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aDepartment of Geography, University of Zurich, Zurich, Switzerland; bInstitute of Cartography and 
Geoinformation, ETH Zurich, Zurich, Switzerland 

ABSTRACT 
Cartographic map generalization involves complex rules, and a 
full automation has still not been achieved, despite many efforts 
over the past few decades. Pioneering studies show that some 
map generalization tasks can be partially automated by deep 
neural networks (DNNs). However, DNNs are still used as black- 
box models in previous studies. We argue that integrating 
explainable AI (XAI) into a DL-based map generalization process 
can give more insights to develop and refine the DNNs by under-
standing what cartographic knowledge exactly is learned. 
Following an XAI framework for an empirical case study, visual 
analytics and quantitative experiments were applied to explain 
the importance of input features regarding the prediction of a 
pre-trained ResU-Net model. This experimental case study finds 
that the XAI-based visualization results can easily be interpreted 
by human experts. With the proposed XAI workflow, we further 
find that the DNN pays more attention to the building boundaries 
than the interior parts of the buildings. We thus suggest that 
boundary intersection over union is a better evaluation metric 
than commonly used intersection over union in qualifying raster- 
based map generalization results. Overall, this study shows the 
necessity and feasibility of integrating XAI as part of future DL- 
based map generalization development frameworks.
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1. Introduction

Cartographers typically learn explicit and implicit map generalization rules via exam-

ples that are summarized from general cartographic principles and practices (Swiss 

Society of Cartography 2005). Cartographers also have to make tradeoffs in certain 

scenarios concerning the spatial layout of maps and graphic constraints, such as visual 

perceptibility limits. Not surprisingly, then, research on automating the map general-

ization process has been largely dominated by the challenge to find ways of 
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formalizing and translating the tacit cartographic knowledge possessed by trained car-
tographers into automated procedures. This process is vividly documented in several 
review articles and edited works spanning more than four decades of map generaliza-
tion research until the developments of the recent past (Brassel and Weibel 1988, 
M€uller et al. 1995, Weibel and Dutton 1999, Mackaness et al. 2007, Burghardt et al. 
2014, Harrie et al. 2024). Starting off from the early years where the cartographic prin-
ciples were built directly into the algorithms, to the rule-based systems of the 1980s, 
the principle of constraint-based map generalization was introduced in the 1990s, 
offering added modeling flexibility compared to rule-based systems (Beard 1991, 
Weibel and Dutton 1998, Harrie 1999). The constraint-based approach was subse-
quently complemented by the introduction of optimization approaches (Wilson et al. 
2003, Bader et al. 2005, Sester 2005) and by systems allowing the orchestration of mul-
tiple generalization operators to form a comprehensive map generalization process, 
exemplified by the agent-based paradigm (Barrault et al. 2001, Ruas and Duchêne 
2007). However, while this combination of constraint-based methods with optimization 
techniques and orchestration engines represented the state of the art for almost two 
decades, the above methods all suffered from one decisive drawback: The imperative 
necessity of formalizing the cartographic knowledge required to define constraints, 
develop algorithms, and fine-tune optimization and orchestration processes, ultimately 
slowing down progress in map generalization research (Weibel et al. 1995).

Deep learning (DL, LeCun et al. 2015) has increasingly shown itself as a new 
research paradigm for many GIScience studies and is regarded as a backbone of 
GeoAI today (Janowicz et al. 2020). It offers a potential way to overcome the so-called 
‘knowledge acquisition bottleneck’ (Weibel et al. 1995) in which previous approaches 
mentioned above were trapped. In the research domain of map generalization, there 
have already been various applications using deep neural networks (DNNs) for auto-
mating map generalization tasks, such as selection (Xiao et al. 2023, Zheng et al. 
2021), simplification (Du et al. 2022, Zhou et al. 2022), and even end-to-end solutions 
for buildings (Feng et al. 2019) and roads (Courtial et al. 2023).

