
diss . eth no. 30130

L E A R N I N G D E P T H F R O M I M A G E S

A thesis submitted to attain the degree of
doctor of sciences

(Dr. sc. ETH Zurich)

presented by
ce liu

Master of Engineering in Computer Science and Technology
Harbin Institute of Technology

born on 01.09.1994

accepted on the recommendation of
Prof. Dr. Luc Van Gool, examiner

Prof. Dr. Andrea Vedaldi, co-examiner
Prof. Dr. Shubham Tulsiani, co-examiner

Prof. Dr. Radu Timofte, co-examiner

2024



Ce Liu: Learning Depth From Images, © 2024



A B S T R A C T

Images have been extensively used in our daily life. Yet for many
applications, it might be critical to infer the depth of each pixel. To
this end, we study the problem of perceiving the depth from a single
or stereo images.

Although there have been methods, especially the learning-based
ones, achieving remarkable performance for depth perception, the deep
neural networks might generalize poorly on unseen images, and pro-
duce wrong predictions. To address the above issues, in this thesis we
advocate to exploit the invaluable invariances and priors in scenes by
novel mathematical models.

To begin with, we investigate the conditional distribution of the
depth map given a single image. Contrary to the existing methods,
where per-pixel depth is assumed to be independent given the image,
we introduce per-pixel covariance modeling that encodes its depth de-
pendency with respect to all the scene points. Unfortunately, per-pixel
depth covariance modeling leads to a computationally expensive con-
tinuous loss function, which we solve efficiently using the learned low-
rank approximation of the overall covariance matrix. Notably, when
tested on benchmark datasets, the model obtained by optimizing our
loss function shows state-of-the-art results.

Then, we reveal the benefit of classical and well-founded variational
constraints in the neural network design for the single-image dpeth
prediction task. It is shown that imposing first-order variational con-
straints in the scene space together with popular encoder-decoder-
based network architecture design provides excellent results. The im-
posed first-order variational constraints make the network aware of
the depth gradient in the scene space, i.e., regularity. Our method at
test time shows considerable improvements in depth prediction accu-
racy compared to the prior art and is accurate also at high-frequency
regions in the scene space.

Next, we pursue efficient representations for the layouts, where the
basic primitives, such as straight lines and vanishing points, can pro-
vide invaluable cues for depth. To make use of such an prior, we
advocate to transform the primitives into the parameter space through
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Hough transform. In addition, the line pooling module are proposed
to select important primitives in parameter space. Our design im-
proves the accuracy of off-the-shelf frameworks for monocular 3D ob-
ject detection and depth prediction.

Finally, we turn to stereo images and introduce Stereo Risk, which
formulates the scene disparity as an optimal solution to a continuous
risk minimization problem. We demonstrate that L1 minimization of
the proposed continuous risk function enhances stereo-matching per-
formance for deep networks, particularly for disparities with multi-
modal probability distributions. Furthermore, to enable the end-to-
end network training of the non-differentiable L1 risk optimization, we
exploit the implicit function theorem, ensuring a fully differentiable
network. A comprehensive analysis demonstrates our method’s the-
oretical soundness and superior performance over the state-of-the-art
methods across various benchmark datasets.



Z U S A M M E N FA S S U N G

Afbeeldingen worden veelvuldig gebruikt in ons dagelijks leven. Toch
kan het voor veel toepassingen van cruciaal belang zijn om de diepte
van elke pixel af te leiden. Daartoe bestuderen we het probleem van
het waarnemen van de diepte vanuit een enkel of stereobeeld.

Hoewel er methoden zijn geweest, vooral de op leren gebaseerde,
die opmerkelijke prestaties leverden op het gebied van dieptepercep-
tie, zouden de diepe neurale netwerken slecht kunnen generaliseren
op onzichtbare beelden en verkeerde voorspellingen kunnen opleve-
ren. Om bovenstaande kwesties aan te pakken, pleiten we er in dit
proefschrift voor om de onschatbare onveranderlijkheden en priors in
scènes te exploiteren met behulp van nieuwe wiskundige modellen.

