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Abstract
In this thesis, we deal with the problem of time-consistent, arbitrage-free modelling of derivatives’
prices together with their respective underlyings. This is a well-known and intriguing problem in
mathematical finance due to several non-linear static and dynamic constraints, which has evident
consequences in many areas of interest, from portfolio optimization to risk-management, from
pricing to hedging.

The main topic of investigation is extremely general, since it concerns how to exploit incoming
information available in financial markets to model, at the same time, one or more underlying
assets together with the associated derivatives written on them, while respecting and maintaining
through time all natural constraints. For this reason, calibration and, even before, choice of the
models’ pool are of central relevance and, in fact, they establish a liaison across the entire proposal.

In this thesis, two novel perspectives on such time-consistent modelling are examined with
the assistance of modern machine learning algorithms, in particular, deep learning, which is
nowadays the state-of-the-art for new theoretical and practical breakthroughs in many fields
of science and engineering, finance included. For consistent recalibration models as well as
for Bayesian averaging models, we provide theoretical foundations and well-working high-level
implementations in Python.

The first issue that we deal with involves model re-calibration: this is a rather common problem
in the financial industry that is often ignored or overlooked because of the lack of meaningful
and efficient solutions and because of robustness of non-consistent solutions. In brief, every day
a model is chosen by calibration to the prevailing market conditions; thereupon, pricing, hedging,
and other risk-management decisions are taken based on the selected model. Inconsistencies
start to arise when new information becomes available in the market and the calibrated model
is not able to include this information any longer. The problem is even more compelling when
decisions that were taken under the calibrated model are still in force. Historically, there have
been two different approaches to solve this issue: on one hand, the so-called factor models aims
at expressing the dynamics of the underlying with complex models that should be able to reflect
its evolution together with its derivatives in time; on the other hand, market models try to
incorporate derivatives’ prices as state variable. We will investigate another approach, namely
consistent recalibration models, that tries to tackle the problem by modelling of a codebook,
a map between certain parameters, the underlyings and their derivatives, exploiting inherent
redundancies of the codebook to compensate for parameters evolution. In such a way, we will
manage to obtain an infinite dimensional model that is able to consistently satisfy no-arbitrage
constraints and that is locally appearing as a factor model, thus keeping some degrees of analytical
tractability. Since this approach is empowered by a HJM framework, well-known spot and drift
conditions need to remain valid over time. One of our achievements is to take advantage of deep
learning technology to integrate such conditions while being able to (partially) invert the map
between model parameters and model prices, which is known to be an ill-conditioned problem.
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The second challenge we face is rather related to pricing and hedging in the financial market
simulating a real-world scenario, thus in incomplete settings, by allowing transaction fees and
other market constraints (e.g. liquidity restrictions, short selling, etc. . . ). The starting point is
the algorithm known as Deep Hedging, which allows to efficiently find an optimal hedging strategy
in very general environments, leveraging on the trajectories of a specific model. The question is
again: how can we include incoming market information efficiently and base risk management
decisions on it. Our proposal is to overcome this main restriction of deep hedging, namely that
a model is fixed a priori, by employing Bayesian techniques in the sense of ‘Estimate Nothing’
by Dümbgen and Rogers (2014), to reach a market-consistent artificial hedgers along changing
environments. In order to consider such a general setting, we resort to a setting of robust finance
and we find in Bayesian updating the ideal procedure to assimilate incoming market information.
The outcome of such update will be a posterior distribution over potential models that is not
used to select one particular model, as it would be usual, but to average strategies over all present
models of the pool. While this is a very effective technique, it normally suffers from numerical
complexity, leading to over-simplified pools of models.

In this sense, it is not only Deep Hedging profiting from Estimate Nothing, but also the latter
gaining from the former, since neural networks can learn exceptionally complex maps whose
subsequent evaluation is basically instantaneous. In this second case, hence, time-consistency is
granted in the form of a trading strategy which is able to include a remarkably general setting by
Bayesian updating and averaging, and which can finally be trained on available real world data.
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Sommario
In questa tesi, trattiamo il problema riguardante la modellizzazione coerente nel tempo (time-
consistent) dei prezzi dei derivati e dei loro sottostanti. Questo è un problema noto e non banale
di matematica finanziaria a seguito di numerosi vincoli non lineari, sia statici che dinamici, che ha
risvolti evidenti in molte aree d’interesse: dall’ottimizzazione di portafoglio al risk-menagement,
dal pricing (prezzaggio) all’hedging (copertura).

Il principale tema d’analisi è estremamente generale dato che riguarda come utilizzare
informazioni in entrata disponibili nei mercati finanziari per modellizzare, allo stesso tempo, uno
o più sottostanti e i relativi derivati scritti su di essi, rispettando e conservando nel tempo i
diversi vincoli che si richiedono necessari. Per questa ragione, la calibrazione e, ancora prima,
la scelta del modello sono di fondamentale importanza e, di fatto, stabiliscono una liaison
atrraverso tutta l’intero progetto.

In questa tesi, due nuove prospettive su tale modellizzazione time-consistent sono esaminate
con l’ausilio di algoritmi di apprendimento automatico (machine learining), in particolare, di
(apprendimento profondo) deep learning, che sono attualmente tecniche d’avanguardia (lo stato
dell’arte) per la risoluzione o il progresso in problemi pratici e teorici concernenti diversi campi
della scienza e dell’ingengneria, incluso quello finanziario. Forniamo, nel corso della tesi, modelli
per la ricalibrazione coerente e per una media Bayesiana che sono teoricamente ben fonda-
ti, dimostrandone la validità attraverso un’implementazione nel linguaggio di programmazione
Python.

Il primo problema affrontato in questa tesi rigurda la ‘ri-calibrazionne del modello’. Questo è un
problema piuttosto comune nel settore finanziario ed è spesso ignorato a causa della mancanza di
soluzioni matematicamente fondate ed efficienti e a causa della robustezza di soluzioni non coerenti.
In breve, ogni giorno un modello viene scelto attraverso la sua calibrazione alle predominanti
condizioni di mercato ed il pricing, l’hedging ed altre decisioni legate alla gestione del rischio
vengono quindi prese sulla base del modello selzionato. Delle inconsistenze cominciano a sorgere
quando nuove informazioni diventano disponibili nel mercato e il modello calibrato non risulta
più in grado di rappresentare il contesto di lavoro. Inoltre, il fatto che alcune decisioni, prese
durante il periodo di validità del modello calibrato, risultino comunque attive anche dopo l’arrivo
di nuove informazioni rende ancora più impellente la risoluzione del problema. Storicamente,
due diversi approcci sono stati utilizzati per risolvere tale complicazione: da un lato, i cosiddetti
factor models che descrivono la dinamica del sottostante con modelli complessi che dovrebbereo
essere in grado di rifllettere la sua evoluzione nel tempo; dall’altro lato, invece, i market models
che provano ad incorporare i prezzi dei derivati come variabili di stato. Noi investigeremo un
altro approccio, basato sui consistent recalibration models, che prova ad affrontare il problema
attraverso la modellizzazione di un codebook, una biiezione tra i sottostanti ed i corrispondenti
derivati, sfruttado le ridondanze nel modello per compensare l’evoluzione dei parametri. In
questo modo, riusciamo ad ottenere un modello di dimensione infinita in grado di rispettare
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consistentemente i vincoli di non arbitraggio e che sia localmente rappresentabile come un factor
model, mantenendo quindi alcuni aspetti di trattabilità analitica. Dato che questo approccio
è consentito dal struttura HJM, le note condizioni di drift e spot devono rimanere valide nel
tempo. Uno dei nostri risultati è quello di sfruttare la tecnologia deep learning per integrare
queste condizioni ed invertire la mappa tra i parametri del modello e i prezzi, che è risaputo
essere un problema matematicamente mal condizionato (e perciò di difficile risoluzione).

La seconda sfida che ci poniamo di risolvere riguarda il prezzaggio e l’hedging in mercati
finanziari che simulino la realtà il più fedelmente possibile, quindi in un ambiente ‘incompleto’,
in cui siano ammessi costi di transizione ed altri vincoli (limiti sulla liquidità o sulla vendita allo
scoperto, e cos̀ı via). Il punto di partenza è l’algoritmo denominato Deep Hedging, che consente
di trovare una strategia di copertura ottimale in un ambiente del tutto generale, sfruttando
le traiettorie di un particolare modello. La domanda è ancora come includere informazione in
entrata in maniera efficiente e come basare le decisioni sulla gestione del rischio su queste. La
nostra proposta è superare il più grande difetto del Deep Hedging, ovvero il dover fissare un
modello a priori, utilizzando delle tecniche Bayesiane, come sviluppate da Dümbgen e Rogers
‘Estiname nothing’ (2014), per costruire un agente artificiale che sia in grado di trovare strategie
di copertura in un ambiente in continua evoluzione. In effetti, l’aggiornamento Bayesiano è la
procedura ideale per assimilare nuove informazioni in maniera efficiente, tra i vari metodi offerti
in robust finance. Il risultato di tali aggiornamenti ripetuti sarà una distribuzione a posteriori
sul gruppo dei modelli disponibili, ma non sarà usata per selezionarne uno, quanto piuttosto per
mediare tra tutti. Questa tecnica, anche se molto efficace, è carente dal punto di vista numerico,
in quanto richiede che i modelli siano facilmente calcolabili e di conseguenza, sovente, conduce
ad una selezione di potenziali modelli piuttosto semplificata.

Fatte queste premesse, non solo Deep Hedging è in grado di approfittare da Estimate Nothing,
ma sarà anche il secondo a beneficiare del primo siccome le reti neurali possono apprendere
funzioni eccezionalmente complesse e poi calcolarle in maniera praticamente istantanea. In
questo secondo caso, quindi, la coerenza nel tempo è garantita sotto forma di una strategia di
trading che è in grado di operare in ambiente notevolmente complesso utilizzando l’aggiornamento
e la mediazione Bayesiane e che pertanto può essere utilizzato su dati veri e propri, nella realtà.
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Notation

The reader is supposed to be familiar with basic concepts from stochastic analysis and mathem-
atical finance.
The following notations/definitions we will be using throughout the text.

• Big O and big Ω notations:
The big O notation is used to describe asymptotic upper bound, while the big Ω notation
provides asymptotic lower bound. Let f, g be two functions onto real numbers R, defined
on the same domain. If they are defined on an unbounded set, writing f(x) = O(g(x)) for
x→ +∞ means that there exists x0 and M > 0 constant such that |f(x)| ≤Mg(x) for all
x ≥ x0. The same notation can be used to describe the behaviour in the neighbourhood of
a real number z ∈ R. In this case, f(x) = O(g(x)) for x→ z means there exists δ and M
positive constants such that |f(x)| ≤Mg(x) for all x for which 0 < |x− z| ≤ δ.
Similarly, we have f(x) = Ω(g(x)) ⇐⇒ g(x) = O(f(x)). The notation f(x) ∈ Ω(g(x)) or
g(x) ∈ O(f(x)) could be used alternatively.

• Big Θ notation:
The Θ notation used as f(x) = Θ(g(x)) refers to two functions f, g with the same domain. It
means that f is bounded both above and below by g asymptotically. In other words, f(x) =
O(g(x)) and f(x) = Ω(g(x)). The notation f(x) ∈ Θ(g(x)) could be used alternatively.

• Convex set, convex function, strong convexity and subgradient:
Let S be a vector space over the field of real numbers. A set C ⊂ S is called a convex set
if the line segment between any two points of C entirely lies in C, i.e. for any 0 ≤ t ≤ 1 we
have tx1 + (1 − t)x2 ∈ C for all x1, x2 ∈ C. If a metric ρ is present on S, then we define
the diameter δ of C as the δC = supx,y∈C ρ(x, y) (which can of course be ∞).
A function f : S → R, with S ⊆ Rd convex set, is said to be convex if for any 0 ≤ t ≤ 1
and any x1, x2 ∈ X we have

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

If the inequality is strict for x1 6= x2 and 0 < t < 1, then the function is called strictly
convex.
Let µ > 0. A differentiable function f : Rd → R is said to be µ-strongly convex (or strongly
convex with parameter µ) if for any x, y ∈ Rd we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2.

Intuitively speaking, strong convexity means that there exists a quadratic lower bound on
the growth of the function.



Contents

An equivalent condition for a differentiable function f to be strongly convex with constant
µ > 0 is that the function

g(x) := f(x)− µ

2 ‖x‖
2

is convex for any x. Note that strong-convexity implies strictly convexity, which implies
convexity.
We say that a vector v ∈ Rd is a subgradient of f : Rd → R at x ∈ Rd if for any y ∈ Rd we
have

f(y) ≥ f(x) + v>(y − x).

If f is convex and differentiable, then its gradient at x is a subgradient.
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Chapter 1

Introduction

1.1 The modelling paradigm

In 2006 René Carmona and Michael Tehranchi wrote in the introduction of their book [CT06a] on
fixed income markets (also known as interest rate derivatives’ markets) that “the level of complexity
of the bond market is higher than for the equity markets: one simple reason is contained in the fact
that the underlying instruments on which the derivatives are written are more sophisticated than
mere shares of stock. [...] Indeed on each given day t, instead of being given by a single number St
as the price of one share of a common stock, the term structure of interest rates is given by a curve
determined by a finite discrete set of values.” A similar preamble was already given by Damir
Filipović in 2001 ([Fil01]): “Bond markets differ in one fundamental aspect from standard stock
markets. While the latter are built up by a finite number of traded assets, the underlying basis
of a bond market is the entire term structure of interest rates: an infinite dimensional variable
which is not directly observable. On the empirical side this necessitates curve fitting methods for
the daily estimation of the term structure. Pricing models on the other hand, are usually built
upon stochastic factors representing the term structure in a finite dimensional state space, making
them computationally tractable.”

Mathematical finance has been evolving a lot since early 2000’s but the problem of time-
consistent joint modelling of term structures of derivatives’ prices together with their underlyings
still remains intriguing. This has to do with the fact that non-linear static and dynamic constraints
have to be satisfied for such a type of modelling.

The modeling paradigm predominant in the 20th century, which is built upon model choice
and model evaluation with appropriate uncertainty quantification, is now challenged by machine
learning approaches, which just learn desired input-output maps on data, i.e. end to end learning.
It is the goal of this proposal to combine generic machine learning methods with insights from
modeling to improve quality, robustness and sustainability of the machine learning approaches.

In the last fifty years fine and sophisticated technology has been developed to select and
evaluate models for the purposes of risk management or portfolio choice in financial industry.
This is in line with classical modeling paradigms from science and technology: choose a class of
stochastic models for the dynamics of the underlyings (e.g. Black-Scholes model, Heston model,
local volatility model, local stochastic volatility model, rough volatility models, etc), calibrate it
to data, and calculate prices, strategies, and predictions given your preferences, see, e.g. [GH14].

Very quickly, in view of recalibration problems, a neo-classical approach has been introduced
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and ameliorated: choose a class of stochastic (market) models for the underlying together with
frequently observed derivatives (variance swap models, implied volatility surface models, etc) as
state variables, calibrate it to data, and calculate prices, strategies, and predictions given your
preferences. We name here the HJM approach commonly applied to model to interest rates and
more complicated markets, see, e.g. [CN11; CN12], [KK15].
Despite its theoretical attractiveness, which converts all traded quantities, in particular the
derivatives, to state variables, the analytic, geometric and numerical problems of this approach
are substantial and only the arrival of machine learning technology gives new hope for efficient,
industry-ready algorithms for robust finance. This will be one application of the current research
proposal, where well working modeling approaches are transferred into trainable structures to
obtain efficient market models.

Another strand of literature in mathematical finance, which is in line with uncertainty quan-
tification in statistics or machine learning, is given through robust finance: choose a class of
stochastic models and narrow it down through calibration to vanilla options (or other liquid in-
struments), but take the statistical and inverse problem significance levels seriously, then consider
pricing, hedging, investing as a zero-sum game against an adversary, who chooses the worst model
given some preferences, see, e.g. [Eck+21] and the references therein and, in particular, [Gie+20].
Again only recently, through the arrival of machine learning technology, efficient algorithms could
be suggested to apply robust finance in concrete situations, see, e.g. [LSS21]. Bayesian techniques
in the spirit of Bayesian Model Averaging, have also been suggested, for instance the innovative
approach proposed in “Estimate Nothing”, see [DR14], which is taken up in this proposal too:
choose a class of stochastic models and calculate a posterior density according to market data
(with respect to some chosen prior). Weight prices or strategies (given your preferences in each
single model) according to the posterior density and do not choose a model.

In all cases of this list of classical methods we face the following two problems:

• Calibration: the richer market data and the more complicated the model, the more chal-
lenging the issue of calibration is.

• Model evaluation: the more sophisticated the model or problem, the more time consuming
the evaluation. Often these models and problems must be dramatically simplified to be
applied or to be solved in practice.

Machine Learning is shedding new light on both problems, but it is also clear that one cannot
apply machine learning technology out of the box to answer all questions from Finance and
Economics, since, in contrast to many standard machine learning problems, we deal with two
non-standard features:

• data are limited, of non-stationary nature, noisy and often too small to make model selection
significant;

• problems are potentially infinite dimensional, geometrically constrained, and formulated as
a game in contrast to having a fixed loss function.

When it comes to modelling a segment of the market containing underlyings and derivatives
written on them, then – mathematically speaking in view of the above insights of the classical
or neo-classical point of view – we are dealing with the following problem: consider an often
non-linear submanifold C of some (Banach) space B

C ⊂ B

6
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which is considered the set of eligible codes. The decoder D, which is often a non-linear function,
maps codes to prices in some RI , where I can be an arbitrary index set. The goal is to describe
stochastic processes X taking values in B such that

• Xt ∈ C almost surely for all times t, i.e. C is left invariant by the evolution of X in B
(static conditions).

• The decoder D maps X to a set of semimartingales allowing for an equivalent martingale
measure (more generally separating measure in the sense of [CKT16] - dynamics conditions).

This mathematical problem is apparently quite delicate, in particular since usually the inverse
of the decoder map D is – if it exists at all – difficult to calculate.

Let us introduce two additional notions, which will be pivotal in the sequel.

Definition 1.1.1 (Tangent model). Assume that C = F ×Θ has a non-trivial product structure
(globally or locally) into factors taking values in some manifold F and parameters taking values
in another manifold Θ.
We call X a tangent model if the absence of static and dynamic arbitrage is guaranteed and the
Θ-component of X is subject to a deterministic dynamics.

Factor models, as introduced below, will fall into this category. Usually the decoder map D
is easy to calculate in this case (calculating its inverse is a calibration task). However, those
models often are not flexible enough, i.e. re-calibration done on different days leads to different
constants.

Definition 1.1.2 (Consistent recalibration model). Assume that C = F × Θ has a product
structure (globally or locally) into factors taking values in F and parameters taking values in
Θ. Assume that we are given tangent models for every θ ∈ Θ covering all possible instantaneous
market configurations.
Assume additionally that Θ = Θ1 ×Θ2 has a non-trivial product structure, and that the decoder
map is injective only if θ2 ∈ Θ2 is fixed. We call X a consistent re-calibration model if the absence
of static and dynamic arbitrage is guaranteed and the Θ2-projection of X is Markov process.

Consistent re-calibration models work in the following way:

• choose a dynamics of for the Θ2 component of X,

• given this dynamics choose a dynamics of the Θ1 component such that absence of dynamic
arbitrage is guaranteed. This can be done by concatenating the given tangent model in an
appropriate way.

In Chapter 3 consistent re-calibration models are introduced and put forward by means of machine
learning, leveraging on the previous work made by Josef Teichmann and coauthors in [RT17],
[Har+18].

In contrast to consistent re-calibration models, a second perspective, also enabled thanks
to new machine learning technology, shall be introduced in Chapter 4. We have decided to
name it “model free deep hedging” and it is based on a well known Bayesian approach to model
selection that has been introduced by Chris Rogers and Moritz Dümbgen in Finance, see [DR14].
Apparently time series information on options as well as underlyings is included in the setup, but
in contrast to consistent re-calibration models actually no model is chosen. Instead one heads

7



Chapter 1 - Introduction

directly for risk management and takes a posterior superposition of model-based risk management
decision. What we additionally add is training of this superposition and the possibility to get it
going through deep hedging technology. Theoretically speaking this is an instance of [Hoe+99]
or, more recently, [Ste17]. The major steps are:

a) Choose a pool of models Θ with pricing, hedging and prediction operators mapping current
states and contract specifications to the relevant quantities or operations.

b) Choose a prior on Θ.

c) Choose a likelihood which compares incoming data to model quantities and update the
prior according to Bayes formula.

d) After a burn-in phase the posterior is not used to select a model, but the posterior is rather
applied as defining a model mixture. All sorts of operations are weighted with respect to
this mixture. In this sense no specific model is selected.

The significant advantage of artificial traders is their robustness with respect to market
frictions and with respect to input information: in contrast to classical Deep Hedging ([Bue+19]),
where the scenarios are exogenously given and constitute the training data, we can also train
the artificial trader for any model θ ∈ Θ with an efficient training procedure. We then use the
Dümbgen-Rogers approach to hedge via mixing the strategies for each θ with the posterior density.
An additional training of the mixing weights is possible along time series data. We can represent
it as a superposition of another distribution π, conveniently weighted by a constant ε, to the
posterior πposterior. The danger of over-fitting, which is inherent in case of small data sets, is
reduced due to the fact that we do a regression on well trained (on a specific model) strategies.

This is an instance of transfer learning: data consist of time series data T and derivatives
price data D along some past period: this leads to a posterior law πposterior on the set of models.

Then we can consider the objective function solved by model free deep hedging as follows. We
generate artificial time series data for model θ ∈ Θ on which we train Hθ for specific hedging tasks
to obtain model specific strategies Hθ and we train the superposition of those model specific
strategies

∫
ΘH

θπ(dθ) on T to solve the hedging task. This can be encoded in an objective
function via

L(πposterior + επ,H ·, T ) + λ

∫
Θ
P θ(Hθ, T θartificial)πposterior(dθ) ,

where L corresponds to the training loss on the actual data (e.g. the historically observed
trajectory), and P θ corresponds to the (possibly similar kind of) training loss on artificial data.
In this sense “Estimate nothing”, [DR14], appears as regularization term of an otherwise badly
defined learning problem due to lack of training data.

This proposed thesis is organized as follows:

• In the remainder of the introduction, by now classical approaches to market models are
presented showing their analytic beauty and complexity.

• In Chapter 2 basics of machine learning technology by means of neural networks are
introduced for later use. Note that neural networks are now enjoying widespread popularity
in all engineering and scientific fields, and finance is no exception (see, for example, [RW20]).

• In Chapter 3 results on consistent recalibration models are presented, in particular a high-
level implementation of a full-fledged model taking underlying prices and a volatility surface
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as state space input. This yields the first perspective on modelling option markets in a
consistent way.

• In Chapter 4 model free deep hedging is conceptually introduced together with a high-
level implementation of it in case of a pool of Merton models (Poisson jump extended
Black-Merton-Scholes model). This yields a second, novel perspective on modelling option
markets in a way that takes time series inputs of underlying prices and their options.

1.2 Interest rate market

In the sequel we present the by now classical theory of interest rates (which considers bond prices
as derivatives in a market with stochastic discounting) and take it as a role model for more general
markets of derivatives on equities, fixed income or foreign exchange underlyings.

The time t value of a unit of wealth, e.g. dollar, at time 0 ≤ t ≤ T < +∞ is expressed by
the zero-coupon bond (briefly, ZCB) with maturity T , denoted P (t, T ). This is a contract which
guarantees the holder to get one unit at T settling the price for this future gain at time t in the
default free case, which we shall assume in the sequel. We assume that for any t > 0 the quantity
P (t, T ) is a random variable on the filtered probability space (Ω,F,P) and that it is also almost
surely differentiable in the second variable T . Of course this yields a family, indexed by T , of
adapted stochastic processes (P (t, T ))0≤t≤T . In the sequel, since we are mainly concerned with a
general introduction of notions, we assume that all stated quantities exist (and are well-defined).

As a result, the definition of the instantaneous forward rate f(t, T ), which is forward view on
the rate at time t, on a riskless loan that starts at T and is returned an instant later, is given by

f(t, T ) := − ∂

∂T
P (t, T ).

Consequently, the short interest rate is rt = f(t, t) (mind the limit). Notice that from the forward
rate definition and the fact that for any T ≥ 0 P (T, T ) = 1, we have

P (t, T ) = exp
(
−
∫ T

t

f(t, u) du
)
.

Analogously for r, we can define the money-market account Bt, also called bank account, as the
asset which instantaneously grows at the short rate rt through the equation dBt = rtBt dt, with
the convention B(0) = 1, which gives

Bt = exp
(∫ t

0
rs ds

)
.

One of the simples ways to model a fixed income market is to represent ZCBs through a factor
model. This approach consists in creating a deterministic map between the factor X and P (t, T ),
i.e. (t, T,Xt) 7→ PX(t, T ;Xt). In general, we can consider X as taking values in E ⊆ Rk and we
call all elements of the vector X factors of the model. Often it is possible to give an economic or
econometric interpretation to all these factors, and this is a reason why, beyond simplicity, these
kinds of model are still widely used. Consequently, another deterministic map can be identified
between the factor and f(t, T ), in this case denoted fX(t, T ;Xt). In practice, the factor X is
usually modelled as an Itô process, satisfying an SDE of the form

dXt = µX(t,Xt) dt+ σX(t,Xt) dWt,
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Chapter 1 - Introduction

where the maps µX and σX defined as [0,+∞)× E → Rk are deterministic. For factor models
we assumed that X is solely responsible for the evolution of interest rates, which implies that the
filtration is generated by the factor itself: Ft = FXt .

Significant examples of factor models are short rate models, where the economic factor X is
taken to be one dimensional and equal to the short rate r. In this case, it is custom to postulate
the dynamics of r under an equivalent martingale measure Q, implying the absence of arbitrage
(that is, loosely speaking, the possibility of making money with positive probability, but being
sure of no downside risk, and at zero initial investment nothing1). Prices of ZCB then just appear
as derivatives prices with payoff 1 at time T under a stochastic discount factor. Notice that the
short rate, which is not a traded quantity, does not have to satisfy martingality constraints.

In this way, we do not have to specify the market price of risk and we can just count on any
Markovian process. All the dynamic equation for r will be of the form:

drt = µ(t, rt) dt+ σ(t, rt) dWt.

Most popular examples are named after their authors: the Vaš́ıček model ([Vaš77]), the Cox-
Ingersoll-Ross (CIR) model ([CIR85]), the Dothan model ([Dot78]), the Ho-Lee model ([HL86]),
the Hull-White extended Vaš́ıček model, the Hull-White extended CIR model (both in [HW90]),
and so on. Despite the fact that these models are still in use nowadays, there are many short-
comings, for example:

1. The dynamics of all ZCBs is driven by one Markovian factor.

2. Often, the complexity of the model is not rich enough to represent complete term structures,
i.e. the available parameters in µ and σ are not sufficient to explain the market prices.

3. Short-term interest rate models are all “rigid”, in the sense forward rates for different
maturities move in parallel. As underlined in the seminal paper by Heath, Jarrow and
Morton [HJM92] and recalled by Carmona in [Car07], specifying a short rate model is
equivalent to specifying the left hand-point of the forward curve (recall that for the short
rate r we have rt = f(t, t)), which is then shaping the entire forward curve.

1.3 Heath Jarrow Morton (HJM) models for interest rates

In the late eighties, in order to overcome some theoretical issues in the fixed income markets,
Heath, Jarrow and Morton proposed a new framework to model the entire forward curve directly
[HJM92]. The main problems they addressed were

• calibration of the current term structure available at time t = 0, that is the possibility of
reproducing the (default-free) bond prices found in the market at initial time with the
adopted model;

• calibration of derivatives’ contracts at time t = 0, that is the possibility of reproducing
derivatives’ prices on those (liquid) underlyings identifying the term structure; and

• calibration of the same zero coupon bonds and derivatives at time t ∈ (0, Tmax] where
Tmax := maxi Ti is the largest maturities available in the market.

1An introduction to no arbitrage theory is provided in Section 4.3.
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While the first two requirements can be achieved through rich enough one period models, the
third is closely related with dynamic features of the model and, as it can be easily imagined,
it is more difficult to obtain. This is for example the case when considering short rate models
to price fixed income instruments. If we take for instance the Vaš́ıček model [Vaš77] and we
try to calibrate it to a forward curve, we can possibly reach a perfect matching of the curve at
time t = 0 using the so-called Hull-White extension, but we have to abandon the idea of having
the same successful calibration for future times. A new question then arises: when should we
re-calibrate the model? Indeed the future observed forward curve will most likely not coincide
with the one prescribed by our (already calibrated) model. In other words, a short rate model is
not a dynamic model, since it is just creating an artificial machinery to capture data at only one
instant of time.

For this purpose, HJM models, after the names of the three authors, are specifying the
dynamics of the whole forward rate f(t, T ) for 0 ≤ t ≤ T . In fact, calibration at initial time
coincides with fitting the curve to the dynamic equation for f , while the evolution in time of the
same equation will be used to specify the conditional probabilities for future prices.

In mathematical terms, Heath, Jarrow and Morton proposed to model f as an Itô process for
each T given by the dynamics

df(t, T ) = α(t, T ) dt+
d∑
i=1

σ(i)(t, T ) dW (i)
t , (1.1)

where W is a d-dimensional Wiener process and for any j ∈ {1, 2, . . . , d} and any time T the
processes σ(j)(t, T ) and α(t, T ) are predictable with respect to the filtration generated by W .

Given the new design, we have to specify under which conditions such models are free of
arbitrage: indeed they have to satisfy two important conditions:

1. Spot consistency condition
For any t the limit limT→t f(t, T ) = f(t, t) = rt (which is assumed to exist) has to be
identified with the short rate at time t. In particular, we have

rt = f(t, t) = f(0, t) +
∫ t

0
α(s, t) ds+

d∑
i=1

σ(i)(s, t) dW (i)
s

and if we add reasonable conditions2 on the functions α and σ, assuming their differentiab-
ility in the second variable, an application of Fubini’s theorem shows that

rt = r(0) +
∫ t

0
ζ(u) du+

d∑
i=1

∫ t

0
σ(i)(u, u) dW (i)

u ,

with ζ(u) := α(u, u) + ∂uf(0, u) +
∫ u

0 ∂uα(s, u)ds +
∑d
i

∫ u
0 ∂uσ

(i)(s, u)dW (i)
s . This gives

some restrictions on the possible models for the short rate and that is why an equation
rt = f(t, t) is called a spot consistency condition.

2. HJM drift condition
To guarantee an arbitrage[free market, we need to choose a class of traded contracts and

2Check Proposition 6.1 in [Fil09] for the exact statement.
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impose (local) martingality on their discounted prices. Heath, Jarrow and Morton chose
zero coupon bonds, which can be re-written in function of the forward rate as

P (t, T ) = e
−
∫ T
t
f(t,s) ds

,

and obtained as immediate byproduct a condition on the drift term of f :

α(t, T ) =
d∑
i=1

σ(i)(t, T )
∫ T

t

σ(i)(t, s) ds.

It is now visible that if before we only had to specify the factors’ vector Xt through X0 and the
two deterministic functions µX and σX , now we have to determine an entire curve through the
initial forward curve f(0, T ) for any T ≥ 0 and the volatility stochastic process (σt)t≥0. It is clear
that we have much more freedom in the second case, in particular we do not fix the dynamics by
calibration.

The problem posed by calibration of Equation (1.1) is not trivial. For any fixed T > 0, it can
indeed be seen as composed by infinitely many equations for all t ∈ [0, T ]. Still, this is referenced
as a finite rank HJM model because the Brownian motion W is finite dimensional. We will not
enter in our formulation in the infinite dimensional case for simplicity, although it is possible to
work with it as shown in [CT06a] in the spirit of Da Prato and Zabczyk [DZ14].

1.4 HJM models for equity markets

A similar approach has been developed in credit markets, see [Car07] and references therein for
an introduction and, but also for equity markets. Before diving in the problem’s description, we
should remark the different environment: we are not dealing with interest rates any longer, but
rather with a market consisting of an underlying asset together with derivatives, such as futures,
options, and so on. European call and put options are the benchmark instruments in this land,
and we will stick to them.

Of course, this will lead to a more complex setting because of increased dimension, since
the term structure is now cubic, being a function of three variables: two accounting again for
time, running time and maturity time, as for fixed income instruments, and one for strikes. It is
possible to distinguish many different approaches, but we are going to talk mainly about those,
developed in the same years, by Kallsen and Krühner [KK15] and by Carmona and Nadtochiy
[CN12; CN11; CMN17], using different codebooks3 in their respective works.

Still, the purpose in the two streams of work is always the same: specifying a set of liquidly
traded instruments including underlyings and derivatives; and describe their dynamics with a
time-consistent3 model, which is able to produce sufficiently rich price dynamics at any instant
of time in an arbitrage-free way.

As usual in this context, we start considering at time t a generic asset price St and the related
derivatives’ prices, e.g. call option prices, denoted by Ct(T,K), for a maturity T ≥ t and strike
K > 0. We consider all these quantities as observable in the market and generated by an unknown
true model, even though this is usually a strong assumption. In reality underlyings’ prices are
available on finer time grids as derivatives. At this point, following the classical factor model

3It will become clearer later what we mean with this expression.
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approach, it is natural to think of a stochastic differential equation (SDE) to model the dynamics
of the underlying asset and a map to compute the relative call prices used to calibrate model
parameters (i.e. SDE parameters) to match such prices. While this procedure could work well
if we wanted to calibrate the model at time t, its outcome result might be inadequate already
for time t+ ε (ε > 0), because of newly incoming information (e.g. new observed market data).
Therefore, the model needs to be re-calibrated.

But frequent recalibration is not satisfactory from a theoretical point of view because para-
meters are meant to be deterministic and constant. This problem is overcome by giving options’
prices the same dignity as underlying asset prices, thus thinking of derivatives as state variables
of the model.

Models with such peculiarity are usually called market models. This entails a new working
framework which is now popular with the name of HJM, since it was inspired by the seminal
paper of Heath, Jarrow and Morton [HJM92] preserving the same brilliant ideas.
The price to pay for this neo-classical approach is modelling complexity. In fact, on one hand,
we have the dynamics chosen to model the underlying asset S, which create a map between the
parameters and S itself; on the other, we have to define a map between the same parameters and
the term structure.

To account for all possible term structures we should consider sets of manifolds in the infinite
2-dimensional space of variables (times to maturity and strikes) which we would like to model
with SDEs. For that, we need some kind of calculus on these manifolds and, taking inspiration
from geometry, we bring differentiation into a more familiar linear space. This space, which is
usually called a chart in the language of geometry, is called codebook in mathematical finance
as introduced by Carmona in [Car07]. Consequently, the map between the two spaces is called
encoder or decoder. Given its crucial role, it is clear that in the HJM original framework the
forward rate f(t, T ) was the code, for which we assumed specific dynamics. We will follow the
same principle here giving birth to a dynamic model which is able to evolve in time. Often the
code itself corresponds to a model, like in interest rate theory where each forward rate curve
corresponds to a deterministic interest rate evolution.

Whenever we stop this evolution at one code value, we should be able to produce the same
observable prices generated by the unknown true model and that is why, borrowing again the
words of Carmona and Nadtochiy in [CN12], we call this local and static model a tangent model.
Since this equality must hold for all times, we can speak about time-consistency (which was
previously mentioned).

The two different paths followed by the above mentioned authors are due to the different
codebooks’ choice they made. Indeed, although many possible choices are legitimate, they all
have to satisfy specific conditions for both the underlying asset prices and the derivatives’ prices,
in order to generate free-arbitrage models. In what follows, we will distinguish between two
different kinds of possible arbitrage opportunities. Static arbitrage entails the chance of setting
up a static portfolio today in the existing price grid which might generate a profit, without any
risk of a loss. An example could be the violation of the put-call parity for European options.

In multi-period models, in addition to static arbitrage opportunities, there may exist dynamic
arbitrage opportunities, which arise from the possibility of generating arbitrage from the current
portfolio, but in a future instant of time. More precisely, dynamic no arbitrage constraints are
expressed as restrictions on the joint dynamics of the underlying asset and call prices to have the
martingale property, while static no arbitrage constraints to be satisfied for all 0 ≤ t ≤ T and
K ≥ 0 need to translate in the the following conditions for call prices (see [Rop10]):
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(i) Ct(T,K) is a convex function in K for any 0 ≤ t ≤ T ,

(ii) Ct(T,K) is non-decreasing in T for all K ≥ 0,

(iii) limK→+∞ Ct(T,K) = 0 for all 0 ≤ t ≤ T ,

(iv) (St −K)+ ≤ Ct(T,K) ≤ St for all K > 0 and 0 ≤ t ≤ T ,

(v) CT (T,K) = (ST −K)+ for all K ≥ 0.

We can thus summarize all these conditions on the given stochastic basis by requiring the
existence of an equivalent measure Q such that

EQ[(ST −K)+|Ft] = Ct(T,K) and Ct(T, 0) = EQ[ST |Ft] = St,

for 0 ≤ t ≤ T and K ≥ 0 (the case K = 0 is treated by considering equality with the underlying).
As shown by Roper in [Rop10], these conditions are both sufficient and necessary for having
no-arbitrage given that S is a non-negative martingale.

If we define K to be the set of available strikes and T the set of available maturities of the
liquid derivatives at hand4, we can think of the codebook as a stochastic process X taking values
in some code space

dX(t) = u(t) dt+ v(t) dW (t), (1.2)

that creates a one-to-one map, a bijection, with the liquidly traded derivative assets, in our case
call options (C(T,K))T∈T ,K∈K, such that

Xt 7→ D(Xt)(T,K) = Ct(T,K) for all T ∈ T , K ∈ K. (1.3)

One obvious instance of the decoder map D is the Black-Scholes formula ([BS73]), which prescribes
X to be the implied volatility and the current price of the underlying.

4While in real markets these sets are discrete, in the literature also the continuous case is taken into considera-
tion.
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Box 1.1 − Codebook calibration

Independently of the codebook choice that can be operated, whose consequences will
become soon clearer, several issues are to be considered. Namely,

1. For every instant of time t ∈ [0,maxT {T ∈ T }], call option prices should satisfy the
static arbitrage constraints listed above for all strikes and maturities.

2. To impose absence of dynamic arbitrage we need to guarantee the existence of a
local martingale measure Q equivalent to P. This will trigger other restrictions on
the model choice, in particular affecting the coefficients in (1.2). Typically, the
restrictions are non-linear and are imposed on the drift coefficient µ implying that
in many cases v, the volatility coefficient, is our only modeling choice.

3. For the model to be meaningful, we also have to verify under which conditions
we have existence and uniqueness of a solution for the SDE system represented in
Equation (1.2).

4. Last but not least, it should also possible to link find good parametrization for the
coefficient v to allow for concrete calibration.

The fact that all constraints here summarized must hold simultaneously makes the task
rather difficult and challenging.

Given the complexity of the problem, it is clear that the choice of a codebook X is of central
relevance.

In particular, different codebooks are responsible for imposing different no-arbitrage con-
straints, e.g. by requiring martingality, and so the question has been raised which codebook
should be used to facilitate the most in dealing with such constraints. Roughly speaking, three
suggestions have been made, which we shall shortly summarize here:

1. Implied volatility/variance codebook
This is maybe the most obvious choice when thinking of a term-structure for equity markets
and it is suggested by the well-known bijective relation between European option prices
and implied volatilities (obtained by the same prices through the inversion of Black-Scholes
formula) given the current price of the underlying. Indeed, given the current asset price
St there is a unique (implied) volatility σt(T,K) such that the Black-Scholes formula BS
produces the correct market price

BS(T,K, St, σt(T,K)) = Ct(T,K)

for 0 ≤ t ≤ T and K ≥ 0. This approach was firstly taken by Schönbucher in [Sch99a],
followed by Schweizer and Wissel in [SW08b] some years later in 2007. With modern
terminology, the codebook used in these references is the forward implied variance, for
which dynamics are introduced as Ito process, defined through

X(t, T ) := ∂

∂T

(
(T − t)σ2

t (T )
)
,

where we dropped the dependence on the strike. This, however, yields two problematic
aspects: first, how to deal with the dynamic absence of arbitrage, and, second, how to
express the static absence of arbitrage conditions for implied volatilities. In principle, it
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is possible to list all necessary conditions to avoid static arbitrage, the five mentioned
above, but due to the inversion of BS these become quite complex. This explains why the
authors of [SW08b] restrict themselves to the case of a single strike (just a line in the entire
surface!). In this simpler case, under some regularity assumptions, it is possible to rule out
dynamic arbitrage obtaining a spot consistency condition, i.e. X(t, t) = σ2

t (t) and also a
drift condition (we reference to [SW08b] or [Car07] for the formulation).

2. Local volatility codebook
Another attempt has been formulated by Carmona and Nadtochiy in [Car07] and [CN09]
and, in the same years, by Schweizer and Wissel in [SW08a] and [Wis07]. The goal is
again to model a financial market with the following liquid assets: a bank-account, a stock
(the underlying) and a (complete) set of European call options. The idea was inspired by
Dupire’s formula for local volatility ([Dup94]), that is

a2(T,K) = 2
∂C
∂T + rK ∂C

∂K

K2 ∂2C
∂K2

,

given r constant (instantaneous) interest rate and hence modelling the underlying (under
the equivalent martingale measure) as

dSt = rSt dt+ a(t, St)St dWt , S0 > 0.

Note that in [CN09] the problem is tackled for K = (0,+∞) and T = (0,+∞), thus in
high generality. Initially thought for calibration purposes at one instant of time only, it
turned out that this approach can be very useful for dynamic modelling as well. First,
static arbitrage is now assessed by just imposing non-negativity of the local volatility a,
which makes it preferable compared to implied volatility. Second, and most important, it is
possible to have a one-to-one correspondence between local volatility and call prices, which
is a necessary condition for being a valid codebook. This is due to Breeden-Litzenberger
trick and Kellerer’s existence theorem. One way of building this correspondence is using the
Breeden-Litzenberger formula (from [BL78]), observing that the marginal densities have
a convex-order (by Jensen inequality) and then apply Kellerer’s existence theorem (see
[Kel72]) - check Section 6.3 in [Car07] for a thorough overview.
As these links only set for existence, we address the motivated reader to [BPS22] (and
references therein) for a discussion on uniqueness.

Nevertheless, this method has critical shortcomings. Because we are lacking a continuous
surface in reality, the calibration of the local volatility is often complex and non-stable,
depending on derivatives that have to be calculated on a discrete set. It can be seen that
the problem is also ill-posed in the sense of Hadamard ([Had02]). For more detail, see, for
example, [Cré03].

Definition 1.4.1 (Ill-posed problem). The three conditions Hadamard established at the
beginning of the 20th century to define well-posedness of a problem X ⊇ U 3 x 7→ F (x) =
y ∈ Y are existence of a solution, i.e. ∀x ∈ U,∃ y ∈ Y ; uniqueness of the solution; and
continuity with respect to the input, that is, if we are in metric spaces with distances dX and
dY , ∀ ε > 0,∃ δε > 0 such that ∀x1, x2 ∈ U and y1, y2 ∈ Y for which we have y1 = F (x1)
and y2 = F (x2) we must have dX(x1, x2) < δε ⇒ dY (y1, y2) < ε. If one (or more) of these
conditions is not fulfilled, a problem is said to be ill-posed.
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Moreover, the restrictions to be imposed to avoid dynamic arbitrage are quite involved: the
conditions are not given explicitly, but as solution to a PDE. Simpler conditions for absence
of dynamic arbitrage are found in [SW08a], where the case K = (0,+∞) and T = T ∈ R is
considered (just one maturity). The local implied volatility is defined as

at(K) :=
ϕ(Φ−1(−∂Ct(T,K)

∂K ))
K ∂2Ct(T,K)

∂K2

√
T − t

,

where the derivatives of the call prices are taken with respect to strikes and where ϕ and Φ
are the probability density function (pdf) and cumulative distribution function (cdf) of a
standard normal random variable. The formula can also be derived from the formulas for
the Greeks in the Black-Scholes setting, from which we have

d2 :=
log
(
St
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

,

then CK = e−r(T−t)Φ(d2) (from which we isolate d2) and CKK = e−r(T−t)ϕ(d2) 1
Kσ
√
T−t

(from which we isolate σ).
Finally, the completely discrete case is debated in [Wis07]: the same codebook of [SW08a] is
defined on a lattice for a discrete set of strikes and maturities and through finite difference
second order approximations to derivatives. In this case, conditions for absence of static
and dynamic arbitrage are found, together with compatible requirements for the existence
and uniqueness of a solution to Equations (1.2).

3. Lévy-related codebook
The last attempt we would like to describe seizes with both hands the flexibility offered by
Lévy/jump processes. In this direction moved Carmona and Nadtochiy ([CN12; CN11] and
[CMN17]), as well as Kallsen and Krühner ([KK15]) in more recent years. For this reason,
in the proceedings we will refer to this approach as CNKK, although the authors chose
slightly different codebooks in their respective works. All authors focused on the general
continuous case for both strikes and expiries. Pricing and call-martingality conditions are
simplified through (standard) Fourier methodologies.
Starting from [CN12], it is argued that not all call price surfaces can be reproduced by
local volatility (but only those where the underlying S follows a regular Itô process - this
result is due to Gyöngy [Gyö86]5), since this will “explode” (unbounded behaviour) for
short maturities (for T → t, ∂2Ct(T,K)

∂K2 → +∞). Consequently, they try to enlarge the
class remaining in the semimartingales’ realm by adding jumps and, in fact a pure-jump
process is considered: more precisely, we have St = exp(Xt) with X pure-jump additive (or
time-inhomogeneous6) process with deterministic compensator κ:

XT = Xt +
∫ T

t

∫
R
(ex − 1− x)κ(s, x) dx ds+

∫ T

t

∫
R
x(N(ds, dx)− κ(s, x)) dx ds,

where N is the Poisson random measure associated to X. Since we are possibly dealing
5The extension of Gyöngy’s mimicking theorem to a semimartingale setting with jumps has been formalized

by Bentata and Cont [BC12].
6Time homogeneous processes, such as Lévy processes, are not well-suited to capture an entire price surface,

but only “slices” (smiles) of the same.
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with infinite activity7 processes, we have to require that∫ t

0

∫
R

(|x| ∧ 1)|x|(1 + ex)κ(ds, dx) dx ds < +∞.

