sn−1

ρ2

2
ϕ′(R) dφ

)2
≤ ∥ρ∥2C0n2(B1 + 2C2)

2
( 

Sn−1

|ρ|
2
ϕ′(R) dφ

)2
≤ ∥ρ∥2C0n2(B1 + 2C2)

21

2

 
Sn−1

ρ2

2
ϕ′(R) dφ.

(1.29)

Combining (1.27) and (1.29) we obtain that

c20 +
n∑
k=1

c21,k ≤
(
(C2 + C3)

2 +
n2

2
(B1 + 2C2)

2
)
∥ρ∥C0

∑
j,k

c2j,k. (1.30)
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Set K1 := (C2 + C3)
2 + n2

2
(B1 + 2C2)

2. We have in particular that

1

Perg(Bn(R))
∥ρ∥2L2(Sn−1(R)) =

∑
j,k

c2j,k ≤
1

1−K1∥ρ∥C0

∑
j≥2,k

c2j,k

≤ 1

λR2 (1−K1∥ρ∥C0)

∑
j≥2,k

λRj c
2
j,k

≤ 1

λR2 (1−K1∥ρ∥C0)

1

Perg(Bn(R))
∥∇gρ∥2L2(Sn−1(R)).

Plugging this last key estimate in Equation (1.23) of Proposition 1.14

Perg(E)− Perg(B
n(R)) ≥ −

(
K2∥ρ∥C0 +R2λR1

)1
2
∥ρ∥2L2(Sn−1(R))

+R2(1−K3∥ρ∥C1)
1

2
∥∇gρ∥2L2(Sn−1(R)),

(1.31)

where K2 =
B3C2C3

3
+A3C

2
2 and K3 = D+2, we are finally able to control the negative term

taking advantage of the spectral gap between the two first harmonics. In fact, one can check
that

λR1
λR2

≤ (d− 1) + (n− d) cosh2(R)

2d+ 2(n− d) cosh2(R)
<

1

2
,

uniformly in R, and therefore supposing

∥ρ∥C0 ≤ 1

3K1

,

so that
λR1

λR2 (1−K1∥ρ∥C1)
<

1

2

1

(1−K1∥ρ∥C1)
≤ 3

4
,

we can estimate

Perg(E)− Perg(B
n(R))

≥ −K2∥ρ∥C0

1

2
∥ρ∥2L2 +R2

(
1− λR1

λR2 (1−K1∥ρ∥C0)
−K3∥ρ∥C1

)1
2
∥∇gρ∥2L2

≥ −K2∥ρ∥C0

1

2
∥ρ∥2L2 +R2

(1
4
−K3∥ρ∥C1

)1
2
∥∇gρ∥2L2

≥
(R2λR2

12
−K2∥ρ∥C0

)1
2
∥ρ∥2L2 +R2

(1
8
−K3∥ρ∥C1

)1
2
∥∇gρ∥2L2 .

Finally, if

∥ρ∥C1 < ε := min
{1
2
,

1

3K1

,
R2λR2
24K2

,
1

16K3

}
,

we obtain the desired inequality

Perg(E)− Perg(B
n(R)) ≥ R2λR2

48
∥ρ∥2L2(Sn−1(R)) +

R2

32
∥∇gρ∥2L2(Sn−1(R)).
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We are left to prove that ε > 0 can be chosen uniformly in R, that is

R 7→ R2λR2 ,

is uniformly bounded away from zero in [0, R0], being all other constants already depending
only on (n, d,R0). This is a consequence of the exact explicit form of the eigenvalues of the
Laplacian on Sn−1(R), that can be expressed as

a cosh2(R) + b

sinh2(R) cosh2(R)
,

for some coefficients a, b ∈ N, see [17, Theorem A]. In particular, R 7→ R2λR2 is uniformly
bounded away from zero in [0, R0], as wished.

1.3 Minimality of balls in small volume regime
This section is devoted to the proof of Theorem 1.3. We proceed in three steps: first we
show that small isoperimetric sets are uniformly almost-area-minimizing. We recall that a
set E ⊂M is almost-minimizing if it is optimal up to an error uniformly proportional to the
size of the perturbation. In our case, given an isoperimetric region E with volume v, this
translates to the existence of a universal constant C > 0 such that

Perg(E,B
n(x, s)) ≤ Perg(F,B

n(x, s)) +
C

v1/n
Volg(E△F ),

whenever E△F ⊂ Bn(x, s) and s ≤ s1 = s1(v). Then, we prove that this condition combined
with the strong stability results in the Euclidean space, imply the L1 and L∞-proximity to
a geodesic ball with respect to the induced Euclidean metric ge when o is the barycenter
of E. Since almost-minimizing sets sufficiently close to a smooth surface are C1,α-normal
perturbations of it, we conclude the argument by applying Theorem 1.2.

1.3.1 Almost-minimality

For any subset G ⊂M , denote the dilation by τ > 0 with respect to the normal coordinates
(r, φ) pointed at o ∈M with

τG := {(τr, φ) ∈M : (r, φ) ∈ G}.

Recall that we denote with P(·) and V(·) the perimeter and volume functionals with respect
to the Euclidean metric ge. We prove the following estimates.

Lemma 1.15. Let G ⊂ M be a finite perimeter set contained in Bn(o,R) for some R > 0.
Then, there exists C = C(n, d,R) > 0 such that for all t ∈ [0, 1] the following estimates on
the volume and perimeter of its dilation by (1 + t) hold

(1 + t)nVolg(G) ≤ Volg((1 + t)G) ≤ (1 + Ct)Volg(G), (1.32)
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and

Perg((1 + t)G) ≤ (1 + Ct) Perg(G). (1.33)

Moreover, one has that

V(G) ≤ Volg(G) ≤ (1 + ω′
g(R)R)V(G), (1.34)

and

P(G) ≤ Perg(G) ≤ (1 + ω′
g(R)R) P(G). (1.35)

Proof. Thanks to Equation 1.5 we can express

Volg((1 + t)G) =

ˆ
(1+t)G

ωg(r) dH
n = (1 + t)n

ˆ
G

ωg((1 + t)r) dH n.

The first inequality of Equation (1.32) is immediate from the fact that ωg is monotone. On
the other side, arguing as in Lemma 1.11 we have that by the convexity of ωg we can estimate

ωg((1 + t)r) ≤
(
1 + r

ω′
g(r(1 + t))

ωg(r)
t
)
ωg(r) ≤

(
1 +Rω′

g(2R)t
)
ωg(r),

proving that

Volg((1 + t)G) ≤ (1 + t)n(1 +Rω′
g(2R)t)Volg(G)

≤ (1 + (2n − 1)t)(1 +Rω′
g(2R)t)Volg(G) ≤ (1 + C1t)Volg(G),

for C = (2n + 2)(Rω′
g(2R) + 1), as wished. Taking advantage of the integral representation

of the perimeter (1.15), we have that Perg((1 + t)G) is equal to

(1 + t)n−1

ˆ
∂∗G

ωg(r(1 + t))
(
|νn|2 + 1

ω2
1(r(1 + t))

|νh|2 + 1

ω1
1(r(1 + t))

|νv|2
)1/2

dH n−1,

where ω1
1(r)

−1 = r2

sinh2(r)
and ω2

1(r)
−1 = r2

sinh2(r) cosh2(r)
, are decreasing functions. We conclude

that

Perg((1 + t)G) ≤ (1 + t)n−1
(
1 + ω′

g(2R)t
)
Perg(G) ≤ (1 + Ct) Perg(G),

as wished. Equations (1.34) and (1.35) are obtained analogously.

Before proving the almost-minimality of isoperimetric sets with small volume, we need
to state two important results.

Proposition 1.16. There exist v̄ = v̄(n, d) > 0 and µ = µ(n, d) > 0 such that

diam(E) ≤ µVolg(E)
1/n,

whenever E is an isoperimetric set with volume Volg(E) ≤ v̄.
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Proof. This result holds in all generality for manifolds with uniform bound on the Ricci
curvature from below and positive injectivity radius. See [89, Lemma 4.9] and the recent
paper [8, Proposition 4.23] for the very general case of RCD spaces.

Lemma 1.17. Fix v0 > 0. Then, there exists C0 = C0(v0, n) > 0 such that for any finite
perimeter set E with Volg(E) ≤ v0 one has that

C0 Perg(E) ≥ Volg(E)
(n−1)/n.

Proof. This result holds in all generality for manifolds with bounded Ricci curvature from
below. See [59, Lemma 3.5], and [54, Lemma 3.10] for an alternative proof in the general
setting of sub-Riemannian manifolds.

From now on, we will fix v0 = v̄ > 0, µ > 0 and C0 > 0 as in the statement of
Proposition 1.16 and Lemma 1.17. We are now ready to prove that isoperimetric sets are
almost-minimizers uniformly in 0 < v ≤ v̄.

Proposition 1.18 (Almost-minimality in M). There exists C1 = C1(v̄, n, d) > 0 such that
if E is an isoperimetric set and Volg(E) = v ≤ v̄, then

Perg(E,B
n(x, s)) ≤ Perg(F,B

n(x, s)) +
C1

v1/n
Volg(E△F ), (1.36)

whenever
0 < s ≤ s1 = min

{
1, ϕ−1

( v

2nωn

)}
,

and F ⊂M is such that F△E ⊂ Bn(x, s). In particular,

Perg(E,B
n(x, s)) ≤ Perg(F,B

n(x, s)) +
C1

v1/n
Perg(E△F )ϕ(s)1/n. (1.37)

Proof. Since the isoperimetric profile IM(v) := min{Perg(G) : Volg(G) = v} is increasing
(see the article of Hsiang [66, Lemma 3]), we can suppose without loss of generality that

0 ≤ Volg(E)− Volg(F ) ≤ Volg(B
n(s)) = nωnϕ(s).

In particular, imposing s ≤ ϕ−1(v/(2nωn)) we have that Volg(F ) ≤ v/2. Also, notice that
we can suppose Perg(F,B

n(x, s)) ≤ Perg(B
n(x, s)), because otherwise Equation (1.36) is

satisfied since

Perg(E,B
n(x, s)) ≤ Perg(E ∪Bn(x, s))− Perg(E,M \Bn(x, s))

≤ Perg(B
n(s)) ≤ Perg(F,B

n(x, s)).

Let o be any point in E. Then, by Proposition 1.16, E ⊂ Bn(o, µv1/n). Therefore, for s ≤ 1,
we can suppose without loss of generality that F ⊂ Bn(o, µv̄1/n + 2), because otherwise
Perg(E,B

n(x, s)) = 0 ≤ Perg(F,B
n(x, s)). By Lemma 1.15, Equation (1.32), there exists

t∗ ∈ (0, 1] such that
Volg((1 + t∗)F ) = v,
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where the dilation is taken with respect to the normal coordinates based at o ∈M . On the
other side, minimality of E and Equation (1.33) imply that

Perg(E) ≤ Perg((1 + t∗)F ) ≤ (1 + Ct∗) Perg(F ),

and therefore, for almost every 0 < s ≤ s1 := min{1, ϕ−1(v/(2nωn))} we have that

Perg(E,B
n(x, s))

≤ (1 + Ct∗) Perg(F,B
n(x, s)) + Ct∗ Perg(E,M \Bn(x, s))

≤ Perg(F,B
n(x, s)) + Ct∗

(
Perg(F,B

n(x, s)) + IM(v)
)

≤ Perg(F,B
n(x, s)) + Ct∗

(
nωnϕ

′(s) + IM(v)
)
.

We notice that Lemma 1.17 implies that C0IM(v) ≤ v(n−1)/n, and by monotonicity of ϕ′,
ϕ′(s) ≤ ϕ′(ϕ−1(2v/(nωn))) ≤ C̄v(n−1)/n, for some constant depending only on (n, d, v̄) (to
see this, look at Taylor expansions in the proof of Lemma 1.11). Hence

Perg(E,B
n(x, s)) ≤ Perg(F,B

n(x, s)) + Cv(n−1)/nt∗.

We are left to find an upper bound for t∗. Since

Volg(E)− Volg(F ) ≤ Volg(E△F ),

and by Equation (1.33)

Volg(E)− Volg(F ) = Volg((1 + t∗)F )− Volg(F ) ≥ ((1 + t∗)n − 1)Volg(F ) ≥
nv

2
t∗,

we get that

t∗ ≤ 2Volg(E△F )
nv

,

proving Equation (1.36). Equation (1.37) follows from Lemma 1.17 observing that

Volg(E△F ) = Volg(E△F )(n−1)/nVolg(E△F )1/n ≤ C0 Perg(E△F )Volg(Bn(x, s))

= C0 Perg(E△F )nωnϕ(s).

1.3.2 L1 and L∞-proximity to a geodesic ball

We prove first that for small enough volumes isoperimetric sets are L1-close to geodesic balls
with respect to the Euclidean metric ge. Then, the almost-minimality of Proposition 1.18
improves this to L∞ by rescaling. From now on, we will always suppose that

– E ⊂ M is an isoperimetric set with small volume Volg(E) = v ≤ v̄, where v̄ > 0 is as
in Proposition 1.16.
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– There exists o ∈ M so that E ⊂ Bn(o, µv1/n) in virtue of Proposition 1.16. We will
say that a point p ∈M is admissible if E ⊂ Bn(p, µv1/n).

– The Euclidean metric ge (and its associated geometric concepts Bn(x, s), V(·), P(·),
etc) is the one arising from normal coordinates pointed at o ∈M .

Proposition 1.19. Let E ⊂M be an isoperimetric set of volume Volg(E) = v ≤ v̄. Consider
ge to be the Euclidean metric associated to the normal coordinates pointed at some point
o ∈ M , so that E ⊂ Bn(o, µv1/n). Then, there exists a constant C = C(n, d, v̄) > 0 and a
point x̃ = x̃(o) ∈M such that

Cv1/n ≥
(V(E△Bn(x̃, t̃))

V(E)

)2
, (1.38)

where t̃ > 0 is so that V(E) = V(Bn(t̃)). In particular

V (E△Bn(x̃, t̃)) ≤ Cv1+1/2n. (1.39)

Proof. We start by proving that

ϕ′(s) ≤ cosh(s)d−1/n(nϕ(s))(n−1)/n.

In fact

ϕ(s) =

ˆ s

0

ϕ′(τ) dτ =

ˆ s

0

sinhn−1(τ) coshd−1(τ) dτ ≥ 1

cosh(s)

ˆ s

0

sinhn−1(τ) cosh(τ) dτ

=
1

n cosh(s)
sinhn(s),

implies that
ϕ′(s)

(nϕ(s))(n−1)/n
≤ cosh(s)d−1+(n−1)/n = cosh(s)d−1/n.

Let s̃ > 0 so that
Volg(E) = Volg(B

n(s̃)).

Then, by Lemma 1.15, Equations (1.34) and (1.35) we get that

P(E) ≤ Perg(E) ≤ Perg(B
n(s)) = nωnϕ

′(s̃)

≤ nω1/n
n cosh(s̃)d−1/n(nωnϕ(s̃))

(n−1)/n

= nω1/n
n cosh(s̃)d−1/nVolg(E)

(n−1)/n

≤ nω1/n
n cosh(s̃)d−1/n(1 + ω′(µv̄1/n)µv̄1/n)V(E)(n−1)/n

≤ nω1/n
n (1 + Cv1/n)V(E)(n−1)/n,

since s̃ ≤ µv1/n. By the quantitative strong isoperimetric inequality in Rn, see [50], Equa-
tion (1.38) follows immediately. Equation (1.39) is a consequence of the fact that V(E) ≤
Volg(E) ≤ v.
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We argue now by rescaling. Let

λn := V(E) = V(Bn(t̃)) = ωnt̃
n,

and define the rescaled volume and perimeter operators

Vol∗g(G
∗) := λ−nVolg(λG

∗),

Per∗g(G
∗) := λ−(n−1) Perg(λG

∗).

Set E∗ := λ−1E. Then we have immediately that the set E∗ is renormalized with respect to
ge, that is

V(E∗) = 1.

Moreover, the L1-proximity is uniformly given by

Vol∗g(E
∗△Bn(λ−1x̃,ω−1/n

n )) ≤ Cv1/2n, (1.40)

in virtue of Proposition 1.19 and Lemma 1.15, Equation (1.34). Finally, there exist C∗ > 0
and s∗ > 0 depending only on (n, d, v̄) > 0 such that

Per∗g(E
∗, Bn(x, s)) ≤ Per∗g(F

∗, Bn(x, s)) + C∗Vol∗g(E
∗△F ∗), (1.41)

whenever E∗△F ∗ ⊂ Bn(x, s) and 0 < s ≤ s∗. This is a consequence of Proposition 1.18 and
the bounds on the sectional curvature, giving the existence of Λ = Λ(n, d, v̄) > 0 such that
Bn(x, s) ⊂ Bn(x,Λs) provided distg(o, x) ≤ 2µv̄1/n + 2, 0 < s < 1.

Proposition 1.20. Let E ⊂ M be an isoperimetric set of volume Volg(E) = v < v̄, and
λ > 0 such that E∗ := λ−1E has Euclidean volume equal to one. There exists x̃(o) ∈M and
c1 = c1(n, v̄) > 0 such that

Bn(λ−1x̃, (1− c1v
1/2n2

)ω−1/n
n ) ⊂ E∗ ⊂ Bn(λ−1x̃, (1 + c1v

1/2n2

)ω−1/n
n ).

Proof. Let x ∈ ∂E∗, and h > 0 be the Euclidean distance of x to ∂B(λ−1x̃,ω
−1/n
n ). For

0 < r < min{h/2, s̃}, define the function

W (r) := Vol∗g(E
∗ ∩Bn(x, r)).

Since (E∗ ∩Bn(x, r)) ⊂ (E∗△Bn(λ−1x̃,ω
−1/n
n )), we have thanks to Equation (1.40) that

W (r) ≤ Cv1/2n.

On the other side, setting F ∗ := E∗ \Bn(x, r), the uniform almost-minimality gives

Per∗g(E
∗) ≤ Per∗g(F

∗) + C∗W (r).
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This, with Lemma 1.17, imply that

C−1
0 W (r)(n−1)/n ≤ Per∗g(E

∗ ∩Bn(x, r)) ≤ Per∗g(E
∗, Bn(x, r)) + Per∗g(E

∗ ∩ ∂Bn(x, r))

≤ C∗W (r) + 2Per∗g(E
∗ ∩ ∂Bn(x, r))

= C∗W (r) + 2W ′(r).

This shows that there exists C̄ > 0 such that

C̄rn ≤ W (r) ≤ Cv1/2n,

implying
0 < r < min{s∗, Cv1/2n2

/C̄},

showing, up to taking v̄ > 0 small enough, that h ≤ 2Cv1/2n
2
/C̄. This proves that there

exists c1 > 0 such that ∂E∗ is contained in the annulus

A := Bn(λ−1x̃, (1 + c1v
1/2n2

)ω−1/n
n ) \Bn(λ−1x̃, (1− c1v

1/2n2

)ω−1/n
n ).

The L1-proximity (1.40) implies that E∗ contains the ball Bn(λ−1x̃, (1 − c1v
1/2n2

)ω
−1/n
n ),

because otherwise

Cv1/2n ≥ Vol∗g(E
∗△Bn(λ−1x̃,ω−1/n

n )) ≥ Vol∗g(B
n(λ−1x̃, (1− c1v

1/2n2

)ω−1/n
n ))

≥ Vol∗g(B
n(λ−1x̃, (1− c1v

1/2n2

)ω−1/n
n ))

= λ−nnωnϕ
′((1− c1v

1/2n2

)ω−1/n
n )),

leading to a contradiction when v > 0 is small enough, since λn ∼ v.

To complete the proof of L∞-proximity for the rescaled isoperimetric set E∗, we need to
prove that the center of the ball λ−1x̃ goes to the origin as v goes to zero. This is possible
is we impose the lifting point o ∈M to be the barycenter of E, that is o = Barg(E).

Lemma 1.21. Let E ⊂ M be as in Proposition 1.19. Then, the barycenter Barg(E) is
admissible, in the sense that

E ⊂ Bn(Barg(E), µv
1/n).

Proof. In virtue of Proposition 1.16, there exists o ∈ M such that E ⊂ Bn(o, v1/nµ/2). If
p := Barg(E) ∈ Bn(o, v1/nµ/2) we are done. If this is not the case, then

g(exp−1
p (x), exp−1

p (o)) > 0,

for all x ∈ E, contradicting Equation (1.7).

This allows us to chose o = Barg(E) in Proposition 1.19 and Proposition 1.20. We can
prove that the associated center of the Euclidean ball λ−1x̃ goes to the origin as v goes to
zero.
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Proposition 1.22. Let E ⊂M be as in Proposition 1.19. Choosing the normal coordinates
pointed at o = Barg(E) ∈M , we have that there exists C = C(n, d, v̄) > 0 so that

|λ−1x̃| ≤ Cv1/2n
2

.

In particular, there exists c2 = c2(n, d, v̄) > 0 such that

Bn(0, (1− c2v
1/2n2

)ω−1/n
n ) ⊂ E∗ ⊂ Bn(0, (1 + c2v

1/2n2

)ω−1/n
n ). (1.42)

Proof. Recall that by Equation (1.8), if the barycenter of E is at the origin with respect to
the normal coordinates x = rφ, (r, φ) ∈ (0,+∞)× Sn−1, then

0 =

ˆ
E

xωg(r) dH
n.

Rescaling, we have that

0 =

ˆ
E∗
xωg(λr) dH

n.

Therefore

|λ−1x̃| =
∣∣∣∣ˆ
E∗
(λ−1x̃− x) + x(ωg(λr)− 1) dH n

∣∣∣∣
≤
∣∣∣∣ˆ
E∗−λ−1x̃

x dH n

∣∣∣∣+ ˆ
E∗
r(ωg(λr)− 1) dH n.

Thanks to Proposition 1.20, we can estimate the first integral as follows:∣∣∣∣ˆ
E∗−λ−1x̃

x dH n

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Sn−1

ˆ ω
−1/n
n (1+c1v1/2n

2
)

ω
−1/n
n (1−c1v1/2n2

)

χE(rφ)r
nφdr dφ

∣∣∣∣∣
≤ P(Bn)

ˆ ω
−1/n
n (1+c1v1/2n

2
)

ω
−1/n
n (1−c1v1/2n2

)

rn dr

=
P(Bn)ω

−(n+1)/n
n

n+ 1

n+1∑
k=0

(
n+ 1

k

)
(1− (−1)k)ck1v

k/2n2

≤ C

2
v1/2n

2

,

for some constant C > 0. Lemma 1.21 implies that E∗ ⊂ Bn(0, K), for some universal
K > 0. Hence, we estimate the second integral asˆ

E∗
r(ωg(λr)− 1) dH n =

ˆ
E∗
r

ˆ λr

0

ω′
g(τ) dτ dH

n

≤ K2λω′
g(λK)

≤ C

2
v1/n,

showing that |λ−1x̃| ≤ Cv1/2n
2
. Equation (1.42) is a consequence of this and Proposition

1.20.
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After stating the key regularity result, the proof of Theorem 1.3 will be a corollary of
Theorem 1.2 and Proposition 1.22.

Theorem 1.23. Let (Eε)ε>0 be a sequence of sets with finite perimeter in Rn and (Fε)ε>0 a
sequence of functionals of the form

Fε(G) :=

ˆ
∂∗G

fε(x, ν) dH
n−1(x),

where G is a generic set of finite perimeter, ν its measure theoretic outwards unit normal and
(fε)ε>0 a family of C2-functions, uniformly λ-elliptic, and with uniformly bounded Hessian
in a fixed ball B(0, 2R), that is

sup
{
|D2

ξξfε(x, ξ)| : (x, ξ) ∈ B(0, 2R)× Sn−1
}
≤ Λ,

for a universal constant Λ > 0. If for all ε > 0

Bn(0, (1− ε)r) ⊂ Eε ⊂ Bn(0, (1 + ε)r),

and Eε is uniformly almost-minimizing with respect to Fε, then there exists ε1 > 0 such that
for all 0 < ε ≤ ε1

∂Eε =
{
r(1 + ρε(φ)) : φ ∈ Sn−1

}
,

where ρε ∈ C1(Sn−1) and ∥ρε∥C1 → 0 as ε→ 0.

Proof. See [48, Theorem 2.2].

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Consider a sequence of decreasing volumes v̄ ≥ vk → 0, and let Ek
be one isoperimetric region with volume vk in M . Let E∗

k be the rescaling of Ek pointed
at Barg(Ek), so that V(E∗

k) = 1. Then, looking at E∗
k as a sequence of sets with finite

perimeter in Rn, we can apply Proposition 1.22 and Theorem 1.23 to infer that there exists
ρ∗k ∈ C1(Sn−1) so that

∂E∗
k = {ω−1/n

n (1 + ρ∗k(φ)) : φ ∈ Sn−1},

and ∥ρ∗k∥C1 → 0 as k → ∞. Therefore, letting Rk > 0 be such that Bn(Rk) = vk, and
λnk = V(Ek), we have that

∂Ek = {Rk(1 + ρk(φ)) : φ ∈ Sn−1},

where ρk := λkω
−1/n
n

Rk
− 1 + λkω

−1/n
n

Rk
ρ∗k → 0 in C1 as k → +∞. Applying Theorem 1.2, we

conclude the proof.



39

Chapter 2

2
Hyperbolic log-convex densities and Hopf

symmetries

2.1 Preliminaries

We denote by (Hn
R, gH) the real hyperbolic space of dimension n ∈ N with constant sectional

curvature equal to −1. Call dH the induced Riemannian distance. Choose an arbitrary base
point o ∈ Hn

R. We say that a function f : Hn
R → R>0 is (strictly) radially log-convex if

ln(f(x)) = h(dH(o, x)),

for a smooth, (strictly) convex and even function h : R → R. We define the weighted
perimeter and volume of a set with finite perimeter E ⊂ Hn

R as

Vf (E) :=

ˆ
E

f dH n, and Pf (E) =

ˆ
∂∗E

f dH n−1.

Here, following the notation in [76], ∂∗E denotes the reduced boundary of E. A set of finite
perimeter E with volume Vf (E) = v > 0 is called isoperimetric if it solves the minimization
problem

J(v) := inf
{
Pf (F ) : Vf (F ) = v, F ⊂ Hn

R of finite perimeter
}
. (2.1)

The first goal of this Chapter is to show the following characterization of the isoperimetric
sets, which will be developed in Section 2.2.

Theorem 2.1. For any strictly radially log-convex density f , geodesic balls centered at o ∈
Hn

R uniquely minimize the weighted perimeter for any given weighted volume with respect to
Pf and Vf .

Our main motivation in proving such result is the tight relation of this problem with the
(unweighted) isoperimetric problem in the complex hyperbolic spaces Hm

C , the quaternionic
spaces Hm

H and the Cayley plane H2
O restricted to a family of sets sharing a particular

symmetry that we define as follows.

Definition 2.2 (Hopf-symmetric sets). Let K ∈ {C,H,O}, d = dim(K) ∈ {2, 4, 8} and
(M, g) = (Hm

K , g) be the associated rank one symmetric space of non-compact type of real
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dimension n = dm, m = 2 if K = O. Fix an arbitrary point o ∈ M and let N be the unit
length radial vector field emanating from o. Then, up to renormalization of the metric, the
Jacobi operator R(·, N)N arising from the Riemannian curvature tensor R is a self-adjoint
operator of TM , and has exactly three eigenvalues: {0,−1,−4}. The (−4)-eigenspace defines
at every point x ̸= o a distribution Hx of real dimension d−1. A C1-set E ⊂M with normal
vector field ν is said to be Hopf-symmetric if ν(x) is orthogonal to Hx at each point x ∈ ∂E,
o ̸∈ ∂E.

Remark 2.3. Let h : Sn−1 → KPm−1 be the celebrated Hopf fibration. Then, for any C1-
profile ρ : Sn−1 → (0,+∞) so that ρ is constant along the fibres of h, the set with boundary

∂E := {expo(ρ(x)x) : x ∈ Sn−1 ⊂ ToM},

is Hopf-symmetric, where expo is the exponential map of M at an arbitrary point o ∈M .

Remark 2.4. Being Hopf-symmetric has not to be confused with the standard notion of
being Hopf in Hm

C , that is a set with principal curvature along the characteristic directions
Jν, where J denotes the associated complex structure. It is worth saying that spheres are the
only Hopf, compact, embedded constant mean curvature surfaces in Hm

C , as it is proven by A.
A. Borisenko in [21]. The natural generalization of this concept when K ∈ {H,O} is being a
curvature-adapted hypersurface, that is, the normal Jacobi operator R(·, ν)ν commutes with
the shape operator.

We adopt the notation of Definition 2.2 for the rest of the Chapter. Let P and V
be the perimeter and volume functionals induced by g in Hm

K . Consider the (unweighted)
isoperimetric problem

inf
{
P (F ) : V (F ) = v, F ⊂ Hm

K Hopf-symmetric
}
. (2.2)

We dedicate Section 2.3 to the proof of the following theorem.

Theorem 2.5. If geodesic balls centered at o ∈ Hn
R are isoperimetric with respect to Problem

(2.1) for the strictly radial log-convex density

f(x) = cosh(dH(o, x)))
d−1, d = dim(K),

then geodesic balls in Hm
K are optimal with respect to the isoperimetric Problem (2.2).

The explicit expression of the perimeter for Hopf-symmetric sets that we will develop in
the proof of Theorem 2.5, and Theorem 2.1 will lead to the following consequence.

Corollary 2.6. In the class of Hopf-symmetric sets, geodesic balls are the unique isoperi-
metric sets in Hm

K .

In the past two decades, numerous researchers have shown great interest in studying the
isoperimetric problem within manifolds with positive densities on the perimeter and volume.
In the context of radial weights on Rn, C. Rosales, A. Cañete, V. Bayle and F. Morgan
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established the existence of isoperimetric sets by imposing certain growth conditions on the
weight. Furthermore, they proved that spheres centered at the origin are stable if and only
if the weight is log-convex, see [101, Theorem 3.10]. Under this last assumption, K. Brakke
conjectured that balls centered at the origin are not only stable, but in fact global minimizers
of the weighted perimeter.

In [86] A. Pratelli and F. Morgan provided several important new qualitative results and
examples related to this topic.

Brakke’s conjecture was proved in the large volume regime by A. Kolesnikov and R.
Zhdanov in [69] through an ingenious application of the divergence theorem. The small
volume regime was then proved by A. Figalli and F. Maggi in [51] via a rescaling argument
taking advantage of deep quantitative stability estimates on the spheres.

Finally, the complete proof was given by G. R. Chambers in [30]. The analysis relies on a
meticulous examination of the generating profile of spherical symmetrized sets. In fact, the
first and main part of this chapter is an adaptation of the method to our negatively curved
case.

It is worth saying that this strategy was moreover successfully employed by W. Boyer,
B. Brown, G. R. Chambers, A. Loving and S. Tammen in [24] to show the surprising fact
that for all volumes balls whose boundary passes through the origin are isoperimetric with
respect to the radial polynomial weight |x|p, for all p > 0.

For what concerns curved ambient spaces, various results have been obtained. In [85]
F. Morgan, M. Hutchings, and H. Howards focused their attention on the plane enowed
with a smooth, rotationally symmetric metric with radially increasing Gauss curvature,
proving that an isoperimetric set in this case is either a circle, a complement of a circle
or an annulus. In warped product manifolds a significant result is due to S. Howe, who
in addition of generalizing the aforementioned result by A. Kolesnikov and R. Zhdanov,
established several situations in which the fibres minimize the vertical volume, see [64].
For what concerns the hyperbolic setting, Brakke’s conjecture in the two dimensional case
was proved according to I. McGuillivray in [79]. The work of E. Bongiovanni, A. Diaz, A.
Kakkar, and N. Sothanaphan in [20] provides an affermative answer to Brakke’s conjecture
for large volume sets containing the origin, in the general setting of two dimensional surfaces
of revolution, in which the product of the metric factor with the given volume density is
eventually log-convex. This applies for instance to the hyperbolic plane with density equal
to exp(dH(x, o)

2) for some fixed base point o ∈ H2
R, see [20, Corollary 5.10].