While DNNs have achieved initial success in some map generalization tasks, the 
trained neural networks are still treated as black boxes where researchers have not 
explored what exact cartographic generalization knowledge the network has learned 
in what circumstances and which cartographic rules the network should improve on. 
Knowing to what degree a certain map generalization operator has been learned by a 
certain DNN architecture will enhance the decision-making on module selection in 
existing DL-based map generalization workflows such as DeepMapScaler (Courtial 
et al. 2024) or will help to propose new DL-based generalization models (Harrie et al. 
2024). It has been argued that GeoAI should not be purely data-driven, but that the 
interpretability and explainability of the DNNs should also be considered (Janowicz 
et al. 2022, Hu et al. 2024). Lacking necessary explainability is also regarded as a major 
concern for DL models by some authors (Kang et al. 2024), as understanding the deci-
sion-making process is even more critical for DL-based map generalization due to the 
importance of maps.

Explainable AI (XAI, Arrieta et al. 2020) is a research field focusing on understanding 
the decisions made by AI systems by providing the necessary interpretations and 
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explanations. It has been applied to reason about deep learning-related studies in sci-
entific fields such as medical image analysis (van der Velden et al. 2022). Moreover, 
XAI is being integrated into the DL development workflow, forming an emerging field 
named explanation-guided learning (EGL) with the aim of developing more powerful 
and accountable DL models (Gao et al. 2024). While XAI already provides a general 
framework with a handful of analytical tools, the EGL community criticizes that current 
XAI tools lack attention to investigating if the explanations that are produced are 
indeed reasonable. Thus, domain knowledge is still required in response to this criti-
cism. It also echoes the suggestion by Xing and Sieber (2021) that not all XAI methods 
are suitable for GeoAI applications as some XAI methods ignore or blur geographical 
dependencies.

Despite of the importance of XAI in developing domain-specific DNNs, few studies 
have attempted to uncover DNNs’ functional roles in the process of map generaliza-
tion. Courtial et al. (2022) inspected how DL model outputs satisfy a set of carto-
graphic constraints in a mountain road generalization task. However, they have not 
yet further investigated the fine-grained effects of input images on learning to gener-
alise roads. As a consequence, one set of essential questions is, how do different ele-
ments of the input sample, that is, pixels for raster-based input and nodes and edges 
for graph-based input, contribute to making the decision on the output, in the eyes of 
a DNN? For such purposes, a workflow for a more explicit interpretation or explanation 
of the cartographic knowledge learned by the DNN itself would be highly desired 
(Harrie et al. 2024).

By emphasizing the necessity of integrating XAI into the current DL-based map 
generalization workflow, we demonstrate with a use case in building generalization 
how a suitable XAI method can be used to visually and quantitatively highlight and 
interpret the importance of individual pixels in the input raster map patch to generat-
ing the corresponding output map patch. This use case is based on a well-trained 
DNN for building generalization from a previous study (Fu et al. 2023). We further 
explore if such importance, representing the cartographic knowledge learned by the 
DNN, varies across map generalization samples involving different map generalization 
operators. With the proposed workflow guided by XAI, we further argue that the 
boundary intersection-over-union (Boundary IoU, Bokhovkin and Burnaev 2019, Cheng 
et al. 2021, Kervadec et al. 2021) may be a better evaluation metric than the widely 
used intersection-over-union (IoU), showing that the workflow has the potential to 
refine the DL-based learning task in map generalization by integrating cartographic 
knowledge with XAI.

2. Related work

2.1. Deep learning in map generalization

Researchers have made various attempts to generalize maps with DNNs for carto-
graphic object classes such as buildings, roads, and rivers, with either vector- or raster- 
based models. For vector-based data models, graph convolutional networks (GCN, Kipf 
and Welling 2019) are the most prevalent DL architecture. Researchers have applied 
GCN models for building shape recognition (Yan et al. 2020) and building grouping 
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(Yan et al. 2022). In vector-based DL models, cartographic knowledge is mainly 
engaged in the feature engineering stage. The aforementioned studies extracted geo-
metric features related to distance and angle and represented them as node and edge 
features of the graphs. Studies have also tried an autoencoder for line simplification 
(Yu and Chen 2022), for which no prior cartographic knowledge is required for model 
training.