Om te beginnen onderzoeken we de voorwaardelijke verdeling van
de dieptekaart gegeven een enkel beeld. In tegenstelling tot de bestaan-
de methoden, waarbij wordt aangenomen dat de diepte per pixel onaf-
hankelijk is gezien het beeld, introduceren we covariantiemodellering
per pixel die de diepteafhankelijkheid codeert met betrekking tot al-
le scènepunten. Helaas, covariantie per pixeldiepte modellering leidt
tot een computationeel dure continue verliesfunctie, die we efficiënt
oplossen met behulp van de geleerde lage benadering van de algehele
covariantiematrix. Met name wanneer het wordt getest op benchmark-
datasets, vertoont het model dat is verkregen door het optimaliseren
van onze verliesfunctie state-of-the-art resultaten.

Vervolgens onthullen we het voordeel van klassieke en goed onder-
bouwde variatiebeperkingen in het neurale netwerkontwerp voor de
dpeth-voorspellingstaak met één afbeelding. Er wordt aangetoond dat
het opleggen van eerste-orde variatiebeperkingen in de scèneruimte,
samen met het populaire op encoder-decoder gebaseerde netwerkar-
chitectuurontwerp, uitstekende resultaten oplevert. De opgelegde va-
riatiebeperkingen van de eerste orde maken het netwerk bewust van
de dieptegradiënt in de scèneruimte, dat wil zeggen de regelmaat.
Onze methode tijdens de test laat aanzienlijke verbeteringen zien in
de nauwkeurigheid van de dieptevoorspelling in vergelijking met de
stand van de techniek en is ook nauwkeurig in hoogfrequente gebie-
den in de scèneruimte.
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Vervolgens streven we naar efficiënte representaties voor de lay-outs,
waarbij de basisprimitieven, zoals rechte lijnen en verdwijnpunten, waar-
devolle aanwijzingen voor diepte kunnen bieden. Om van een derge-
lijke prior gebruik te maken, pleiten wij ervoor om de primitieven via
Hough-transformatie naar de parameterruimte te transformeren. Bo-
vendien wordt voorgesteld dat de lijnpoolingmodule belangrijke pri-
mitieven in de parameterruimte selecteert. Ons ontwerp verbetert de
nauwkeurigheid van kant-en-klare raamwerken voor monoculaire 3D-
objectdetectie en dieptevoorspelling.

Ten slotte kijken we naar stereobeelden en introduceren we Stereo
Risk, dat de ongelijkheid in scènes formuleert als een optimale oplos-
sing voor een voortdurend risicominimalisatieprobleem. We laten zien
dat L1-minimalisatie van de voorgestelde continue risicofunctie de pre-
staties van stereomatching voor diepe netwerken verbetert, met name
voor verschillen met multimodale waarschijnlijkheidsverdelingen. Om
de end-to-end netwerktraining van de niet-differentieerbare L1 risico-
optimalisatie mogelijk te maken, maken we bovendien gebruik van
de impliciete functiestelling, waardoor een volledig differentieerbaar
netwerk wordt gegarandeerd. Een uitgebreide analyse toont de theore-
tische deugdelijkheid en superieure prestaties van onze methode aan
ten opzichte van de modernste methoden in verschillende benchmark-
datasets.



P U B L I C AT I O N S

The following publications are included as a whole or in parts in this
thesis:

• Ce Liu et al. “Single Image Depth Prediction Made Better: A Mul-
tivariate Gaussian Take.” In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2023, pp. 17346–
17356.

• Ce Liu et al. “VA-DepthNet: A Variational Approach to Single
Image Depth Prediction.” In: The Eleventh International Conference
on Learning Representations. 2022.

• Ce Liu et al. “Deep line encoding for monocular 3d object de-
tection and depth prediction.” In: 32nd British Machine Vision
Conference. BMVA Press. 2021, p. 354.

• Ce Liu et al. “Stereo Risk: A Continuous Modeling Approach to
Stereo Matching.” In: Proceedings of the 41st International Confer-
ence on Machine Learning. PMLR, 2024.

Furthermore, the following publications were part of my PhD re-
search, but are not covered in this thesis:

• Guolei Sun et al. “Indiscernible Object Counting in Underwater
Scenes.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2023, pp. 13791–13801.