It is clear that here the processes X are infinitely divisible. From an application of the Itô
formula we can see that S is a non-negative martingale, while from the Lévy-Khintchine
version for semimartingales it follows that κ is in unique correspondence with such processes.
Finally, the bijective relation between call prices and κ itself is guaranteed by the fact the
price Ct(T,K) is determined by the distribution of (Ss)s∈[t,T ] and the initial price St, which
in turn only depend on κ and the observable St. The codebook is thus given by the densities
{κt(T, x) |T > t, x ∈ R} and the dynamics they specify are of Itô type:

κt = κ0 +
∫ t

0
αu du+

m∑
k=1

∫ t

0
β(k)
u dW (k)

u , ∀ t ∈ [0, T ),

under appropriate conditions for (αu)u∈[0,T ) and β
(k)
u∈[0,T ) for k = 1, . . . ,m and satisfying

ess infx∈R κt(u, x) ≥ 0 for all u ∈ [t, T ). Drift restrictions on α will then result from no-
arbitrage considerations (Theorem 4.7 in [CN12]).
This approach is widen by the same authors in [CN11], because it does not provide the
possibility of a continuous martingale component in the evolution of the underlying asset.
For this reason, a “volatility” component is added and given as a Itô process (analogously
to what is done for κ), even if it turns out that this process has to be deterministic to avoid
arbitrage.

The approach followed by Kallsen and Krühner in [KK15] is still exploiting time-
inhomogeneous Lévy process, but differs in the choice of the codebook. In this case,
the codebook is the forward characteristic process and leads to restrictions that are easier
to handle or verify than the previous models, allowing at the same time for more flexibility.
Since this will be our choice in the following, we will give mathematical details in the
forthcoming sections.

7With infinite activity process we mean a process whose integrated Lévy measure on the real line is infinite,
i.e.
∫
R κ(ds, x)dx = +∞, which is equivalent to

∫
‖x‖≤1 κ(ds, x)dx = +∞.
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Neural Networks

2.1 Supervised learning

This introductory section is based on [SB14] and [Bac22]. Supervised learning is the branch of
Machine Learning that is taking care of learning a map between some input and output data
based on a given sample. In other words, supervised learning is the mathematical/computational
equivalent of “learning through examples”. More precisely, given a finite set of observations of
the type (xi, yi) ∈ X × Y, i = 1, . . . , N , the main goal is to predict the value of y ∈ Y for an
unseen value x ∈ X . The dataset we have at our disposal, the “examples”, forms the so-called
training set, while all other data for which there is no known prediction a priori forms the test
set1. Elements belonging to X are usually called input, features or covariates, while elements
of Y output, labels or responses. Supervised learning problems are usually distinguished in two
different classes: if labels yi are discrete values, we talk of classification, while if yi are taking
values in intervals, such as [a, b] for a ≤ b real numbers, or R, then we talk of regression.

The task might be difficult for a series of reasons. The following list is not intended to be
exhaustive, but to give a general idea of the difficulties most frequently encountered.

1. The relation that links xi to yi might be quite complex, e.g. non-linear.

2. The relation that links xi to yi might be (partially) stochastic, e.g. there could be additive
noise in the labels yi due to measurement errors.

3. The number of observations we could exploit for learning is too low, increasing to a certain
extent the uncertainty.

4. The space X might be very large, in mathematical terms, it could be high dimensional.

5. It might even be possible that unseen data are originated in a different way than training
data. Thus what learned on the training set does not generalize well to the test set.

All these points present real challenges when dealing with supervised learning and makes the task
interesting both from a mathematical and computational perspective.
The mathematical formulation of machine learning in general, and supervised learning in particu-
lar, is based on a probabilistic formulation. Thus, the training set (xi, yi)Ni=1 we are given is seen

1In practice, it is common to put aside a part of the training set to measure the performance of the learned
map on data for which the output is known.
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as made by realizations of two random variables (X,Y ) ∈ X × Y sampled in a i.i.d. way, that is
every tuple (xi, yi) is independent and identically distributed with respect to a joint probability
distribution P which is of course unknown. Moreover, throughout the script, we assume the
distribution P that generated the training set is assumed to be the same as the distribution that
generates all unseen data belonging to the test set. Eventually, the goal is to find a function
f : X → Y that can produce “good” predictions on unseen data.

In order to measure the performance on test data, we need a criterion. Generally, the standard
choice is trying to minimize the expected value of the discrepancy recorded on the test data. For
this, it is useful to introduce the concept of loss function, i.e. a function L : Y ×Y → R (often to
R≥0) such that (y, y′) 7→ L(y, y′), which computes the error we are making while approximating
the value y with y′2. Different loss functions are possible according to the problem at hand:

• Binary classification: Y = {0, 1}, the 0-1 loss is L(y, y′) = 1{y 6=y′}, that is the loss is null
of the y = y′ or 1 if the two are different.

• Binary classification: Y = {0, 1}, the cross entropy is L(y, y′) = −y log(p)−(1−y) log(1−p),
where p is the probability that y belongs to class ‘1’.

• Multiclass classification with C distinct groups, Y = {1, 2, . . . , C}, for k ∈ N, we may choose
again cross entropy: −

∑C
j=1 yj log(pj), where yj is equal to 1 only if the element belongs

to class j, pj is the probability that the element is in class j. This loss function is defined
in a different way, since the space of probabilities and possible values of y do not coincide.

• Regression: Y ⊂ R, the most common loss function is the squared error, that is L(y, y′) =
(y − y′)2.

• Regression: Y ⊂ R, another possibility is the absolute error, that is L(y, y′) = |y − y′|.

2.1.1 Risk

As already said, the goal of supervised learning is to minimize the expected value of the loss
function on the test dataset. For this, we need the definition of (expected) risk.

Definition 2.1.1 ((Expected) Risk). Given a function f : X → Y, a loss function L : Y×Y → R
and a joint distribution pX,Y , we define the (expected) risk as

R(f) := EX,Y [L(Y, f(X))] =
∫
X×Y

L(y, f(x)) dpX,Y (x, y). (2.1)

Since the distribution pX,Y is not known, but we are provided with a sample set of observations
DN := {(xi, yi) : i = 1, . . . , N}, we can only approximate the risk with its empirical counterpart:

Definition 2.1.2 (Empirical risk). Given a function f : X → Y, a loss function L : Y ×Y → R
and a set of observations DN = {(xi, yi) : xi ∈ X , yi ∈ Y, i = 1, . . . , N}, the empirical risk of f
is defined as

R̂(f) := 1
N

N∑
i=1

L(yi, f(xi)). (2.2)

2Unless explicitly specified, the loss functions we will use in the following are symmetric. For this reason we
will not make a distinction, in general, between the role of y and y′.
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2.1 Supervised learning

Remark 2.1.3. Note that it might be useful to consider DN as a possible realization of a random
process D. In this sense, also the empirical risk R̂ becomes a random quantity.

Example of risks, taking into considerations the previously introduced loss functions, are:

• Binary classification: Y = {0, 1}, for the 0-1 loss we have L(y, y′) = 1{y 6=y′} and so
R(f) = E[1{Y 6=f(X)}] = P(f(X) 6= Y ), that is the probability of making a mistake.

• Regression: Y ⊂ R, the for the squared error loss function the risk is the mean squared
error (MSE): R(f) = E[(Y − f(X))2]; while for the absolute error loss function the risk is
the mean absolute error (MAE): R(f) = E[|Y − f(X)|].

What would happen if we knew the unknown distribution pX,Y that generated the sample
set DN? In this case, we could actually minimize the expected risk.

Definition 2.1.4 (Bayes risk and Bayes predictor). Given a loss function L : Y ×Y → R and a
joint probability distribution pX,Y for the random variables (X,Y ) ∈ X ×Y, we define the Bayes
risk as

R? := inf
f∈YX

E[L(Y, f(X))],

under the condition that f are measurable. Accordingly, we can define the Bayes predictor as

f? := argmin
f∈YX

E[L(Y, f(X))].

Remark 2.1.5. Let us denote with pX(·) and pY |X(·|X = x) the probability density functions of
X and Y |X = x, respectively. Using the law of total expectation we can rewrite the expected
risk as

R(f) = EX,Y [L(Y, f(X))] = E [E [L(Y, f(X))|X]]

=
∫
X
E [L(Y, f(X))|X = x′] dpX(x′)

Since dp(x′) is non-negative, we can actually only look at the inner expectation for the Bayes
predictor and pointwise minimize it:

f?(x) = argmin
f∈YX

E[L(Y, f(X))|X = x] = argmin
y′∈Y

E[L(Y, y′)|X = x]

= argmin
y′∈Y

∫
Y
L(y, y′) dpY |X(y′|x).

Moreover, note the Bayes predictor is not unique, but all Bayes predictors leads to the same
Bayes risk value.
Remark 2.1.6. It is clear that Bayes predictors depend on the choice of the loss function that is
operated when setting up the supervised learning task. In the case of regression with Y = R, if
we choose the square loss function, we get

f?(x′) ∈ argmin
y′∈R

E[(y − y′)2 |x = x′] = E[y |x = x′].

While for the case of absolute error, we recover f?(x′) = median(y |x = x′).
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2.1.2 Empirical risk minimization

To concretely find a map f between X and Y, we can pursue different strategies involving different
machine learning algorithms:

Definition 2.1.7 ((Learning) Algorithm). A (learning) algorithm is a map A :
⋃
n∈N(X×Y)n →

YX that maps data into the space of functions from X to Y. Thus, for any DN (N ∈ N), we
have A(DN ) = f such that f : X → Y.

One conceivable strategy, which is sometimes referred to as local averaging, consists in approxim-
ating the Bayes predictor in a neighbourhood of the input x. This approach originated popular
algorithms, such as the K-nearest neighbours algorithm, usually adopted in classification tasks,
in which the belonging of x to a group is given by the belongings of its K nearest observation
points.
We will here adopt another strategy, called empirical risk minimization which consists in selecting
a candidate model f from a class F , usually called hypothesis class, and then selecting inside F the
model that best suits our purposes. The class F is normally indexed by parameters θ ∈ Θ ⊆ Rp,
with p ∈ N being the dimension of the parameter space Θ. Hence, in this approach, we are
not trying to mimic the Bayes predictor directly, but rather to find the best predictor through
(careful) minimization of the empirical risk:

f̂ ∈ argmin
f∈F

R̂(f) = 1
N

N∑
i=1

L(yi, f(xi)),

which then translates to

fθ? ∈ argmin
θ∈Θ

R̂(fθ) = 1
N

N∑
i=1

L(yi, fθ(xi)),

since the class F is parametrized by θ. In the context of machine learning, the minimization
procedure is mainly done in an iterative way and is called training. Examples of algorithms that
exploit this minimization problem are linear models, for example of the type fθ(x) = θ>φ(x),
for some φ(x) ∈ Rp generally called feature vector which is assumed to be known, or neural
networks, as we will see.

After training, we should be able to assess the “abilities” of the model on test data. According
to the performance, we can distinguish models that are

• underfitting: when a model produces poor performance on both training data, since it
is not able to interpolate or to classify correctly the observations, and on the test data.
This occurs when the model cannot adequately capture the structure or patterns inherent
in data. Possible motivations are the choice of the hypothesis class or the need for more
parameters/features.

• overfitting: when a model delivers good performance on training data, but is not able to
generalize well enough on test data. This occurs when the model is too specialized on the
observations at the point of having extracted residual variation that might be due, originally,
to noise in the measurements. One possible motivation is having too many parameters at
disposal for the selected hypothesis class.
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2.1 Supervised learning

Often, the best remedy to avoid underfitting is choosing another class F (or at least increasing
the number of parameters of the model, if this is allowed). On the other hand, avoiding overfitting
might require some other techniques. The most common is probably “capacity control”, which
consists in shrinking the norm of some parameters by adding a penalization term to the loss
function (or risk), thus resulting in

F (θ) := R̂(fθ) + λΩ(θ).

The additional term is usually called regularization term and its importance on the overall new
function is influenced by λ > 0. If we think of θ as a vector, classical examples for Ω(θ) are the
L2-norm, i.e. ‖θ‖22, or the L1-norm, i.e. ‖θ‖1. The intuition behind this kind of regularization
is that by reducing the norm of parameters that are not essential in minimizing the risk will
“reduce” the dimension of the space Θ. The new function F is normally called target function or
objective function.
One could finally sum up all what said so far, by considering that the minimization of the risk
as defined in (2.1), using the empirical risk minimization approach, becomes

min
θ∈Θ

F (θ) = min
θ∈Θ

1
N

N∑
i=1

L(yi, fθ(xi)) + λΩ(θ), (2.3)

with λ ≥ 0 (for λ = 0 there is no regularization effect). In this context, it is also natural to
adapt Definition 2.1.7 of learning algorithm as a map onto Θ, since every particular θ ∈ Θ is
characterizing a particular function fθ.
Remark 2.1.8 (Bias–Variance Tradeoff). It is customary in machine learning to decompose
the expected risk, as defined in Definition 2.1.1, on unseen test data in different terms to account
for a well-known phenomenon: the bias-variance tradeoff, that is the property of a model that the
variance given by the calibrated model parameters estimated across samples can be reduced by
increasing the bias of the same. This was already observed in 1952 by Grenander ([Gre52]) with
the name of “uncertainty principle”, but became popular to the machine learning community with
the work of Geman and coauthors 40 years later ([GBD92]). The variance captures how much
the estimator changes if a new training dataset is considered (from the same data distribution).
Ideally, the variation should be minimal. On the other hand, the bias should retain the error we
are making by selecting a particular hypothesis class F and, in particular, it is not decreased
by increasing the number of training data-points. Often, if we suppose a relation of the kind
y = f(x) + ε for our supervised learning task, there is another term stemming from the noise ε,
which is usually considered as a zero-mean independent random variable with variance equal to
σ2. This is called irreducible error since it concerns noise that is inherent in data.
By increasing the capacity of the model, we decrease the (squared) bias of the estimated para-
meters and at the same time increase their variance according to the following relation for the
expected risk with squared loss function (see also Definition 2.1.1):

E(x,y)∼P,
DN∼PN

[(
y − f̂(x;DN )

)2
]

=
(

BiasDN
[
f̂(x;DN )

])2
+ Varx,DN

[
f̂(x;DN )

]
+ σ2 (2.4)

where f̂(· ;DN ) has been chosen inside F as a result of a learning algorithm A (see Definition
2.1.7) and has been trained on the training set DN = {(xi, yi) : xi ∈ X , yi ∈ Y, i = 1, . . . ,N }
sampled by P . The bias term is defined as BiasD := Ex[f̂(x;D)]−f(x), the variance is Varx,D :=
Ex,D[(f̂(x;D)−ED[f̂(x;D)])2] and ε is the error. When we add more and more parameters to the
model, by increasing its complexity, variance becomes our first concern, while bias decreases. For
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instance, the more polynomial terms are added to a linear regression, the greater the resulting
model complexity. As a matter of fact, it might become even possible to fit the errors (εi)Ni=1
inherent in measurements (overfitting).

2.2 Minimization algorithms

Problem (2.3) is now set up to be solved. Ideally, we should be able to find an analytical solution
for fθ, but this is not often the case. In addition to this, computing the analytical solution
given the relevant amount of data we might be given, is usually impractical when not unfeasible.
For example, as in the case for linear regression with least square, this approach might require
inversion of enormous matrices that is effectively computationally very expensive and could even
pose problems from a memory perspective.
For these reasons, many times iterative algorithms that are able to handle cheaper operations are
used instead. In the following we are going to describe the two most common algorithms used in
practice for training of different hypothesis classes, including neural networks. Both of them rely
on a random (or, if possible, smart) initialization for the starting point x0 ∈ X ⊆ Rd and then
they move step-by-step along a path that is selected by a form of the type xt+1 ← xt + ∆t, where
∆t depends on the local properties of the function at xt (and may include additional information,
such as the history of the path up to step t). Hopefully, the path designed in this way will lead
us to a minimum3 of the target function. For the algorithms under examination here, we will
take ∆t to be proportional to the gradient of the objective function.
The interested reader will find more information on these topics in [BV04] and [KNS16].

2.2.1 Gradient Descent (GD)

The method is a first-order iterative optimization procedure for finding a local minimum of a
differentiable function and its origin is commonly attributed to Cauchy [Cau47]. This algorithm is
also known as steepest descent since the goal is computing the direction where the target function
F decreases most rapidly in a neighbourhood of the current point, and then follow this direction.
It turns out that this direction is in fact provided by the gradient ∇θF (θ).

Algorithm 1: Gradient Descent
Input: DN = {(xi, yi) : i = 1, . . . , N}, F
Output: stationary point for F

1 Pick θ randomly inside Θ;
2 θ0 ← θ;
3 for t ≥ 0 do
4 θt+1 ← θt − γt∇θF (θt);
5 if stopping rule satisfied then
6 End;

The positive quantity γ is called learning rate or step size and can be chosen adaptively,
that is its value can change (usually, decrease) according to a predetermined scheme or if some
conditions are met, for example if the function F has not decreased in the last iterates.
Since it is not clear when to stop a priori, different stopping rules are employed. The most
common are:

3Analogous algorithms can be used for maximization.
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• A maximum number of iterations has been reached;

• The value of ‖∇F‖ (for some norm) is below a certain threshold;

• The relative decrease of F (xt) is below a certain threshold.

Proposition 2.2.1. Let x, y ∈ Rd and g ∈ C1(Rd) be such that ∇g is L-Lipschitz. Then the two
following claims hold true with the norm induced by the inner product:

a) |g(x)− g(y)− 〈∇g(x), x− y〉| ≤ L
2 ‖x− y‖

2

b) If g is convex, then g(x)− g(y)− 〈∇g(x), x− y〉 ≤ − 1
2L‖g(x)− g(y)‖2.

Remark 2.2.2. Statement a) of Proposition 2.2.1 provides a better bound in the sense of a Taylor
approximation with a quadratic function. Statement b), on the other hand, is a strengthening of
the convexity condition (for L→ +∞, we recover the classical convexity condition).
Remark 2.2.3. Statement a) of Proposition 2.2.1 is also relevant because it assures that using
gradient descent we can recover a non-increasing path for any function g satisfying the above-
mentioned conditions. Let us take γt ≡ γ > 0. If we choose x = xt and y = xt+1, then we have
x− y = γ∇g(xt) and

|g(xt)− g(xt+1)− 〈∇g(xt), γ∇g(xt)〉 | ≤
L

2 ‖γ∇g(xt)‖2,

which implies
g(xt)− g(xt+1) ≥ γ

(
1− γL2

)
‖∇g(xt)‖2 (2.5)

which is non-negative only if 1− γ L2 ≥ 0 ⇐⇒ γ ≤ 2
L , which translates into γ ∈ (0, 2/L).

Eventually, the application of gradient descent will lead the sequence (xt)t≥0 to a stationary
point:

Theorem 2.2.4. Let g ∈ C1(Rd) be such that ∇g is L-Lipschitz and xt+1 ← xt − γ∇g(xt) with
γ ∈ (0, 2/L) and x0 ∈ Rd. Then we have

a) g(xt) > g(xt+1) unless ∇g(xt) = 0.

b) If g is bounded from below, ∇g(xt)→ 0 for t→ +∞.

c) If g attains a minimum x?, by taking γ = 1
L , for all T ∈ N we have

min
0≤t<T

‖∇g(xt)‖2 ≤
2L (g(x0)− g(x?))

T
= O

(
1
T

)
. (2.6)

Proof. Claim a) is a consequence of Remark 2.2.3.
Claim b) can be seen by summing over the different iterations between t = 0 and t = T . From
Inequality 2.5, we get

g(xT )− g(x0) ≥
T−1∑
t=0

γ

(
1− γL2

)
‖∇g(xt)‖2

≥ γT
(

1− γL2

)
min

0≤t≤T−1
‖∇g(xt)‖2.
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Since the left hand side is bounded from below, if we let T → +∞, then to have a finite right
hand side, it must be that ‖∇g(xt)‖ → 0.
Claim c) follows from inequalities of b) since we have g(x0) − g(x?) ≥ g(x0) − g(xT ) and by
choosing γ = 1/L.

Remark 2.2.5. As desired, gradient descent is able to reach for a fairly general class of functions
a stationary point. Unfortunately, the guarantee we have from (2.6) is not entirely satisfactory,
because if we want to have min ‖∇g‖2 ≤ ε then we need at least t = O( 1

ε ) iterations. This rate of
convergence is called sub-linear. The progress we make decreases the more we run the algorithm.
We need generally 10 iterations to get one correct digit, 100 to get two correct digits, 1’000 for
three and so on. In other words, the algorithm is said to converge in exponential time.
Remark 2.2.6. If the function g of Theorem 2.2.4 is convex, then gradient descent will lead the
sequence (xt)t≥0 to a global minimum.
Despite having this guarantee, convex functions do not achieve a better rate for convergence.

To have a faster convergence, that is, to get a better convergence rate, we need to add other
assumptions. That is why standard results for the convergence of gradient descent often consider
strong-convexity.

Theorem 2.2.7. Let g ∈ C1(Rd) have L-Lipschitz gradient and be µ-strongly convex function
for µ > 0. Then for x0 ∈ Rd, let xt+1 ← xt − γ∇g(xt) for all t ≥ 0. Then,

g(xt)− g(x?) ≤
(

1− µ

L

)t
(g(x0)− g(x?)).

Remark 2.2.8. If g is a convex function, then adding an L2-regularizer term of the type x 7→
λ/2 ‖x‖2 makes it strongly convex with µ at least equal to λ > 0.
Thus, this addition can even accelerate convergence.

The result of Theorem 2.2.7 is now quite promising, but requiring strong-convexity might
be excessive for practical problems. For example, note that every strongly-convex function is
also strictly convex and, thus, admits a unique global minimum. Luckily, it is indeed possible to
weaken this assumption. In order to state more important results, we first need to introduce the
following inequality (from the translated work of Polyak [Pol63]):

Definition 2.2.9 (Polyak- Lojasiewicz inequality). Let h : Rd → R a differentiable function
which attains a global minimum at x?. The function h is said to satisfy the Polyak- Lojasiewicz
(PL) inequality if for any x ∈ Rd there exists a µ > 0 such that

‖∇h‖2 ≥ 2µ
(
h(x)− h(x?)

)
.

Lemma 2.2.10. Strong-convexity implies Polyak- Lojasiewicz inequality. More precisely, if it
exists µ > 0 such that g : Rd → R is µ-strongly-convex, then Polyak- Lojasiewicz inequality holds
for all subgradients.

Proof. If the function g is µ-strongly convex, then we have by definition that

g(y) ≥ g(x) + 〈∇g(x), y − x〉+ µ

2 ‖y − x‖
2.

If we minimize the inequality with respect to the variable y, the relation is kept. Hence, we
obtain

∂ RHS
∂y

= ∇g(x) + µ(y − x) = 0 ⇐⇒ y = x− 1
µ
∇g(x).

26



2.2 Minimization algorithms

Now, we can denote with z the value for which g has its minimum and replace the value of y at
the right hand side:

g(z) ≥ g(x)− 1
2µ‖∇g(x)‖2,

which is Polyak- Lojasiewicz inequality.

Remark 2.2.11. If a C1-function f satisfies the Polyak- Lojasiewicz inequality, then every stationary
point is also a global minimum.
Remark 2.2.12. Satisfying the Polyak- Lojasiewicz inequality is independent of being a convex
function. For example, the function x 7→ x2 + 3 sin2 x satisfies the PL inequality with µ = 1/32,
but is not convex. On the other hand, x 7→ |x| is convex, but does not satisfy the PL inequality.

Theorem 2.2.13. Let g ∈ C1(Rd) satisfy the Polyak- Lojasiewicz inequality for some µ > 0, have
L-Lipschitz gradient and a global minimum attained at x?. For γ ∈ [0, 2/L], for all T ∈ N and
x0 ∈ Rd the sequence xt+1 ← xt − γ∇g(xt) satisfies

g(xT )− g(x?) ≤ (1 + γµ(γL− 2))T (g(x0)− g(x?))

=
(

1− µ

L

)T
(g(x0)− g(x?)) for γ = 1/L.

In this way, we are able to recover the same convergence we had for strongly-convex functions.
Remark 2.2.14. Since the quantity 1− µ/L ∈ (0, 1), we have linear convergence. Moreover, since
we have 1− z ≤ exp(−z) for z ∈ R, we can write

g(xT )− g(x?) ≤ exp
(
−T µ

L

)
(g(x0)− g(x?)).

If we impose the error being less than ε, we get

T ≥ L

µ
log
(
g(x0)− g(x?)

ε

)
= O(log(1/ε)).

Remark 2.2.15. We conclude this excursus on gradient descent by showing that for L-Lipschitz
gradient functions which satisfy the PL inequality, we always have µ/L ≤ 1.
First of all, we recall claim a) of Proposition 2.2.1 which establishes that

g(x) ≤ g(y) + 〈∇g(x), x− y〉|+ L

2 ‖x− y‖
2.

By taking the gradient on both sides and minimizing, we get

g(x?) ≤ g(y)− 1
2L‖∇g(y)‖2.

If we now apply the PL inequality to g(y)− g(x?) we get

1
2L‖∇g(y)‖2 ≤ g(y)− g(x?) ≤ 1

2µ‖∇g(y)‖2,

from which the thesis.
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Remark 2.2.16 (Gradient Flow). The continuous version of gradient descent is called gradient
flow, it is useful to prove theoretical results and it is basically obtained when the learning rate
(or step-size) tends to zero. To derive it, let us consider, for constant γt = γ > 0, a linear
interpolation between two subsequent points on the learning path (xt)t≥0 (for t ∈ N0 discrete)
and suppose there exists a n ∈ N such that xt = X(nγ) for a function X : R>0 → Rd. Then we
can write

X(t+ γ) = xt+1 = xt − γ∇f(xt) = X(t)− γ∇f(X(t)),
from which we obtain

X(t+ γ)−X(t)
γ

= −∇f(X(t)).

At this point, by letting γ going to zero, the result is

d

dt
X(t) = −∇f(X(t)), (2.7)

which is an ODE (ordinary differential equation) that is well-defined if, for example, ∇f is
Lipschitz continuous.

2.2.2 Stochastic Gradient Descent (SGD)

Since the evaluation at each iteration of the function ∇F might be computationally costly since
it requires access to the entire training set, researchers have come up with an alternative solution
which settles for unbiased estimates G of the gradient, such that for all t ≥ 0

E [G(θt)| θt] = ∇F (θt).

The first attempt for a stochastic approximation was made in 1951 by Robbins and Monro [RM51].

Algorithm 2: Stochastic Gradient Descent
Input: DN = {(xi, yi) : i = 1, . . . , N}, F
Output: stationary point for F

1 Pick θ randomly inside Θ;
2 θ0 ← θ;
3 for t ≥ 0 do
4 Sample k(t) ∈ {1, . . . , N} and build the gradient Gt of

θ 7→ L(yk(t), fθ(xk(t)));
5 θt+1 ← θt − γtGt(θt);
6 if stopping rule satisfied then
7 End;

In order to decrease the variance linked with the unbiased estimate G, mini-batches are also
possible. This approach consists in sampling multiple indices It inside {1, . . . , N} and to com-
pute the approximate gradient as 1/|It|

∑
i∈It Gt

(
θt; (xi, yi)

)
, where Gt

(
θt; (xi, yi)

)
denotes the

gradient for the ith-sample (xi, yi) at iteration t. For all t ≥ 0, all functions Gt
(
θt; (xi, yi)

)
are i.i.d.

Theorem 2.2.17. Let f ∈ C1(Rd) satisfy the Polyak- Lojasiewicz inequality for some µ > 0, have
L-Lipschitz gradient and a global minimum attained at x?. For any T ≥ 0, x ∈ Rd, let (Gt(x))Tt=0
be i.i.d. random variables in Rd such that E[Gt(x)] = ∇f . Let us consider the sequence obtained
by following Algorithm 2, with x0 ∈ Rd.

28



2.2 Minimization algorithms

a) If ∀x, t, E[‖Gt(x)‖2] ≤ α and γ ∈ (0, 1
2µ ), then

E[f(xT )]− f(x?) ≤ (1− 2µγ)T
(
f(x0)− f(x?)

)
+ L

γα2

4µ .

b) If ∀x, t, E[‖Gt(x)‖2] ≤ β2‖∇f(x)‖2 and γ = 1
β2L , then

E[f(xT )]− f(x?) ≤
(

1− µ

β2L

)T (
f(x0)− f(x?)

)
.

Remark 2.2.18. Claim a) of Theorem 2.2.17 shows that using a constant learning rate γ is not
sufficient to establish convergence. At a certain point, we will remain stuck in a region where
stochastic noise is predominant and we can only get closer to the solution if γ is also approaching
zero.
To tackle this problem, we need to add the condition expressed in b), assuming that stochastic
noise inherent in G becomes smaller as we are approaching the stationary point.
Because of statement a), it becomes clear the strategy that is normally adopted when using
stochastic gradient descent: once the loss function F is not improving, then the learning rate γ
is halved (or anyway reduced) to approach to the solution.

Under the convexity assumption for the target function, the next result shows that appropri-
ately decreasing the step size can actually guarantee convergence. For this, neither differentiability
nor the Polyak- Lojasiewicz condition are necessary, but we additionally require restriction to a
convex compact set.

Theorem 2.2.19. Let PC : Rd → C be the projection onto a compact convex set C ⊂ Rd with
diameter δ (implying that ∀x, y ∈ C, ‖x − y‖2 ≤ δ) and let f : C → R be convex with global
minimum at x? ∈ C. For any T ≥ 0, x ∈ Rd, let (Gt(x))Tt=0 be i.i.d. random variables in Rd
such that E[Gt(x)] is any subgradient ∇f of f at x. Moreover, suppose E[‖Gt(x)‖2] ≤ α2 and let
(γt)T−1

t=0 be a finite sequence such that 0 ≤ γt ≤ γt−1 for t = 0, . . . , T − 1. Consider a sequence
staring at x0 ∈ Rd and following xt+1 = PC(xt − γtGt(xt)). Then x̄t := 1

T

∑T−1
t=0 xt satisfies

E[f(xT )]− f(x?) ≤ 1
2T

[
δ2

γT
+ α2

T∑
t=1

γt

]
,

and if we define γt := δ
α
√

2t , then we have E[f(xT )]− f(x?) ≤
√

2
T δα.

2.2.3 Momentum and recent developments

Nowadays, the state of the art for minimization algorithm of gradient type includes also another
term, called momentum. The name derives “from a physics analogy, in which the negative
gradient is a force moving a particle through parameter space, according to Newton’s laws of
motion.” (from [GBC16]). Gradient methods are known to have troubles navigating ravines,
i.e. areas where the curvature of the surface on which we are moving is more pronounced for some
directions than others. This particular behavior, which is typical close to local optima, is slowing
down the descent process, since the directions with the largest absolute gradient are forcing
the learning path to bump among each other, while making imperceptible progress in the other
directions. The physical intuition is the following: a particle (a sphere) starts off by following
the gradient, but once it has reached a certain velocity, it does not longer move according to

29
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the steepest descent, since its the trajectory will be influenced by its velocity (its momentum)
as well. In this sense, momentum damps the oscillations resulting from gradient descent. For
this interpretation, a simpler version of this method is also called “heavy-ball” method and it is
attributed to Boris Polyak ([Pol64]). Mathematically, we can modify both Algorithms 1 and 2
so that every step of the loop becomes:

zt+1 ← βzt +∇Gt(θt)
θt+1 ← θt − γtzt+1

, (2.8)

where the new parameter β ∈ [0, 1] is weighting the memory of the trajectory (common values are
around β = 0.95 or 0.99). Note that although this method will in general accelerate convergence
to a local minimizer, it is possible to build counter-examples where the method does not converge
even if the target function is convex (see [LRP16]).
The method was subsequently refined in 1983, by Yurii Nesterov, Polyak’s student, and is today
known with the name of “Nesterov accelerated gradient” (NAG) ([Nes83]). The updating rule is
very similar to (2.8):

zt+1 ← βzt + γt∇Gt(θt + βzt)
θt+1 ← θt + zt+1

. (2.9)

NAG first performs a partial update of θt, computing θt + βzt, which is similar to θt+1, but
missing the as yet unknown correction. This benign-looking difference seems to allow NAG to
change z in a quicker and more responsive way, letting it behave more stably than the standard
momentum approach in many situations, especially for higher values of β. Nesterov showed
that after t iterations of NAG, the traditional convergence rate of O(1/t) of gradient descent
(Theorem 2.2.4), becomes O(1/t2) and is optimal among first-order techniques that can access
only to gradient evaluations ([Nes14]). We refer the reader interested in optimization theory to
[Sut+13] for a comparison between momentum and NAG approaches, with a particular view on
the implications these methods have for neural networks.

These approaches, combined with other techniques, such as adaptive choice of the learning
rate, are now standard in machine learning and, in particular, in deep learning, where they are
used for the training of neural networks. The most famous algorithms are Adagrad ([DHS11]),
Adadelta ([Zei12]), RMSProp4, Adam ([KB15]), Nadam ([Doz16]) and so on. We also suggest
Chapter 8 of [GBC16] for a broader discussion of the topic.

In the rest of the manuscript, we are going to specialize on regression tasks for a particular
hypothesis class: (feedforward) neural networks.

2.3 Definitions for Neural Networks

Neural network theory has attracted the interest of many researchers in recent years and it is
not the goal of this manuscript to provide a comprehensive guide to the topic. This would be
however a hard undertaking since the number of publication is incredibly vast and new results
are published daily. Henceforth, we do not pretend that what is written here is the most updated
version on any particular subject, although an attempt is made in this direction.
Conventionally, the history of neural networks starts in 1943 with Warren McCulloch, a
neurophysiologist, and Walter Pitts, a young mathematician, who proposed a computational
model based on electric circuits for neural networks ([MP43]). While the concept of artificial

4First published on slides for lecture notes at http://www.cs.toronto.edu/˜tijmen/csc321/slides/lectur
e slides lec6.pdf
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2.3 Definitions for Neural Networks

neural network to which we implicitly refer in the continuation of the work dates back to the late
fifties and is due to Frank Rosenblatt ([Ros57]), when the concept of perceptron - a machine that
could receive different input and return output as a weighted sum of the former - was introduced.
Many years later, (artificial) neural networks represent the state-of-the-art techniques to solve
many computational challenging tasks and are one of the most promising research area for
the years to come. Two interesting references we suggest for a generic introduction on neural
network’s theoretical aspects are [GBC16], which is rather a basic and conventional text, and
[Ber+21] for a more mathematical and up-to-date treatment.

In the following we just consider feedforward neural networks, unless otherwise stated, for
which we give the definition. Note that feedforward neural networks were the first and simplest
type of artificial neural network devised. The information moves in only one direction - forward
- from the input nodes, through the hidden nodes (if any) until the output nodes. Henceforth,
there are neither cycles nor loops5.

Definition 2.3.1 (Neural Network, [GRK20]). Let d, s, L ∈ N. A neural network Φ with input
dimension d, output dimension s and L layers is a sequence of matrix-vector tuples of the type

Φ =
(
(W (1), b(1)), . . . , (W (L), b(L))

)
,

where n0 = d, nL = s and n1, . . . , nL−1 ∈ N, and where each W (i) belongs to Rni×ni−1 and
b(i) ∈ Rni .
Given such a Φ, we can define for K ⊂ Rd and σ : R → R the associated realization of Φ with
activation σ over K as the map Rσ(Φ) : K → Rs such that

Rσ(Φ)(x) = x(L),

where x(L) is defined as following:

x(0) := x

x(i) := σ(W (i)x(i−1) + b(i)) for i = 1, . . . , L− 1, (2.10)
x(L) := W (L)x(L−1) + b(L),

where the application of the function σ is componentwise. We call N(Φ) := d +
∑L−1
j=1 nj +

s the number of neurons of the neural network Φ, L(Φ) the number of layers6 ( depth) and
M(Φ) :=

∑L
j=1 ‖W (j)‖0 + ‖b(j)‖0 the number of non-zero weights of Φ ( connectivity). Finally,

the maximum norm of the network is denoted by B(Φ) := maxj=1,...,L max{‖W (j)‖∞, ‖b(j)‖∞}
and the width of Φ is given by W (Φ) = maxj=1,...,L−1 nj. For the realization of such neural
network we adopt the notation Φ ∈ Nd,s (or N σ

d,s if the activation function σ is used in all layers
but the output).

In the rest of the manuscript, it should be clear from the context whether we mean just the
collection of weights or the realization of the neural network and for this reason, we will just use
the shorter name neural network.
Notice in (2.10) that the last layer has been defined with no activation function. This is not
always the case, for example in classification-type problems we might have a logistic activation

5Loops are edges of a network with both ends at the same node. All loops are cycles, but not all cycles are
loops.

6The input layer is usually not considered as a layer itself and it is usually referred to as 0th layer.
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Figure 2.1: Graphical representation of a neural network with 3 layers.

function, but it is a standard choice for regression-type problems.
Layers between the input and the output layers, i.e. those in position 1, . . . , L−1, are called hidden
layers. Neural networks with just 1 hidden layer, having thus depth L = 2 in our terminology,
are said shallow neural networks. In graphical terms, neural networks are usually represented as
directional graphs, where every tuple of the type (W (i), b(i)) is summarized by a layer (usually, a
list of circles) to which the activation function is applied; edges between neurons are denoting
the flow of sequential operations (see Figure 2.1).

Moreover, we will not take into consideration degenerate cases: input and hidden layers are
supposed to always have at least one outgoing connection (edges in the plot), while the output
layer at least an incoming connection.
For the connectivity we have the following estimate

M(Φ) ≤ L(Φ)W (Φ)
(
W (Φ) + 1

)
. (2.11)

2.4 Universality properties for shallow networks

The purpose of this section is to prove that shallow neural networks can approximate well
continuous function, as obtained by Cybenko in 1989 ([Cyb89]). We will also state other results
similar for other sets.

Due to their simplicity, we can explicitly write down how shallow neural networks act on
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input vectors x ∈ Rd:

Rσ(Φ)(x)j =
N∑
k=1

w
(2)
j,k σ

(
d∑
i=1

w
(1)
k,ixi + b

(1)
k

)
+ b

(2)
j , j = 1, . . . , s, (2.12)

where b(1) ∈ RN , b(2) ∈ Rs are called bias, w(1)
k ∈ Rd is the kth-row of W (1), w(2)

j ∈ RN is the
jth-row of W (2) and are said weights, and σ is the activation function (more about those later),
with an output vector of dimension s.

Activation functions are applied componentwise to every entry of a vector and are called in
this way because are supposed to replicate the behaviour of real (physical!) neurons whose voltage
needs to exceed a certain threshold to be able to transmit signals to neighbouring neurons. In
mathematical terms, we define an activation function as a non-linear function, which is able to
“fire” a signal (non-zero output) only when the input is above the threshold. A typical example
of activation functions is given by sigmoidal functions:

Definition 2.4.1 (Sigmoidal function). A measurable function σ : R→ R is called sigmoidal if
it satisfies

lim
x→−∞

σ(x) = a and lim
x→+∞

σ(x) = b,

with a 6= b in R.

Examples of such functions are (among the others)

• Sigmoid (or logistic) function: σθ(x) = 1
1+e−θ x , for θ ∈ R;

• Hyperbolic tangent: σ(x) = tanh(x) = sinh(x)
cosh(x) = ex−e−x

ex+e−x ;

• Heaviside function: σ(x) = 1{x≥0}.

Actually, Cybenko could prove his famous result for a broader class of functions:

Definition 2.4.2 (Discriminatory function). Let M(In) denote the space of finite signed Borel
measures7 µ on the n-dimensional unit-cube In := [0, 1]n ⊂ Rn. A function σ : R→ R is called
discriminatory if, for every µ ∈M(In), we have

∀w ∈ Rn and b ∈ R,
∫
In

σ(wTx+ b) dµ(x) = 0 =⇒ µ ≡ 0.

Unfortunately, his proof is non-constructive as it makes use of Hahn-Banach and Riesz theor-
ems.

Theorem 2.4.3 (Hahn-Banach). Let M be a subspace of (X, ‖ · ‖) and let F0 : M → R be a
bounded linear functional on (M, ‖ · ‖). Then, there exists a bounded linear functional F : X → R
on (X, ‖ · ‖) that is an extension of F0 and satisfies

|||F0||| := sup
x∈M,‖x‖≤1

F0(x) = sup
x∈X,‖x‖≤1

F (x) :=|||F |||.

Corollary 2.4.4 (Consequence of Hahn-Banach). Let (M, ‖·‖) be a subspace of (X, ‖·‖). Suppose
that every bounded linear functional F : X → R on (X, ‖ · ‖) with F (x) = 0, for all x ∈ M , is
identically zero on the entire space X. Then, M is dense in X.

7That is, given a measurable space (X,Σ), µ : Σ→ R is said to be a (finite) signed Borel measure if µ(A) ∈ R
for all Borel sets A ∈ Σ, µ(∅) = 0 and for any sequence of disjoint Borel sets we have µ(

⋃
n∈N An) =

∑
n∈N µ(An).
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Let C(Id) be the set of real-valued continuous functions on Id and let us equip the space C(Id)
with the sup-norm: ‖f‖∞ := supx∈Id |f(x)|.

Theorem 2.4.5 (Riesz representation). For every bounded linear functional L on C(Id), there
exists a unique µ ∈M(Id) such that

∀ f ∈ C(Id), L(f) =
∫
Id

f(x) dµ(x).

Let us now restrict ourselves to the simpler case where the neural network maps the input
to R, ignoring the bias terms8 which have been denoted as b(2) in (2.12). We can rewrite the
shallow neural network as:

Rσ(Φ)(x) =
N∑
k=1

w
(2)
k σ

(
d∑
i=1

w
(1)
k,ixi + b

(1)
k

)
=

N∑
k=1

w
(2)
k σ

(〈
w

(1)
k , x

〉
+ b

(1)
k

)
, (2.13)

with x, w(1)
k ∈ Rd and w

(2)
k ∈ R.

Theorem 2.4.6. Let σ : R→ R be a continuous discriminatory function and define

S(σ) := span
({
Gw,b : w ∈ Rd, b ∈ R

})
, (2.14)

for any w ∈ Rd, b ∈ R and Gw,b : Rd → R defined as Gw,b(x) := σ(〈w, x〉 + b). Then, S(σ) is
dense in C(In).

Proof. S(σ) is a linear subspace of C(Id) by construction. Let L be a bounded linear (i.e. con-
tinuous) functional on C(Id) with L(F ) = 0 for all F ∈ S(σ). By Riesz representation theorem,
there is a unique µ ∈M(Id) such that

∀ f ∈ C(Id), L(f) :=
∫
Id

f(x) dµ(x). (2.15)

Since L is identically zero on S(σ) we have

L(Gw,b) =
∫
Id

Gw,b(x) dµ(x) =
∫
Id

σ(〈w, x〉+ b) dµ(x) = 0, (2.16)

for any w ∈ Rd and b ∈ R. Since σ is discriminatory (2.16) implies µ = 0 and, thus, L = 0. By
Corollary 2.4.4 it follows that S(σ) is dense in C(Id).

To finally prove that shallow neural networks can well approximate functions in C(Id) under
the norm ‖ · ‖∞, it is enough to state the following:

Proposition 2.4.7. Every sigmoidal function σ : R→ R is discriminatory.

In practice, many activation functions other than sigmoidal are used to build a neural network.
One of the most common is called rectified linear unit (ReLU), defined as

f(x) = max{x, 0} = x+, (2.17)

and it can be proven that it is also discriminatory.
8This does not affect the validity of the result as it is always possible apply the linear transformation to the

output in a second moment.
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Proposition 2.4.8. ReLU is a discriminatory function.

Proof. The purpose of the proof is to show that a combination of ReLU’s is a sigmoidal function,
which we know being discriminatory, and then that every single piece of the combination is also
discriminatory (by construction). Let us define the function

g(x) := f(wx+ b) = ReLU(wx+ b)− ReLU(wx+ b− 1)

and we note that g behaves like a sigmoidal function with limits 1 for x→ +∞ and 0 for x→ −∞.
Thanks to Proposition 2.4.7, we have

∀w ∈ R and b ∈ R,
∫

[0,1]
f(wx+ b) dµ(x) = 0 =⇒ µ ≡ 0.

Thus, it must be that for any w, b ∈ R,
∫

[0,1] ReLU(wx+ b) dµ(x) = 0 also implies µ ≡ 0.

Analogous results can be obtained for other similar activation functions like

• Leaky ReLU: σθ(x) =
{
x if x ≥ 0,
θx otherwise,

θ ∈ (0, 1);

• Exponential linear unit (ELU): σθ(x) =
{
x if x ≥ 0,
θ(ex − 1) otherwise,

θ ≥ 0.

Remark 2.4.9. Using non-linear activation functions is a necessary condition for Theorem 2.4.6.
If we took only linear functions for the hidden layer, we could recast the entire formula (2.12) as
combination of linear functions, which is still a linear function. Ergo, we could only approximate
with the desired accuracy linear functions.
Remark 2.4.10. Note that by employing activation functions such as ReLU or Leaky ReLU we
automatically lose the differentiability property which was used in Section 2.2. However, when
numerically approximating the derivatives, things go more smoothly that one could have expected.
This is an active research area and we will also report some important results, as Lemma 2.6.4.

Due to Theorem 2.4.6, shallow neural networks are called universal approximators. In fact,
this result allows us to approximate any continuous function: for any f ∈ C(Id), ε > 0 and any
appropriate activation function, there exists N ∈ N and a neural network Φf,ε, whose hidden
layer dimension is N , for which

‖f −R(Φf,ε)‖∞ < ε.

In particular, the width N of Φ does not remain uniformly bounded over C(Id) and ε, but grows
if we require more and more accuracy.

Not only can shallow neural networks approximate unknown mappings arbitrary well, but they
can do the same simultaneously with their derivatives. This was proven by Hornik, Stinchcombe
and White in 1990 ([HSW90]) by using density arguments in Lp and Sobolev spaces. They could
show that shallow neural networks are m-uniformly dense on compacta:

Definition 2.4.11 (m-uniformity on compact sets). Let m, l ∈ N0, 0 ≤ m ≤ l, and U ⊂ Rd
be given, and let S ⊂ Cl(U). Suppose that for any f ∈ S, compact K ⊂ U and ε > 0 there
exists Φ ∈ Nd,1 such that max|α|≤m supx∈K |Dαf(x) − DαΦ(x)| < ε. Then we say that Φ is
m-uniformly dense on compacta in S.
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Let us denote with λ the Lebesgue measure on R or Rd. Their proofs rely on the concept of
l-finite hidden units:

Definition 2.4.12 (l-finiteness). Let l ∈ N0 be given. σ is l-finite if σ ∈ Cl(R) and 0 <∫
|Dlσ(x)| dλ(x) < +∞.

This definition finds its raison d’être with the following lemma and theorem:

Lemma 2.4.13. If σ is l-finite then for any 0 ≤ m ≤ l there exists h ∈ Sm1 (R, λ) := {f ∈
Cm(R) : max|α|≤m ‖Dαf‖L1(R,λ) < +∞} such that h 6= 0 and N h

d,1 ⊂ N σ
d,1.

Theorem 2.4.14. Let 0 6= σ ∈ Sm1 (R, λ) for some m ∈ N. Then N σ
d,1 is m-uniformly dense on

compacta in C∞↓ (Rd) := {f ∈ C∞(Rd) : ∀α, β ∈ Nd, lim|x|→∞ xβDαf(x) = 0}, where for the
multi-index β we have xβ := xβ1

1 · · ·x
βd
d and |x| := max1≤r≤d |xr|.