Finally, very recently in [72] H. Li and B. Xu showed sharp isoperimetric inequalities in
Hn

R endowed with radial density of the form

ϕ(sinh(dH(x, o)) cosh(dH(x, 0)),

for ϕ even, log-convex, and o ∈ Hn
R any base point. The proof, that generalizes the result by

J. Scheuer and C. Xia in [104], cleverly applies the result of G. R. Chambers by projecting
the hyperbolic space onto Rn and employing a comparison argument. This result proves
Theorem 2.5 in the case of the complex hyperbolic space by simply taking ϕ ≡ 1. Our



42

contribution consists in a further generalization: observe that the density

f(x) := ϕ(sinh(dH(x, o)) cosh(dH(x, 0))

is always strictly log-convex, but the converse is not true: for instance when f(x) =
cosh(dH(x, o))

d−1 for d > 2 (like in Theorem 2.5), the associated function

ϕ(R) :=
cosh(arsinh(R))d−1

cosh(arsinh(R))
= cosh(arsinh(R))d−2

is not log-convex.

Remark 2.7. In extending the proof of Brakke’s conjecture from the Euclidean space to
the hyperbolic space, we decided for simplicity to assume the weight to be strictly log-convex
rather than simply log-convex. This choice was motivated by the technical difficulties arising
from the presence of regions with constant weight. It is worth noting that this restriction has
no bearing on the application being studied.

In what follows, we will always assume E ⊂ Hn
R to be an isoperimetric set with respect

to the weighted problem (2.1).

2.1.1 Qualitative properties of the isoperimetric sets

The main argument of this Chapter is grounded in the principles of existence and regularity
of isoperimetric sets in manifolds with densities. We refer to the work of E. Milman [80,
Section 2.2 and 2.3] as a very general reference. Existence, boundedness and mean-convexity
of isoperimetric sets in Rn endowed with a various family of densities was the focus of the
article by F. Morgan and A. Pratelli [86]. For completeness, the detailed application of
their arguments to our hyperbolic setting can be found in the Appendix A.1, Theorems
A.2, A.3, and A.4. Regularity of area minimizing surfaces has been the object of study of
geometric measure theorists for many decades. The result ensuring smoothness away from
a singular set of Hausdorff dimension at most n− 8 is by now a well-established and widely
acknowledged fact. For a presentation of the historical background, we recommend referring
to [84, Chapter 8], and [80, Section 2.2] for numerous references on the subject. In analogy
with the unweighted case, the last crucial property of the isoperimetric sets E is to have
constant weighted mean curvature

Hf := H + ∂ν ln(f), (2.3)

at each regular point of ∂E. Here, H denotes the unaveraged inward Riemannian mean
curvature, and ν the outward pointing unit normal. The peculiar form of Hf is obtained
via a direct computation of the volume preserving first variation of the perimeter, see [101,
Section 3]. The next theorem summarizes all the before mentioned properties of isoperimetric
sets.

Theorem 2.8 (Existence and regularity). For any volume v > 0 there exists a set E ⊂ Hn
R

of finite perimeter and weighted volume Vf (E) = v solving the isoperimetric problem (2.1).
Moreover, E enjoys the following properties:
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– ∂E is a bounded C∞ embedded hypersurface outside a singular set of Hausdorff dimen-
sion at most n− 8.

– There exists λ ∈ R such that at any regular point x ∈ ∂E, Hf (x) = λ. As a conse-
quence, ∂E is mean-convex at each regular point y ∈ ∂E, that is H(y) ≥ (n− 1).

– If the tangent cone at x ∈ ∂E lies in a halfspace, then it is a hyperplane, and therefore
∂E is regular at x. In particular, ∂E is regular at points x⋆ ∈ ∂E satisfying dH(x

⋆, o) =
supx∈∂E dH(x, o).

2.1.2 The Poincaré model of Hn
R

Adopting the Poincaré model, Hn
R is conformal to the open Euclidean unit ball. At a point

x ∈ Hn
R the metric is

gH =
4

(1− r2)2
gflat,

where r = |x| will always denote the Euclidean distance of x from the origin, and gflat the
usual Euclidean metric of Rn. The hyperbolic distance from the origin is then given by

dH(x, 0) = 2 artanh(r).

We define the boundary at infinity ∂∞H
n
R of Hn

R to be the Euclidean unit sphere ∂B(0, 1) =
Sn−1. We will identify the base point o ∈ Hn

R of the radial density f with the origin 0 in
B(0, 1).

2.1.3 Isometries and special frames in H2
R

Denote by e1 and e2 the horizontal and vertical Cartesian axes in the two dimensional
Poincaré disk model. Also, let (H2

R)+ be the intersection of H2
R with the closed upper half-

plane having e1 as boundary. The isometry group of (H2
R, gH) is completely determined (up to

orientation) by the Möbius transformations preserving the boundary ∂∞H
2
R. Hence, geodesic

circles coincide with Euclidean circles completely contained in H2
R. Their curvature lies in

(1,+∞). Circles touching ∂∞H
2
R in a point are called horocycles, and have curvature equal

to 1. Geodesics are arcs of (possibly degenerate) circles hitting ∂∞H
2
R perpendicularly in two

points. Arcs of (possibly degenerate) circles that are not geodesics are called hypercycles,
and have constant curvature in (−1, 1) \ {0}. It will be convenient to work with a particular
frame: define

S : (H2
R)+ → R,

to be the hyperbolic distance of a point in (H2
R)+ from the horizontal axis e1. Set X = ∇S,

where we naturally extend by continuity X at e1. Then, denoting with X⊥ the counter-
clockwise rotation of X by π

2
radians, since the level sets of S are equidistant to each other,

{X,X⊥} forms an orthonormal frame of (H2
R)+, see Figure 2.1. The integral curves of X are

all geodesic rays hitting e1 perpendicularly. For each l ∈ [0, 1), let δl be the integral curve
of X⊥ so that δl(0) = (0, l). Then, (δl)l∈[0,1) is a family of equidistant hypercycles foliating

(H2
R)+, crossing e2 perpendicularly and with constant curvature which coincides with the
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Eucliden one: K1 = 2l
1+l2

= 1
R(l)

, where R(l) ∈ (0,+∞] is the radius of the Euclidean circle

representing the curve. Similarly, set {N,N⊥} to be the orthonormal frame on H2
R \ {0}

where N is the radial unit length vector field emanating from the origin. Then, integral
curves of N are rays of geodesics, and integral curves of N⊥ are concentric geodesic cycles.
Notice that the frame {X,X⊥} is invariant under the one-parameter subgroup of hyperbolic
isometries fixing e1 (X⊥ is the infinitesimal generator of the action by translations) and, up
to reverse the orientation, under the reflections with respect to any geodesic integral curve
of X. Finally, notice that on e1 and e2, {X,X⊥} is a positive rescaling of {(0, 1), (−1, 0)}.

H
2

R

X

X
⊥l

δl

e1

e2

Figure 2.1: The special frame {X,X⊥}.

For a regular curve parametrized by arc length η we denote with κη(t) the inward signed
curvature of η at η(t). We recall the identity

κηη̇
⊥ = ∇η̇η̇,

where here ∇ denotes the standard Levi-Civita connection associated to gH .

2.1.4 Reduction to H2
R

From now on, let E be an isoperimetric set with arbitrary weighted volume. Since both the
density f and the conformal term of gH are radial, the coarea formula implies that spherical
symmetrization pointed at the origin preserves the weighted volume and does not increase
the weighted perimeter of E (see [86, Theorem 6.2]). For this reason, we will assume E
spherically symmetric with respect to the e1 axis. Now, intersecting E with the Euclidean
plane spanned by {e1, e2}, we obtain a spherically symmetric profile Ω ⊂ H2

R. Let x⋆ be
the furthest point of Ω lying in the positive part of the e1 axis (this is always possible by
reflecting Ω with respect to the e2 geodesic). Let γ : [−a, a] → H2

R be a counter-clockwise,
arclength parametrization of the boundary of the connected component of Ω containing x⋆,
so that γ(0) = x⋆, see Figure 2.2. The curve γ enjoys the following properties:

– γ is smooth on (−a, a). Indeed, if there exists a∗ ∈ (−a, a) such that γ(a∗) is not
regular, then ∂E contains a singular set of Hausdorff dimension n − 2, but this is
impossible because of Theorem 2.8.



45

– γ is symmetric with respect to the axis e1.

– The curve γ forms a simple, closed curve.

– Writing γ = (γ1, γ2) in cartesian coordinates, one has that sgn(γ2(t)) = sgn(t). In
particular, γ : [0, a) → (H2

R)+.

– γ̇(0) = X(γ(0)).

e1

γ

x
⋆

H
2

R

Ω

Figure 2.2: The spherical symmetrization.

To translate Equation (2.3) as a property of the profile γ, we need the following definition.

Definition 2.9. For any t ∈ [0, a), denote by

– Ct = Ct(s) the (possibly degenerated) oriented circle tangent to γ(t), with center on e1,
parametrized by arclength and such that Ct(0) = γ(t). Denote by κ(Ct) its constant
curvature.

– ct = ct(s) the (possibly degenerated) oriented circle tangent to γ(t), parametrized by
arclength, such that ct(0) = γ(t) and κ(ct) = κγ(t).

– x(Ct) and x(ct) the hyperbolic center of Ct and ct respectively. Similarly, let x1(Ct)
and x1(ct) be the first Euclidean coordinate of x(Ct) and x(ct) respectively.
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Remark 2.10. Let F ⊂ B(0, 1) ⊂ Rn. Then, at every regular point x ∈ ∂F , the mean
curvature H is related with the Euclidean mean curvature Hflat by

H(x) =
1− r2

2
Hflat(x) + (n− 1)gflat(x, ν̃),

where ν̃ is the outward normal vector to ∂F with Euclidean norm equal to one. In particular,
when n = 2, denoting with κflat the usual Euclidean curvature, one has that

κη =
1− |γ(t)|2

2
κflatη + gflat(η, ν̃).

Therefore, κflat(ct) = κflatγ , that is comparison circles ct and Ct in the hyperbolic setting
coincide with comparison circles with respect to the Euclidean metric. From this formula,
we also deduce that for any Euclidean circle C

κC =
1

2

(1− |x0|2

τ0
+ τ0

)
= coth(τ),

where x0 and τ0 are the Euclidean center and radius, and τ is the hyperbolic radius.

Lemma 2.11. On t ∈ [0, a) it holds

H(t) = κγ(t) + (n− 2)κ(Ct).

In particular,

Hf (t) = κγ(t) + (n− 2)κ(Ct) + h′(dH(o, γ(t)))gH(ν(t), N(γ(t))) = λ,

where ν = −γ̇⊥.

We callH1(t) := ∂ν(ln(f))(γ(t)) = h′(dH(o, γ(t)))gH(ν(t), N(γ(t))) the term coming from
the log-convex density.

Proof. In [30, Proposition 3.1] it is shown that the Euclidean mean curvature of the spheri-
cally symmetric set E can be computed as

Hflat = κflatγ + (n− 2)κflat(Ct).

Thanks to Remark 2.10 we have that

H(γ(t)) =
1− |γ(t)|2

2
Hflat(γ(t)) + (n− 1)gflat(γ(t), ν)

=
1− |γ(t)|2

2

(
κflatγ + (n− 2)κflat(Ct)

)
+ (n− 1)gflat(γ(t), ν)

= κγ + (n− 2)κ(Ct).
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2.2 The proof

We have seen that existence, boundedness, and regularity of isoperimetric sets (Theorems
2.8, A.2, and A.3) together with the radial nature of the density f allows us to assume
the optimal set E to be bounded and spherically symmetric with generating curve smooth
away from the axis of symmetrization. Consequently, the problem is reduced to a planar
situation, in which the profile curve γ solves the ordinary differential equation induced by
the constant weighted mean curvature Hf of the original isoperimetric set, as stated in
Lemma 2.11. Adapting Chamber’s analysis to our specific situation presents difficulties as
the nonexistence of a natural choice of a frame on the tangent space as in the Euclidean
plane. Consequently, to carry out a rigorous curvature-comparison analysis (for instance
Lemma 2.26), it is crucial to carefully select a frame that appropriately accommodates the
geometry of our particular case, as we did in Section 2.1.3. The proof of Theorem 2.1 relies
on showing that γ represents a circumference centered at the origin. The argument presented
shows that refuting this possibility leads to a surprising consequence: the curve γ must make
a curl, as represented in Figure 2.3, contradicting the fact that γ is the parameterization of
a spherically symmetric set. More rigorously, the contradiction arises as the combination of
the next two lemmas.

Lemma 2.12. For every t ∈ (0, a)

gH(N, γ̇) ≤ 0.

Proof. The fact that the set Ω is spherically symmetric implies that t 7→ gflat(γ(t), γ(t)) is
non increasing. Differentiating in t gives the desired sign of the angle between N and γ̇.

Section 2.2.1 is devoted to the proof of the next lemma.

Lemma 2.13 (The tangent lemma). If γ is not a circle centered in the origin, there exist
0 < a0 < a1 < a2 < a such that γ̇(a0) = X⊥(γ(a0)), γ̇(a1) = −X(γ(a1)) and γ̇(a2) =
X(γ(a2)).

H
2

R

e1

e2

γ

Figure 2.3: The curl described in Lemma 2.13.

Assuming now that Lemma 2.13 holds true, the proof of the main result goes as follows.
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Proof of Theorem 2.1. If γ is a circle centered at the origin we are done. Otherwise, Lemma
2.13 ensures the existence of 0 < a2 < a such that γ̇(a2) = X(γ(a2)). This violates the
inequality of Lemma 2.12, because at a2

gH(N, γ̇) = gH(N,X) > 0.

Therefore, the profile curve γ has to be a circumference centered in the origin. Uniqueness
is established by observing that up to measure zero the only set which, when spherically
symmetrized, results in a centered ball, is a centered ball itself.

2.2.1 Proof of the tangent lemma

The proof is made by following the behaviour of γ step by step: first we show that γ has
to arch upwards with curvature strictly greater than one. The endpoint of this arc will be
γ(a0), where γ̇(a0) = X⊥(γ(a0)). Then, it goes down curving strictly faster than before,
and this result about curvature is the tricky point to generalize in the hyperbolic setting.
It turns out that the special frame given by the hypercyclical foliation (δl)l∈[0,1) is the good
one. Then, arguing by contradiction, we will show that this behaviour must end at a point
0 < a0 < a1 < a, where γ̇(a1) = −X(γ(a1)). Finally, we prove the existence of a2 so that
γ̇(a2) = X(γ(a2)) taking advantage of the mean-curvature convexity of Ω. We start by
looking at what happens at the starting point.

Lemma 2.14. One has that γ̇(0) = X(γ(0)), κ̇γ(0) = 0 and κγ(0) ≥ κ(C0) > 1.

Proof. This is a consequence of the symmetry of γ with respect to the e1 axis, and of the
fact that γ(0) represent the furthest point from the origin of Ω.

Lemma 2.15. If there exists t∗ ∈ [0, a) such that x1(Ct∗) = 0 and κγ(t
∗) = κ(Ct∗), then γ

has to be a centered circle.

Proof. In this case γ(t) and Ct∗(s) solve the same ODE, with same initial data. Therefore,
they have to coincide locally, and hence globally.

Definition 2.16. Call α : [0, a) → [π,−π) the oriented angle made by γ̇ with X⊥. We say
that γ̇(t) is in the I, II, III and IV quadrant if α(t) belongs to [π/2, π], [0, π/2], [0,−π/2]
and [−π/2,−π] respectively. We add strictly if γ̇ is not collinear to X and X⊥.

Lemma 2.17. If for some t ∈ [0, a), γ̇(t) belongs to the II quadrant, then x1(Ct) ≥ 0.

Proof. We first treat the case t ∈ (0, a). Expressing N(γ(t)) in the {X,X⊥} frame, we have
thanks to Lemma 2.12 that

0 ≥ gH(N, γ̇) = gH(X,N)gH(X, γ̇) + gH(X
⊥, N)gH(X

⊥, γ̇)

= gH(X,N) sin(α) + gH(X
⊥, N) cos(α).

(2.4)

If α = π/2, then
0 ≥ gH(X,N),
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which is possible only when γ2(t) = 0, that is t ∈ {0, a}. If α ∈ [0, π/2) then cos(α) > 0,
implying that gH(X

⊥, N) ≤ −g(X,N) tan(α) ≤ 0. Notice that this is possible only if
γ1(t) ≥ 0. Calling −ϑ < 0 the angle that N makes with X, we get by Equation (2.4) that

tan(α) ≤ tan(ϑ). (2.5)

Now, observe that the two geodesic rays σγ, σN starting at γ(t) with initial velocities σ̇γ(0) =
γ̇⊥(t) and σ̇N(0) = N⊥(γ(t)), together with the axis e1 and the geodesic orthogonal to e1
passing from γ(t) bound two geodesic triangles △γ and △N . Call d the distance between
γ(t) and e1. Then, the length of the sides ℓγ and ℓN of △γ and △N respectively, lying on e1
are given via hyperbolic trigonometric laws by

tanh(ℓγ) = tan(α) sinh(d) ≤ tan(ϑ) sinh(d) = tanh(ℓN).

But this implies that x(Ct), which is the intersection of σγ with e1, has first coordinate
positive, as claimed. If t = 0, then C0 = c0 and approximates γ(0) up to the fourth order.
Therefore, if x1(Ct) < 0, then there exists ε > 0 such that γ|(ε,2ε) lies outside the ball centered
in the origin and with radius dH(γ(0), o). This is a contradiction because by construction
γ(0) is the furthest point of Ω from o.

Our next goal is to show four important properties of the curve γ. The proof is made by
comparison with the circles ct and Ct, and the preservation of the weighted mean curvature
Hf . For this reason, we need the following preliminary lemma.

Lemma 2.18. Let η = η(s) be an arc-length, counter-clockwise parametrization of a circle
centered at (0, y) such that η(0) = (τ, y) and η(L) = (0, y + τ). Let O = (−õ, 0) be an
arbitrary point lying on e1 with õ ∈ [0, 1), and ν(s) the outward pointing normal to η(s).
Then, setting

H̃1(s) := ∂ν(h(dH(O, x)))|x=η(s),

if y = 0, then

H̃ ′
1(s) ≤ 0, in (0, L], (2.6)

and

H̃ ′′
1 (0) ≤ 0. (2.7)

Both inequalities are strict if õ ̸= 0. If y ∈ (0, 1) and õ ̸= 0, then

H̃ ′
1(L) < 0. (2.8)

Proof. Let T : H2
R → H2

R be the unique isometry fixing e1 and sending the origin to O.
Then,

H̃1(s) = ∂ν(h(dH(O, x)))|x=η(s)= h′(dH(O, η(s)))gH(ν(s), T∗N(η(s))).
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For the sake of exposition, we will omit the arguments in the following computations. Dif-
ferentiating one time in s we have that

H̃ ′
1(s) = h′′gH(T∗N, η̇)gH(ν, T∗N) + h′

d

ds
gH(ν, T∗N)

= h′′gH(T∗N, η̇)gH(ν, T∗N)− h′
(
gH(∇η̇η̇

⊥, T∗N) + gH(η̇
⊥,∇η̇T∗N)

)
= h′′gH(T∗N, η̇)gH(ν, T∗N)− h′

(
−gH(T∗N, η̇)κη + gH(T∗N, η̇)gH(T∗N

⊥, η̇)κ1

)
,

where κ1 is the curvature of the integral curve of T∗N
⊥ passing through η(s), which is a

geodesic sphere centered at O. Suppose first that y = 0 and õ ̸= 0. Then, η̇ = N⊥, and

H̃ ′
1(s) = h′′gH(T∗N,N

⊥)gH(N, T∗N)− h′gH(T∗N,N
⊥)(−κη + gH(T∗N,N)κ1) < 0,

because h′′ > 0, h′ > 0, gH(T∗N,N
⊥) < 0, gH(T∗N,N) > 0 and κη > κ1 since õ ̸= 0. This

proves Equation (2.6) when õ ̸= 0. The same holds in the context of Equation (2.8) since
η̇(L) = N⊥. Up to relaxing the inequalities, the proof when õ = 0 is exactly the same. To
prove Equation (2.7), we differentiate H̃1 one more time, obtaining

H̃ ′′
1 (s) = h′′′gH(T∗N, η̇)

2gH(ν, T∗N) + h′′
d

ds
gH(T∗N, η̇)gH(ν, T∗N)

+ h′′gH(T∗N, η̇)
d

ds
gH(ν, T∗N) + h′′gH(T∗N, η̇)

d

ds
gH(ν, T∗N)

+ h′
d2

ds2
gH(ν, T∗N).

Observe that in zero gH(T∗N, η̇) = 0, hence only the second and last term survive

H̃ ′′
1 (0) = h′′

d

ds

∣∣∣
s=0

gH(T∗N,N
⊥)gH(T∗N,N) + h′

d2

ds2

∣∣∣
s=0

gH(T∗N,N).

Taking advantage of the explicit expression for d
ds
g(T∗N,N) we obtained before, we get

d2

ds2

∣∣∣
s=0

gH(T∗N,N) = − d

ds

∣∣∣
s=0

(
gH(T∗N,N

⊥)
(
−κη + gH(T∗N,N)κ1

))
=
(
κη − gH(T∗N,N)κ1

) d
ds

∣∣∣
s=0

gH(T∗N,N
⊥),

which implies that

H̃ ′′
1 (0) =

(
h′′gH(T∗N,N) + h′κη − h′gH(T∗N,N)κ1

)︸ ︷︷ ︸
>0

d

ds

∣∣∣
s=0

gH(T∗N,N
⊥).

Hence, we are left to show that d
ds

∣∣∣
s=0

gH(T∗N,N
⊥) < 0. Developing again we get

d

ds

∣∣∣
s=0

gH(T∗N,N
⊥) = gH(∇N⊥T∗N,N

⊥)|s=0+gH(T∗N,∇N⊥N⊥)|s=0

= gH(T∗N,N)2κ1|s=0−gH(TN,N)κη|s=0

= κ1 − κη < 0.
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We are now ready to prove the next result.

Lemma 2.19. The following four points hold.

i. If for t ∈ (0, a) one has that κγ(t) ≥ κ(Ct) > 1, then t 7→ x1(Ct) is smooth and
d
dt
x1(Ct) ≥ 0.

ii. If γ is not a centered circle, then κ̈γ(0) > 0.

iii. If for t ∈ (0, a), γ̇(t) is in the II quadrant and κγ(t) = κ(Ct) > 1, then κ̇γ(t) ≥ 0.
Moreover, if γ̇(t) ̸= X⊥(γ(t)) and Ct is not centered in the origin, then κ̇γ(t) > 0.

iv. If for t ∈ (0, a) one has that γ̇(t) = X⊥(γ(t)), γ1(t) > 0 and κγ(t) ≥ κ(Ct) > 1, then
κ̇γ(t) > 0.

Proof. We start with point i. Observe that since ct approximates γ up to the third order
around γ(t), it suffices to prove d

dt
x1(Ct) ≥ 0 replacing γ with ct. Also, we can suppose x(ct)

on e2 by composing with the unique hyperbolic isometry translating x(ct) on e2 and fixing
e1. The curvature condition κγ(t) ≥ κ(Ct) > 1 ensures that x(ct) ∈ (H2

R)+. By monotonicity
of the function tanh(·/2), it suffices to prove the claim for the Euclidean center of Ct. Thus,
we have reduced the problem to an explicit computation in the Euclidean plane, that can be
found in [30, Lemma 5.3]. Thanks to Lemma 2.18 the proofs of the other points go exactly
as in [30, Lemma 3.4, Lemma 3.5 and Lemma 3.7]. We show point ii. Differentiating Hf

twice, we get that

κ̈γ(0) = −(n− 2)κ̈(C0)−H ′′
1 .

By symmetry, c0 = C0. Moreover, since κ̇γ(0) = 0, we have that both c0 and C0 approximate
γ up to the fourth order near zero. Hence, κ̈(C0) = 0. Therefore, it suffices to determine
the sign of H ′′

1 replacing γ with C0. Let T : H2
R → H2

R be the unique isometry fixing e1
that moves x(C0) to the origin. The result follows by Equation (2.7) of Lemma 2.18 setting
O = T (0), and noticing that T (0) ̸= 0 by Lemma 2.15. The proofs of points iii. and iv.
are similar: in the first case the condition κγ(t) = κ(Ct) implies that ct = Ct approximates
γ near t up to the third order, the same holds if γ̇(t) = X⊥(γ(t)) by symmetry. Hence,
substituting γ with ct and differentiating one time Hf , we have to determine the sign of H ′

1

in the case of a circle, via Lemma 2.18.

We are now ready to analyse the first behaviour of γ.

Definition 2.20 (Upper curve). The upper curve is the (possibly empty) maximal connected
interval IU ⊂ [0, a) such that 0 ∈ IU and for all t ∈ IU

a. γ̇(t) is in the II quadrant,

b. κγ(t) ≥ κ(Ct) > 1,

c. t 7→ x1(Ct) is smooth and d
dt
x1(Ct) ≥ 0.
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We set
a0 := sup IU .

In the discussion, we will sometimes identify the upper curve with its image through γ.

Definition 2.21. We say that a curve η is graphical with respect to the hypercyclic foliation
(δl)l∈[0,1) if η meets each δl at most once.

Notice that the upper curve (if non empty) is graphical with respect to the hypercyclical
foliation because γ̇ is in the II quadrant

Proposition 2.22. The upper curve is non empty and enjoys the following properties

i. 0 < a0 < a,

ii. a0 ∈ IU ,

iii. γ1(a0) > 0,

iv. γ̇(a0) = X⊥(γ(a0)).

Proof. Thanks to Lemma 2.19, the proof goes exactly as [30, Lemma 3.11 and Proposition
3.12]. We sketch for completeness the idea behind each point. We start by showing that the
upper curve is non empty.

By Lemma 2.14 we know that γ̇(0) = X(γ(0)), κ̇γ(0) = 0, and κγ(0) ≥ κ(C0) > 1.
Moreover, by Lemma 2.19 point ii. since by assumption γ is not a centered circle, we get
that κ̈γ(0) > 0. By continuity, since c0 = C0 approximates γ up to the fourth order near zero,
we have that there exists ε > 0 such that for all t ∈ [0, ε) points a. and b. in Definition 2.20
are satisfied. Finally, point c. of Definition 2.20 follows from Lemma 2.19 point i. which
asserts that κγ(t) ≥ κ(Ct) > 1 implies that x1(Ct) is smooth and d

dt
x1(Ct) ≥ 0. Hence,

[0, ε) ⊂ IU , proving that the upper curve cannot be empty.
Notice that 0 < a0 cannot be equal to a since otherwise the curve γ does not close itself on

e1, simply because γ̇ belongs to the II quadrant by definition of IU . By the regularity of γ and
that IU is defined by three closed conditions, we have that a0 ∈ IU . By composing with the
unique hyperbolic isometry sending γ(a0) on e2 fixing e1, we can see that x1(Ca0) ≤ 0 because
γ̇(a0) belongs to the II quadrant. Lemma 2.15 and Lemma 2.17 imply that x1(C0) > 0 and
since d

dt
x1(Ct) ≥ 0 in IU , one must have that γ1(a0) > 0. The last point is proved by

contradiction: if γ̇(a0) ̸= X⊥(γ(a0)), then a0 ∈ IU implies that γ̇(a0) is strictly in the II
quadrant. If κγ(a0) = κ(Ca0) > 1, then ca0 = Ca0 approximates γ to the third order and
Lemma 2.19 point iii. implies that there exists some δ > 0 such that κγ(t) ≥ κ(Ct) > 1
for t ∈ [a0, a0 + δ). The same holds if κγ(a0) > κ(Ca0) > 1 by continuity. This means
that [a0, a0 + δ) ⊂ IU , which is not possible by the very definition of a0. Hence, γ̇(a0) =
X⊥(γ(a0)).

Definition 2.23 (Lower curve). The lower curve is the maximal connected interval IL ⊂
[a0, a) such that for all t ∈ IL
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a. a0 ∈ IL,

b. γ̇(t) is in the III quadrant,

c. calling t̄ ∈ IU the unique time such that S(γ(t)) = S(γ(t̄)) we have that κγ(t) ≥ κγ(t̄).

We set
a1 := sup IL.

Notice that a0 truly belongs to IL, so IL ̸= ∅. Also, the lower curve is graphical with
respect to the hypercyclical foliation because γ̇ is in the III quadrant. Our next goal is to
prove that a1 < a. Again, we proceed by contradiction, and the intuition is the following:
suppose that a1 = a. If κγ(t) = κγ(t̄) for all t ∈ IL, then the lower curve is nothing else than
the upper curve reflected with respect to the geodesic orthogonal to e1 and passing through
γ(a0). Hence, limt→a+ α(t) = −π

2
. Otherwise, if the γ|IL curves strictly faster than the upper

curve at some point, then the angle of incidence limt→a+ α(t) < −π
2
(see Figure 2.4). But

this cannot be true, because it contradicts the regularity of ∂E pointed out in Theorem 2.8.
To prove that the lower curve curves strictly faster than the upper curve we need first to
express the curvature with respect to the {X,X⊥} frame, and next prove three comparison
lemmas.

Lemma 2.24. Let η any regular curve parametrized by arclength such that η̇(t) is not
collinear to X(η(t)). Then,

−κη(t) = β̇(t)−K1(η(t)) cos(β(t)),

where β(t) denotes the angle between η̇ and X⊥, and K1 is the curvature of the leaf δl passing
through η(t).

Proof. Decompose η̇ = AX +BX⊥. Then, since κηη̇
⊥ = ∇η̇η̇, we get that

− cos(β)κη = gH

(
∇η̇η̇, X

)
= ∂t

(
sin(β)

)
− gH

(
η̇,∇η̇X

)
.

Now, keeping in mind that ∇XX = 0 and gH
(
∇X⊥X⊥, X

)
= −K1(η(t)), we get

gH

(
AX +BX⊥,∇AX+BX⊥X

)
= B2gH

(
X⊥,∇X⊥X

)
= cos(β)2K1(η(t)).

Dividing both sides by cos(β) we get the desired identity.

We can prove our first curvature comparison lemma.

Lemma 2.25 (κ comparison lemma). Let η1 : (0, A1] → H2
R and η2 : (0, A2] → H2

R be two
hypercyclical graphical curves parametrized by arclength and with velocity vectors in the II
quadrant. Suppose that there exists l0 ∈ [0, 1) such that

lim
t→0+

η1(t) and lim
t→0+

η2(t),
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exist and belong to the same leaf δl0. Also, suppose that η1(A1) = η2(A2), η̇1(A1) = η̇2(A2),
and that if S(η1(t)) = S(η2(τ)) then κη1(t) ≥ κη2(τ). Then, calling α1 and α2 the angle
made by η̇1 and η̇2 with X⊥ we have that

lim
t→0+

α1(t) ≥ lim
t→0+

α2(t).

Moreovoer, if for some t and τ such that S(η1(t)) = S(η2(τ)), one has that κ1(t) > κ2(τ),
then

lim
t→0+

α1(t) > lim
t→0+

α2(t).

Proof. Since the curves are graphical with respect to the hypercyclical foliation we can
operate a change of variable: we observe that the two height functions s1(t) := S(η1(t))
and s2(τ) = S(η2(τ)) are bijections with same image of the form (l0, L]. By hypothesis
κη1(s

−1
1 (l)) ≥ κη2(s

−1
2 (l)) for every l ∈ (l0, L]. Comparing the two curves in the l ∈ (l0, L]

variable, since s′i = gH(∇S, η̇i) = gH(X, η̇i) = sin(αi), i = 1, 2, we get by Lemma 2.24 that

0 ≤ κη1(l)− κη2(l) = α̇2(l) sin(α2(l))− α̇1(l) sin(α1(l))−
2l

1 + l2
(
cos(α2(l))− cos(α1(l))

)
.

Multiplying by (1 + l2) and integrating we finally get that

0 ≤
ˆ L

l0

(1 + l2)(cos(α1) cos(α2))
′ + 2l(cos(α1)− cos(α2)) dl

=

ˆ L

l0

d

dl

(
(1 + l2)(cos(α1)− cos(α2))

)
dl = lim

l→l+0

(1 + l2)(cos(α2(l))− cos(α1(l))).