• Yawei Li et al. “Lsdir: A large scale dataset for image restoration.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023, pp. 1775–1787.

vii





A C K N O W L E D G M E N T S

I have spent a wonderful and educational time in pursuing my PhD. It
would not be possible without the help and guidance of many brilliant
people.

I would like to thank my supervisor Prof. Dr. Luc Van Gool, and
co-supervisor Prof. Dr. Radu Timofte. Because they gave me the
opportunity to pursue my PhD in the Computer Vision Lab, and the
freedom to choose research topics that interested me. The environment
of the lab helped me to stay focused and motivated.

I am eternally thankful to Prof. Dr. Suryansh Kumar, who gave
me incredible encouragement and support. When going though tough
times, his suggestions helped me to find solutions and make progress.
He contributed a lot to improving the quality of my works.

My gratitude also goes towards Prof. Dr. Shuhang Gu. We have
countless discussions in the past years. My PhD would not have been
the same without his insightful comments and kind help.

I also express my gratitude to Prof. Dr. Andrea Vedaldi and Prof.
Dr. Shubham Tulsiani for their time on reviewing my thesis and being
co-examiners of my PhD examination.

ix





C O N T E N T S

1 introduction 1

1.1 Multivariate Gaussian for Depth . . . . . . . . . . . . . . 4

1.2 Variational Constraint . . . . . . . . . . . . . . . . . . . . 4

1.3 Line Priors for Depth . . . . . . . . . . . . . . . . . . . . . 5

1.4 Stereo Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 multivariate gaussian for depth 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Multivariate Gaussian Modeling . . . . . . . . . . 12

2.3.2 Deeper Insights into the Formulation . . . . . . . 15

2.3.3 Overall Pipeline . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Loss Function . . . . . . . . . . . . . . . . . . . . . 20

2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . 20

2.4.1 Performance Comparison with Prior Works . . . 23

2.4.2 Bayesian Uncertainty Estimation Comparison . . 23

2.4.3 Ablations and Further Analysis . . . . . . . . . . 25

2.4.4 Visualization of Learned Covariance . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 variational constraint 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Variational Constraint . . . . . . . . . . . . . . . . 36

3.3.2 Overall Network Architecture . . . . . . . . . . . 39

3.3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . 41

3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . 42

3.4.1 Comparison to State of the Art . . . . . . . . . . . 44

3.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Network processing time & Parameters . . . . . . 47

3.5 Visualization of V-Layer . . . . . . . . . . . . . . . . . . . 47

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 line priors for depth 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



xii contents

4.2.1 Monocular 3D Object Detection . . . . . . . . . . 52

4.2.2 Monocular Depth Prediction . . . . . . . . . . . . 53

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Depth from Lines . . . . . . . . . . . . . . . . . . . 54

4.3.2 Deep Line Encoding . . . . . . . . . . . . . . . . . 55

4.3.3 Overall Architecture . . . . . . . . . . . . . . . . . 56

4.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Monocular 3D Object Detection . . . . . . . . . . 58

4.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Computation Cost . . . . . . . . . . . . . . . . . . 60

4.4.4 Visualization of Lines . . . . . . . . . . . . . . . . 61

4.4.5 Comparison with State-of-The-Art Methods . . . 62

4.4.6 Monocular Depth Prediction . . . . . . . . . . . . 62

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 stereo risk 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Deep Neural Network For Stereo Matching . . . 68

5.2.2 Continuous Disparity by Classification . . . . . . 69

5.2.3 Cross-Domain Generalization . . . . . . . . . . . . 69

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Probability Density of Continuous Disparity . . . 70