The logistic and hyperbolic tangent activation functions are actually l-finite for all l ∈ N, while
this does not hold for trigonometric or polynomial functions ([HSW90]). Eventually, arbitrary
approximation in the spaces

• Smp (R, λ) := {f ∈ Cm(R) : max|α|≤m ‖Dαf‖Lp(R,λ) < +∞},

• Smp (loc) := {f ∈ C(Rd) : ∀U open bounded ⊂ Rd, f ∈ Smp (U, λ)}.

• Wm
p (U) := {f ∈ L1

loc(U) : ∂αf ∈ Lp(R, λ), 0 ≤ |α| ≤ m} where ∂α· denotes the αth weak
derivative and U open subset of Rd9,

is a consequence of density of C∞↓ (Rd) in those spaces.

2.5 The importance of depth

It is now clear that neural networks can approximate functions in different topologies. But it still
remains questionable how efficiently this can be done.

Before dwelling on estimates of how deep networks are better than their shallow versions, it is
interesting to report another work from Kurt Hornik in 1991 ([Hor91]) where it is shown that it is
not the particular type of activation function which gives the universal approximation property to
neural networks, but rather the possibility of stacking more layers (at least one hidden layer) to
form more complex structures. The result could be proven for several convergence statements in
Sobolev-type norms, as those of [HSW90], for continuous, bounded and non-constant activation
functions. The dispute on activation functions’ type (for universal approximation) was finally
solved by Lesho and coauthors in 1993 for locally bounded piecewise continuous activation
functions10 ([Les+93]) and in 1999 by Pinkus ([Pin99]) for continuous activation functions. In
particular, in the second article it is highlighted that uniform convergence on compacta in C(Rd)
is achievable if and only if activation functions are non-polynomial. This conditions turned out
to be necessary also in the first article.

After this short excursus, let us now turn out attention to deeper neural networks and how
these can effectively obtain better results then shallow networks.

9The space of locally integrable functions is defined as L1
loc(U) := {f : U → R : f |K ∈

L1(K,λ) for any compact K ⊂ U}.
10This work also answered - negatively - a doubt raised by Hornik whether continuity of activation functions

was necessary.
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To start taking on this point, we will initially focus on smooth functions through which it will
be later possible to approximate many other classes of functions. Since it is clear that linear
functions can be approximated by minimizing the difference at will by definition, the first tile is
represented by the quadratic function f(x) = x2, and the main idea is due to Dmitry Yarotsky
[Yar17] leveraging an observation of Telgarsky [Tel16]. The idea borrowed from Telgarsky consists
in noting that the “tooth” (or ∆, for his shape) function ∆ : [0, 1]→ [0, 1]

∆(x) :=

 2x x < 1/2
2(1− x) x ≥ 1/2
0 elsewhere

can be composed iteratively with itself to become a “sawtooth” function

∆s(x) = ∆(∆(. . .∆︸ ︷︷ ︸
s times

(x) . . . ))

=
{

2s
(
x− 2k

2s
)
x ∈

[ 2k
2s ,

2k+1
2s
]
, k = 0, 1, . . . , 2s−1− 1

2s
( 2k

2s − x
)
x ∈

[ 2k−1
2s , 2k

2s
]
, k = 1, . . . , 2s−1

which has 2s−1 uniformly distributed “teeth” inside the interval [0, 1] (for s = 0 we consider the
identity function ∆0(x) = x). An example is shown in Figure 2.2. Since the function ∆ can
be exactly represented as a (ReLU) neural network and the sawtooth function can be used to
approximate the function x− x2, we are able to achieve the conclusion.

Proposition 2.5.1. There is a constant C > 0 such that for any 0 < ε < 1
2 there exists a neural

network Φ ∈ N1,1 defined on [0, 1] with L(Φ) ≤ C log(ε−1), W (Φ) = 3, satisfying Φ(0) = 0 and
‖Φ(x)− x2‖L∞([0,1]) ≤ ε.

Proposition 2.5.1 is important for two reasons at least. First, it shows that varying the
depth of the network allows to reach the desired approximation. We will see later that it is not
always possible to just trade depth and width as if they were equivalent features of a network.
In fact, there exists an optimal number of layers and, if the architecture has fewer layers than
optimal, then the network needs to have significantly more parameters, to achieve the same
approximation fidelity (see Theorem 2.5.14 below). Second, this is an essential result because it
enables approximation of the multiplication operator, i.e. f(x, y) = xy, again through a (ReLU)
network with finitely many units. The proof is substantially based on the polar identity, that is
xy = 1

2
[
(x+ y)2 − x2 − y2].

Proposition 2.5.2. There is a constant C > 0 such that for any 0 < ε < 1
2 there exists a

neural network Φ ∈ N2,1 defined on the interval [−D,D] with L(Φ) ≤ C(log(dDe) + log(ε−1)),
W (Φ) ≤ 5, B(Φ) ≤ 1, satisfying Φ(x, 0) = Φ(0, y) = 0 and ‖Φ(x, y)− xy‖L∞([−D,D]2) ≤ ε.

It is now natural to progress with monomials and, hence, polynomials.

Proposition 2.5.3. There is a constant C > 0 such that for all m ∈ N, a = (ai)mi=0 ∈ Rm+1,
D ∈ R+ and 0 < ε < 1

2 , there exists a neural network Φ ∈ N1,1 with L(Φ) ≤ Cm[log(ε−1) +
m log(dDe)+log(m)+log(dmaxi=0,...,m aie)], W (Φ) ≤ 9 and norm bounded weights, i.e. B(Φ) ≤ 1,
which satisfies ‖Φ(x)−

∑m
i=0 aix

i‖L∞([−D,D]) ≤ ε.

This result is actually more powerful than what it reads because from Stone-Weierstrass theorem
([Sto48]) we know that polynomials can ε-approximate any continuous function (meaning that
the L∞-norm of the difference is less than ε) on a compact set:
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Figure 2.2: The ∆ function is composed with itself on the interval [0, 1].

Theorem 2.5.4 (Stone-Weierstrass, [Sto48]). Let [a, b] ⊆ R and f ∈ C([a, b]). Then, for every
ε > 0, there exists a polynomial π such that ‖f − π‖L∞([a,b]) ≤ ε.

As a result, Proposition 2.5.3 implies a universal approximation theorem for ReLU networks with
finite width (not more than 9) and variable depth. By recalling Relation (2.11), we can impose
an upper bound on the connectivity of neural networks with finite width and whose depth scales
polylogarithmically in ε−1 (i.e. polynomially in ε−1).
Remark 2.5.5. For any continuous function on a compact set K ⊂ R, the approximation error
‖Φ− f‖L∞(K) decays at least exponentially fast in the connectivity, that is with the number of
weights (or parameters) of the neural network in charge for approximation.

Analogous results are valid for sinusoidal functions, like sine and cosine, without the need to
resort to polynomial approximation, see for example [Elb+21].

Similar general conclusions were also previosuly obtained by Yarotsky (Theorem 1 in [Yar17]),
for any function f in Sobolev spaces, exploiting partition of unity and Taylor expansions. In
this case, the goal is showing that the connectivity for d-variate, n-times (weakly) differentiable
functions scales with an order of ε−d/n log(ε−1) if we require ε-approximation:

Theorem 2.5.6. Let Wn,∞([0, 1]d) be the space of functions on [0, 1]d whose weak de-
rivatives up to order n belong to L∞([0, 1]d) with norm defined as ‖f‖Wn,∞([0,1]d) :=
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2.5 The importance of depth

maxα:|α|≤n ess supx∈[0,1]d |Dnf(x)|, with α = (α1, . . . , αd) ∈ {0, 1, . . . , }d, |α| =
∑d
i=1 αi. Let

Bn,d be the unit ball of the space Wn,∞([0, 1]d). For any n, d ∈ N and ε ∈ (0, 1
2 ), there

exists a ReLU neural network Φ such that Φ is able to ε-approximate f on Bn,d having
L(Φ) ≤ C(log(ε−1) + 1) and M(Φ) ≤ Cε−d/n(log ε−1 + 1), for some constant C = C(n, d).

But is large depth - more than one hidden layer - really needed? Or can we just rely on
increasing width for function approximations? Only recently have researchers understood that
deep neural networks perform actually “better” than shallow networks, although this was already
clear from empirical evidence. The first to show that deep networks cannot be approximated by
adapted (more) shallow neural networks was Telgarsky ([Tel16]). As already mentioned above,
his proofs rely on the so called ∆-function and on the concept of complexity based on affine
regions:

Definition 2.5.7 (Number of affine pieces of f , NA(f)). For any univariate function f : R→ R,
let NA(f) denote the number of affine regions of f , that is the minimum cardinality (or ∞) of a
partition of R so that f is affine when restricted to each region.
In the literature, affine pieces are sometimes also called linear regions.

Before stating the mathematical statement, we need some intermediary results on the number of
affine pieces and on properties of ReLU-networks.

Lemma 2.5.8. Let the univariate scalar functions f, g, g1, . . . , gk and the scalars a1, . . . , ak, b be
given. Then

1. NA(f + g) ≤ NA(f) +NA(g)

2. NA
(∑k

j=1 ajgj + b
)
≤
∑k
j=1NA(gj)

3. NA(f ◦ g) ≤ NA(f) ·NA(g)

4. NA
(
f
(∑k

j=1 ajgj + b
))
≤ NA(f) ·

∑k
j=1NA(gj)

Lemma 2.5.9. Let f : R → R be a ReLU-network with L layers of widths (m1, . . . ,mL) with
m =

∑
imi. Let g : R→ R denote the output of some node in layer i as a function of the input.

Then the number of affine pieces NA(g) satisfies

NA(g) ≤ 2i
∏
j<i

mj .

Moreover, NA(f) ≤ (2m/L)L.

Remark 2.5.10. From Lemma 2.5.8 stems one of the intuitions why deep networks are more
powerful: the composition of functions, which takes place by stacking layers in a network, is able
to increase the number of affine regions multiplicatively (and not additively).

We can now state the following proposition, due to Telgarsky (similar results can be found with
different levels of generalizations):

Proposition 2.5.11. For any L ≥ 2, f = ∆L2+2 is a ReLU-network with 3L2 + 6 nodes and
2L2 + 4 layers, but any ReLU-network g with less than 2L nodes and less than L layers cannot
approximate it:

‖f − g‖L1([0,1]) =
∫

[0,1]
|f(x)− g(x)| dx ≥ 1

32 .
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Remark 2.5.12 (Multivariate functions). If we replaced R with Rd for d > 1, we can resort results
from Eldan and Shamir [ES16]. They are able to show that there exists a radial function on Rd
with bounded support that can be well approximated by a network with 3 layers, but cannot be
approximated with the same accuracy by another network with 2 layers unless the width grows
exponentially with the dimension d. The result is valid also for ReLU-networks.

One of the first results in this sense is again due to Yarotsky in [Yar17] (Theorems 4 and 6):

Theorem 2.5.13. Let Bn,d be the unit ball of the space Wn,∞([0, 1]d). For any n, d ∈ N,
ε ∈ (0, 1

2 ) and f ∈ Bn,d, there exists a ReLU network Φ that is able to ε-approximate the function
f in the Wn,∞([0, 1]d)-norm that has M(Φ) ≥ C1ε

−d/(2n), for some constant C1 = C1(d, n) > 0.
Moreover, if the number of layers L(Φ) ≤ C2(log(ε−1))p for any p ≥ 0 and some C2 > 0, then it
must be M(Φ) ≥ C3ε

−d/n(log(ε−1))−2p−1, for some C3 = C3(n, d, p, C2) > 0.

Theorem 2.5.13 points out a necessary condition on the number of layers. Note that for p = 1
the condition is compatible with the sufficient condition found in Theorem 2.5.6.

Theorem 2.5.14. Let f ∈ C2([0, 1]d) be a non-linear function. Then for L ∈ N any ReLU
neural network Φ ∈ Nd,1 approximating f with L∞-error at most 0 < ε < 1

2 must have at least
Cε−1/2(L−2) weights for some constant C = C(f, L) > 0.

It follows from this theorem that a minimum number of hidden layers is required to approximate
C2 non-linear functions. Only for very smooth functions with bounded derivatives, we can hope
for smaller-sized networks (Lemma 3.7 in [Elb+21]):

Proposition 2.5.15. Let S[−1,1] := {f ∈ C∞([−1, 1]) : ‖f (n)(x)‖L∞([−1,1]) ≤ n! ∀n ∈ N0}.
There exists a constant C > 0 such that for any f ∈ S[−1,1] and ε ∈ (0, 1

2 ) there is a network
Ψ that ε-approximate f for which L(Ψ) ≤ C(log(ε−1))2, W (Ψ) ≤ 9 and norm bounded weights
(B(Φ) ≤ 1).

Similar statements, inspired by Theorem 2.5.14, are also obtained by Petersen and Voigt-
laender, but on the Lp-norm and for a non-linear function f that is slightly smoother, i.e. f ∈ C2+δ

for any δ > 0 (Appendix C in [PV18]). The relation between depth and width/number of neurons
is made even more precise in the same paper:

Proposition 2.5.16. Let f ∈ C3([0, 1]d) be non-linear and p ∈ (0,∞). If there are constants
C > 0 and θ > 0, (εk)k∈N a sequence of positive elements converging to 0, and (Φk)k∈N a sequence
of ReLU neural networks satisfying for all k ∈ N

• ‖Φk − f‖Lp([0,1]d) ≤ Cεk,

• M(Φk) ≤ Cε−θk or N(Φk) ≤ Cε−θk ,

then it must be lim infk→∞ L(Φk) ≥ 1
2θ .

Remark 2.5.17. We have seen that the number NA(f) of affine pieces for f feedforward neural
network is a key indicator for developing theory on networks. There exists trivial bounds on such
quantity. For example, if we take ReLU as activation function for the network f : R → R, we
note that the input is split at most in 2 every time the activation function is applied (exactly in
2 parts if 0 is crossed). In this case, we can derive

NA(f) ≤ 2N(f),
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2.5 The importance of depth

where N(f) is the total number of neurons. On the other hand, we have that the minimum
number of linear regions for any neural network is 1, obtained by setting all weights and biases
to 0.
For simplicity, people have focused on lower bounds for networks with piecewise linear activation
functions, e.g. [Mon+14] and [Mon17], to understand the expressive power of deep architectures.
Theoretically, it is possible to show that the number of regions created by a network with L
hidden layers, d-dimensional input and n1, . . . , nL neurons on the other layers is at least

NA(f) ≥
L−1∏
i=1

⌊ni
d

⌋d
·
d∑
j=0

(
nL
j

)
and thus grows exponentially with L and polynomially in d. For ReLU neural networks, they
could derive the following statement:

Proposition 2.5.18. A ReLU neural network Φ with d input units and L hidden layers of width
m ≥ d can compute functions that have

NA(Φ) = Ω
((m

d

)(L−1)
md

)
linear regions.

This already shows that deep ReLU networks have much higher expressive power, in this
sense, with respect to shallow ReLU networks, for which the maximal number of linear regions is∑d
j=0

(
m
j

)
, with m being the number of neurons in the hidden layer.

Despite this result, it has been observed that this does not quite correspond to the behaviour to
be expected. The first results on the expected number of regions were obtained by Hanin and
Rolnick ([HR19]) for the case of ReLU networks or single-argument piecewise linear activation
mappings onto R. They show that if the distribution of parameters is such that the weights and
biases values are random, biases always have a conditional distribution (given to all other weights
and biases) with respect to the Lebesgue measure and the expected gradients of activation values
are bounded, then the expected number of linear regions E[NA(f)] can be much smaller than
the (trivial) upper bound and, in particular, scales with the volume of the region and the total
number of neurons.
Remark 2.5.19. The use of affine regions to express the complexity of a neural network has
emerged quite naturally in recent years, but other proposals were made in the past, such as Betti
numbers (borrowed from algebraic topology), which count the numbers of connected components
and the numbers of holes of increasing dimensions on a specific subset S ⊂ Rd ([BS14]). A subset
of Rd has d Betti numbers and its topological complexity is measured by summing all Betti
numbers bi(S) for i = 0, . . . , d− 1. In this case, the authors could show that deep architectures
can realize maps of higher complexity than shallow ones, for some standard sigmoidal activation
functions used in the hidden layers of a network Φ, by studying the set S := {x ∈ Rd : Φ(x) ≥ 0}
which is a standard choice for binary classification.
Remark 2.5.20 (VC Dimension). Another classical way of measuring the capacity, in the sense
of expressive power, in machine learning is VC dimension, after the names of the mathematicians
Vladimir Vapnik and Alexey Chervonenkis ([VC71]).
Let H denote a hypothesis class of functions from X to Y = {0, 1} (for a binary classification
task). For any m ∈ N, we define the growth function associated to H as

ΠH(m) := max
x1,...,xm∈X

|{(h(x1), . . . , h(xm)) : h ∈ H}|.
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If |{(h(x1), . . . , h(xm)) : h ∈ H}| = 2m, we say that H shatters the set {x1, . . . , xm}. The
Vapnik-Chervonenkis dimension of H is the size of the largest shattered set, i.e. the largest m
such that ΠH(m) = 2m and is denoted by VC-dim(H). If there is no maximum, then we set
VC-dim(H) = +∞. When VC-dim(H) is finite, H is called a VC class. The meaning is that
the classifier belonging to any H with VC dimension m is that the algorithm can always learn a
perfect classifier for any labeling of at least one configuration of those m data points. A classical
example is represented by binary classification of three points on the plane R2 through linear
models. Since this is possible for three points, but not for four, the VC dimension is 3.
In general, models that have a high value for the VC dimension also present a certain degree
of model complexity which should allow for good approximations. But a higher VC dimension
also provides loose bounds when comparing expected risk and empirical risk (Chapter 3.3 from
[MRT18]): for all δ ∈ (0, 1) and h in the VC class H, if the training set size N is larger than
VC-dim(H), we have

P

R(h)− R̂(h) ≤

√√√√8 VC-dim(H) log
(

2eN
VC-dim(H)

)
+ 8 log

( 4
δ

)
N

 ≥ 1− δ. (2.18)

Inequality (2.18) is sometimes called VC generalization bound. So far, we have only considered
VC dimension in terms of classification tasks, but it is also possible to extend the results for
real-valued functions needed for regressions. By following [Bar+19] and the references therein,
we can also consider the concept of VC-dimension for a hypothesis class F of functions from X to
R, namely VC-dim(F) := VC-dim(sign(F)), where sign(F) := {sign(f) : f ∈ F} and the sign
function is defined as sign(x) := 1{x>0}

11. This article describes (nearly-)tight bounds for the
VC dimension of neural networks with piecewise linear activation functions, such as ReLU. The
largest VC dimension VC-dim(M,L) of such types of networks with M parameters (weights and
biases) and L layers is such that there exist two constant c, C > 0 for which

cML log(M/L) ≤ VC-dim(M,L) ≤ CML log(M),

from which we can write VC-dim(M,L) ∈ Θ(ML) (up to a logarithmic factor) using the big Θ
notation. In view of (2.18), we have that this bound is interesting only if we consider a training
set of size N which scales with the number of parameters of the neural network, but this is not
the case for the successful applications that neural networks found in recent years, where the
number of parameters is much larger than N (“overparametrization”). We will say more on this
topic in Sections 2.6 and 2.7.

2.5.1 Kolmogorov-Donoho rate theory

In [Böl+19] Bölcskei, Grohs, Kutyniok and Petersen proposed another measure for complexity
of a function class C, namely the number of bits needed to describe any element of C to within
prescribed accuracy. The theory they developed takes the name of “Kolmogorov-Donoho theory”
and it relates the complexity of C with neural network complexity expressed in terms of connectivity
M and memory requirements for storing both the topology (architecture) of the network and its
quantized weights. Quantization refers to techniques for performing computations and storing
tensors at lower bit-widths than floating point precision. In practice, one may want to convert
float32 variables, which is a floating point format occupying 32 bits in computer memory, to

11This is theoretically grounded on the concept of pseudodimension from Pollard [Pol84].
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int16, integer numbers occupying 16 bits, and perform some or all of the operations on tensors
with integers rather than floating point values. This approach was firstly suggested by Han, Mao
and Delly in 2016 [HMD16] together with other procedures (such as pruning) to decrease the
storage space and computational burdens of deep neural networks, at the cost of modifying the
accuracy of the trained network.

The theory developed in [Böl+19] takes into consideration compact set of functions C in L2(Ω),
named function classes, with Ω ⊂ Rd and is based on functions, named encoders and decoders,
that can map elements of the function class to a string of bits and reconstruct the element of the
class from that string, respectively. For a given ` ∈ N, we denote

E` :=
{
E : C → {0, 1}`

}
the set of binary encoders of C of length ` and

D` :=
{
D : {0, 1}` → L2(Ω)

}
the set of binary decoders of length `. A similar data-compression problem was already faced
by David Donoho in 1992 ([Don93]) when he proposed using a min-max approach that we now
closely replicate: the idea is that of reconstructing the initial signal, in our case a function f ∈ C,
after having processed it through an encoder-decoder pair tolerating a maximum error equal to
ε.12 In this procedure, we would like to take the minimal possible length ` that is valid for every
function inside C.

Definition 2.5.21 (Minmax code length L(ε, C), optimal exponent γ?(C)). Let d ∈ N, Ω ⊂ Rd
and C ⊂ L2(Ω) a compact function class. For any ε > 0, the quantity

L(ε, C) := min
{
` ∈ N : ∃(E,D) ∈ E` ×D`, sup

f∈C
‖f −D(E(f))‖L2(Ω) ≤ ε

}

is called min-max code of length. The optimal exponent γ?(C) is defined as

γ?(C) := sup
{
γ ∈ R : L(ε, C) ∈ O(ε−1/γ), ε→ 0

}
.

The optimal exponent γ?(C) determines the minimum growth rate of L(ε, C) as the error ε goes
to zero and can hence be seen as quantifying the “description complexity” of the function class
C. The larger γ?(C), the smaller growth rate of L(ε, C) and, thus, the smaller the memory
requirements are.

For function approximation in Hilbert spaces, we resort to the important notion of dictionary:

Definition 2.5.22 (Dictionary, best M -term approximation error/rate). Let d ∈ N, Ω ⊂ Rd and
C ⊂ L2(Ω) a compact function class. A dictionary D is a set of functions (ϕi)i∈N ⊂ L2(Ω). Let
f ∈ C and M ∈ N,

ΓDM (f) := inf
If,M⊆N, |If,M |=M,

(ci)i∈If,M

∥∥∥∥∥∥f −
∑

i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

.

12The theory brings the name of Andrej Kolmogorov since the concept of optimal encoding is intimately
connected to Kolmogorov entropy, also known as metric entropy. We refer the interested reader to [Gro15] for
more information.
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We call ΓDM (f) the best M-term approximation error of f in D. The supremal γ > 0 such that

sup
f∈C

ΓDM (f) ∈ O(M−γ), M → +∞,

is denoted by γ?(C,D) and is called the best M -term approximation rate of C in the dictionary
D.

The intuition behind the approximation rate γ?(C,D) is that it should quantify how difficult
it is to approximate the a given function class C using a fixed dictionary D. Note that if the
dictionary D is dense (and countable13) in the class C, then any f ∈ C is approximated with
arbitrary accuracy by one term of D. In this case, we set γ?(C,D) = +∞. Since looking inside
D for the “best” M elements participating in the best approximation is, in general, unfeasible
due to the infinite dimension of D (in fact, we would even need to infinite bits to store the
information for the correct indices), the concept of polynomial-depth search was introduced by
Donoho ([Don93]). The idea is to pick a polynomial π and to look only inside the first π(M)
elements of the dictionary D. In this way, we get the best effective M -term approximation:

Definition 2.5.23 (Effective best M -term approximation rate of C in the dictionary D). Let
d ∈ N, Ω ⊂ Rd, C ⊂ L2(Ω) a compact function class and D = (ϕi)i∈N ⊂ L2(Ω) a dictionary. For
M ∈ N and π polynomial, let

επC,D(M) := sup
f∈C

inf
If,M⊂{1,2,...,π(M)}
|If,M |=M, |ci|≤π(M)

∥∥∥∥∥∥f −
∑

i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

and
γ?,eff(C,D) :=sup

{
γ ≥ 0 : ∃π polynomial s.t. επC,D(M) ∈ O(M−γ),M → +∞

}
.

We refer to γ?,eff(C,D) as the effective best M -term approximation rate of C in the dictionary D.

The boundedness condition imposed on the coefficients ci will be clarified later, when employing
neural networks.

Definition 2.5.24 (Optimal representability by dictionaries). Let d ∈ N and Ω ⊂ Rd. If the
effective best M -term approximation rate of the function class C ⊂ L2(Ω) in the dictionary
D = (ϕi)i∈N ⊂ L2(Ω) satisfies γ?,eff(C,D) = γ?(C) then we say that the function class C is
optimally representable by D.

Examples of optimal representable function classes are

• L2-Sobolev spaces: C = {f : ‖f‖Wm
2
≤ C} with a dictionary made by Fourier or Wavelet

basis. In this case we have γ?(C) = m.

• Lp-Sobolev spaces: C = {f : ‖f‖Wm
p
≤ C} with a dictionary made by Wavelet basis, with

γ?(C) = m.

• Hölder spaces: let Ω ⊂ R bounded, α ∈ (0, 1] and C = Cα(Ω) := {f ∈ C0(Ω) :
supx,y∈Ω

x6=y

|f(x)−f(y)|
|x−y|α } with dictionary made by wavelet basis and γ?(C) = α.

We can now formulate analogous definitions for neural networks.
13As required by Definition 2.5.22
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Definition 2.5.25 (Best M -weight approximation error/rate). Let d ∈ N, Ω ⊂ Rd, C ⊂ L2(Ω)
a compact function class, for f ∈ C and M ∈ N

ΓNM (f) := inf
Φ∈Nd,1
M(Φ)≤M

‖f − Φ‖L2(Ω) .

We call ΓNM (f) the best M -weight approximation error of f . The supremal γ > 0 such that

sup
f∈C

ΓNM (f) ∈ O(M−γ), M → +∞,

is denoted by γ?N (C) and is called the best M -weight approximation rate of C by the neural
networks.

Note that the infimum in Definition 2.5.25 is taken over all possible networks, independently of
architectures, that have input dimension d, output dimension 1, at most M non-zero weights, but
variable depth L. The restrictions we imposed above in Definition 2.5.23 to reach the notion of
effective approximation are now translated in neural networks whose depth and whose coefficients
are polynomially bounded. From Proposition 2.5.3, we notice that depth scales polynomially in
log(ε−1). Since we are interested in approximation error decay according to ε ∼M(Φ)−γ (from
Definition 2.5.25), we can try limiting L(Φ) with a polynomial in log(M(Φ)). Imposing such
restrictions makes it convenient the following definition:

Definition 2.5.26 (N π
M,d,d′). For M , d, d′ ∈ N, and π a polynomial, we define

N π
M,d,d′ := {Φ ∈ Nd,d′ : M(Φ) ≤M, L(Φ) ≤ π(logM), B(Φ) ≤ π(M)}.

Next, we formalize the concept of effective best M -weight approximation rate subject to polylog-
arithmic depth and polynomial weight growth:

Definition 2.5.27 (Effective best M -weight approximation rate of C with neural networks). Let
d ∈ N, Ω ⊂ Rd, C ⊂ L2(Ω) a compact function class. For M ∈ N and π polynomial, let

επN (M) := sup
f∈C

inf
Φ∈Nπ

M,d,1

‖f − Φ‖L2(Ω)

and
γ?,eff
N (C) := sup

{
γ ≥ 0 : ∃π polynomial s.t. επN (M) ∈ O(M−γ),M → +∞

}
.

We refer to γ?,eff
N (C) as the effective best M -weight approximation rate of C.

We have now our first important result:

Theorem 2.5.28. Let d ∈ N, Ω ⊂ Rd bounded, C ⊂ L2(Ω). Then we have

γ?,eff
N (C) ≤ γ?(C),

that is the optimal exponent γ?(C) is an upper bound for the effective best M -weight approximation
rate of C.

Consequently, we will say that a function class C is optimally representable by neural networks if
γ?,eff
N (C) = γ?(C).

It is now natural to ask whether neural networks can actually optimally represent dictionaries
for which we already know the approximation properties.
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Chapter 2 - Neural Networks

Definition 2.5.29 (Effectively representable dictionaries). Let d ∈ N, Ω ⊂ Rd, D = (ϕi)i∈N ⊂
L2(Ω) be a dictionary. We call D effectively representable by neural networks, if there exists a
bivariate polynomial π such that for all i ∈ N, ε ∈ (0, 1

2 ), there is a neural network Φi,ε ∈ Nd,1
for which M(Φi,ε) ≤ π(log ε−1, log i), B(Φi,ε) ≤ π(ε−1, i) and ‖ϕi − Φi,ε‖L2(Ω) ≤ ε.

The conditions listed in Definition 2.5.29 are needed to control the connectivity and the values of
the weights are also similar to those we imposed on the elements of dictionaries and are essential
to get polylogarithmic boundedness. The upper bound on connectivity M(Φ) given by log(i) is
responsible for the polynomial depth search constraint of the best M -term approximation in D;
while being interested in an error ε = M−γ translates in the condition with log(ε−1). Similarly,
weights of Φi,ε are guaranteed to be polynomial in M by the other restriction B(Φi,ε) ≤ π(ε−1, i).
Eventually, we can conclude with the following theorem:

Theorem 2.5.30. Let d ∈ N, Ω ⊂ Rd bounded, C ⊂ L2(Ω) be a function class and D =
(ϕi)i∈N ⊂ L2(Ω) be a dictionary that is effectively representable by neural networks. Then, for
every 0 < γ < γ?,eff(C,D), there is a polynomial π and a map Ψ : (0, 1

2 )×C → Nd,1 such that for
all f ∈ C and ε ∈ (0, 1/2) the network Ψ(ε, f) satisfies the following conditions:

1. Ψ(ε, f) has quantized weights,

2. ‖f −Ψ(ε, f)‖L2(Ω) ≤ ε,

3. L(Ψ(ε, f)) ≤ π(log ε−1), B(Ψ(ε, f)) ≤ π(ε−1) and M(Ψ(ε, f)) ∈ O(ε−1/γ) for ε→ 0.

Moreover, it holds
γ?,eff
N (C) ≥ γ?,eff(C,D).

Theorem 2.5.30 allows to conclude. If D optimally represents the function class C in the sense
of Definition 2.5.24, i.e. γ?,eff(C,D) = γ?(C), and if it is, in addition, effectively representable by
neural networks as described in Definition 2.5.29, then, thanks to Theorem 2.5.28, which says
that γ?,eff

N (C) ≤ γ?(C) we have

γ?,eff(C,D) ≤ γ?,eff
N (C) ≤ γ?(C) = γ?,eff(C,D)

and hence C is optimally representable by neural networks (γ?,eff
N (C) = γ?(C)).

As proved in [Böl+19], all affine dictionaries, which consists of dilations and translations applied
to generator functions, are effectively representable by neural networks and, thus, any function
class that is optimally represented by an arbitrary affine system is optimally represented by
neural networks. Among the others, wavelets are a special case of affine dictionaries. The same
holds true for Gabor dictionaries, generated by translations in time and frequency (through a
modulation operator f(t) 7→ e2πi〈·,t〉f(t)) of a generator function.

2.5.2 A particular architecture: Residual Networks

Neural networks are an extremely flexible Machine Learning methodology, in the sense that
they can adapt to various tasks, even completely different among them. Part of their success is
certainly due to the different structure and the possibility of modifying layers quite freely. We
will not study in this work recurrent neural networks or convolutional neural networks, but it
might be worth spending time on a particular architecture of feedforward networks which turned
out to be really successful, namely residual networks or ResNet for short. This architecture has
been proposed initially in [He+16] in order to explore performance of very deep models (up to

46



2.5 The importance of depth

hundreds layers), without surrendering to training degradation accuracy when stacking more and
more layers. For this reason, it has been applied successfully in a number of applications, for
example in [He+16; Hua+16].
The main idea is the introduction of residual blocks, which are heaps of fully connected layers plus
an “external” layer which is skipping all of them and joining, through summation, the output of
the last layer belonging to the heap. The goal of this external layer is move forward the input of
the residual block without any transformation. From a mathematical point of view, it corresponds
to an identity layer. For this reason, the remaining part, denoted with F in the original reference,
which is then actively trained, is called residual (and F residual map). The output of the entire
block is then summarized by the following:

H(x) = F(x) + x.

To the extreme, if an identity mapping were optimal, it would be easier to push the residual to
zero than to fit an identity mapping by a stack of nonlinear layers14. One example of residual
map is F(x) = W2σ(W1x), where the residual is made of two layers, denoted by the weights W1
and W2 and where σ is the non-linear activation function. But in principle, one can make the
structure of F as complex as desired. Note that adding a skip connection (the identity) does not
impact the computational aspect: we are not introducing new weights that should be trained,
but simply new matrix-vector operations that are supposed to be rather cheap for a computer.

Most importantly, ResNets have shown their utility in solving the vanishing gradient
problem, a phenomenon that is quite common when training very deep neural networks using
gradient-based methods, such as stochastic gradient descent. This problem is particularly
evident with activation functions such as sigmoid or hyperbolic tangent, that are flattening away
from the origin and, hence, having a gradient that is basically null in these regions. Since the
update of layer’s weights is proportional to the partial derivative of the error committed by
comparing the prediction and the label, having a vanishing gradient has the consequence that
weight’s update becomes more and more difficult since the weights effectively do not evolve with
additional iterations. Skip connections of ResNets allow gradient information to pass through
the layers, helping maintain signal propagation even in deeper networks. This interpretation is
also shared and studied by Veit and coauthors in [VWB16], where they propose to see ResNets
as a collection of several paths with different length. In particular, they bring arguments to
explain that the success of such networks in avoiding the vanishing gradient problem is due to
the creation of short paths that can efficiently spread the information.

Finally, ResNets are interesting also for their link to neural ODEs as introduced in [Che+18].
Residual networks can be summarized by the following transformation (for hidden layers):

ht+1 = ht + F(ht, wt), for t = 0, . . . , T − 1,

where h0 = h(0) can be seen as the input layer and hT the output layer, where we made explicit
the dependence of the residual map F on the weights wt of the residual block. This iterative
update can be seen as an Euler discretization scheme of a continuous counterpart. If we stack
more and more layers and take the limit, then we can consider ResNets “converging” to ODEs
of the type

dh(t)
dt

= G(h(t), w, t),

14If the dimension of the input x and output H(x) do not match, it is possible to add a matrix of weights
responsible for projection.
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for an appropriate function G derived from F . This has triggered new ways of studying theoretical
properties and characteristics of neural networks. See, for example, the already cited [Che+18],
but also [CLT15] and [Coh+21] and references therein.

2.6 Attainment of global minima

One of the most striking characteristics of neural networks, which is still not fully understood,
but opened doors for their success, is their ability to generalize very well on unseen data despite
being trained only on a finite sample set. This phenomenon can be verified very easily, even with
shallow networks, if we try to fit noisy observations in a typical regression task, which usually
implies choosing mean-squared error as loss function and employing (stochastic) gradient descent
in combination with backpropagation to optimize the weights of the network. Since we know
that shallow networks are universal approximators (cf. Theorem 2.4.6), we might expect that
they overfit, as described in Section 2.1.2, training data quite easily, in particular if the number
of weights is larger than the number of training points (which is often the case), or at least, we
might expect them to generalize arbitrarily “bad” on points in unexplored regions. An essential
step forward in this direction was made by C. Zhang and coauthors ([Zha+16]) by showing that
neural networks can easily fit random labelled data, reaching zero training error. On the other
hand, test error is then simply by random guessing since there is no correlation between training
and test labels. Consequently, neural networks (with enough parameters) have the ability to fully
memorize the entire training dataset. Despite these surprising facts, when we train a network
for a finite amount of time (i.e. for finite epochs), we see from empirical evidence that no overfit
occurs. Quite stunningly, the solution that is reached in this way is more desirable for standard
applications than the solution obtained by a perfect minimization of the loss function (more on
this in Section 2.7.1).

It has been shown in recent works that Neural Networks trained with stochastic gradient
descent (SGD) can achieve global minima for a given loss function in polynomial time and, hence,
minimize the training error, as already reported in ([Zha+16]). This was shown, for example, by
Allen-Zhu and coauthors in [ALS19a], and, even if similar results were reached at the same time
by other researchers ([Du+19]), this is still a very active research area. To show the results the
only non-technical assumptions are made consist in:

• non-degeneracy of the input data, that is they assume that there exists δ > 0 such that the
Euclidean norm ‖xi − xj‖2 ≥ δ for all i 6= j indexing the elements of the dataset;

• overparametrization, which is equivalent to say that the number of parameters composing
the network is (much) larger than the amount of data available for training;

• He weight initialization [He+15], that is a Gaussian random initialization of the weights of
the network at initial time, hence, if we denote with m the width of hidden layers and s
the dimension of the output layer, the entries of the matrices will be sampled as N (0, 2/m)
for input and hidden layers and as N (0, 1/s) for the output layer.

Mathematically, they derived that the dependence for the width W for a network with L layers
is polynomial in L, δ−1 and n, where N is the size of the dataset: to have an ε-error on the
mean squared error (the mean of the `2-norm, usual choice for regression problems) a sufficient
condition is W ≥ poly(L, δ−1, N) in at most T = poly(L, δ−1, N) log ε−1 iterations. Let us be
more precise here. We consider a feedforward neural network Φ : Rd → Rs with L2-loss function
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2.6 Attainment of global minima

L(y,Φ(x;w)) = 1
2‖y − Φ(x;w)‖22, where y ∈ Rs, x ∈ Rd and w denotes the parameters of Φ.

Since we are optimizing over w, we want to solve the problem

inf
w
F (w) :=

N∑
i=1

L(yi,Φ(xi;w)) (2.19)

for (xi, yi) in the training dataset Dn := {(xi, yi) : i = 1, . . . , N}.

Theorem 2.6.1 (Global convergence for GD). Suppose that the assumptions previously stated
hold true and that m ≥ Ω(poly(N,L, δ−1) · s). Starting from He random initialization, with
probability at least 1− e−Ω(log2 m), gradient descent with learning rate γ = Θ( sδ

poly(N,L)·m ) finds a
point F (w) ≤ ε in T = Θ( poly(N,L)

δ2 · log ε−1) iterations.

Theorem 2.6.2 (Global convergence for SGD). Suppose that the assumptions previously stated
hold true, that mini-batches have size b ∈ {1, . . . , N} and that m ≥ Ω( poly(N,L,δ−1)·s

b ). Starting
from He random initialization, with probability at least 1−e−Ω(log2 m), stochastic gradient descent
with learning rate γ = Θ( bsδ

poly(N,L)·m log2 m
) finds a point F (w) ≤ ε in T = Θ( poly(N,L)·log2 m

δ2·b ·
log ε−1) iterations.

Remark 2.6.3. In both theorems, the result is independent of the input dimension d. Moreover,
the convergence rate is linear, since the error ε drops exponentially fast with T .

The result holds with high probability for training with gradient descent (GD) or stochastic
gradient descent (SGD) for different architectures, such as deep feedforward networks (DNNs),
Convolutional Neural Networks (CNNs), Residual Neural Networks (ReNtes) and Recurrent
Neural Networks (RNNs) [ALS19b] and for different (possibly non-convex) loss functions, among
which cross-entropy. Moreover, all results are obtained for ReLU networks, thus applying ReLU
activation to each neuron, which is well-known for having discontinuous first derivative. This last
issue is tackled with what is called in the paper “semi-smoothness”:

Lemma 2.6.4. Let us denote with w all the weights of the network, with W those associated
to hidden layers and with W (0) the initial weights (randomly chosen). With probability at least
1 − e−Ω(m/poly(L,logm)) over the randomness of the weights w, we have that for every W,W ′ ∈
R(m×m)L with

‖W −W (0)‖2 ≤
1

poly(L, logm) and ‖W ′‖2 ≤
1

poly(L, logm)

we have that

F (W +W ′) ≤F (W ) + 〈∇F (W ),W ′〉+ poly(L)
√
N m logm√
s

(F (W ))
1
2 ‖W ′‖2

+O
(
NL2m

s

)
‖W ′‖2,

where ∇F (W ) = (∇W1F (W ), . . . ,∇WL
F (W )).

With Lemma 2.6.4 it is possible to circumvent the usual assumption of Lipschitz smoothness,
which is usually required in classical optimization theory (see also Section 2.2), that requires the
the target function being at least twice differentiable.
Another interesting result which is worth mentioning is the following:
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Theorem 2.6.5. Let us denote with w all the weights of the network, with W those associated to
hidden layers and with W (0) the initial weights (randomly chosen). With probability at least 1−
e−Ω(m/poly(N,L,δ−1)) over the randomness of the weights w, we have that for every ` ∈ {1, . . . , L},
every i ∈ {1, . . . , N} and every W such that ‖W −W (0)‖2 ≤ 1

poly(N,L,δ−1) ,

• ‖∇W`
Fi(W )‖2F ≤ O

(
Fi(W )
s ×m

)
and ‖∇W`

F (W )‖2F ≤ O
(
F (W )
s ×mN

)
,

• ‖∇W`
F (W )‖2F ≥ Ω

(
max1≤i≤N Fi(W )

sN/δ ×m
)
,

from which

‖∇F (W )‖2F ≤ O
(
F (W )× LNm

s

)
and ‖∇F (W )‖2F ≥ Ω

(
F (W )× δm

sN2

)
.

The two statements of Theorem 2.6.5 say that when the objective function is small, then also the
gradient will be, and that when it is large, also the gradient will be, provided that we are quite
close to the random initialization W (0). This implies that we do not have saddle points and we
may hope to find an actual global minimum.

2.7 Implicit Bias or Regularization

We just saw in Section 2.6 that neural networks can actually learn to interpolate the entire
training dataset and indeed are also able to attain global minima, under some mild assumptions,
from a theoretical point of view. Despite “learning” the entire training set, researchers found out
that neural networks are not overfitting, with the consequence of a poor generalization or poor
accuracy on unseen data. This observation has been made clear by Belkin and coauthors in 2019
[Bel+19] showing empirical evidence of a phenomenon they call double-descent that is common to
many learning algorithms, such as neural networks and also linear models. In the latter case, this
phenomenon was actually proven in [Has+22] by Hastie and coauthors. This is clearly visible as
an extension of the standard U-shaped curve that is normally used to represent the performance
of a fixed model as a function of its expressivity/capacity. This was actually the traditional
landscape of the classical machine learning theory, depicted in plot A of Figure 2.3). The x-axis
represents the capacity of a hypothesis classH, while the y-axis is the risk: the dashed line denotes
training risk and the solid line denotes the test or generalization risk. The goal was to find a
model whose capacity could minimize the test error, reaching equilibrium between underfitting
and overfitting. This is exactly the same setting of the bias-variance tradeoff described in Remark
2.1.8. The optimal point, in this framework, is usually realized with low training and test error,
the former being generally lower then the latter (but still strictly positive). On the other hand,
plot B in Figure 2.3 represents the new paradigm for models with increased capacity (e.g. by
increasing the number of neurons in a network). As we can see, the test error is decreasing in
two different regions, from which the name double descent. The novelty is represented by the
so-called interpolation threshold, a point after which the model has completely memorized the
training set and the training error is null; for this reason, this new region is only accessible with
overparametrized models. Quite surprisingly, the authors of [Bel+19] found out that the test
error decreases again while further increasing the capacity, reaching lower risk levels than in
the standard regime. Moreover, at the same time, the training error is kept constant at zero:
overparametrized model can perfectly fit the training dataset and still generalize well.

50



2.7 Implicit Bias or Regularization

Figure 2.3: Double descent, figure from [Bel+19]. On the left, plot A, represented the situation as was considered
classically. The goal is to find a model inside the hypothesis class H with good balance between training and
test error (“sweet spot”), to avoid underfitting and overfitting. On the right, plot B, is showing double descent:
overparametrized models can reach lower test error while keeping training error to zero.

Remark 2.7.1. At this point, given the phenomenon of double descent, it might become ques-
tionable whether explicit regularization is useful or needed when employing neural networks.
After all, it seems that having overparametrization with implicit regularization can provide good
performance. At the moment, the issue is still open. Nevertheless, it could be useful to add an
explicit regularization, such as weight decay, if we have prior knowledge on the final solution or if
we want to impose personal beliefs on the parameters. Such connections between regularization
and priors for neural networks have been studied in many works, starting from [Gra11]. For more
information and an overview of the connection between regularization and priors, we remind the
reader to [Vla+19].

The crucial assumption for this newly observed phenomenon is over-parametrization. This has
an important consequence that we have not analyzed so far: when the number of parameters of
the network is larger then the number of points of the dataset, then the minimizer is not unique.
Clearly, the value of the loss function is the same for all global minima, but one should also think
about which solution is chosen out of all the solutions that minimize the loss (e.g. a solution
that minimizes a specific functional among all the global minimizers of the original loss). In
particular, gradient descent and stochastic gradient descent have been empirically shown to lead
the training of neural networks towards “good” solution, that is with low generalization error, as
it is the case for overparametrized models. Hence, it has become common in the literature to
read that (stochastic) gradient descent is biased towards good global minima, and that is why
this phenomenon took the name of implicit bias or implicit regularization.
Definition 2.7.2 (Implicit regularization (for deterministic algorithms)). For the minimization
Problem (2.2), consider a deterministic algorithm A with output in Θ. We say that algorithm A
solves Problem (2.2) and has implicit regularization G : D×Θ→ R if

A(Dn) ∈ argmin
θ′ :F (θ′)=infθ F (θ)

G(Dn, θ′).

While valid and complete explanations are still missing and are object of ongoing research for
deep neural networks, it is possible to give an idea of this kind of regularization for simpler cases.
Among the others, the problem was studied by Gunasekar and coauthors in 2018 [Gun+18] for
the linear case, with different algorithms and for different loss functions, depending on the task,
whether classification or regression under the assumptions that the number of features of the
input vectors is larger than the number of samples (overparametrization regime) and the fact that
the infimum for Problem (2.2) is actually a minimum (“observations are realizable” in machine
learning jargon).
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Theorem 2.7.3. For the underdetermined, realizable linear system

min
X∈X

1
2‖AX − Y ‖

2
2

the gradient descent algorithm (GD) for x0 ∈ X = Rd, appropriate learning rate η and infinite
iterations has implicit regularization G(Dn, x) = ‖x− x0‖2.

Corollary 2.7.4. Let us denote with G := {X ∈ X : E[L(f(X;A(Dn)), Y )] = 0}. If the loss L
is convex and has a unique minimum, then the iterates xt of GD converge to the global minimum
that is closest to initialization x0 in the `2-distance:

xt −→
t→+∞

argmin
x∈G

‖x− x0‖2.