If the two curvatures are different somewhere, then the inequality between the two angles is
strict.

H
2

R

e1

e2

α1

α2

η1

η2

η̃1

l0

α̃1

Figure 2.4: The curvature comparison.
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Lemma 2.26 (κ(Ct) comparison lemma). Let η1, η2 be as in Lemma 2.25. Then, for any
two points η1(t1) and η2(t2) on the same leaf δl, calling C

1 and C2 the comparison circles at
η1(t1) and η2(t2) as in Definition 2.9, we have that

κ(C1) ≤ κ(C2).

Proof. For i = 1, 2, the hyperbolic radius of Ci together with e1 and the geodesic starting
from ηi(ti) and hitting e1 perpendicularly bound a geodesic triangle △i. Let d1i be the
hyperbolic radius, d2i be the side touching e1 and d

3
i the the remaining side of △i. Similarly,

for i = 1, 2 and j = 1, 2, 3, call βji the angle opposite to d
j
i , and ℓ

j
i the length of dji . We refer

to Figure 2.5. By construction β1
1 = β1

2 = π
2
, β2

i = αi, and since η1(t1) and η2(t2) are in the
same hypercycle by hypothesis, we get ℓ31 = ℓ32. Then, by the hyperbolic law of cosines and
by Lemma 2.25 we get

κ(C1) = coth(ℓ11) =
cos(α1)

tanh(ℓ31)
≤ cos(α2)

tanh(ℓ32)
= coth(ℓ12) = κ(C2). (2.9)

H
2

R

e1

e2

X

X
⊥

η̇i

d
1

i

d
2

i

d
3

i

Figure 2.5: The curvature comparison for Ct.

Lemma 2.27 (H1 comparison lemma). Let η1, η2 be as in Lemma 2.25 and let η̃1 be the
reflection of η1 with respect to the geodesic passing through η1(A1) and crossing e1 perpen-
dicularly. Reverse its parametrization, so that the angle that ˙̃η1 makes with X⊥ is equal to
α̃1 = −α1. Moreover, suppose that

gH(N, η̇2) ≤ 0.

Denote the unitary outward pointing normals to η1 and η2 by ν̃1 and ν2. Then, for any two
points η̃1(t1) and η2(t2) on the same leaf δl we have that

gH(N(η̃1(t1)), ν̃1(t1)) ≤ gH(N(η2(t2)), ν2(t2)),

with equality if and only if η̇2(t2) and ˙̃η1(t1) are tangent to the same circle centered in the
origin and ˙̃η1(t1) = −η̇2(t2).
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Proof. Parametrize δl : R → H2
R by arclength in the X⊥ direction, so that δl intersects e2

at δl(0). Let ϑ(s) be the angle that N makes with X⊥ at δl(s) and s2 < s1 be such that
δl(s1) = η̃1(t1) and δl(s2) = η2(t2). Let Θ1,Θ2 ∈ [0, π

2
] be the angles that N makes with

ν1(t1) and ν2(t2) respectively. Then, Θ1 := ϑ(s1)− α̃1 − π
2
, Θ2 := ϑ(s2)− α2 − π

2
,

gH(N(η̃1(t1)), ν̃1(t1)) = cos(Θ1),

and
gH(N(η2(t2)), ν2(t2)) = cos(Θ2).

We need to investigate if Θ2 ≤ Θ1, and when Θ2 < Θ1. Let s∗2 ∈ R be such that the unit
vector at δl(s

∗
2) that forms an angle of α2 with X

⊥ is tangent to a circle centered in the origin.
The value s∗2 exists in the interval [s2, 0) because by Lemma 2.17, Equation (2.5), we have
that ϑ(s2) − π

2
≥ α2 and, in the intersection of δl with e2 we have that ϑ(0) − π

2
= 0 ≤ α2.

By continuity there must be a point s2 ≤ s∗2 < 0 such that ϑ(s∗2)− π
2
= α2. Then

Θ2 = −ϑ(s∗2) + ϑ(s2) = −
ˆ s∗2

s2

ϑ̇(s) ds.

Set s∗1 := −s∗2, and notice that ϑ(−s) = π − ϑ(s) for every s ≥ 0. Then,

Θ1 = ϑ(s1)− α̃1 −
π

2
= ϑ(s1) + α2 − (α̃1 + α2)−

π

2
= ϑ(s1) + ϑ(s∗2)− π − (α̃1 + α2)

= ϑ(s1)− ϑ(s∗1)− (α̃1 + α2)

= −
ˆ s∗1

s1

ϑ̇(s) ds− (α̃1 + α2).

Hence,

Θ2 −Θ1 = (α̃1 + α2)−
ˆ s∗2

s2

ϑ̇(s) ds+

ˆ s∗1

s1

ϑ̇(s) ds ≤ −
ˆ s∗2

s2

ϑ̇(s) ds+

ˆ s∗1

s1

ϑ̇(s) ds,

since α̃1 + α2 ≤ 0 by Lemma 2.25. Let ℓ = 2artanh(l) be the hyperbolic distance of δl from
e1. We claim that

ϑ̇(s) = −
(
sinh(ℓ) cosh(ℓ) cosh2(sech(ℓ)s) + coth(ℓ) sinh2(sech(ℓ)s)

)−1
< 0. (2.10)

Assuming that this identity holds, letting δ := s∗2 − s2, we have that

Θ2 −Θ1 ≤ −
ˆ s∗2

s∗2−δ
ϑ̇(s) ds+

ˆ s∗1

s∗1−δ
ϑ̇(s) ds+

ˆ s∗1−δ

s1

ϑ̇(s) ds

=

ˆ δ

0

ϑ̇(s∗2 − τ)− ϑ̇(s∗2 + τ) dτ +

ˆ s∗1−δ

s1

ϑ̇(s) ds

≤
ˆ s∗1−δ

s1

ϑ̇(s) ds ≤ 0,
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where we used that s∗1 = −s∗2 and ϑ̇ is a strictly negative, even function increasing in [0,+∞).
This implies that Θ2 ≤ Θ1, with equality if and only if δ = 0 and α1 = α2, that is when η̇2
and ˙̃η1 are tangent to the same circle centered in the origin. We are left to prove Equation
(2.10). Let β(s) be the angle that X makes with N in δl(s). Since β(s)+

π
2
= ϑ(s), it suffices

to compute β̇(s). The hypercycle δl(s) has curvature
2l

1+l2
= tanh(ℓ). The circle centered in

the origin passing through δl(s) has curvature coth(dH(0, δl(s))) =
cos(β(s))
tanh(ℓ)

, by the hyperbolic

trigonometric laws (as in Equation (2.9)). Now, we obtain an ODE for β(s) arguing as in
Lemma 2.24: at any time s ∈ R we have that

− tanh(ℓ) cos(β) = − tanh(ℓ)gH(δ̇l, N
⊥) = gH(∇δ̇l

δ̇l, N)

=
d

ds
(gH(δ̇l, N))− gH(δ̇l,∇δ̇l

N)

= − cos(β)β̇ + gH(δ̇l, N
⊥)2gH(∇N⊥N⊥, N)

= − cos(β)β̇ − cos(β)3

tanh(ℓ)
.

Dividing both sides by cos(β) ̸= 0 it follows that{
β̇(s) = tanh(ℓ)− cos(β(s))2

tanh(ℓ)
, s ∈ R,

β(0) = 0.

By integration, one can compute the explicit solution

β(s) = − arctan
(
csch(ℓ) tanh(sech(ℓ)s)

)
,

that by differentiation gives

ϑ̇(s) = β̇(s) = −
(
sinh(ℓ) cosh(ℓ) cosh2(sech(ℓ)s) + coth(ℓ) sinh2(sech(ℓ)s)

)−1
,

proving Equation (2.10).

We can prove the main result about the lower curve.

Proposition 2.28. It γ is not a circle centered in the origin, the lower curve is contained
in [a0, a), that is 0 < a1 < a. Furthermore, a1 ∈ IL and γ̇(a1) = −X(γ(a1)).

Proof. By property iv. of Lemma 2.19, a1 > a > 0. Suppose by contradiction that a1 = a.
Set η̃1 to be the (reparametrized) lower curve and η2 the upper curve. Choose any point
t ∈ IL with corresponding t̄ ∈ IU . Applying Lemma 2.26 and Lemma 2.27 to η̃1(t) and η2(t̄),
and taking advantage of the expression for Hf given in Lemma 2.11, we get that

Hf (γ(t̄)) = Hf (γ(t)) = κγ(t) + (n− 2)κ(Ct) + h′(dH(0, γ(t)))gH(ν(t), N)

< κγ(t) + (n− 2)κ(Ct̄) + h′(dH(0, γ(t)))gH(ν(t), N).
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We have that

dH(0, γ(t)) ≤ dH(0, γ(t̄)).

This can be verified again via the trigonometric rules for hyperbolic triangles: fix t ∈ IU ,
and call β and β̄ the angle that N makes with X(γ(t)) and X(γ(t̄)) respectively. Notice
that 0 ≤ β ≤ β̄. Then, calling d the distance of γ(t) and γ(t̄) from e1, we get that

tanh(dH(0, γ(t))) =
tanh(d)

cos(β)
≤ tanh(d)

cos(β̄)
= tanh(dH(0, γ(t̄))).

Hence

Hf (γ(t̄)) < κγ(t) + (n− 2)κ(Ct̄) + h′(dH(0, γ(t̄)))gH(ν(t̄), N),

implying

κγ(t̄) < κγ(t),

since h is strictly convex. This is a contradiction because Lemma 2.25 tells us that the lower
curve hits the e1 axis with an angle strictly smaller than −π

2
. Therefore, a1 < a. Since γ is

smooth in a1 < a, and the conditions on IL are closed, we deduce that a1 ∈ IL. Suppose now
that α(a1) is strictly in the III quadrant. Since a1 ∈ IL, we can apply again the comparison
lemmas to γ(a1) and γ(ā1) to infer

κγ(ā1) < κγ(a1).

By continuity of κγ and γ̇ around a1, we get that there exists a neighbourhood of a1 in
which γ̇ is in the III quadrant and the above inequality holds in the not strict sense. But
this implies that a1 is not the supremum of IL. Therefore, the velocity vector of γ at a1 has
to be equal to −X.

We prove the last part of the tangent lemma.

Proposition 2.29. If γ is not a centered circle, then there exists 0 < a1 < a2 such that
γ̇(a2) = X(γ(a2)).

Proof. If a2 exists we are done. Otherwise, we show that the non existence contradicts the
mean-curvature convexity of Ω. Let

Ic := {t ∈ [a1, a) : γ̇ is in the I or IV quadrant}.

Here the index stands for curl curve. Set ã2 := sup Ic. Since κ(a1) > 1 we have that a1 < ã2.
If ã2 < a, then the mean convexity of Ω implies that

κγ(ã2) ≥ (n− 1)− (n− 2)κ(Cã2) > 0.

To see this, move γ(ã2) on e2 as in Lemma 2.19. Then, Cã2 is oriented clockwise, and hence
has negative curvature. But this implies that we can extend Ic after ã2, contradicting the
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definition of ã2. So, we need to rule out the situation in which ã2 = a. If it is the case, then
again for mean-convexity one has that in Ic

κγ(t) > 1.

Moreover, for t ∈ Ic \ {a1} we have that γ̇ lies in the IV quadrant, because otherwise this
implies together with κγ(t) > 0 that γ cannot close at e1. Therefore α(t) lies in the IV
quadrant and it is strictly increasing, implying that

lim
t→a+

α(t) < −π
2
.

This cannot happen because of the before mentioned regularity properties of isoperimetric
sets.

The proof of the tangent lemma is then the collection of the results we showed in this
section.

Proof of Lemma 2.13. The existence of the chain 0 < a0 < a1 < a2 < a is ensured by
Proposition 2.22, Proposition 2.28 and Proposition 2.29.

2.3 Symmetric sets in Hm
K

Consider any rank one symmetric space of non-compact type (Mn, g) = (Hm
K , g), K ∈

{C,H,O}. Set d = dim(K) ∈ {2, 4, 8} so that the real dimension of M is n = md. Recall
that if K = O, we only have the Cayley plane H2

O. As classical references on symmetric
spaces we cite the books of Eberlein [40] and Helgason [61]. Fix an arbitrary base point
o ∈M , and let N be the unit-length, radial vector field emanating from it. As in Definition
2.2, let H be the distribution on M \ {o} induced by the (−4)-eigenspace of the Jacobi
operator R(·, N)N . Denote with V the orthogonal complement of H with respect to g. For
every x ∈M \ {o}, we have the orthogonal splitting

TxM = Hx ⊕ Vx,

with orthogonal projections (·)H and (·)V . Let now (M̄n, gH) = (Hn
R, gH), and choose an

arbitrary base point ō in it. The isometric identification of ToM with TōM̄ according to the
flat metrics (expMo )∗g|0 and (expM̄ō )∗gH |0, induces a well defined diffeomorphism

Ψ = expM̄ō ◦(expMo )−1 :M → M̄.

With a slight abuse of notation, we still denote with gH the metric Ψ∗gH , that makes M
isometric to M̄ . The following lemma allows us to compare g with gH .

Lemma 2.30. For every x ∈M \ {o}, the splitting

TxM = Hx ⊕ Vx,
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is orthogonal with respect to gH . In particular, letting dH be the Riemannian distance induced
by gH on M , one has that

g(v, w) = cosh2(dH(o, x))gH(v
H, wH) + gH(v

V , wV), (2.11)

for all v, w ∈ TxM .

Proof. Fix an arbitrary unit direction No ∈ ToM , and let Vo ∈ ToM be any vector orthogonal
to it with respect to g|o = gH |o. Since the radial geodesics emanating from o are the same
for g and gH , the Jacobi field Y (t) along the geodesic σ : t 7→ expMo (tNo), determined by
the initial conditions Y (0) = 0, Ẏ (0) = Vo is the same for both metrics. Let V (t) and VH(t)
be the parallel transport of Vo along σ with respect to g and gH , respectively. By the very
definition of symmetric spaces, the curvature tensor R is itself parallel along geodesics. This
implies that

sinh(t)VH(t) = Y (t) =
sinh(

√
−κt)√

−κ
V (t),

provided Vo belongs to the κ-eigenspace of the Jacobi operatorR(·, No)No. Therefore, parallel
vector fields in the eigenspaces are collinear for the two metrics. Hence, for t > 0 the linear
subspaces Hσ(t) and Vσ(t) are nothing else than the parallel transport of the corresponding
eigenspaces of R(·, No)No along σ. It follows that the splitting TxM = Hx⊕Vx is orthogonal
not only with respect to g, but also with respect to the hyperbolic metric gH . Equation
(2.11) is a direct consequence of this fact and the definition of the distribution H.

We can now prove Theorem 2.5.

Proof of Theorem 2.5. Let E ⊂ M be a Hopf-symmetric set with outward pointing normal
vector field ν with respect to g. By the very definition of Hopf-symmetry, νH ≡ 0. Therefore,
thanks to Lemma 2.30, ν is orthonormal to ∂E also with respect to gH . Let vol and volH
the volume forms associated to g and gH . We have that

P (E) =

ˆ
∂E

ιν vol =

ˆ
∂E

coshd−1(dH(o, x))ιν volH(x),

where ι : Ω(M)p → Ω(M)p−1 denotes the interior product ιXα(·) = α(X, ·). The volume of
E is given by the formula

V (E) =

ˆ
E

vol =

ˆ
E

coshd−1(dH(o, x)) volH(x).

Hence, the volume and perimeter of Hopf-symmetric sets in M correspond to the volume
and perimeter of Ψ(E) in Hn

R with density equal to f(x) = coshd−1(dH(o, x)), concluding
the proof.
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The semigeostrophic system
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Introduction

Big whirls have little whirls that feed on their
velocity, and little whirls have lesser whirls and
so on to viscosity.

L. F. Richardson, Weather Prediction by
Numerical Processes.

Fluids, meteorology, and predictability

The foundation of modern fluid mechanics dates back to the 18th century, engaging eminent
members of the scientific community of the time such as Newton, Pitot, Bernoulli, McLaurin,
d’Alembert, and Euler (for a comprehensive and beautifully written history of mathematics
we refer to [22]). It is due to the latter the formalization of the differential equations of
motions, appeared first inMémoires de l’académie des sciences de Berlin (1757), in an article
[44] that still astonishes for its modern exposition, being the first instance of a system of
partial differential equations (vectorial, in post-quaternionic terminology) ever written. An
incompressible fluid under some external total force Ft in Eulerian coordinates is described
via a velocity vector field ut representing the magnitude and direction of the flow at every
given point, a scalar pressure pt, and density ρt, related as follows

(∂t + ut · ∇)ut +
1
ρt
∇pt = 1

ρt
Ft,

div(ut) = 0,

∂tρt + div(ρtuu) = 0.

The first equation is nothing else that Newton second law m · a = F , where the acceleration
has to be taken along the flow. In fact, the differential operator (∂t+ut ·∇), called material
or advective derivative, measures the rate of change of any vector field Xt along the integral
lines {

α̇(x, t) = ut(α(x, t), t),

α(x, 0) = x,

since
∂t(X(α(x, t), t)) =

(
(∂t + ut · ∇)X

)
(α(x, t), t).

The second equation is an infinitesimal way of saying that the flow is volume preserving,
and hence incompressible. The third equation, that we will soon forget assuming ρt ≡ 1 for
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simplicity, imposes conservation of mass by requiring that the density is transported along
the flow: ρ(α(x, t), t) = ρ(x, 0).

Whether this equation (or the famous Navier-Stokes equation, its viscous sibling [90,
114]) makes sense under suitable natural conditions (in mathematical jargon if it is well
posed) or can develop wild physical nonsense (for instance vortices with infinite velocity) is
a question that challenges the scientific community to this day, making it one of the most
popular areas of research in mathematical physics, as already predicted by Euler himself in
his article:

On comprend aisément que cette matiere est beaucoup plus difficile, & quelle
renferme des recherches incontrollablements plus profondes (. . . ).

Tightly related with fluid mechanics, the foundation of meteorology1, the branch of atmo-
spherical sciences dealing with the prediction of weather, required a slow process punctuated
by several technical discoveries essential to its development. The invention of the barome-
ter by Torricelli (1643) and the mercury thermometer by Fahrenheit (1714) were crucial to
obtain accurate measurements, and the construction of the first telegraph by Morse in the
mid-1800 made the world smaller and the production of the first weather maps possible.

It is a fascinating fact that the possibility of predicting the weather by solving numerically
the fundamental equations of fluid mechanics over some discretized cells (which is essentially
what meteorologist still do at present) was already considered before the decisive inventions
achieved under the technological urge of World War II: the radar, constructed by Bay in
1936, and the first modern computers (like the Z1, constructed by Zuse in 1941, and the
famous Colossus, build in 1944 by Turing and Flowers). The author of this pioneering
considerations was the mathematician and physicist Richardson2, who published in 1922 a
visionary book [95] that laid the foundation for the modern systematic method of weather
forecasting of our contemporary times. The wish in his volume

Perhaps some day in the dim future it will be possible to advance the computations
faster than the weather advances and at a cost less than the saving to mankind
due to the information gained. But that is a dream.

became reality exactly 40 years later, when TIROS I, the first meteorological satellite, was
launched into space.

As explained with details in the introduction of Cullen’s book [36], Richardson’s method
does not provide a direct understanding of the weather since it conceives the atmosphere as
any other abstract mathematical fluids. Why do we have cyclones, depressions, and fronts
in some part of the globe and not in others? A priori, weather forecasting via numerical
simulations based on the fundamental equations of motions may lead to failure. Since this

1About this we suggest the interested reader to consult the introductory article in National Geographic
https://education.nationalgeographic.org/resource/science-art-meteorology/.

2The same person who formulated the Coast Paradox, a fundamental observation in the development of
fractal geometry.

https://education.nationalgeographic.org/resource/science-art-meteorology/
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is clearly not the case, how can we explain the success of a science that has made enor-
mous progress since its foundation? The complexity relies in the variety of atmospherical
phenomena that happens at any time and length scales, classified in four types:

– Microscale: taking place within a few kilometers and in less than a day. For instance
chemical and physical interactions happening on ground level, and their interplay with
soil and vegetation.

– Mesoscale: happening on scales up to one thousand kilometers. They include all
phenomena of convection and circulation of masses of air due to the heterogeneous
distribution of temperature and density.

– Synoptic scale: even up to thousands of kilometers, this class deals with high and
low pressure systems. Cyclones and hurricanes are typical examples of low pressure
systems developing on tropical latitudes, and extremely cold temperatures and clear
skies are the results of high pressure systems in the arctics.

– Global scale: are all remaining phenomena that describe global patterns evolving over
time scales that can reach years: from winds travelling from low to high pressure
systems, to oceanic currents, and thermal energy distributions.

As the scale decreases, prediction becomes increasingly challenging. In the 1960s, the founda-
tion of chaos theory, developed, among others, by mathematician and meteorologist Lorenz
[75], provided significant support to the unpredictability of weather. This theory highlighted
the butterfly effect, where small-scale interactions between phenomena can lead to large-scale
effects, underlining the complexity of weather forecasting.

While this intricate reality is undeniable, it is also true that weather over reasonably long
periods is not completely chaotic, and it can be predicted most of the time with accuracy.
The reason of this lies on the concept of large scale control, as developed a decade later in
the 1970s. This notion is based on the observation that large-scale dynamics is topically
insensible to small-scale phenomena. This principle was then enforced by the discovery that
large-scale flow is essentially two dimensional, and hence more predictable than the three
dimensional dynamics.

The importance of deriving new approximate models that take into account only large-
scale dynamics is therefore motivated by the above considerations in the context of weather
forecast predictability. In the next section, we will present and derive the semigeostrophic
equations (which we also refer to as SG for short), as introduced by Hoskins in 1975 [62]
based on the previous work of Eliassen [43]. This system was explicitly developed to model
weather phenomena in synoptic scales under the particular assumption that the Coriolis
force, and thus the dynamics induced by the earth’s rotation, predominantly influences the
flow. In contrast with the two dimensional Euler equation over a rotating sphere (see the
article by Taylor [115]), the well posedness of the semigeostrophic system remains a delicate
and fascinating subject of study with connections with unexpected branches of mathematics,
as we shall see later.
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The semigeostrophic approximation (SG)

We describe here the derivation of the semigeostrophic equation starting from the Euler
equation as introduced in the previous section. Consider the two dimensional sphere rotating
on itself with constant angular velocity ω. The canonical Riemannian metric is given in
spherical coordinates (θ, φ) by

g = dθ2 + sin2(θ)dφ2,

where θ ∈ (0, π) represents the latitude and φ ∈ (0, 2π) the longitude. The Euler equation
in this curved setting takes the following form{

∂tut +∇utut + fJut +∇pt = 0,

div(ut) = 0,

where ut is now a vector field on the sphere, and the advection derivative (∂t + ut · ∇)
has to be replaced with the covariant derivative (∂t +∇ut) in order to ensure the image to
take place in TS2 by projection. The term fJut is the Coriolis term, induced by the earth
rotation, where J denotes counter-clockwise rotation of π/2-radians (complex endomorphism
of TS2), and f = 2ω cos(θ), see Figure 2.6. Notice that neglecting the vertical components

f = 2ω

f = 0

θ

S2

TS2
x

u

Ju
x

Figure 2.6: The J-action represented on a hemisphere.

by considering the equation on the surface of the sphere, we are already implementing the
first principle described in the previous section, namely that large-scales fluids have a mostly
two dimensional dynamics.

We assume now that we want to study the atmosphere in synoptic scales when the
Coriolis force is the dominating term in the equation. This last requirement is quantified by
the Rossoby number, an a-dimensional constant Ro that relates the length scale L with the
horizontal velocity scale Uh, approximating typically the ratio between the advection term
and the Coriolis force:

Ro :=
Uh

Lf
≈ |∂tut +∇utut|

|fut|
.

We suppose that Ro ≪ 1, that is we are in what is called a geostrophic regime (in contrast
with the cyclostrophic regime when Ro ≫ 1). We call uGt the geostrophic wind, the compo-
nent velocity that represents the purely geostrophic balance in the Euler equation, when the
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advection term is completely negligible:

fJuGt +∇pt = 0.

The semigeostrophic equation is then obtained by considering advected only the geostrophic
wind in the Euler equation:

∂tu
G
t +∇utu

G
t + fJut +∇pt = 0,

fJuGt +∇pt = 0,

div(ut) = 0,

which is clearly equivalent to
∂tu

G
t +∇utu

G
t + fJ(ut − uGt ) = 0,

uGt = f−1J∇pt,
div(ut) = 0.

Two main difficulties emerge already from this formulation: the degeneracy of f−1 ap-
proaching the equator, and the implicit nature of ut, which in this context has the role of a
Lagrange multiplier that forces uGt to stay in the particular form f−1J∇pt. Hence, ut in the
SG system plays the same role as ∇pt in the Euler equation, with the additional complexity
of appearing non-linearly in the equation.

Before highlighting the main achievements in the theory of SG system, we present the
most fascinating feature of this equation, as it was first sensed by Hoskins [62] and deeply
investigated by Cullen [36]: in the flat case with constant Coriolis force (so replacing S2

with T2, localizing the problem in an infinitesimally small neighbourhood of the arctics) it
is possible to establish a dual reformulation consisiting in a fully non-linear version of the
Euler vorticity equation where the Laplace is replaced with a Monge-Ampère equation. This
can be done as follows: the SG system on T2 is{

∂t∇pt + (ut · ∇)∇pt + (ut −∇⊥pt) = 0,

div(ut) = 0,

so if we define the time dependent measure µt as
3

µt = (Tt)# vol,

where Tt = ∇pt + x, and vol is the Lebesgue measure restricted to T2, we get that for every

3Reall the push forward of a measure is defined by the identity µt(A) := vol(T−1
t (A)), for all A Borel.
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test function ϕ ∈ C∞(T2) the following holds:

d

dt

ˆ
T2

ϕ dµt =
d

dt

ˆ
T2

ϕ d(Tt)# vol =
d

dt

ˆ
T2

ϕ ◦ Tt d vol

=

ˆ
T2

(∇ϕ ◦ Tt) · ∂tTt d vol

= −
ˆ
T2

(∇ϕ ◦ Tt) · ((ut · ∇)∇pt + (ut −∇⊥pt)) d vol

= −
ˆ
T2

(∇ϕ ◦ Tt) · ((ut · ∇)(∇pt + x)− (∇pt + x)⊥ + x⊥) d vol

= −
ˆ
T2

(∇ϕ ◦ Tt) · ((ut · ∇)Tt − T⊥
t + x⊥) d vol,

where we used that (v · ∇)x = v for every vector v. Now, since ut is divergence free we have
the following magic cancellation

−
ˆ
T2

(∇ϕ ◦ Tt) · (ut · ∇)Tt d vol = −
ˆ
T2

∇(ϕ ◦ Tt) · ut d vol =
ˆ
T2

(ϕ ◦ Tt)div(ut) d vol = 0.

So, if moreover T−1
t = St is well defined, we get finally

d

dt

ˆ
T2

ϕ dµt =

ˆ
T2

(∇ϕ ◦ Tt) · (T⊥
t − x⊥) d vol =

ˆ
T2

∇ϕ · (y − St)
⊥ dµt,

showing that µt is transported along Ut := (St − y)⊥, that is

∂tµt + div(µtUt) = 0.

The structure of Tt and its invertibility are guaranteed by Optimal Transport theory, cre-
ating an unexpected and elegant bridge between large-scale meteorology and optimization.
Brenier’s Theorem [25] (generalized to the periodic case by Cordero-Erausquin [35]), ensures
the existence of a unique convex map P such thatˆ

T2

ϕ dµ =

ˆ
T2

ϕ ◦ ∇P d vol, ∀ϕ ∈ C∞(T2),

for any given probability measure µ absolutely continuous with respect to vol. Moreover, the
inverse transport map is given via Legendre transform ∇P ∗. This result not only provides a
unique candidate for the construction of the map Tt = ∇pt+x = ∇(pt+|x|2/2) and its inverse
St, but it is surprisingly compatible with the physics of the problem: energy considerations
made by Cullen on the L2-norm of the geostrophic wind uGt shows that requiring pt+ |x|2/2
convex is a necessary condition of stability. This is nowadays known as Cullen stability
principle. So, the previous observations formally lead us to the dual reformulation the the
SG system 

∂tµt + div(Utµt) = 0,

Ut = (∇P ∗
t − y)⊥,

det(D2P ∗
t ) = µt,

Pt convex,
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where the Monge-Ampère equation derives from requiring (∇P ∗
t )#µ = vol. Comparing this

system with the more familiar vorticity formulation of the Euler equation obtained by setting
ωt = curl(ut) 

∂tωt + div(utωt) = 0,

ut = −∇⊥ψt,

∆ψt = curl(−∇⊥ψt) = ωt,

one discovers that essentially the SG system is the non-linear twin of the Euler equation,
where the Laplace operator is replaced by the fully non-linear Monge-Ampère equation.

State of the art

In the context of the dual formulation presented in the previous section, Optimal Transport
theory allows the construction of a solution, see Benamou and Brenier [13], Faria, Lopes
Filho, and Nussenzveig Lopes [46], Feldman and Tudorascu [47], and recently the work of
Bourne, Egan, Pelloni, Wilkinson [23] based on semi-discrete optimal transport techniques
(see also [12, 41] for interesting numerical implementations).

The task of translating the solution from the dual reformulation to the original Eulerian
coordinates is extremely delicate. In fact, it is not difficult to check that after some formal
algebraic manipulations on the SG system, the velocity (disappeared in the dual system
thanks to the magic cancellation explained before) takes the explicit form

ut = ∂t∇P ∗
t (∇Pt) +D2P ∗

t (∇Pt)(x−∇Pt)⊥,

in terms of the corrected pressure Pt = pt + |x|2/2. A priori, however, the hessian D2P ∗
t is

a measured-valued matrix, since P ∗ is simply convex, and thus any regularity result on ut
might appear compromised. The break-thought relies on deep regularity theory for bounded
Monge-Ampère equations, as developed by De Philippis and Figalli, taking the elegant form

0 < λ ≤ det(D2P ) ≤ Λ ⇒ D2P ∈ L logk L ∀k,

and further improved with Savin to the sharp regularityD2P ∈ L1+ε for some ε = ε(λ,Λ) > 0
(see [38, 39]). Thank to this general estimate, Ambrosio, Colombo, De Philippis, and Figalli
established the global-in-time existence and uniqueness of weak solutions in [5], making the
transition back to the original coordinates possible, proving in fact that ut ∈ L1+ε.

Local-in-time existence and uniqueness of smooth solutions was then solved in the dual
framework by Loeper in [74], where the convergence of the dual reformulation of the SG
system to the Euler vorticity equation was made rigorous via the linearization of the deter-
minant

D2Pt = I+ εD2ψt + o(ε) ⇒ det(D2Pt) = 1 + ε∆ψt + o(ε),

through a suitable rescaling of the variables in terms of ε > 0. An additional proof of local-
in-time existence of smooth solutions was provided in Lagrangian coordinates by Cheng,
Cullen, and Feldman in [33], allowing any positive and varying Coriolis term over T2.
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Contributions

In Chapter 3 we prove the local-in-time existence and uniqueness of solutions in subdomains
of a rotating sphere [110].

Theorem (see Theorem 3.1). Let Ω be an open, smooth, and simply connected subset of S2

such that Ω̄ is contained either in the upper or in the lower open hemisphere. Let ∇p0 ∈
Hs(Ω,R2), s ≥ 4, and suppose that there exists µ0 < 1 such that the uniform ellipticity
condition

Q0 := I+D2p0 −∇p0 ⊗∇ ln(f)−∇ ln(f)⊗∇p0 ≥ (1− µ0)I > 0,

is satisfied in Ω. Then, there exists t∗ > 0 such that for all 0 < t′ < t∗ there exists a unique
pair

∇pt ∈ C1(0, t′;Cs−3,α(Ω,R2)) ∩ L∞(0, t′;Hs(Ω,R2)),

and
ut = −∇⊥ψt ∈ C(0, t′;Cs−2,α(Ω,R2)) ∩ L∞(0, t′;Hs(Ω,R2)),

solving the SG system in [0, t′]× Ω with ∇pt|t=0 = ∇p0, and ut tangent to ∂Ω.