5.3.2 Risk of Disparity . . . . . . . . . . . . . . . . . . . 70

5.3.3 Differentiable Risk Minimization . . . . . . . . . . 72

5.3.4 Network Architecture . . . . . . . . . . . . . . . . 73

5.3.5 Loss Function . . . . . . . . . . . . . . . . . . . . . 76

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . 76

5.4.1 In-Domain Evaluation . . . . . . . . . . . . . . . . 77

5.4.2 Cross-Domain Generalization . . . . . . . . . . . . 77

5.4.3 Ablation Studies . . . . . . . . . . . . . . . . . . . 79

5.4.4 Network Processing Time & Paremeters . . . . . 80

5.4.5 Qualitative Results . . . . . . . . . . . . . . . . . . 80

5.4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 80

6 conclusion and outlook 85

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Mixture of Gaussian for Depth . . . . . . . . . . . 86

6.2.2 Depth Map Generation . . . . . . . . . . . . . . . 86

6.2.3 Relation between Depth and Semantics . . . . . . 87



contents xiii

6.2.4 Fusion with Special Sensors . . . . . . . . . . . . . 87

bibliography 89



L I S T O F F I G U R E S

Figure 1.1 Illustration of single-image depth prediction. . . 2

Figure 2.1 Qualitative comparison between the multivari-
ate Gaussian depth with state of the arts. . . . . 8

Figure 2.2 The marginal ground-truth depth distribution
for a pixel pair for two scenes. . . . . . . . . . . . 9

Figure 2.3 Illustration of the difference between indepen-
dent Gaussian with multivariate Gaussian for
depth. . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.4 The covariance matrix of loss function. . . . . . . 17

Figure 2.5 Overview of the framework for multivariate Gaus-
sian depth. . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.6 Qualitative comparison on NYU Depth between
multivariate Gaussian depth with state of the arts. 24

Figure 2.7 Comparison with the classical Bayesian dropout
for uncertainty estimation. . . . . . . . . . . . . . 25

Figure 2.8 Depth prediction accuracy of multivariate Gaus-
sian w.r.t change in the rank of the covariance
matrix. . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.9 Visualization of covariance. . . . . . . . . . . . . 29

Figure 3.1 Qualitative comparison on NYU Depth between
VADepthNet with state of the arts. . . . . . . . . 33

Figure 3.2 Illustration of the variational constraint. . . . . . 37

Figure 3.3 Overview of the framework for VADepthNet. . . 39

Figure 3.4 Ablation study of V-layer on different backbones. 46

Figure 3.5 Visualization of V-layer prediction. . . . . . . . . 49

Figure 4.1 Illustration of line structures beneficial for depth
perception. . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.2 Overview of the line pooling module and the
overall framework. . . . . . . . . . . . . . . . . . 57

Figure 4.3 Visualization of the probability map M. . . . . . 62

Figure 5.1 Qualitative comparison between our method with
state of the arts on Middlebury. . . . . . . . . . . 67

Figure 5.2 Illustration of the difference between the expec-
tation and L1 risk minimization. . . . . . . . . . 71

xiv



Figure 5.3 Overall pipeline for stereo risk minimization. . . 74

Figure 5.4 Qualitative comparison on Middlebury between
our method with state of the arts on Middlebury. 81

L I S T O F TA B L E S

Table 2.1 Comparison between multivariate Gaussian depth
with state of the arts on NYU Depth. . . . . . . . 21

Table 2.2 Comparison between multivariate Gaussian depth
with state of the arts on KITTI official set. . . . . 21

Table 2.3 Comparison between multivariate Gaussian depth
with state of the arts on KITTI Eigen set. . . . . 22

Table 2.4 Comparison between multivariate Gaussian depth
with state of the arts on SUN RGB-D set. . . . . 22

Table 2.5 Comparison between multivariate Gaussian NLL
loss with others. . . . . . . . . . . . . . . . . . . . 26

Table 2.6 Results applying multivariate Gaussian loss on
NeWCRFs. . . . . . . . . . . . . . . . . . . . . . . 27

Table 2.7 Comparison of time and parameters between
multivariate Gaussian depth with NeWCRFs. . . 27

Table 3.1 Comparison between VADepthNet with state of
the arts on NYU Depth. . . . . . . . . . . . . . . 43

Table 3.2 Comparison between VADepthNet with state of
the arts on KITTI official set. . . . . . . . . . . . . 43

Table 3.3 Comparison between VADepthNet with state of
the arts on KITTI Eigen set. . . . . . . . . . . . . 44