A big challenge for vector-based neural networks is that the spatial relationships of 
multiple polygonal objects such as buildings forming groups are not genuinely and 
easily modeled. Current application either limits their scope to a single object (Zhou 
et al. 2023) or represents polygonal objects by point objects (Xiao et al. 2023) for fur-
ther modeling. A general-purpose representation of polygonal objects using embed-
ding might be a solution, but only limited studies exist in this direction (Mai et al. 
2022).

Raster-based DL for map generalization is treated as a type of image-to-image 
translation, typically utilizing generative models such as U-Net (Feng et al. 2019) or 
Generative Adversarial Networks (Courtial et al. 2023). With convolutional operators in 
DL models and genuine location encoding in the raster data, raster-based DL models 
can model the spatial relationships between polygonal objects (Courtial et al. 2022). 
However, the models cannot maintain well the topology of roads (Courtial et al. 2023). 
As raster-based DL models operate on pixels, shape irregularities may be introduced 
to building walls and corners. The deformation effect can be moderated with a layered 
data representation model (Fu et al. 2023). In raster-based DL studies, cartographic 
knowledge is represented either as items in the loss function (Kang et al. 2020, 
Courtial et al. 2023) or as part of the data representation model (Courtial et al. 2022, 
Fu et al. 2023). However, it is not fully understood whether and how a DL neural net-
work has actually learned the desired knowledge.

2.2. XAI applications in DL-based GIScience

XAI aims to increase fairness, explainability, and accountability with technical tools 
and the involvement of end users, with a scope not only limited to DL but also other 
machine learning techniques (Arrieta et al. 2020). The techniques for interpreting ras-
ter-based DL models can be coarsely categorized into primary-, neuron-, and layer 
attributions, where primary attribution tries to attribute decisions of the whole neuron 
network to input features; neuron attribution attributes individual neurons to input 
features, and layer attribution links decisions of the whole network to a hidden layer 
(Kokhlikyan et al. 2020).

Primary attribution, as used in this study, mainly assumes the trained neural net-
work as a linear transformation system and explores the gradient of output regarding 
the input, e.g. saliency (Simonyan et al. 2014); the gradients with regard to inputs 
along a path from a baseline input to the actual input, e.g. integrated gradients 
(Sundararajan et al. 2017); or the gradient w.r.t. small changes introduced in the input, 
e.g. DeepLIFT (Shrikumar et al. 2017).

Combined with visual analytics and other inspection tools, the XAI attribution meth-
ods can help researchers investigate the decision-making process of DNNs. There have 
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been pioneering studies in GIScience. For example, Hasanpour Zaryabi et al. (2022) 
apply the aforementioned primary attribution tools to understand which pixels in an 
input satellite image contribute to building extraction results for a U-Net. Li et al. 
(2023) use various primary attribution tools to understand how traffic flows in different 
regions of a city contribute to the overall traffic prediction made by a U-Net. Similar 
workflows have also been used to understand the importance of satellite image bands 
in water depth estimation (Saeidi et al. 2023), pixel-level importance for land use clas-
sification (Xing and Sieber 2023), and terrain image classification (Hsu and Li 2023). 
Even though these studies are not in the field of cartography, coincidently, they also 
adopted raster-based DNNs, suggesting that similar methods can be used for explain-
ing raster-based DL models for map generalization.

3. Research gaps and research question

In summary, many pioneering studies have been implemented to solve map general-
ization problems with deep neural networks as a new paradigm in recent years. Most 
studies adapted existing DNN architectures with intuitive improvement ideas related 
to existing map generalization knowledge but interacted with the neural networks as 
black boxes. However, configuring DNNs usually is highly complex, including network 
types, number of blocks, layer structures of the blocks, and loss function(s), leading to 
very large combinations of configuration settings. Training and testing each new con-
figuration setting can be costly in time, which has drawn concern for sustainability in 
the GeoAI community as well (Shi et al. 2023). For further sustained efficiency and sci-
entific improvement, one solution is to follow more evidence-based guidance using 
XAI and gradually adopt the EGL approach, so that future models can focus on tasks 
that have not been well learned by the existing models. However, so far very few 
studies in DL-based map generalization have tried this direction to gain improved sci-
entific insight and to enhance DNNs with XAI.