The proof is robust and overcomes the absence of a dual reformulation on the sphere,
holding true in general bounded and conformally flat domains with nowhere vanishing and
possibly varying f . We required Ω far from the equator since there f = 2ω cos(θ) vanishes,
inducing a singularity (recall uGt = f−1∇⊥pt). The argument is constructive. The delicate
point relies in the implicit definition of ut, which evolves in short time steps as a solution of
a PDE in the form

div(Cof(Qt)∇ψt) + b · ∇ψt = div(F)

obtained by applying div(f ·) to the SG system. A careful energy estimate of the Hs-norm of
∇pt uses, like for Euler, the incomprehensibility of the fluid [77]. The magic property of the
cofactor matrix div(Cof(D2pt)) = 0 induces an extra order of regularity crucial to close the
whole argument. Finally, uniqueness follows via the Gronwall Lemma, showing in particular
that solutions with L2-close initial data remain quantitatively L2-close for at least a short
time.

While in Chapter 3 we addressed the problem of the curvature, in Chapter 4 we face the
degeneracy of the Coriolis term approaching the equator. We first introduce a new family
of axially symmetric solutions determined by a one dimesional differential equation. This is
made possible by the particular property of the gradient of the coordiante function z when
seeing S2 embedded in R3, namely its hessian is just a rescaling of the identity: ∇2z = −zid.
This particular vector fields (being a particular instance of a concircular vector field, in
the Riemannian terminology) is particularly useful for our purpose since the Coriolis term
is nothing else than 2ωz. We prove in Theorem 4.1 that axially symmetric solutions are
globally stable with respect to the linearized SG system, provided that all initial data decay
fast enough approaching the equator. In fact, the construction is based on a geometric
strategy that compensates the severe singularity induced by the Coriolis term lifting the
equation to the higher dimensional sphere S4 and performing a slicing argument.
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Chapter 3

2
Local-in-time existence of SG on curved domains

3.1 Peliminaries

In this chapter we will have to distinguish the operators when are associated to a sphere or
to the plane. For this reason we denote with Dg, divg and ∇g the Levi-Civita connection,
the divergence and the gradient operator associated to some metric g. The SG system over
the sphere looks then like this

(∂t +Dg
u)uG + f(u− uG)

⊥ = 0,

uG = 1
f
∇⊥
g p,

divg(u) = 0,

(3.1)

in its essential formulation. Operating a stereographic projection pointed at the South Pole,
we can see (3.1) as taking place in the two dimensional plane endowed with the conformal
metric and Coriolis term

g =
4

(1 + |x|2)2
(
(dx1)2 + (dx2)2

)
, f = 2ω

1− |x|2

1 + |x|2
, (3.2)

in canonical Cartesian coordinates (x1, x2).

We can give the general statement of this problem: let Ω be a sufficiently smooth,
bounded and simply connected domain of R2, and let V, φ be two given smooth functions
defined on Ω̄. Set

g := e−2V
(
(dx1)2 + (dx2)2

)
, and f = e−φ, (3.3)

and define the endomorphism of tangent bundle

J = (·)⊥ : TΩ → TΩ, J = −dx2 ⊗ ∂

∂x1
+ dx1 ⊗ ∂

∂x2
,

to be the counter-clockwise rotation of π/2-radians. Given an initial pressure gradient ∇gp0
we wonder whether it is possible to find a local-in-time smooth solution of the semigeostrophic
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system 
(∂t +Dg

u)
(
eφ∇⊥

g p
)
+ e−φ

(
u− eφ∇⊥

g p
)⊥

= 0, in Ω,

divg(u) = 0, in Ω,

g(u, ν) = 0, on ∂Ω,

∇gpt |t=0= ∇gp0,

(3.4)

where ν denotes the outer pointing normal vector to ∂Ω. In particular, when φ and V are as
in (3.2) and (3.3) we are in the spherical case, and when V = φ = 0, we are in the classic flat
case. Here ∇g, divg and Dg denote the gradient, the divergence, and the covariant derivative
induced by the conformal metric g. Whereas in the flat case for any two vectors v, w one
has that

Dg
wv = (w · ∇g)v = wi

∂vj

∂xi
∂

∂xj
,

for a general metric one has to take into consideration the lower order terms arising from
the curvature

Dg
wv = wi

∂vj

∂xi
∂

∂xj
+ wivjΓkij

∂

∂xk
,

where Γkij are the Christoffel symbols induced by g. See for instance [1, Chapter 8.2] for a
clear and introductory exposition of fluid dynamics on manifolds.

3.1.1 Main result

For any vector field ξ ∈ C1(Ω,R2) we define the stability matrix Q as

Q = Q[Dξ, ξ] := e2V+2φ
(
DξT + (∇V +∇φ/2)⊗ ξ + ξ ⊗ (∇V +∇φ/2)− ⟨ξ,∇V ⟩I

)
,

where I denotes the identity matrix. For matrices A and B, we will write

A ≥ B, whenever ⟨Aξ, ξ⟩ ≥ ⟨Bξ, ξ⟩ for all ξ ∈ R2 \ {0}.

The main result of this Chapter is the following.

Theorem 3.1. Let k ≥ 4 be fixed, Ω be an open, simply connected and bounded subset of R2

with Ck+1-boundary, and V , φ be given functions in Ck+1(Ω̄). Let ∇p0 ∈ Hk(Ω,R2), and
suppose that there exists µ0 < 1 such that

I+Q[D2p0,∇p0] ≥ (1− µ0)I > 0.

Then, there exists a constant C = C(Ω, V, φ, k) > 0 such that, setting

t∗ := C

(
1− µ0

∥∇p0∥Hk(Ω) + 1

)(k+1)k+2

,

for all 0 < t′ < t∗ and α ∈ (0, 1) there exists a unique pair

∇pt ∈ C(0, t′;Ck−2,α(Ω,R2)) ∩ C1(0, t′;Ck−3,α(Ω,R2)) ∩ L∞(0, t′;Hk(Ω,R2)),
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and
ut = −e2V∇⊥ψt ∈ C(0, t′;Ck−2,α(Ω,R2)) ∩ L∞(0, t′;Hk(Ω,R2)),

solving the semigeostrophic System (3.4) in [0, t′]. Moreover, in [0, t′] the constant of uniform
ellipticity of I+Q[D2pt,∇pt] is bounded away from zero.

3.1.2 Structure of the Chapter and strategy of the proof

In Section 3.2 we start by developing the estimates of general elliptic partial differential
equations with Dirichlet boundary condition in the form{

div(A∇ϕ) + b · ∇ϕ = div(F), in Ω

ϕ = 0, on ∂Ω,
(3.5)

where A = A(x) is supposed uniformly elliptic, that is A(x) ≥ λI for some λ > 0 and
all x ∈ Ω. We will take advantage of the classic regularity theory in the Sobolev space
Hk(Ω) = {f ∈ L2(Ω) : ∂αf ∈ L2(Ω), |α| ≤ k}, k ≥ 4, to find an explicit upper bound on the
constant C > 0 realizing

∥∇ϕ∥Hk(Ω) ≤ C
(
∥∇ϕ∥L2(Ω) + ∥F∥Hk(Ω)

)
,

in terms of the Hk−1-norm of A, div(A), b and the elliptic constant λ. The key observation
here is that if div(A) shares the same regularity as A, then we gain two derivatives for the
solution ϕ instead of one.

Section 3.3 is devoted entirely to the construction of an approximate solution. We start
by taking advantage of the conformal nature of the metric to “flatten” the Riemannian op-
erators and see (3.1) as a lower order perturbation of the equation in (R2, dx). Then, we
formally obtain an elliptic partial differential equation for the potential of the velocity (recall
that Ω is simply connected and the fluid is incompressible) of the form (3.5) “killing” the time
derivative on the rotated gradient ∂t∇⊥p by applying the divergence operator on both sides
of the semigeostrophic equation. In particular A has the form I+Cof(Q), and here is where
the stability condition comes from as a necessary requirement of solvability. A very nice
cancellation property of the cofactor matrix ensures ∥Q∥Hk−1(Ω) ∼ ∥div(Cof(Q))∥Hk−1(Ω),
allowing us to take full advantage of the previous general elliptic estimates. We then con-
struct a sequence of approximate solutions regularizing the semigeostrophic equation and
discretizing the time in little steps.

In order to prove uniform existence of a sequence of regularized solutions, in Section 3.4
we operate an Energy Estimate on the Sobolev norm of the pressure gradient and the elliptic
constant λ of I+Q. Here the elliptic regularity estimate on the velocity plays a role to prove
that ∣∣∣∣ ddt(−λ)

∣∣∣∣+ ∣∣∣∣ ddt∥∇p∥Hk(Ω)

∣∣∣∣ ≲ (∥∇p∥Hk(Ω)+1

λ

)M(k)

,

for some exponentM(k) > 0. A Gronwall-type argument on a well chosen function completes
the proof of uniform existence local-in-time of approximate solutions.
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In Section 3.5 we extract a smooth solution of the semigeostrophic equations by applying
a suitable argument of compactness. We complete the proof of Theorem 3.1 by showing via
a Grönwall argument that the constructed solution is in fact unique in the given class of
regularity.

3.2 Explicit elliptic estimates

We refer to [4] and [45] for the classical elliptic regularity methods that we will employ. We
start by stating two useful interpolation results.

Lemma 3.2. Let Ω ⊂ Rn be any bounded and smooth domain. Then, for every 0 ≤ k ≤ m
there exists a constant c = c(k,m,Ω) > 0 such that

∥v∥Hk(Ω) ≤ c∥v∥1−
k
m

L2(Ω)∥v∥
k
m

Hm(Ω),

for every v ∈ Hm(Ω).

Proof. The proof can be found in [2, Chapter 5].

Lemma 3.3. Let Ω ⊂ R2 be smooth and bounded, and let v, w be functions in Hr(Ω)∩L∞(Ω)
for some r ≥ 1. Then, there exists C = C(r,Ω) > 0 such that

∥∂α(vw)∥L2(Ω) ≤ C
(
∥v∥L∞(Ω)∥w∥Hr(Ω) + ∥w∥L∞(Ω)∥v∥Hr(Ω)

)
, (3.6)

for all multi-index |α| = r. In particular, the following inequalities

∥∂α(vw)− v∂αw∥L2(Ω) ≤ Cr

(
∥∇v∥L∞(Ω)∥w∥Hr−1(Ω) + ∥v∥Hr(Ω)∥w∥L∞(Ω)

)
, (3.7)

and

∥∂α(vw)− v∂αw−w∂αv∥L2(Ω) ≤ Cr

(
∥∇v∥L∞(Ω)∥w∥Hr−1(Ω)+ ∥v∥Hr−1(Ω)∥∇w∥L∞(Ω)

)
, (3.8)

hold.

Proof. The proof can be found in [77, Lemma 3.4].

3.2.1 Set-up

Let Ω be an open, bounded subset of R2, and suppose we are given a symmetric matrix
A ∈ C∞(Ω̄)2×2 and vector fields b,F ∈ C∞(Ω̄)2, such that there exists λ > 0 satisfying

0 < λI ≤ A.

Define div(A) ∈ C∞(Ω̄)2 as

div(A)j :=
2∑
i=1

∂iAij,
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such that
div(A∇ϕ) = Tr(AD2ϕ) + div(A) · ∇ϕ, ∀ϕ ∈ C2(Ω).

Let ϕ ∈ C∞(Ω̄) be solution of{
div(A∇ϕ) + b · ∇ϕ = div(F), in Ω,

ϕ = 0, on ∂Ω.
(3.9)

The goal of this section is to prove the following global estimate.

Proposition 3.4 (Global estimates). Suppose that ∂Ω is of class Ck+1 for some k ≥ 4.
Then, there exists a universal constant Ck,Ω > 0 such that

∥∇ϕ∥Hk(Ω) ≤ Ck,Ω

(
λ−(k+1)kM(k+1)k∥∇ϕ∥L2(Ω) + λ−(k+1)Mk∥F∥Hk(Ω)

)
, (3.10)

where
M :=

(
∥A∥Hk−1(Ω) + ∥div(A)∥Hk−1(Ω) + ∥b∥Hk−1(Ω)

)
.

Moreover, if b = ∇⊥f for some f ∈ C∞(Ω̄), then

∥∇ϕ∥Hk(Ω) ≤ Ck,Ωλ
−(k+1)k−1M(k+1)k∥F∥Hk(Ω). (3.11)

Remark 3.5. An important situation in which the particular case b = ∇⊥f of Proposition 3.4
arises is when we symmetrize the elliptic matrix. In fact, suppose that the elliptic equation
is of the form

div
(
(A+ Ã)∇ϕ

)
= div(F),

where Ã is an antisymmetric matrix. In this case we have that

div
(
Ã∇ϕ

)
= div(Ã) · ∇ϕ+ Tr(ÃD2ϕ) = ∂1Ã12∂2ϕ+ ∂2Ã21∂1ϕ

= ∂1Ã12∂2ϕ− ∂2Ã12∂1ϕ = ∇⊥Ã12 · ∇ϕ,

i.e. the coefficient b comes from the rotated potential f = Ã12.

3.2.2 Rescaled elliptic estimates

Fix k ≥ 4. To simplify the exposition of the following estimates, we will write

a ≲ b, (or a ≲r b),

if there exists some constant c = c(Ω, k) > 0 (respectively c = c(Ω, k, r) > 0), such that

|a| ≤ cb.

In this section, we will suppose that

λ, ∥A∥Hk−1(Ω), ∥div(A)∥Hk−1(Ω), ∥b∥Hk−1(Ω) ≤ 1. (3.12)

Consequently, by Sobolev embeddings, we also have that

∥A∥Wk−3,∞(Ω), ∥b∥Wk−3,∞(Ω) ≲ 1.

We start by proving a local interior estimate.
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Proposition 3.6 (Rescaled interior estimates). Fix x0 ∈ Ω and r > 0 such that Br :=
B(x0, r) ⊂ Ω. Then, the interior estimate

∥∇ϕ∥Hk(Br/2)
≲r

1

λ

(
∥∇ϕ∥Hk−1(Br) + ∥F∥Hk(Br)

)
, (3.13)

holds.

Proof. Let |α| = k be any multi-index. Then, differentiating α-times (3.9), we have that

0 = −div
(
∂α(A∇ϕ)

)
− ∂α(b∇ϕ) + div(∂αF),

which implies, adding div(A∂α∇ϕ) to both sides, that

div(A∂α∇ϕ) = div
(
A∂α∇ϕ− ∂α(A∇ϕ)

)
− ∂α(b∇ϕ) + div(∂αF)

= div
(
∂αA∇ϕ+ A∂α∇ϕ− ∂α(A∇ϕ)

)
− ∂α(b∇ϕ) + div(∂αF)− div(∂αA∇ϕ),

(3.14)

where in the second line we simply add and subtract div(∂αA∇ϕ). Call

X := ∂αA∇ϕ+ A∂α∇ϕ− ∂α(A∇ϕ).

Fix x0 ∈ Ω and r > 0 such that Br := B(x0, r) ⊂ Ω. Choose η ∈ C∞
c (Br) such that

η|Br/2
≡ 1, η|R2\Br

≡ 0 and 0 ≤ η ≤ 1. Testing Equation (3.14) against ξ := η2∂αϕ gives

ˆ
⟨A∂α∇ϕ,∇ξ⟩ dx =

ˆ
⟨X+ ∂αF,∇ξ⟩ dx+

ˆ
∂α(b∇ϕ)ξ dx+

ˆ
div(∂αA∇ϕ)ξ dx.

Since ∇ξ = η2∇∂αϕ+ 2∂αϕη∇η, taking advantage of the ellipticity of A we can estimate

λ

ˆ
η2|∂α∇ϕ|2 dx ≤ −

ˆ
⟨A∂α∇ϕ, 2∂αϕη∇η⟩ dx︸ ︷︷ ︸

(I)

+

ˆ
⟨X+ ∂αF,∇ξ⟩ dx︸ ︷︷ ︸

(II)

+

ˆ
∂α(b∇ϕ)ξ dx︸ ︷︷ ︸

(III)

+

ˆ
div(∂αA∇ϕ)ξ dx︸ ︷︷ ︸

(IV )

.

(3.15)

We will now treat (I)-(IV) separately. By the Young inequality, since ∥A∥L∞(Ω) ≲ 1, we have
that

(I) ≲r
1

ϵ

ˆ
Br

|∂αϕ|2 dx+ ϵ

ˆ
η2|∇∂αϕ|2 dx,

for every ϵ > 0. Now, observe that for every smooth function h and 0 < ϵ ≤ 1, it holds thatˆ
|h||∇ξ| dx ≤

ˆ
|h|
(
η2|∇∂αϕ|+ 2η|∇η||∂αϕ|

)
dx

≲
1

ϵ

ˆ
Br

|h|2 dx+ ϵ

ˆ
η2|∇∂αϕ|2 dx+

ˆ
|h|η|∇η||∂αϕ| dx

≲r
1

ϵ

ˆ
Br

|h|2 dx+ ϵ

ˆ
η2|∇∂αϕ|2 dx+

ˆ
Br

|∂αϕ|2 dx.

(3.16)
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Also, recalling that k ≥ 4, by interpolation inequality (3.8) we can easily estimate

∥X∥L2(Br) ≲
(
∥A∥W 1,∞(Br)∥∇ϕ∥Hk−1(Br) + ∥A∥Hk−1(Br)∥D

2ϕ∥L∞(Br)

)
≲ ∥∇ϕ∥Hk−1(Br).

Therefore, we obtain that

(II) ≲r
1

ϵ
∥∇ϕ∥2Hk−1(Br)

+
1

ϵ
∥∂αF∥2L2(Br)

+ ϵ

ˆ
η2|∇∂αϕ|2 dx+

ˆ
Br

|∂αϕ|2 dx.

Finally, consider the terms (III) and (IV ). Recall that in (3.12) we assumed only the
Hk−1(Ω)-norms of A, div(A) and b to be controlled by 1. This means that we need to
integrate by parts in such a way that these terms are differentiated at most (k − 1)-times.
Choose i ∈ {1, 2} such that ∂α = ∂β∂i, with |β| = k − 1. Then

(III) = −
ˆ
∂β(b∇ϕ)∂iξ dx = −

ˆ (
∂β(b∇ϕ)− ∂βb∇ϕ

)
∂iξ dx−

ˆ
(∂βb∇ϕ)∂iξ dx,

which by (3.7) and (3.16) gives

(III) ≲r
1

ϵ
∥∇ϕ∥2Hk−1(Br)

+ ϵ

ˆ
η2|∇∂αϕ|2 dx.

Similarly we have that

(IV ) =

ˆ
∂idiv(∂βA∇ϕ)ξ − div(∂βA∂i∇ϕ)ξ dx

= −
ˆ

div(∂βA∇ϕ)∂iξ − ⟨∂βA∂i∇ϕ,∇ξ⟩ dx

= −
ˆ

Tr(∂βAD
2ϕ)∂iξ + div(∂βA) · ∇ϕ∂iξ − ⟨∂βA∂i∇ϕ,∇ξ⟩ dx

≤
ˆ (

|Tr(∂βAD2ϕ)|+ |∂βdiv(A) · ∇ϕ|+ |∂βA∂i∇ϕ|
)
|∇ξ| dx

≲r
1

ϵ
∥∇ϕ∥2W 1,∞(Br)

+ ϵ

ˆ
η2|∇∂αϕ|2 dx+

ˆ
Br

|∂αϕ|2 dx

≲r
1

ϵ
∥∇ϕ∥2Hk−1(Br)

+ ϵ

ˆ
η2|∇∂αϕ|2 dx+

ˆ
Br

|∂αϕ|2 dx.

Letting ϵ = crλ, for some small constant cr > 0, Equation (3.15) gives

∥∂α∇ϕ∥2L2(Br/2)
≲r

1

λ2

(
∥∇ϕ∥2Hk−1(Br)

+ ∥F∥2Hk(Br)

)
,

as wished.

Now, to obtain a similar estimate on the boundary, we start by treating the flat case.
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Proposition 3.7 (Rescaled flat boundary estimates). Let Ω = B+
r := {x2 > 0} ∩ B(0, r).

Then,

∥∇ϕ∥Hk(B+
r/2

) ≲r
1

λk+1

(
∥∇ϕ∥Hk−1(B+

r ) + ∥F∥Hk(B+
r )

)
, (3.17)

Proof. We first start by estimating the norm of the tangential derivatives. Fix k ≥ 4. Let
η ∈ C∞

c (R2) be a cutoff function such that η |Br/2
= 1, η |R2\Br

= 0 and 0 ≤ η ≤ 1. Then,

since the test function ξ := η2∂k1ϕ vanishes on ∂B+
r (recall that we prescribed ϕ = 0 on the

segment (−r, r) × {0}), we can repeat the proof of Proposition 3.6 for α = (k, 0) obtaining
the estimate

∥∇∂αϕ∥2L2(B+
r/2

)
= ∥∇∂k1ϕ∥2L2(B+

r/2
)
≲r

1

λ2

(
∥∇ϕ∥2

Hk−1(B+
r )

+ ∥F∥2
Hk(B+

r )

)
. (3.18)

We now show that for all multi-index α = αl := (k − l, l) and l = 0, . . . k, we can estimate

∥∇∂αl
ϕ∥2

L2(B+
r/2

)
≲r

1

λ2(l+1)

(
∥∇ϕ∥2

Hk−1(B+
r )

+ ∥F∥2
Hk(B+

r )

)
.

We proceed by induction on l: we have already treated the case l = 0. Then, suppose
the claim true for all 0 ≤ l′ ≤ l, for some fixed 0 ≤ l < k. We have to check the case
αl+1 = (k− (l+1), l+1). Define γ1 = (k− (l+1), l) and γ2 = (k− l, l− 1). In the following,
suppose s = 1 if l = 0 and s ∈ {1, 2} if l ≥ 1. We take advantage of Equation (3.9): after
differentiation and suitable rearrangement we have that

Tr(A∂γsD
2ϕ) =

(
Tr(A∂γsD

2ϕ)− ∂γsTr(AD
2ϕ)
)
− ∂γs

((
b+ div(A)

)
· ∇ϕ

)
− div(∂γsF),

which, developing the trace, becomes

A22∂22∂γsϕ =
(
Tr(A∂γsD

2ϕ)− ∂γsTr(AD
2ϕ)
)
− ∂γs

((
b+ div(A)

)
· ∇ϕ

)
− div(∂γsF)

−
∑

(i,j)̸=(2,2)

Aij∂ij∂γsϕ.

Since A is elliptic, the coefficient A22 is controlled uniformly from below by the elliptic
constant λ. Therefore, applying the L2-norm over B+

r/2 on both sides, and taking advantage

of interpolation inequalities (3.6) and (3.7) we obtain the estimate

λ∥∂22∂γsϕ∥L2(B+
r/2

) ≲r ∥A∥W 1,∞(B+
r/2

)∥D
2ϕ∥Hk−2(B+

r/2
) + ∥A∥Hk−1(B+

r/2
)∥D

2ϕ∥L∞(B+
r/2

)

+ ∥b+ div(A)∥L∞(B+
r/2

)∥∇ϕ∥Hk−1(B+
r/2

) + ∥b+ div(A)∥Hk−1(B+
r/2

)∥∇ϕ∥L∞(B+
r/2

)

+ ∥F∥Hk(B+
r/2

) + ∥A∥L∞(B+
r/2

)

∑
(i,j)̸=(2,2)

∥∂ij∂γsϕ∥L2(B+
r/2

)

≲r ∥∇ϕ∥Hk−1(B+
r/2

) + ∥F∥Hk(B+
r/2

) +
∑

(i,j) ̸=(2,2)

∥∂ij∂γsϕ∥L2(B+
r/2

).
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By the definition of the multi-indices γ1 and γ2, one can check that∑
(i,j) ̸=(2,2)

∥∂ij∂γ1ϕ∥L2(B+
r/2

) ≤ 3∥∇∂αl
ϕ∥L2(B+

r/2
),

and ∑
(i,j)̸=(2,2)

∥∂ij∂γ2ϕ∥L2(B+
r/2

) ≤ 3∥∇∂αl−1
ϕ∥L2(B+

r/2
).

By induction, we obtain that

λ∥∂22∂γsϕ∥L2(B+
r/2

) ≲r

(
1 +

1

λl
+

1

λl+1

)(
∥∇ϕ∥Hk−1(Br) + ∥F∥Hk(Br)

)
,

and hence

∥∂22∂γsϕ∥L2(B+
r/2

) ≲r
1

λl+2

(
∥∇ϕ∥Hk−1(Br) + ∥F∥Hk(Br)

)
.

When l ≥ 1 it suffices to notice that ∇∂αl+1
= ∂22(∂γ2 , ∂γ1) to infer that

∥∇∂αl+1
ϕ∥L2(B+

r/2
) ≲r

1

λl+2

(
∥∇ϕ∥Hk−1(Br) + ∥F∥Hk(Br)

)
,

as wished. The same holds for l = 0 by noticing that ∇∂α1 = (∂1∂α0 , ∂22∂γ1).

Now we prove that we can recover the same estimate for a domain with curved boundary.

Proposition 3.8 (Rescaled curved boundary estimates). Let Ω ⊂ R2 be any open domain
with boundary of class Ck+1. Choose x0 ∈ ∂Ω and r > 0 sufficiently small such that there
exists a Ck+1-diffeomorphism

Φ : B(x0, r) ∩ Ω → B+
r ,

with inverse Ψ = Φ−1, such that Φ(∂Ω∩B(x0, r)) = (−r, r)×{0}, and det(DΦ) = 1. Then,
calling U+

r := B(x0, r) ∩ Ω, we have that there exists CΦ > 0 such that

∥∇ϕ∥Hk(U+
r/2

) ≲r
CΦ

λk+1

(
∥∇ϕ∥Hk−1(U+

r ) + ∥F∥Hk(U+
r )

)
. (3.19)

Proof. One can check directly that

ϕ′(y) := ϕ(Ψ(y)),

A′(y)rs :=
∑
ij

A(Ψ(y))ij∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y)),

b′(y)r :=
∑
i

b(Ψ(y))i∂xiΦ
r(Ψ(y)),

F′(y)r :=
∑
i

Fi(Ψ(y))∂xiΦ
r(Ψ(y)),
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solves {
div(A′∇ϕ′) + b′ · ∇ϕ′ = div(F′), in B+

r ,

ϕ′ = 0, on (−r, r)× {0}.

Moreover for every vector ξ ̸= 0 we have that

⟨A′(x)ξ, ξ⟩ = ⟨A(Ψ(y))DΦtξ,DΦtξ⟩ ≥ λ|DΦtξ|2 ≥ µΦλ|ξ|2,

where µΦ > 0 is the infimum taken over x ∈ U+
r of the smallest eigenvalue of DΦt(x)DΦ(x).

It follows that A′ ≥ µΦλI. We have to compute div(A′)(y)s =
∑

r ∂yrA
′(y)rs in terms of A

and div(A). Now,

div(A′)(y)s =
∑
r

∂yrA
′(y)rs =

∑
r

∂yr

(∑
ij

A(Ψ(y))ij∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y))
)

=
∑
ijrs

∂xsA(Ψ(y))ij∂yrΨ
s(y)∂xiΦ

r(Ψ(y))∂xjΦ
s(Ψ(y))

+
∑
ijr

A(Ψ(y))ij∂yr

(
∂xiΦ

r(Ψ(y))∂xjΦ
s(Ψ(y))

)
,

and since
∑

r ∂yrΨ
s(y)∂xiΦ

r(Ψ(y)) = δsi, it follows that

div(A′)(y)s

=
∑
ijs

∂xiA(Ψ(y))ij∂xjΦ
s(Ψ(y)) +

∑
ijr

A(Ψ(y))ij∂yr

(
∂xiΦ

r(Ψ(y))∂xjΦ
s(Ψ(y))

)
=
∑
js

div(A)(Ψ(y))j∂xjΦ
s(Ψ(y)) +

∑
ijr

A(Ψ(y))ij∂yr

(
∂xiΦ

r(Ψ(y))∂xjΦ
s(Ψ(y))

)
.

Therefore, there exists CΦ > 0 such that

∥div(A′)∥Hk−1(B+
r ) ≤ CΦ

(
∥A∥Hk−1(U+

r ) + ∥div(A)∥Hk−1(U+
r )

)
.

It suffices to apply Proposition 3.7 in order to complete the proof.

By covering Ω with sufficiently small balls, we can prove a global estimate for the rescaled
elliptic equation.

Proposition 3.9 (Rescaled global estimates). There exists Ck,Ω > 0 such that

∥∇ϕ∥Hk(Ω) ≤ Ck,Ω

(
λ−(k+1)k∥∇ϕ∥L2(Ω) + λ−(k+1)∥F∥Hk(Ω)

)
. (3.20)

Moreover, if there exists f ∈ C∞(Ω̄) such that b = ∇⊥f, then

∥∇ϕ∥Hk(Ω) ≤ Ck,Ωλ
−(k+1)k−1∥F∥Hk(Ω). (3.21)



81

Proof. Covering Ω by sufficiently many balls, combining Propositions 3.6 and 3.8, it follows
that for any k ≥ 4 there exists Ck,Ω > 0 such that

∥∇ϕ∥Hk(Ω) ≤
Ck,Ω
λk+1

(
∥∇ϕ∥Hk−1(Ω) + ∥F∥Hk(Ω)

)
.

We distinguish two cases: if ∥∇ϕ∥Hk−1(Ω) ≤ ∥F∥Hk(Ω), then

∥∇ϕ∥Hk(Ω) ≤
2Ck,Ω
λk+1

∥F∥Hk(Ω),

and we are done. Otherwise, since

∥∇ϕ∥Hk(Ω) ≤
2Ck,Ω
λk+1

∥∇ϕ∥Hk−1(Ω),

the interpolation inequality of Theorem 3.2 implies that there exist C ′
k,Ω > 0 such that

∥∇ϕ∥Hk−1(Ω) ≤ C ′
k,Ω∥∇ϕ∥

1− k−1
k

L2(Ω)

( 1

λk+1
∥∇ϕ∥Hk−1(Ω)

) k−1
k
,

and hence
∥∇ϕ∥Hk−1(Ω) ≤ (C ′

k,Ω)
k∥∇ϕ∥L2(Ω)λ

−(k+1)(k−1).

Finally, in both cases we have proven that there exists C ′′
k,Ω > 0 such that

∥∇ϕ∥Hk(Ω) ≤ C ′′
k,Ω

(
λ−(k+1)k∥∇ϕ∥L2(Ω) + λ−(k+1)∥F∥Hk(Ω)

)
.

If b = ∇⊥f, then one can get rid of the L2-norm of ∇ϕ simply testing (3.9) against ϕ and
computing

λ∥∇ϕ∥2L2(Ω) ≤
ˆ

(∇⊥f · ∇ϕ)ϕ dx+
ˆ

F · ∇ϕ dx

=
1

2

ˆ
∇⊥f · ∇(ϕ2) dx+ ∥F∥L2(Ω)∥∇ϕ∥L2(Ω)

=
1

2

ˆ
∂Ω

ϕ2(∇⊥f · ν) dx− 1

2

ˆ
div(∇⊥f)ϕ2 dx+ ∥F∥L2(Ω)∥∇ϕ∥L2(Ω)

= ∥F∥L2(Ω)∥∇ϕ∥L2(Ω).

Hence, plugging λ∥∇ϕ∥L2(Ω) ≤ ∥F∥L2(Ω) in (3.20) we finally obtain that

∥∇ϕ∥Hk(Ω) ≤ Ck,Ω

(
λ−(k+1)k−1∥F∥L2(Ω) + λ−(k+1)∥F∥Hk(Ω)

)
,

finishing the proof of the proposition (recall that by hypothesis λ ≤ 1).

We can now easily prove the main result of this section.