Remark 2.7.5. The same results hold true for stochastic gradient descent. For this and other
conclusions, we refer the interested reader to [RH19].

In order to approach the same problem for deep neural networks, people started studying
another similar issue, that is matrix completion for neural networks, also known as matrix fac-
torization. Matrix completion is the task of filling in the missing entries of a partially observed
matrix. Given a matrix W ?, the unseen entries are normally randomly selected among its ele-
ments. Without any restrictions on the number of degrees of freedom in the matrix W ?, this
problem is underdetermined since the hidden entries could be assigned arbitrary values. Thus we
require some assumption on the matrix to create a well-posed problem, such as assuming it has
maximal determinant, is positive definite, or is low-rank. In this sense, matrix completion can be
viewed as a prediction problem. The natural approach to solve this problem with shallow neural
networks consists of using the identity function as activation (which is equivalent to having no
activation function), thus creating a linear network, and seeing the task as a matrix factorization:
W ? = W2W1, where Wi are the weight-matrices associated to the layers.

Definition 2.7.6 (Deep matrix factorization). Deep matrix factorization consists of parametriz-
ing a matrix W ? as a product of L matrices:

W ? = WLWL−1 · · ·W1

in such a way that W ? can be seen as the product of all weight matrices of a depth-L linear neural
network (i.e. a neural network with no activation functions).

If we assume dimensions di ∈ N for i = 1, . . . , L for deep matrix factorization and define the set
of missing observations as Ξ ⊂ {1, 2, . . . , d} × {1, 2, . . . , d′}, we can write the loss function as

L : Rd×d
′
→ R≥0, WL:1 7→

∑
i,j∈Ξ

(
(WL:1)i,j −W ?

i,j

)2
,

where WL:1 = WLWL−1 · · ·W1, Wi ∈ Rdi×di−1 with dL = d and d′ = d0. Note that using
many matrices - many factors - amounts to minimizing an overparametrized target function. The
approach entailing deep networks has been tried by Arora and coauthors in 2019 [Aro+19] where it
was shown that deeper matrix factorizations (having larger L) yield more accurate recovery when
W ? is low-rank and conjectured that gradient descent solutions provide an implicit regularization
that cannot be described as minimization of mathematical norms (or quasi-norms). This has
been finally proved in 2020 by Raznin and Cohen [RC20]. They also suggest that minimization
of ranks, rather than norms, might offer more insight in the problem.
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Similar negative results were found by Vardi and Shamir in 2021 [VS21], although they focused
their activity on ReLU shallow networks again with mean squared loss function minimized with
GD with infinitesimal step size (i.e. gradient flow, see Remark 2.2.16). We will denote with w∞
the network weights solution to the minimization problem after convergence of GD algorithm.
Perhaps surprisingly, in their quest for the function G in the sense of Definition 2.7.2, they show
that already for extremely simple neural networks involving a single ReLU neuron or one thin
hidden layer, implicit regularization cannot be explicitly expressed as a function of the model
parameters.

Theorem 2.7.7 (Single neuron). Consider gradient flow (see Remark 2.2.16) starting from
w0 = 0 ∈ R3 with mean squared error F (w) :=

∑3
i=1(ReLU(〈xi, w〉)− y)2 = (ReLU(X w)− y)2

with xi, y ∈ R3 and X ∈ R3×3. Let G be the implicit regularizer in the sense of Definition 2.7.2,
that is such that for every input (X, y) where GD converges to w∞ with F (w∞) = 0, we have
w∞ ∈ argminwG(w) such that F (w∞) = 0. Then G is constant on R3 \ {0}.

Remark 2.7.8. Theorem 2.7.7 implies that implicit regularization is trivial or, however, not feasible,
for single neuron networks. The result can be generalized to dimensions d larger than 3.

Despite this negative result, in the same setting, we have that G can be approximated, within a
multiplicative factor of 2, by a `2-norm:

Theorem 2.7.9. Consider gradient descent applied to a ReLU single neuron on the objective
given by mean square error, where σ : R → R is a monotonically non-decreasing activation
function (e.g. ReLU). Assume that w∞ exists and F (w∞) = 0. Let w? ∈ argminw ‖w − w0‖2
such that F (w) = 0. Then, ‖w∞ − w0‖2 ≤ 2‖w? − w0‖2.

Similar results are valid, under mild assumptions, also for shallow neural networks. For such
networks an important implicit bias property is that gradient descent (with infinitesimal step size)
enforces the differences between square norms across different layers to remain invariant. But if
one analyzes implicit bias inside the region of weights having such property, then the authors in
[VS21] show that the implicit regularizer G is again constant on it.

2.7.1 Early Stopping

Even if we have theoretical guarantee that global minima can be attained, this is not what is
done in practice, when training is artificially stopped because of time constraints. Standard
criteria for stopping are the achievement of a fixed number of epochs or simply because the loss
computed on a validation/test set does not improve any longer. The last criterion is known as
early stopping and its main purpose is that of avoiding overfitting by interrupting the training
before the maximal amount of (stochastic) gradient descent iterations has been reached. While
mainly used to limit the time of training, early stopping can be useful since it is not easy to
distinguish the double-descent phenomenon for neural networks. This observation, already
made in [Bel+19], has its main causes in the fact that networks heavily rely on stochasticity,
in particular, stochastic gradient descent is quite sensible to random initialization, and on a
loss function which is far from being convex. For this reason, to an increase in the number of
parameters does not always immediately correspond a decrease in the training error.
Another standard regularization technique that has been widely used in machine learning is
weight decay, which consists in adding a penalization in terms of a norm of the weights (e.g.
`2-norm) to the loss function.
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Chapter 2 - Neural Networks

The effect of early stopping as a regularizer in connection with other forms of regularization
was studied by Heiss and coauthors [HTW19] for a special kind of neural networks. In the paper,
the authors investigate which effects weight decay and early stopping have on the approximation
procedure, showing that we are actually solving a specific problem, which also includes regulariz-
ation, in the associated function space. The central object of study is “wide ReLU randomized
shallow NN” (wR-RSN):

Definition 2.7.10 (Randomized shallow neural networks). Let (Ω,Σ,P) be a fixed probability
space and let the activation function σ : R→ R be Lipschitz continuous and non-constant. Then
a randomized shallow neural network (RSN) is defined as RN : Rd → R such that

RNw,ω(x) :=
n∑
k=1

wkσ

 d∑
j=1

vk,j(ω)xj + bk(ω)

 ∀ω ∈ Ω,∀x ∈ Rd,

where n ∈ N is the number of neurons, d ∈ N the input dimension, (vk)nk=1 : (Ω,Σ) → Rd and
(bk)nk=1 : (Ω,Σ) → R form the weight matrix and the bias vector, sampled as i.i.d. random
variables. The only trainable weights are (wk)nk=1.

The theory developed will focus on neural networks that have only ReLU activation functions,
for which only the output layer (without activation functions) is trained, while the input layer’s
weights (vk,j and bk) are kept constant during training. The adjective wide stands for the fact
that the results hold in the limit for the number of neurons n in the hidden layer going to infinity.
The training loss function L is the mean squared error applied to a dataset (xi, yi) ∈ Rd × R of
N tuples.
Remark 2.7.11. Since the optimization problem is convex in the last-layer weighs w, the gradient
descent actually converges to a global minimum. This actually translates in the fact that all
observations are realizable:

P
(

lim
t→∞

RNwt,ω(xi) = yi ∀i = 1, . . . , N
)

= 1.

For the first result we would like to recall here, we need the following definitions.

Definition 2.7.12 (Ridge regularized RSN). Let RNw,ω be a randomized shallow network as
introduced in Definition 2.7.10, L a given loss functional and λ > 0. The Ridge regularized RSN
is defined as

RN ∗,n,λω = RNw∗,n,λ(ω),ω

where w∗,n,λ(ω) ∈ argminw∈Rn LRNw,ω + λ‖w‖22 for all ω ∈ Ω.

Definition 2.7.13 (Weighted regression spline & spline interpolation). Let λ > 0 and xi ∈ R
for all i = 1, . . . , N . The smoothing regression spline is defined as f∗,λ : R→ R such that

f∗,λg ∈ argmin
f∈C2(R)

(
N∑
i=1

(f(xi)− yi)2 + λ g(0)
∫

supp g

(f ′′(x))2

g(x) dx

)
,

for g : R→ R≥0. For constant function g (and other moderate conditions), we recover the “usual”
natural cubic splines that are common in the literature. With spline interpolation f∗,0+ we mean
the function f∗,0+ : R→ R obtained as

f∗,0+ := lim
λ→0+

f∗,λ ∈ argmin
f∈C2(R),

f(xi)=yi ∀i=1,...,N

g(0)
∫

supp g

(f ′′(x))2

g(x) dx.
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2.7 Implicit Bias or Regularization

In [HTW19], it is shown that over compact sets K ⊂ R the limit in probability between Ridge
regularized RSN and weighted adapted splines, penalizing second order derivative, in the Sobolev
metric dW 1,∞(K), whose associated norm is ‖f‖W 1,∞(K) := max{supx∈K |f(x)|, supx∈K |f ′(x)|},
is equal to 0. Quite interestingly, the weight-function g is associated to the distribution of the
initial random initialization of the weights in the RSN. For this (specific) case, this statement
highlights that if a Ridge-type regression is taking place during training, then this has evident
consequences on the function spaces approximated by neural networks.

In the same context, stopping the training before reaching global minima has also analogous
effects on the function space. First of all, let us define the minimum norm RSN:

Definition 2.7.14 (Minimum norm RSN). Using the notation from Definition 2.7.10, the min-
imum norm RSN is defined as RN ∗,n,0+ := RNw∗,n,0+ with weights

w∗,n,0+(ω) := lim
λ→0+

w∗,n,λ(ω) ∀ω ∈ Ω.

For such RSN the input provided to the output layer is given by

Xi,k(ω) = σ

 d∑
j=1

vk,j(ω)xi,j + bk(ω)

 ∀ω ∈ Ω,

where vk,(ω) and bk(ω) were introduced in Definition 2.7.10, X(ω) ∈ RN×n for any ω ∈ Ω and
xi,j denotes the jth component of the ith (training) sample xi. Then, it can be shown (Lemma
3.18 in [HTW19]) that time-T weights15 wnT (ω) are equal to

wnT (ω) = w∗,n,0+(ω)
(
1− exp{−2TX>(ω)X(ω)}

)
, ∀ω ∈ Ω,

if the gradient flow is initialized at zero. So when we stop training before convergence, we
are actually introducing a Ridge-type regularization for our problem. As shown in the paper,
theoretical thoughts and empirical experiments suggest that the solution obtained from running
gradient flow up to time T is extremely close to the the solution of the ridge regularized problem
with λ = 1/(2T (e− 1). It is also clear that for T → +∞ we have limT→+∞ wnT (ω) = w∗,n,0+(ω)
for all ω ∈ Ω, that is the time-T solution weights converge to the minimum norm solution weights.
The regularizer effect introduced by early stopping also enters the phenomenon of what is called
implicit regularization.

15Time-T weights are associated with τ = T/γ steps of the Euler discretization scheme which is used in gradient
descent approximating the gradient flow (Remark 2.2.16), where γ > 0 is the learning step size. Results in the
paper are generally shown for gradient flow, but gradient descent with sufficiently small learning rate can be made
arbitrarily close to it.
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Chapter 3

Consistent Recalibration Models
for Equities

The idea that we are going to pursue in the following takes a cue from the same codebook
exploited in [KK15], but we develop it around the framework of affine models, which provides
great flexibility and closed form formulas for derivatives’ pricing. The same approach has been
clearly outlined for the first time by Anja Richter and Josef Teichmann in 2017 [RT17] for discrete
time, while we will consider the more general continuous time settings. This chapter is based on
[GT21].

The key idea which allows to build a bridge between the affine world and the HJM philosophy
treated so far in Chapter 1 is represented by the fact that the solution to Riccati ODEs stemming
from the affine model are equal, as we will see, to the (time-)integral of the codebook. From
this very simple intuition, which comes from affine process’ theory, we can then put into motion
the codebook as already done by Kallsen and Krühner. Then, at every fixed point in time, we
will be able to originate a tangent affine model (introduced in Definition 1.1.1) which is free of
arbitrage, ruling out static arbitrage. At the same time, by requiring appropriate restrictions on
the drift, analogously to the HJM drift condition, and on the short end of the codebook, as the
spot condition, we will get rid of dynamic arbitrage.
Once these prerequisites are dealt with, we can shed light on the advantages of this approach.

• In first place, pricing is at hand thanks to Fourier transform techniques, which are applicable
in the context of affine processes.

• In second place, calibration is also quite easily provided: in order to keep constant para-
meters, many market models are by their very definition high dimensional, leading to very
delicate (or unstable) calibration procedures. We will relax this hypothesis by considering
some of the parameters of the model as state variables, thus authorizing their evolution in
time. Nonetheless, this will not break the dynamic constraints we are bound to respect:
such parameters’ changes will be balanced by a suitable Hull-White extension, without
affecting the marginal distributions of the other (original) state variables. For this reason,
this kind of model has been called consistent recalibration model (see also Definition 1.1.2).
In a few words, the recalibration procedure will only contribute to changing model states
(which are indeed expected to evolve), without giving the possibility for any arbitrage and
without leaving the selected model.
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• In third place and finally, pricing and calibration are made easy because in this way we are
boiling down the handling of an unwieldy infinite dimensional object, that is the equation
governing the dynamics, to a local finite dimensional one.

That is why we think this approach should deliver a considerable improvement in equity market
models.

As just stated, calibration is one of the most appealing feature of this approach. But what are
we actually meaning with it? In general, calibration consists in finding the “best” model among
a larger set, a pool, in the sense to be able to reproduce the variables observed in reality. If we
had to deal with data in the form of historical series, we would see this problem as a statistical
inference problem, trying to find the model, defined by its parameters, that matches the observed
data, such as different price time series, under the physical measure (usually denoted by P);
while if we deal with current market data, we are interested in replicating the current observed
data, such as price or implied volatility surfaces, under an equivalent (local) martingale measure
(usually denoted by Q). From what we have already said in the previous sections, it is clear that
we are considering the second formulation, which is mathematically translated in finding the
solution to an inverse problem.

It is the goal of this chapter to show how calibration can take place benefiting from the
CNKK approach in the setting of Consistent Recalibration Models, i.e. by considering tangent
affine models. Basically speaking, this amounts to storing the information of a non-linear drift
operator in a neural network in an optimal way, when the time evolution is locally mimicking
a dynamically changing affine model. An important article that is dealing with similar issues
is [CMN17]. In this work, the authors propose an algorithm based on Monte Carlo simulations
to generate implied volatility samples that are consistent with present and past observations
and then compare this method with others to tackle the problem of minimal-variance portfolio
choice. The steps required for the estimation procedure, both static, to avoid static arbitrage, and
dynamic, to avoid dynamic arbitrage, are quite involved and demand some tricks or simplifications.
In our view, the method we present here is a simpler way to consistently construct term structure
dynamics, which do not come from finite dimensional realizations.

Actually this information, which is stored in the drift, corresponds to solving an inverse
problem or a calibration problem, see [CKT20] and the references therein for a general background
of this problem: more precisely, it is the inversion of the above mentioned pricing operators given
the current market state of the underlyings’ price and the term structure of derivatives’ prices.
Let us outline this in case of the Lévy codebook: there the inverse problem corresponds to
calculating the time-dependent Lévy triplet L0 given the price of the underlying S0 and the term
structure of derivatives’ prices. Even though the map from model characteristics to prices is
usually smooth, it is due to smoothing properties, often hard to invert: existence, uniqueness
and stability issues (in the sense of Jacques Hadamard - see Definition 1.4.1) appear. Machine
learning technology and, in particular, deep learning provide one possible way to fix these issues,
which otherwise require sophisticated regularization techniques, by implicit regularization. A
non-exhaustive list of these methods and theoretical considerations are in Section 2.7. Among
the others, one relevant example is early stopping, see e.g. [HTW19].
In other words: learning the map from derivatives’ prices (given the current price of the underlying)
to model characteristics L0 and storing the information in a neural network provides an accurate
map satisfying Hadamard’s requirements. We shall pursue this approach not in the originally
proposed way by solving a supervised learning problem, see, e.g. [Her16], but rather by storing
first the information of the pricing operator in a neural network and then inverting this network,
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compare here, e.g. [HMT21].
In the very same years, other applications of ML to the same problem were developed. One of
these is presented in [Wie+19], where Wiese and co-authors make use of a Generative Adversarial
Networks (GANs), see [GBC16] and the references therein, to learn to simulate time series of the
codebook introduced by Wissel in [Wis07]. Thanks to the particular choice of the codebook, it is
relatively easy to learn new plausible prices that satisfy static arbitrage constraints on discrete
grids: as we recalled above in Section 1.4, non-negativity of the local volatility process is the only
requirement in this case. On the other hand, the work we present here does not try to get rid of
static arbitrage possibilities alone, but of dynamic arbitrage as well, thus answering in a more
complete and satisfactory way to the need of a realistic equity option market simulator, which
was the raison d’être of [Wie+19]. In addition, our setting deals with continuous time and strike
intervals.

One could also view our current model as an unusually parameterized neural stochastic
differential equation (NSDE) model, see, e.g. [CKT20] for details on this concept. NSDEs,
i.e. stochastic differential equations with neural network characteristics, are a wonderful concept
to construct non-parametric models, but it is quite delicate to write constraint dynamics with
neural networks. Therefore we have chosen Consistent Recalibration Models with tangent affine
models, where it is easier to express constraints in terms of neural networks for the drift.

The remainder of the chapter is structured as follows. In the next section, we introduce
mathematically the concept of a Lévy triplet codebook, as shortly alluded to above, and we
define consistent recalibration (CRC) models. We also briefly review affine models and embed
stochastic volatility affine models in the context of CRC models, outlining some key properties
of this codebook. The second section of the chapter is dedicated to one of the building blocks
of the whole theory: generalized Hull-White extensions. We do not simply use the Hull-White
extension, as it was exploited when first defined, for the calibration at the initial time of the term
structure in the interest rate models, but we think of it as a tool that allows for recalibration of
the model parameters. Further, we talk about a generalized extension, since we are replacing the
pure drift addition typical of interest rate models with a Lévy process, which naturally encodes
a greater calibration power. To make things clearer, an example is laid out in the third section,
where we analyse how the generalized Hull-White extension is added to the classical Heston model
in order to get a consistent recalibration model, what we call a generalized Bates model. The
same example is important because a very similar version of this model has been implemented
numerically. The fourth section is devoted to the CNKK equation: how it is derived, defined and
how it can be seen as a generalization of the HJM equation. Section 3.5 is dedicated to the formal
definition of CRC models for stochastic volatility affine models with piecewise constant model
parameters for pricing stocks’ derivatives. Some numerical considerations are also listed, to show
what are the most relevant aspects to deal with in case of a concrete implementation. One of these
points is the main subject of Section 3.6, where we discuss about calibrating the model using
a neural network. Subsections are dedicated to the available literature and to the architecture
and training techniques used to achieve the final result. A geometric interpretation is presented
in Section 3.7, starting from theory of finite dimensional realizations and its connections with
Frobenius’ theorem.

Notation. The set N0 denotes the set of natural numbers with 0 included; Rm+ the real vectors
in Rm whose components are greater than 0.
With L(X) we denote the set of X-integrable predictable processes for a semimartingale X. If we
talk about (X,Y ) as a (m+n)-semimartingale, we mean that X is an Rm-valued semimartingale
and Y is an Rn-valued semimartingale.
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Whenever we apply complex logarithm of continuous functions Rn 3 u 7→ f(u) 6= 0, we use the
normalization log f(0) = 0, so that logarithms are uniquely defined.
For the sake of readability, SDE and SPDE will be used as acronyms for stochastic differential
equation and stochastic partial differential equation, respectively.

3.1 Consistent Recalibration Models

As already mentioned, we take inspiration from the seminal paper of Kallsen and Krühner [KK15],
but we place ourselves in a more general framework that does not necessarily rely on the infinite
divisibility of the processes. Let (Ω,F , (F)t≥0,Q) denote a filtered probability space, where Q
represents a risk-neutral measure so that discounted asset prices are supposed to be Q-martingales.
All expectations, if not differently specified, are taken with respect to this probability measure
and are denoted by E. We consider an adapted (multivariate) stochastic process X := (Xt)t≥0
taking values in Rn, which can be considered as logarithm of price processes.
We assume that call options of any strike and maturity are liquidly traded and denote the time t
value of a call option with maturity T and strike K by Ct(T,K). Having liquid market prices for
all maturities and strikes1 translates, in mathematical terms, in having the marginal distributions
of several (at most n) underlying processes (under the pricing measure). Similar to [KK15], we
could at this point require that the given marginal distributions of X are infinitely divisible,
that the characteristic functions are absolutely continuous with respect to time and define the
codebook of our model as a “forward” Lévy exponent and then define dynamics for such (infinite
dimensional) codebook. But rather than focusing on the joint behaviour of X and the codebook,
whose dynamics are expressed in function of a generic semimartingale M , as done in [KK15], we
exploit the intuition behind the choice of such codebook, since it provides easier conditions to
avoid dynamic and static arbitrage, but we build around it a new framework.

For this reason, we conveniently define consistent recalibration models as models that keep
consistency, which means that future realizations will be in a neighbourhood of the current
state that can always be reached with positive probability, and that are analytically tractable,
thus looking as finite factor models instantaneously. This is reached by introducing stochastic
parameters, whose dynamics could be extrapolated by market data, and by means of a Hull-
White extension, used to compensate the stochastic updates in the parameters, while leaving the
marginal distributions of the state variables unchanged.

We start defining the set of functions that is the base for our theory:

Definition 3.1.1 (Γn). The set Γn denotes the collection of continuous functions η : Rn×R≥0 →
C such that there exists a càdlàg process Z with independent increments and finite exponential
moments E[exp((1 + ε)‖ZT ‖)] <∞ for all T ≥ 0 and for some ε > 0 satisfying

E[exp(i 〈u, ZT 〉)] = exp
(

i 〈u, Z0〉+
∫ T

0
η(u, r) dr

)
(3.1)

for u ∈ Rn.

Remark 3.1.2. Requiring that for some ε > 0, E[exp((1 + ε)‖ZT ‖)] < ∞ implies that we can
extend the left hand side of (3.1) to the strip −i[0, 1]n × Rn, thus we could choose, for example,
u = −i.

1In practice, and for our ensuing numerical algorithm, this is never the case.
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Remark 3.1.3. All functions η ∈ Γn are necessarily of Lévy-Khintchine type at the short end
(r = 0 in (3.1)). Note that by doing so, we are extending the definitions given in [CN12] and
[KK15] since we only assume the function η to be of Lévy-Khintchine form at the short end.
Remark 3.1.4. Often, elements in Γn are subject to additional no-arbitrage constraints in order
to satisfy, for example, the martingale property for both the price processes S = exp(X) and
call options Ct(T,K) for all T,K > 0 (see Theorem 3.7 in [KK15]). For instance, if we consider
X = (Xi)di=1 as being a log-price process for some k, we also assume exp(Xk) is a martingale,
which is equivalent to state that η(−iek, r) = 0 with ek being the k-th basis vector of Rn,
i.e. 〈ek, XT 〉 = Xk

T . We assume tacitly that such conditions are imposed if necessary. Notice
in case of a components of X corresponding to interest rates we do not need to impose such a
condition (since we do not need martingality).

We can think of the set Γn as a chart, in the language of geometry, or codebook, in the
language of mathematical finance, for all liquid market prices at one instant of time. If we want
to consider their time evolution, we had better define Γn-valued processes:

Definition 3.1.5 (Γn-valued semimartingale). Let (Ω,F , (Ft)t≥0,Q) be a filtered probability
space. A stochastic process η is called a Γn-valued semimartingale if (ηt(u, T ))0≤t≤T is a complex-
valued semimartingale for T ≥ 0 and u ∈ Rn and if(

(u, r) 7→ ηt(u, r + t)
)
∈ Γn .

In particular, all trajectories are assumed to be càdlàg.

Definition 3.1.6 (Regular decomposition). We say that η allows for a regular decomposition with
respect to a d-dimensional semimartingale M if there exist predictable processes (αt(u, T ))0≤t≤T
taking values in C with αt(0, T ) = 0 for all 0 ≤ t ≤ T and (βt(u, T ))0≤t≤T , Cd-valued, with
βit(0, T ) = 0 for all i and all 0 ≤ t ≤ T and for T ≥ 0 and u ∈ Rn such that

ηt(u, T ) = η0(u, T ) +
∫ t

0
αs(u, T ) ds+

d∑
i=1

∫ t

0
βis(u, T ) dM i

s (3.2)

for 0 ≤ t ≤ T , and
(√∫ T

t
‖βt(u, r)‖2 dr

)
t≥0
∈ L(M).

In view of the two new definitions, we can also generalize the condition expressed in (3.1):

Definition 3.1.7 (Conditional expectation condition). Let (Ω,F , (Ft)t≥0,Q) be a filtered prob-
ability space, then we say that a tuple (X, η) of an n-dimensional semimartingale X and of a
Γn-valued semimartingale η satisfies the conditional expectation condition if

E [ exp(i 〈u,Xt〉)| Fs] = exp
(

i 〈u,Xs〉+
∫ t

s

ηs(u, r) dr
)

(3.3)

for 0 ≤ s ≤ t.

At this point, the link of the whole theory to its discrete-time counterpart exposed in [RT17]
becomes even clearer:

Definition 3.1.8 (Forward and process characteristics). Let X be an adapted semimartingale
taking values in Rn and η a Γn-valued semimartingale with ηs(0, t) = 0 for all 0 ≤ s ≤ t and for
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which the conditional expectation condition (3.3) is satisfied. Then the process η is called forward
characteristic process of X. Analogously, the process denoted by κXs and that coincides with the
short end of the forward characteristics of X, i.e. ηs−(·, s), with κXs (0) = 0 for all s ≥ 0 is said
(process) characteristic of X.

Remark 3.1.9. Note that both processes are uniquely defined (up to a dQ⊗ dt-nullset):

1. The normalization ηs(0, t) = 0 for all 0 ≤ s ≤ t ensures that the map u 7→ ηs(u, t) is
continuous and uniquely defined through the use of the complex logarithm.

2. Since the adapted process
(
exp

(
i 〈u,Xs〉 −

∫ s
0 κ

X
r (u) dr

))
s≥0 is a local martingale (see

Theorem 3.1.12 below) and κXr (0) = 0 for any r ≥ 0, uniqueness follows from Lemma A.5
in [KK15].

Definition 3.1.10 (Term structure for derivatives). We call the tuple (X, η) of an n-dimensional
semimartingale X and of its Γn-valued forward characteristic process η a term structure model
for derivatives’ prices.

In mathematical finance, we are often interested in risk-neutral models, that is models for which,
under a suitable probability measure, the price of liquidly traded assets are (local) martingales.

Definition 3.1.11 (Risk-neutral model). The term structure model for derivatives provided by
the tuple (X, η) is said to be risk-neutral if the corresponding stock prices S and all European call
option prices C(T,K) for T ≥ 0 and K > 0 are (local) martingales.

With the following theorems, we are able to characterize which processes η can be considered
forward processes, given the existence of a regular decomposition. Discrete versions of the same
theorems are given in [RT17], while proofs for the continuous case under examination are in
[KK15].

Theorem 3.1.12. Let (Ω,F , (Ft)t≥0,Q) be a filtered probability space together with a tuple
(X, η) of an n-dimensional semimartingale X and of a Γn-valued semimartingale η satisfying the
conditional expectation condition, then

• the differentiable, predictable characteristic κX of the n-dimensional semimartingale X
exists and is given by κXt (u) = ηt−(u, t) (usually called short end or spot condition) for
t ≥ 0 and u ∈ Rn, i.e. the process

exp
(

i 〈u,Xt〉 −
∫ t

0
ηs−(u, s) ds

)
(3.4)

is a local martingale.

• If η allows for a regular decomposition (3.2) with respect to a d-dimensional semimartingale
M , then the (HJM) drift condition

∫ T

t

αt(u, r) dr = ηt−(u, t)− κ(X,M)
t

(
u,−i

∫ T

t

βt(u, r) dr
)

(3.5)

holds for 0 ≤ t ≤ T and u ∈ −i[0, 1]n × Rn.
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It could be useful for the reader having in mind the following expression for the forward charac-
teristics of the (n+ d)-semimartingale (X,M): for all t such that 0 ≤ t ≤ T , we have

exp
(
η

(X,M)
t (u, v; T )

)
= E [ exp (i 〈u, (XT −Xt)〉+ i 〈v,MT −Mt〉)| Ft]

from which it is easier to derive the expression for κ(X,M)
t for 0 ≤ t ≤ T .

Theorem 3.1.13. Let (Ω,F , (Ft)t≥0,Q) be a filtered probability space together with a tuple (X, η)
of a n-dimensional semimartingale X and a Γn-semimartingale η. Furthermore, assume that η
allows for a regular decomposition (3.2) with respect to a d-dimensional semimartingale M such
that the predictable characteristics of X satisfy (3.4) and such that the drift condition (3.5) holds,
then the conditional expectation condition holds true.
Corollary 3.1.14. Let (Ω,F , (Ft)t≥0,Q) be a filtered probability space together with a tuple
(X, η) where X is a n-dimensional semimartingale and η, Γn-semimartingale, satisfies the condi-
tional expectation condition. Moreover, assume that η allows for a regular decomposition (3.2)
with respect to a d-dimensional semimartingale M and that the processes X and M are locally
independent2, i.e.

κX,Mt (u1, u2) = κXt (u1) + κMt (u2) (3.6)
for u1 ∈ Rn and u2 ∈ Rd. Then∫ T

t

αt(u, r) dr = −κMt

(
−i
∫ T

t

βt(u, r) dr
)

for 0 ≤ t ≤ T and u ∈ i[0, 1]× Rn and, furthermore, the conditional expectation condition (3.3)
rewrites as

E
[

exp
(∫ t

s

ηr−(u, r) dr
)∣∣∣∣Fs] = exp

(∫ t

s

ηs(u, r) dr
)

for 0 ≤ s ≤ t.

Proof. To obtain the new form of the conditional expectation condition is enough to use (3.4).

Remark 3.1.15 (Risk-neutral model). The two previous theorems basically ratify the equivalence
between the conditional expectation condition on one hand, and the short end and drift conditions
on the other. In [KK15], since they assume η being of Lévy-Khintchine type for all times, it is
possible to show (Theorem 3.7) equivalence with the fact of S = exp(X) and Ct(T,K) being
martingales. This implies a risk-neutral model and, by the fundamental theorem of asset pricing,
no arbitrage opportunities.
This is not given for free in our settings, but requires additional assumptions (see Remark 3.1.4).
For example, requiring that S = exp(X) is a 1-dimensional martingale is equivalent to the
condition ηs(−i, t) = 0 for all 0 ≤ s ≤ t. In this case, indeed, we can write

E
[
eiu(Xt−Xs)

∣∣∣Fs] = exp
(∫ t

s

ηs(u, r) dr
)

and for u = −i we have E
[
eXt−Xs

∣∣Fs] = 1 for all 0 ≤ s ≤ t. In the following, we will anyway
assume this condition whenever needed.
Remark 3.1.16. Forward characteristics encode the term structure of distributions of increments
of the stochastic process X, i.e. for 0 ≤ t ≤ T , the distributions of XT −Xt conditional on the
information Ft at time t. Notice that there is redundant information in processes of forward
characteristics, which then translates into the drift conditions (3.5).

2See [KK15] for a rigorous definition.
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3.1.1 Affine processes

In this subsection, we introduce affine processes and give some important results on their forward
characteristic processes. Moreover, since we are mainly interested in affine stochastic volatility
models, we will state some properties for their particular case.

Let D be a non empty Borel subset of Rd to which we associate the set U := {u ∈ Cd :
supx∈D Re 〈u, x〉 <∞}.

Definition 3.1.17 (Affine process). An affine process is a time-homogeneous Markov process
(Xt,Px)t≥0,x∈D with state space D, whose characteristic function is an exponentially affine func-
tion of the state vector. This means that its transition kernel pt satisfies the following:

• it is stochastically continuous, i.e. lims→t ps(x, ·) = pt(x, ·) weakly on D for every t ≥ 0
and x ∈ D, and

• its Fourier-Laplace transform has exponential affine dependence on the initial state. This
means that there exist functions Φ : U × R≥0 → C and ψ : U × R≥0 → Cd with

Ex
[
e〈u,Xt〉

]
= Φ(u, t)e〈x,ψ(u,t)〉, (3.7)

for all x ∈ D, u ∈ U and t ∈ R≥0.

Remark 3.1.18. The existence of a filtered probability space (Ω,F , (Ft)t≥0) is already included
by the notion of Markov process (see [KST11]).
Remark 3.1.19. The definition we gave is not the original provided by Duffie et al. in [DFS03] but
a slightly more general one: the right hand side of (3.7) is equal to eφ(u,t)+〈x,ψ(u,t)〉 as long as we
know that Φ(u, t) 6= 0, but this can be shown ([KST13]) and not postulated (as done in [DFS03]).
From now on, we assume Φ(u, t) = exp(φ(u, t)). A priori we do not even have a unique definition
of the functions ψ and φ, but we can assume the normalization φ(u, 0) = 0 and ψi(u, 0) = u for
all u ∈ U and all i = 1, . . . , d, which makes the functions unique.

In this subsection we build a generic example for term structure models for derivatives’ prices.
Therefore, we define an affine stochastic volatility model:

Definition 3.1.20 (Affine stochastic volatility model). Let us consider a proper convex cone
C ⊂ Rm (the stochastic covariance structures). An affine stochastic volatility model is a time-
homogenous affine (Markov) process (X,Y ) taking values in Rn × C relative to some filtration
(Ft)t≥0 and with state space D = Rn × C such that

• it is stochastically continuous, that is, lims→t ps(x, y, ·) = pt(x, y, ·) weakly on D for every
t ≥ 0 and (x, y) ∈ D, and

• its Fourier-Laplace transform has exponential affine dependence on the initial state. This
means that there exist (deterministic) functions φ : U ×R≥0 → C and ψC : U ×R≥0 → Cm
with

E
[
e〈u,Xt〉+〈v,Yt〉

∣∣∣Fs] = eφ(u,v,t−s)+〈u,Xs〉+〈ψC(u,v,t−s),Ys〉, (3.8)

for all (x, y) ∈ D, 0 ≤ s ≤ t and (u, v) ∈ U , where

U := {(u, v) ∈ Cn+m | e〈u,·〉+〈v,·〉 ∈ L∞(D)},

and the normalizations φ(u, v, 0) = 0 and ψiC(u, v, 0) = v for all (u, v) ∈ U and i = 1, . . . ,m.
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Remark 3.1.21. In line with literature on affine processes there is a Cn+m-valued function ψ,
whose projection onto the X-directions is u, as exemplified in (3.8). Whence we only need
the projection in the C-directions, which we denote by ψC . This corresponds to a standard
assumption if we consider X as a price process: if we move Xs by a quantity x, then also Xt gets
shifted by the same amount.

Functions φ and ψC are important because they allow the introduction of the so-called
functional characteristics (because of complete characterisation) of the affine process (X,Y ). We
define

F (u, v) := ∂φ

∂t
(u, v, t)

∣∣∣
t=0+

, RC(u, v) := ∂ψC
∂t

(u, v, t)
∣∣∣
t=0+

(3.9)

for all (u, v) ∈ U and continuous in (0, 0) (see [KST13]). Equations (3.9) are called Riccati
equations.

More in general, we can also define the generalized Riccati equations3 and prove the following
theorem (from [Kel08]):

Theorem 3.1.22. Suppose that |φ(u,w, T )| < ∞ and ‖ψC(u,w, T )‖ < ∞ for some (u,w, T ) ∈
U × R≥0 . Then for all t ∈ [0, T ] and v with Re v ≤ Rew the derivatives (3.9) exist. Moreover,
for t ∈ [0, T ), φ and ψC satisfy the generalized Riccati equations:

∂

∂t
φ(u, v, t) = F (u, ψC(u, v, t)), φ(u, v, 0) = 0 (3.10a)

∂

∂t
ψC(u, v, t) = RC(u, ψC(u, v, t)), ψC(u, v, 0) = v. (3.10b)

We can also derive the following proposition:

Proposition 3.1.23. Let (X,Y ) be a homogenous affine process taking values in D = Rn × C,
then for t ≤ T we have that

φ(u, 0, t) =
∫ t

0
F (u, ψC(u, 0, s)) ds

and
ψC(u, 0, t) =

∫ t

0
RC(u, ψC(u, 0, s)) ds,

where (u, v) 7→ F (u, v) and (u, v) 7→ 〈RC(u, v), y〉 are of Lévy-Khintchine form.

Proof. While the first part automatically comes from the definition of generalized Riccati equa-
tions, the second can be found in [Kel08].

Corollary 3.1.24. Let (X,Y ) be a homogeneous affine process taking values in D = Rn×C and
assume that the finite moment condition E [exp((1 + ε) ‖Xt‖)] < ∞ holds true for some ε > 0,
then for 0 ≤ t ≤ T

ηt(−iu, T ) := F (u, ψC(u, 0, T − t)) + 〈RC(u, ψC(u, 0, T − t)), Yt〉

defines a Γn-valued semimartingale and the tuple (X, η) satisfies the conditional expectation
condition.

3The name comes from the fact that they boil down to the well-known Riccati equations when (X,Y ) is a
diffusion process.
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Proof. The proof follows from the previous proposition and simple algebraic operations. For any
0 ≤ t ≤ T , we have

E
[
e〈u,XT 〉

∣∣∣Ft] = eφ(u,0,T−t)+〈u,Xt〉+〈ψC(u,0,T−t),Yt〉

= e
〈u,Xt〉+

∫ T−t
0

F (u,ψC(u,0,r)) dr+
〈∫ T−t

0
RC(u,ψC(u,0,r)) dr,Yt

〉
= e
〈u,Xt〉+

∫ T−t
0

F (u,ψC(u,0,r))+〈RC(u,ψC(u,0,r)),Yt〉 dr

= e
〈u,Xt〉+

∫ T
t
F (u,ψC(u,0,r−t))+〈RC(u,ψC(u,0,r−t)),Yt〉 dr

= e
〈u,Xt〉+

∫ T
t
ηt(−iu,r) dr

.

In interest rate theory, where affine models proved to be a powerful tool, Hull-White extensions
is realized by making the drift term time dependent and plays the fundamental role of allowing
the calibration of an initial yield curve to the prescribed model. This will be the topic of the
next section.

We see in the following some applications of such theory.
Example 3.1.25. Deterministic term structure of forward characteristics: Deterministic
forward term structure models correspond to time-dependent Lévy processes. More precisely,
let (X, η) be a tuple satisfying the conditional expectation condition and assume that η is a
deterministic, then X is an additive process and ηt(u, T ) = η0(u, T ) is of Lévy-Khintchine form
for every T ≥ 0 (compare, for example, with Definition 3.1.6). A particular example would be
any time-dependent Lévy model.
Example 3.1.26. Interest rate models: If the process X is one-dimensional, pure-drift and
absolutely continuous with respect to Lebesgue measure, then we fall in the case treated in
Corollary 3.1.14 and we have∫ T

t

αt(u, r) dr = −κMt

(
−i
∫ T

t

βt(u, r) dr
)
,

but also

E

[
exp

(
−
∫ T

t

ηs−(u, s) ds
)∣∣∣∣∣Ft

]
= exp

(
−
∫ T

t

ηt(u, r) dr
)
, (3.11)

from which we obtain
uXt = uX0 −

∫ t

0
ηs−(u, s) ds.

Equation (3.11) is also well-known in interest rate theory: if we denote with P (t, T ) the price of
a risk-less zero coupon bond, with f(t, T ) the forward rate yield prevailing at t for T and with
r(t) the short time interest rate at t, then we have

P (t, T ) = E
[
e
−
∫ T
t
r(s) ds

∣∣∣∣Ft] = e
−
∫ T
t
f(t,S−t) dS

for 0 ≤ t ≤ T and u ∈ R. Moreover, if we assumed M being a Brownian motion, then we would
have κMt (u) = −u2

/2 and, thus,∫ T

t

αt(u, r) dr = −1
2

(∫ T

t

βt(u, r) dr
)2

,
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from which, differentiating both sides with respect to T , we obtain the well-known HJM drift
condition

αt(u, T ) = −βt(u, T )
∫ T

t

βt(u, r) dr.

Notice that (ηs−(u, s))s≥0 is linear in u, since X is pure drift.

3.2 Generalized Hull-White extension

Hull-White extension of Vaš́ıček model was performed adding a time-dependent constant drift to
the equation for the short term interest rate r, in order to have a perfect match with the current
(t = 0) term structure of forward rates and, thus, to enhance calibration.

In this case, we will take a more general approach and will encode the extension, repres-
ented by a Lévy process, in the constant part of the affine process (responsible for the state-
independent characteristics thereof). In other words, the function F will become consequently
time-inhomogeneous, thus modifying the forward characteristics of the process X.

Corollary 3.2.1. Let (X̃, Y ) be a time-inhomogenous, homogeneous càdlàg affine process taking
values in Rn × C with time-dependent continuous T 7→ FT , and assume that the finite moment
condition E

[
exp((1 + ε)‖X̃t‖)

]
<∞ holds true for some ε > 0, then for 0 ≤ t ≤ T

η̃t(−iu, T ) := FT (u, ψC(u, 0, T − t)) + 〈RC(u, ψC(u, 0, T − t)), Yt〉

defines a Γn-valued semimartingale and the tuple (X̃, η) satisfies the conditional expectation
condition.

Remark 3.2.2. Here time-inhomogenous, homogenous affine processes appear as generalization of
the approaches in [CN12] and [KK15] (CNKK-approach), since we can calibrate a large variety
of (virtually, any) initial term structure into t 7→ Ft.
Remark 3.2.3. Although we are only modifying the forward characteristic process ofX, the process
Y , which is Markov in its own filtration, remains the same. This keeps the transformation simple
and the processes tractable, since it does not affect the stochastic covariance structure.

The above structure increases the calibration properties of the original model. In addition,
since the Lévy process is allowed to change over time, we could calibrate it to match market
conditions for other instant of times (apart the initial time).

The main consequence of having such a generalized Hull-White extension is that we could
compensate fluctuations (i.e. recalibrations) in the original model’s parameters with a calibration
of the Lévy process, so to keep the price/volatility surface unchanged. In other words, we could
consider the parameters of the original model as state variables. When this is possible, we will
talk about a model that satisfies the consistent recalibration property.

A valid question, at this point, would be to know when this is possible. Are there conditions
that we could impose or verify to make sure that such a compensating mechanism can always
happen?

Let us denote with (νLt )t≥0 the Lévy measure of the time-dependent Lévy process L, with pt
and Zt the set of parameters and state variables belonging to the time-homogeneous model at
time4 t, respectively, and with νpt,Zs the Lévy measure that has the same expressive capability

4Since parameters can be considered as state variables, they are allowed to change in time.
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as the original model5, where we made explicit the dependence on the parameters pt and state
variables Zs, for s ≤ t.

Proposition 3.2.4. Let us assume that the stochastic parameter process (pt)t≥0 has trajectories,
whose total variation is bounded by a deterministic constant, take values on the compact set Θ of
admissible parameters. Moreover, assume that p 7→ νp,· is continuously differentiable and that p
remains constant whenever Z leaves a prespecified compact set K. Then, if for all t ≥ 0 we have
the non-negativity condition

νLt ≥
∑

0≤s≤t
ν
ps,Zs−
t − νps− ,Zs−t , (3.12)

the consistent recalibration property holds.

Proof. The proof is done by induction on the jumping times of the parameter process p. For
more details, see [RT17].

As already mentioned above, this add-on will transform the functional characteristic F in a
time-dependent function and it might be worth noticing how this happens in practice.

Using the same notation introduced in [RT17], we can define FT as it appears in Corollary
3.2.1 adding a new time-dependent function µ:

Definition 3.2.5 (IncD). Let Z be a generic stochastic process with values in the (state) space
D, such that all increments ∆Zs satisfy z + ∆Zs ∈ D for any z ∈ D and any s ≥ 0. We
denote by IncD the set which contains all continuous functions µ : U × R≥0 → R of the type
µ(u, t) := logE[exp(〈u,∆Zt〉)] for which µ(0, t) = 0 for all t ≥ 0.

In other words, we are adding to the “old” F the cumulant generating function of the process
(∆Zs)s≥0, that is Fs(u, v) := F (u, v) +µ(u, v, t− s) for all u ∈ U and t ≥ s ≥ 0. This will become
even clearer in the following, when we will specify our consistent recalibration model.

Analogously to what already done, we can define φ̃ and ψ̃ as the time-inhomogeneous versions
of φ and ψ as solutions to the time-inhomogeneous version of the Riccati equations. In particular,
for stochastic volatility affine processes, similarly to Theorem 3.1.22, for s ≤ t we can write
(compare with [RT17]):

∂

∂t
φ̃(u, v; s, t) = Ft(u, ψ̃C(u, v; s, t)), φ̃(u, v; 0, 0) = 0(3.13a)

∂

∂t
ψ̃C(u, v; s, t) = RC(u, ψ̃C(u, v; s, t)), ψ̃C(u, v; 0, 0) = v,(3.13b)

with ψ̃C(u, v; s, t) = ψC(u, v; t− s). At this point, it is also possible to rewrite the expression for
the forward characteristics of the time-inhomogeneous process X̃ as∫ T

t

η̃t(u, r) dr = φ̃(iu, 0; t, T ) +
〈
ψ̃C(iu, 0; t, T ), Yt

〉
. (3.14)

In particular, for t = 0 we recover the characteristic function and we obtain∫ T

0
η̃0(u, r) dr = φ̃(iu, 0; 0, T ) +

〈
ψ̃C(iu, 0; 0, T ), y

〉
5Here, we mean that the price or volatility surface created by the model and the Lévy measure should be the

same.
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and, if we denote with C(y) the set of characteristic functions η̃0, we notice that for any element
η̃0 ∈ C(y), there exists (at least) one µ ∈ IncD that defines η̃ itself. It is thus possible to establish
a surjective function g between IncD and C(y). The existence of such g is equivalent to nothing
but the Condition (3.12) previously stated since we can consider any jump-time as an initial
starting point for the process (X̃, Y ) due to the Markovianity of the process.