Attempting to adapt XAI in the process of DL-based map generalization, this study 
shifts the focus from pursuing higher performance to exploring how the neural 
network learns particular cartographic insights. In a previous study, we proposed a U- 
Net-based map generalization workflow for raster-based map patches that showed 
promise for adequate results in building generalization (Fu et al. 2023). However, our 
improvement in the previous study was solely based on an intuitive idea, and there 
are many possibilities for improving the model. As a use case of integrating XAI in 
deep learning workflow for map generalization, we thus address one specific research 
question based on the challenges remaining in the previous study:

RQ: Which pixels, individually or structurally, in a raster-based input map patch of 
buildings are important to the generalized map patch, as learned by the deep neural 
network?

It has been well established that geometric shapes have a low-dimensional struc-
ture, meaning that drawing a polygonal shape can be controlled by the locations of 
its vertices and the shapes of its edges without concerning its interior, as being 
applied by many computer vision packages such as OpenCV (Bradski 2000). That is to 
say, to describe a raster representation of a polygonal shape, its corner and edge 
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pixels are more important than its interior pixels. As the map generalization of build-
ings can be conceptualized as a transformation between two sets of rasterized polyg-
onal shapes, we can raise a hypothesis that the pixels forming the boundary of the 
input building(s) contribute more than the interior pixels inside the building(s) to a 
DNN’s decision making regarding the generation of the output, that is, the generalized 
building(s). In addition to the buildings themselves, we further hypothesize that the 
space between the building objects is also important for determining the effort of 
selecting map generalization operators. For example, a minimum visual separation dis-
tance is employed by cartographers to ensure two buildings can be visually discerned 
on a generalized map. If the two buildings are too close, they may have to be aggre-
gated into a single polygon for a map at a smaller scale. We thus will also investigate 
if the DL neural network recognizes such patterns.

4. Methodology

4.1. A Pre-trained ResU-Net model

The pre-trained DNN we try to explore is a ResU-Net (Zhang et al. 2018) that was 
trained with raster-based building map patches (Figure 1). The buildings were derived 
from OSM vector data in Stuttgart, Germany by Feng et al. (2019). The generalization 
transformations are from 1:5k to 1:10k, processed by the map generalization software 
CHANGE (Powitz 1993) with its simplification and combination (aggregation) operators. 
The ResU-Net model receives a 256�256-pixel binary input tensor with two channels 
whose first channel (Channel 0) stores the focal building that should be generated, 
and the second channel (Channel 1) stores the surrounding buildings of the focal 
building. The pre-trained model achieved an average accuracy of 0.9954 and an aver-
age intersection-over-union (IoU) of 0.9659 for individual buildings. Therefore, it is rea-
sonable to conclude that the pre-trained model should have learned relevant 
cartographic map generalization knowledge, and that it thus can be used as a reliable 

Figure 1. Architecture of the pre-trained U-Net, where c is the number of channels, and the con-
volution blocks in red are the blocks inspected in this study.
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instance supporting this case study to demonstrate the possible role of XAI in DL- 
based map generalization and answer our research question by testing the above 
hypothesis. Full technical details of the pre-trained model can be found in (Fu et al. 
2023).

4.2. XAI for input feature importance exploration

The XAI tools selected are layer activation for reasoning about the responses of neural 
layers, and integrated gradients (IG, Sundararajan et al. 2017) for reasoning about input 
feature importance.

Layer activation focuses on what kind of output is produced by each neural layer 
or a set of neural layers, and visual analytics is commonly applied to interpret the 
results (Larochelle et al. 2009). The convolution blocks in a ResU-Net are a sequential 
combination of convolution layer, batch-wise normalization layer, and ReLU layer. The 
convolution blocks close to the input are supposed to act as encoders to extract 
higher dimensional features from the input, while the convolution blocks close to the 
output are supposed to combine the extracted features to reconstruct the image. 
Therefore, by visualizing the output of a convolution block, we are able to reason 
what features, as reflected in a combined way, are focused on by the inspected convo-
lution block. We investigated the down-sampling convolution block closest to the 
input, and the up-sampling convolution block closest to the output (denoted as Conv1 
and UpConv1 in Figure 1, respectively), because they are paired and have 64 dimen-
sions, a reasonable number to conduct a close visual inspection.