Proof of Proposition 3.4. Renormalizing Equation (3.9) by dividing both sides by M we
obtain, applying Proposition (3.9), that

∥∇ϕ∥Hk(Ω) ≤ Ck,Ω

(( λ
M

)−(k+1)k

∥∇ϕ∥L2(Ω) +
( λ
M

)−(k+1)
∥∥∥∥ F

M

∥∥∥∥
Hk(Ω)

)
,

which gives (3.10). The same shows (3.11).
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3.3 Local-in-time existence of smooth solutions in

Eulerian coordinates

3.3.1 Flattening

We would like to look at (3.4) as a perturbation of the semigeostrophic equation on the flat
plane. Since g is conformal, we know that the gradient and the covariant derivative can be
expressed as

∇gh = e2V∇h, for all h ∈ C1(Ω),

and

Dg
XY = (X · ∇)Y − dV (X)Y − dV (Y )X + ⟨X, Y ⟩∇V = DgY ·X, (3.22)

for all X, Y ∈ C1(Ω,R2). Since by hypothesis u is divergence free, tangent to ∂Ω and Ω is
simply connected, we can suppose that there exists some potential ψ such that

u = −∇⊥
g ψ = −e2V∇⊥ψ =: e2V v, and ψ |∂Ω= 0.

Converting all curved gradients into flat ones, substituting u with e2V v and multiplying
Equation (3.4) by e−φ−2V we obtain that

∂t∇⊥p+ e−φDg
v(e

φ+2V∇⊥p) + e−2φv⊥ + e−φ∇p = 0. (3.23)

Thanks to Equation (3.22) we can write

e−φDg
v(e

φ+2V∇⊥p) = e−φJ
(
eφ+2VDg

v∇p+ eφ+2V ⟨∇φ+ 2∇V, v⟩∇p
)

= e2V J
(
Dg∇p+∇p⊗ (∇φ+ 2∇V )

)
v

= e2VCof(Dg∇p+∇p⊗ (∇φ+ 2∇V ))∇ψ
= e2VCof(D2p+ B[∇p])∇ψ,

where with Cof(·) we denote the cofactor matrix, which in two dimensions is simply given
by

Cof(M) := −JMJ,

and for every vector field ξ we set

B[ξ] := ∇V ⊗ ξ + ξ ⊗∇V − ⟨ξ,∇V ⟩I+ ξ ⊗∇φ.

Plugging this into Equation (3.23) we finally obtain the semigeostrophic equation with flat-
tened operators{

∂t∇⊥p+ e2VCof(D2p+ B[∇p])∇ψ + e−2φ∇ψ = −e−φ∇p, in Ω,

ψ = 0, on ∂Ω.
(3.24)
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3.3.2 An elliptic PDE for the velocity vector field

Applying the divergence operator on both sides of Equation (3.24), we remove the explicit
dependencies on the time variable, obtaining

div
(
e2VCof(D2p+ B[∇p] + e−2φ−2V I)∇ψ

)
= −div(e−φ∇p).

In order to rewrite this as a classical elliptic equation in divergence form, we decompose B
into its symmetric and antisymmetric part as

B[ξ] = (∇V +∇φ/2)⊗ ξ + ξ ⊗ (∇V +∇φ/2)− ⟨ξ,∇V ⟩I︸ ︷︷ ︸
=:Bs[ξ]

+
1

2
(ξ ⊗∇φ−∇φ⊗ ξ)︸ ︷︷ ︸

=:Bas[ξ]

.

Hence, we obtain the equation

div
(
e2VCof(D2p+ Bs[∇p] + e−2φ−2V I)∇ψ

)
+∇⊥(e2V Bas12[∇p]) · ∇ψ = −div(e−2φ∇p),

(see Remark 3.5). Finally, to simplify the exposition, define

Q[Dξ, ξ] := e2V+2φCof(DξT + Bs[ξ]),

f[ξ] := e2V Bas12[ξ],

F[ξ] := −e−2φξ,

so that we can rewrite the equation as{
div(e−2φ(I+ Q[D2p,∇p])∇ψ) +∇⊥(f[∇p]) · ∇ψ = div(F[∇p]), in Ω

ψ = 0, on ∂Ω.
(3.25)

Notice that in the definition of Q we decided to transpose the matrix Dξ. This has clearly
no effect when Dξ = D2p, but it will be important to obtain the suitable cancellation of
terms in the following useful lemma.

Lemma 3.10 (Basic estimates on the coefficients). For every k ≥ 0 there exists a constant
C = C(φ, V, k) > 0 such that for every smooth vector field ξ on Ω the following estimates
hold:

∥B[ξ]∥Hk(Ω) + ∥F[ξ]∥Hk(Ω) + ∥f[ξ]∥Hk(Ω) ≤ C∥ξ∥Hk(Ω),

∥Q[Dξ, ξ]∥Hk(Ω) + ∥div(Q[Dξ, ξ])∥Hk(Ω) ≤ C∥ξ∥Hk+1(Ω).

Proof. The first four inequalities follow immediately from the definition of B[ξ]. To check the
last one, simply observe that the only problematic term in Q[Dξ, ξ] is Cof(DξT ). Conclude
by noticing that the cofactor matrix of the transpose jacobian matrix enjoys the following
nice property

div
(
Cof(DξT )

)
=
∑
i,j

∂i(Cof(Dξ
T ))ij = ∂212ξ

2 − ∂212ξ
1 − ∂221ξ

2 + ∂221ξ
1 = 0.
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3.3.3 Discrete construction and local-in-time uniformly
existence of regularized solutions

Before presenting the algorithm to construct an approximate solution, we need to fix some
notation. For all vector field X ∈ Hk(Ω,R2), consider the unique Helmholtz-Hodge orthog-
onal decomposition

X = w +∇q,

where div(w) = 0. From now on, we denote with

H(X) := ∇q,

the orthogonal complement of the classical Leray projector. Explicitly, q solves the Neumann-
type elliptic problem ∆q = div(X) in Ω, ∂νq = X ·ν on ∂Ω. With Iϵ we denote the standard
mollification

Iϵh := ηϵ ∗ h, ∀h ∈ L2(Ω), L2(Ω,R2), L2(Ω,R2×2), . . .

where ηϵ is any smooth convolution kernel. We address the reader to [45, Appendix C] and
[1, Chapter 7.5.5] for a brief recall of the principal properties and definitions of Iϵ and H.
Fix now k ≥ 4 and suppose we are given ∇p0 ∈ Hk(Ω,R2) such that

I+ Q[D2p0,∇p0] ≥ (1− µ0)I > 0,

for some µ0 < 1. Choose a coefficient of mollification ϵ > 0 and a time step τ > 0. We set
∇p00 := ∇p0 and solve for i = −1, 0, 1, . . . and s ∈ [0, τ ] the system

∂s∇pi+1
s = F ϵ

ψi+1(∇pi+1
s )

:= HIϵ

(
e2V (IϵD

2pi+1
s + B[Iϵ∇pi+1

s ] + e−2φ−2V I)∇⊥ψi+1 + e−φIϵ∇⊥pi+1
s

)
,

∇pi+1
0 = ∇piτ ,

(3.26)

where ψi+1 is given by
div
(
e−2φ(I+ Q[IϵD

2pi+1
0 , Iϵ∇pi+1

0 ])∇ψi+1
)
+∇⊥(f[Iϵ∇pi+1

0 ])∇ψi+1

= div
(
F[Iϵ∇pi+1

0 ]
)
, in Ω

ψi+1 = 0, on ∂Ω.

(3.27)

Notice that (3.26) and (3.27) are nothing else than a regularized version of Equations (3.24)
and (3.25), where ∇pis evolves continuously on each time-step solving an ordinary differential
equation of the form ẏ = F (y) (we take the velocity constant on each interval [iτ, (i+1)τ)),
and ψi+1 evolves discretely as a solution of an elliptic equation. Our next goal is to prove
that there exists a fixed interval of existence [0, t∗) so that for every ϵ > 0 and τ = t∗/N ,
for N ∈ N big enough, the sequence {∇pis,∇ψi}N−1

i=0 exists. Solvability of System (3.26) is
ensured by the following proposition.
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Proposition 3.11. Let k ≥ 2, and ϵ > 0. Then, for every ∇q0 in Hk(Ω,R2) and ∇ϕ ∈
L∞(Ω,R2), there exists a global solution ∇qϵs ∈ C1(R, Hk(Ω,R2)) of the following partial
differential equation{

∂s∇qϵs = F ϵ
ϕ(∇qϵs) = HIϵ

(
e2V (IϵD

2qϵs + B[Iϵ∇qϵs] + e−2φ−2V I)∇⊥ϕ+ e−φIϵ∇⊥qϵs

)
,

∇qϵ0 = ∇q0.

Proof. This is a direct application of the Cauchy-Lipschitz Theorem in the Banach space

X :=
{
∇q : q ∈ Hk+1(Ω)

}
⊂ Hk(Ω,R2).

In fact, thanks to the Helmholtz-Hodge decomposition, it is clear that F ϵ
ϕ maps X into itself.

We just need to check that it is Lipschitz continuous. Let ∇q and ∇h elements in X . Then,
thanks to the properties of Iϵ and H, we can estimate

∥F ϵ
ϕ(∇q)−F ϵ

ϕ(∇h)∥Hk(Ω)

≤ C

ϵk
∥e2V

(
Iϵ(D

2q −D2h) + B[Iϵ(∇q −∇h)]
)
∇⊥ϕ+ e−φIϵ(∇q −∇h)⊥∥L2(Ω)

≤ C

ϵk
∥e2V ∥∞∥∇ϕ∥L∞(Ω)

(
∥D2q −D2h∥L2(Ω) + ∥B[Iϵ(∇q −∇h)]∥L2(Ω)

)
+
C

ϵk
∥e−φ∥∞∥∇q −∇h∥L2(Ω).

Now, thanks to Lemma 3.10 we know that B[·] is a continuous functional in L2(Ω,R2)
implying that there exists C ′ = C ′(V, φ,Ω) > 0 such that

Lip(F ϵ
ϕ) ≤

C ′

ϵk

(
∥∇ϕ∥L∞(Ω) + 1

)
< +∞,

as wished.

System (3.27) is solvable at the step (i+ 1) if the eigenvalue

−µi+1
s := inf

|ξ|=1,x∈Ω

{
⟨Q[IϵD2pi+1

s , Iϵ∇pi+1
s ](x)ξ, ξ⟩

}
, (3.28)

is strictly greater than −1 at time s = 0. To analyse the behaviour of µi+1, define

−µi+1
s (x) := inf

|ξ|=1

{
⟨Q[IϵD2pi+1

s , Iϵ∇pi+1
s ](x)ξ, ξ⟩

}
, x ∈ Ω, s ∈ [0, τ ].

Since ∇pi+1
s ∈ C1([0, τ ], Hk(Ω,R2)) we have that fixing x, s 7→ µi+1

s (x) is a locally Lipschitz
map, and therefore µi+1

s , being the infimum over x ∈ Ω, is also locally Lipschitz and hence
almost everywhere differentiable.
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Lemma 3.12 (Dynamics of the elliptic constant). Let ∇pis and ∇ψi be solutions of (3.26)
and (3.27), and let µis be defined as in (3.28). There exists C = C(V, φ,Ω) > 0 such that

d

ds

∣∣∣
s=s0

(1− µi+1
s ) ≥ −C

(
∥∇pi+1

s0
∥H4(Ω) + 1

)
∥∇ψi+1∥H3(Ω) − C∥∇pi+1

s0
∥H3(Ω), (3.29)

for almost every s0 in (0, τ).

Proof. Take δ ̸= 0 small, x ∈ Ω and s0 ∈ (0, τ). Then, let ξδ ∈ R2 be the unit vector realizing

−µi+1
s0+δ

(x) = ⟨Q[IϵD2pi+1
s0+δ

(x), Iϵ∇pi+1
s0+δ

(x)]ξδ, ξδ⟩.

Then,

µi+1
s0

(x)− µi+1
s0+δ

(x)

≥ ⟨
(
Q[IϵD

2pi+1
s0+δ

(x), Iϵ∇pi+1
s0+δ

(x)]− Q[IϵD
2pi+1
s0

(x), Iϵ∇pi+1
s0

(x)]
)
ξδ, ξδ⟩

= ⟨
ˆ s0+δ

s0

∂tQ[IϵD
2pi+1
t (x), Iϵ∇pi+1

t (x)] dt · ξδ, ξδ⟩

≥ −
ˆ s0+δ

s0

∥Q[IϵD2∂tp
i+1
t (x), Iϵ∇∂tpi+1

t (x)]∥L∞(Ω).

By the Sobolev embedding of L∞(Ω) in H2(Ω) and by Lemma 3.10, we obtain that there
exists C1 > 0 such that

µi+1
s0

(x)− µi+1
s0+δ

(x) ≥ −C1

ˆ s0+δ

s0

∥∂t∇pi+1
t ∥H3(Ω) dt.

Finally, thanks to the discrete construction of the pressure gradient given by Equation (3.26),
the fact that H3(Ω) is a Banach Algebra, we conclude that there exists C > 0 such that

µi+1
s0

(x)− µi+1
s0+δ

(x) ≥ −C
ˆ s0+δ

s0

(
∥∇pi+1

t ∥H4(Ω) + 1
)
∥∇ψi+1∥H3(Ω) − C∥∇pi+1

t ∥H3(Ω) dt.

The result follows by dividing everything by δ, and letting δ go to zero.

3.4 Energy estimates

Proposition 3.13 (Energy estimates). Let ∇pis and ∇ψi be solutions of (3.26) and (3.27),
and k ≥ 4. Then, there exists C = C(k,Ω, V, φ) > 0 such that

d

ds
∥∇pi+1

s ∥Hk(Ω) ≤ C
(
∥∇pi+1

s ∥Hk(Ω) + 1
)
∥∇ψi+1∥Hk(Ω) + C∥∇pi+1

s ∥Hk(Ω). (3.30)
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Proof. Fix any multi-index |α| ≤ k. Since the operators Iϵ and H commute and are self-
adjoint with respect to the L2-product, we can compute

d

ds

1

2

ˆ
|∂α∇pi+1

s |2 dx =

ˆ
⟨∂α∇pi+1

s , ∂α∂s∇pi+1
s ⟩ dx

=

ˆ
⟨Iϵ∂α∇pi+1

s , ∂α

(
e2V (IϵD

2pi+1
s + B[Iϵ∇pi+1

s ] + e−2φ−2V I)∇⊥ψi+1
)
⟩ dx

+

ˆ
⟨Iϵ∂α∇pi+1

s , ∂α

(
e−φIϵ∇⊥pi+1

s

)
⟩ dx.

Set Ps := Iϵ∇pi+1
s . There exists Cφ > 0 such that

d

ds

1

2

ˆ
|∂α∇pi+1

s |2 dx

=

ˆ
⟨∂αPs, ∂α

(
e2V (DPs + B[Ps] + e−2φ−2V I)∇⊥ψi+1 + e−φP⊥

s

)
⟩ dx

≤
ˆ

⟨∂αPs, ∂α
(
e2V (DPs + B[Ps] + e−2φ−2V I)∇⊥ψi+1

)
⟩ dx

+ Cφ∥∂αPs∥L2(Ω)∥Ps∥H|α|(Ω).

To estimate the remaining term, we argue by interpolation: subtracting and adding the term

R :=

ˆ
⟨∂αPs, e2V ∂α

(
DPs + B[Ps] + e−2φ−2V I

)
∇⊥ψi+1⟩ dx,

to ˆ
⟨∂αPs, ∂α

(
e2V (DPs + B[Ps] + e−2φ−2V I)∇⊥ψi+1

)
⟩ dx,

applying Cauchy-Schwarz and interpolation (3.7), we obtain that there exists C1 = C1(Ω) >
0 such that

ˆ
⟨∂αPs, ∂α

(
e2V (DPs + B[Ps] + e−2φ−2V I)∇⊥ψi+1

)
⟩ dx−R +R

≤ C1∥∂αPs∥L2(Ω)

(
∥e2V∇ψi+1∥W 1,∞(Ω)∥DPs + B[Ps] + e−2φ−2V I∥Hk−1(Ω)

+ ∥DPs + B[Ps] + e−2φ−2V I∥L∞(Ω)∥e2V∇ψi+1∥Hk(Ω)

)
+R.

Taking advantage once again of Lemma 3.10 and suitable Sobolev embeddings, we just
proved that there exists C2 = C2(Ω, V, φ) > 0 such that

d

ds

1

2

ˆ
|∂α∇pi+1

s |2 dx ≤ C2∥∂αPs∥L2(Ω)

(
∥Ps∥Hk(Ω) + 1

)
∥∇ψi+1∥Hk(Ω)

+ Cφ∥∂αPs∥L2(Ω)∥Ps∥Hk(Ω) +R.

(3.31)
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We now estimate the contribution of R. First of all, it is easy to control the lower order
terms simply by Cauchy-Schwarz and Lemma 3.10, obtaining that

R =

ˆ
⟨∂αPs, e2V ∂α

(
DPs + B[Ps] + e−2φ−2V I

)
∇⊥ψi+1⟩ dx

≤
ˆ

⟨∂αPs, e2V ∂α(DPs)∇⊥ψi+1⟩ dx

+ ∥∂αPs∥L2(Ω)∥e2V∇ψi+1∥L∞∥B[Ps] + e−2φ−2V I∥Hk(Ω)

≤
ˆ

⟨∂αPs, e2V ∂α(DPs)∇⊥ψi+1⟩ dx+ C3∥∂αPs∥L2(Ω)∥∇ψi+1∥Hk(Ω)(∥Ps∥Hk(Ω) + 1),

(3.32)

for some constant C3 = C3(Ω, V, φ) > 0. Finally we get rid of the higher order term
integrating by parts:ˆ

⟨∂αPs, e2V ∂α(DPs)∇⊥ψi+1⟩ dx =

ˆ
⟨∇
( |∂αPs|2

2

)
, e2V∇⊥ψi+1⟩ dx

=

ˆ
div
(
e2V∇⊥ψi+1 |∂αPs|2

2

)
− |∂αPs|2

2
div(e2V∇⊥ψi+1) dx

=

ˆ
∂Ω

e2V
|∂αPs|2

2
∇⊥ψi+1 · ν dx

−
ˆ

|∂αPs|2

2

(
e2V div(∇⊥ψi+1) + e2V ⟨2∇V,∇⊥ψi+1⟩

)
dx

≤ C4∥∂αPs∥2L2(Ω)∥e2V∇ψi+1∥L∞(Ω).

(3.33)

Combining (3.31), (3.32), (3.33), and summing over |α| = 0, . . . , k we obtain the desired
result.

Now that we have obtained a growth estimate on µi+1
s (x) and ∥∇pi+1

s ∥Hk(Ω), we need
analyse the behaviour of the velocity vector field. This last estimate is a direct consequence
of the explicit regularity results of Section 3.2.

Proposition 3.14 (Elliptic estimates on the velocity). Let ∇pis and ∇ψi be solutions of
(3.26) and (3.27), and let µis be defined as in (3.28). For any k ≥ 4 there exists some
constant C = C(k,Ω, V φ) > 0 such that

∥∇ψi+1∥Hk(Ω) ≤ C(1− µi+1
0 )−(k+1)k−1

(
∥∇pi+1

0 ∥Hk(Ω) + 1
)(k+1)k∥∇pi+1

0 ∥Hk(Ω). (3.34)

Proof. It suffices to combine Proposition 3.9 and Lemma 3.10, recalling that in our case b
comes from a rotated gradient by construction.

Combining the estimates on the pressure gradient (3.30) and on the velocity vector field
(3.34) we have that

d

ds
∥∇pi+1

s ∥Hk(Ω)

≤ C(∥∇pi+1
s ∥Hk(Ω) + 1)

(∥∇pi+1
0 ∥Hk(Ω) + 1)k(k+1)

(1− µi+1
0 )(k+1)k+1

∥∇pi+1
0 ∥Hk(Ω) + C∥∇pi+1

s ∥Hk(Ω),

(3.35)
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and similarly by the estimate (3.29) on 1− µi+1
s it holds that

d

ds
(1− µi+1

s )

≥ −C(∥∇pi+1
s ∥Hk(Ω) + 1)

(∥∇pi+1
0 ∥Hk(Ω) + 1)k(k+1)

(1− µi+1
0 )(k+1)k+1

∥∇pi+1
0 ∥Hk(Ω) − C∥∇pi+1

s ∥Hk(Ω),

(3.36)

a.e. in (0, τ). Define

Θi+1
s :=

(
∥∇pi+1

s ∥Hk(Ω) + 1

1− µi+1
s

)k(k+1)+2

, (3.37)

together with the monotonically increasing Lipschitz function

Θ̃i+1
s := max

t∈[0,s]
Θi+1
t . (3.38)

The next lemma will constitute the crucial step in the proof of the main Theorem.

Lemma 3.15. Let Θ̃i
s be defined as in (3.38). There exits C = C(Ω, V, φ, k) > 0 such that

d

ds
Θ̃i+1
s ≤ C(Θ̃i+1

s )2, (3.39)

almost everywhere in [0, τ ].

Proof. In this proof we omit the i + 1 index in our notation. Also, set M = k(k + 1) + 2.
First of all, by Sobolev embedding we have that there exists C1 = C1(Ω) > 0 such that

1 ≤
∥I+ Q[IϵD

2ps, Iϵ∇ps]∥L∞(Ω)

1− µs
≤

1 + C1∥∇ps∥H3(Ω)

1− µs
,

hence, up to multiplying all the following estimates by max{1, C1}, we can suppose without
loss of generality that

1 ≤
1 + ∥∇ps∥Hk(Ω)

1− µs
,

for all s ∈ [0, τ ]. In particular we have that

d

ds
∥∇ps∥Hk(Ω) ≤ C max

t∈[0,s]

{((∥∇pt∥Hk(Ω) + 1

1− µt

)k(k+1)+1

+ 1

)
∥∇pt∥Hk(Ω)

}

≤ 2C max
t∈[0,s]

{(∥∇pt∥Hk(Ω) + 1

1− µt

)k(k+1)+1

∥∇pt∥Hk(Ω)

}
.
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The same bound clearly holds also for µs. Therefore, recalling (3.37) and that M = k(k +
1) + 2, we estimate

d

ds
Θs

=M
(∥∇ps∥Hk(Ω) + 1

1− µs

)M−1( 1

1− µs

d

ds
∥∇ps∥Hk(Ω) −

∥∇ps∥Hk(Ω) + 1

(1− µs)2
d

ds
(1− µs)

)
≤ 2CM max

t∈[0,s]

{(∥∇pt∥Hk(Ω) + 1

1− µt

)M+k(k+1)∥∇pt∥Hk(Ω)

1− µt

(
1 +

∥∇pt∥Hk(Ω) + 1

1− µt

)}

≤ 4CM max
t∈[0,s]

{(∥∇pt∥Hk(Ω) + 1

1− µt

)M+k(k+1)+2
}
.

This proves that
d

ds
Θs ≤ 4CMΘ̃2

s.

We distinguish two cases: if d
ds
Θs ≤ 0, then clearly

d

ds
Θ̃s = 0,

and we are done. Otherwise
d

ds
Θ̃s =

d

ds
Θs ≤ 4CMΘ̃2

s,

completing the proof of the Lemma.

We only need the following little observation before proving the main result of this section.

Lemma 3.16. Let (xi)i≥0 be any real sequence that satisfies for some c > 0 the recursive
relation

xi+1 ≤
xi

1− cxi
.

If there exists N ∈ N such that x0 ≤ 1
cN

, then

xi+1 ≤
x0

1− c(i+ 1)x0
, for every i ∈ {−1, . . . , N − 1}. (3.40)

Proof. The statement clearly holds for i = −1. Suppose (3.40) holds for 0 ≤ i < N − 1.
Since for every C > 0 the map x 7→ x

1−Cx is monotonically increasing and continuous in

(−∞, 1
C
), we have in particular that

xi ≤
x0

1− cix0
≤ 1

cN

N

N − i
=

1

c(N − i)
<

1

c
,

and therefore

xi+1 ≤
xi

1− cxi
≤ x0

1− cix0

1− cix0
1− c(i+ 1)x0

=
x0

1− c(i+ 1)x0
,

completing the induction.
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We are now ready to prove uniform local-in-time existence for Systems (3.26) and (3.27).
To simplify the statement, we glue together the piecewise approximated solution, naturally
defining

∇pτ,ϵt := ∇pis, if t = iτ + s,

and
∇ψτ,ϵt := ∇ψi, if t ∈ [iτ, (i+ 1)τ).

Theorem 3.17. Let Ω be a bounded subset of R2 with boundary of class Ck+1 and ∇p0 ∈
Hk(Ω,R2) such that

Q[D2p0,∇p0] ≥ −µ0I > −I,

for some µ0 < 1 and k ≥ 4. Then, there exist a constant C = C(Ω, V, φ, k) > 0 and t∗ > 0
such that for every τ = t∗/N , N ∈ N big enough and ϵ > 0, there exists an approximate
solution

{∇pis,∇ψi}N−1
i=0 ∈ C1([0, τ ], Hk(Ω,R2))×Hk(Ω,R2)

of Systems (3.26) and (3.27), where t∗ can be taken equal to

t∗ := C

(
1− µ0

∥∇p0∥Hk(Ω) + 1

)(k+1)k+2

.

In particular, for every 0 < t′ < t∗, there exists C ′ = C ′(Ω, V, φ, k) > 0 such that

∥∇pτ,ϵt ∥Hk(Ω), ∥∇ψτ,ϵt ∥Hk(Ω) ≤ C ′,

for all t ∈ [0, t′].

Proof. Integrating for s ∈ [0, τ ] Equation(3.39) of Lemma 3.15 at time i, and recalling that
Θ̃i+1

0 = Θ̃i
τ , we obtain the recursive relation

Θ̃i+1
0 ≤ Θ̃i

0

1− CτΘ̃i
0

,

which, applying Lemma 3.16, gives the bound

Θ̃i+1
0 ≤ Θ̃0

0

1− Cτ(i+ 1)Θ̃0
0

, (3.41)

for every i = {−1, 0, 1, . . . , N − 1} provided

Θ̃0
0 = Θ0

0 ≤
1

CτN
,

for some N ∈ N. Hence, setting
t∗ :=

1

CΘ0
0

,
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we ensure the local existence of an approximate solution in [0, t∗) uniformly in ϵ > 0 and
for every τ = t∗/N , N ∈ N big enough. In particular, (3.41) implies that for any interval of
time [0, t′] with t′ < t∗ the uniform bound

Θ̃i
s ≤ C ′,

holds, where C ′ > 0 can be taken such that

t′ =
1

C

( 1

Θ0
0

− 1

C ′

)
.

3.5 Compactness argument and proof of the main

Theorem

Fix any 0 < t′ < t∗, and N0 ∈ N large. For every N ≥ N0 define

∇pNt := ∇pt
′/2N ,t′/2N

t ,

and
∇ψNt := ∇ψt

′/2N ,t′/2N

t .

Then, by Theorem 3.17, the sequence (∇pNt )N≥N0 is uniformly bounded in the space

W :=
{
∇qt ∈ L∞(0, t′;Hk(Ω,R2)), and ∂t∇qt ∈ L∞(0, t′;H1(Ω,R2)))

}
.

Since the embedding of Hk(Ω) in Ck−2,α(Ω) is compact (see [2, Chapter 6]) and Ck−2,α(Ω)
embeds continuously in H1(Ω), by Aubin-Lions-Simons Lemma we have that

W ↪→ C(0, t′;Ck−2,α(Ω,R2)),

is compact as well. Extracting a converging sub-sequence we obtain (after relabelling) that

∇pNt → ∇pt in C(0, t′;Ck−2,α(Ω,R2)),

for some ∇pt ∈ C(0, t′;Ck−2,α(Ω,R2)). Moreover, looking at (∇pNt )N≥N0 as bounded subset
of the space L2(0, t′;Hk(Ω,R2)), we can affirm that

∇pNt ⇀ ∇pt in L2(0, t′;Hk(Ω,R2)).

Let ∇ψt be solution of the System (3.25) associated to the limit ∇pt, i.e.{
div(e−2φ(I+ Q[D2pt,∇pt])∇ψt) +∇⊥(f[∇pt]) · ∇ψt = div(F[∇pt]), in Ω

ψt = 0, on ∂Ω.
(3.42)



93

Observe that the lower bound on the uniform elliptic constants 1−µis proved in Lemma 3.12
combined with the pressure and velocity bounds of Theorem 3.17 provide a uniform elliptic
bound in the limit, that we will denote with

−µt := inf
{
⟨Q[D2pt,∇pt](x)ξ, ξ⟩ : |ξ| = 1, x ∈ Ω

}
.

By qualitative elliptic regularity, we can affirm that ∇ψt ∈ C(0, t′;Ck−2,α(Ω,R2)). Fix
t ∈ (0, t′) and let

tN := min{jt′/2N ≥ t : j = 0, . . . , N},

and observe that the difference ψt − ψNtN = ψt − ψNt solves the equation{
div(e−2φ(I+ Q[D2pt,∇pt])∇(ψt − ψNt )) +∇⊥(f[∇pt]) · ∇(ψt − ψNt ) = XNt , in Ω

ψt − ψNt = 0, on ∂Ω,

where

XNt := div
(
F[∇pt −∇pNt ]

)
− div

(
e−2φQ[D2(pt − pNt ),∇(pt − pNt )]∇ψNt

)
−∇⊥(f[∇(pt − pNt )]) · ∇ψNt .

We can argue as at the end of Proposition 3.4, to estimate

∥∇ψt −∇ψNt ∥L2(Ω) ≤
1

1− µt
∥XNt ∥L2(Ω) → 0,

uniformly in (0, t′) thanks to the bounds given by Theorem 3.17. Moreover, by weak com-
pactness of L2(0, t′;Hk(Ω,R2)), we have that

∇ψNt ⇀ ∇ψt ∈ L2(0, t′;Hk(Ω,R2)).

To summarise, we have the following proposition.

Proposition 3.18. Up to taking a subsequence of (∇pNt ,∇ψNt )N≥N0 there exist

∇pt,∇ψt ∈ C(0, t′;Ck−2,α(Ω,R2)) ∩ L2(0, t′;Hk(Ω,R2)),

such that
∇pNt → ∇pt,

strongly in C(0, t′;Ck−2,α(Ω,R2)) and weakly in L2(0, t′;Hk(Ω,R2)), and

∇ψNt → ∇ψt,

strongly in L∞(0, t′;Ck−2,α(Ω,R2)) and weakly in L2(0, t′;Hk(Ω,R2)).

We are now ready to prove the main result of this Chapter.
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Proof of Theorem 3.1. We first show existence and then uniqueness.

Existence: We prove that (∇pt,∇ψt) is a weak solution, the conclusion follows from
the additional regularity showed before. Let ξt ∈ C1

c ([0, t
′), C∞(Ω,R2)) be any test function,

denote with {·, ·} the standard inner product of L2(0, t′;L2(Ω,R2)) and with IN := It′/N .
Then, testing (3.26) against ξt we have that

0 = {∇pNt , ∂tξt} − {∇p0, ξ0}

+ {HINξt, e2V
(
IND2pNt + B[IN∇pNt ] + e−2φ−2V I

)
∇⊥ψNt + e−φIN∇⊥pNt }.

Then, we can write

{∇pt, ∂tξt} − {∇p0, ξ0}+ {Hξt, e2V
(
D2pt + B[∇pt] + e−2φ−2V I

)
∇⊥ψt + e−φ∇⊥pt} =

{∇(pt − pNt ), ∂tξt}+ {Hξt − INHξt, e
2V
(
D2pt + B[∇pt] + e−2φ−2V I

)
∇⊥ψt + e−φ∇⊥pt}

+ {HINξt, e2V
(
D2(pt − INpNt ) + B[∇(pt − INpt)]

)
∇⊥ψt + e−φ∇⊥(pt − INpNt )}

+ {HINξt, e2V
(
IND2pNt + B[IN∇pNt ] + e−2φ−2V I

)
∇⊥(ψNt − ψt)},

which goes to zero as N goes to +∞, thanks to the uniforms bounds of Theorem 3.17 and
Proposition 3.18. Therefore, we have that (∇pt,∇ψt) solves weakly

∂t∇pt = H
(
e2V (D2pt + B[∇pt] + e−2φ−2V I)∇⊥ψt + e−φ∇⊥pt

)
=: H(Xt).