3.3 From Heston to Hull-White extended Bates model

Before introducing the consistent recalibration model more mathematically, let us briefly recall the
Heston model, which is an affine stochastic volatility model, for X = log(S) being the log-return
of the underlying price

dX(t) =
(
r − q − 1

2V (t)
)
dt+

√
V (t)dW1(t), X(0) = x0,

dV (t) = k [θ − V (t)] dt+ σ
√
V (t)dW2(t), V (0) = v0,

dW1(t) dW2(t) = ρ dt, ρ ∈ [−1, 1],

(3.15)

and where r and q represent the instantaneous risk-free and dividend yields respectively and are
constant, θ > 0 is the long-term mean of the variance, k > 0 is the speed of mean-reversion, σ > 0
represents the instantaneous volatility of the variance process V . In order to ensure positivity of
the variance process, we need to satisfy 2kθ > σ2 (Feller condition).
For 0 ≤ t ≤ T , we have that η defines a Γ1-semimartingale:

ηt(u, T ) = F (iu, ψC(iu, 0, T − t)) +RC(iu, ψC(iu, 0, T − t))Vt,

where C coincides with R>0 and

F (u1, u2) = kθu2 + (r − q)u1,

RC(u1, u2) = 1
2u1(u1 − 1) + 1

2σ
2u2

2 + σρu1u2 − ku2.

The Hull-White extension of the Heston model consists in a generalized version of the so-called
Bates model ([Bat88]) in which we add a compensated6 jump Lévy process L with Lévy measure
ν(t, dx) to the dynamics of the log-return X:

dX(t) =
(
r − q − 1

2V (t)
)
dt+

√
V (t)dW1(t) + dLt. (3.17)

The first consequence that should appear obvious is that we are enriching the space of calibrated
volatility surfaces, thanks to the Lévy process, while keeping the same dimensions of the state
variables. Accordingly, the functional characteristic F will then change to

Ft(u1, u2) = kθu2 + (r − q)u1 + µL(u1, u2, t), (3.18)

where µL is the cumulant generating function of L. As we will see below, we can establish a
bijective relation between µL and the Lévy measure νL.

We are talking about a generalized Bates model since the Lévy measure is also allowed to
change in time and, as already said, this permits to make also other parameters time dependent.

6Compensation is necessary to have a martingale process, as it is often the case in the pricing context.
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3.3.1 Consistent recalibration (with words)

Time is mature to explain how the generalized Bates model can be used as a consistent recalib-
ration (CRC) model. Recall that although formally there are only two state variables, now also
parameters are free to change in time thanks to the compensation mechanism that the Hull-White
extension provides.

Let us start at time t = t0 with a log-price Xt0 , a set of parameters pt0 = (r, q, k, θt0 , σt0 , ρt0),
an initial variance for the log-price Vt0 and the compensated jump Lévy process Lt0 which
represents the Hull-White extension. Note that some of the parameters are not constant, but
change over time and are denoted by the time-index. This particular combination of state variables
and parameters fully specifies a particular model M1 among all possible models Mi that can
represent an implied volatility surface (IVS) without breaking any no-arbitrage constraints and
should be able to reflect those market conditions that are summarised by the IVS at time t0. It
is thus natural to write IVSt = IVS(Xt, Vt; θt, σt, ρt; {Ti}, {Kj}) for the volatility surface at time
t. The model state variables X and V are thus able to evolve in time until M1 is able to mirror
the market. Eventually, this situation will break at time t = t1 and a new calibration will be
necessary.

1. Starting from time t0, X and V can evolve until t1 = t0 + ∆t, where the new volatility
surface is given by IVS(Xt1 , Vt1 ; θt0 , σt0 , ρt0 ; {Ti}, {Kj}).

2. Parameters Θ2 := (θt0 , σt0 , ρt0) will move to another configuration (θt1 , σt1 , ρt1), but, to
enforce a smooth change between the first configuration and the second,

3. Also the Lévy process will be adjusted and will compensate the changes in the parameters
(θt, σt, ρt) to reproduce the same IVS. This implies a movement in the parameters Θ1 of
the Lévy process.

4. In this way we can represent realistically the behaviour of the market.

The recalibration of the Hull-White extension is also preserving the drift-condition of the forward
characteristics, thus ensuring that we do not violate no-arbitrage constraints. The new model
M2 will then specify the evolution in time of the state variables until another recalibration will
be needed.

Notice that the evolution of the state variables is determined by the “old” parameters
(θti , σti , ρti) on the closed interval [ti, ti+1] and for this reason there is no discontinuity at t = ti+1
in the modelled IVS caused by the parameters movement. Further, since we do not know in
advance the exact recalibration times ti, these are random variables (more in Section 3.5).

3.4 CNKK Equation

3.4.1 Quick heuristics

The mathematical formulation that is needed to describe what we sketched above starts from
(3.2). If we rewrite the same equation using Musiela’s parametrization, defining x := T − t, then
the map becomes (u, t, x) 7→ ηt(u, t + x) in the new notation. In addition, let us introduce the
strongly continuous semigroup {S(t) | t ≥ 0} of right shifts, such that for a proper function g this
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IVS models

t = t0

t = t1

t = t2

M
1

M2
M

i

M2

Figure 3.1: At t = t1 the change in the parameters (θt0 , σt0 , ρt0 ) would cause a jump in the volatility structure
(snake arrow), but this is compensated by the change in the Lévy process L (red bent arrow).

is mapped to S(t)g(u, ·) = g(u, t+ ·). Then we can rewrite Equation (3.2) as

ηt(u, t+ x) = S(t)η0(u, x) +
∫ t

0
S(t− s)αs(u, t+ x)ds+

d∑
i=1

∫ t

0
S(t− s)βis(u, t+ x)dM i

s, (3.19)

which can be rewritten in terms of θt(u, x) := ηt(u, t+x) and, with abuse of notation, αt(u, x) :=
αt(u, t+ x), βt(u, x) := βt(u, t+ x) as

θt(u, x) = S(t)θ0(u, x) +
∫ t

0
S(t− s)αs(u, x)ds+

d∑
i=1

∫ t

0
S(t− s)βis(u, x)dM i

s. (3.20)

Finally, the passage to the limit will justify what written in the next subsection.

3.4.2 CNKK SPDE

The framework we will develop in the following will allow a thorough analysis of factor models in
the CNKK-approach introduced in [CN12] and [KK15], yet with crucial differences. For example,
as already done by Kallsen and Krühner, we assume that the volatility processes βi of the forward
characteristic η are functions of the present state of η itself, i.e. for all i = 1, . . . , d

βit(u, T )(ω) = σ
(
t, ηt−(·, ·)(ω)

)
(u, T ),

but, since we introduce the right-shift operator, we will obtain an SPDE and not simply an SDE.

Definition 3.4.1 (Lévy codebook Hilbert space). Let G be a Hilbert space of continuous complex-
valued functions defined on the strip −i[0, 1]n × Rn, i.e. G ⊂ C((−i[0, 1]n)× Rn;C).
H is called a Lévy codebook Hilbert space if H is a Hilbert space of continuous functions
η : R≥0 → G, i.e. H ⊂ C(R≥0;G) such that

• There is a continuous embedding H ⊂ C(R≥0 × (−i[0, 1]n)× Rn;C),

• The shift semigroup (Stη)(u, x) := η(u, t + x) acts as strongly continuous semigroup of
linear operators on H,
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• Continuous functions of finite activity Lévy-Khintchine type

(u, t) 7→ i 〈a(t), u〉 − 〈u, b(t)u〉2 +
∫
Rn

(
exp(i 〈ξ, u〉)− 1

)
νt(dξ)

lie in H, where a, b, ν are continuous functions defined on R≥0 taking values in Rn, the
positive-semidefinite matrices on Rn and the finite positive measures on Rn. This is for
example the case for processes with independent increments and finite variation.

Remark 3.4.2. Notice that we do not assume that there are additional stochastic factors outside
the considered parametrization of liquid market prices.
Remark 3.4.3. Notice that elements of the Hilbert space H are understood in Musiela para-
metrization and therefore denoted by a different letter in the sequel. As already written in
Subsection 3.4.1, we have the relationship ηt(u, t+ x) = θt(u, x), with x := T − t. In this sense,
we also have the equality θt(u, 0) = κXt (u) for the predictable characteristics of X.

Definition 3.4.4 (CNKK equation). Let H be a Lévy codebook Hilbert space. We call the
following stochastic partial differential equation

dθt =
(
Aθt + µCNKK(θt)

)
dt+

d∑
i=1

σi(θt) dBit (3.21)

a CNKK equation (θ0, κ, σ) with initial term structure θ0 and characteristics κ and σ, if

• A = d
dx is the generator of the shift semigroup on H,

• σi : U ⊂ H → H, U an open subset of H, are locally Lipschitz vector fields, and

• µCNKK : U → H is locally Lipschitz and satisfies that for all η ∈ Γn we have∫ T−t

0
µCNKK(θ)(u, r) dr = θ(u, 0)− κθ

(
u,−i

∫ T−t

0
σ(θ)(r, u) dr ; 0

)
, (3.22)

where (κθ)θ∈U is Γn+d-valued for each θ ∈ Γn, such that κθ(u, 0; 0) = θ(u, 0) and
κθ(0, v; 0) = −‖v‖

2

2 , for u ∈ Rn, v ∈ Rd.

Remark 3.4.5. κθ is the forward characteristic process associated to the couple (X,B), where X
is (still) the log-return price process and B the driving process of θ. Moreover, Equation (3.22)
can be seen as a drift-condition and it is analogous to Equation (3.5), reformulated under the
Musiela’s parametrization.
Remark 3.4.6. It is evident how Equations (3.21) and (3.20) relate to each other and how the
former can be seen as the limit case of the latter.
Remark 3.4.7. We do not require that all solutions of Equation (3.21) are Γn-valued, which would
be too strong as a condition and difficult to characterize. In particular, Γn is a more general than
what we need.

Proposition 3.4.8. Let θ be a Γn-valued solution of a CNKK equation and let X be a semi-
martingale such that the predictable characteristics satisfy

κ
(X,B)
t (u, v) = κθt(u, v; t)

for u ∈ Rn, v ∈ Rd and t ≥ 0, then the tuple (X, θ) satisfies the conditional expectation condition.
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3.4 CNKK Equation

Proof. The proposition is basically a consequence of Theorem 3.1.13: the drift condition is
satisfied by assumption and

exp
(

i 〈u,Xt〉 −
∫ t

0
κ

(X,B)
s− (u, v; s) ds

)
is a (local) martingale because of the Lévy-Khintchine assumption in Definition 3.4.1 regarding
the functions of the Lévy codebook Hilbert space.

3.4.3 Generalization of the HJM equation

Equation (3.21) is very similar to the famous HJM equation7, but there are relevant differences,
for example both the drift and drift condition are different and, what is more, functions have
another argument (a strike dimension) that is completely missing in the case of the HJM equation,
where only a time-dimension is considered.

We can construct a particular example which corresponds indeed to the HJM equation: let
us consider a situation without leverage (where the Brownian motion B is independent of the
return process X), assuming that

κθ(u, v; 0) = θ(u, 0)− ‖v‖
2

2 ,

for u ∈ Rn, v ∈ Rd and t ≥ 0. Basically, we are looking at functions in a restricted Lévy space, for
which the Lévy measure is null. This implies that the CNKK equation is a parameter-dependent
HJM equation. In this case, Condition (3.22) can be simplified to

µCNKK(θ)(u, x) = −
d∑
i=1

σi(θ)(u, x)
∫ x

0
σi(θ)(u, s) ds,

for x ≥ 0 and u ∈ Rn (note the analogies with Example 3.1.26).
Example 3.4.9. Black-Scholes model ([BS73]): It might be interesting at this point to see
a concrete example coming from a simpler model. If we consider asset prices described by a
geometric Brownian motion dSt = StσdWt, where σ > 0 is constant and W is a standard
Brownian motion, then the log-prices X are given by dXt = d logSt = σ2

/2 dt+ σdWt. We find
that ηt(−iu, r) = 1/2σ2u(u − 1) = F (u), in the notation of (3.9). It is easy to see that η is
pure-drift and that the extended functional characteristic becomes Ft = 1

2σ
2
t u(u− 1) + µL(u, t),

where µL is the cumulant of the generalized Hull-White extension.

From what has been said so far, it is clear how the CNKK equation is in fact a generalization
of the HJM equation.
Remark 3.4.10. It is possible to further increase the complexity of the equation, for example
considering options on a term structure. In this case, we would need another argument to take
into account for both drift and volatility.
Remark 3.4.11. All these considerations are conceivable only because we are dealing with affine
processes. In general, for a return price process X, it might not be possible to write the conditional
expectation condition and to continue with the following statements.

7In the literature, this is also known as HJMM equation, where the last M stands for Musiela.
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Remark 3.4.12. It is possible to generalize what has been said in this section for processes driven
by infinite dimensional Brownian motions, e.g. in Equation (3.21) we could replace the sum

∑d
i=1

with
∑
i∈N. The theory has been paved in the book by Da Prato and Zabczyk [DZ14], but also

Chapter 2 of [Fil01] by Filipović provides a useful and accessible introduction. We continue
considering the finite-dimensional case because this does not really create new hurdles to be
solved, in contrast to the main obstacle, the drift µCNKK, for which no explicit expression is
available.

3.5 Consistent recalibration (with maths)

We are now ready to face the same considerations we reported above in more rigorous settings.
First of all, let us recap the most important equations. For the return process, we have

dX(t) = δXt (Xt, Vt) dt+ γXt (Xt, Vt) dW1(t) + dLt, X(0) = x0,

dV (t) = δVt (Xt, Vt) dt+ γVt (Xt, Vt) dW2(t), V (0) = v0,
(3.23)

with dW1(t) dW2(t) = ρt dt, for ρt ∈ [−1, 1]. Drifts and volatility coefficients are denoted by δ
and γ respectively and can be functions of X and V , e.g. γX(x, v) = γV (x, v) =

√
v. While for

the forward characteristic process, our codebook, we report the CNKK SPDE

dθ(t) =
[
Aθ(t) + µCNKK(θ(t))

]
dt+

d∑
i=1

σi(θ(t)) dBi(t), θ(0) = θ0, (3.24)

where the dependence among the Brownian motions Bi with i = 1, . . . , d and these with Wj for
j = 1, 2 is not specified. The key relation that connects the two different systems is given in
Corollary 3.2.1 and is the following (rewritten in the Musiela notation):

θt(−iu, x) = Ft+x(u, ψC(u, 0;x)) + 〈RC(u, ψC(u, 0;x)), Vt〉 . (3.25)

Last but not least, we should also remember that parameters are free to move in time. As such,
we consider the process p, whose dynamics are exogenously given, but which are confined inside
the space of admissible parameters Θ ⊂ RM . In the example described in Subsection 3.3.1 it is
defined as

pt = (θt, σt, ρt), t ≥ 0,
given the constraints of positivity and Feller condition for σt and θt and ρt ∈ [−1, 1]. This is the
reason why we used the subscript t in Equations (3.23) above.
Let us suppose that at time t0 the model can fit well the market surface given by observed call
prices (or, equivalently, of implied volatility surface) Cobs

t0 (Ti,Kj) for i = 1, . . . , n and j = 1, . . . ,m.
In this condition, the process (θ, (X,V )) are free to evolve in time until the a new calibration is
necessary. This is the case when

∆Ct0
:=

n∑
i=1

m∑
j=1

∣∣Cmodel
t0 (Ti,Kj)− Cobs

t0 (Ti,Kj)
∣∣2 > ε, (3.26)

where Cmodel
t is the price of a call option at time t given by the model and ε is a threshold fixed

a priori.
Thus, we can define the following hitting times: for i ∈ N,

τ0 := inf {t > t0 : ∆Ct > ε}
τi+1 := inf {t > τi : ∆Ct > ε} .

(3.27)
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As already underlined in [KK15], the model price Cmodel
t can be expressed as a measurable

function of the codebook θ satisfying Equation (3.24). In particular, since it is a progressively
measurable process (it is right-continuous on a complete probability space), we can use Début
theorem, which tells us that the sequence (τi)i=N0 is in fact made by stopping times.
Remark 3.5.1. Since we are in the same framework as [DZ14], and indeed we could generalize all
results to infinite dimensional Brownian motion, it is worth mentioning that the solution process
θ satisfies the strong Markov property.

The strictly increasing sequence (τi)i=N0 is important since it is at these random (stopping)
times that we have to run a new calibration procedure for the model. Both the “true” state
variables X and V and the parameter process p are allowed to change in order to have ∆Ct0

less
than ε again. This is just the only first calibration problem we need to solve. Indeed, in order to
compensate the changes caused by the new parameters, we have to modify Ft. In particular, we
can calibrate the so-called Hull-White extension part, which enters Ft as the cumulant generating
function µL of the Lévy process L. This re-calibration ensures that we are not breaking the
validity of Equation (3.25), while allowing for an “exact” match (in the sense of having ∆Ct < ε)
with the observed data. Once µL is recovered, we are able to write down again the equation for
the codebook θ. We can summarise this last passage more mathematically by introducing an
operator I such that

I : Θ× Rn+m
+ → IncR

n×C ,
(
p, (Cobs)

)
7→ µL. (3.28)

Remark 3.5.2. The cumulant generating function µL identifies uniquely L if and only if the process
L has finite moments of order n for all n ∈ N. If we denote with νL the Lévy measure associated
to L, then this is true if and only if

∀n ∈ N,
∫
‖x‖≥1

‖x‖n νL(t, dx) <∞.

Eventually, we are now ready to give the definition of Consistent Recalibration (CRC) model
with piecewise constant parameters p:

Definition 3.5.3 (Consistent Recalibration Model with Piecewise-constant p). Let (Ω,F ,F,P)
be a complete filtered probability space. The quintuple (θ, (X,V ), p, L, (τi)i∈N0) is called consistent
recalibration model for equity derivative pricing if for the stochastic processes (θ, (X,V ), p) with
values in H × (Rn × C)×Θ there exists a jump Lévy process L (with finite moments) such that
the following conditions are satisfied for all n ∈ N0:

(i) The Hull-White extension L on [τn, τn+1] is determined by calibration to θ(τn) through µL:

θ(τn)(u, 0) = κθ(τn)(u, 0; 0),
µL(τn) = I

(
p(τn), (X(τn), V (τn)), Cobs

τn

)
,

and for t ∈ [τn, τn+1] we have

L(t) = S(t− τn)L(τn).

(ii) The evolution of (X,V ) on [τn, τn+1] corresponds to the Hull-White extended stochastic
volatility affine model determined by the parameters p(τn) and by the process L(τn):

(X,V )(t) =
(
Xτn,X(τn), V τn,V (τn)

)
(t) for t ∈ [τn, τn+1],
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where (Xs,x, V s,v) is the unique solution of the system of SDEs (3.23) on [s,∞) with initial
conditions X(s) = x and V (s) = v and with Lt replaced by Lt−s. Implicitly, we also assume
that all parameters p that enters the model are admissible (with the usual meaning).

(iii) The evolution of θ on [τn, τn+1] is determined by X and V according to the prevailing
Hull-White extended stochastic volatility model: for t ∈ [τn, τn+1] and x ∈ [0, τn+1 − τn]

θ(t)(−iu, x) = Fτn+x(u, ψC(u, 0;x)) + 〈RC(u, ψC(u, 0;x)), V (t)〉 .

For the processes (X,V ) and θ, we use the same symbols as in Equations (3.23) and (3.24),
with a slight abuse of notation, since these stochastic processes evolve in the intervals [τn, τn+1]
following the same dynamics, but according to the parameters p(τn) and to the process L(τn).
The parameters p remain constant in each interval of the type [τn, τn+1) and, by construction,
(θ, (X,V )) is continuous on every stopping time τn.
In this sense, any CRC model can be seen as the concatenation of stochastic volatility affine
models with static parameters.

We can now prove the following.

Theorem 3.5.4. Let (θ, (X,V ), p, L, (τi)i∈N0) be a consistent recalibration model as in Definition
3.5.3 and S = exp(X) the discounted price process. Then S and European call (resp. put) option
prices Ct(T,K) (resp. Pt(T,K)) are (true) martingales on R≥0. Moreover, if we denote the
payoff function of a call option as V (y) = (y −K)+, then the following pricing formula holds:

Ct(T,K) = ert

2π

∫ iIm (z̃)−∞

iIm (z̃)+∞
ΨT (−z)V̂ (z) dz, (3.29)

where τn+1 > T ≥ τn for some n ∈ N, z̃ belongs to the analytic strip for which we have finite
exponential moment (cf. Remark 3.1.2), V̂ denote the Fourier transform of V and ΨT |τn is the
characteristic function of XT , i.e.

ΨT |τn(u) = E
[
ei〈u,XT 〉 | Fτn

]
= e

i〈u,Xτn 〉+
∫ T

0
θτn (u,r) dr

. (3.30)

Proof. From point (ii) of Definition 3.5.3 we have the couple (X,V ) is a stochastic volatility
model on each interval of the type [τn, τn+1], from which martingality of S follows by taking the
conditional expectation and noting that, by Definition 3.4.1, we automatically have θ(0, x) = 0
for any x ≥ 0. We can further extend this result on R≥0 because, by our own construction, the
concatenation of the entire process is made in a continuous way.
Once it is established that S is a martingale, the same property follows for European call and
put options by use of the tower property of the conditional expectation.
The pricing formula (3.29) comes from Fourier pricing, which was initially introduced by Carr
and Madan in [CM99], while (3.30) comes from Corollary 3.2.1 where the characteristic process
has been expressed in Musiela notation.

Remark 3.5.5. Having shown that the discounted price process S and derivatives’ prices are mar-
tingales, we automatically rule out arbitrage possibilities for the so-called consistent recalibration
models introduced in Definition 3.5.3.
Remark 3.5.6. Note that the from (3.30) we see that the characteristic process θ encodes inform-
ation on the conditional expectation of X, which is equivalent, as already noted in [RT17] to
the knowledge of the entire derivative-price surface, thanks to Breeden–Litzenberger formulas
([BL78]).
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3.6 Deep calibration

Remark 3.5.7. Equation (3.29) can be generalized to other payoff function and is usually enriched
with a dampening factor which is introduced to exploit numerical algorithm ([CM99]). In our
case, we will use Fourier-pricing techniques in order to obtain the dataset for a supervised learning
algorithm.

3.5.1 Numerical considerations

There are practical remarks that we should consider when dealing with CRC models as defined
above in a numerical

• Simulations: As already mentioned in [Har+18], it is worth noting that simulating (X,V )
is much easier than simulating the HJM codebook, that is θ, in particular when this is
infinite dimensional, as it could be the case also here. In fact, with the approach we are
outlining, we do not need to simulate anything from any infinite dimensional distribution.

• Drift term: Even if we wanted to simulate θ solving the SPDE (3.24), we should be able
to write down explicitly the drift term µCNKK(θ), but, apart from some degenerate cases,
this is not possible. The only way to overcome this chasm is acknowledging Equation (3.25)
as a key relation for the entire construction.

• Process p: If we assume that a piecewise process for the parameters p is given (or obtained
through calibration), then CRC models can be simulated following steps (i) to (iii) in
Definition 3.5.3.

• Operator I: Last but not least, we have not specified precisely how the operator I is
acting. For the moment, we will consider it as an abstract operator. This is anyway of
great relevance because once we are able to recover L (or, alternatively, µL), we can obtain
θ through Equation (3.25). Otherwise speaking, we could solve SPDE (3.24).

3.6 Deep calibration

3.6.1 An ill-posed inverse problem

If we look more closely to steps (i) − (iii) of Definition 3.5.3, it is possible to realize that the
more complex aspect is given by the application of the operator I. This is basically a calibration
conditioned on some (new) parameters and state variables whose complexity depends on the
distribution of the Lévy process L. In general, this is not a trivial operation, since it consists
in solving an inverse problem that is ill-posed in the sense of Hadamard even for the easiest
cases (e.g. Bates model). The inverse problem is ill-posed because of an identifiability issue,
which means that the information coming from market data is insufficient to exactly identify
the parameters. If we express the quantity ∆Ct of Equation (3.26) as a function of the model
parameters ϑ, that is

∆Ct(ϑ) =
n∑
i=1

m∑
j=1

∣∣Cmodel
t (ϑ;Ti,Kj)− Cobs

t (Ti,Kj)
∣∣2 ,

we can write the identifiability problem as the fact that the function ∆Ct(ϑ) has many local
minima. Furthermore, it is in general unclear whether these minima can be reached by the
adopted algorithm. For example, Cont and Tankov show in [CT04] that if one had available a set
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of call options prices (or, equivalently, implied volatilities) for all strikes (in a given time interval!)
and a single maturity, then it would be possible to deduce all the parameters of the model and,
in particular, the Lévy triplet. But in reality this is never the case, since we only know prices for
a finite number of strikes and, in addition, we also have observational errors in the data. As a
result, we have a serious identification problem, exemplified by the fact that we can obtain the
same prices for (infinitely) many combinations of the parameters. The strategy which they begin
to develop in [CT04] and complete in [CT06b] is the use of the Kullback-Leibler divergence, also
called relative entropy, as a regularizer in order to get a well-posed inverse problem.
To overcome this issue, we decided to follow a different strategy, making use of the implicit
regularization present in neural networks.

3.6.2 Learning the inverse map

Andres Hernandez was among the first who tried neural networks (NN) to address calibration
tasks in Finance. In [Her16], he showed that a feedforward NN can actually approximate the
inverse map given by the pricing formula and obtain the two parameters of the Hull-White interest
rate model (a, σ) as output of a NN. Just as a reminder, the Hull-White model consists of the
following SDE

dr(t) = [β(t)− ar(t)] dt+ σ dW (t),

where a, σ > 0 and β(t) is uniquely determined by the term structure8. The greatest achieve-
ment that he highlighted in the paper is the possibility of replacing the traditional “slow” and
cumbersome calibration procedure with a new straightforward deterministic map, which makes
calibration itself a very efficient task, since the core of all calculations is offset to the training
phase. In fact, once a NN is trained, its application is extremely cheap from a computational
point of view, being the most expensive operations simple matrix vector multiplications.

Despite the good results obtained by Hernandez, learning the map from the prices to the
parameters can be critical, since this map is not known in explicit form. In principle, we do not
even know if the universal approximation theorem could be applied, because the direct map
could not be bijective (thus having a discontinuous inverse function). In general, since the inverse
map is not known, we lack control on it and it might well be that a NN learns appropriately the
map on the given training sample, but is not able to generalize on out-of-sample data. This is
actually what happened when we tried to apply this approach to our problem since our situation
is considerably more involved than Hernandez’.

For this reason, it is a better idea to learn the direct (or forward) map from the parameters to
the prices/implied volatilities. This is done, for example, by Horvath and coauthors in [HMT21],
where they implemented a feedforward NN to directly get the volatilities from the model para-
meters. Note that for the training of the networks, the data are artificially generated and the
grid of strikes and maturities is fixed at the beginning. Again, the most appealing advantage
they see in the application of NN is the possibility of enabling live calibration of derivative instru-
ments, since the application of the NN itself only requires milliseconds avoiding the traditional
bottleneck of calibration. This allows making use of new models that were before considered
too computationally expansive for use, such as the rough volatility models (e.g. rough Heston or
rough Bergomi model, which require Monte Carlo algorithms).

Despite the encouraging results found in [HMT21], there are still some inconveniences using
8This curve is calibrated through the derivative of the instantaneous forward rate f(t, T ) at time t = 0, i.e.

β(t) = ∂f(0,t)
∂T

+ af(0, t) + σ2

2a

(
1− e−2at

)
once the other two parameter a and σ have been calibrated.
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this last approach. If on one hand the advantages on the speed side are evident, on the other
there are still downsides that are relevant, but not addressed by this kind of solution. Indeed,
problems might come by the second step of this procedure, as denoted in [HMT21], which is the
real calibration. Even if we have to face a deterministic optimisation problem, this might not be
as easy as it seems, in particular for multidimensional models. In these cases, we might need to
use a local optimiser to speed up, which usually requires prior knowledge about the solution, or
a global optimiser, which might take longer time.

To overcome these issues, we propose a new method that allows learning the inverse map,
as already done by Hernandez, even for ill-posed problems. It is our wish to underline that the
same idea could be used to learn the inverse map and solve inverse problems in fields other than
mathematical finance. Adopting the same approach as Hernandez did not work out in our case,
because of identifiability issues: different combinations of parameters in the stochastic volatility
Hull-White extended affine model result in the same volatility surface. Thus, our idea is allowing
a neural network to decide autonomously which parameters giving as output knowing that these
parameters will then have to give rise to the prescribed volatility surface. In this way, we will
also be able to learn the operator I defined in (3.28).

In order to make the system works, we need two neural networks. The first, denoted in
the following as NN1, is a map between parameters and volatilities (basically, the usual pricing
function, as learnt in [HMT21]), while the second, called NN2, maps volatilities to parameters
(but is not trained in the usual way); in our case, to the parameters defining the Lévy process L.
Then, we compose the two networks, where the first is trained, while the second is not, to obtain
a new neural network NN3 which receives in input volatilities and returns the (same) volatilities:

NN3 := NN2 ◦NN1 .

In other words, NN3 will learn the identity and, during the training phase, NN2 will get trained.
In this respect, we can see NN2 as the inverse neural network of NN1. The trick is as simple as
that. However, notice that we might not recover exactly the same parameters that gave birth to
the original IVS, but an equivalent9 combination that resulted in the same surface through NN1.

3.6.3 Numerical implementation

In broad terms, the numerical implementation follows the model outlined in Section 3.3, where
the process L is a compensated compound Poisson process in which the size of jumps is normally
distributed. Since the parameters are allowed to change in time, the mean and variance of
the Gaussian distribution for the jump-size of L are time-dependent, while the Poisson rate is
considered constant in time. The same holds true for the other parameters belonging to the
“Heston” part, with the exception of the interest rate r, the dividend rate q and k, which is the speed
of mean reversion for the variance process. We decided to free ourselves from a static framework
and to have a variable maturities-strikes grid. More precisely, we used ten different time-to-
maturities {τi}10

i=1, with τ1 < · · · < τ10 ranging between 7 and 440 days (extremes included),
being more concentrated for short maturities, and thirteen different moneyness m1 < · · · < m13
ranging between 0.8 and 1.2 (extremes included) in strictly increasing order. One difference with
the generalized Bates model described in Section 3.3 is that we have a maturity-dependent jump
distribution: mean and variance depend on the maturity in the sense that they are piecewise

9We could think of the combinations selected by the neural network as the representatives for an equivalence
class, where all members originate the same implied volatility surface.
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Figure 3.2: Keras representation of NN3 (with just 2 “main” hidden layers instead of 4 for NN2 to fit the
picture in the page). NN1 is summarised as model 1 at the very bottom. Between the 2 wanted hidden
layers elu 2 and elu 4, it is possible to find another layer (in this sense the nomenclature 1-cell that we
used in the text).
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constant within two adjacent time-to-maturities, therefore, the process L is here modelled through
11 parameters: the Poisson rate and then 5 tuples mean-variance for the normal distributions.

The first neural network, i.e. NN1, is a 1-cell10 residual feedforward NN (see [He+16] for more
information on ResNets) composed by 4 “main” hidden layers with 1024 nodes each. The input
layer has dimension 41 and includes

r, q, {τi}10
i=1, {mi}13

i=1, v0, k, θ, σ, ρ, λ, {νi}5i=1, {δi}5i=1,

where νi and δi are the mean and standard deviations of the normal distributions for the jump
size. The output layer has dimension 130 and includes the entire point-valued volatility surface,
denoted as

{IVSi}130
i=1.

The activation function used for all layers (apart from the output layer) is ELU. This network is
trained first with artificially generated data: all parameters are sampled from uniform distributions
whose extremes (parameters) are defined a priori (and are kept fixed throughout the process).
Then, QuantLib Python routines (see [AB+03]) are used to obtain in an efficient and fast way
all the necessary prices. Implied volatilities are then retrieved through the algorithm outlined by
Fabien Le Floc’h in http://chasethedevil.github.io/post/implied-volatility-from-b
lack-scholes-price/ and implemented in Python.

Second, NN2 is created, but not (immediately) trained. As already explained, this second
neural network will be trained only after being composed with the trained NN1, which will be
marked as non-trainable in this second phase. This composed NN is called NN3. In order to
learn the operator I, NN3 will be trained and, as a side result, NN2 will be also trained. That is
to say that NN3 is just used as a mere tool to arrive to get NN2 trained as well. Finally, it will
be then separated from NN1. As already said, the goal of NN3 is basically learning the identity
function. Thus, the input of NN2 is the following:

θ, σ, ρ, {IVSi}130
i=1,

while the output, since we have to learn the Lévy process L, is

{νi}5i=1, {δi}5i=1.

From an architectural viewpoint, NN2 has 4 “main” hidden layers with 1024 nodes each. The
activation function is ELU, as for NN1. While training NN3 (and, implicitly, NN2), we have to
provide as output the entire implied volatility structure {IVSi}130

i=1, while as input the concatena-
tion of the complete input of NN2, plus the incomplete input of NN1, that is everything listed
above apart from {νi}5i=1, {δi}5i=1, which have to be guessed during the training. To obtain a
satisfactory training procedure, we tried also different activation functions for the output layer
of NN2. In the end, the best results were reached using the standard sigmoid function stretched
to completely cover the intervals11 in which νi and δi were (randomly) extracted. Without this
precaution the training process could not converge to a reliable result.
For both training processes, we used the mean squared error on the implied volatilities as loss
function, since we were dealing with regression-type tasks (other loss functions were tried, but
they gave birth to NNs that were operating more poorly). To obtain better results, it was really
helpful also the linear transformation operated on the input and output data: outside of the
implied volatilities which were kept unchanged, all other quantities were scaled to reside in the

10With this, we mean that between the predefined hidden layers we only find one time the application of the
activation function (basically, another hidden layer). The situation might be clearer by looking at Figure 3.2.

11Instead of the interval [0, 1] which represents the codomain of the function.
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interval (0, 1). Moreover, as it is possible to see from Figure 3.2, we made use of batch normaliza-
tion ([IS15]), while we avoided drop-out ([Sri+14]). Training has been performed using the adam
algorithm ([KB15]). The best batch size for both training processes was 1’000 (out of a database
made of around 600’000 elements). All hyperparameters have been selected after tuning the
networks, using not only manual adjustments, but also other techniques like randomized search.
The whole neural network architecture was developed using Tensorflow ([Aba+15]) and Keras
([Cho+15]). A schematic representation can be found in Figure 3.3.

3.6.4 Graphical results

In this subsection, we report some of the pictures produced using the model outlined in Section
3.5 with Python and the graphical package Matplotlib12.
In the first case, plotted figures represent a 3D representation of implied volatility surfaces
together with a heat-map reporting the (pointwise) differences between the original implied
volatility surface (Original IVS) and the one obtained by application of neural network NN1 (New
IVS), which takes parameters in input as return the IVS on a grid given by 13 moneyness (or
strikes) and 10 maturities. The heat-map was produced using the command pcolormesh. All
(input) parameters were randomly generated from a uniform distribution, the same used for the
generation of training data (but of course not used during the training process). For sake of
simplicity, here we calibrated just one couple (ν, δ) for each volatility surface.

Figure 3.4: Parameters: S0 = 100, r = 0.0205, q = 0.03, V0 = 0.0001, κ = 7.797, θ = 0.247, σ = 0.280,
ρ = 0.042, λ = 0.081, ν = 0.159, δ = 0.205

12J. D. Hunter, ”Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineering, vol. 9, no.
3, pp. 90-95, 2007
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Figure 3.5: Parameters: S0 = 100, r = 0.0068, q = 0.0161, V0 = 0.0951, κ = 5.421, θ = 0.370, σ = 0.224,
ρ = 0.242, λ = 0.289, ν = 0.087, δ = 0.249

Figure 3.6: Parameters: S0 = 100, r = 0.0111, q = 0.0021, V0 = 0.0552, κ = 8.698, θ = 0.106, σ = 0.391,
ρ = -0.12, λ = 0.491, ν = -0.202, δ = 0.287
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3.6 Deep calibration

On the other hand, in the next figures we will take into consideration the neural network
we called in Section 3.6 NN2. Figures 3.7, 3.8 and 3.9 were basically obtained after one loop
of Algorithm 3, in the sense that we started from an IVS generated by a model in which the
price process and the variance process evolved in time (step 3 in the algorithm), we let the 3
parameters θ, σ and ρ changing according to exogenous dynamics (essentially, normal noise) and
then we exploited NN2 to recover the jump parameters that would give rise to the same IVS
(IVSnew in the same algorithm). Note that the ‘Original IVS’ (in the plots) are obtained for
Figures 3.7 and 3.8 in an analytical way, while in Figure 3.9 the ‘Original IVS’ is the output of
NN1. The fact that the error is zero everywhere, although the starting and derived (by NN2)
parameters are not the same, means that the inversion of the neural network is indeed effective.

Figure 3.7: Parameters: S0 = 99.783, r = 0.0521, q = 0.0082, V0 = 0.0037, κ = 6.924, θ = 0.146,
σ = 0.328, ρ = -0.08, λ = 0.295, ν = -0.286, δ = 0.211; after 1 loop and using NN2 θ = 0.142, σ = 0.339,
ρ = -0.08, ν = -0.238, δ = 0.299
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Figure 3.8: Parameters: S0 = 100.26, r = 0.0111, q = 0.0021, V0 = 0.0663, κ = 8.698, θ = 0.106,
σ = 0.391, ρ = -0.12, λ = 0.491, ν = -0.202, δ = 0.287; after 1 loop and using NN2 θ = 0.102, σ = 0.408,
ρ = -0.12, ν = -0.279, δ = 0.300.

Figure 3.9: Parameters: S0 = 100.83, r = 0.0068, q = 0.0161, V0 = 0.1046, κ = 5.421, θ = 0.370,
σ = 0.224, ρ = 0.242, λ = 0.289, ν = 0.087, δ = 0.249; after 1 loop and using NN2 θ = 0.357, σ = 0.218,
ρ = 0.251, ν = 0.289, δ = 0.300.
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3.6 Deep calibration

3.6.5 A side result: moving IVS

Having a concrete numerical tool that allows the recalibration of our model online and basically in
an instantaneous way has another “cheerful” consequence. Let us imagine, for the moment, that
the dynamics of the parameters p are known. If this is the case, then we can model for indefinite
time the evolution of an implied volatility surface without breaking any arbitrage constraints,
neither static nor dynamic ones. To our knowledge, it is the first time that this achieved in an
efficient way, one impressive other implementation has been presented in [CMN17]. The algorithm
used to accomplish that is outlined in Algorithm 3.

Algorithm 3: No-arbitrage evolution of IVS
1 Pick initial values for the state variables (value of asset X and variance V ), the Heston

parameters (θ, σ, ρ and k), the jump-frequency ∼ Pois (λ dt) and the jump-size normal
distribution ∼ N (νi, δ2

i ) for i = 1, . . . , 5. Parameters λ and κ remain fixed throughout
the procedure;

2 Compute the implied volatility surface (IVS) given the initial values;
3 Bates step: update the two state variables X and V in Xnew and Vnew;
4 Compute the new implied volatility surface IVSnew given Xnew and Vnew;
5 Heston-parameter step: update the three parameters θ, σ, ρ according to an

exogenously given dynamics and obtain θnew, σnew, ρnew;
6 Given IVSnew together with θnew, σnew, ρnew, compute the new parameters

(νnew
i , δnew

i )5
i=1 such that the IVS obtained with Xnew, Vnew, ρnew, θnew, σnew, λ, k and

(νnew
i , δnew

i )5
i=1 equals to IVSnew);

7 Overwrite the initial parameters with the new parameters (having the sub/super-script
new);

8 Restart from point 3.

As already written in the algorithm and for our purposes, we decided to initially pick randomly
the parameters θ, σ, ρ, but then letting them evolve according to very simple dynamics, namely
adding some noise to the current value to get the new one. The variance of the Gaussian noise
has been chosen relatively small and values are scaled if they overcome a certain threshold, so
that the relative change (with respect to the initial value) could not exceed 5%. In addition, we
made sure that the Feller condition was always satisfied and that the values could not exit the
natural domains we assigned them. For example, if the correlation ρ were brought outside of the
interval [−1, 1], then we would force it to remain inside by collapsing the value to the closest
extreme. For both θ and σ the interval [0.01, 0.5] was chosen.
Notice also that Steps 2, 4 and 6 of Algorithm 3 are made by neural networks, NN1 for 2 and 4,
while NN2 for Step 6.
The output of Algorithm 3 can be found in Figure 3.10, with dt is equal to one day and where
only selected days are shown.

Solving the same problem with the desired precision without neural networks would have
required an immense computational power, since the inverse problem is notably ill-posed and
the regularized inverse problem has to be solved at any point in time along the discretization
grid. This is possible on a standard laptop thanks to these techniques. Finally, it is important
to underline that we do not break any arbitrage condition because the CNKK drift condition is
fully incorporated in the steps of Algorithm 3.
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(a) 0 days (b) 12 days (c) 24 days

(d) 36 days (e) 48 days (f) 60 days

(g) 72 days (h) 84 days (i) 96 days

(j) 108 days (k) 120 days (l) 132 days

Figure 3.10: Evolution of an IVS with initial parameters S0=100, r=0, q=0, V0=0.20, κ=4.7,
θ=0.25, σ=0.2, ρ=-0.4, λ=0.28, ν=0.01, δ=0.01, maturities={45, 50, 60, 80, 120, 160, 210, 260, 330, 400},
moneyness={0.81, 0.83, 0.86, 0.90, 0.94, 0.98, 1, 1.02, 1.06, 1.1, 1.14, 1.17, 1.25}.
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3.6 Deep calibration

3.6.6 Python code

In the following, Listing 3.1 shows the implementation of the arbitrage-free evolution for the
implied volatility surface in time. One can clearly distinguish the role of the two different neural
networks NN1 and NN3 that represent the direct map between model parameters and IVS and the
inverse map, respectively. A series of pictures is then saved at each instant of time to eventually
produce a nice movie-animation.

1

2 def arbitrage_free_evol (self , NN1 , NN3 , transf_lin , seed =1, nb_times =1000 , useNN1 =
True , ** kwargs ):

3 """
4 Arbitrage Free Evolution of the IVS.
5 : param NN1: NN mapping params to ivs
6 : param NN3: NN mapping ivs and Heston params to Levy params
7 : param transf_lin : linear transformation
8 : param seed: optional , seed
9 : param nb_times : optional , number of iterations

10 : param useNN1 : optional , use NN1 for direct mapping or analytical mapping ?
11 : return : video with ivs that evolves in time without breaking arbitrage

constraints
12 """
13 np. random .seed(seed)
14

15 # Initial parameters for time 0
16 rd = self. dates_ql [0]
17 bat_obj = self. create_BatesTDJ_model (date = rd)
18 ir = bat_obj . risk_free_rate
19 dr = bat_obj . dividend_rate
20 lambd = bat_obj . lambd
21 kappa = bat_obj . kappa
22 delta_times = np.copy( bat_obj .ttm *365.) . astype (int)
23

24 # Input for NN1
25 params = self. combine_params_NN1 ( bat_obj )
26 # IVS
27 if useNN1 :
28 ivs = NN1. predict (np. array ( params )). ravel ()
29 else:
30 ivs = np. array (self. obtain_vola ( bat_obj ))
31

32 obs_str , params_str = self. params_string ( bat_obj = bat_obj )
33 plot_surface (Z=np. array (ivs), z_label =’ivs ’, main_title =’BatesTDJ IVS ’,

string1 =’, ’.join(o for o in obs_str ), string2 =’, ’.join(p for p in params_str
), delta_times = delta_times . tolist () , strikes = bat_obj .strikes , folder =’Images ’,

counter =0, seed=seed , ** kwargs )
34

35 i = 1
36 while i <= nb_times :
37 theta = bat_obj . theta
38 sigma = bat_obj . sigma
39 rho = bat_obj .rho
40 moneyness = bat_obj . moneyness
41 S_new , v_new = bat_obj . bates_tdj_step ()
42 # Update moneyness to keep strikes constant
43 moneyness_new = moneyness * S_new / bat_obj . spot_price
44 print (’New spot price : ’, S_new )
45 bat_obj = self. create_BatesTDJ_model (date=rd , ir=ir , dr=dr , sp=S_new , v0=

v_new , rho=rho , sigma =sigma , theta =theta , kappa =kappa , lambd =lambd , nu= bat_obj
.nu , delta = bat_obj .delta , delta_times = delta_times , moneyness = moneyness_new )

46 params = self. combine_params_NN1 ( bat_obj )
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47 print (’params :’, params )
48

49 # Obtain IVS ( there are 2 possibilities )
50 input_NN1 = np. array ( params )
51 if useNN1 :
52 ivs = NN1. predict (input_NN1 , goal=’find_iv ’). ravel ()
53 else:
54 ivs = np. array (self. obtain_vola ( bat_obj ))
55

56 # Plot the IVS
57 obs_str , params_str = self. params_string ( bat_obj = bat_obj )
58 plot_surface (Z=np. array (ivs), z_label =’ivs ’, main_title =’BatesTDJ IVS ’,

string1 =’, ’.join(o for o in obs_str ), string2 =’, ’.join(p for p in params_str
), delta_times = delta_times . tolist () , strikes = bat_obj .strikes , folder =’Images ’,

counter =i, seed=seed , ** kwargs )
59

60 # Update the parameters rho , theta , sigma
61 std_dev = 0.05
62 noise = np. random . normal (loc =0, scale =std_dev , size =(1 , 3))
63 # Noise must be proportional to parameter absolute value
64 noise [:, 0] = self. __control_noise_level ( noise = noise [0, 0], param = theta )
65 noise [:, 1] = self. __control_noise_level ( noise = noise [0, 1], param = sigma )
66 noise [:, 2] = self. __control_noise_level ( noise = noise [0, 2], param =rho)
67 # Clip so they do not go outside of chosen bounds
68 params_old = np. array ([ theta , sigma , rho ])
69 params_new = np.clip( params_old +noise , batdj_lhs_min [5:8] , batdj_lhs_max

[5:8]) . squeeze ()
70 print (’params_new : ’, params_new )
71

72 # Feller condition
73 while 2* kappa * params_new [0] <= params_new [1]**2:
74 print (’Feller condition not satisfied .’)
75 params_new [0:2] = self. control_Feller (theta , sigma , std_dev )
76 # Clip again
77 params_new = np.clip( params_new , batdj_lhs_min [5:8] , batdj_lhs_max

[5:8])
78

79 # Input for NN3
80 input_NN1 = input_NN1 . reshape (1, -1)
81 ivs = ivs. reshape (1, -1)
82 input_NN3 , partial_nn1_input = training_data_NN3 (x=input_NN1 , y=ivs , save=

False )
83 input_NN3 = transf_batdj_NN3_in2 (input_NN3 , transf_lin . transform )
84 jump_params = NN3. predict ( input_NN3 ). squeeze ()
85 print (’jump_params :’, jump_params )
86 print (’Is S_new the same as bat_obj . spot_price ?’, S_new == bat_obj .

spot_price )
87 nu_new = jump_params [: nb_js_params ]. astype ( float )
88 delta_new = jump_params [ nb_js_params :]. astype ( float )
89 bat_obj = self. create_BatesTDJ_model (date=rd , ir=ir , dr=dr , sp=S_new , v0=

v_new , rho= params_new [2] , sigma = params_new [1] , theta = params_new [0] , kappa =
kappa , lambd =lambd , nu=nu_new , delta =delta_new , delta_times = delta_times ,
moneyness = moneyness_new )

90 i += 1
91 print (i)
92 # Create video : Need to import pkgs os , glob , subprocess
93 video_name = ’IVS_seed ’+str(seed)+’_times ’+str( nb_times )+’_stddev ’+str( std_dev

)
94 if useNN1 :
95 video_name = video_name + ’_NN1 ’
96 video_name = video_name + ’.mp4 ’
97 os. chdir (’Images ’)
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98 subprocess .call ([
99 # framerate ==2 means 2 frames per second

100 ’ffmpeg ’, ’-y’, ’-framerate ’, ’4’, ’-i’, ’file %02 d_seed ’+str(seed)+’.png ’,
’-pix_fmt ’, ’yuv420p ’, video_name ])

101 for file_name in glob.glob(’*. png ’):
102 os. remove ( file_name )

Listing 3.1: Code for implementation of the IVS no-arbitrage evolution. This function is actually a public method
of the class that handles Bates models (this is the reason for the self among the function arguments).