Intuitively, IG uses gradients of the items along a straight-line path (Figure 1 in 
Sundararajan et al. 2017) from the input tensor to a baseline tensor as a proxy for indi-
vidual items’ influences on the output, which can be formulated as:

IntegratedGradient xð Þ� ¼ xi − x0i
� �

�

ð1

a¼0

oFðx0 þ a� ðx − x0ÞÞ
oxi

da 

where x is the input tensor, x0 is the corresponding baseline, F is the trained neural 
network, and i is one dimension of the tensor (Sundararajan et al. 2017).

IG models the gradients as a function of sensitivity to the presence of the input fea-
tures. Thus, IG needs a baseline tensor with the same shape as the input tensor so 
that the status between the input and the baseline tensor can be interpolated and 
the sensitivity can be obtained. The baseline should satisfy the condition that the 
DNN’s prediction using the baseline as input should be neutral. For the image-based 
object recognition task of the original paper the authors suggest a full black image as 
the baseline. The output of the IG algorithm is a tensor with the same shape as the 
input tensor. Because our input tensor is a layered representation that separates the 
focal building from the surrounding buildings, we expected that the influences of 
each input channel would be demonstrated in the corresponding channels of the out-
put tensor.

Following the analytical workflow for the building generalization tasks (Figure 2), 
we tried two baselines for the integrated gradient analysis: Baseline 1 is an all-zero 
tensor, similar to the black image as recommended by the original paper. Baseline 2 is 
a tensor with all item values set as 0.5. As the pre-trained ResU-Net receives binary 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2067



input where 1 represents building and 0 represents background, the result of the all- 
zero baseline is expected to mask out the influence of the background but retain only 
the impact of buildings. The result using the second baseline, however, should include 
the influence of both buildings and background. The results of both baselines were 
investigated with visual analytics. To explore the hypothesis on the difference between 
the boundary and interior of the building regarding their influences, we employed the 
Mann-Whitney U test for input tensor samples. The relationship between the between- 
building space and potential aggregation operations is hard to formalize in a quantita-
tive manner, given the existence of other confounding factors, such as the spatial 
layout of the buildings. Therefore, we did not apply statistical tests for this effect but 
only visual analytics.

4.3. Boundary IoU as an evaluation metric for map generalization quality

Given the knowledge learned from IG-supported analytics on our DL-based building 
generalization, we propose to use Boundary IoU (BIoU) for evaluating raster-based 
building generalization. In this study, we used the Boundary IoU as defined by Cheng 
et al. (2021):

BIoU ¼
ðGd \ GÞ \ ðPd \ PÞj j

ðGd \ GÞ [ ðPd \ PÞj j

where G and P are the ground truth binary mask and predicted binary mask, respect-
ively; Gd and Pd are the sets of pixels within the d-pixel-wide boundary region of the 
ground truth mask and prediction mask, respectively. When d equals 1, G1 refers to 
the set of pixels on the contour line of the ground truth mask, and P1 refers to the 
boundary pixels of the prediction mask. As buildings have clear boundaries and we 
wanted to focus on the influence of the boundary itself, we set d as 1 in our analysis. 
Compared to the definition of IoU:

IoU ¼
G \ Pj j

G [ Pj j

Figure 2. Analytical process using IG to explore input feature importance.
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we can observe that BIoU has a clear focus on the matching of boundaries, disregard-
ing the interior.

5. Results

5.1. Visual analytics for IG and layer activation results

Figure 3 shows a sample result of a focal building whose ground truth of map gener-
alization is the result of aggregation with two nearby buildings and further simplifica-
tion of the aggregated polygon. The prediction by the deep neural network is quite 
reasonable; there are only a few sets of mistakenly predicted pixels (green and red 
pixels in Figure 3(b)). The output of Baseline 1, Channel 0 (Figure 3(c,g)) reveals that 
the DL neural network focuses on the boundary pixels of the focal building, but the 
interior pixels are also noticed, though their values are much closer to zero but not 
totally zero. Along the boundary pixels of the focal building, the DL neural network 
also has a higher focus on the corners and the edge of the protrusion at the bottom, 
which is removed as a matter of simplification.