Table 3.4 Comparison between VADepthNet with state of
the arts on SUN RGB-D set. . . . . . . . . . . . . 45

Table 3.5 Benefit of V-layer. . . . . . . . . . . . . . . . . . . 45

Table 3.6 Analysis of the number of feature groups. . . . . 47

Table 3.7 Analysis of the confidence weight matrix and
the difference operator. . . . . . . . . . . . . . . . 47

Table 3.8 Comparison of time and parameters between
VADepthNet with AdaBins and NeWCRFs. . . . 48

xv



xvi List of Tables

Table 4.1 Ablation study on configurations of deep line
encoding. . . . . . . . . . . . . . . . . . . . . . . . 59

Table 4.2 Ablation study on line pooling. . . . . . . . . . . 60

Table 4.3 Ablation study on frameworks of deep line en-
coding. . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 4.4 Time and parameters of deep line encoding. . . 61

Table 4.5 Comparison between deep line encoding with
state of the arts on KITTI monocular 3D object
detection benchmark. . . . . . . . . . . . . . . . . 63

Table 4.6 Comparison between deep line encoding with
state of the arts on KITTI single-image depth
prediction benchmark. . . . . . . . . . . . . . . . 64

Table 4.7 Comparison between deep line encoding with
state of the arts on NYU single-image depth
prediction benchmark. . . . . . . . . . . . . . . . 64

Table 5.1 Comparison between our method with state of
the arts on SceneFlow. . . . . . . . . . . . . . . . 77

Table 5.2 Comparison between our method with state of
the arts on KITTI 2012. . . . . . . . . . . . . . . . 78

Table 5.3 Comparison between our method with state of
the arts on KITTI 2015. . . . . . . . . . . . . . . . 78

Table 5.4 Cross-domain evaluation on Middlebury train-
ing set of quarter resolution. . . . . . . . . . . . . 79

Table 5.5 Cross-domain evaluation on ETH 3D training set. 82

Table 5.6 Cross-domain evaluation on KITTI 2012 train-
ing set. . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 5.7 Cross-domain evaluation on KITTI 2015 train-
ing set. . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 5.8 Ablation studies on Middlebury training set of
quarter resolution. . . . . . . . . . . . . . . . . . 83



1
I N T R O D U C T I O N

Images are likely the most popular and effective media format in our
daily life. It’s known that images are usually intuitive, containing rich
information, and can be stored and retrieved easily on the Internet
[10, 47, 45, 183]. Furthermore, nowadays there are various accessible
softwares to design and edit images [12, 21, 1, 177], and even cheap
cameras in mobile phones can capture high-quality pictures [41, 263].
Hence, images are used not only by human beings for recording and
illustration, but also by robots and autonomous cars for perceiving the
environment [64, 22].

In this thesis, we focus on the images taken by ordinary cameras,
such as mobile phones. The formation of images involves both the
geometric and radiometric processes [162]. Starting from the light
source, the light travels in the world following the Fermat’s principle
[19]. When interacting with the objects’ surface, it can be absorbed,
transmitted, or reflected, depending on the reflectance properties of
the surface. In the end, the light passes through the lenses of the cam-
era and projects onto the array of sensors.

The intricate interactions between the light and the objects can leave
the final image with a wealth of information about the surfaces, such
as texture and so on. As human being, we can further understand
the semantic meaning of the scene, and even give a rough estimate
of the 3D structure [235, 190, 199]. However, it is well known that
the imaging process is non-reversible [63]. There is information lost
during the procedure. One of the major concerns is that it is usually
impossible to recover the depth of each pixel from only a single image
[77, 238, 98], because there are many possible 3D positions for a point
to produce the same pixel after projection.

In many real-world applications, however, the depth of pixels plays
an important role. One example is by projecting the 3D points from
the image onto different cameras we can syntheses novel views [236,
24]. Another one is that it is easier to find safe paths for robots if
the 3D positions of obstacles are known [11, 179]. One straightforward
solution to perceive depth is to resort to special sensors such as LiDAR

1



2 introduction

(a) Image (b) Depth

Figure 1.1: An illustration of single-image depth prediction. (a) The
test image with multiple objects and complex lighting.
(b) The predicted depth map from deep networks [143].
Lighter color indicates smaller depth values.