We now take advantage of the elliptic equation solved by ψt in order to get rid of the Hodge-
Helmholtz decomposition in the right-hand side. Here is the only point in the proof where we
need to assume Ω simply connected (see Remark 3.19 for the periodic case Ω = R2/Z2 = T2).
The orthogonal complementary of H(·)

wt := Xt − H(Xt),

is tangent to ∂Ω and divergence free by construction of H(Xt). Moreover, since

curl(wt) = −div(X⊥
t ) = −div

(
e−2φ(I+Q[D2pt,∇pt])∇ψt +∇⊥(f[∇pt]) · ∇ψt − F[∇pt]

)
= 0,

by construction of ∇ψt, we conclude that wt in a harmonic vector field, and hence equal to
zero since Ω is simply connected. Therefore, Xt = H(Xt).

Uniqueness: Suppose we are given another solution (∇p̄t, ūt) sharing the same regularity
as (∇pt, ut) and such that ∇p̄0 = ∇p0 and ūt is tangent to ∂Ω. Let ψ̄t be such that
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−e2V∇⊥ψ̄t = ūt. Set qt := pt − p̄t. We can estimate

d

dt

1

2
∥∇⊥qt∥2L2(Ω)

= −
ˆ

⟨∇⊥qt, e
2V
(
Cof(D2pt + B[∇pt])∇ψt − Cof(D2p̄t + B[∇p̄t])∇ψ̄t

)
+ e−2φ(∇ψt − ∇̄ψt)⟩ dx

= −
ˆ

⟨∇⊥qt, e
2VCof(D2pt + B[∇pt] + e−2V−2φI)(∇ψt −∇ψ̄t)

+ e2VCof(D2qt + B[∇qt])∇ψ̄t⟩ dx

≤ C
(
∥∇qt∥L2(Ω)∥∇ψt −∇ψ̄t∥L2(Ω) + ∥∇qt∥2L2(Ω)

)
,

(3.43)

for some C > 0 depending uniquely on φ, V , the L∞([0, t′];W 1,∞(Ω))-norm of ∇pt and the
L∞([0, t′];L∞(Ω))-norm of ∇ψ̄t. Here, the term involving the Hessian of qt was treated as
follows: ˆ

⟨∇⊥qt, e
2VCof(D2qt)∇ψ̄t⟩ dx =

ˆ
⟨∇qt, e2VD2qt∇⊥ψ̄t⟩ dx

=

ˆ
⟨∇
(e2V |∇qt|2

2

)
,∇⊥ψ̄t⟩ dx−

ˆ
|∇qt|2⟨∇

(e2V
2

)
,∇⊥ψ̄t⟩ dx

= −
ˆ

|∇qt|2⟨∇
(e2V

2

)
,∇⊥ψ̄t⟩ dx

≤ ∥e2V ∥C1(Ω)∥∇ψ̄t∥L∞(Ω)∥∇qt∥2L2(Ω).

Now, the difference (ψt − ψ̄t) solves{
div(e−2φ(I+ Q[D2pt,∇pt])∇(ψt − ψ̄t)) +∇⊥(f[∇pt]) · ∇(ψt − ψ̄t) = Xt, in Ω

ψt − ψ̄t = 0, on ∂Ω,
(3.44)

where
Xt := div

(
F[∇qt]

)
− div

(
e−2φQ[D2qt,∇qt]∇ψ̄t

)
−∇⊥(f[∇qt]) · ∇ψ̄t.

Multiplying (3.44) by (ψt − ψ̄t) and integrating by parts, one obtains that

(1− µt)∥∇ψt −∇ψ̄t∥2L2(Ω)

≤ C∥∇ψt −∇ψ̄t∥L2(Ω)∥∇qt∥L2(Ω) +

ˆ
div(e2VCof(D2qt)∇ψ̄t)(ψt − ψ̄t) dx,

again for some C > 0 depending on φ, V and the L∞([0, t′];L∞(Ω))-norm of ∇ψ̄t. Taking
advantage again of the key identity div(Cof(D2qt)) = 0, we have thatˆ

div(e2VCof(D2qt)∇ψ̄t)(ψt − ψ̄t) dx

=

ˆ
e2VTr(Cof(D2qt)(D

2ψ̄t + 2∇V ⊗∇ψ̄t))(ψt − ψ̄t) dx.
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Integrating by parts we can distribute one derivative of the Hessian of qt over the remaining
terms, obtaining

ˆ
e2VTr(Cof(D2qt)(D

2ψ̄t + 2∇V ⊗∇ψ̄t))(ψt − ψ̄t) dx

≤ C∥∇qt∥L2(Ω)∥∇ψt −∇ψ̄t∥L2(Ω),

where C > 0 depends on φ, V and the L∞([0, t′];H4(Ω))-norm of ∇ψ̄t. This shows that

∥∇ψt −∇ψ̄t∥L2(Ω) ≤ C
∥∇qt∥L2(Ω)

1− µt
,

which combined with (3.43) and the Grönwall lemma implies that

∥∇pt −∇p̄t∥L2(Ω) = ∥∇qt∥L2(Ω) ≤ ∥∇q0∥eCt = 0.

Thus ∇pt = ∇p̄t in [0, t′]. By uniqueness of solution of the elliptic equations without zero
order terms we infer that ut = ūt in [0, t′] (see [45]). Hence, the pair (∇pt, ut) constitutes
the unique solution in the class of regularity of Theorem 3.1.

Remark 3.19. With some minor adjustments, it is possible to include the non-simply con-
nected flat periodic case Ω = T2 = R2/Z2, V = φ = 0. We have to substitute in Equation
(3.25) the boundary condition ψ = 0 on ∂Ω with

´
T2 ψ dx = 0, and impose periodicity condi-

tions on ψi+1
s , p0 and pi+1

s . We need also to adjust the operator H(X) = ∇q, defined now to
be the inverse operator of the problem{

∆q = div(X),´
T2 q dx = 0.

Existence of an uniform regularized solution that converges on [0, t′] to (∇pt,∇ψt) still holds.
The only problem to fix is that there exist non-trivial harmonic fields on T2. However, they
do not play any role in our problem, and this can be showed with a direct computation: recall
that we are in the situation

∂t∇pt = H
(
(D2pt + I) · ∇⊥ψt +∇⊥pt

)
= H(Xt),

and we want to get rid of H. Write

Xt = H(Xt) + wt = ∇qt + wt,

where div(wt) = curl(wt) = 0 thanks to the construction of ∇ψt and H(X). Therefore, by
duality we can see wt as an element of the de Rahm Cohomology H1

dR(T2) ∼= R2, which is
generated by the two covector fields dx1 and dx2, which are closed but not exact since x 7→ x1

and x 7→ x2 are not periodic functions. Hence, there exist α1
t , α

2
t ∈ R such that

wt = α1
t

∂

∂x1
+ α2

t

∂

∂x2
.
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Now, choose k ∈ {1, 2}, and observe that

ˆ
T2

⟨Xt,
∂

∂xk
⟩ dx =

ˆ
T2

⟨∇qt + wt,
∂

∂xk
⟩ dx = αkt ,

Hence, taking advantage of the explicit form of Xt and integrating by parts we conclude that

αkt =

ˆ
T2

⟨(D2pt + I) · ∇⊥ψt +∇⊥pt,
∂

∂xk
⟩ dx =

ˆ
T2

⟨D2pt · ∇⊥ψt,
∂

∂xk
⟩ dx

=

ˆ
T2

⟨∇(∂kpt),∇⊥ψt⟩ dx

=

ˆ
T2

div(∂kpt∇⊥ψt) + ∂kpt · div(∇⊥ψt) dx = 0.

This shows H(Xt) = Xt as wished.
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Chapter 4

2
Global-in-time stability for linearized SG with

degenerate Coriolis

4.1 Preliminaries

Recall that the two dimensional SG system on the upper hemisphere (S2
+, g) reads as follows:

(∂t +∇ut)u
G
t + f(ut − uGt )

⊥ = 0, in (0,+∞)× S2
+,

divg(ut) = 0 in (0,+∞)× S2
+,

pt|t=0 = p0, in S2
+,

uGt := f−1∇⊥pt.

(4.1)

The Coriolis force, up to rescaling the dimensions, is equal to the height variable z ∈ (0, 1]
when considering S2 embedded in R3. A stationary solution (p0, u0) = (p0,−∇⊥ψ0) is called
axially symmetric if it depends uniquely on the height variable z. The linearization over the
upper hemisphere S2

+ = {x ∈ S2 : z(x) > 0} of the semigeostrophic equation around this
particular solution is given by

(∂t +∇u0)(z
−1∇⊥qt) +∇qt +∇vt(z

−1∇⊥p0) + zv⊥t = 0, in I × S2
+,

divg(vt) = 0, in I × S2
+,

qt|t=0 = q0, in S2
+.

(4.2)

In this article we prove global-in-time existence of smooth solutions for this system. After
presenting our main result, we discuss the employed terminology.

Theorem 4.1. Let k ≥ 5 be fixed, and let (∇p0, u0) = (∇p0,−∇⊥ψ0) be axially symmetric
k-compatible stationary solutions of (4.1). Then, for every k-admissible initial perturbation
∇q0, there exists a unique solution (∇qt, vt) = (∇qt,−∇⊥ϕt) of Equation (4.2) such that

z−1∇qt, vt ∈ Cloc([0,+∞), Ck−3,α
loc (S2

+)) ∩ C1
loc([0,+∞), Ck−4,α

loc (S2
+)),

and the potential ϕt is such that ˆ
S2
+

z2ϕt d volg = 0,

for every t ≥ 0.
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We will see that being k-compatible and k-admissible, as we will define in a moment, is
a natural requirement in order to perform a lift of the equation from S2

+ to the four-sphere
S4. Doing so, we gain in the induced warped metric a density factor that compensates the
degeneracy of the elliptic equation solved by the potential of the velocity vt. More precisely,
the lifting will be performed along the map

π : S4 \ S1 → S2
+, π : (x1, . . . , x5) 7→ (x1, x2, z) = (x1, x2,

√
x23 + x24 + x25),

where

S4 = {x ∈ R5 : |x|2 = x21 + · · ·+ x25 = 1}, S1 = {x ∈ S4 : x21 + x22 = 1},

and

S2
+ = {(x1, x2, z) ∈ R3 : x21 + x22 + z2 = 1, z > 0}.

The before mentioned compatibility conditions are then described in the following definition.

Definition 4.2. For k ∈ N we say that the axially symmetric solution (∇p0, u0) ∈ C2(S2
+)×

C1(S2
+) of Equation (4.1) on S2

+ is k-compatible if

– The (1, 1)-tensor A := id − z−1J ◦ Hess(p̄0) ◦ J is uniformly elliptic. Here p̄0 is such
that z∇p̄0 = ∇p0 and J = (·)⊥.

– π∗(z−2Hess(p̄0)) ∈ Hk(S4).

– π∗(z−2Hess(ψ̄0)) ∈ Hk(S4).

We will say that the initial perturbation q0 is k-admissible if π∗(z−1∇q0) ∈ Hk(S4).

4.2 Riemannian geometry

Excellent references for this topic are for instance [1, 32, 55, 67]. Let Mn be a differentiable
manifold with tangent bundle TM . For every vector bundle Π : E →M we call Ex = Π−1{x}
the fibre of E over x ∈M and we denote with Γ(E) the space of sections of E, that is the set
of maps S :M → E so that Π◦S = id. In particular C∞(M) := Γ(M×R), X(M) := Γ(TM),
Ωp(M) := Γ(Λp(TM)), are respectively the set of functions, vector fields, and p-differential
forms on M . Given a Riemannian metric g ∈ Γ(TM∗ ⊗ TM), that is a symmetric and
positive definite endomorphism of the tangent bundle, we will denote with |v|g :=

√
g(v, v)

the induced norm on TM , and with
√

|g| its volume density, so that in local coordiantes

(xi) the volume form is given by d volg =
√
|g|dx1 ∧ · · · ∧ dxn. Then, we let

∇ : Γ(E) → Γ(E ⊗ TM∗), (4.3)

be the Levi-Civita covariant derivative induced by g. We use the notations ∇vS = ∇S ·
v := ∇(S)(v) ∈ Γ(E) for S ∈ Γ(E) and v ∈ TM . For instance, ∇vf = df(v) when
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f ∈ C∞(M), and d denotes the exterior differential d : Ωp(M) → Ωp+1(M). We will denote
with R ∈ Γ(T 4,0M) the Riemann curvature tensor

R(X, Y, Z, T ) := g(∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z, T ), (4.4)

and recall that if M has constant sectional curvature κ ∈ R then

R(X, Y, Z, T ) = κg(X,Z)g(Y, T )− κg(X,T )g(Y, Z). (4.5)

Example 4.3. Let Sn−1 = {x = (x1, . . . , xn) ∈ Rn : ∥x∥ = 1} be the unit sphere with
induced round metric. Then, identifying for every x ∈ Sn−1 the tangent plane TSn−1

x with
{v ∈ Rn : v · x = 0}, the Levi-Civita connection on TSn−1 is given by

(∇vw)x =
n∑

i,j=1

vi
∂wj

∂xi
∂

∂xj
+ (w · v)x = (dwx + x⊗ w)v.

The metric g induces naturally an isomorphism (·)♯ : TM∗
x → TMx by setting gx(α

♯, v) :=
α(v) for α ∈ TM∗

x and v ∈ TMx, and (·)♭ : TMx → TM∗
x by setting v♭(w) := g(v, w) for

v, w ∈ TMx. In order to make our notation as compact as possible, we will denote the gradi-
ent (df)♯ ∈ Γ(TM) of a function f again with∇f . The hessian of f is the (1, 1)-tensor defined
as Hess(f) : X 7→ ∇X∇f . The divergence operator divg is the trace of the coraviant deriva-
tive with respect to g, and in local coordiates (xi) is given by divg(X) = |g|−1/2∂i(|g|1/2X i).
In particular, we call f 7→ ∆f = divg(∇f) the Laplace-Beltrami operator, which is also
equal to the trace of Hess(f).

A differentiable map between two manifolds π : N → B is called a submersion if its
differential dπx is surjective at every x ∈ N . If moreover N is endowed with a Riemannian
metric and π is itself surjective, we obtain the induced orthogonal splitting TN = H ⊕ V ,
where Vx = ker(dπx) is called the vertical tangent boundle, and Hx = (Vx)⊥ is called the
horizontal tangent bundle. Finally, π is called a Riemannian submersion if its differential
dπx maps isometrically Hx on TBπ(x), that is

gN(Xx, Yx) = gB(dπx ·Xx, dπx · Yx), Xx, Yx ∈ Hx.

A vector is called vertical if it belongs to V , and horizontal if it belongs to H. An horizontal
vector field X ∈ Γ(H) is called basic if it is the lift of a vector field in B, that is there exists
ξ ∈ Γ(TB) such that

dπx ·X = ξπ(x).

There is a one-to-one correspondence between basic horizontal vector fields and vector fields
on B, and therefore we will denote with

X = π∗ξ ∈ Γ(H),

the corresponding basic horizontal vector field of ξ ∈ Γ(TB). The following identity relates
the covariant derivative on N with the covariant derivaitve on B (see [91]):

prH

(
∇N
π∗ξπ

∗ζ
)
= π∗(∇B

ξ ζ), (4.6)
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where prH : TN → H denotes the orthogonal projection on the horizontal bundle. For a
tensor M ∈ T 1,1(B) we define its lift π∗M ∈ T 1,1(N) via

gN((π
∗M)x ·Xx, Yx) := gB(Mπ(x) · (dπx) ·Xx, dπx · Yx). (4.7)

Finally we notice that the pullback on the horizontal bundle is consistent with the usual
pullback for forms, in particular, for all function h on B, we have that

∇(π∗h) = π∗(∇h), (4.8)

where π∗h = h ◦ π.

4.3 Sobolev spaces, smoothing, and interpolations

We refer to [59, 60]. The duality induced by g between TM and TM∗ allows naturally the
extension of g as metric over the (p, q)-tensor bundle T p,q(M) := (⊗pTM) ⊗ (⊗qTM∗) by
setting g(α, β) := g(α♯, β♯) for every α, β ∈ T 0,1(M), and defining inductively the product
on simple tensors

g(S1 ⊗ T1, S2 ⊗ T2) := g(S1, S2)g(T1, T2), (4.9)

and |S|g :=
√
g(S, S). We say that a section S ∈ Γ(T p,q(M)) belongs to L2(M,T p,q(M)) if

∥S∥L2(M) :=
(ˆ

M

|S|2g d volg
)1/2

< +∞. (4.10)

Notice that L2(M,T p,q(M)) is an Hilbert space with product

⟨S, T ⟩L2(M) :=

ˆ
M

g(S, T ) d volg . (4.11)

In this particular case, setting ∇s := (∇◦∇◦· · ·◦∇) s-times (with the convention ∇0 := id),
we notice that ∇sS ∈ Γ(T p,q+s(M)). The Sobolev space Hk(M,T p,q(M)) is defined as

Hk(M,T p,q(M)) :=
{
S ∈ T p,q(M) : ∇sS ∈ L2(M,T p,q+s(M)), s = 0, . . . , k

}
. (4.12)

Turns out that Hk(M,T p,q(M)) is a Banach space if endowed with the natural norm

∥S∥Hk(M) :=
( k∑
s=0

∥∇kS∥2L2(M)

)1/2
. (4.13)

If clear from the context, we will write simply L2(M) and Hk(M) and not L2(M,T p,q(M))
and Hk(M,T p,q(M)). Notice that ifM is compact (that is bounded and without boundary),
then Hk(M) does not depend on g anymore, and a tensor S belongs to Hk(M) if and only if

∥LX1 . . .LXsS∥L2(M) < +∞, 0 ≤ s ≤ k, (4.14)
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for all collection of smooth vector fields {X1, . . . , Xk} belonging to any spanning subset of
Γ(TM). Here LX denotes the Lie derivative in the direction X. In this setting an efficient
way of smoothing is by the heat semi-group (see [31, Chapter VI and Appendix B], [102,
Chapter 1], and [67, Chapter 3]): let α be any p-form. Then for t > 0 we will denote with
et∆α the solution of

∂tαt = ∆gαt, α0 = α. (4.15)

where ∆g = d ◦ δ + δ ◦ d is the Hodge-Laplacian on forms, and δ : Ωp+1(M) → Ωp(M) is the
codifferential. Formally we have that

αt = et∆α =
+∞∑
j=0

g(α, βj)e
−tλjβj, (4.16)

where (λj) and (βj) are the eigenvalues and associated orthonormal basis of L2(Ωp(M))
induced by (∆g)

−1. For any small parameter ε > 0, function f , and vector field X we denote
their ε-mollification as

Jf := eε∆f, JX := (eε∆X♭)♯, (4.17)

which amounts to run the heat flow for a short time span ε. The regularization properties
of this are well known (it suffices to check this in the smooth category thanks to the density
result in [42, Proposition 3.2]), and summarized in the following lemma.

Lemma 4.4 (Properties of mollifiers). Let (Mn, g) be a closed (compact and without bound-
ary) Riemannian manifold. Then, for every ε0 > 0 and k ∈ N ∪ {0} and 0 < ε < ε0:

i. J : L2(M) → L2(M) is self-adjoint: ⟨JS, T ⟩L2(M) = ⟨S, JT ⟩L2(M) for every L2-functions
(vector fields) S and T .

ii. J : L2(M) → Hk(M) is continuous: there exists C > 0 such that ∥JS∥Hk(M) ≤
Cε−k∥S∥L2(M) for every function (vector field) S.

iii. ∥JS − S∥Hk(M) → 0 as ε→ 0 whenever S is a function (vector field) in Hk(M).

iv. Lξ(JS) = J(LξS) whenever S ∈ H1(M) and ξ is a Killing vector field, that is Lξg = 0.

Point iv. is really interesting for simplifying the exposition of our future computations:
in fact, suppose that there exists a collection of Killing fields ξ1, . . . , ξn+1 ∈ Γ(TM) spannig
TM . This is the case for example when M = Sn by choosing the vector fields representing
the infinitesimal rotations around (n + 1) linearly independent directions. Then, one can
compute the Hk-norm via Equation (4.14) with respect to this particular spanning family,
gaining the useful commutativity property with J. For this reason, we adopt the following
terminology.

Definition 4.5. Let (Mn, g) be a Riemannian manifold. We will call {ξ1, . . . , ξn+1} a Killing
spanning family if ξj is a smooth Killing vector field for j = 1, . . . , n+ 1 and

span{ξ1, . . . , ξn+1} = Γ(TM).
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Finally, we state classical results about Sobolev embeddings and interpolation inequalities
in the context of manifolds. We refer to [68] for the Euclidean setting, and in whole generality
to [116, Chapter 3.6].

Proposition 4.6 (Kato-Ponce inequalities). Let D a differential operator of degree k ∈ N on
a Riemannian manifold (Mn, g). Then, there exists C = C(D,M) > 0 such that for every
function f ∈ Hk(M) ∩ C1(M) and vector field X ∈ Hk(M) ∩ L∞(M) one can bound the
commutator [D, f ·] : X 7→ D(fX)− f(DX) as

∥[D, f ·]X∥L2(M) ≤ C∥f∥C1(M)∥X∥Hk−1(M) + C∥f∥Hk(M)∥X∥L∞(M). (4.18)

In particular, if T is an differential operator of degree one, by replacing X with TY , Y ∈
Hk+1(M), one obtains that there exists C = C(D,T,M) > 0 such that

∥[D, fT]Y ∥L2(M) ≤ C∥f∥C1(M)∥Y ∥Hk(M) + C∥f∥Hk(M)∥Y ∥C1(M). (4.19)

It is also known that elements in Hk(M) are regular when k is large enough, as we state
precisely in the next proposition (see [59, Theorem 2.7, Theorem 2.8]).

Proposition 4.7 (Sobolev embeddings). Let (Mn, g) be a compact Riemannian manifold,
and S ∈ Hk(M). Then, S ∈ Cs,α(M) provided k ≥ n/2 + s+ α for some α ∈ (0, 1).

In particular, combining Propositions 4.6 and 4.7, we have that Hk(M) is a Banach
algebra (up to rescaling the norms) if k > n/2 + 1, which means that there exists C =
C(k,M) > 0 such that

∥g(S, T )∥Hk(M) ≤ C∥S∥Hk(M)∥T∥Hk(M) (4.20)

for every S, T ∈ Hk(M) functions or vector fields.

4.4 Preliminary results

4.4.1 Stationary solutions and derivation of the linearized
equation

The semigeostrophic equation in the open upper hemisphere (S2
+, g) over a time interval

contaninig t = 0 reads
(∂t +∇ut)u

G
t + f(ut − uGt )

⊥ = 0, in I × S2
+,

divg(ut) = 0 in I × S2
+,

pt|t=0 = p0, in S2
+,

uGt := f−1∇⊥pt,

(4.21)

where ut ∈ Γ(TM) is the time dependent velocity vector field, uGt = f−1∇⊥pt is the
geostrophic velocity, pt represents the pressure of the fluid, and f is the Coriolis term, which
in this case is equal to f = 2Ωz. Here, Ω > 0 is the angular velocity of the earth rotation,
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and z ∈ (0, 1] is the height in cylindrical coordinates aligned with the rotation axis. With
J = (·)⊥ we denote the complex endomorphism of tangent bundle that rotates the vectors
by π/2-radians in the counter-clockwise direction. The initial data is given in term of the
pressure. An elementary computation shows that rescaling the dimensions as follows

p(t, ·) 7→ p(2Ωt, ·), u(t, ·) 7→ 2Ωu(2Ωt, ·)

allows us to set Ω = 1 without loss of generality in Equation (4.21) giving
(∂t +∇ut)(z

−1∇⊥pt) + z(ut − z−1∇⊥pt)
⊥ = 0, in I × S2

+,

divg(ut) = 0 in I × S2
+,

pt|t=0 = p0, in S2
+,

uGt := f−1∇⊥pt.

(4.22)

The next observation, which is a well known fact in Riemannian geometry, will give us the
main ingredient to construct an axially symmetric family of stationary solutions of (4.22).

Lemma 4.8. Let z be the height coordinate on S2. Then, the gradient of z satisfies ∇X∇z =
−zX for every X ∈ Γ(TM). Said otherwise, Hess(z) = −zid.

Remark 4.9. In fact, ∇z is what is called a concircular vector field, which are special
elements ζ ∈ Γ(TM) satisfying for all X ∈ Γ(TM) the identity ∇Xζ = −hX for some
function h. For instance, the position vector field x 7→ x is a typical concircular vector field
in Rn, Hess(x) = id.

Definition 4.10. We say that a function h : S2
+ → R is axially symmetric if in cylindrical

coordinates h(z, φ) = H(z) for some profile function H : (0, 1] → R.

We are ready to construct a family of stationary solutions of Equation (4.22).

Lemma 4.11. Let p0 ∈ C2(S2
+) and ψ0 ∈ C1(S2

+) be two time independent axially symmetric
maps with profile P0 ∈ C2((0, 1]) and Ψ0 ∈ C1((0, 1]) respectively. If

−Ψ′
0(z)P

′
0(z) + zΨ′

0(z) + P ′
0(z) = 0, ∀z ∈ (0, 1), (4.23)

and u0 := −∇⊥ψ0 ∈ Γ(TS2
+), then (p0, u0) is a stationary solution of the semigeostrophic

Equation (4.22).

Proof. This is a direct computation taking advantage of Proposition 4.8. Notice that since
u0 = −∇⊥ψ0 = −Ψ′

0∇⊥z and ∇p0 = P ′
0∇z, we get that

(∂t +∇u0)(z
−1∇⊥p0) + z(u− z−1∇⊥p0)

⊥ = −Ψ′
0∇∇⊥z(z

−1P ′
0∇⊥z) + zΨ′

0∇z + P ′
0∇z

= −Ψ′
0g(∇⊥z, (z−1P ′

0)
′∇z)∇⊥z −Ψ′

0z
−1P ′

0∇∇⊥z∇⊥z + zΨ0∇z + P ′
0∇z

= (−Ψ′
0P

′
0 + zΨ′

0 + P ′
0)∇z = 0,
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in virtue of Equation (4.23). Notice that in the last line we used Lemma 4.8 to compute

∇∇⊥z∇⊥z = (∇∇⊥z∇z)⊥ = (−z∇⊥z)⊥ = z∇z,

where (·)⊥ commutes with the covariant derivative since S2 is a Kähler manifold, and hence
in particular the complex structure is compatible with the Riemannian structure (meaning
∇J = 0).

Given a stationary solution (p0, u0) like in Lemma 4.11, we can now linearize the semi-
geostrophic equation around a small perturbation of the initial conditions from (p0, u0) to
(p0, u0) + ε(q0, v0), obtaining

(∂t +∇u0)(z
−1∇⊥qt) +∇qt +∇vt(z

−1∇⊥p0) + zv⊥t = 0, in I × S2
+,

divg(vt) = 0, in I × S2
+,

qt|t=0 = q0, in S2
+.

(4.24)

Since divg(vt) = 0 and S2
+ is simply connected, there exists a scalar potential ϕt such that

vt = −∇⊥ϕt. The goal of this chapter is to show global-in-time existence of smooth solutions
of Equation (4.24) overcoming the severe singularity in the proximity of the equator {z = 0}.

4.4.2 A degenerated PDE for the velocity and weighted
Sobolev spaces

Applying divg(z·) to Equation (4.24) one obtains an autonomous equation for vt = −∇ϕt
since divg(z∂tz

−1∇⊥qt) = divg(∇⊥∂tqt) = 0, and hence

divg(z
2∇ϕt + z∇vt(z

−1∇⊥p0)) = −divg(z∇u0(z
−1∇⊥qt) + z∇qt). (4.25)

Suppose now that there exists P̄0 ∈ C2((0, 1]) solution of

zP̄ ′
0 = P ′

0.

Then, the associated axially symmetric map p̄0(z, φ) = P̄0(z) satisfies

∇p̄0 = P̄ ′
0∇z = z−1P ′

0∇z = z−1∇p0

showing that the left hand side of (4.25) is equal to

div(z2A · ∇ϕt),

where

A := id− z−1J ◦ Hess(p̄0) ◦ J ∈ Γ(T 1,1(S2
+)).

To simplify the right hand side of (4.25), we take advantage of the following general identity.
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Lemma 4.12. Let M be a Riemannian manifold and ξ ∈ Γ(TM) a Killing vector field.
Then, for any vector X ∈ Γ(TM) and function h ∈ C2(M) such that ∇h is everywhere
orthogonal to ξ one has that

div(∇hξX) = div(∇X(hξ)) + Lhξdiv(X). (4.26)

In particular, if X is divergence free we have that

div(∇hξX) = div(∇X(hξ)). (4.27)

Proof. Let us first prove this identity when h ≡ 1. Since ∇ is torsion free and Lξ commutes
with div because ξ is Killing, we have that

div(∇ξX) = div(∇Xξ + [ξ,X]) = div(∇Xξ + LξX) = div(∇Xξ) + Lξdiv(X).

Now, for a general h we get

div(∇hξX) = div(h∇ξX) = ∇h · ∇ξX + hdiv(∇ξX)

= ∇h · ∇ξX + hdiv(∇Xξ) + hLξdiv(X)

= ∇h · ∇ξX −∇h · ∇Xξ + div(h∇Xξ) + Lhξdiv(X)

= [ξ,X](h) + div(∇X(hξ))− div(X(h)ξ) + Lhξdiv(X)

= ξ(X(h))−X(ξ(h))− ξ(X(h)) + div(∇X(hξ)) + Lhξdiv(X)

= div(∇X(hξ)) + Lhξdiv(X),

where we used div(ξ) = 0 and ξ(h) = ∇h · ξ = 0.

This lemma applied toM = S2
+ and ξ = ∇⊥z allows us to make vt and ∇qt comparable in

term of regularity in Equation (4.25): noticing that z∇u0(z
−1∇⊥qt) = ∇u0∇qt since u0 ⊥ ∇z

we get that
divg(z∇u0(z

−1∇⊥qt) + z∇qt) = divg(∇∇⊥qtu0 + z∇qt),
which by introducing T := z−1∇qt gives us the following expression for (4.25)

divg(z
2A · ∇ϕt) = −divg(z

2B · T ),

where B has the similar structure as A

B = id− z−1J ◦ Hess(ψ0) ◦ J ∈ Γ(T 1,1(S2
+)).

We summarize the formal computations we did till now in the following proposition.

Proposition 4.13 (PDE for the velocity vector field). Suppose (qt, vt = −∇⊥ϕt) is a C1-
solution of the linearized semigeostrophic Equation (4.24) around a stationary C2-solution
(p0, u0 = −∇⊥ψ0) in S

2
+ as in Lemma 4.11. Then, setting Tt = z−1∇qt, we have that

divg(z
2A · ∇ϕt) = −divg(z

2B · Tt), (4.28)

where A = id− z−1J ◦ Hess(p̄0) ◦ J , B = id− z−1J ◦ Hess(ψ0) ◦ J , and z∇p̄0 = ∇p0.
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Following the arguments of Montero in [81], we prove that Equation (4.28) has a unique
solution in a carefully chosen weighted Sobolev space that we define now.

Definition 4.14 (Weighted Sobolev). Define the weighted Sobolev spaces

Hk
2 (M,T p,q(S2

+)) :=
{
S ∈ T p,q(S2

+) : z∇sS ∈ L2(M,T p,q+s(S2
+)), s = 0, . . . , k

}
,

endowed with the norm

∥S∥Hk
2 (S

2
+) :=

( k∑
s=0

∥z∇kS∥2L2(S2
+)

)1/2
. (4.29)

Again, when clear from the context, we will simply writeHk
2 (S

2
+) instead ofHk

2 (M,T p,q(S2
+)).

Also, we will denote L2
2(S

2
+) := H0

2 (S
2
+).

To prove existence we need the next suitable Poincaré-type inequality.

Proposition 4.15 (Poincaré inequality). Let h ∈ H1
2 (S

2
+) be a function with zero weighted

average, that is

h ∈ Z2 :=
{
f ∈ H1

2 (S
2
+) :

ˆ
S2
+

z2f d volg = 0
}
. (4.30)

Then, there exists a universal constant C > 0 such that

ˆ
S2
+

z2h2 d volg ≤ C

ˆ
S2
+

z2|∇h|2g d volg . (4.31)

Proof. This follows via a direct rephrasing of [81, Theorem A1] in the curved case when
p = m = k = 2. In fact, the proof relies on showing that H1

2 (S
2
+) embeds compactly in

L2
2(S

2
+), an it does not use at all the flatness of the domain. Equation (4.31) follows by a

classical argument of contradiction.