It can also be observed that the boundaries of surrounding buildings contained in 
Channel 1, especially the two that are combined with the focal building, also contrib-
ute much more to the prediction than the corresponding interior (Figure 3(d,h)). The 

Figure 3. IG results of a test sample. (a) The white polygon is the focal building to be generalized. 
The gray polygons are its surrounding buildings. (b) The ground truth of the generalized building 
is in the red channel. The DL-predicted building is in the green channel. Thus, the yellow pixels 
show the true positives. (c) and (d) Raw IG values with Baseline 1. Color ramp is normalized to let 
the white color correspond to 0. (e) and (f) Raw IG values of Baseline 2. (g) and (h) Absolute values 
of IG values with Baseline 1. (i) and (j) Absolute values of IG values with Baseline 2.
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results of Baseline 2 (Figure 3(e,f,i,j)) show more explicitly that the DNN checks infor-
mation in both channels in an integrated manner, as the integrated gradients of both 
channels show the profile of all buildings. The pixels near the focal building have 
higher absolute values, which is reminiscent of the First Law of Geography in that the 
DNN pays more attention to the nearby region of the focal building. More examples 
(Appendix Figures A1–A3) give a similar impression as the aforementioned sample 
result, regardless of the quality of the prediction.

The results of the layer activation are shown in Figure 4. Most activation patterns of 
the Conv1 convolution block are similar to the raw input, as expected. However, it is 
easy to tell that the overall spatial layout has been decomposed: Some dimensions 
have a focus on the focal building as a whole (Channels 3-c, 5-d, 5-e, and 7-a), some 
dimensions respond to the boundary of the focal building (Channels 1-d, 6-g, and 8-c), 
or the boundaries of the surrounding buildings (Channel 7-c), similar to the observa-
tions made from the results of IG. The space surrounding the buildings is noticed as a 
whole (Channels 1-b and 7-d), while the space between the focal building and the 
two buildings that it is aggregated with receives more attention (Channel 4-b (as 
enlarged in Figure 5(a)). 4-d (as enlarged in Figures 5(b), 4-g, and 5-h). Channels 4-c, 

Figure 4. Layer activation of Conv1 convolution block in the trained ResU-Net with the same input 
as in Figure 3. Numbers and letters are for reference purposes only. They are not related to their 
actual sequence in the layer.
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Figure 5. Enlarged layer activation of Conv1 convolution blocks (a) 4-b as in Figure 4. (b) 4-d as in 
Figure 4.

Figure 6. Layer activation of UpConv1 convolution block in the trained ResU-Net with the same 
input as in Figure 3. Numbers and letters are for reference purposes only. They are not related to 
their actual sequence in the layer and have no correspondence relationship to those in Figure 4.
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6-c, and 7-d show that aggregating the three buildings into one is already an option 
for the neural network’s output.

The activation patterns of the final up-sampling layer (Figure 6) give hints as to 
how the final output is composed. Channels 1-e and 4-f solely show the shape of the 
output. The removed protrusion as aforementioned is paid attention by the network 
(Channels 1-g, 3-f, 4-a, 6-d, etc.). We can also notice that some channels are more 
focused on the single building parts, such as Channels 2-c, 6-a, 6-b, 7-a, etc. Other 
channels take the spatial layout of the whole region into account, such as Channels 1- 
d, 1-f, 3-a, 4-e, etc.

In general, the DNN would like to check the spatial relationship of the buildings, 
as evidenced by the higher absolute IG values of the pixels in the space between 
the buildings and the visualization of the layer activation. For modification of the 
building shape, the edges and corners near the desired parts are more important 
to the DNN.