[94, 184] or Kinect [263, 209, 74]. However, there are many scenarios
where only images are available. Therefore a natural question arises:
how to recover the depth from the images?

The above question has been extensively studied in the last fifty
years, and various solutions have been proposed. In general it is ill-
posed and requires to provide additional images captured under dif-
ferent viewpoints [77, 81], lighting conditions [87, 237], or focus [213,
201]. With more observed images, we can construct more mathemati-
cal constraints about the depth of pixels and obtain predictions that are
more reliable [77]. Although feasible, the methods usually make strict
assumptions about the scenes and the imaging process. In practical
applications, there are often cases where it is difficult to find sufficient
and reliable mathematical constraints to infer the depth.

More recently, with the explosion of big data [46, 267, 56] and the
availability of powerful computing resources [40, 39], deep learning
techniques have drawn more and more attention [80, 68, 120, 113, 202].
In the field of computer vision, the Convolutional Neural Networks
(CNN) [69, 119], Long Short-Term Memory (LSTM) networks [82, 225,
83], and Vision Transformers (ViT) [51, 75] have improved the state-
of-the-art performance of various tasks by a significant margin. The
core of deep networks is to learn intricate structures of raw inputs by
the composition of non-linear transformations, which usually includes
millions of learnable parameters and can represent a wide variety of
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functions [120]. Moreover, comparing to hand-crafted features, the
learned ones are optimized on large-scale training set in an end-to-end
manner and therefore more suitable for the specific task [196, 84].

For depth prediction, the deep learning techniques have also been
widely used. Popular attempts include applying deep networks for
single-image depth prediction [55, 224, 33], stereo matching [257, 103,
259], and multi-view depth prediction [251, 252]. Specifically, the pa-
rameters of networks are optimized to predict depth or disparities that
are close to the ground truth. The networks can discover discrimina-
tive features from intensities of pixels, and have ranked first in the
leaderboards of various depth perception tasks [64, 206, 200]. An illus-
tration of single-image depth prediction (SIDP) by the deep network is
shown in Fig. 1.1.

However, the deep learning technique is still not perfect. For human
being it is difficult to understand what the networks have learned [258,
13, 170] because the functions are represented by the composition of
hundreds of transformations with millions of parameters. Moreover,
the networks might generalize poorly on unseen images [172, 99] and
produce wrong predictions especially when the number of training
images are insufficient.

To take the perception of depth further, in this thesis we advocate
that a more precise mathematical modeling of depth or disparity is
beneficial. Because the formulation not only explains the properties
of depth to the human being, but also facilitates the depth perception
by encoding our priors. We could design network structures and loss
functions under the guidance of the formulation. More specifically,
the thesis includes four parts: Firstly, we observe the depth at different
pixels often show correlation, hence we propose to use the multivari-
ate Gaussian to model the distribution of depth. Secondly, to further
exploit the correlation at neighboring pixels, we regularize the single-
view depth prediction by variational constraints. Thirdly, we show
the basic primitives, like straight lines and vanishing points, provide
invaluable cues for depth, and we advocate to model the primitives
efficiently in parameter space. Finally, we turn attention to stereo im-
ages and formulate the continuous disparity as the optimal solution of
minimizing L1 risk, which alleviates the disturbance from outliers. In
the next sections, we briefly introduce each part.



4 introduction

1.1 multivariate gaussian for depth

In the pursuit of perfect depth estimation, most existing state-of-the-
art learning techniques predict a single scalar depth value per pixel.
Yet, it is well-known that the trained model has accuracy limits and
can predict imprecise depth [101, 102]. Therefore, it’s important to
be mindful of the expected depth variations in the model’s prediction
at test time. Accordingly, we introduce an approach that performs
continuous modeling of per-pixel depth, where we can predict and
reason about the per-pixel depth and its distribution.