We have then the following crucial existence and uniqueness result.

Proposition 4.16. Let M ∈ Γ(T 1,1(S2
+)) essentially bounded, self-adjoint, and uniformly

elliptic, that is there exist λ,Λ > 0 such that

λ|ξ|2g ≤ g(M · ξ, ξ) ≤ Λ|ξ|2g, (4.32)

for every ξ ∈ TS2
+. Then, for every vector field F ∈ H1

2 (S
2
+) there exists ψ ∈ H1

2 (S
2
+) unique

up to a constant solving
div(z2M · ∇ψ) = div(z2F),

in the following weak sense:

ˆ
S2
+

z2g(M · ∇ψ,∇ϕ) d volg =
ˆ
S2
+

z2g(F,∇ϕ) d volg, ∀ϕ ∈ H1
2 (S

2
+). (4.33)
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In particular, the following estimate

∥∇ψ∥L2
2(S

2
+) ≤

∥F∥L2
2(S

2
+)

λ
(4.34)

holds.

Proof. The argument is classic: let Z2 ⊂ H1
2 (S

2
+) be the subspace of functions with zero

weighted average, as defined in Proposition 4.15. Introduce the functional I : Z2 → R as

I : h 7→
ˆ
S2
+

z2

2
g(M · ∇h,∇h)− z2g(F,∇h) d volg .

Then, I is clearly linear and bounded, hence continuous. Also, it is coercive since thanks to
the ellipticity of M and Proposition 4.15 we can estimate

I(h) ≥ λ

2

ˆ
S2
+

z2|∇h|2g d volg−
1

λ

ˆ
S2
+

z2|F|2g d vol−
λ

4

ˆ
S2
+

z2|∇h|2g d volg

≥ λ

4
∥∇h∥2L2

2(S
2
+) −

1

λ
∥F∥2L2

2(S
2
+) ≥ Cλ∥h∥2H1

2 (S
2
+) −

1

λ
∥F∥2L2

2(S
2
+),

which goes to infinity as ∥h∥H1
2 (S

2
+) → +∞. Hence, there exists a stationary point ψ ∈ Z2 of

I, meaning that

δI(ψ)[ϕ] = d

dε

∣∣∣
ε=0

I(ψ + εϕ) =

ˆ
S2
+

z2g(M · ∇ψ,∇ϕ) d volg−
ˆ
S2
+

z2g(F,∇ϕ) d volg = 0

for all ϕ ∈ Zg. In fact, since the above equation holds also replacing ϕ with ϕ + c for any
c ∈ R, we deduce that it holds more generally for all ϕ ∈ H1

2 (S
2
+) by subtracting the weighted

average. Suppose now ψ̃ ∈ H1
2 (S

2
+) is another weak solution, then setting c ∈ R such that

ψ̃ + c ∈ Z2 we get that ψ − (ψ̃ + c) solves

ˆ
S2
+

z2g(M · ∇(ψ − (ψ̃ + c)),∇ϕ) d volg = 0,

for all ϕ ∈ H1
2 (S

2
+), implying by the elliplicity of M that ∥∇ψ̃ − ∇ψ∥L2

2(S
2
+) = 0, showing

z∇ψ = z∇ψ̃ almost everywhere. This proves the first part of the proposition. The second
Equation (4.34) is a direct consequence of Equation (4.33) taking ϕ = ψ.

As a consequence, if in Equation (4.28) B · Tt ∈ H1
2 (S

2
+) and A is uniformly elliptic, then

there exists a unique weak potential for the perturbed velocity ∇ϕt ∈ L2
2(S

2
+).
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4.4.3 From S2 to S4: a geometric argument

To obtain higher regularity estimates on the velocity vt = −∇⊥ϕt, we specialize the ingenious
argument of Montero in [81] from the Euclidean setting to the spherical one. To fix the ideas,
we briefly sketch the strategy when the domain is the half plane R2

+ = {(x1, x2) ∈ R2 : x1 >
0} with flat metric ge = dx21 + dx22, and the equation of interest is of the form

divge(x1∇ψ) = divge(x1F). (4.35)

Consider the higher dimensional space obtained by the revolution of R2
+ around the x1-axis,

which in this case is R2
+ × S1 := {(x1, x2, θ) : x1 > 0, x2 ∈ R, θ ∈ [0, 2π)}. Then, the

cylindrical metric ge = dx21+dx
2
2+(x1)

2dθ2 in R3 restricted to R2
+×S1 makes the projection

pr : (R2
+ × S1,ge) → (R2

+, ge), (x1, x2, θ) 7→ (x1, x2),

into a Riemannian submersion. The key observation is that for every vector field X on R2
+

the following holds
divge(x1X) = x1divge(pr

∗X),

Hence, visualizing R2
+ inside R3 with suitable coordinates allows to get rid of the degenerate

weight, and if ψ solves (4.35), then pr∗ ψ solves the non-degenerate Laplace equation

∆(pr∗ ψ) = divgc(pr
∗ F), (4.36)

(notice that the pullback commutes with the gradient). The well established regularity
theory for elliptic equations in R3 can be applied to pr∗ ψ, and then translated back to R2

+.
We follow this strategy when the starting domain is the half hemisphere (S2

+, g) instead
of the half plane (R2

+, ge). To obtain the right power of the weight in Equation (4.28) (now
squared), we look at S2

+ inside the 4-manifold S2
+ × S2. To guess the suitable metric we

notice that
S2
+ × S2 ⊂ (S2

+ × S2)/ ∼,

where S2
+ = {(z, φ) ∈ S2 : z ∈ [0, 1], φ ∈ [0, 2π)} and the equivalence relation (0, φ, σ1) ∼

(0, φ, σ2) for all φ ∈ [0, 2π) and σ1, σ2 ∈ S2 is made to collapse the spherical fibres along

the equator ∂S2
+. Topologically the space (S2

+ × S2)/ ∼ is a double lift of S2, and hence
isometric to S4 ⊂ R5 if endowed with the round metric

g = g + z2gS2 =
dz2

1− z2
+ (1− z2)dφ2 + z2

( dw2

1− w2
+ (1− w2)dϑ2

)
,

with cylindrical coordiantes (z, φ, w, ϑ) ∈ S2
+ × S2. In fact, in the more familiar spherical

coordinates (θ1, θ2, θ3, θ4) ∈ [0, π)3 × [0, 2π) on S4 ⊂ R5

x1 = cos(θ1),

x2 = sin(θ1) cos(θ2),

x3 = sin(θ1) sin(θ2) cos(θ3),

x4 = sin(θ1) sin(θ2) sin(θ3) cos(θ4),

x5 = sin(θ1) sin(θ2) sin(θ3) sin(θ4),
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with round metric

g = dθ21 + sin2(θ1)dθ
2
2 + sin2(θ1) sin

2(θ2)(dθ
2
3 + sin2(θ3)dθ

2
4),

one can identify S2
+ with (θ1, θ2) ∈ [0, π)2 via the isometric embedding in R3

x′ = cos(θ1) = x1,

y′ = sin(θ1) cos(θ2) = x2,

z = sin(θ1) sin(θ2) =
√
x23 + x24 + x25.

Remark 4.17. Notice the following elementary fact: z∇z is smooth in S4, but the vector
field ∇z is singular approaching the gluing region ∂S2

+ . On the other hand, the lifted vector
field ∇⊥z = ∂

∂φ
is equal to x2

∂
∂x1

− x1
∂
∂x2

which is globally smooth on S4 since tangential to

the gluing region ∂S2
+. This shows that the operation (·)⊥ does not extend continuously from

S2
+ to S4.

S1
+

S1

S2

Figure 4.1: A low dimensional illustration of S2
+ × S2 = S4 \ S1. Here S1

+ × S1 = S2 \ S0.

Following this identification we can write

S2
+ × S2 = S4 \ S1,

so that the projection

π : (S4 \ S1,g) → (S2
+, g), (z, φ, w, ϑ) 7→ (z, φ) (4.37)

is a Riemannian submersion. The goal of this section is to show that the elliptic equation
(4.28) can be lifted on S4. To so do we need to introduce the following terminology.
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Definition 4.18. Let M ∈ Γ(T 1,1(S2
+)) be essentially bounded and uniformly elliptic like in

Proposition 4.16, π as in (4.37), and T (S4 \ S1) = H ⊕ V its induced orthogonal splitting.

We say that M̃ ∈ Γ(T 1,1(S4)) is a elliptic extension of M if for all x ∈ S4 \ S1

M̃x = (π∗M)x + λ(x) prV , (4.38)

for some λ : S4 → [λ,Λ] continuous. Here, prV denotes the orthogonal projection of T (S4 \
S1) = V ⊕H over V .

Remark 4.19. Observe that elliptic extensions are elliptic, since for all X = π∗ξ ∈ H one
has

g(M̃ ·X,X) = g(M · ξ, ξ) ≥ λ|ξ|2g = λ|X|2g

and for all Y ∈ V, g(M̃ · Y, Y ) = g(λY, Y ) ≥ λ|Y |2g. Moreover, an elliptic extension always
exists by setting λ ≡ λ.

Proposition 4.20 (Correspondence of weak solutions). Let π : S4\S1 → S2
+ be as in (4.37).

Then, for k ∈ {0, 1} and ψ ∈ Hk
2 (S

2
+) one has that

∥π∗ψ∥Hk(S4\S1) = 4π∥ψ∥Hk
2 (S

2
+). (4.39)

Let M, λ > 0, and F be like in Proposition 4.16. Then, any ψ ∈ H1
2 (S

2
+) can be extended

from π∗ψ ∈ H1(S4 \ S1) to H1(S4) so that if ψ is the weak solution of
divg(z

2M · ∇ψ) = divg(z
2F),

ψ ∈ H1
2 (S

2
+),´

S2
+
z2ψ d volg = 0

(4.40)

in the sense of Proposition 4.16, then ψ̃ = π∗ψ is a weak solution of
divg(M̃ · ∇ψ̃) = divg(π

∗F),

ψ̃ ∈ H1(S4),´
S4 ψ̃ d volg = 0,

(4.41)

in H1(S4), meaning

ˆ
S4

g(M̃ · ∇ψ̃,∇η) d volg =

ˆ
S4

g(π∗F,∇η) d volg, ∀η ∈ H1(S4), (4.42)

where M̃ is any elliptic extension of M as described in Definition 4.18. Conversely, by
uniqueness of solution if ψ̃ ∈ H1(S4) solves (4.41) weakly, then ψ̃ = π∗ψ for ψ ∈ H1

2 (S
2
+)

solving weakly (4.40).
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Proof. Equation (4.39) is a consequence of the coarea formula and the fact that π is a
Riemannian submersion: for every measurable function h on S4 \ S1 we have that

ˆ
S4\S1

h d volg =

ˆ
S2
+

ˆ
S2

hz2 d volS2 d volg,

and in particular ˆ
S4\S1

|π∗ψ|2g d volg = 4π

ˆ
S2
+

z2|ψ|2g d volg,

proving Equation (4.39) when k = 0. For k = 1, we do the same with h = |∇(π∗ψ)|2g,
noticing that

|∇(π∗ψ)|g = |dπ∗ψ|g = |π∗dψ|g = |dψ|g,

since the pullback commutes with the exterior differential and π is a Riemannian submersion.
This proves that ψ ∈ H1

2 (S
2
+) if and only if π∗ψ ∈ H2(S4 \ S1). Now, since the three dimen-

sional Hausdorff measure of S1 in S4 is zero, we deduce that S1 is a removable singularity,
and hence Hk(S4/S1,R) = Hk(S4,R) for every k ∈ N, see [78, Section 1.1.18]. Therefore,
given a measurable function ψ on S2

+ we deduce that ψ ∈ H1
2 (S

2
+) and

´
S2
+
z2ψ d volg = 0 if

and only if π∗ψ ∈ H1(S4) and
´
S4 π

∗ψ d volg = 0 (again by the coarea formula). Let now

ψ a solution of (4.40) and set ψ̃ = π∗ψ. By density, it suffices to check Equation (4.42) for
η ∈ C∞(S4). Notice that since ∇(π∗ψ) ∈ Γ(H) is a basic horizontal field, then

M̃ · ∇(π∗ψ) = (π∗M+ λ prV) · ∇(π∗ψ) = π∗(M · ∇ψ).

On the other side, defining η̄ ∈ C∞(S4 \ S1) taking the mean of η on the fibres

η̄(z, φ) :=

ˆ
S2

η(z, φ, w, ϑ) d volS2(w, ϑ),

we get by the coarea formula that

ˆ
S4

g(M̃ · ∇ψ̃,∇η) d volg =

ˆ
S2
+

z2g(M · ∇ψ,∇η̄) d volg

which is equal to
´
S2
+
z2g(F,∇η̄) d volg, giving again by the same argument

ˆ
S4

g(M̃ · ∇ψ̃,∇η) d volg =

ˆ
S2
+

z2g(F,∇η̄) =
ˆ
S4

g(π∗F,∇η) d volg,

as wished. Uniqueness of solutions for (4.41) follows by the uniform ellipticity of M̃ as in the
proof of Proposition 4.16.
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4.5 Proof of the main result

4.5.1 The system in S4

The idea now is to solve the problem lifted in S4, since there the partial differential equation
for the velocity is non degenerate and requires only interior estimates. Consequently, our
next task is to pullback Equation (4.24) via the bundle projection map π : S4 \ S1 → S2

+,
and check that the equation obtained makes sense in S4. Recall that we need to avoid
the problem of continuously extend the complex endomorphism J to S4 (see Remark 4.17).
Rewrite Equation (4.24) as

(∂t +∇u0)Tt − zT⊥
t +∇vt(z

−1∇p0) + zvt = 0,

vt = −∇⊥ϕt,

Tt = z−1∇qt,
T0 = z−1∇q0.

(4.43)

by applying (·)⊥ to the equation. Now, notice that thanks to Lemma 4.8 we have that

−zT⊥
t = ∇Tt∇⊥z,

zvt = (−zv⊥t )⊥ = (∇v⊥t
∇z)⊥ = ∇v⊥t

∇⊥z,

and

∇vt(z
−1∇p0) + zvt =

P̄ ′′
0

z
g(vt,∇z)z∇z − (P̄ ′

0 − 1)∇v⊥t
∇⊥z.

Lifting on on the horizontal bundle via π∗ and recalling the identity (4.6), we obtain

(∂t+prH ∇π∗u0)π
∗Tt+prH ∇π∗(Tt+(1−P̄ ′

0)∇ϕt)π
∗(∇⊥z)+

P̄ ′′
0

z
g(π∗(∇ϕt), π∗(∇⊥z))π∗(z∇z) = 0.

(4.44)
Define the liftsW := π∗(∇⊥z) and Z := π∗(z∇z) (recall that they can be extended smoothly
in S4 by Remark 4.17), St := π∗Tt, ϕ̃ := π∗ϕt, and U0 = π∗u0. Then, substituting prH ∇
with the full covariant derivative on S4, we end up with the lifted linearized semigeostrophic
equation in the form

(∂t +∇U0)St +∇W · (St + (1− P̄ ′
0)∇ϕ̃t) +

P̄ ′′
0

z
g(∇ϕ̃t,W )Z = 0.

divg(Ã · ∇ϕ̃t) = divg(π
∗B · St),´

S4 ϕ̃t d volg = 0,

S0 = π∗T0.

(4.45)

where we coupled the evolution equation of St with the lifted partial differential equation
for the velocity in the same spirit of Equation (4.41) with Ã = π∗A+ prV .
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4.5.2 Construction of approximate solutions

Fix k ≥ 5, and let (p0, u0) a k-compatible solution and q0 a k-admissible perturbation as
introduced in Definition 4.2. To construct a solution of the lifted linearized semigeostrophic
system on S4, we proceed a follows: for ε > 0 we let St evolve continuously and ∇ϕ̃ discretely
over small time intervals [iε, (i + 1)ε) with i ∈ N0. Our goal is to construct two sequences
(Sis)i∈N0 ⊂ C1([0, ε), Hk(S4)) and (∇ϕ̃i)i∈N0 ⊂ Hk(S4) iteratively as solutions of the following
systems:

∂sS
i+1
s = −J

(
∇U0(JS

i+1
s ) +∇W · (JSi+1

s + (1− P̄ ′
0)∇ϕ̃i+1) +

P̄ ′′
0

z
g(∇ϕ̃i+1,W )Z

)
,

Si+1
0 = Siτ ,

S0
0 = S0 = π∗T0,

(4.46)
and 

divg(Ã · ∇ϕ̃i+1) = divg(π
∗B · JSi+1

0 ),

ϕ̃i+1 ∈ H1(S4),´
S4 ϕ̃

i+1 d volg = 0,

(4.47)

Solvability of system (4.46) is ensured by the following proposition, whereas solvability of

Equation (4.47) is classical since we suppose Ã elliptic.

Proposition 4.21. Let k ≥ 1 be fixed and X0 ∈ Hk(S4), U ∈ L∞(S4) and Y, Y ′ ∈ L1(S4)
be given vector fields. Then, the following ordinary differential equation{

∂sXs = −J
(
∇U(JXs) +∇W · (JXs + Y ) + Y ′

)
,

X|s=0 = X0.

admits a unique global solution in C1
loc([0,+∞), Hk(S4)).

Proof. By the Cauchy-Lipschitz Theorem applied in the Banach space Hk(S4), we need to
prove that the map

F : X 7→ −J
(
∇U(JXs) +∇W · (JXs + Y ) + Y ′

)
,

is globally Lipschitz. Let X,X ′ be in Hk(S4). Then, thanks to the properties of the mollifier
J as listed in Lemma 4.4, we can estimate

∥F(X)−F(X ′)∥Hk(S4) = ∥J((∇U +∇W ) · J(X −X ′))∥Hk(S4)

≤ Cε−k∥(∇U +∇W ) · J(X −X ′)∥L2(S4)

≤ Cε−k(1 + ∥U∥L∞)∥X −X ′∥H1(S4),

proving that the map F is Lipschitz of constant Cε−k(1 + ∥U∥L∞(S4)), as wished.

After existence, we are now ready to perform a energy estimate to obtain a priori uniform
bounds.
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Proposition 4.22. Let k ≥ 4 and i ∈ N0. If Si+1
s is a solution of system (4.46) in

C1([0,+∞), Hk(Sk)) with ∇ϕ̃i+1 ∈ Hk(S4), then there exists C = C(k) > 0 such that

d

ds
∥Si+1

s ∥Hk(S4)

≤ C(∥U0∥Hk(Sk) + 1)∥Si+1
s ∥Hk(S4) + C

(
∥1− P̄ ′

0∥Hk(S4) +

∥∥∥∥ P̄ ′′
0

z

∥∥∥∥
Hk(S4)

)
∥∇ϕ̃i+1∥Hk(S4).

(4.48)

Proof. Let {ξ1, . . . , ξ5} be a Killing spanning family of S4 as in Definition 4.5. Let α ∈ N5
0

be a multi-index of order |α| ≤ k, and set Dα := Lα1
ξ1

◦ · · · ◦ Lα5
ξ5
, where the power on L

denotes the repeated application of the operator. Thanks to the commutative properties of
the Killing fields with the self-adjoint mollifier J, we get that

d

ds

1

2
∥DαSi+1

s ∥2L2(S4) = −
〈
Dα(JSi+1

s ),Dα
(
A1 + A2 + A3

)〉
L2(S4)

where

A1 = ∇U0(JS
i+1
s ),

A2 = ∇W · (JSi+1
s + (1− P̄ ′

0)∇ϕ̃i+1),

A3 =
P̄ ′′
0

z
g(∇ϕ̃i+1,W )Z.

We treat the three terms separately. For A1 observe that

⟨Dα(JSi+1
s ),Dα(∇U0(JS

i+1
s ))⟩L2(S4)

= ⟨Dα(JSi+1
s ), [Dα,∇U0 ](JS

i+1
s )) +∇U0(D

α(JSi+1
s ))⟩L2(S4)

= ⟨Dα(JSi+1
s ), [Dα,∇U0 ](JS

i+1
s ))⟩L2(S4) +

1

2

ˆ
S4

g(∇|DαJSi+1
s |2g, U0) d volg

= ⟨Dα(JSi+1
s ), [Dα,∇U0 ](JS

i+1
s ))⟩L2(S4) −

1

2

ˆ
S4

divg(U0)|DαJSi+1
s |2g d volg

= ⟨Dα(JSi+1
s ), [Dα,∇U0 ](JS

i+1
s ))⟩L2(S4)

≤ ∥Dα(JSi+1
s )∥L2(S4)∥[Dα,∇U0 ](JS

i+1
s ))∥L2(S4)

≤ C∥Dα(JSi+1
s )∥L2(S4)

(
∥U0∥C1(S4)∥JSi+1

s ∥H|α|(S4) + ∥U0∥H|α|(S4)∥JSi+1
s ∥C1(S4)

)
,

where in the integration by parts we took advantage of ∂S4 = ∅, and in the last inequality,
after Cauchy-Schwarz we applied the interpolation inequalities of Proposition 4.6. For the
second term, applying once again Cauchy-Schwarz and the suitable interpolation inequality
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gives us that

⟨Dα(JSi+1
s ),Dα(∇W · (JSi+1

s + (1− P̄ ′
0)∇ϕ̃i+1))⟩L2(S4)

= ⟨Dα(JSi+1
s ), ([Dα,∇W ] +∇W ◦ Dα)(JSi+1

s + (1− P̄ ′
0)∇ϕ̃i+1))⟩L2(S4)

≤ C∥DαJSi+1
s ∥L2(S4)

(
∥JSi+1

s + (1− P̄ ′
0)∇ϕ̃i+1∥H|α|(S4)

+ ∥JSi+1
s + (1− P̄ ′

0)∇ϕ̃i+1∥C1(S4)

)
.

The last term is also treated similarly

⟨Dα(JSi+1
s ),Dα(

P̄ ′′
0

z
g(∇ϕ̃i+1,W )Z)⟩L2(S4)

= ⟨Dα(JSi+1
s ),

(
[Dα,

P̄ ′′
0

z
·] + P̄ ′′

0

z
Dα
)
(g(∇ϕ̃i+1,W )Z)⟩L2(S4)

≤ C∥DαJSi+1
s ∥L2(S4)

(∥∥∥∥ P̄ ′′
0

z

∥∥∥∥
C1(S4)

∥∇ϕ̃i+1∥H|α|(S4) +

∥∥∥∥ P̄ ′′
0

z

∥∥∥∥
H|α|(S4)

∥∇ϕ̃i+1∥L∞(S4)

)
.

Summing over all |α| ≤ k, and recalling that if k ≥ 4 by Proposition 4.7 Hk(S4) is a
Banach algebra and Hk(S4) ↪→ C1(S4) ⊂ L∞(S4), we conclude that there exists a constant
C = C(k) > 0 such that

d

ds
∥Si+1

s ∥Hk(S4)

≤ C(∥U0∥Hk(Sk) + 1)∥Si+1
s ∥Hk(S4) + C

(
∥1− P̄ ′

0∥Hk(S4) +

∥∥∥∥ P̄ ′′
0

z

∥∥∥∥
Hk(S4)

)
∥∇ϕ̃i+1∥Hk(S4),

as wished.

To perform a Gronwall argument, we are left to estimate the growth of ∥∇ϕ̃i+1∥Hk(S4).

Proposition 4.23. Let ϕ̃i+1 be solution of the elliptic Equation (4.47). Then, for every
k ≥ 5 there exists C = C(k) > 0 such that

∥∇ϕ̃i+1∥Hk(S4) ≤ C
(
∥Ã∥Hk(S4) + ∥π∗B∥Hk(S4)

)k
λ−k0 ∥Si+1

0 ∥Hk(S4). (4.49)

Proof. We suppose ∥π∗B∥Hk and ∥Ã∥Hk less than one. The general result follows by rescaling
Equation (4.47). Let {ξ1, . . . , ξ5} be a Killing spanning family of S4 as in Definition 4.5. Let
α ∈ N5

0 be a multi-index of order 0 ≤ |α| ≤ k, and set Dα := Lα1
ξ1

◦ · · · ◦ Lα5
ξ5
, where the

power on L denotes the repeated application of the operator. Since the divergence operator
is invariant under isometries, we deduce that the Lie derivative along any ξ′is commutes
with it. By the classical theory of linear elliptic equations, we know that ϕ̃i+1 ∈ C∞(S4).
Therefore, differetiating Equation (4.47) we get that

divg(D
α(Ã · ∇ϕ̃i+1)) = divg(D

α(Bε · JSi+1
0 )).
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When α = 0, multiplying this by Dα∇ϕ̃i+1 and integrating by parts (here again the fact that
S4 has no boundary simplifies a lot the argument) we obtain that

λ0∥∇ϕ̃i+1∥L2(S4) ≤ ∥B̃∥L∞(S4)∥Si+1
0 ∥L2(S4) ≤ ∥Si+1

0 ∥L2(S4).

More generally, when |α| ≥ 1 we can estimate as follows

λ0∥Dα∇ϕ̃i+1∥2L2(S4) ≤ ⟨Ã · Dα∇ϕ̃i+1,Dα∇ϕ̃i+1⟩L2(S4)

= ⟨[Ã·,Dα]∇ϕ̃i+1,Dα∇ϕ̃i+1⟩L2(S4) + ⟨Dα(π∗B · JSi+1
0 ),Dα∇ϕ̃i+1⟩L2(S4).

By Cauchy-Schwarz and interpolation inequalities of Proposition 4.6, we deduce that

λ0∥Dα∇ϕ̃i+1∥L2(S4) ≤ ∥[Ã·,Dα]∇ϕ̃i+1∥L2(S4) + ∥Dα(π∗B · JSi+1
0 )∥L2(S4)

≤ C
(
∥Ã∥C1(S4)∥∇ϕ̃i+1∥H|α|−1(S4) + ∥Ã∥H|α|(S4)∥∇ϕ̃i+1∥L∞(S4)

+ ∥π∗B∥C1(S4)∥JSi+1
0 ∥H|α|(S4) + ∥π∗B∥H|α|(S4)∥JSi+1

0 ∥L∞(S4)

)
≤ C

(
∥∇ϕ̃i+1∥H|α|−1(S4) + ∥∇ϕ̃i+1∥L∞(S4) + ∥JSi+1

0 ∥H|α|(S4) + ∥JSi+1
0 ∥L∞(S4)

)
.

Summing over 0 ≤ |α| ≤ k we get again by Proposition 4.7 that

λ0∥∇ϕ̃i+1∥Hk(S4) ≤ C
(
∥Si+1

0 ∥Hk(S4) + ∥∇ϕ̃i+1∥Hk−1(S4)

)
.

If ∥∇ϕ̃i+1∥Hk−1(S4) ≤ ∥Si+1
0 ∥Hk(S4) then we are done. Otherwise, from interpolation we get

that

λ0∥∇ϕ̃i+1∥Hk(S4) ≤ C∥∇ϕ̃i+1∥Hk−1(S4)

≤ C∥∇ϕ̃i+1∥1/kL2(S4)∥∇ϕ̃
i+1∥1−1/k

Hk(S4)
,

implying that
(λ0)

k∥∇ϕ̃i+1∥Hk(S4) ≤ ∥∇ϕ̃i+1∥L2(S4) ≤ ∥Si+1
0 ∥L2(S4),

as wished.

Proposition 4.24. Let k ≥ 5 and (Sis, ϕ̃
i)i∈N be solution of Equation (4.46) and Equation

(4.47). Define for every i ∈ N0 and s ∈ [0, ε) the monotonically increasing Lipschitz function

Θi
s := sup

τ∈[0,s)
∥Siτ∥Hk(S4).

Then, there exists C = C(k) > 0 such that for every s ∈ [0, ε]

Θi
s ≤ Θi

0e
CC0s,

where C0 > 0 is a constant depending only on the initial data that can be taken equal to

C0 = ∥U0∥Hk(S4) + 1 +
(
∥1− P̄ ′

0∥Hk(S4) + ∥P̄ ′′
0 /z∥Hk(S4)

)(
∥Ã∥Hk(S4) + ∥B̃∥Hk(S4)

)k
λ−k0 .

Proof. Combine Propostion 4.22 and Propostion 4.23. The result follows from Gronwall
Lemma.
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4.5.3 Compactness argument

Define the approximate solutions

Sεt ∈ Liploc([0,+∞), Hk(S4))

and
∇ϕ̃εt ∈ L∞

loc([0,+∞), Hk(S4))

by gluing over time intervals the sequences obtained in the previous section in the following
way

Sεt := Sis, and ∇ϕ̃εt = ∇ϕ̃i if t = iε+ s ∈ [iε, (i+ 1)ε).

Similarly, we extend the definition of Θi
s := supt∈[0,s)∥Siτ∥Hk(S4) to the function

Θε
t := sup

τ∈[0,t)
∥Sετ∥Hk(S4).

By construction and Proposition 4.24 we have that for every t > 0 it holds

Θε
t ≤ Θε

0e
CC0t = ∥π∗T0∥Hk(S4)e

CC0t, (4.50)

uniformly in ε. We are now ready to prove existence of solution in S4.

Theorem 4.25. Let k ≥ 5 be given, and let (p0, u0) be k-compatible and q0 a k-admissible
perturbation, in the sense of Definition 4.2. Then, there exist a unique pair

St,∇ϕ̃t ∈ Cloc([0,+∞), Hk(S4)) ∩ C1
loc([0,+∞), Hk−1(S4)),

solving Equation (4.45).

Proof. In this proof all convergences have to be understood up to extraction of subsequences
as ε → 0. Let I = [0, t∗] be an arbitrarily large time interval. By Proposition 4.23,
Proposition 4.24, and Equation (4.50) we know that Sεt and ∇ϕ̃εt are uniformly bounded
in L∞(I,Hk(S4)) by some constant C∗ > 0. In particular, by Banach-Alaoglu

Sεt ⇀ St, in L
2(I,Hk(S4)),

and
∇ϕ̃εt ⇀ ∇ϕ̃t, in L2(I,Hk(S4)),

for St and ∇ϕ̃t in L∞(I,Hk(S4)). Taking advantage of Equation 4.46 and the fact that
Hk(S4) is a Banach algebra, we see that also ∂tS

ε
t is uniformly bounded in L∞(I,Hk−1(S4)),

and therefore St ∈ Lip(I,Hk−1(S4)) and

∂tS
ε
t ⇀ ∂tSt, in L

2(I,Hk−1(S4)).

Moreover, since Hk−1(S4) embeds compactly in Hk(S4) ([59, Theorem 2.9]), and Hk−1(S4)
embeds continuously in itself, we infer by Aubin-Lions-Simon Lemma [9, 73, 112] that Sεt
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converges strongly in C(I,Hk−1(S4)). Following the same argument in [110, Theorem 1.3.4],
one can check that St is a weak solution of Equation (4.45) in duality with L2(I,Hk−1(S4)).
In particular, since

divg(Ã · ∇ϕ̃t) = −divg(π
∗B · St),

by standard elliptic regularity (like in Proposition 4.23) we infer that ∇ϕ̃t inherits the same
regularity as St, that is

∇ϕ̃t ∈ L∞(I,Hk(S4)) ∩ Lip(I,Hk−1(S4)).