5.2. Quantitative analysis of results of IG with Baseline 1

The absolute values of IG with Baseline 1 have high skewness for the whole image 
and for its boundary and interior pixels, respectively, as the example of Figure 7
shows. Therefore, using the non-parametric mean test (Mann-Whitney U test) is a rea-
sonable choice. Applied to 100 randomly selected map patches, the Mann-Whitney U 
test is significant for an overwhelming number of cases (95 out of 100), meaning that 
their mean is significantly larger for their absolute values of IG at the boundary than 
in the interior (Table 1). For the five samples whose boundary and interior show simi-
lar influence on the final outputs, we observe that they are all trivial cases for the U- 
Net: In each of these map patches, there is no change between the initial building 
and its generalized version, and the prediction is almost perfect. We can further 
observe that their ranges of absolute IG values are also much smaller than in other 
cases (Figure 8).

5.3. BIoU as an evaluation metric for the existing test result

The comparison between BIoU and IoU clearly shows that BIoU has a different focus 
from the IoU, as the BIoU values of the sample set are smaller than the corresponding 

Figure 7. Histograms of the IG absolute values of the test sample in Figure 3 by boundary and 
interior pixels.
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IoU values (Figure 9). The difference between BIoU and IoU seems not to be related to 
the size of the buildings, as we observe that the points deviating farthest from the 
diagonal of Figure 9(a) do not necessarily have the largest sizes. As Figure 9(b) further 

Table 1. Number of samples with corresponding p-value in 
the Mann-Whitney U tests.
N¼ 100 p-value

89 ���

4 ��

2 �

5 –
���:p-value < 0.001; ��:p-value [0.001, 0.01]; �:p-value [0.01, 0.05]:  

-: p-value >0.05.

Figure 8. The five samples with p-value larger than 0.05 in Table 1.

Figure 9. (a) IoU and BIoU values of the 100 test samples. Size is defined as the number of pixels 
of the original building. (b) Difference between IoU and BIoU for the test samples.
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suggests, the differences are not always big, as the majority clusters in the range 
between 0 and 0.1. However, roughly half of the cases have much larger differences, 
which suggests that the BIoU as a performance metric can be more sensitive to cer-
tain cases.

A closer investigation of some sample patches suggests what kinds of scenarios the 
BIoU can be sensitive to. The predictions in Figure 10 are all visually close to their 
ground truth. There is a very small proportion of difference as marked in red and 
green, which places the defects on the edges of the polygon. It is even more obvious 
in Figure 10(a) that the desired generalized building should be L-shape while the pre-
diction is closer to a rectangle. However, such a small difference leads to a very big 
difference between their IoU and BIoU values, no matter if the difference distributes 
along the boundary, e.g. Figure 10(b,d,e), or the difference clusters, e.g. Figure 10(c).

Figure 10. The top five samples with the largest difference between their IoU and BIoU values. 
Color scheme for channels is the same as Figure 3.

Figure 11. (a) IoU and BIoU values of the 31 samples from validation set. Size is defined as the 
number of pixels of the original building. (b) Difference between IoU and BIoU for the test 
samples.
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Samples in the test set do not contain buildings with holes, as the test site is a sub-
urban area of Stuttgart, while the training and validation sets cover the downtown 
area. We examined 31 building samples in the validation set and found that BIoU is 
more sensitive to the holes than IoU as well (Figure 11). Selected samples (Figure 
12(a,c)) show that even if a hole is mistakenly filled by the DNN, the IoU values are still 
relatively high, if the hole is not big. However, for BIoU, the same samples will receive 
a low value. We can also see from Figure 12(b–d) that if the hole is big enough, the 
DNN can certainly maintain the hole and tries to make the correct generalization. 
Figure 12(c,d) also show that even if the hole is small, it is not necessary that the DNN 
would fill it in, meaning some spatial context regarding the hole is learned. Therefore, 
BIoU can also serve as a metric for evaluating map generalization results, especially for 
defects along the edges and corners.