3.7 Finite dimensional realizations
for CNKK equations

For completeness, we formulate a geometric interpretation of CRC models gathering technical
material from [FT02] and [FT03] on which we heavily rely. In the sequel, we shall consider the
classical problem of finding (minimal) finite dimensional realizations that contain solution, in
a mild sense, to the CNKK SPDE (3.21). Let us take into account particular vector fields σ,
which only depend on the state of the forward characteristic θ via a tenor 0 ≤ x1, . . . , xn of
times-to-maturity, through continuous linear functionals `. In particular, we would like to find con-
ditions under which these kind of vector fields σ will lead to an affine solution of the CNKK SPDE.

Recall that G is a Hilbert space of continuous complex-valued functions defined on the strip
−i[0, 1]n × Rn, i.e. G ⊂ C((−i[0, 1]n) × Rn;C) and H a Lévy codebook Hilbert space as in
Definition 3.4.1. Theory is developed on the Fréchet space defined as domain of the operator A∞:

D(A∞) :=
⋂
n∈N

D(An),

equipped with the family of seminorms

pn(h) =
n∑
i=0

∥∥Aih∥∥
H
, for all n ∈ N0.

Note that in this setting the operator A acts as a bounded operator on D(A∞) ([FT02]). To
specify the mathematical framework, we need some definitions.

Definition 3.7.1 (Local CNKK model). Let U be a convex open set in H. A (local) CNKK
model in U is formed by a set of maps (σ1, ..., σd) : U → H such that (3.21) admits a unique
U-valued (local) solution for every initial term structure θ0 ∈ U .

Definition 3.7.2 (Finite dimensional realization). We say that (σ1, ..., σd) admits an n-
dimensional realization around θ0 if there exists an open neighbourhood V 3 θ0 in U ∩D(A∞),
an open set U in R≥0 × Rn−1, and a C∞-map α : U × V → U ∩D(A∞) such that

1. ∀θ ∈ V, θ ∈ α(U, θ);

2. for every (z, r) ∈ U × V , Dz(z, r) : Rn → D(A∞) is injective;

3. for all (zi, ri) ∈ U × V , α(z1, r1) = α(z2, r2) implies Dzα(z1, r1)(Rn) = Dzα(z2, r2)(Rn)
(same tangent spaces);
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4. for every θ? ∈ V there exists a U -valued diffusion process Z and a stopping time τ > 0 such
that

θt∧τ = α(Zt∧τ , θ?) (3.31)

is the (unique) local solution of (3.21) with θ0 = θ?.

From the above definition, one can recognise that α is actually the parametrization of an n-
dimensional submanifold with boundary Mθ in U ∩D(A∞). Thus, we can rewrite Equation (3.31)
as θt∧τ ∈Mθ? and we can look for the solution being in a (sub)manifold.

Definition 3.7.3 (Locally invariant manifold). A manifold M of U ∩ D(A∞) is said to be
locally invariant for Equation (3.21) if for every θ? ∈M the local solution θt of (3.21) satisfies
θt∧τ ∈Mθ? for some stopping time τ > 0.

An essential role is played by Banach maps:

Definition 3.7.4 (Banach map). Given a Fréchet space E, a smooth (i.e. C∞) map P : E ⊃
U → E is called a Banach map if there exist smooth (not necessarily linear) maps R : E ⊃ U → B
and Q : B ⊃ V → E such that P = Q ◦ R, where B is a Banach space and U and V are open
sets.

We are now ready for the following definition:

Definition 3.7.5 (Tenor-dependent volatility). We call the volatility vector fields σ1, . . . , σd of
a CNKK equation tenor-dependent if

• we have that
σi(θ) = φi(`(θ)), 1 ≤ i ≤ d,

where ` ∈ L(H,Gp), for some p ∈ N, and φ1, . . . , φd : Gp → D(A∞) are smooth and
pointwise linearly independent maps. Moreover, since it can be shown (Lemma 4.4 in
[FT03]) that the drift is also a Banach map, we set

µCNKK(θ) = φ0(`(η)),

where φ0 : Gp → D(A∞) is smooth. We usually have to assume `1(η) = η(0, .);

• for every q ≥ 0, the map

(`, ` ◦ (d/dx), . . . , ` ◦ (d/dx)q) : D ((d/dx)∞)→ Gp(q+1)

is open.

Before continuing, it might be useful to recall some concepts from geometry.

Definition 3.7.6 (Distribution). Given a Fréchet space E, a distribution on U open subset of
E is a collection of vector subspaces D = {Df}f∈U of E. A distribution D on U is said to be
involutive if for any two locally given vector fields X1, X2 with values in D (i.e. Xi(f) ∈ D(f)
for any f ∈ U) the Lie bracket [X1, X2] has also values in D.

Definition 3.7.7 (Weak foliation). A weak foliation F of dimension n on an open subset U of
a Frechét space E is a collection of submanifolds with boundary {Mr}r∈U , usually called leaves,
such that
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i) for all r ∈ U we have r ∈Mr with dim(Mr) = n,

ii) the distribution
D(F )(f) := span{TfMr | r ∈ U with f ∈Mr}

has dimension n for all f ∈ U , i.e. given f ∈ U the tangent spaces TfMr agree for all
Mr 3 f . This distribution is called tangent distribution of F .

In general, we say that any distribution D is tangent to F if D(f) ⊂ D(F )(f) for all f ∈ U .

Finally, if define µ(θ) := Aθ+µCNKK(θ)− 1
2
∑d
j=1Dσj(θ)σj(θ), let us remind the reader about

the fact that the set generated by all multiple Lie brackets of the vector µ, σ1, . . . , σd generates
a Lie algebra, denoted as DLA. Moreover, let us define D as the distribution given by the same
vector fields, that is D := span{µ, σ1, . . . , σd}.

All these concepts are extremely important since they enter the formulation of a weak version
of Frobenius theorem (see Theorem 3.9 and Proposition 4.8 in [FT03] for a proof), connecting
elements from algebraic and geometric theories.

Theorem 3.7.8. Let U be an open set in D(A∞) and F an n-dimensional weak foliation on U ,
for n ∈ N. D is involutive ⇐⇒ D is tangent to F .

Being involutive is equivalent to saying that DLA ⊂ D(F ) on U . Therefore, the boundedness
of dim(DLA) is necessary for the existence of a weak foliation on U . If we assume that DLA has
constant and finite dimension NLA on the U open and connected set, then we can also prove next
theorem (Theorem 4.10 in [FT03]):

Theorem 3.7.9. Let U be an open and connected subset of the Fréchet space D(A∞) such that
dim(DLA) = NLA on it. For a tenor dependent volatility structure, there exist linearly independent
constant vectors λ1, . . . , λNLA−1 such that for 1 ≤ i ≤ d on U

DLA = span{µ, λ1, . . . , λNLA−1} and σi(θ) ∈ span{λ1, . . . , λNLA−1}.

If we introduce
Σ :=

{
θ ∈ U ∩D(A∞) |µ(θ) ∈ span{λ1, . . . , λNLA−1}

}
,

it is clear that we can only expect the results of Theorem 3.7.9 to be true on at most U∩D(A∞)\Σ.
It can be shown (again [FT03]), that Σ is closed and nowhere dense in D(A∞) and that we have
NLA = dim(DLA) ≥ dim(D) = d+ 1 on U ∩D(A∞) \Σ. This is the reason why all leaves of our
foliation will have dimension N ≥ 2.

But what is the aspect of these leaves? All forward characteristics remain within the finite
dimensional manifold with boundary given by{

Ft(u, ψC(u, 0;x)) + 〈RC(u, ψC(u, 0;x)), y〉
∣∣∣ (t, u, y) ∈ R+ × Rn × C

}
,

as one can see from (3.25), where the model parameters are fixed. Any θ ∈ U ∩ D(A∞) ⊂ H
forward characteristic will imply a system of (Riccati) ODEs which will intersect the leaf at most
one time. But if we are able to change the couple (Ft, RC), varying the model parameters, we
could obtain more intersections. From point 3 in Definition 3.7.1 on has that two leaves can
only intersect when the tangent spaces coincide and it is exactly on these intersection points
that recalibration takes place. In other words, one could say that it is because of these “collision”
that (Ft, RC) is allowed to change, avoiding remaining constant. In this sense, a CRC model

93



Chapter 3 - Consistent Recalibration Models for Equities

can be seen as the concatenation of different forward characteristics θ on different leaves (coming
from different weak-foliations) identified by the functional characteristics (Ft, RC) which can
evolve in time. Every time this selection is operated, the forward characteristic instantiates as a
finite dimensional realization in U ∩D(A∞) \ Σ. The HJM model is in this way tangent to the
Hull-White extended finite factor affine term structure model.

We conclude the section with one last theorem (Theorem 4.13 in [FT03]).

Theorem 3.7.10. Let σ1, . . . , σd be a tenor-dependent volatility structure of a CNKK model.
Assume furthermore that for initial values in a large enough subset of Γn the local mild solutions
θ of the CNKK equation leave leaves of a given foliation with constant dimension N ≥ 2 locally
invariant (finite dimensional realization).

Then there exist λ1, . . . , λNLA−1 such that σi(θ) ∈ span{λ1, . . . , λNLA−1}. This means in
particular that there exists a function At : Rn×R+ and an RNLA−1-valued process Z with Z0 = 0
for which

θt(u, x) = At(u, x) +
NLA−1∑
i=1

λi(u, x)Zit (3.32)

up to some stopping time τ , for x ≥ 0 and u ∈ Rn.

The stopping time τ is related to the definition of local mild solution (see [Fil01]).
Remark 3.7.11. The affine character of the representation of the solution process θ in (3.32) is
apparent. In particular this representation leads via the conditional expectation formula (in
case of global solution of the CNKK equation) to affine factor processes Z and a homogenous,
time-inhomogenous affine process (X,Y ).

3.8 Summary

In this paper, we tried to set up a new rigorous framework in continuous time for the dynamics of
volatility surfaces (or cubes, etc. . . ), a so called consistent recalibration models, with applications.
To do so, we took inspiration from similar work in discrete time by Richter and Teichmann
[RT17] and another paper by Harms et al. [Har+18], which builds the theory in continuous time,
but focusing on yield curves modelling. With respect to the latter, in our case we have a more
complex setting due to the more complex term structure, which is here enriched with a “strike”
dimension. This is reflected in what we called CNKK equation, a generalization of the more
popular HJM equation, but with considerably more involved drift term. It goes without saying
that this made the equation intractable from an analytical point of view.

To overcome this issue, we decided to represent the drift term using neural networks. We
therefore proposed a new way of solving the (ill-posed) calibration problem, by exploiting the
fact that composition of neural networks is still a neural network and by defining, in this sense, a
sort of inverse network applying implicit regularization. The same trick could be used for other
applications, also in branches other than mathematical finance, to solve inverse problems. The
use of neural networks was crucial to make numerical procedures tractable and to get information
on the solution of the CNKK SPDE. In this case, we can say that the neural network helped us
solving an equation which we could not even write down (explicitly).

Eventually, we could use the same inverse neural network to simulate the evolution in time
of an implied volatility surface, in this case generated by a generalized Bates model. To the best
of our knowledge, it is the first time this can be achieved for indefinite time without breaking
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3.8 Summary

arbitrage constraints. In this way, we are even implicitly building a realistic equity option market
simulator capable of avoiding any form of arbitrage.

It is worth noting that all four points of Box 1.1 have been addressed for the general case
of continuous strikes and maturities. The first two points on the absence of static and dynamic
arbitrage, respectively, rely on the theoretical considerations by Kallsen and Krühner ([KK15]);
the third rests also on results from Section 4.2 in [KK15]. Note, however, that this properties
do not cease to hold when moving in the consistent recalibration setting we presented here, by
sewing together in a suitable way all the spaced out affine tangent models. Finally, the fourth
point counts on machine learning technology, in particular neural networks and their proven
flexibility.
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Chapter 4

Model Free Deep Hedging

4.1 Which model?

Typically, in financial markets we need closed-form solutions that provide the price of a specific
derivative in order to find its value or, of equal importance, to estimate the parameters of a
determined model. A single calibration operation might require the evaluation of hundreds, when
not thousands, of such contracts. If an analytical formula is not available, then a fast numerical
procedure, for example involving numerical integration, is necessary. This explains why affine
models became very successful in the past years, in particular thanks to highly efficient Fourier
pricing technique developed by Carr and Madan in their seminal paper [CM99]. The requirement
for a fast computation is ineluctable and, in fact, it restricts dramatically the set of models we
can employ for derivative pricing.
The fitting criterion that is usually chosen is the minimization of the “least-squares error” which
can be re-interpreted as the maximization of the likelihood, under the hypothesis that the errors
between the model and the market are normally distributed. Moreover calibration is taking place
on the most liquid instruments, for which financial data are supposed to be reliable.

Once the best-fitting parameters have been fixed for a specific model, the same model is then
used to price other more exotic derivatives, which are usually more illiquid instruments, or also
to hedge, by considering the calibrated parameters as the true ones. This is justified by the fact
that the same pricing measure Q identified through calibration of the pricing process should be
used for the entire market. Resorting to statistical learning lingo, it is clear that this approach
completely ignores two kinds of errors (see also [Bac22]):

• Approximation error, which does not depend on the selected parameters, but rather on
the model pool that was chosen for parametrizing the liquid instruments, regardless whether
only underlying asset prices, or asset prices and derivatives (as in market models). Note
that approximation error is a deterministic function that can be viewed as a consequence of
the modelling assumptions. It is thus a consequence of the quant’s belief in a model pool.
In principle, the error can be reduced if we increase the complexity of the model, in such a
way that is able to capture more market features.

• Estimation error, which depends, on the other hand, on the specific parameters chosen
for the selected model class. In principle, if the model class is able to capture most of the
market characteristics, this error could be reduced having more and more observations, but,
as opposed to approximation error, it increases if model complexity is augmented. This
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kind of error is rather a stochastic function, because it depends on the available data: it
could be possible that a different family of financial instrument (randomly sampled by the
same underlying distribution) lead to a different set of (calibrated) parameters.

In financial mathematics (see, e.g. [Bur+19]), it is sometimes custom to group these two kinds
of errors under the term model uncertainty or, with a slight abuse of terminology, model risk.
In financial jargon, practitioners often used the distinctive - and rather charming - expression
unknown unknown: we do not simply know which model can best mirror the real world (and we
have to live with that). All we can do is gather information from the real world, either in the
form of past data or market expectations.
This is clearly different from financial risk, which is the risk associated to the real world being
stochastic. In other words (and roughly said), we do not know if the price of a stock will increase
or decrease on a fixed future day. But in principle, if we believe that our model is reflecting
reality, then we can quantify the probability of a particular event. For this reason, this risk is
referred to as known unknown.

4.1.1 A brief Robust-Finance detour

In order to systematically reduce model uncertainty, different solutions have been developed.
One of the most prominent and studied in mathematical finance has been robust finance. The
archetypal idea is considering a pool of models, usually characterized through different probability
measures, and then pricing or hedging looking at min-max solutions of optimization problems.

A classical example may be trying to optimize the utility function computed on the final
reward of a portfolio, taking the infimum over a set of probability measure and the supremum
over all possible admissible strategies. An illustrative reference is [NN18], where the authors also
provide a very well written, detailed survey on the subject.

This approach has become popular after the financial crisis started in 2008. One of the
consequence was that researchers started to question the rationality of a unique probability
measure used for pricing and hedging, hence opening for more considerations of the so-called
Knightian uncertainty, in the sense of Frank Knight [Kni21]. He was among the firsts to point
out the difference between what is unknown, but can be quantified, “measured” (in his words),
and what is unknown and cannot be exactly estimated, naming the latter uncertainty and the
former model risk.
The purpose of this stream of research is to quantify uncertainty in the choice of pricing models,
i.e. probability measures, as opposed to other sources of risk, which can be quantified within a
specific pricing model, such as calibration error committed when approximating market elements
with model proxies.

More generally, an approach which involves the choice of an a priori set of probability measures,
as previously described, is called quasi-sure, and has been formalized for a discrete time settings
by Bouchard and Nutz in [BN15]. The market is ruled by a set P of probability measures, not
necessarily equivalent, that are given the task of determining which events are relevant and which
ones can be ignored (negligible). This formulation is desirable because it merges two different
point of views: on one hand, there is no attempt to model the stocks directly, but one sees the
distribution of the stocks as partially described by the current prices of the traded options, thus
leading to more model-independent methodologies. On the other hand, each P ∈ P is seen as a
candidate model on which a suitable selection, a “robust analysis”, has to be performed.

Recent developments on robust models for pricing and hedging have been moved forward,
for discrete time models, by Burzoni and coauthors, see, for example, [Bur+19] and references
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therein. In this and previous works, it is developed a scenario-based or pathwise approach, in
which the agent’s beliefs (or models) are equivalent to selecting a set of specific scenarios inside
a set of possible scenarios Ω. For instance, if the trader believes that stock prices are continuous,
then she will retain all scenarios that describe such continuous trajectories, implicitly admitting
Black-Scholes [BS73] and Heston [Hes93] models (to name a few), but discard all the others that
omit the desired property. The particular case that entails including all scenarios is often referred
to as the model-independent framework. While, for instance, choosing a particular probability
measure is a way of operating a selection on the same set Ω.

Both approaches look conceptually attractive from a practical point of view, because they allow
interpolation between a complete market model (see Section 4.3.2 for definitions and theorems),
where just one measure is present, and a generic “universally acceptable” market, where all
probability measures and scenarios, respectively, are allowed. Actually, the two mentioned
approaches have been proven to be equivalent by Ob lój and Wiesel [OW21] under mild technical
assumptions. Moreover, note that both procedures work on “elimination”: for [BN15] the concept
of equivalence between sets of probability measures is based on having the same negligible (polar)
sets1, and, after all, one needs to remove some probability measures to reduce the entire model
complexity; while for [Bur+19] the goal is removing possible trajectories, represented by subsets
of Ω, by including additional assumptions. In particular, if a path is deemed impossible by all
participants in the market, then this is eliminated.

The problems faced by robust finance are not the only ones in financial markets, even
if they are of utter importance. Other incongruities may arise from the flow of events, as
time passes. As we all know, observable or reckonable experiences can profoundly influence
financial markets and it might be that a calibration executed in the past is not anymore
valid for the current situation. This was clearly the case when interest rates began to be
negative as a consequence of macro-economic developments2. Another more recent example
comes from the COVID-19 crisis when futures on oil prices went also negative3. These
were not completely unforeseeable phenomena, but it might well be possible that the existing
models in use in most financial firms at those times were not able to capture these sudden changes.

What to do in this case?

Should we employ the model that was giving the most promising results at the moment of
calibration, or should we rather use a new model (maybe coming from a different family of
models) which is more suitable for the current situation?

This chapter is organized as follows: in the next section, we revise the work from Dümbgen-
Rogers’ ‘Estimate Nothing’, highlighting its main benefits and limitations. Then in Section 4.3
we introduce, for the sake of clarity, the concept of hedging in complete and incomplete markets,
laying down the theory that is used in Section 4.4 for Deep Hedging. Moreover, in Section 4.5
we merge Deep Hedging and Estimate Nothing to achieve a robust hedging technique, that is
profiting from both approaches and is able to address issues that they singularly entail. We call

1Given a measurable space (Ω,F) and a set of probability measures P on it, a subset A ⊆ Ω is said polar if
A ⊆ A′, with A′ ∈ F , and P(A′) = 0 for all P ∈ P. Any property is said to hold P-quasi surely if it holds outside
a P-polar set. That is why the name of this approach.

2See, for example, https://www.wsj.com/articles/draghi-says-ecbs-negative-rates-have-been-a-succe
ss-1507824716.

3See, for example, https://www.marketwatch.com/story/oil-prices-went-negative-a-year-ago-heres-wh
at-traders-have-learned-since-11618863839.
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this new methodology Model Free Deep Hedging. Eventually, Section 4.6 provides Python code
for the implementation of the crucial aspects of Model Free Deep Hedging.

4.2 Dümbgen-Rogers’ ‘Estimate Nothing’

As we have seen, in practice, the choice of the model is thus somehow made arbitrarily and,
besides such debatable choice, it may even lead to inconsistencies over time.

Box 4.1 − Model choice

This arbitrariness on the model choice depends on a series of constraints that are both of
practical and theoretical nature, in the sense that

1. it is heavily dependent on the availability of fast routines for pricing;

2. it normally ignores potential modelling errors, in particular modelling uncertainty,
even if this problem can be tackled with robust finance techniques;

3. it depends on a specific instant of time.

Addressing all these three points is not trivial at all. Moritz Dümbgen and Chris Rogers
came up in 2014 [DR14] with a brilliant idea building on top of Bayesian methods, probably
taking inspiration by the previous work by Bunnin and coauthors [BGR02].

Bayesian inference has a long history and it is common to date back this method to the
reverend Thomas Bayes, whose notes were collected by Mr. Price and published posthumously in
1763 [BP63]. The central idea is that we can modify a prior beliefs, expressed in mathematical
terms with a probability distribution, based on factual experience. The result of such update
is another distribution which is usually called posterior. This process can then be indefinitely
iterated to shape the distribution against observed events. For example, if such a distribution is
drawn over different values for the choice of a parameter, then it might be a wise idea to select
the parameter as the mode or the mean of the same distribution. This will obviously reduce the
amount of information we have on that parameter. For this reason, it might be even wiser to
withhold the entire distribution.

The first observation, which was already made in [BGR02], is that Bayesian inference can
operate not only by selecting among representative models in one pool, but also among different
pools. In fact, it is quite naive to think that the same model - even the same pool of models, such
as the stochastic volatility Heston model - can be always employed over time. Common sense
suggests that there is no model, among those that provide explicit formulas, that can outperform
the others consistently, no matter how complex it is, while it is rather likely that different models
will provide the best market description at different times.
At this point, the reader might have already guessed the idea of [DR14]. The authors decided
to let many models competing in the market to build a posterior distribution on the models
themselves. This distribution is then repeatedly updated to incorporate new information coming
from the market. As a consequence, different models will turn out to have a larger posterior,
indicating their capabilities to better describe the current market situation. As mentioned before
in Section 4.1, “all we can do is gather information from the real world, either in form of past
data or market expectations” and this is what is also implemented here. Transition from one
instant of time to the next one always comes with a new piece of information.
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Models’ reaction will be two-fold:

• On one hand, new derivative market prices are observable, for example quoted in the form
of an implied volatility surface. This means that in our pool of models, those that are able
to reproduce such prices will have a bigger weight compared to those that are not able to
reflect them.

• On the other hand, new market prices for the underlyings are observable. Since traditional
models always come with price process dynamics, this implies that those models that can
better reflect the evolution of the underlying are more likely to be better in imitating the
real world.

These two different points of view are exploited at the same time. Note that the first kind
of calibration on price surfaces is a standard procedure in mathematical finance, where we wish
to find a model that mirrors the current price configuration. The second is rather common in
econometrics, where times series are the privileged object of investigation. Moreover, we would
like to remark that the second point of view is with respect to the statistical (real world) measure
whereas the first point of view is with respect to the pricing measure.

The method has been called ‘estimate nothing’ because there is no estimation to be done:
we just need to specify our pool of models at the beginning and then the same set of models is
retained over and over again. Only probabilities on this set are able to change. And eventually,
as we will see, no model is selected.

4.2.1 Likelihoods

In order to capture the evolution of market information coming from derivatives and underlyings’
prices, we need to introduce a tool from Bayesian statistics, that is likelihood. But before that,
let us specify the mathematical settings.

Since the purpose of this methodology is having a consistent model that is possibly executable
on computers, we will consider a finite probability space, denoted as (Ω,F ,P), where Ω =
{ω1, . . . , ωN}, the probability measure is positive on all possible scenarios, that is P({ωi}) > 0
for i = 1, . . . , N , and F = 2Ω is the power set of Ω (discrete σ-algebra).
Observations from the financial market arrive at discrete times T := (tk)k∈N, as in reality. The
central object of study is a single asset denoted by S, whose log asset is denoted by X, which
is consequently discretized in time as (Sk)k∈N. So, if we introduce the flow of information as a
stochastic process I = (Ik)k∈N, we can consider the filtration generated by I and set F = (FIk )k∈N.
This means that Ik gathers all market information at time tk. In our case, we consider information
coming from the market under two different data: one is the price of the underlying S and the
other is the composed by the set of (derivatives’) prices observable in the market, at time tk, that
is Pmkt

k . If we consider a classical environment with European options, we can parametrize the
set Pk with coordinates given by strikes (or moneyness) and time to maturity. For this reason, we
can write Pk = PK,Tk to denote a derivative price P at time tk with strike K and expiry at time
T > tk. The set of strikes Σk and maturities T Mk characterizing the price surface at tk can, in
principle, vary in time as well, but, for the time being, we will ignore this subtlety, thus removing
the index k from Σk and T Mk . Since both sets are finite, we set Σ := {Ki ∈ R : i = 1, . . . , dK}
and T M = {Tj > 0 : j = 1, . . . , dT } and, for ease of notation, we consider prices organized in
a grid G with dimension dKdT : G := {gi : i = 1, . . . , dKdT }, where gi = (KjK , T`T ) for some
appropriate jK , `T . From now on, we assume that the filtration F = (FIk ) coincides with the
filtration generated by

(
S, {PKi,Tj}1≤i≤dK ,1≤j≤dT

)
.
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A crucial assumption that we are making is that the evolution of the asset S is Markovian,
even if there is model uncertainty on its exact definition. As previously seen, a standard way
of dealing with this uncertainty is considering more models. In our case, again for evident
computational reasons, we consider J models establishing a finite pool of model. The models in
the pool can reflect our expectations of the market and, in this sense, are concrete instances of
our beliefs. It is important to note that such models, in general, will not belong to the same class,
specified by the dynamics of the underlying, but different classes are taken into account. More
systematically, this means that for every model specifications of the dynamics, we settle different
parameter specifications that should span the space of admissible parameters. If we were to use
Black-Scholes model as a model class, this would mean considering volatilities inside a plausible
interval, e.g. [0.1, 0.7], conveniently discretized.

For every model j, we consider the transition density at time tk, i.e. pj,k (we take here
deliberately a continuous notation with obvious meaning), of the type

pj,k(x, x′) = Pj (Sk+1 ∈ dx′ |Sk = x) /dx′

= Pj (S1 ∈ dx′ |S0 = x) /dx′ = pj(x, x′), for j = 1, . . . , J,
(4.1)

because of Markovianity; Pj denotes the probability with respect to model j.
Remark 4.2.1 (Stochastic volatility models). Note that the transition density considered in (4.1)
is not suitable for stochastic volatility models, since the current level of volatility should also be
taken into account. The same holds true for models that have other stochastic factors that can
evolve randomly in time. One can of course include these into considerations.

Associated to model j, we also have a pricing functional ϕj that, given the spot price of the
underlying and the grid G of strikes-maturities, can provide a superimposable grid of prices (or,
equivalently, of implied volatilities) for all instants of time tk. Thus, we have

P
(j)
k = ϕj

(
Sk; {gi}dKdTi=1

)
, for j = 1, . . . , J. (4.2)

We can now define the log-likelihood of model j at time tk as{
`
(j)
0 = 0,

`
(j)
k = β `

(j)
k−1 + log pj(Sk−1, Sk)−Q(ϕj(Sk), Pmkt

k )
(4.3)

where β ∈ (0, 1] is a parameter that influences the past log-likelihoods, thus decreasing the
importance of past observations compared to newer ones; Q : RdKdT × RdKdT → R is a non-
negative definite quadratic form that is supposed to measure the distance between market and
model prices. For a discussion on Q, we remind to Section 2.1 in [DR14]. Note that seeing
the log-likelihood at time tk starting from log-likelihood at time tk−1 is an instance of Bayesian
updating, which is now modified through the factor β.

At this point, we finally summon Bayes’ rule to compute the posterior distribution πk := π(tk)
at time tk on the pool of models:

π
(j)
k =

exp
(
`
(j)
k

)
∑J
i=1 exp

(
`
(i)
k

) , for j = 1, . . . , J. (4.4)

Remark 4.2.2. The updating iterative process can run indefinitely as long as new information is
provided.
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Remark 4.2.3. As the authors in [DR14] write, now everything becomes easy, in the sense that

• the transition density of Sk is given by
∑J
j=1 π

(j)
k pj(Sk, · ),

• the price of any derivative can be re-written as a convex combination of the prices γ(j)
k

given by model j at time tk, that is
∑J
j=1 π

(j)
k γ

(j)
k ,

• the delta-hedge of any derivative can be computed in a similar way: if δ(j)
k is the delta-hedge

for model j at time tk, then we have
∑J
j=1 π

(j)
k δ

(j)
k ,

It becomes now clear what was stated at the end of the previous section: nothing is estimated,
since we only repeatedly update the posterior distribution π.
Remark 4.2.4. There are at least two important differences with the methods from robust finance
we saw in Section 4.1.1. In first place, using this methodology, we do not have to choose any
model based on our calibration procedure, but it is rather the market that selects the combination
of models which better reflects the current conditions. In second place, we do not exclude models:
if we removed all models that are not considered plausible, we would not be able to see if their
relevance increases in another instant of time.
In this sense, the time aspect of uncertainty can be lifted by this approach.
Remark 4.2.5. Note that the ‘Estimate nothing’ approach is able to address points 2. and 3. of
Box 4.1. Nevertheless, we are quite dependent on fast procedures to provide key quantities (such
as prices or Greeks), since the evaluation of all models in the pool might take substantial time.

4.3 Hedging

This section is mainly based on the book by Jeanblanc, Yor and Chesney [JYC12] and on lecture
notes from Josef Teichmann [Tei13]. Let us consider a probability space (Ω,F ,P) with a filtration
F := (Ft)0≤t≤T which satisfies the usual conditions. Let us fix a maturity date T ∈ (0,+∞). We
denote with S = (Sit)0≤t≤T the risky assets, usually modelled as semimartingales4, for i = 1, . . . , d
adapted to F and with B = (Bt)0≤t≤T the risk free bank account (or money market account)
which evolves according to the deterministic interest rate rt, i.e. Bt = exp(

∫ t
0 rs ds).

With ϕ = (ϕt)0≤t≤T we denote the trading strategy or dynamic portfolio, made by two components:
ϕ = (η, ψ). The real-valued process ηt represents the number of unit of the bank account B at
time t held by an investor, while ψt is Rd-valued and the ith coordinate denotes the quantity
of asset Si held by the same investor at time t. The value process V (ϕ) = (Vt(ϕ))0≤t≤T is the
market-to-market value of the entire portfolio at time t, given by Vt(ϕ) :=

∑d
i=1 ψ

i
tS
i
t + ηtBt.

Sometimes, the bank account is considered as the asset in position 0 of the portfolio, so to
conveniently write Vt(ϕ) = 〈ϕt, St〉 =

∑d
i=0 ϕ

i
tS
i
t , with the convention S0

t = Bt for all t ∈ [0, T ].
In the following we restrict our attention to self-financing strategies:

Definition 4.3.1 (Self-financing strategy). A self-financing strategy is defined as an adapted
trading strategy ϕ = (η, ψ) such that

4In the following we are assuming that S is locally bounded (note that, for example, all continuous process are).
This allows some simplifications such as considering discounted prices processes that are local martingales and
not σ-martingales, simplifying the technical settings. To have a better view on the arbitrage theory for general
semimartingales in continuous time, we remind the reader to [DS94].
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a) the quantities
∫ T

0 ηt dBt and
∫ T

0 ψt dSt
5 are (almost surely) finite - we can, for example,

require that
∫ T

0 |ηt| dt < +∞ for the first integral;

b) Vt(ϕ) = ηtBt + 〈ψt, St〉 = η0B0 + 〈ψ0, S0〉+
∫ t

0 ηu dBu +
∫ t

0 ψu dSu
5 (almost surely) for all

t ∈ [0, T ].

Thus, a self-financing strategy does not rely on the withdrawal or injection of money during its
execution.

Remark 4.3.2. If we use the bank account as a numéraire, we can introduce discounted quantities
by dividing with Bt. For the money market account we have B̃t = Bt/Bt = 1 for all t ∈ [0, T ],
while for the risky assets S̃t = St/Bt for t ∈ [0, T ]. If we employ discounted quantities, then
condition b) of Definition 4.3.1 translates to

Ṽt(ϕ) = Ṽ0(ϕ) +
∫ t

0
ψu dS̃u (a.s.) for all t ∈ [0, T ]. (4.5)

Remark 4.3.3. In case of self-financing strategy, both η and ψ are predictable processes. Note
that predictability of ψ was already tacitly required because of the stochastic behavior of the
risky assets.
Remark 4.3.4. We can rewrite condition b) of Definition 4.3.1 in differential form: for all t ∈ [0, T ]

dVt(ϕ) = ηt dBt + ψt dSt,

from which we see that changes of value of the portfolio over an infinitesimal time interval are due
entirely to changes in value of the assets and not to removal or injection of wealth from outside.
If we consider just one risky asset that pays also dividends, we can represent it (into continuous
time) as a factor eqt, for q > 0, that multiplies S. In this case, we have

dVt(ϕ) = ηt dBt + ψt(dSt + qStdt).

For the time being, we will consider q = 0 without loss of generality.
Remark 4.3.5. So far, we have not imposed restrictions on the sign of the trading strategy process
ϕ. This means that borrowing, i.e. ηt < 0, and short selling, i.e. ψit < 0 for any i = 1, . . . , d, are
allowed.
Remark 4.3.6. Note that there exists a bijection between self-financing trading strategies ϕ =
(η, ψ) and tuples of the form (V0, ψ), where V0 ∈ R is the initial value of the portfolio, i.e. V0 =
V0(ϕ), V0 ∈ L0(F0) and ψ predictable and S-integrable. Moreover, for any t ∈ [0, T ], we have

ηt = Ṽt(ϕ)−
d∑
i=1

ψitS̃
i
t = V0 +

∫ t

0
ψu dS̃u −

d∑
i=1

ψitS̃
i
t .

For this reason, in the following we will denote the value of a portfolio as V ψ meaning that this
is obtained through the positions (ψ1, . . . , ψd) and starting from V0.

We are now going to show such bijection.
5The integral

∫ t
0 ψu dSu denotes vector stochastic integration, which may differ from the componentwise

stochastic integration
∑d

i=1

∫ t
0 ψ

i
u dS

i
u. Since an in-depth study of that topic is beyond the scope of this thesis,

we reference to [SC02] for more details. The use of vector stochastic integration is assumed from here on.
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Proposition 4.3.7. Let us define the discount factor Dt := (Bt)−1 = exp(−
∫ t

0 ru du). If
ϕ = (η, ψ) is a self-financing portfolio, then for all t ∈ [0, T ] we have

Ṽ (ϕ) = DtVt(ϕ) = V0(ϕ) +
∫ t

0
ψu d(DuSu).

Conversely, if x > 0 and ψ = (ψ1, . . . , ψd) is a vector of predictable processes and if V ψ (with the
notation of Remark 4.3.6) is the solution of

dV ψt = rtV
ψ
t dt+ ψt(dSt − rtSt dt), V ψ0 = x, (4.6)

then the process ψ̂t := (V ψt − 〈ψt, St〉 , ψt) ∈ Rd+1 for t ∈ [0, T ] is a self-financing strategy and
V ψt = Vt(ψ̂).

Proof. First of all, note that the discount factor satisfies an ODE of the type dDt = −rtDt dt.
Then, note that the first implication has already been obtained in Remark 4.3.2, in particular
this is equivalent to Equation (4.5).

For the second implication, we note that the value of the discounted portfolio implied by (4.6)
is

Ṽ ψt = x+
∫ t

0
ψu dS̃u,

while the fraction of wealth invested in the risk-less asset is

ηtBt = V ψt −
d∑
i=1

ψitS
i
t .

At this point, we can verify condition b) of Definition 4.3.1:

dVt = rtVtdt+ ψt(dSt − rtStdt) = rt (Vt − ψtSt) dt+ ψtdSt

= rtηtBt dt+ ψt dSt = ηt dBt + ψt dSt.
(4.7)

Given this brief introduction, we can finally define what we mean by hedging in financial
markets. Hedging is the practice of taking a position in one market or investment to offset,
balance and protect against the risk adopted by assuming a position in a contrary or opposing
market or investment.

Problem 4.3.8 (Hedging). In mathematical terms, given H ∈ L0(FT ) a random measurable
payoff at time T , can we define a self-financing strategy (V0, ψ) such that VT (ϕ) = H P-almost
surely? What is the minimal amount of initial endowment for such trading strategy?

If there exists such a self-financing trading strategy, we will call it a replication strategy.
Let us now define two important process:

Definition 4.3.9 (Cumulative gains G and costs C). The cumulative gains/losses process G
from a strategy ψ is obtained by setting V0 ≡ 0 in the definition for the value of a self-financed
portfolio V : for all t ∈ [0, T ]

Gt(ψ) :=
∫ t

0
ψu dS̃u = 0 +

∫ t

0
ψu dS̃u. (4.8)

105



Chapter 4 - Model Free Deep Hedging

Similarly, we can define the process of cumulative costs or cost of trading C from strategy ϕ for
0 ≤ t ≤ T as

Ct(ϕ) := Vt(ϕ)−
∫ t

0
ψu dS̃u. (4.9)

It represents the total cost for trading on [0, t]. Note that these costs arise from trading because
of the fluctuations in the price process S̃ and are not due to transaction costs.

Since allowing for self-financing strategy only might lead to arbitrage, we further restrict the
set of admissible strategies by requiring that G(ψ) must be larger than a certain quantity.

Definition 4.3.10 (Admissible strategy). Any self-financing strategy for which G(ψ) is uniformly
bounded from below, i.e. Gt(ψ) ≥ −a P-almost surely for a ≥ 0 for 0 ≤ t ≤ T , is said to be
admissible.

Admissibility is needed to avoid the so-called doubling strategies or money-pumps. Let us consider,
for example, an exponential Brownian motion S = exp(Wt−t/2) on the infinite horizon (T = +∞),
with the understanding that S+∞ = 0. If we go short at time 0, that is we choose ψ = −1, the
value of our final portfolio would be V+∞ = −(S+∞ − S0) = 1, which would cause arbitrage.
Note that we did not use money at initial time. The name doubling strategy derives from the
martingale betting strategy system, in which the gambler wins the stake if a coin comes up heads
and loses when tails shows up. The strategy had the gambler double the bet after every loss, so
that the first win would recover all previous losses plus win a profit equal to the original stake.
Since any gambler will almost surely eventually flip heads, the martingale betting strategy is
certain to make money for the gambler provided they have infinite wealth (and there is no limit
on money earned in a single bet). However, no one has infinite wealth.
In view of Definition 4.3.10, we can say that our goal is to find admissible replication strategies.
Remark 4.3.11. Note that a in Definition 4.3.10 does not depend on the particular scenario ω ∈ Ω,
but may vary according to ψ.
In the following, when talking about admissible strategies, we will always interpret it as a strategy
having the cumulative gain process bounded from below.
Remark 4.3.12. So far we have implicitly made many simplifications (or formulated assumptions):

• The risk-less asset represented by the bank account has always positive value. However, in
reality, risk-less assets do not exist.

• We have not explicitly distinguished between discrete or continuous time setting. In partic-
ular, in our framework, it is possible to trade continuously in time.

• Prices for buying or selling the risky asset S is given by S alone and there are no trading
fees or other types of transaction costs (frictionless market).

• There are no constraints on strategies (see also Remark 4.3.5).

• Investors are thought to be “small” investors, that is market prices are not influenced by
the investor strategy.

4.3.1 Delta hedging for Black Scholes

In financial markets, people are familiar with a particular type of hedging, called delta-hedging.
Specifically, delta-hedging mitigates the financial risk of an option by hedging against price
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changes in its underlying. It is called in this way because Delta is the first derivative of the
option’s value with respect to the underlying asset price. This is performed by buying an asset
with an inverse price movement. For instance, in order to delta-hedge a vanilla option derivative,
the trader should buy the underlying onto which the derivative is written.

To see how delta-hedging originates, we can have a look at the renowned Black-Scholes formula,
which granted jointly to Robert C. Merton and Myron S. Scholes a Nobel prize for economics
in 19976 ([BS73]) “for a new method to determine the value of derivatives”. Let us consider the
price of a European call option C with maturity T and strike price K at time t ∈ [0, T ]

Ct(T,K) = Ste
−q(T−t)Φ(d+)− e−r(T−t)KΦ(d−), (4.10)

with
d± =

log
(
St
K

)
+
(
r − q ± 1

2σ
2) (T − t)

σ
√
T − t

, (4.11)

where r is the constant continuous risk-free rate, q is the constant continuous dividend yield, Φ(·)
is the cdf of a standard normal random variable and T − t is the time to maturity. Actually,
from Equation (4.10) we see that we already have a replication strategy since the value of the
call option is expressed as a linear combination of units of risky asset, the stock St, and units
of risk-less asset, the money market account Bt. We may in fact set ηt = −e−rTKΦ(d−) and
ψt = e−q(T−t)Φ(d+) and, hence, rewrite (4.10) as

Ct(T,K) = ηte
rt + ψtSt = ηtBt + ψtSt.

At this point, it is enough to note that the first derivative of the call option under the Black-
Scholes setting has a closed-form formula to clarify the name of delta-hedging. In this framework,
we have indeed

δt := ∂ Ct(T,K)
∂S

= e−q(T−t)Φ(d+) (4.12)

and thus Ct(T,K) = ηtBt + δtSt, since δt = ψt for all t ∈ [0, T ].
We are now left with showing that this trading strategy is also admissible. With this goal in mind,
we can proceed as follows. First of all, we recall this version of the Itô representation theorem:

Theorem 4.3.13 (Itô representation theorem). Any random variable H ∈ L2(FWT ,Q) admits a
unique representation

H = EQ[H] +
∫ T

0
ξu dWu Q-a.s,

where ξ is a process in L2(W ), in particular
∫ t

0 ξu dWu is a martingale for any t ∈ [0, T ].

Second, that under the Black-Scholes model the underlying has dynamics given by a geometric
Brownian motion: dSt = µSt dt+σSt dW̃t, where µ ∈ R is the drift, σ > 0 the volatility coefficient
and (W̃t)0≤t≤T a Brownian motion. After a change of measure and employing an equivalent
martingale measure Q, the discounted dynamics become dSt = σStdWt, withW Brownian motion
under Q. Actually, in this case, we can even write the Radon-Nikodým derivative explicitly: for
t ∈ [0, T ]

Lt = dQ
dP

∣∣∣∣
Ft

= exp
(
−αW̃t −

1
2α

2t

)
,

where −α := r−q−µ
σ and α is usually called risk-premium. In this case, (St)0≤t≤T is a square

integrable martingale under the measure Q and the same holds true for discounted call prices
6Unfortunately, Fischer Black died in his mid-fifties in 1995.
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(otherwise there could arbitrage opportunities). If we set the filtration of the stochastic space
as the natural filtration generated by the Brownian motion W , i.e. F = FW (augmented in the
usual way), we can use the Itô representation Theorem 4.3.13 for H = (ST −Ke−rT )+ (which
lies in L2) and write

H = EQ[H] +
∫ T

0
ξu dWu = EQ[H] +

∫ T

0
ψu dSu,

where we can set ψt ≡ ξt
σSt

. Moreover, since we have H ≥ 0 (by definition), we also have for any
t ∈ [0, T ]

Gt(ψ) =
∫ t

0
ψu dSu ≥ −EQ[H],

and EQ[H] is finite (since for bounded domains we have L2 ⊂ L1). Thus, the tuple (EQ[H], ψ)
defines an admissible strategy (see Definition 4.3.10).

4.3.2 (In)complete markets

To talk about incomplete markets, it is advisable to first speak about complete markets. Roughly
speaking, a market is complete if any derivative product can be perfectly hedged, i.e. it is the
terminal value of a self-financing portfolio.

Definition 4.3.14 (Contingent claim). A contingent claim H is defined as a square integrable
FT -random variable, where T ∈ (0,+∞) is a fixed time horizon. We can also write H ∈ L2(FT ).

Definition 4.3.15 (Attainable claim). A contingent claim H is said to be attainable or hedgeable
if there exists a predictable process ϕ = (ϕ0, . . . , ϕd) such that VT (ϕ) = H. The self-financing
strategy ψ̂ = (V ψ − 〈ψ, S〉 , ψ) is called the replicating strategy (or the hedging strategy) of H,
and V ψ0 = h is the initial price (see also Remark 4.3.6).

Remark 4.3.16. The process V ψ is the price process of H.

In some sense, this initial value is an equilibrium price: the seller of the claim H, for instance
a bank, agrees to sell the claim at an initial price h if she can construct a portfolio with initial
value h and terminal value greater than the claim she has to deliver. The buyer of the claim,
for example a private investor, agrees to buy the claim if he is unable to produce the same (or a
greater) amount of money while investing h in the financial market.

Definition 4.3.17 (Complete market). Assume that r is deterministic7 and let FS be the natural
filtration generated by the underlying price S. The market is said to be complete if any contingent
claim H ∈ L2(FST ) is the value at time T of some self-financing strategy ψ̂.

Remark 4.3.18. For what we saw before in Section 4.3.1, the Black-Scholes model (S,F = FW )
can be seen as an example of complete market, since it is arbitrage free and for every contingent
claim H we have H = EQ[H]+

∫ T
0 ψu dSu = V (ϕ) where ϕ is an admissible self-financing strategy

identified by (V0 = EQ[H], ψ), with S discounted asset price.

In order to guarantee market completeness for liquid and frictionless markets with an arbitrary
(finite) number of assets, the so-called second fundamental theorem of asset pricing was introduced.