Existing methods in this direction model depth per pixel indepen-
dently. It is clearly unreasonable, however, to assume absolute democ-
racy among each pixel, especially for very closeby scene points. There-
fore, it is natural to think of modeling this problem in a way where
where depth at a particular pixel can help infer, refine, and constrain
the distribution of depth value for other image pixels. Nevertheless,
it has yet to be known a prior the neighboring relation among pixels
in the scene space to define the depth covariance among them. We
do that here by defining a very general covariance matrix of dimen-
sion number of pixels× number of pixels, i.e., depth prediction at
a given pixel is assumed to be dependent on all other pixels’ depth.
Unfortunately, per-pixel depth covariance modeling leads to a compu-
tationally expensive continuous loss function. To efficiently optimize
the proposed formulation, we parameterize the covariance matrix, as-
suming that it lies in a rather low-dimensional manifold so that it can
be learned using a simple neural network.

For training our deep network, we utilize the negative log likelihood
as the loss function. Notably, when tested on benchmark datasets, the
SIDP model obtained by optimizing our loss function shows state-of-
the-art results.

1.2 variational constraint

An image of a general scene—indoor or outdoor, has a lot of spatial reg-
ularity. While state-of-the-art deep neural network methods for SIDP
learn the scene depth from images in a supervised setting, they often
overlook the invaluable invariances and priors in the rigid scene space.
In this part, we resort to the physics of variation in the neural net-
work design for better generalization of the SIDP network, which by
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the way, keeps the essence of affine invariance. We show that impos-
ing first-order variational constraints in the scene space together with
popular encoder-decoder-based network architecture design provides
excellent results for the supervised SIDP task. The imposed first-order
variational constraint makes the network aware of the depth gradient
in the scene space, i.e., regularity. As we demonstrate later in the thesis,
such an idea boosts the network’s depth accuracy while preserving the
high-frequency and low-frequency scene information.

1.3 line priors for depth

In man-made environments, especially in autonomous driving scenar-
ios, the basic primitives, like straight lines and vanishing points, pro-
vide invaluable cues for depth. Because their angle or position indi-
cates the 3D layout of the whole scene. To explicitly represent the se-
mantics (e.g., guard rail, horizontal line, etc.) and algebraic parameters
of lines, we perform deep Hough transform [53, 138] on the feature
map of deep networks. The voting for a line is obtained by aggre-
gating the features along the line, which encodes the semantic infor-
mation from the entire line. In addition, the angle and position are
indicated by the voting location in parameter space. For efficiency, we
further propose the line pooling module to select important lines in
parameter space. We apply our design to off-the-shelf frameworks for
monocular 3D object detection and depth prediction in autonomous
driving scenarios. The improvements demonstrate the effectiveness of
our design.

1.4 stereo risk

In this part, we consider the situation where a rectified stereo image
pair is available. Accordingly, the depth perception problem boils
down to estimating the per-pixel displacement from left to right im-
ages, popularly known as a disparity map [200].

One challenge is how to produce continuous disparity values, given
only a limited number of candidate pixels to match. Recent works
either predict a real-valued offset by neural networks, or take the ex-
pectation value of the categorical distribution of matching similarity.



6 introduction

We introduce a radically different perspective by framing it as a
search problem of finding the minimum risk of disparity values. Specif-
ically, the risk is defined by averaging the prediction error with respect
to all possible values of the ground-truth disparity. At the time of mak-
ing the prediction, the ground truth is unavailable, which is therefore
approximated by the disparity hypotheses with a categorical distribu-
tion. We search for a disparity value as our prediction that achieves
minimal overall risk involved with it.

Moreover, we demonstrate that the commonly used disparity expec-
tation is a special case of L2 error function within the proposed risk
formulation, which is sensitive to multi-modal distribution and may re-
sult in the over-smooth solution. In contrast, we advocate the use of the
L1 error function during risk minimization. We have extensively eval-
uated the proposed method on a variety of stereo matching datasets.
Our approach demonstrates superior performance compared to many
state-of-the-art methods on benchmarks.



2
M U LT I VA R I AT E G A U S S I A N F O R D E P T H

This chapter is based on our paper: Ce Liu et al. “Single Image Depth
Prediction Made Better: A Multivariate Gaussian Take.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2023, pp. 17346–17356.