6. Discussion

This study utilizes XAI tools, particularly integrated gradients and layer activation, to 
explore if a DL neural network trained to generalize buildings has learned cartographic 
knowledge that human beings possess. In the visual analytics on the results of IG with 
Baseline 1, we observe that the hotspots appear at the boundary rather than the inter-
ior parts. The results of statistical tests further confirm the hypothesis that the bounda-
ries of the buildings are more important than the interior parts of the buildings for 
the U-Net to predict the output (Section 5.2). That fits the human drawing process, 
where we typically delineate the boundary of a geometric shape first and then fill the 
interior. The visual analytics on the results of IG with Baseline 2 suggest that the deep 
neural network not only checks the boundary of the focal building it generalizes but 
also the boundaries of certain surrounding buildings and the space between the focal 
building and selective surrounding buildings, particularly those who are candidates for 
aggregation. Visual inspection of the layer activation also shows patterns similar to the 

Figure 12. Selected building-with-hole samples with large differences between their IoU and BIoU 
values. Color schema for channels is the same as Figure 3.
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results of IG. The network builds ideas of building parts, aggregation, and surrounding 
areas. It should be noted that such focus is not evenly distributed among the build-
ings nor the space, indicating that the DL neural network takes the spatial layout of 
the buildings into account but prioritizes their importance accordingly before making 
a decision. This fits the contextual generalization process of cartographic knowledge 
where the generalization of individual objects is dependent on its environments (Ruas 
and Duchêne 2007). Thus, we can answer the research question at least partially that 
the DNN we used in this study has learned some human-interpretable cartographic 
knowledge, simplification and aggregation operators in particular, when it is applied 
to map generalization tasks.

We further examined the performance of Boundary IoU as an evaluation metric for ras-
ter-based map generalization. As the results of the 100 test samples show, BIoU is very 
sensitive to errors along the exterior and interior boundaries compared to IoU. Overall, 
that finding matches our expectations. We recommend that researchers use BIoU for the 
evaluation of similar studies in the future, which can further depict the fine-grained per-
formance in predicting object shapes. In addition to being an evaluation metric, BIoU 
might also be helpful as part of an integrated loss function in DL-based map generaliza-
tion, as it is used in other GeoAI applications, such as remote sensing (Yang et al. 2023), 
as it emphasizes the importance of precise matching at the boundary.

There are a few limitations of this study. The integrated gradients method provides a 
pairwise connection between the two pixels at the same location in the input and output. 
However, the method cannot provide insights into the spatial dependency of the neigh-
borhood given a certain pixel. That is to say, given a focal pixel, we do not know to 
which extent each of the nearby pixels influences the decision-making of the DNN. 
Therefore, we are not able to tell what high-level structures as combinations of pixels 
may correspond to certain output patterns. Given the example of the protrusion at the 
bottom of the focal building in the source map of Figure 3, we notice that the DNN 
removes the protrusion as a matter of simplification, and the decision is related to the 
nearby pixels, implying that some structural influence was likely applied. However, it can-
not be inferred that such a decision is related to preserving the overall area, which is a 
common principle in polygon-based map generalization. To summarize, the integrated 
gradient method only accounts for pixel-to-pixel relationships, which does not offer 
insights into whether the neural network has learned local or regional spatial structures of 
those buildings. Our analytical method with semantic segmentation based on pixels par-
tially moderates the shortcomings of attributing gradients, which is regarded as one of 
the challenges in applying XAI to GeoAI (Xing and Sieber 2023). However, cartographic 
map generalization involves more attributes, such as direction, distance, and spatial 
dependency, which make it unique and distinguish it from ordinary computer vision tasks. 
New XAI methods need to be developed for further insights.

7. Conclusions

This study proposes an XAI-supported workflow to reason about the cartographic know-
ledge learned by a deep neural network that was trained for map generalization tasks on 
buildings. With qualitative and quantitative analytical tools, we demonstrate that a DNN 
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can learn human-interpretable cartographic knowledge. Particularly, we find that the 
boundaries of buildings influence the decision-making process of a DNN more than the 
interior parts of the buildings. Such an observation can help us improve the performance 
of model training by introducing new items, such as the Boundary IoU, into the loss func-
tion. Overall, the study shows that XAI can help reveal scientific insights for DL-based 
map generalization. Our future work will explore how building parts, such as the location 
of protrusions and the spatial layout of the buildings, may influence the operations that 
the deep learning networks apply to the focal building.
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Appendix A 

Figure A1. Additional sample of IG results. Annotations are the same as Figure 3 in the main text.

Figure A2. Additional sample of IG results. Annotations are the same as Figure 3 in the main text.
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Figure A3. Additional sample of IG results. Annotations are the same as Figure 3 in the main text.
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