7If r is stochastic, it is possible to work with with the filtration generated by the discounted S,
i.e. (exp(−

∫ t
0 rs ds)St)0≤t≤T .
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This was first formulated in 1979 by Harrison and Kreps [HK79], but many others worked on it
(see, for example, [Bia10] and references therein). The theorem provides necessary and sufficient
conditions for a financial market to be complete, and it was firstly studied to address the issue
of knowing which contingent claims are spanned by a given set of market securities.
Remark 4.3.19 (A nice crossover). We can actually provide a (partial) answer to this problem
by taking advantage of the Theorems in Section 2.4, in particular Theorem 2.4.6 and Proposition
2.4.8, which together establish that shallow ReLU neural networks are dense in space of continuous
functions (defined on compact sets). If we transpose this claim in the financial setting, we can
state that linear combinations of European call options can approximate any contingent claim
with continuous payoff (on a compact set).

Theorem 4.3.20 (Second Fundamental Theorem of Asset Pricing). Let S represent the discoun-
ted prices process and assume that the market is arbitrage-free (hence, S is a local martingale).
Then there exists a unique equivalent local martingale measure (ELMM) Q if and only if the
market is complete.

If we denote with Me(S) the set of equivalent martingale measures with respect to the
numéraire S0 = B, and we assume thatMe(S) 6= ∅, then Theorem 4.3.20 states that the market
is complete if and only if Me(S) = {Q}, i.e. Me(S) is a singleton. If the market is incomplete
(but arbitrage-free), then there are more equivalent (local) martingale measures.
Remark 4.3.21. Note that there can be a complete market with no equivalent martingale measures,
but still complete market. This can be the case, for example, if we have a risk-less asset and two
geometric Brownian motions with different drifts, but same diffusion coefficient and same driving
Brownian motion. In this case, we can build arbitrage opportunities (so there are no ELMMs),
but the market is complete because any contingent claim can be replicated as a function of a
discounted risky asset (see Comment 2.1.5.3 in [JYC12]).
Remark 4.3.22 (Market completeness for Itô diffusions). Let (Ω,F ,P) be a probability space. We
assume that an n-dimensional Brownian motion W is constructed on this space and we denote
by FW its (augmented) natural filtration. We assume that in the market there is one risk-less
asset, the money market account, which evolves according to a deterministic continuous interest
rate r, i.e. Bt = S0

t = exp(
∫ t

0 rs ds), and d risky assets, which we model with a d-dimensional Itô
diffusion process:

dSit = Sit

bit dt+
n∑
j=1

σijt dW
j
t

 , for i = 1, . . . , d.

We assume that all process r, bi and σij are predictable and satisfy integrability conditions of the
type

∫ t
0 rs ds < +∞, with rt > 0,

∫ t
0 |b

i
t| dt < +∞ a.s. and

∫ t
0 (σijs )2 ds < +∞ a.s. for all t ≥ 0

and all i = 1, . . . , d and j = 1, . . . , n. Note that the prices of all assets are positive. If we denote
with [Σt(ω)]ij the element σijt (ω), then we have that the market is complete if and only if the
rank of the matrix Σt is equal to d for almost all t ≥ 0 a.s. Moreover, if d < n, the market is not
complete but arbitrage-free, while if n < d we fall back in the case of Remark 4.3.21 and arbitrage
is possible (see Theorem 1.7 in [Bia10] and Section 2.2 in [JYC12]). The standard Black-Scholes
framework, for n = d = 1, is special case of this broader setting where the market is complete.
Remark 4.3.23. A financial market can be incomplete for different reasons. We already saw in
Remark 4.3.22 that one of these could be the fact that the sources of randomness outnumber the
financial securities. This is, for example, also the case for stochastic volatility models, such as the
celebrated Heston model [Hes93], where the modelled financial assets are a stock with stochastic
volatility and a bond with constant interest rate. In this setting, the market is incomplete because
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it is not possible to hedge the risk factor associated with stochastic volatility8. Another possibility
is given by market friction. Continuous-time portfolio strategies accrue transaction costs at every
instant the portfolio is rebalanced and, thus, these strategies are effectively forbidden if their
costs are infinite. Good articles on this topic are [HN89] and [SSC95]. Further, incompleteness
can also be the result of asymmetric information, as shown in [FS91]. Here the hypothesis is that
contingent claim H is attainable with respect to a larger filtration than that to which the stock
price process S is actually adapted to.

4.3.3 Hedging in incomplete markets

In (arbitrage-free) incomplete markets the basic question turns out to be: how can we obtain a
hedging strategy for non-attainable claims? The question is of utter importance since the value of
the replication portfolio is then, by arbitrage arguments, the price of the claim at any instant of
time t between now and maturity T < +∞. In this case, the concept of replication falls apart not
because continuous time trading is actually impossible in reality, but because there are risks that
one cannot hedge even by continuous time trading. Let us now consider discounted quantities, so
that, for example, S will denote the discounted price process of the underlying. In the following,
we denote with MP(S) the convex set of equivalent (local) martingale measure with respect to
the historical measure P for the discounted price process S. We additionally assumeMP(S) 6= ∅.
This assumption is equivalent to the no arbitrage condition ‘No Free Lunch with Vanishing Risk’
(NFLVR) introduced by Delbaen and Schachermayer [DS94] for locally bounded semimartingales.

Definition 4.3.24 (Viable prices). The set {EQ[e−
∫ T

0
rs dsH] : Q ∈ MP(S)} is called the set

of viable prices.

If the asset H is traded at a price that is included in the viable prices’ set, then we do not
have arbitrage opportunities. Therefore, in an incomplete market, for example due to frictions,
an agent has to specify an optimality criterion which defines an acceptable ‘minimal price’ for
any position. The intuition behind the criterion is that the hedging strategy should be able to
replicate the contingent claim as best as possible.

In the following, we are going to talk about some of the most common ways to hedge in
incomplete markets:

• Super-replication
If we fix a payoff H, the idea of super-replication is to find all strategies that can produce
at least H, and then select the cheapest one. Let us take H ∈ L0

≥0(FT ), non-negative
measurable with respect to FT , then we can define the super-replication price as

Πsuper(H) := inf
{
h ∈ R : ∃ψ admissible s.t. h+

∫ T

0
ψt dSt ≥ H P− a.s.

}
. (4.13)

The interpretation is that Πsuper(H) will then be the price of the portfolio at time 0,
i.e. Πsuper(H) = V ψ0 . Selling the claim H for this prices involves no risks because the
strategy (Πsuper(H), ψ) is a self-financing admissible strategy which produces at least H by
time T . In principle, there could be a problem though: since the initial price is defined as

8In this case, it is actually possible to “complete” the market by adding, for instance, a derivative on the variance
of the underlying asset (more on this topic in [RT97] and references therein). But if we consider non-trivial jump
processes, this is not possible, since the drift coefficient of the discounted risky asset that is set to zero when using
Girsanov’s theorem can be usually nullified by an infinite number of parameter combinations.
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an infimum of a set, it is not clear a priori if this can actually be reached. A possible proof,
that makes use of Ansel-Stricker Lemma [AS94; DP07] and of optional decomposition, also
called Kramkov decomposition ([Kra96]), can be found in [Tei13] and shows that the price
is actually attained as a minimum in case Πsuper(H) < +∞. Moreover, it is shown that it
coincides with supQ∈MP(S) EQ[H] ([EQ95]), so that we have a dual representation.
This approach is maybe the most natural when thinking of a possible hedging strategy for
non-attainable claims, but is rather extreme: the seller has no risk from this sale because
all risk is now on the buyer side. For this reason, the super-replication price is also called
seller price. On the other hand, the buyer price is defined as infQ∈MP(S) EQ[H]. The
interval given by (Πbuy(H), Πsell(H)) = (infQ∈MP(S) EQ[H], supQ∈MP(S) EQ[H]) defines a
no-arbitrage price interval which coincides with the set of viable prices (Definition 4.3.24.
Remark 4.3.25. Super-hedging strategies usually provide forbiddingly high prices for the
seller price, as seen in [EJ97] for a purely discontinuous (jump) price process, or in [BJ00]
in case of jump-diffusion price process. Their conclusion for European options is that the
interval of viable prices is bounded above by the super-replication price and that for a call
option the super-hedging strategy consists in buying the underlying at time 0 and holding
it until maturity. But this solution is most cases too expensive and, thus, unrealistic.

• Quadratic Hedging
For a ‘guided tour’ in quadratic hedging, there exists a distinguished technical report by
Schweizer [Sch99b] which we undoubtedly suggest. We will mainly quickly revise the two
most important approaches developed in this field.

. Local Risk Minimization
The first attempt to hedge a non-attainable claim in incomplete markets is actually
due to Föllmer and Sondermann in 1986 ([FS86]), where they considered the case of S
being a P-martingale and introduced the concept of risk-minimizing strategies, which
minimize the risk in a sequential sense. To proceed, we assume that the cost process
C is square-integrable and let us define the risk process associated to a strategy ϕ as

Rt(ϕ) := EP
[
(CT (ϕ)− Ct(ϕ))2 | Ft

]
, 0 ≤ t ≤ T. (4.14)

Clearly, the absolute minimum of R(ϕ) is the zero process and the goal becomes
minimizing R(ϕ) in a suitable way. This can be attained if and only if there is a
self-financing strategy ϕ with VT (ϕ) = H. In this sense, attainable claims corresponds
to zero-risk. Since we are in an incomplete market settings, we can decide to minimize
(4.14) anyway among those strategies for which VT (ϕ) = H, at the cost of giving up
on self-financial strategies. This has the (unpleasant) consequence that the portfolio
might need injection or withdrawal of wealth in time. This approach is known as local
risk-minimization. A strategy ϕ = (η, ψ) is called risk-minimizing (RM) if at any
instant of time it minimizes the risk process, i.e. for 0 ≤ t ≤ T we have Rt(ϕ) ≤ Rt(ϕ̃)
where ϕ̃ is an admissible continuation of ϕ from t on, that is VT (ϕ) = VT (ϕ̃)P-a.s. and
ψ̃s = ψs for s ≤ t and η̃s = ηs for s < t. Although RM-strategies with VT (ϕ) = H will
in general not be self-financing, it turns out that any RM-strategies is “self-financing
on average” in the sense that the cost process defined in (4.9) is a P-martingale (note
that self-financing strategies imply that the cost process Ct(ϕ) is a constant P-a.s.).
The key result for finding risk-minimizing RM-strategies is the Galtchouk-Kunita-
Watanabe decomposition (Proposition 4.14 in Section 3.4 of [KS98] or [KW67] for the
original paper). Since the space I2(S) := {

∫
ψ dS : ψ ∈ L2(S)} of stochastic integrals
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is a closed subspace of M2
0(P), the space of square integrable P-martingales null at

time 0, any H ∈ L2(FT ,P) can be uniquely written as

H = EP[H] +
∫ T

0
ψHu dSu + LHT , P-a.s.,

for ψH ∈ L2(S) and some LH ∈ M2
0(P) for which LHI is a P-martingale for all

I ∈ I2(S). This actually allows to write down the optimal strategy ϕ? such that
VT (ϕ?) = H P-a.s. as ψ?t = ψHt , V ?t := Vt(ϕ?) = EP[H | Ft] and Ct(ϕ?) = EP[H] +LHt
for 0 ≤ t ≤ T . In this case, we have Rt(ϕ?) ≤ Rt(ϕ) for any other admissible RM-
strategy ϕ (Theorem 2.4 in [Sch99b]) for 0 ≤ t ≤ T .
The generalization to the semimartingale setting was achieved a few years later by
Föllmer and Schweizer ([FS91]) with strategies taking the name of locally risk min-
imizing strategies. For an extension that takes into account transaction costs, see
Lamberton, Pham and Schweizer [LPS98].

. Mean-Variance Hedging
A different type of quadratic hedging has been proposed by Gouriéroux, Laurent and
Pham in 1998 ([GLP98]) with the name of mean-variance hedging. Useful comparisons
between the two approaches is provided in [Sch99b; HPS01] (see also [Sch92] and the
more recent publication [Sch10]). The key difference between (locally) risk minimiz-
ation and mean-variance hedging is that we no longer impose the strict requirement
VT (ϕ) = H, but rather require that the self-financing strategy constraint for (V0, ψ).
Another essential difference is that, as we will see, in this case we are rather focusing on
the global risk over the entire period [0, T ] altogether minimized at time 0, rather then
minimizing the risk for every instant of time. The problem they considered concerned
L2(P)-minimization of the quadratic error (from which the name quadratic hedging)
under the P-historical probability measure:

min
h,ψ

EP
[(
H − V h,ψT

)2
]
, (4.15)

where V h,ψT denotes the portfolio value at time T with initial value h ∈ R and ψ
self-financing admissible strategy. The solution is the L2-projection of H on the
vector space h +

∫ T
0 ψu dSu, with S continuous semimartingale. Let us define with

M2
P(S) :=

{
Q ∈MP(S) : dQ

dP ∈ L
2(P)

}
⊆MP(S) the set of all ELMMs with square-

integrable density. As for MP(S), we assume that M2
P(S) 6= ∅. We denote with

Ψ := {ψ ∈ L(S) :
∫ T

0 ψu dSu ∈ L2(P) and
∫
ψ dSu ∈ M(Q) ∀Q ∈ M2

P(S)}, where
M(Q) denotes the set of Q-martingales. A mean-variance (MV) strategy is a tuple
(V0, ψ) with V0 ∈ R and ψ ∈ Ψ. It is said to be optimal if it minimizes the L2(P)-
norm difference of (4.15) over all possible MV-strategies. To proceed, we also need
the definition of variance-optimal ELMM Q̃, which is the unique element of M2

P that
minimizes the Radon-Nikodým derivative:

Q̃ := min
Q∈M2

P

∥∥∥∥dQdP
∥∥∥∥
L(P)

=

√
1 + VarP

(
dQ
dP

)
.

Moreover, [GLP98] shows that for all 0 ≤ t ≤ T we have

Z̃t := EQ̃

[
dQ̃
dP

∣∣∣Ft] = Z̃0 +
∫ t

0
ζ̃u dSu,
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for ζ̃ ∈ Ψ. Further, Z̃ is continuous. At this point, we can again resort to the
Galtchouk–Kunita–Watanabe decomposition ofH under Q̃ with respect to S and define
the optimal MV-strategy for the portfolio V H,Q̃t := EQ̃[H | Ft] = EQ̃[H]+

∫ t
0 ξ

H,Q̃
u dSu+

LH,Q̃t for t ∈ [0, T ] and set V ?0 := EQ̃[H] and ψ?t := ξH,Q̃t − ζ̃t
∫ t−

0
1/Z̃u dLH,Q̃u for

0 ≤ t ≤ T .
Remark 4.3.26. One of the criticism of quadratic hedging is that profits and losses are
both equally punished when increasing the squared difference in (4.15).
Remark 4.3.27. Actually, mean-variance hedging can be seen as part of a broader class
of methods for pricing in incomplete markets. Since in this condition we have at our
disposal many equivalent local martingale measures, we just need to select one based
on a theoretically grounded criterion, such as the maximization of a utility function.
Other examples are [Fri00], where the concept of minimal entropy martingale measure
is introduced, or again [BF02] for minimax measures, just to name but a few.

• Hedging through convex functions
The dual characterization of the super-replication price paves the way to an extension of
the convex duality approach to study optimization problems with convex risk measures and,
hence, utility functions. Note that also mean-variance hedging can be seen as a special
case of hedging through convex function, where the convex function f is simply quadratic,
i.e. f(x) = x2. Similarly, the minimal entropy martingale measure of [Fri00] is associated
to the convex function f(x) = x ln x, for x > 0. For its generality, this approach is thus of
great relevance in research and in practice. Standard references, in this case, are the articles
by Xu [Xu06], Klöppel and Schweizer [KS07] and book by Föllmer and Schied [FS16] (in
discrete times).
Probably, the first instance of utility functions used for incomplete market pricing and
hedging was put forward by Hodges and Neuberger in 1989 [HN89] employing an exponential
utility function. If we consider a trader with a specified preference structure described by
a (concave) utility function, then the goal is matching the maximal expected utilities that
can be gained with and without a particular claim. More precisely, let us consider a utility
function U that is a strictly increasing and strictly concave function, that may satisfy
some assumptions on its regularity, such as being continuously differentiable, and other
asymptotic conditions (e.g. limit Inada conditions; see [KS99] for more details). Then the
price of a contingent claim H is defined as the infimum over h ∈ R such that

sup
ψ

E
[
U
(
V x+h,ψ
T −H

)]
≥ sup

ψ
E
[
U
(
V x,ψT

)]
, (4.16)

where the supremum is taken over all possible admissible strategies ψ (this definition was
already proposed in [HN89]). The agent selling the contingent claim starts with an initial
endowment x + h and, using the strategy ψ, he obtains a portfolio with terminal value
V x+h,ψ
T . Since he he has to deliver the T contingent claim H, its final wealth is V x+h,ψ

T −H.
Therefore, we require that its expected utility obtained by selling the claim H and hedging
(through investment of the additional h) is at least as large as the expected utility when
she does not sell the claim. For this reason, the method is often referred to as indifference
pricing. This method has been studied extensively: we remind to [RE00] for the case of
exponential utility of the type x 7→ α exp(−γx), with α is only a multiplicative constant
(and is chosen equal to 1), while γ is a constant that measures thee degree of risk-aversion
of the trader whose utility we are considering. Other example are [HK04] and [İS06].
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Remark 4.3.28. Despite being appealing from an economic point of view, this methodology
has the inherent problematic of calibration for the utility function. For example, how should
we estimate the risk-aversion parameter γ in an exponential utility function? For discussion
on the topic, we refer to [Rab00].

More recently, other types of utilities have been taken into account. Namely, utility derived
from coherent or convex risk measures (note that if ρ is a coherent risk measure, then
U := −ρ is a coherent utility function; see [CDK05] for a formal definition). A coherent
risk measure, as introduced in the seminal paper by Artzner and coauthors [Art+99], is a
function ρ : L∞ → R such that for any X,Y random variables

1. ρ(X + Y ) ≤ ρ(X) + ρ(Y ): subadditivity, to express the concept that diversifying
reduces the risk;

2. if λ ≥ 0, then ρ(λX) = λρ(X): positive homogeneity, if we scale the same position,
the risk will scale accordingly;

3. if X ≥ Y , then ρ(X) ≤ ρ(Y ): monotonicity, i.e. a less risky position requires less cash
injection;

4. if m ∈ R, then ρ(X + m) = ρ(X) −m: translation invariance, i.e. adding cash to a
position reduces the need for more by the same amount. In particular, ρ(X+ρ(X)) = 0,
which means that ρ(X) is the least amount of cash we need to add to X to make the
position acceptable, in the sense ρ(X) ≤ 0. This condition is also the crucial condition
for monetary risk measures (as introduced by Föllmer and Schied [FS02]).

Convex risk measure [FS02] replace the first two points above with

5. ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for λ ∈ [0, 1]: convexity.

In this framework, let us suppose that the trader starts with a liability −L (bounded below
from a constant) that is FT -measurable and with an initial amount of money equal to
x0 ∈ R. All quantities are again considered discounted. Using convex risk measure, we can
define the minimal risk ([Xu06]) as the risk associated to the optimal hedge

ρx0(−L) := inf
ψ
ρ
(
−L+ V x0,ψ

T

)
. (4.17)

for ψ admissible strategy (see Remark 4.3.11). Such a minimal price is going to be the
minimal amount of cash the agent needs to add to her position to implement the optimal
hedge and such that the overall position becomes acceptable.
Analogously, she will buy H with the maximal amount which will allow to keep the risk
of her portfolio stable. Having defined the minimal risk ρx0(−L) for a liability −L with
initial capital x0, we can thus introduce the seller price and the buyer price as follows using
the indifference philosophy previously illustrated. For the seller, the goal is again that of
finding a price for a contingent claim H, such as a derivative option, by accepting to charge
the minimal amount provided that the total risk of her portfolio (after re-balancing the
hedging) will not increase from selling the derivative. Analogously, for the buyer: the trader
is willing to pay the maximal amount as long as the total risk of the portfolio remains
stable.

Πsell(H) := inf
{
x ∈ R : ρx0+x(−L−H) ≤ ρx0(−L)

}
,

Πbuy(H) := sup
{
x ∈ R : ρx0−x(−L+H) ≤ ρx0(−L)

}
.

(4.18)
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Under usual assumptions on ρ, e.g the Fatou property9 and ρ0(0) > −∞ (see [Xu06] for
a discussion on those), we can show that the buyer price is always bounded above by the
seller price, i.e. Πbuy ≤ Πsell, that these are also included in the interval defined by the sub-
and super-replication strategies and are, thus, arbitrage-free. It is also possible to prove
that, in case of complete market, the buyer and seller price coincide with the unique no
arbitrage price, as one would expect.
Using convex functions for pricing and hedging brings also a couple of advantages:

i) The definition of risk measure prices reduce to that of utility based prices if we decide
that the risk measure is an expected utility. For example, by choosing ρ(−L) =
−E[U(−L)] for a utility function U , the minimal risk becomes

ρx0(−L) = inf
ψ
ρ
(
−L+ V x,ψT

)
= − sup

ψ
E
[
U(V x,ψT − L)

]
,

while the seller price becomes

Πsell(H) = inf
{
x ∈ R : ρx0+x(−L−H) ≤ ρx0(−L)

}
= inf

{
x ∈ R : sup

ψ
E
[
U
(
V x0+x,ψ
T −H

)]
≥ sup

ψ
E
[
U
(
V x0,ψ
T

)]}
,

and this actually coincides with the definition we gave in (4.16). Note, however, that
risk measures defined throughout utility functions are not translation invariant.

ii) In complete markets, the seller of the claim H is entitled the sum E[H] at time 0 and
with this she is able to set up an admissible self-financing strategy that will exactly
cover the final payoff. Thus, the seller ends up with zero risk on his side, as she had
started with.
On the other hand, in incomplete markets we start with capital x0, a liability −L and
hence we have a minimal risk ρx0(−L). If the trader sells an option H for Πsell(H),
then she will set up a strategy starting from x0 + Πsell(H). After optimal hedging, she
will end up having a risk equal to ρx0(L), the same she had at the beginning.
In this sense, convex risk pricing extends the idea of “risk preservation” from complete
to incomplete markets.

One example of convex and coherent risk measure is expected shortfall (also known as
average value at risk) introduced in [Art+99] and studied in detail in [AT02a; AT02b].
Other examples can be found in [FS16].

4.4 Deep Hedging

Deep hedging is the expression used by Buehler, Gonon, Teichmann and Wood to denote a
new type of hedging in financial markets based on deep learning, thus making use of neural
networks. Their seminal paper [Bue+19] has received in recent years a lot of attention from the
mathematical finance community because it allows to address many issues typically associated to
this financial problem in a flexible (numerical) way. At the moment, it is even industrially used
in one of the most prominent investment banks of the world and has granted Hans Buehler the
title of “Quant of the year” in 2022.

9If Xn is a sequence of random variables uniformly bounded below from a constant and converging to X almost
surely, then ρ(X) ≤ lim infn→+∞ ρ(Xn).
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The main innovation of deep hedging consists, as already said, in its flexibility: being able to
handle at the same time any kind of transaction cost, market frictions, liquidity constraints on
any type of market scenario for arbitrarily complex portfolios of derivatives, makes this approach
extremely attractive from a practical point of view. Moreover, the model appears valuable for the
fact that the any information, not only asset prices, but also market signals, news, preferences,
can be included in the feature set as input for the neural network. On top of these attractive
features, the authors do not even require per se that the market is free of arbitrage (even if
these cases are ruled out by a mild condition on the risk measure). It goes without saying that
this (new) methodology clearly allows traders to leave the safe shores of analytical and even
complete-market models for deep-water, being guided by data alone.

4.4.1 A realistic framework

It is important at this point to specify the framework in which we work. Since we want to have
a model that is as realistic as possible and simulate it on our computers, we consider a discrete
probability space (Ω,F ,P) where Ω := {ω1, . . . , ωN} for some N ∈ N, the probability measure P
is assigning positive weight to all scenarios, i.e. P({ωi}) > 0 for all i = 1, . . . , N . The σ-algebra
F can be considered to be equal to the power set 2Ω.

Since in real life hedging is only allowed at discrete time, we fix T > 0 a maturity date and
then T := (tk)nk=0 a sequence of dates denoting when trading is allowed. We also set t0 = 0 and
tn = T .
Moreover, we model the available market information through the stochastic process (Ik)nk=0,
with values in Rr for r ∈ N. Ik denotes the information available at time tk, for k = 0, . . . , n. The
filtration generated by I is F = (Fk)nk=0, which means that Fk includes all information accessible
in the market up to time tk. In principle, the process I could model all information that are
available: this includes derivatives’ mid-prices (typically quoted through implied volatilities),
market costs, news, trading signals, firms’ balance sheets, as well as satellite-image counting
cars in parking stores10. Every Fk-measurable random variable can be written as a function of
I0, . . . , Ik; this is therefore the richest available feature set for any decision taken at time tk.

The financial market is consisting of d hedging instruments whose mid-prices are denoted
with the process (Sk)nk=1, thus S is an Rd-valued stochastic process adapted to the filtration F.
As already mentioned, we do not require S being a martingale under an equivalent martingale
measure. Consequently, we are not tied to any equivalent probability measure Q and, in fact,
we could even use P for our computations. This is actually the case, for example, when using
historical price trajectories. In principle, using the physical measure P makes things even more
challenging because it is not possible to resort to martingale pricing techniques, which constitutes
the standard approach in financial mathematics.
In the original paper [Bue+19], the authors consider every intermediate payment as accrued using
a locally risk-free overnight rate. In view of this, they do not consider, as normally expected, a
risk-free security, such as a money market account, and, hence, all rates are zero. Our approach
slightly moves away from this one and, in order to enforce generality, we introduce another
instrument denoted by B = (Bk)nk=0 that mimics the usual bank account and another process
which represents the risk-free rate r, such that Bk = Πk−1

j=0 (1 + rj(tj+1 − tj)). Both B and r
are also F-adapted. Naturally, all dates tj are included in T . For the same reason, we will also
consider dividend paying stocks, modelling dividends through a factor q that is paid at every
instant of time (without loss of generality).

10More on this curious and alluring story can be found at https://newsroom.haas.berkeley.edu/how-hedge
-funds-use-satellite-images-to-beat-wall-street-and-main-street/.
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4.4 Deep Hedging

The goal is hedging our portfolio, which is made up of a liability −Z, which is a FT -measurable
random variable, and an initial monetary amount p0 ∈ R.
Normally, the quantity Z is referred to as a contingent claim in the classical literature. We
highlight that this is not strictly the case in our settings. As a matter of fact, we can consider Z
as being any payoff, for instance deriving from the sum of different other financial instruments,
including OTC derivatives. It is clear, from what written so far, that we are adopting the “seller”
point of view, which will be kept throughout. Of course, the same approach would be valid, with
opposite sign positions, for the “buyer” perspective.
Notice also that we will only adopt self-financing strategies, for which cash injection or extraction
is only allowed at time 0. This is why we start with an initial endowment p0: here a positive sign
implies that money has been added to the portfolio, while a negative sign that money has been
withdrawn.

In order to be able to cover the liability −Z at time T , we need to invest the money p0
in the market. This translates in trading in S using an Rd-valued and F-adapted stochastic
process δ = (δk)n−1

k=0 with δk = (δ1
k, . . . , δ

d
k). Here, δik denotes the trader’s long or short position,

depending on the sign, at time tk of the ith asset. In addition, we define δ−1 = 0, for notational
convenience and δn = 0, because at time tn = T the agent will have sold all her investments in
order to hedge −Z. As will be clearer later, we can also include constraints on δ, for example
due to liquidity or trading restrictions (e.g. no short sale allowed, etc. . . ). The set of strategies
δ ∈ Rd satisfying all these constraints for all times in T is denoted with H. Note, however, that
the set of trading days actually used for hedging can be a subset of the days T on which trading
is allowed.
At this point, we can rewrite the cumulative gain process from Definition 4.3.9 for discrete time.
In [Bue+19], since there are no rates, this becomes

G(δ) =
n−1∑
k=0

δk (Sk+1 − Sk) :=(δ · S)T .

In case of self-financing strategies within a frictionless market, the value of their portfolio is

− Z + p0 + (δ · S)T . (4.19)

Since we want to consider a realistic formulation of hedging, we also consider transaction costs.
As noted in in [LPS98], it is actually possible to extend the definition of trading costs given in
(4.9) to account also for them. This addition is sometimes called transaction cost process and
is denoted with TC (we will, for ease of notation, just continue with C in the following). The
process C can be written as

CT (δ) =
n∑
k=0

ck(δk − δk−1). (4.20)

Note that the same formula holds if we assume that depositing or withdrawing money from the
bank account is free of charge. The function ck, which we consider fixed once for all k, can acquire
different form. A couple of possible choices are:

1) Fixed transaction costs: let us fix cik > 0 and a threshold ε > 0, then ck(ψ) =∑d
i=1 c

i
k1{|ψi|≥ε};

2) Proportional transaction costs: let us fix cik > 0, then ck(ψ) =
∑d
i=1 c

i
kS

i
k|ψi|.
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At this point, the trader’s terminal wealth at T , sometimes also called PnL, that is “Profits and
Losses”, is not any longer (4.19), but becomes

PnL (p0, Z, δ;T ) := −Z + p0 + (δ · S)T − CT (δ). (4.21)

In the following, we also assume that the non-negative F-adapted cost functions are normalized,
so that ck(0) = 0, and that they are upper semi-continuous11. If we consider d+ 1 assets, with
the addition of the bank account B, potential dividend paying assets, and for brevity we write
PnLk = PnL (p0, Z, δ; k) and Pk := PnLk +Ck(δ) for the portfolio value without transaction costs,
then we can write the evolution of the portfolio value in the following way:

PnL (p0, Z, δ; 0) = P0 = p0,

Pk+1 = Pk +
(
Pk −

d∑
i=1

δikS
i
k

)
r∆t+

d∑
i=1

δik
(
Sik+1 − Sik + qiSik∆t

)
;

PnLk+1 = Pk+1 − Ck+1(δ);
PnLT = −Z + PT − CT (δ).

(4.22)

The interpretation should be clear: the value of the portfolio at the future instant of time tk+1
depends on the investments decided in the present, tk, by investing δik in asset number i, while
leaving the rest in the money market account. It might be useful to compare Equations (4.22)
with Remark 4.3.4. In the following and as already done in(4.22), for ease of notation and without
loss of generality, we will write ∆t for any time interval.
Remark 4.4.1. Notice that we have made no assumptions on the model for S. The settings are
extremely flexible. We could simulate S under an equivalent martingale measure or just use
historical paths under P for it.

In an idealized complete market with continuous-time trading, no transaction costs and
unconstrained hedging, for any liability −Z there exists a unique replication strategy δ and a
fair price p0 ∈ R such that −Z + p0 + (δ · S)T − CT (δ) = 0 holds P-a.s. As we have seen in
Section 4.3.3, in incomplete markets we can and have to choose a particular optimality criterion
to be able to find a price for any liability. For its generality and flexibility, the criterion that we
will adopt here is using convex measures, as defined in Section 4.3.3. If we denote such a measure
with ρ, then our goal becomes finding

ρp0(−Z) = inf
δ∈H

ρ
(
− Z + PT − CT (δ)

)
= inf
δ∈H

ρ( PnLT ), (4.23)

where the infimum is taken on all self-financing strategies that start from p0 and satisfy all
required constraints included in H (see also the definition of minimal risk in (4.17)).

4.4.2 Deep-learning the hedging strategy

To be able to handle hedging in such a realistic model, including restrictions that may act
on liquidity, market prices, trading days, getting information from the entire financial market
requires a likewise flexible numerical method.
It is no surprise that neural networks are actually suitable for such task. For definitions and
theoretical background on neural networks, we remind to Chapter 2, Section 2.3 and following.

11A function f is upper semi-continuous at a point x0 is lim supx→x0 f(x) ≤ f(x0). This technical requirement
is necessary to prove convergence of the price found by the neural network to the true price, when the number of
nodes in the hidden layer grows to infinity (see proof of Proposition 4.3 in [Bue+19].

118



4.4 Deep Hedging

The novelty of [Bue+19] comes from the fact that the network is not used in a completely
supervised learning way with labeled data, but rather as a model for a functional to minimize.
Consequently, it becomes natural to think of the neural network as an instrument to represent
the convex risk measure ρ applied to the PnL at final time T , as described in the Equalities (4.23).

The main intuition is that of reproducing the entire portfolio evolution in time following
Equations 4.22, so that

• the input layer will contain the input actually provided at the beginning of the strategy,
that is the initial capital p0 ∈ R, the initial amount of money invested in the (risky) assets
δ0 ∈ Rd;

• the output layer returns the final value of the portfolio, that is PT and then we subtract
the liability Z and the costs due to the transactions CT (δ) to reach PnLT ;

• the loss function of the neural network coincides with the chosen convex risk measure ρ
applied to PnLT . Notice that this choice is financially grounded;

• there is actually a neural network for all trading day tk and these are of course connected
so that information and strategies can unroll and evolve from time t0 = 0 to time tn = T .

This final point is maybe that most unusual one and it is worth spending some words on it. Since
it is clear from (4.22) that there is a recurrent structure inside the evolution of the portfolio
variable P , and that the input at time tk+1 is the output obtained at time tk, it raises as natural
the idea of considering a chain of neural networks that forms a larger one. Inside each of these
day-networks, there are some layers designated for the computation of the strategy δk, that is
then passed at the next network (in the chain). Note that these networks that are computing
the strategy for time tk do not have a loss function. In the training procedure, all weights of the
neural-chain are then adjusted at the same time to minimize (4.23). This methodology, which is
chaining many different networks, has been called semi-recurrent.

In principle, the information at time tk that is available in the market is generated by I0, . . . , Ik.
Therefore, the strategy δk should be dependent on this information only: all other relevant input
to determine δk, such δk−1 or Sk among the others, is also a function of I0, . . . , Ik. This naturally
translates in machine learning language: in every day in which hedging is allowed, the associated
δk should be a function of I0, . . . , Ik modelled through a neural network:

δk = Fk(I0, . . . , Ik) for k = 0, . . . , n− 1

for some neural network Fk to be defined. Note that these networks modelling the strategies are
the only variable part in our chain of networks. In other words, these networks Fk are the only
ones that present weights (and biases) and that are trained while minimization of (4.23) takes
place. All other operations implemented through networks, more specifically, by layers of networks,
are achieved through “fixed” functions - not dependent on trainable weights - determined by
Equations 4.22. In light of this consideration, we can re-write our goal 4.23 in the following way:

ρp0(−Z) = inf
δ∈HN

ρ
(
− Z + PT − CT (δ)

)
(4.24)

where HN is the new set of considered strategies. We can define it as

HN :=
{

(δk)n−1
k=0 ∈ H : δk = Fk(I0, . . . , Ik), Fk ∈ N σ

r(k+1),d, k = 0, . . . , n− 1
}
, (4.25)
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withN σ
r(k+1),d, as introduced in Definition 2.3.1, is a neural network with input dimension r(k+1),

output dimension d and activation function σ. Further, the set HN defined in (4.25) can again
be re-written as

HN =
{

(δξk )n−1
k=0 ∈ H : δξk = Fξk(I0, . . . , Ik), ξk ∈ Ξr(k+1),d, k = 0, . . . , n− 1

}
(4.26)

where the new set Ξd1,d2 denotes all parameters associated with a neural network whose input
and output dimensions are d1 and d2, respectively. On purpose we leave unspecified the number
of layers and the number of nodes in hidden layers as this is free to vary (as well as other
architectures’ choices). The only requirement is having, at least, shallow neural networks with a
non-linear activation function, such as a sigmoid, to make universal approximation in the sense of
Theorem 2.4.6 possible. If we set the parameter space Ξ := Πn−1

k=0 Ξr(k+1),d, then we can rewrite
our optimization goal as

ρp0(−Z) = inf
δ∈Ξ

ρ
(
− Z + PT − CT (δ)

)
(4.27)

This should clarify what we previously wrote, that all weights in the neural network chain are
optimized to solve problem (4.23).

Note that in the original article [Bue+19] the authors also proved that using shallow networks,
as one would expect, is enough: if the hidden layer dimension is arbitrarily large, it is possible
to approximate the true time 0 price of the liability arbitrarily well.
Remark 4.4.2 (Markovianity). If S is an F-adapted Markov process under the measure P and the
liability/contingent claim −Z is of the form Z := g(ST ) for a pay-off function g : Rd → R, then
we could rewrite the optimal strategy as δk = fk(Ik, δk−1) for some function fk : Rr × Rd → Rd.
Remark 4.4.3 (Recurrent structure). This framework becomes truly recurrent when we decide
that ξk = ξ0 for all k. This was the approach also used in [HTŽ21] where they applied deep
hedging to non-Markovian rough models. In this case, hidden states of the recurrent neural
network (RNN) are passed on to the next trading day and other output variables are passed to
the loss function of the network.
Remark 4.4.4. If we leave p0 unspecified, we can recover the price of the liability −Z, according
to the principle specified by the convex function ρ.

4.5 Model Free Deep Hedging

As already presented in Remark 4.2.3, we can use the approach developed in [DR14] to hedge
derivatives. This can be done employing the posterior distribution defined in (4.4) using the jth

model log-likelihood computed as in (4.3). Our endeavour is thus to merge the two approaches
presented in Section 4.2 and Section 4.4.

From now on, we will not use the index j to denote models belonging to the pool fixed a priori,
but rather θ, which denotes the parameters for the a particular model. Moreover, we suppose that
the posterior distribution π is already available. This usually entails a certain training period,
sometimes called burn in phase, before the probability function is actually “ready” to be used.
In addition, the fact that we start with `

(θ)
0 = 0 in (4.3) for all models, implies that we do not

impose any particular view on the market. Otherwise said, we adopt a non-informative prior
distribution.

After the burn in phase, we can simply ignore all time passed, since all required information
is summarized in π and in all `(θ), therefore we suppose to be at time t = 0. Let us start by
defining with:
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• π the posterior mixture distribution obtained by the Estimate Nothing approach.

• SHist the whole path of the historical trajectories, whose dynamics are unknown. We can
for example think of it as the S&P500 index.

• SSim
θ the entire set of all simulations on which the deep hedging neural network has been

trained. Normally, we need a fan of simulations for each θ representing a model of our pool.
Note that the simulations used to train the network are then discarded.

• NN is the deep hedging neural network used to learn the optimal strategy. It is implemented
in a semi-recurrent fashion as described in Section 4.4.2. Read also Remark 4.5.2 below.

• Pθ the price of the selected derivative at time t = 0 computed using the model indexed by
θ (see Remark 4.5.1 below).

• δt,θ := NNδ(SSim
t,θ ) the delta of the derivative computed by the trained neural network NN

on the model simulations SSim
t,θ . The time index t refers to the subset of instant of times in

which trading is performed.

• F the payoff-function of the derivative, so that F (SHist) represents H, a (random) payoff
at time T , or Z, a (random) liability that we need to pay back. In principle, we can also
consider path-dependent payoff functions, such as for Asian options.

Then the goal is computing∫
Θ
Pθ π(dθ) +

(∫
Θ
δθ π(dθ) · SHist

)
T

− F
(
SHist) . (?)

Equation (?) represents the PnL at final time T , weighted by our posterior distribution on the
strategy side, hence conceiving a mixture model. Actually, we would expect Equation (?) to
have mean value “close” to zero and restrained variance to acquire confirmation that hedging
and pricing worked well.
Remark 4.5.1. There might be different ways for computing the price Pθ for all different models.
For example, if a closed-form formula were available, we could simply use it by inputting the
parameters θ. Another possibility would be using the neural network trained for deep hedging
(the same used to get the delta’s δt,θ as side-products), by leaving p0 unspecified (Remark 4.4.4).
In this case, the simulations SSim

θ are used as input for NN.
Remark 4.5.2. One of the main novelties we introduced is considering the neural network not
only as a map acting the price process alone, but also on the parameters θ that generated the
trajectories with which the network has been trained.
In this way, once the network is fully trained, we can employ it to instantaneously evaluate prices
and strategies for a number of models, without the need of having more pricers and hedgers at
the same time. The employ of a machine learning algorithm as neural network, that can offset
the training time with instantaneous evaluations once training is finished, empower the approach
by Dümbgen and Rogers in the sense of enabling more complex models that would be normally
out of sight because of lengthy computations (see Box 4.1 and Remark 4.2.5).
Remark 4.5.3 (Model Free Deep Hedging). Most importantly, we solved one of the few
deficiencies of Deep Hedging as developed in [Bue+19], that is model-dependency.
Remark 4.5.4. This proposal is not the first attempt of creating a bond between robust finance
and deep hedging. A first trial has been advanced by Lütkebohmert, Schmidt and Sester in
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[LSS21]. The chosen Markovian class of models is called generalized affine process and includes
many notorious examples, such as Black-Scholes ([BS73]), Cox-Ingersoll-Ross (CIR) ([CIR85]) or
Vaš́ıček models ([Vaš77]). The dynamics of the continuous semimartingale S are described as
unique strong solution to the SDE

dSt = (b0 + b1St) dt+ (a0 + a1St)γ dWt,

for ai, bi ∈ R, i = 0, 1, γ ∈ [1/2, 1] suitably selected and with S0 = x ∈ E for the state space
E (either R or R+). In this case, model uncertainty is modelled by allowing the parameters to
take value in a set Θ := Π5

i=1[θi, θi], where the underline and overline denotes the minimum and
maximum, respectively, that the five parameters (a0, a1, b0, b1, γ) of the model can reach.

4.5.1 Numerical implementation

In order to verify the goodness of the idea, we numerically implemented on Python, using
Tensorflow [Aba+15] as an API to realize neural networks.

To simulate the market environment, we decided to adopt a Bates model as true/historical
model, while a set of candidate Merton models as our pool of models. The derivative under
investigation is an at-the-money European option, whose value was computed with the help of
QuantLib [AB+03]. For a description of Bates model, we remind to Section 3.3. While Merton
model is a jump-diffusion which is basically made by geometric Brownian motion and a compound
Poisson process. The pool of models is indexed by the parameter θ which represents the diffusion
coefficients. The model dynamics are

d logSt =
(
r − q − 1

2θ
2 − λm

)
dt+ θ dWt + ΥdNt, (4.28)

where Υ ∼ N (ν, δ2), m = exp(ν + 1
2δ

2) − 1 and dNt ∼ Pois(λ dt). The interval chosen for θ is
[0.1, 0.7], discretized with a step equal to 0.04.
The deep hedging network has a size which depends on the maturity of the derivative, a European
ATM call option with 30-days expiry, but each network implementing the non-linear function was
shallow, with just 16 nodes in the hidden layer. The initial learning rate to train the network with
adam ([KB15]) was 0.01. The batch-size was chosen to be 256. For every parameter-combination,
10’000 paths were generated to form the training set of the deep hedging and the duration of the
network could vary, but usually 15/20 epochs were sufficient to obtain good results.
The burn in phase for π can be easily adapted, but in the following we will see results obtained
after 500 steps. The functional Q in Equation 4.3 we used was the square Euclidean distance on
implied volatility surfaces (since we did not notice a remarkable improvement using the method
proposed in [DR14]).
Prices in Equation (?) were computed using the neural network trained for deep hedging.
All deep-hedging algorithms have been trained using a mean-variance hedging strategy.

4.5.2 Graphical results

In Figure 4.1 one can see two different point of views (different angles) on the same implied
volatility estimation by means of the ‘Estimate nothing’ method. On the left part of the pictures,
we can see the two implied volatility surfaces: in blue there is the one associated to (historical)
Bates model, while in orange the one obtained by the mixture model using only Merton models,
where the value of the diffusion coefficient is takes place in the interval [0.1, 0.7]. Below, in
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Figure 4.2 one can see the likelihood on the parameter θ after a rather long burn in phase,
appropriately normalized. In this case, the value of θ are concentrating around 0.4.

In Figures 4.3 one can see the output of Deep Hedging. We compare different histograms
where Deep Hedging has been used to train a neural network on Merton paths. The second plot
is just an enlargement of the first.

Finally, in Figure 4.4, we can see the histogram representing Equation ?. In orange, we can
see the histograms originating from applying Deep Hedging on Bates trajectories, while in blue
we see the bars coming from Deep Hedging applied on Bates model. From the picture, we can
appreciate the goodness of the proposal algorithm. In fact, the mean of the PnL is 0.076, very
close to zero, while its variance is 5.74, slightly larger than the variance provided by Deep Hedging
on Bates, which is 5.5. We would like to recall that no minimization was operated in Equation ?
to reach these results. Results for this simulation are summarized in Table 4.1.

Model Mean of (?) Variance of (?) Call Price

MF-DH 0.0765 5.747 5.513
DH-Bates 0.0023 5.521 5.412

Table 4.1: The table collects key numbers for the simulation described in Section 4.5.1. In the first row, the
results obtained by Model Free Deep Hedging, while in the second row the results from applying Deep Hedging
on the Bates model. Monte Carlo price: 5.524, Fourier-based Bates price: 5.408. Initial conditions: S0 = 118.52,
V0 = 0.1485, r = q = 0, κ = 0.8, θ = 0.22, σ = 0.15, ρ = −0.53, λ = 0.15, ν = −0.29, δ = 0.30, dt = 1/365.
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Figure 4.1: Output of the algorithm proposed in [DR14] by Dümbgen and Rogers. On the left, we can see the
two IVS (in blue the target IVS, while in orange the mixture model IVS). On the right the pointwise difference
between the two IVS.
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Figure 4.2: Final likelihood on the diffusion coefficient θ of Equation 4.28.

4.6 Python code

This section collects parts of the code needed to produce the results of this chapter.
In the Listing 4.1, we can read the code to compute the density π obtained following the

‘Estimate Nothing’ approach. The code starts from a non-informative prior inside the function
bayesian update EN and this gets updated using a Bayesian updating principle iter times.
At every instant of time, a new object of class Merton is created that is used to estimate the
best fitting diffusion coefficient parameter exploiting both the density function of the underlying
process S, likelihood1, and the L2-difference in the prices, likelihood2. These are then
summed, weighting the second variable with a log-likelihood coefficient ll2 coeff. Inside the
function compute mixture ivs, the resulting density π is normalized by dividing for its L1-norm
and the final implied volatility surface is calculated as mixture model using the density π.