We can improve this regularity adapting the argument in [77, Theorem 3.5]. We first show
that St ∈ Cw(I,H

k(S4)), the space of weakly continuous maps, that is all Q : I → Hk(S4)
such that for every Φ ∈ (Hk(S4))∗

t 7→ Φ(Qt),

is continuous. Since Sεt → St in C(I,Hk−1(S4)), in particular the same must hold for
Cw(I,H

k−1(S4)). Let t ∈ I, δ > 0 and Φ as above. By density of (Hk−1(S4))∗ in (Hk(S4))∗,
there exists Φ′ ∈ (Hk−1(S4))∗ such that ∥Φ− Φ′∥(Hk(S4))∗ < δ/(4C∗). Hence,

|Φ(St)− Φ(Ss)| = |Φ(St − Ss)| ≤ |Φ′(St − Ss)|+ ∥Φ− Φ′∥(Hk(S4))∗∥St − Ss∥Hk(S4)

≤ |Φ′(St − Ss)|+ δ/2 < δ,

for s ∈ I close enough to t. To prove that St ∈ C(I,Hk(S4)) we are left to show that the
map

t 7→ ∥St∥Hk(S4),

is continuous. By the weak lower-semi continuity of the norm we have that

lim inf
t→0+

∥St∥Hk(S4) ≥ ∥S0∥Hk(S4),

and by Equation (4.50)

lim sup
t→0+

∥St∥Hk(S4) = inf
δ>0

sup{∥St∥Hk(S4) : t ∈ [0, δ)}

≤ ∥S0∥Hk(S4) inf
δ>0

eCC0δ = ∥S0∥Hk(S4),

proving that limt→0+∥St∥Hk(S4) = ∥S0∥Hk(S4). System (4.45) is time reversible and, by el-
ementary L2-energy estimates, admits a unique solution for every initial given data S0 ∈
Hk(S4). We deduce the continuity of the Hk-norm for all time t ∈ I. For more details
about this argument, we refer to [77, Theorem 3.5]. Hence, we proved that St,∇ϕ̃t ∈
C(I,Hk(S4)) ∩ C1(I,Hk−1(S4)), as wished.

4.5.4 Slicing

Now we need to prove that it is possible to go back from the lifted equation to the original
problem in S2

+. It will be convenient to work with special horizontal and vertical vector
fields, that we describe in the following lemma.
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Lemma 4.26. Let
π : S4 \ S1 → S2

+,

be defined as π : (x1, . . . , x5) 7→ (x1, x2, z) = (x1, x2,
√
x23 + x24 + x25), where

S4 = {x ∈ R5 : |x|2 = x21 + · · ·+ x25 = 1},

S1 = {x ∈ S4 : x21 + x22 = 1} = {z = 0} ⊂ S4,

and
S2
+ = {(x1, x2, z) ∈ R3 : x21 + x22 + z2 = 1, z > 0}.

Then, the vector fields

W = π∗(∇⊥z) = x2
∂

∂x1
− x1

∂

∂x2
,

Z = π∗(z∇z) = x3
∂

∂x3
+ x4

∂

∂x4
+ x5

∂

∂x5
− z2x,

are smooth and globally defined on S4 and {Wx, Zx} form an orthogonal basis of the horizontal
distribution Hx, provided x ̸∈ S1. Moreover, W is Killing, the tensor ∇W ∈ T 1,1(S4) maps
vectors from T (S4 \ S1) to H, and satisfies the identity

(∇W ◦ ∇W )ξ = −z2 prH(ξ), ∀ξ ∈ T (S4 \ S1). (4.51)

In particular, prH(ξ) = 0 if and only if ∇W · ξ = 0 since

|∇W · ξ|g = |z2 prH(ξ)|g. (4.52)

Finally, at every y ∈ S4 \ S1 there exist two globally defined vertical Killing vector fields V1
and V2 so that {(V1)y, (V2)y} spans Vy, and such that ∇WV1 = ∇WV2 = 0, and ∇Vi maps
vectors from T (S4 \ S2) to V, i = 1, 2.

Proof. It is convenient to start by defining V1 and V2 according to y. Notice that y ∈ S4 \S1

if and only if y3, y4, y5 are not simultaneously equal to zero. We define the vector fields
{V1, V2} as 

V1 = x4
∂
∂x3

− x3
∂
∂x4
, V2 = x3

∂
∂x5

− x5
∂
∂x3
, if y3 ̸= 0,

V1 = x4
∂
∂x3

− x3
∂
∂x4
, V2 = x4

∂
∂x5

− x5
∂
∂x4
, if y4 ̸= 0,

V1 = x3
∂
∂x5

− x5
∂
∂x3
, V2 = x4

∂
∂x5

− x5
∂
∂x4
, if y5 ̸= 0.

We notice that V1 and V2 are always Killing since they represent a rotation of S4, and they
are vertical since

dπ · Vi = z−1(0, 0, x3, x4, x5) · Vi = 0.

Moreover, {(V1)y, (V2)y} are linearly independent and not trivial, and therefore form a base
of Vy. By the explicit form of the covariant derivative on S4 one has that ∇ViW = ∇WVi = 0
for i = 1, 2, proving in particular that ∇W maps general vectors on horizontal vectors. To
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prove Equation (4.51) it is sufficient to compute ∇WW = Z and ∇ZW = −z2W . Since W
is itself Killing, we prove Equation (4.52) as follows:

|∇W · ξ|2g = g(∇W · ξ,∇W · ξ) = −g((∇W ◦ ∇W ) · ξ, ξ)
= g(z2 prH(ξ), ξ) = |z2 prH(ξ)|2g.

To prove that ∇Vi sends general vectors to vertical vectors we are left to compute ∇Vi · Z
since we already know that ∇Vi ·W = 0. This can be achieved by taking advantage of the
Killing nature of Vi, by noticing that

g(∇Vi · Z,W ) = −g(Z,∇Vi ·W ) = 0,

and

g(∇Vi · Z,Z) = −g(Z,∇Vi · Z) ⇒ g(∇Vi · Z,Z) = 0,

proving that ∇Vi · Z is orthogonal to H, and therefore vertical.

Proposition 4.27. For k ≥ 3 let

St ∈ C1([0,+∞), Hk(S4)),

and

∇ϕ̃t ∈ L∞
loc([0,∞), Hk(S4)),

be solution of the lifted linearized semigeostrophic Equation (4.45). If S0(x) ∈ H for all
x ∈ S4 \ S1, then St(x) ∈ H for all t > 0 and x ∈ S4 \ S1.

Proof. Let {V1, V2} like in Lemma 4.26, and define hit := g(St, Vi), for i = 1, 2. Testing (4.45)
against Vi we get that

0 = ∂th
i
t + g(∇U0St, Vi) + g(∇W · (St + (1− P̄ ′

0)∇ϕ̃t, Vi) +
P̄ ′′
0

z
g(∇ϕ̃t,W )g(Z, Vi)

= ∂th
i
t + g(U0,∇hit)− g(St,∇U0Vi) = ∂th

i
t + g(U0,∇hit)−Ψ′

0g(St,∇WVi)

= ∂th
i
t + g(U0,∇hit),

proving that the projection hit is transported along U0. We conclude that if h10 and h20 are
identically zero, the same must hold also for t > 0, proving the claim by smoothness of
St.

Now that we know that St is an horizontal vector field, we need to prove that it is actually
a basic one, that is there exists Tt ∈ Γ(TS2

+) such that St = π∗Tt. This could be achieved
by showing that prH(LV St) = 0 for any V ∈ V and t ≥ 0. We argue by first showing that
if (St,∇ϕ̃t) solves Equations (4.45), then for every Killing vector field V ∈ Γ(V) the pair
(LV St,LV∇ϕ̃t) solves the same equations up to vertical terms. The argument is completed
by performing an L2-energy estimate on the vector field (∇W · LV St).
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Proposition 4.28. For k ≥ 4 let

St ∈ C1([0,+∞), Hk(S4)),

and
∇ϕ̃t ∈ L∞

loc([0,∞), Hk(S4)),

be solution of the lifted linearized semigeostrophic Equation (4.45), and suppose that St(x) ∈
Hx for every x ∈ S4 \ S1. Let V be a vertical Killing vector field as defined in Lemma 4.26.
Then, the pair (SVt , ϕ̃

V
t ) := (LV St,LV ϕ̃t) is also a solution of (4.45) up to vertical terms,

that is there exists V ′
t ∈ L∞

loc([0,∞), Hk−1(S4)) vertical such that
(∂t +∇U0)S

V
t +∇W · (SVt + (1− P̄ ′

0)∇ϕ̃Vt ) +
P̄ ′′
0

z
g(∇ϕ̃Vt ,W )Z = V ′

t ,

divg(Ã · ∇ϕ̃Vt ) = −divg(π
∗B · SVt ),´

S4 ϕ̃
V
t d volg = 0.

(4.53)

As a consequence, the following estimate holds for every t ≥ 0:

∥∇W · LV St∥L2(S4) ≤ ∥∇W · LV S0∥L2(S4)e
C0t, (4.54)

for some C0 > 0 depending only on the initial data Ψ0 and P̄0.

Proof. We start by showing that ϕ̃Vt solves the elliptic equation in (4.45) replacing St with
SVt . Since V is Killing we have that LV∇ϕ̃t = ∇LV ϕ̃t, because for every vector ξ the
following holds:

g(LV∇ϕ̃t, ξ) = V (g(∇ϕ̃t, ξ))− g(∇ϕ̃t,LV ξ) = V (dϕ̃t(ξ))− dϕ̃t(LV ξ)
= (LV dϕ̃t)(ξ) = (dLV ϕ̃t)(ξ) = g(∇(LV ϕ̃t), ξ),

where we took advantage of the commutativity property of the Lie derivative with the
exterior derivative. Moreover, from divg(V ) = 0 we get that

ˆ
S4

ϕ̃Vt d volg =

ˆ
S4

LV ϕ̃t d volg =
ˆ
S4

g(∇ϕ̃t, V ) d volg =

ˆ
S4

ϕ̃tdivg(V ) d volg = 0.

Since [LV , divg] = 0 we are left to prove that

[LV , Ã·] = [LV , π∗B·] = 0.

Explicitly for a vector field ξ one has that

LV (Ã · ξ) = LV
(
ξ − P̄ ′

0 prH(ξ) +
P̄ ′′
0

z
g(ξ,W )W

)
Since LVW = LVZ = 0 and z is constant along V , we have that

LV (Ã · ξ) = LV ξ − P̄ ′
0 prH(LV ξ) +

P̄ ′′
0

z
g(LV ξ,W )W = Ã · LV ξ,
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as wished. The same holds for π∗B since it shares a similar structure with Ã. Let us focus
now on the equation for St. Thanks to Proposition 4.27 we know that St must be horizontal.
In the following chains of identities we will symbolically add V when the equation holds up
to vertical terms. We start by noticing that ∇V : H → V , and hence

LV∇WSt = [V,∇WSt] = ∇V∇WSt −∇V · ∇WSt = ∇V∇WSt + V
= ∇W∇V St +R(W,V )St +∇[V,W ]St + V = ∇W∇V St +R(W,V )St + V
= ∇W∇V St + g(W,St)V − g(V, St)W + V
= ∇W∇V St + V ,

where we used that ∇ is torsion free and hence [V,W ] = ∇VW − ∇WV = 0. Notice that
from

∇W (∇V · St) = 0 + V ,

we get that

LV∇WSt = ∇W (∇V St −∇StV ) + V = ∇WLV St + V .

Since Ψ′
0 is constant along the integral lines of V , we conclude that

LV (∇U0St) = Ψ′
0LV (∇WSt) = Ψ′

0∇W (LV St) + V = ∇U0S
V
t + V .

In a similar way the term LV (∇W · St) can be treated as follows:

LV (∇W · St) = [V,∇StW ] = ∇V∇StW −∇V · ∇StW = ∇V∇StW + V
= ∇St∇VW +R(St, V )W +∇[V,St]W + V
= ∇[V,St]W + g(St,W )V − g(V,W )St + V
= ∇[V,St]W + V
= ∇W · LV St + V = ∇W · SVt + V .

It suffices now to apply LV to Equation (4.45) and take advantage of the latter commutative
properties up to vertical components to obtain Equation (4.53). The associated energy
estimate goes as follows:

d

dt

1

2
∥∇W · SVt ∥2L2(S4) = ⟨∇W · SVt ,∇W · ∂tSVt ⟩L2(S4)

= −
〈
∇W · SVt ,∇W ·

(
∇U0S

V
t +∇W ·

(
SVt + (1− P̄ ′

0)∇ϕ̃Vt
)
+
P̄ ′′
0

z
g(∇ϕ̃Vt ,W )Z

)〉
L2(S4)

.

In particular

⟨∇W · SVt ,∇W · ∇U0S
V
t ⟩L2(S4) = ⟨∇W · SVt ,∇U0(∇W · SVt )⟩L2(S4)

=

ˆ
S4

|SVt |2g
2

divg(U0) d volg = 0,
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and

⟨∇W · SVt ,∇W · (∇W · SVt )⟩L2(S4) = −⟨∇W · (∇W · SVt ),∇W · SVt ⟩L2(S4),

since W is itself Killing. From the identity ∇W ◦ ∇W = −z2 prH and the elliptic estimate

∥∇ϕ̃Vt ∥L2(S4) ≤ λ−1
0 ∥π∗B · SVt ∥L2(S4) ≤ λ−1

0 ∥π∗B∥L∞(S4)∥prH(SVt )∥L2(S4)

= λ−1
0 ∥π∗B∥L∞(S4)∥∇W · SVt ∥L2(S4)

we finally obtain that

d

dt

1

2
∥∇W · SVt ∥2L2(S4) = −

〈
∇W · SVt ,∇W ·

(
∇W ·

(
(1− P̄ ′

0)∇ϕ̃Vt
)
+
P̄ ′′
0

z
g(∇ϕ̃Vt ,W )Z

)〉
L2(S4)

=
〈
∇W · SVt , z2(π∗A · ∇ϕ̃Vt )

〉
L2(S4)

=
〈
∇W · SVt , z2(Ã · ∇ϕ̃Vt )

〉
L2(S4)

≤ ∥∇W · SVt ∥L2(S4)∥z2Ã∥L∞(S4)∥∇ϕ̃Vt ∥L2(S4)

≤ ∥∇W · SVt ∥L2(S4)∥z2Ã∥L∞(S4)λ
−1
0 ∥π∗B∥L∞(S4)∥∇W · SVt ∥L2(S4),

proving Equation (4.54) via Gronwall Lemma.

Proof of Theorem 4.1. Let

St,∇ϕ̃t ∈ Cloc([0,+∞), Hk(S4)) ∩ C1
loc([0,+∞), Hk−1(S4)),

be the solution constructed in Theorem 4.25. Combining Proposition 4.27 and Proposition
4.28 we know that St is a basic horizontal vector field for all t > 0, since by Equation 4.54
we have that for all Killing vertical vector field V the following holds

∥∇W · LV St∥L2(S4) = ∥∇W · LV S0∥L2(S4) +

ˆ t

0

d

dτ
∥∇W · LV Sτ∥L2(S4) dτ

≤ ∥∇W · LV S0∥L2(S4) +

ˆ t

0

∥∇W · LV S0∥L2(S4)e
C0τ dτ = 0,

because LV S0 = LV (π∗T0) is purely vertical. Let Tt ∈ Γ(TS2
+) be such that St = π∗Tt.

Consequently, Proposition 4.20 implies that ϕ̃t has to be a lift of a function ϕt defined on
S2
+. By the classical Sobolev embeddings of Proposition 4.7 we have that

St,∇ϕ̃t ∈ Cloc([0,+∞), Ck−3,α(S4)) ∩ C1
loc([0,+∞), Ck−4,α(S4)),

for any α ∈ [0, 1). Consequently, thanks to Proposition 4.20 we obtain

Tt,∇ϕt ∈ Cloc([0,+∞), Ck−3,α
loc (S2

+)) ∩ C1
loc([0,+∞), Ck−4,α

loc (S2
+)) ∩ C1

loc([0,+∞), H1
2 (S

2
+)).

The pair (Tt, ϕt) solves Equation (4.43) since

∇U0St = ∇π∗u0π
∗Tt = prH(∇π∗u0π

∗Tt) = π∗(∇u0Tt),
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taking advantage of the fact that ∇W : H → H. We prove that Tt is in the form Tt = z−1∇qt
for some potential qt. To do so, we define ωt := divg(zT

⊥), apply divg(zJ ·) to the equation
and obtain

∂tωt + divg(A · ∇ϕ̃t) + divg(z∇u0T
⊥
t ) + divg(z

2Tt) = 0, (4.55)

that becomes taking advantage of the equation solved by ∇ϕ̃t:

∂tωt + divg(zJ ◦ Hess(ψ0) ◦ J · Tt) + divg(z∇u0T
⊥
t ) = 0, (4.56)

which thanks to Equation (4.27) gives us

∂tωt + divg(ωtu0) = 0, (4.57)

showing that ωt ≡ 0 for all t > 0, proving that there exists a potential qt satisfying ∇⊥qt =
zT⊥

t , as wished. Last step is uniqueness. We perform an Energy estimate: suppose that
(T ′

t , v
′
t) is another solution of (4.24) in in the same class as (Tt, vt), then

d

dt

1

2
∥Tt − T ′

t∥2L2
2(S

2
+)

= −
ˆ
S2
+

⟨Tt − T ′
t ,∇u0(Tt − T ′

t)− z(Tt − T ′
t)

⊥ +∇vt−v′t(z
−1∇p0) + z(vt − v′t)⟩z2 d volg

= −1

2

ˆ
S2
+

u0

(
z2|T − T ′|2g

)
d volg−

ˆ
S2
+

⟨Tt − T ′
t ,∇vt−v′t(z

−1∇p0) + z(vt − v′t)⟩z2 d volg

≤ ∥Tt − T ′
t∥L2

2(S
2
+)∥∇vt−v′t(z

−1∇p0) + z(vt − v′t)∥L2
2(S

2
+)

≤ C∥Tt − T ′
t∥L2

2(S
2
+)∥vt − v′t∥L2(S2

+)

≤ C∥Tt − T ′
t∥2L2

2(S
2
+),

for some C > 0 depending only on the initial data (p0, u0). The last inequality follows from
the equation solved by the difference of the potentials for vt and v

′
t and Equation (4.34). By

Gronwall, we conclude that if T0 = T ′
0, then the same must hold almost everywhere for all

t > 0. Uniqueness follows from the additional regularity of Tt and T
′
t .
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Appendix A
2

A.1 Existence, boundedness and mean convexity
The objective of this section is to establish the existence, boundedness, and mean convexity
of the isoperimetric sets in the hyperbolic space Hn

R when equipped with a radial density
function f : Hn

R → R>0. Expressing

ln(f(x)) = h(dH(o, x))

for some h : R → R, it will be sufficient to assume h lower-semicontinuous and divergent
to infinity to ensure existence, and non-decreasing to ensure boundedness. We will take
advantage of the log-convexity to establish the mean-convexity of the isoperimetric sets.
The proof is a direct application of the arguments employed by Morgan and Pratelli in the
flat case [86, Theorem 3.3, Theorem 4.3, Theorem 5.9, Theorem 6.5]. We recall that we work
in the Poincaré model, that makes Hn

R conformal to the unit ball in Rn. The metric at a
point x ∈ Hn

R is given by

gH =
4

(1− r2)2
gflat,

where r = |x| will always denote the Euclidean distance of x from the origin. In this
coordinate system, the hyperbolic distance from the origin is given by

dH(x, 0) = 2 artanh(r).

We will denote with f̃(r) := exp(h(2 artanh(r))) the profile of the radial weight in Poincaré
coordinates. Then, one can check that for k ∈ {n − 1, n} the k-dimensional weighted
Hausdorff measures associated to gH and f can be expressed as

dH k
f := f dH k = f̃(r)

( 2

1− r2

)k
dH k

flat, (A.1)

where we denote with the flat index the Hausdorff measures associated to gflat in the Poincaré
model. To simplify the exposition, let us define the function

ω(r) :=
2

1− r2
.
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Finally we will denote with B(r) the ball centered at the origin in Hn
R with Euclidean radius

r ∈ (0, 1), and with Sn−1(r) its boundary.
We start by proving that the isoperimetric profile is monotone. This step will be impor-

tant to show boundedness later on.

Theorem A.1 (Monotonicity of the isoperimetric profile). Let h : R≥0 → R be a lower-
semicontinuous non-decreasing function and let f : Hn

R → R>0 be defined through f(x) =
exp(h(dH(x, o))) for some base point o ∈ Hn

R. Then, the isoperimetric profile J defined in
(2.1) as

J(v) := inf
{
Pf (F ) : Vf (F ) = v, F ⊂ Hn

R of finite perimeter
}

is non-decreasing in v ∈ [0,+∞). Moreover, J is strictly increasing if there exist isoperimet-
ric sets for all volumes.

Proof. Let E be any set of finite perimeter with finite volume Vf (E) = v. We claim that for
all r > 0 such that E(r) := E ∩B(r) ⊊ E one has that

Pf (E(r)) < Pf (E). (A.2)

If Equation (A.2) holds, then it suffices to notice that for every 0 < v′ < v there exists
r′ ∈ (0, 1) such that

Vf (E(r
′)) = v′,

which implies that

J(v′) ≤ Pf (E(r
′)) < Pf (E).

If E is isoperimetric, then we have immediately that J(v′) < J(v) for all 0 < v < v′.
Otherwise, for every ε > 0 let Eε be a set of finite perimeter such that Vf (E) = v and
Pf (Eε) ≤ J(v) + ε. From the inequality

J(v′) < Pf (E) ≤ J(v) + ε

we infer that J(v) ≤ J(v′) for all 0 < v < v′. We are left to prove Equation (A.2). Let
π : ∂E \ B(r) → Sn−1(r) be the normal projection on the sphere of radius r. Notice that π
is strictly 1-Lipschitz with respect to the Euclidean distance. Then,

π(∂E \B(r)) ⊇ ∂E(r) \ ∂E. (A.3)

In fact, the set E contains the (possibly empty) cone

C = {λx : λ ∈ [1, r−1), x ∈ H},

where H = (∂E(r)\∂E)\π(∂E \B(r)), and the dilation λx is to be understood with respect
to the Euclidean structure in the Poincaré model. Since the density is non-decreasing, it
follows that Vf (C) = +∞ unless H n−1

flat (H) = 0. By assumption, the volume of E is finite,
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and therefore Equation (A.3) must hold up to a set of measure zero. By the coarea formula
(see for instance [76, Chapter 13]) we finally get that

Pf (E(r)) =

ˆ
∂E∩B(r)

f̃(r)ω(r)n−1 dH n−1
flat +

ˆ
∂E(r)\∂E

f̃(r)ω(r)n−1 dH n−1
flat

≤
ˆ
∂E∩B(r)

f̃(r)ω(r)n−1 dH n−1
flat +

ˆ
π(∂E\∂B(r))

f̃(r)ω(r)n−1 dH n−1
flat

<

ˆ
∂E∩B(r)

f̃(r)ω(r)n−1 dH n−1
flat +

ˆ
∂E\∂B(r)

f̃(|π(x)|)ω(|π(x)|)n−1 dH n−1
flat

≤ Pf (E),

where f̃(r) = exp(h(2 artanh(r))).

We are now ready to establish existence.

Theorem A.2 (Existence of isoperimetric sets). Let h : R → R be a lower-semicontinuous
function that diverges to infinity and let f : Hn

R → R>0 be defined through f(x) = exp(h(dH(x, o)))
for some base point o ∈ Hn

R. Then, for all volumes there exists a set attaining the isoperi-
metric infimum in Equation (2.1).

Proof. Fix v > 0 and let (Ej)j≥1 ⊂ Hn
R be a sequence of smooth sets of weighted volume

v whose perimeter converges to the infimum of Equation (2.1). Without loss of generality,
we can suppose Pf (Ej) < J(v) + 1. Intersecting this sequence with balls of growing radii
rj → 1, the sequence splits into

Ej = (Ej ∩B(rj)) ∪ (Ej \B(rj)) = EC
j ∪ ED

j .

Up to taking a subsequence, a standard argument of compactness (see [56, Theorem 1.19]
and [84, Theorem 13.4]) shows that EC

j converges to an isoperimetric set, whose volume is
equal to v if and only if there is no volume escaping to infinity, that is

lim
R→1

lim sup
j→+∞

Vf (Ej \B(R)) = 0.

To establish our argument, we will proceed by contradiction. Let us assume that, after
selecting a subsequence if necessary, there exists a positive value ε > 0 such that for every
R > 0, there exists an index j = j(R) satisfying the inequality

Vf (Ej \B(R)) ≥ ε. (A.4)

Fix 0 < R < 1 a number very close to 1 yet to define, and j = j(R). Thanks to (A.1) we
can rewrite Equation (A.4) as

ˆ 1

R

ω(r)nf̃(r)Sj(r) dr ≥ ε, (A.5)
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where Sj(r) := H n−1
flat (∂E ∩ Sn−1(r)) and f̃(r) = exp(h(2 artanh(r))). Then, denoting

Mj(R) := supr∈[R,1) ω(r)
n−1Sj(r) and m(R) = infr∈[R,1) f̃(r) we gave that

Pf (Ej) ≥Mj(R)m(R). (A.6)

In particular, since Pf (Ej) is uniformly bounded, up to taking R close enough to 1, we can
suppose m(R) large enough, so that

Sj(r) ≤
H n−1

flat (Sn−1(r))

2

for all r ∈ [R, 1). By the classical isoperimetric inequality on the sphere, there exists a
dimensional constant cn > 0 such that

H n−2
flat (∂(Ej ∩ Sn−1(r))) ≥ cnSj(r)

n−2
n−1 ,

for all r ∈ [R, 1). By Vol’pert theorem (see [6, Theorem 3.108]), for almost every r ∈ (0, 1)
one has that

∂(Ej ∩ Sn−1(r))) = ∂Ej ∩ Sn−1(r).

Therefore, the coarea formula (see for instance [76, Chapter 13]) allows us to obtain the
following estimate on the weighted perimeter:

Pf (Ej) ≥
ˆ 1

R

ω(r)n−1f̃(r)H n−2
flat (∂Ej ∩ Sn−1(r)) dr

=

ˆ 1

R

ω(r)n−1f̃(r)H n−2
flat (∂(Ej ∩ Sn−1(r))) dr

≥ cn

ˆ 1

R

ω(r)n−1f̃(r)Sj(r)
n−2
n−1 dr

≥ cn

ˆ 1

R

ω(r)nf̃(r)Sj(r)(Sj(R)ω(r)
n−1)−

1
n−1 dr

≥ cnM
− 1

n−1

j ε,

where in the last line we used assumption (A.5). On the other hand, thanks to (A.6) we get
that

(J(v) + 1)
n

n−1 ≥ Pf (Ej)Pf (Ej)
1

n−1 ≥ cnεm(R)
1

n−1 .

But this is impossible because m(R) diverges to infinity as R → 1.

After existence, we prove boundedness of the isoperimetric set.

Theorem A.3 (Boundedness of the isoperimetric sets). Let h : R≥0 → R be a lower-
semicontinuous non-decreasing function and let f : Hn

R → R>0 be defined through f(x) =
exp(h(dH(x, o))) for some base point o ∈ Hn

R. Then, every set attaining the isoperimetric
infimum in Equation (2.1) is bounded.
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Proof. We proceed by contradiction. Let E be an unbounded isoperimetric set. Let r ∈ (0, 1)
be close enough to 1 so that

E(r) := E ∩B(r) ⊊ E.

Define Er := E ∩ Sn−1(r), and the two functions

Vf (r) := Vf (E \B(r)), Pf (r) := H n−1
f (∂E \B(r)).

Notice that Vf (r) and Pf (r) tend to zero as r tends to 1. Thanks to Theorems A.1 and A.2,
we have that

Pf (E) > Pf (E(r)) = Pf (E)− Pf (r) + H n−1
f (Er),

implying that
Pf (r) > H n−1

f (Er). (A.7)

Up to taking r closer to 1, we can assume that

H n−1
flat (Er) ≤

1

2
H n−2

flat (∂Er),

where the boundary of Er is taken inside the sphere Sn−1(r). Therefore, by classic isoperi-
metric inequality on the sphere there exists a dimensional constant cn > 0 such that

H n−2
flat (∂Er) ≥ cnH

n−1
flat (Er)

n−2
n−1 , (A.8)

which by Equation (A.7) leads to

f̃(r)ω(r)n−2H n−2
flat (∂Er) ≥ cnf̃(r)

1
n−1

(
ω(r)n−1f̃(r)H n−1

flat (Er)
)n−2

n−1

≥ cnf̃(0)
1

n−1H n−1
f (Er)

n−2
n−1

> cnf̃(0)
1

n−1Pf (r)
−1
n−1H n−1

f (Er),

where we used that f̃(r) = exp(h(2 artanh(r))) is non-decreasing. Since

−P ′
f (r) = f̃(r)ω(r)n−1H n−2

flat (∂Er), −V ′
f (r) = ω(r)H n−1

f (Er),

we obtain that
−(Pf (r)

n
n−1 )′ > −cnf̃(0)

1
n−1V ′

f (r),

which integrated from r to 1 leads to

Pf (r)
n

n−1 > 2cVf (r), (A.9)

with 2c = cnf̃(0)
1

n−1 . The last thing we need to do is to take advantage of the optimality
of the set E by operating a small perturbation of its boundary. Let K ⊂ Hn

R be a compact
subset of Hn

R and Γ : (−ε0, ε0)×Hn
R → Hn

R be any variation inside K, that is f(0, ·) = id and
for all ε ∈ (−ε0, ε0) the map Γ(ε, ·) is a smooth diffeomorphism equal to the identity outside
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K. Then the first order expansion of the volume and perimeter operators can be computed
as

Vf (Eε) = Vf (E) + ε

ˆ
∂E

gH(ν,X) dHf + o(ε),

Pf (Eε) = Pf (E) + ε

ˆ
∂E

HfgH(ν,X) dHf + o(ε),

where X(x) := ∂Γ
∂ε
(0, x), Eε := Γ(ε, E), and Hf = H + ∂ν ln(f) stands for the weighted

mean curvature of E, which is constant at every regular point if E is isoperimetric. We refer
to [76, Chapter 17.3] and [101, Section 3] for the careful proof of this fact. This allows us
to perturb the set E inside K = B(r0) for some r0 close enough to 1 according to a small
parameter ε ∈ (0, ε0), such that the resulting perturbed sets (Eε)ε∈(0,ε0) satisfy

Vf (Eε) = Vf (E) + ε,

and

Pf (Eε) ≤ Pf (E) + ε(Hf + 1),

Choose now ε
1
n < c

Hf+1
and R0 > r0 so that ε = Vf (r) < ε0. Then, F = Eε ∩ B(R0) has

weighted volume equal to E, and from

Pf (F ) = Pf (Eε)− Pf (r) + H n−1
f (Er) ≤ Pf (E) + ε(Hf + 1)− 2cε

n−1
n + H n−1

f (Er)

< Pf (E)− cε
n−1
n + H n−1

f (Er),

and the optimality of E, we infer that

H n−1
f (Er) > cε

n−1
n .

Hence

−V ′
f (r) = ω(r)H n−1

f (Er) > cω(r)ε
n−1
n = cω(r)Vf (r)

n−1
n ,

implies that

−(Vf (r)
1
n )′ > cω(r) = c(2 artanh(r))′.

Integrating both sides, since artanh(r) tends to +∞ as r tends to 1, we obtain a contradiction
with the assumption that Vf (r) > 0 for every r ∈ (0, 1).

We complete the section by proving the Riemannian mean-convexity of the isoperimetric
sets.

Theorem A.4 (Mean-convexity). Let h : R → R be a convex and even function, and let
f : Hn

R → R>0 be defined through f(x) = exp(h(dH(x, o))) for some base point o ∈ Hn
R.

Then, every set attaining the isoperimetric infimum in Equation (2.1) is mean-convex.
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Proof. Let E be an isoperimetric set. Thanks to Theorem A.3, E is bounded, and therefore
there exists z ∈ ∂E maximizing the distance from the base point o. By the regularity
properties summarized in Theorem 1.23, z is a regular point, and

H(z) ≥ (n− 1),

where H(z) denotes the unweighted mean curvature of ∂E at z. Let now x ∈ ∂E be another
regular point. Since the weighted mean curvature Hf = H + ∂ν ln(f) is constant, we have
in particular that

H(x) = H(z) + ∂ν ln(f)(z)− ∂ν ln(f)(x)

≥ (n− 1) + h′(dH(o, z))− h′(dH(o, x)) ≥ (n− 1),

where in the last inequality we used the convexity of the exponent h.
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fluid motion”. In:Mémoires de l’Académie Royale des Sciences de l’Institut de France,
VI (1823), pp. 389–440.

[91] B. O’Neill. “The fundamental equations of a submersion.” In: Michigan Mathematical
Journal 13.4 (1966), pp. 459–469.
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