1

2 import numpy as np
3 import pickle
4 from tqdm import tqdm
5 from scipy . integrate import simpson
6 from scipy . stats import norm
7 from matplotlib import pyplot as plt
8 from utils import read_input_data , min_vola , max_vola
9 from vola_class import volaSurface

10 from merton_model import Merton , L2_difference
11 from bates import jump_params_length
12

13 option_type_str = ’call ’
14

15 def apply_mask (pi , threshold =1e -3):
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Figure 4.3: Output of the algorithm Deep Hedging from [Bue+19] used to train a neural network on the Merton
model. ‘Merton PnL’ stands for the PnL computed by analytical formulas; ‘Deep Hedging PnL (analytical δ)’
stands for the PnL computed with analytical δ, but using the price found by the network; ‘Merton PnL’ stands
for the PnL entirely computed via Deep Hedging. The second plot is just an enlargement of the first.
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Figure 4.4: Output of the algorithm Model Free Deep Hedging proposed in this thesis. ‘Mean-price Model
Free DH PnL’ stands for the PnL computed following Equation ?; ‘Bates DH PnL’ stands for the PnL entirely
computed via Deep Hedging on Bates trajectories. The second plot is just an enlargement of the first.
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16 """
17 Filtering to speed up computations .
18 : param pi: EN posterior density
19 : param threshold : limit below which weights are disregarded
20 : return : filtered values of x and y on which I will compute the mixture ivs
21 """
22 mask = pi[’y’] >= threshold
23 pi[’x’] = pi[’x’][ mask]
24 pi[’y’] = pi[’y’][ mask]
25 return pi
26

27

28 # In this case , the mixture ivs is computed only with merton models where the
diffusion coefficient is allowed to change

29 def compute_mixture_ivs (pi , merton_obj , target_ivs , ivs_struct , method =2, op_type =
option_type_str ):

30 """
31 Compute the weighted implied volatility of mixture Merton model and return the

mixture ivs and the difference
32 between the target_ivs and the mixture ivs.
33 : param pi: dictionary , density distribution with keys x and y
34 : param merton_obj : merton model object
35 : param target_ivs : implied volatility surface which I want to approximate
36 : param ivs_struct : implied volatility surface which I want to approximate
37 : param method : 1: linear combination of IVS , 2 linear combination of prices
38 : param op_type : ’call ’ or ’put ’?
39 : return : 1) ivs: implied volatility surface coming from the mixture model
40 2) L2 difference between ( model ) "ivs" and " target_ivs "
41 """
42 assert ’x’ in pi and ’y’ in pi , ’[ compute_mixture_ivs ] Mixture density is

missing "x" or "y"! ’
43 ivs = np. zeros_like ( target_ivs )
44 S0 = merton_obj .S0
45 pi[’y’] /= pi[’y’]. sum () # Normalize
46 pi[’x’] = np. concatenate (( pi[’x’], np. array ([ pi[’x’][ -1]+0.1]) )) # add last

point for dx
47 if method == 1: # 1) linear combination of IVS
48 for j, x in enumerate (pi[’x’][: -1]):
49 prices = merton_obj . Merton_ivs_pricer (S0=S0 , sigma =x, ivs_struct =

ivs_struct , op_type = op_type )
50 tmp_ivs = volaSurface . get_vola (S0 , merton_obj .r, merton_obj .q,

ivs_struct = ivs_struct , price_vec = prices )
51 ivs += pi[’y’][j] * np. array ( tmp_ivs )
52 elif method == 2: # 2) linear combination of prices from which we derive the

IVS
53 prices = np. zeros_like ( target_ivs )
54 for j, x in enumerate (pi[’x’][: -1]):
55 tmp_prices = merton_obj . Merton_ivs_pricer (S0=S0 , sigma =x, ivs_struct =

ivs_struct , op_type = op_type )
56 prices += pi[’y’][j]* np. array ( tmp_prices )*pi[’const ’]*( pi[’x’][j+1] -x)
57 ivs = volaSurface . get_vola (S0 , merton_obj .r, merton_obj .q, ivs_struct =

ivs_struct , price_vec = prices )
58 print (’mixture ivs ’, ivs)
59 print (’target_ivs ’, target_ivs )
60 print (’diff ’, ivs - target_ivs )
61 return ivs , L2_difference (ivs , target_ivs ), pi
62

63

64 def bayesian_update_EN ( name_params_list , name_volas_list , ll2_coeff = -0.15 , iter
=10 , ivs_plot =False , method =2, beta =0.95 , points =150 , save_for_later =True ,
seed_str =’’, mask= False ):

65 """
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66 Continuous Bayesian update of posterior likelihood on the diffusion
coefficient of the Merton model following the

67 " Estimate Nothing " approach .
68 : param name_params_list : name of the list of parameters to load
69 : param name_volas_list : name of the list of volatility structures to load
70 : param ll2_coeff : log - likelihood2 - coefficient to balance the transition

density
71 : param iter: number of iteration until
72 : param ivs_plot : plot IVS?
73 : param method : 1: linear combination of IVS , 2 linear combination of prices (

from which we get ivs)
74 : param beta: beta of EN , used to " forget " older contributions
75 : param points : number of points to use for the posterior distribution
76 : param save_for_later : want to save the ( filtered ) posterior distribution and

the initial conditions ?
77 : param seed_str : string of integer number --> should be the same as in

name_params_list and name_volas_list
78 : param mask: want to filter EN -pdf ( based on "y" values )?
79 : return : 1) final posterior likelihood on diffusion coefficient ; 2) model ivs;
80 3) L2 difference between model ivs and the loaded ivs selected by "

iter"
81 """
82 assert 0 < beta <= 1, ’[ bayesian_update_EN ] "beta" is supposed to be in (0 ,1] ’
83 p_list , v_list = read_input_data ( name_params_list , name_volas_list )
84 assert len( p_list ) == len( v_list ), ’[ bayesian_update_EN ] Loaded object from

AFE have different lengths ’
85 mjs_pos , sjs_pos = jump_params_length ( p_list )
86 MAX_N_TIMES = len( p_list ) -1
87 xx = np. linspace (min_vola , max_vola , points )
88 tot_log_likelihood = [np. zeros_like (xx)]
89 for i in tqdm( range (max ([1 , min ([ iter , MAX_N_TIMES ]) ]))):
90 merton = Merton (S0= p_list [i][0] , sigma =np.sqrt( p_list [i ][1]) , r= p_list [i

][2] , q= p_list [i][3] , jump_intensity = p_list [i][8] , mean_jump_size = p_list [i][
mjs_pos ], stdev_jump_size = p_list [i][ sjs_pos ])

91 likelihood1 = merton . trans_density_sigma ( fPrice = p_list [i+1][0] , iPrice =
merton .S0 , dt =1./365)

92 likelihood2 = merton . vola_diff_sigma ( obs_vola =np. array ( v_list [i][ ’ivs ’]) ,
S0= merton .S0 , ivs_struct = v_list [i], op_type = option_type_str )

93 yy1 = [ likelihood1 (x) for x in xx]
94 yy2 = [ likelihood2 (x) for x in xx]
95 yy1 = np.log(yy1); yy2 = np.log(yy2)
96 fig = plt. figure ()
97 plt.plot(xx , yy1 , label =’log - likelihood1 ’); plt.plot(xx , ll2_coeff *yy2 ,

label =’ll2_coeff * log - likelihood2 ’)
98 plt.plot(xx , yy1 + ll2_coeff *yy2 , label =’sum log - likelihoods ’)
99 plt.plot(xx , beta* tot_log_likelihood [i]+ yy1+ ll2_coeff *yy2 , label =’sum log -

likelihoods with past ’)
100 plt. legend (); #plt.show ()
101 fig. savefig (" en_likelihoods_in_time / seed_ "+ seed_str +" _ll2_coeff "+str(

ll2_coeff )+"_t"+str(i)+".png")
102 tot_log_likelihood . append (beta* tot_log_likelihood [i] + yy1 + ll2_coeff *yy2

)
103 tot_likelihood = np.exp( tot_log_likelihood [ -1]) # get last element , but we

might need more
104 # Normalize likelihood to have density 1
105 area = simpson ( tot_likelihood , xx)
106 tot_likelihood = tot_likelihood / area
107 print (’tot_likelihood :\n’, tot_likelihood )
108 fig = plt. figure ()
109 plt.plot(xx , tot_likelihood , label =’likelihood ’)
110 plt. legend (); # plt.show ()
111 fig. savefig (" en_likelihoods_in_time / seed_ "+ seed_str +" _ll2_coeff "+str( ll2_coeff
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)+" _tFinal "+str(i)+".png")
112 pi = {’x’: xx , ’y’: tot_likelihood , ’const ’: tot_likelihood .sum ()}
113 if mask:
114 pi = apply_mask (pi)
115 m_ivs , ivs_L2diff , pi = compute_mixture_ivs (pi , merton , target_ivs =np. array (

v_list [i][ ’ivs ’]) , ivs_struct = v_list [i], method = method )
116 print (’L2 diff:’, ivs_L2diff )
117 if ivs_plot :
118 v_list [i][ ’m_ivs ’] = m_ivs
119 print ( v_list [i])
120 plt. close ("all")
121 volaSurface . show_vola ( ivs_struct = v_list [i], one_plot = False )
122 if save_for_later :
123 string_name = ’EN_post_plus_i_cond_seed ’+ seed_str +’_iter ’+str(iter)+’

_points ’+str( points )
124 string_name = string_name +’_mask .pl ’ if mask else string_name +’_no_mask .pl

’
125 with open( string_name , ’wb ’) as obj:
126 pickle .dump ([pi , p_list [i]], obj)
127 return tot_likelihood , m_ivs , ivs_L2diff , pi
128

129

130

131 if __name__ == " __main__ ":
132 ## Bates model - EN
133 # seed_str , iterations = ’3’, 50
134 seed_str , iterations = ’28 ’, 500
135 name_params_list = ’params_list_seed ’+ seed_str +’_times ’+str( iterations )+’

_stddev0 .05. pl ’
136 name_volas_list = ’volas_list_seed ’+ seed_str +’_times ’+str( iterations )+’

_stddev0 .05. pl ’
137 # Merton model
138 # name_params_list = ’params_list_seed1116750_times50_stddev0 .05 _merton .pl ’
139 # name_volas_list = ’volas_list_seed1116750_times50_stddev0 .05 _merton .pl ’
140 print ( name_params_list )
141 print ( name_volas_list )
142 bayesian_update_EN ( name_params_list , name_volas_list , ivs_plot =True , method =2,

iter =500 , seed_str =seed_str , mask= False )

Listing 4.1: Code for the computation of the density π following the ‘Estimate Nothing’ approach.

Listing 4.2 contains the code for the definition of the class and function responsible for neural
network implementation making use of Tensorflow ([Aba+15]). The most important function is
Deep Hedging Model, which effectively implements deep hedging. This is realized by receiving
in input the financial parameters of the model, the price at initial time of the underlying, i.e. S0,
the information we will use inside the network as input for the neurons. The two latter inputs are
then also provided at every instant of time j, that is tj , throughout the developing of the hedging
strategy. The class StrategyLayer, on the other hand, is responsible for implementing the (non-
linear) function g that maps the underlying Stj , the financial parameters p and, possibly, the
delta at previous time δtj−1 , to the current delta δtj : δtj = g(Stj , p, δtj−1). Quite interestingly, the
function Delta SubModel is used to extract from the deep hedging neural network the portion of it
that is providing as output the delta itself. This is the reason why the argument days from today
is needed: it is used to exactly know where to interrupt the trained network so that it can return
the corresponding δ. Finally, the purpose of the function prepare input delta NN is used to
aggregate different datasets, namely the input for the non-linear function g.

1 from tensorflow . keras . layers import Input , Dense , Concatenate , Subtract , Lambda ,
Add , Dot , BatchNormalization , Activation , LeakyReLU

2 from tensorflow . keras . models import Model , load_model
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3 from tensorflow . keras . initializers import he_normal , Zeros , he_uniform ,
TruncatedNormal

4 from tensorflow . keras . callbacks import EarlyStopping , ReduceLROnPlateau
5 import tensorflow . keras . backend as K_back
6 import tensorflow as tf
7 from eu_options import EuropeanCall
8

9 def softplus (x, t=2):
10 return tf.math.log (1+ tf.math.exp(t*x))/t
11

12

13 class StrategyLayer (tf. keras . layers . Layer ):
14 def __init__ (self , n=None , m=None , nodes =None , use_BN =None , kernel_initializer

=" he_uniform ", bias_initializer =" he_uniform ", act_hidden ="relu", act_output ="
linear ", delta_constraint =None , transaction =None):

15 """
16 Build NN that gives as output the strategy ( delta ). The input depends on

the type of chosen strategy .
17 : param n: number of hidden layers for strategy
18 : param m: dimension of process
19 : param nodes : number of neurons for hidden layers ( apart from last one)
20 : param use_BN : use batch normalization ?
21 : param kernel_initializer : random matrix initialization
22 : param bias_initializer : random vector initialization
23 : param act_hidden : activation function for dense layers
24 : param act_output : activation function for output layer
25 : param delta_constraint : tuple (delta_min , delta_max ) to apply to output

layer
26 : param transaction : time ---> important for naming
27 """
28 super ( StrategyLayer , self). __init__ (name=" delta_ "+str( transaction ))
29 assert n > 1, "[ StrategyLayer ]: At least two layers are needed "
30 self.n = n
31 self.m = m
32 self. nodes = nodes
33 self. use_BN = use_BN
34 self. act_hidden = act_hidden
35 self. act_output = act_output
36 self. kernel_initializer = kernel_initializer
37 self. bias_initializer = bias_initializer
38 self. intermediate_dense = [None for _ in range (self.n)]
39 self. intermediate_BN = [None for _ in range (self.n)]
40 self. delta_constraint = delta_constraint
41 for j in range (self.n):
42 self. intermediate_dense [j] = Dense (self.nodes , kernel_initializer =self

. kernel_initializer , bias_initializer =self. bias_initializer , use_bias =( not
self. use_BN ))

43 if self. use_BN :
44 for j in range (self.n):
45 self. intermediate_BN [j] = BatchNormalization ()
46 self. output_dense = Dense (self.m, kernel_initializer =self.

kernel_initializer , bias_initializer =self. bias_initializer , use_bias =True)
47

48 def call(self , input ):
49 for j in range (self.n):
50 if j == 0:
51 output = self. intermediate_dense [j]( input )
52 else:
53 output = self. intermediate_dense [j]( output )
54 if self. act_hidden == " leaky_relu ":
55 output = LeakyReLU ()( output )
56 elif self. act_hidden == " softplus ":
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57 output = softplus ( output )
58 else:
59 output = Activation (self. act_hidden )( output )
60 if self. use_BN : # batch normalization
61 output = self. intermediate_BN [j]( output , training =True)
62 output = self. output_dense ( output )
63 if self. act_output == " leaky_relu ":
64 output = LeakyReLU ()( output )
65 elif self. act_output in (" sigmoid ", "tanh", " hard_sigmoid "):
66 if self. delta_constraint is not None: # delta constraints for B&S

model
67 output = Activation (self. act_output )( output )
68 delta_min , delta_max = self. delta_constraint
69 output = Lambda ( lambda x: (delta_max - delta_min )*x+ delta_min )(

output )
70 else:
71 output = Activation (self. act_output )( output )
72 return output
73

74

75 def Deep_Hedging_Model (N=None , n=None , fpd=None , m=1, nodes =16 , r=0.0 , q=0.0 , dt
=1./365 , initial_wealth =0.0 , final_cost =False , strategy_type =None , use_BN =None
, kernel_initializer =" he_uniform ", bias_initializer =" he_uniform ", act_hidden ="
relu", act_output =" linear ", delta_constraint =None , cost_type =" proportional ",
epsilon =0.0 , ** kwargs ):

76 """
77 Returns neural network for Deep Hedging .
78 : param N: number of transactions ( usually 1 per day)
79 : param n: number of hidden layers for strategy
80 : param fpd: financial model parameters dimension
81 : param m: dimension of process
82 : param nodes : number of neurons for hidden layers ( apart from last one)
83 : param r: risk -less interest rate
84 : param q: dividend rate
85 : param dt: time difference of the discretized process
86 : param initial_wealth : initial amount of wealth , default is 0
87 : param final_cost : commission fees at last transaction ?
88 : param strategy_type : " simple " or " semi_recurrent "
89 : param use_BN : use batch normalization ?
90 : param kernel_initializer : random matrix initialization
91 : param bias_initializer : random vector initialization
92 : param act_hidden : activation function for dense layers
93 : param act_output : activation function for output layers
94 : param delta_constraint : tuple (delta_min , delta_max ) to apply to output layer
95 : param cost_type : " constant " or " proportional "
96 : param epsilon : fixed amount or proportional amount of costs
97 : return : tensorflow model ( neural network )
98 """
99 assert N > 0, "[ Deep_Hedging_Model ]: Number of transactions needs to be at

least 1"
100 monitoring_steps = kwargs .get(’fixing_days ’, [N])
101 # Price and available information ( input for NN with previous time strategy )
102 fin_params = Input ( shape =(fpd ,) , name=" financial_model_params ")
103 price = Input ( shape =(m ,) , name=" price_0 ")
104 strategy_input = Input ( shape =(m ,) , name=" information_set_0 ")
105 FV_factor = 1 + (r-q)*dt # np.exp ((r-q)*dt)
106 inputs = [ fin_params , price , strategy_input ]
107 wealth = Lambda ( lambda p: 0*p+ initial_wealth , name=" wealth_0 ")( price ) # TRICK
108 for j in range (N):
109 if strategy_type == " simple ": # standard FNN
110 helper1 = strategy_input
111 elif strategy_type == " recurrent ": # (semi -) recurrent NN
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112 if j == 0:
113 strategy = Lambda ( lambda x: x *0.0) ( price ) # Strategy at t = -1

should be 0
114 helper1 = Concatenate () ([ strategy_input , strategy ])
115 helper2 = Concatenate (name=" add_fin_params_ "+str(j))([ helper1 , fin_params

])
116 strategy_layer = StrategyLayer (n=n, m=m, nodes =nodes , use_BN =use_BN ,

kernel_initializer = kernel_initializer , bias_initializer = bias_initializer ,
act_hidden = act_hidden , act_output = act_output , delta_constraint =
delta_constraint , transaction =j)

117 strategy_helper = strategy_layer ( helper2 )
118 if j == 0:
119 delta_strategy = strategy_helper # strategy_ -1 is set to 0
120 else: # delta_strategy = strategy_ {t+1} - strategy_t
121 delta_strategy = Subtract (name=" diff_strategy_ "+str(j))([

strategy_helper , strategy ])
122 if cost_type == " proportional ": # Proportional transaction cost
123 absolute_changes = Lambda ( lambda x: K_back .abs(x), name="

absolute_change_ "+str(j))( delta_strategy )
124 costs = Dot(axes =1) ([ absolute_changes , price ])
125 costs = Lambda ( lambda x: epsilon *x, name=" cost_ "+str(j))( costs )
126 elif cost_type == " constant ":
127 costs = Lambda ( lambda x: epsilon +x *0.0) ( price )
128 if j > 0:
129 wealth = Lambda ( lambda x: x* FV_factor )( wealth )
130 wealth = Subtract (name="wealth - cost_ "+str(j))([ wealth , costs ])
131 # Money invested in the bank account : w_{t+1} = w_t - delta_strategy *

price_t
132 mult = Dot(axes =1) ([ delta_strategy , price ])
133 wealth = Subtract (name="wealth - risky_asset_ "+str(j))([ wealth , mult ])
134 # New input variables
135 price = Input ( shape =(m ,) , name=" price_ "+str(j+1))
136 strategy_input = Input ( shape =(m ,) , name=" information_set_ "+str(j+1))
137 strategy = strategy_helper
138 if j != N -1:
139 inputs += [price , strategy_input ]
140 else: # j == N -1
141 inputs += [ price ]
142 # Final time -step
143 wealth = Lambda ( lambda x: x* FV_factor )( wealth )
144 if final_cost :
145 if cost_type == " proportional ": # proportional transaction cost
146 absolute_changes = Lambda ( lambda x: K_back .abs(x), name="

absolute_change_ "+str(j+1))( strategy )
147 costs = Dot(axes =1) ([ absolute_changes , price ])
148 costs = Lambda ( lambda x: epsilon *x, name=" cost_ "+str(j+1))( costs )
149 elif cost_type == " constant ":
150 costs = Lambda ( lambda x: epsilon +x *0.0) ( price )
151 wealth = Subtract (name="wealth - cost_ "+str(j+1))([ wealth , costs ])
152 # Bank account for the final period
153 mult = Dot(axes =1) ([ strategy , price ]) # delta_strategy = strategy_t
154 wealth = Add () ([ wealth , mult ]) # now we add ( instead of subtracting )
155 payoff = Input ( shape =(m ,) , name=" payoff_final_t ") # add payoff at time T
156 inputs += [ payoff ] # final input to be inserted
157 wealth = Subtract (name=" wealth_ "+str(j+1))([ wealth , payoff ]) # remove payoff

(= liability )
158 return Model ( inputs =inputs , outputs = wealth )
159

160

161 def Delta_SubModel (dhen_obj , model =None , days_from_today =None , ** kwargs ):
162 if dhen_obj . nn_params [’strategy_type ’] == " simple ":
163 inputs = [ Input ( dhen_obj .proc_dim , ), Input ( dhen_obj .fpd , )]
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164 intermediate_inputs = Concatenate ()( inputs )
165 elif dhen_obj . nn_params [’strategy_type ’] == " recurrent ":
166 inputs = [ Input ( dhen_obj .proc_dim , ), Input ( dhen_obj .proc_dim , ), Input (

dhen_obj .fpd , )]
167 intermediate_inputs = Concatenate ()( inputs )
168 outputs = model . get_layer (" delta_ "+str( days_from_today ))( intermediate_inputs )
169 return Model (inputs , outputs )
170

171

172 def prepare_input_delta_NN (dhen_obj , derivative , days_from_today ,
strat_input_range , fin_params ):

173 assert dhen_obj . obs_params [’dt ’] == derivative .dt , "[ prepare_input_delta_NN ]
dt needs to be the same"

174 if dhen_obj . nn_params [’strategy_type ’] == ’simple ’:
175 input_submodule = [ strat_input_range , fin_params ]
176 elif dhen_obj . nn_params [’strategy_type ’] == ’recurrent ’: # TRICK (SEE BELOW )

- otherwise need loop over days
177 # TRICK : compute the delta at previous time using the analytical formula
178 S_range_minus1 = dhen_obj . obtain_S_range ( days_from_today = days_from_today )
179 tau_minus1 = ( dhen_obj . nn_params [’N’]-( days_from_today -1))* derivative .dt
180 d1_minus1 = EuropeanCall . d1_func ( S_range_minus1 , derivative .K, derivative .

r, derivative .q, derivative .imp_vola , tau_minus1 )
181 model_delta_minus1 = EuropeanCall . delta_func (d1_minus1 , derivative .q,

tau_minus1 )
182 input_submodule = [ strat_input_range , model_delta_minus1 , fin_params ]
183 return input_submodule

Listing 4.2: Code for definition of the neural network class and function used for deep hedging. Parts of the function
Deep Hedging Model are inspired to the code of Yu Man Tam https://github.com/YuMan-Tam/deep-hedging.

The heart of the code resides in Listing 4.3, where the class DH EN is implemented. The
goal of this class is to keep under one umbrella the different aspects involved in model free deep
hedging. In this case, with an instance of this class we can create a deep hedging neural network,
using the method create NN, create a sample of simulations from a specified financial model, e.g.
Black-Scholes (geometric Brownian motion), Merton (geometric Brownian motion with jumps) or
Bates, with the method obtain paths, using these simulations to train the network previously
created, thanks to compile and train NN.
Eventually, the function get mixed prices deltas is able to combine an instance of the class
DH EN and the density π obtained as shown in Listing 4.1 to actually test model free deep hedging.
In this function, the argument F trajectories stands for the trajectories linked to Bates model,
that is supposed to be the observed model, derivative is any derivative, e.g. an European call
option, and dhen obj an instance of DH EN.

1 from tensorflow . keras . models import load_model
2 from tensorflow . keras . optimizers import Adam
3 import tensorflow . keras . backend as K_back
4 import tensorflow as tf
5 import numpy as np
6 from sklearn . model_selection import train_test_split
7 from merton_model import Merton
8 from LaTex_NN import Deep_Hedging_Model , Delta_SubModel , prepare_input_delta_NN
9 from bates import BatesTDJ , jump_params_length

10 from tqdm import tqdm
11 import os
12

13 def train_test_split_for_list (data=None , test_size =None):
14 # Split simulated data into training and testing sample
15 x_train = []
16 x_test = []
17 for x in data:
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18 tmp_x_train , tmp_x_test = train_test_split (x, test_size =test_size , shuffle
= False )

19 x_train += [ tmp_x_train ]
20 x_test += [ tmp_x_test ]
21 return x_train , x_test
22

23 def create_input_strategy ( input_type , S, init_price , axis =1):
24 # Choose from: "S", " log_S ", " normalized_log_S " (by S0)
25 if input_type == "S":
26 output = np. stack (S, axis=axis)
27 elif input_type == " log_S ":
28 output = np. stack (( np.log(S)), axis=axis)
29 elif input_type == " normalized_log_S ":
30 output = np. stack (( np.log(S/ init_price )), axis=axis)
31 return output
32

33 def create_total_input (process , strategy_input , financial_parameters , payoff ,
time_steps ):

34 # Put together financial_parameters , underlying , strategy_input and final -time
payoff

35 x_all = [ financial_parameters ]
36 for j in range ( time_steps ):
37 x_all += [ process [j, :, None ]]
38 x_all += [ strategy_input [j, :, None ]]
39 x_all += [ process [ time_steps , :, None ]]
40 x_all += [ payoff [:, None ]]
41 return x_all
42

43 def mean_pred ( y_pred ):
44 return K_back .mean(y_pred , axis = -1)
45

46 def mse( wealth =None):
47 return K_back .mean( K_back . square ( wealth ), axis = -1)
48

49 def set_seeds (seed):
50 np. random .seed(seed)
51 tf. random . set_seed (seed)
52

53 def log_returns_GBM (vola , r, q, n_samples , m, N, dt):
54 init_time = np. zeros (( n_samples , m))
55 return np. stack (([ init_time ] + [(r-q-vola **2/2) *dt + vola*np. random . normal (0,

np.sqrt(dt), (n_samples , m)) for _ in range (N)]))
56

57 def proc_from_log_returns ( init_price , log_returns ):
58 return init_price *np.exp(np. cumsum ( log_returns , axis =0))
59

60 def exclude_fin_model ( fin_model_list ):
61 exclude = np. random . choice (len( fin_model_list ), 1) [0]
62 test_fin_model = fin_model_list .pop( exclude )
63 return fin_model_list , test_fin_model
64

65

66 class DH_EN :
67 def __init__ (self , str_model , fin_model_list , obs_params , nn_params ,

payoff_func , n_samples =10**4 , time_steps =20 , proc_dim =1, ** kwargs ):
68 """
69 Class used to generate a Neural Network (NN) model that is intimately

connected with a precise financial model ,
70 where all parameters of the financial part are specified at the beginning .
71 : param str_model : string denoting the financial model ---> used for

internal dispatch
72 : param fin_model_list : list of parameters (as dictionaries ) needed for the
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financial model
73 : param obs_params : observable financial quantities (S0 , r, q, ...)
74 : param nn_params : parameters needed for NN model
75 : param payoff_func : payoff function , i.e. liability to hedge
76 : param n_samples : number of samples of the financil model to simulate
77 : param time_steps : number of time steps for simulations (at the moment , it

is also the number of transactions )
78 : param proc_dim : process dimension of the financial model
79 """
80 assert all(k in nn_params for k in (’N’, ’n’, ’strategy_type ’)), ’Specify

all elements of NN!’
81 assert all(k in obs_params for k in (’S0 ’, ’dt ’, ’r’, ’q’)), ’Specify all

observables financial quantities !’
82 self. str_model = str_model
83 if ’test_fin_model ’ in kwargs .keys ():
84 self. test_fin_model = kwargs .get(’test_fin_model ’, {’sigma ’: 0.2})
85 self. fin_model_list = fin_model_list
86 else:
87 self. fin_model_list , self. test_fin_model = exclude_fin_model (

fin_model_list )
88 self. n_models = len(self. fin_model_list )
89 self.fpd = len(self. fin_model_list [0]) # ASSUME all models belong to the

same family
90 self. obs_params = obs_params
91 self. nn_params = nn_params
92 self. payoff_func = payoff_func
93 self. n_samples = n_samples
94 self. time_steps = time_steps
95 self. proc_dim = proc_dim
96 self.NN = None
97 self.db = None
98 self. _dispatch = {’GBM ’: self. _generate_GBM , ’Merton ’: self.

_generate_Merton , ’Bates ’: self. _generate_Bates }
99 self. _paths = None

100

101 def obtain_paths (self , ** kwargs ):
102 if ’obs_dict_list ’ in kwargs .keys ():
103 obs_dict_list = kwargs [’obs_dict_list ’]
104 if self. _paths is None:
105 self. _paths = np. concatenate ([ self. generate_sample (fin_model , **

obs_dict_list [k]) for k, fin_model in enumerate (self. fin_model_list )], axis =1)
106 else:
107 if self. _paths is None:
108 self. _paths = np. concatenate ([ self. generate_sample ( fin_model ) for

fin_model in self. fin_model_list ], axis =1)
109

110 def _generate_GBM (self , fin_model_params , ** kwargs ):
111 assert ’sigma ’ in fin_model_params , ’sigma is needed for GBM!’
112 sigma = fin_model_params [’sigma ’]
113 S0 = kwargs .get(’S0 ’, self. obs_params [’S0 ’])
114 dt = self. obs_params [’dt ’]
115 r = self. obs_params .get(’r’, 0)
116 q = self. obs_params .get(’q’, 0)
117 log_returns = log_returns_GBM (sigma , r, q, self.n_samples , self.proc_dim ,

self. time_steps , dt)
118 return proc_from_log_returns (S0 , log_returns )
119

120 def _generate_Merton (self , fin_model_params , ** kwargs ):
121 assert ’sigma ’ in fin_model_params , ’sigma is needed for Merton !’
122 assert ’lambd ’ in fin_model_params , ’lambda is needed for Merton !’
123 sigma = fin_model_params [’sigma ’]
124 lambd = fin_model_params [’lambd ’]
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125 nu = fin_model_params .get(’nu ’, 0)
126 delta = fin_model_params .get(’delta ’, 0)
127 S0 = kwargs .get(’S0 ’, self. obs_params [’S0 ’])
128 dt = self. obs_params [’dt ’]
129 r = self. obs_params .get(’r’, 0)
130 q = self. obs_params .get(’q’, 0)
131 log_returns = Merton . log_increments (r, q, sigma , lambd , nu , delta , dt ,

self.n_samples , self. time_steps , self. proc_dim )
132 return proc_from_log_returns (S0 , log_returns )
133

134 def _generate_Bates (self , fin_model_params , ** kwargs ):
135 assert ’sigma ’ in fin_model_params , ’sigma is needed for Bates !’
136 assert ’lambd ’ in fin_model_params , ’lambda is needed for Bates !’
137 sigma = fin_model_params [’sigma ’] # for Bates this is the vol of vol
138 lambd = fin_model_params [’lambd ’]
139 nu = fin_model_params .get(’nu ’, 0)
140 delta = fin_model_params .get(’delta ’, 0)
141 kappa = fin_model_params .get(’kappa ’, 0)
142 theta = fin_model_params .get(’theta ’, 0)
143 rho = fin_model_params .get(’rho ’, 0)
144 V0 = fin_model_params .get(’V0 ’, 0.1)
145 S0 = kwargs .get(’S0 ’, self. obs_params [’S0 ’])
146 dt = self. obs_params [’dt ’]
147 r = self. obs_params .get(’r’, 0)
148 q = self. obs_params .get(’q’, 0)
149 log_returns = BatesTDJ . log_increments (S0 , V0 , r, q, kappa , theta , sigma ,

rho , lambd , nu , delta , dt , self.n_samples , self. time_steps , self. proc_dim )
150 return proc_from_log_returns (S0 , log_returns )
151

152 def generate_sample (self , fin_model_dict , ** kwargs ):
153 return self. _dispatch [self. str_model ]( fin_model_dict , ** kwargs )
154

155 def create_NN (self , ** kwargs ):
156 path = kwargs .get(’path ’, ’’)
157 if ’nn_models ’ in path:
158 self.NN = load_model (path)
159 self.NN. trained = True
160 else:
161 nodes = self. nn_params .get(’nodes ’, int (16))
162 r = self. obs_params .get(’r’, 0.0)
163 q = self. obs_params .get(’q’, 0.0)
164 wealth0 = self. nn_params .get(’initial_wealth ’ ,0.0)
165 final_cost = self. nn_params .get(’final_cost ’, True)
166 use_BN = self. nn_params .get(’use_BN ’, True)
167 act_hidden = self. nn_params .get(’act_hidden ’, ’leaky_relu ’)
168 act_output = self. nn_params .get(’act_output ’, ’sigmoid ’)
169 delta_constraint = self. nn_params .get(’delta_constraint ’, None)
170 cost_type = self. nn_params .get(’cost_type ’, ’proportional ’)
171 epsilon = self. nn_params .get(’epsilon ’, 0.0)
172 self.NN = Deep_Hedging_Model (N=self. nn_params [’N’], n=self. nn_params [’

n’], fpd=self.fpd , m=self.proc_dim , nodes =nodes , r=r, q=q, dt=self. obs_params [
’dt ’], initial_wealth =wealth0 , final_cost = final_cost , strategy_type =self.
nn_params [’strategy_type ’], use_BN =use_BN , act_hidden = act_hidden , act_output =
act_output , delta_constraint = delta_constraint , cost_type =cost_type , epsilon =
epsilon , ** kwargs )

173 self.NN. trained = False
174 return self.NN
175

176 def compile_and_train_NN (self , epochs : int , batch_size : int , lr , loss , metric =
None , metric_name : str = ’’,

177 callbacks : list = None , save=False , ** kwargs ):
178 assert self.NN is not None , ’You need to create NN before !’
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179 assert self.db is not None and ’x_train ’ not in kwargs , ’Create or provide
a complete database before !’

180 if self.NN. trained :
181 print (" Model already trained "); return None
182 if metric is not None and metric_name == ’’:
183 AssertionError (’If metric is given , provide " metric_name " also!’)
184 optimizer = kwargs .get(’optimizer ’, Adam( learning_rate =lr))
185 self.NN. add_loss (loss)
186 self.NN. add_metric (metric , name= metric_name )
187 self.NN. compile ( optimizer = optimizer )
188 x_train = kwargs .get(’x_train ’, self.db[’x_train ’])
189 # print (" x_train ", x_train )
190 x_test = kwargs .get(’x_test ’, self.db[’x_test ’])
191 self.NN.fit(x=[ x_train ], batch_size = batch_size , epochs =epochs ,

validation_data =[ x_test ], callbacks =callbacks , verbose =1)
192 path = kwargs .get(’path ’, ’nn_models /NN ’)
193 if save and not os.path. exists (os.path.join(os. getcwd () , path)):
194 self.NN. trained = True
195 self. _save_NN (path)
196

197 def _save_NN (self , path):
198 self.NN.save(path)
199

200 @staticmethod
201 def process_data ( payoff_function , S_0 , trajectories , strat_input_info ):
202 payoff_T = payoff_function ( trajectories ) # Payoff of the option
203 prices = np. stack ( trajectories , axis =1) # Trading set
204 strat_input = create_input_strategy ( input_type = strat_input_info , S=

trajectories , init_price =S_0)
205 return payoff_T , prices , strat_input
206

207 @staticmethod
208 def melt_Bates_params ( fin_params_dict_list ):
209 return [np. concatenate (( np. array (( fin_params_dict [’sigma ’],

fin_params_dict [’lambd ’], fin_params_dict [’theta ’], fin_params_dict [’kappa ’],
fin_params_dict [’rho ’], fin_params_dict [’V0 ’])),

210 fin_params_dict [’nu ’], fin_params_dict [’delta ’]))
for fin_params_dict

211 in fin_params_dict_list ]
212

213

214 def prepare_sample_for_NN_input (self , strat_input_info , ** kwargs ):
215 self. obtain_paths (** kwargs )
216 S = np. squeeze (self. _paths ).T # now one column = one instant in time and

one row = one simulation
217 if ’obs_dict_list ’ in kwargs .keys ():
218 obs_dict_list = kwargs .get(’obs_dict_list ’, None)
219 assert self. n_models == len( obs_dict_list ), "[

prepare_sample_for_NN_input ] lenght problem "
220 S0_vec = np. array ([ obs_dict_list [k][ ’S0 ’] for k in range (self. n_models

) for _ in range (self. n_samples )])
221 else:
222 S0_vec = np.tile(self. obs_params [’S0 ’], self. n_samples *self. n_models )
223 S0_mat = np.tile( S0_vec . reshape (-1, 1) , self. time_steps +1)
224 payoff_T , prices , strat_input = DH_EN . process_data (self. payoff_func ,

S0_mat , S, strat_input_info )
225 if self. str_model == " Bates ":
226 fin_model_array = DH_EN . melt_Bates_params (self. fin_model_list )
227 financial_parameters = np.tile( fin_model_array , (self.n_samples , 1))
228 else:
229 financial_parameters = np. concatenate ([ np.tile(np. array ([*

fin_model_dict . values () ]) , (self.n_samples ,1)) for fin_model_dict in self.
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fin_model_list ], axis =0)
230 x_train = create_total_input ( process =prices , strategy_input = strat_input ,

financial_parameters = financial_parameters , payoff =payoff_T , time_steps =self.
nn_params [’N’])

231 # Generation of test data
232 S_test = np. squeeze (self. generate_sample (self. test_fin_model )).T
233 payoff_T_test , prices_test , strat_input_test = DH_EN . process_data (self.

payoff_func , self. obs_params [’S0 ’], S_test , strat_input_info )
234 if self. str_model == " Bates ":
235 fin_model_array_test = DH_EN . melt_Bates_params ([ self. test_fin_model ])
236 fin_params_test = np.tile( fin_model_array_test , (self.n_samples , 1))
237 else:
238 fin_params_test = np.tile(np. array ([* self. test_fin_model . values () ]) , (

self.n_samples , 1))
239 x_test = create_total_input ( process = prices_test , strategy_input =

strat_input_test , financial_parameters = fin_params_test , payoff = payoff_T_test ,
time_steps =self. nn_params [’N’])

240 db = {}
241 db[’x_train ’], db[’x_test ’] = x_train , x_test
242 db[’S_train ’], db[’S_test ’] = S, S_test
243 db[’option_payoff_train ’], db[’option_payoff_test ’] = payoff_T ,

payoff_T_test
244 self.db = db
245 return db
246

247 def evaluate_NN (self , batch_size_evaluate , ** kwargs ):
248 assert self.NN is not None , ’Need to create (and train ) a NN before ’
249 x_test = kwargs .get(’x_test ’, self.db[’x_test ’])
250 verbose = kwargs .get(’verbose ’, 1)
251 eval_result = self.NN. evaluate (x_test , batch_size = batch_size_evaluate ,

verbose = verbose )
252 if verbose == 1:
253 print (’Loss function on x_test ’, eval_result )
254 return eval_result
255

256 def obtain_S_range (self , days_from_today , intervals =101 , ** kwargs ):
257 S_test = kwargs .get(’S_test ’, self.db[’S_test ’])
258 min_S = S_test [:, days_from_today ]. min ()
259 max_S = S_test [:, days_from_today ]. max ()
260 return np. linspace (min_S , max_S , intervals )
261

262

263 def create_comb_simulation (comb , dhen_obj , icond ):
264 if dhen_obj . str_model == "GBM": # Simulate GBM from initial conditions
265 log_ret_comb = log_returns_GBM (comb , icond [’r’], icond [’q’], dhen_obj .

n_samples , m=1, N= dhen_obj . time_steps , dt= icond [’dt ’])
266 fin_params_comb = np.tile(np. array ([ comb ]) , ( dhen_obj .n_samples , 1))
267 elif dhen_obj . str_model == " Merton ":
268 log_ret_comb = Merton . log_increments ( icond [’r’], icond [’q’], comb , icond [’

lambd ’], icond [’nu ’], icond [’delta ’], icond [’dt ’], dhen_obj .n_samples ,
dhen_obj . time_steps , m=1)

269 fin_params_comb = np.tile(np. array ([ comb , icond [’lambd ’], icond [’nu ’],
icond [’delta ’]]) , ( dhen_obj .n_samples ,1))

270 return log_ret_comb , fin_params_comb
271

272

273 def input_NN_list ( post_density , icond , dhen_obj , strat_input_type ):
274 x_list , price_list , strat_input_list , fin_params_list = [], [], [], []
275 for j, comb in enumerate (tqdm( post_density [’x’][: -1] , desc=" Computing input

for DH NN:")):
276 log_ret_comb , fin_params = create_comb_simulation (comb , dhen_obj , icond )
277 S_test_comb = np. squeeze ( proc_from_log_returns ( icond [’S0 ’], log_ret_comb ))
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.T
278 payoff_T , prices , strat_input = DH_EN . process_data ( dhen_obj . payoff_func ,

icond [’S0 ’], S_test_comb , strat_input_type )
279 x_list += [ create_total_input ( process =prices , strategy_input = strat_input ,

financial_parameters = fin_params , payoff =payoff_T , time_steps = dhen_obj .
time_steps )]

280 price_list += [ prices ]
281 strat_input_list += [ strat_input ]
282 fin_params_list += [ fin_params ]
283 inp_dict = {" x_list ": x_list , " price_list ": price_list , " strat_input_list ":

strat_input_list , " fin_params_list ": fin_params_list }
284 return inp_dict
285

286

287 def get_mixed_prices_deltas ( post_density , icond , dhen_obj , F_trajectories ,
derivative , strat_input_type , ** kwargs ):

288 inp_dict = kwargs .get(’inp_dict ’, {})
289 if not inp_dict :
290 inp_dict = input_NN_list ( post_density , icond , dhen_obj , strat_input_type )
291 x_l , price_l = inp_dict [" x_list "], inp_dict [" price_list "]
292 strat_input_l , fin_params_l = inp_dict [" strat_input_list "], inp_dict ["

fin_params_list "]
293 strat_input = create_input_strategy ( input_type = strat_input_type , S=

F_trajectories , init_price = icond [’S0 ’])
294 if ’dhen_F ’ in kwargs .keys ():
295 dhen_F = kwargs .get(’dhen_F ’, None)
296 payoff_T_F , prices_F , strat_input_F = DH_EN . process_data ( dhen_F .

payoff_func , icond [’S0 ’], F_trajectories , strat_input_type )
297 fin_params_F = dhen_F . test_fin_model .copy ()
298 fin_params_F [’sigma ’] = icond [’sigma ’]
299 fin_params_F = DH_EN . melt_Bates_params ([ fin_params_F ])
300 fin_params_F = np.tile( fin_params_F , ( dhen_F .n_samples , 1))
301 x_F = create_total_input ( process =prices_F , strategy_input = strat_input_F ,

financial_parameters = fin_params_F , payoff = payoff_T_F , time_steps = dhen_F .
time_steps )

302

303 delta_derivatives = []
304 for j, comb in enumerate (tqdm( post_density [’x’][: -1] , desc=" Computing deltas

from DH NN:")):
305 deltas = []
306 for day in range ( dhen_obj . time_steps ):
307 input_sub_model = prepare_input_delta_NN (dhen_obj , derivative , day ,

strat_input [day ]. reshape (-1, 1) , fin_params_l [j])
308 sub_model = Delta_SubModel ( dhen_obj =dhen_obj , model = dhen_obj .NN ,

days_from_today =day)
309 deltas += [np. squeeze ( sub_model ( input_sub_model ))]
310 delta_derivatives . append ( deltas )
311 mix_deltas = np. squeeze ( delta_derivatives )
312

313 price_derivative_l , price_derivative_an_l = [], []
314 for j, comb in enumerate (tqdm( post_density [’x’][: -1] , desc=" Computing prices

as in DH NN:")):
315 price_derivative_an_l += [ Merton . Merton_pricer ( icond [’S0 ’], derivative .K,

icond [’r’], icond [’q’], comb , icond [’lambd ’], icond [’nu ’], icond [’delta ’],
derivative .T[0, 0])]

316 price_derivative_l += [-np. squeeze ( dhen_obj .NN(x_l[j]))]
317 price_derivative = np. squeeze ( price_derivative_l )
318 for j, comb_y in enumerate ( post_density [’y’]):
319 mix_deltas [j] = mix_deltas [j] * comb_y
320 price_derivative [j] = price_derivative [j] * comb_y
321 price_derivative_an_l [j] = price_derivative_an_l [j] * comb_y
322 # Now I have to sum up over different comb , but for the same days
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323 mix_prices = np.sum( price_derivative , axis =0) # returns array of dimension "
n_sample "

324 mix_deltas = np.sum( mix_deltas , axis =0) # returns array of dimension "(N,
n_sample )"

325 return mix_prices , mix_deltas , price_derivative , delta_derivatives
326

327

328 # Read initial condition
329 def convert_list2dict ( p_list ):
330 mjs_pos , sjs_pos = jump_params_length ([ p_list ])
331 return {’S0 ’: p_list [0] , ’V0 ’: p_list [1] , ’r’: p_list [2] , ’q’: p_list [3] , ’

kappa ’: p_list [4] , ’theta ’: p_list [5] , ’sigma ’: p_list [6] , ’rho ’: p_list [7] , ’
lambd ’: p_list [8] , ’nu ’: p_list [ mjs_pos ], ’delta ’: p_list [ sjs_pos ]}

Listing 4.3: Code for definition of the class that coordinates the deep hedging approach with the ‘Estimate
Nothing’ parameter distribution.
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[CN09] René Carmona and Sergey Nadtochiy. ‘Local volatility dynamic models’. In: Finance
and Stochastics 13 (2009), pp. 1–48 (cit. on page 16).

145

https://doi.org/10.1002/9780470061602.eqf04008
https://doi.org/10.1002/9780470061602.eqf04008
https://doi.org/10.1109/TNNLS.2013.2293637
http://www.jstor.org/stable/1831029
https://doi.org/10.1137/18M118709X
https://doi.org/10.1214/14-AAP1011
https://web.stanford.edu/%5C%7Eboyd/cvxbook/
https://web.stanford.edu/%5C%7Eboyd/cvxbook/
http://www.jstor.org/stable/2352653
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.1023/A:1013116204872
https://doi.org/10.1287/moor.2018.0956
https://doi.org/10.1287/moor.2018.0956
https://doi.org/10.1007/978-3-540-73327-0_1
https://doi.org/10.1137/15M1015510
https://doi.org/10.1137/15M1015510
https://doi.org/10.1137/15M1015510
https://doi.org/10.1137/15M1015510


BIBLIOGRAPHY
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Regularization of an Ill-posed Inverse Problem’. In: SIAM Journal on Control and
Optimization 45.1 (2006), pp. 1–25. doi: 10.1137/040616267. eprint: https://do
i.org/10.1137/040616267. url: https://doi.org/10.1137/040616267 (cit. on
page 78).

[CIR85] John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross. ‘A Theory of the Term
Structure of Interest Rates’. In: Econometrica 53.2 (Mar. 1985), pp. 385–407. issn:
00129682, 14680262. doi: 10.2307/1911242. url: http://www.jstor.org/stabl
e/1911242 (cit. on pages 10, 122).
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[FS91] Hans Föllmer and Martin Schweizer. ‘Hedging of contingent claims under incomplete
information’. In: ed. by M.H.A. Davis and R.J. Elliott. Stochastics Monographs.
Vol. 5. Gordon and Breach, London/New York, Jan. 1991, pp. 389–414 (cit. on
pages 110, 112).
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