2.1 introduction

Recovering the depth of a scene using images is critical to several ap-
plications in computer vision [3, 59, 114, 115, 100]. It is well founded
that precise estimation of scene depth from images is likely only un-
der multi-view settings [223] —which is indeed a correct statement and
hard to contend1. But what if we could effectively learn scene depth us-
ing images and their ground-truth depth values, and be able to predict
the scene depth using just a single image at test time? With the current
advancements in deep learning techniques, this seems quite possible
empirically and has also led to excellent results for the single image
depth prediction (SIDP) task [145, 186]. Despite critical geometric ar-
guments against SIDP, practitioners still pursue this problem not only
for a scientific thrill but mainly because there are several real-world
applications in which SIDP can be extremely beneficial. For instance,
in medical [150], augmented and virtual reality [86, 192], gaming [73],
novel view synthesis [193, 194], robotics [217], and related vision ap-
plications [186, 95].

Regardless of remarkable progress in SIDP [134, 256, 133, 182, 2, 142,
145], the recent state-of-the-art deep-learning methods, for the time
being, just predict a single depth value per pixel at test time [134].
Yet, as is known, trained models have accuracy limits [101]. As a re-
sult, for broader adoption of SIDP in applications, such as robot vision
and control, it is essential to have information about the reliability of
predicted depth. Consequently, we model the SIDP task using a con-
tinuous distribution function. Unfortunately, it is challenging, if not

1 As many 3D scene configurations can have the same image projection.

7
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(a) Test Image (b) DPT [186] (c) AdaBins [15]

(d) NeWCRFs [256] (e) Ours (f) Ground Truth

Figure 2.1: Qualitative Comparison. By modeling scene depth as
multivariate Gaussian and enforcing the parametric low-
rank covariance constraints in the loss function, we observe
that our model can reliably predict depth for both high-
frequency and low-frequency scene details. In the above
example, we can notice better qualitative results than the
state-of-the-art methods.

impossible, to precisely model the continuous 3D scene. In this regard,
existing methods generally resort to increasing the size and quality
of the dataset for better scene modeling and improve SIDP accuracy.
On the contrary, little progress is made in finding novel mathematical
modeling strategies and exploiting the prevalent scene priors. To this
end, we propose a multivariate Gaussian distribution to model scene
depth. In practice, our assumption of the Gaussian modeling of data is
in consonance with real-world depth data (see Fig. 2.2) and generalizes
well across different scenes. Furthermore, many computer and robot
vision problems have successfully used it and benefited from Gaussian
distribution modeling in the past [30, 269, 212, 79, 247, 189, 169].

Let’s clarify this out way upfront that this is not for the first time
an approach with a motivation of continuous modeling for SIDP is
proposed [6, 117, 101, 109, 88, 178]. Yet, existing methods in this direc-
tion model depth per pixel independently. It is clearly unreasonable,
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(a) First scene (b) Second scene

Figure 2.2: The marginal ground-truth depth distribution for a pixel
pair Za, Zb for two scenes. The depth values for the pixel
pair are taken from the fixed image location in the dataset,
but the selected images are visually similar for the suitabil-
ity of the feature and its corresponding depth values. The
statistics show that the Gaussian distribution assumption
with covariance modeling is a sensible choice for SIDP prob-
lem and not an unorthodox belief arranged or staged for an
intricate formulation.

in SIDP modeling, to assume absolute democracy among each pixel,
especially for very closeby scene points. Therefore, it is natural to
think of modeling this problem in a way where depth at a particu-
lar pixel can help infer, refine, and constrain the distribution of depth
value for other image pixels. Nevertheless, it has yet to be known a
priori the neighboring relation among pixels in the scene space to de-
fine the depth covariance among them. We do that here by defining
a very general covariance matrix of dimension number of pixels ×
number of pixels, i.e., depth prediction at a given pixel is assumed
to be dependent on all other pixels’ depth.

Overall, we aim to advocate multivariate Gaussian modeling with
a notion of depth dependency among pixels as a useful scene prior.
Now, add a fully dependent covariance modeling proposal to it—as
suitable relations among pixels are not known. This makes the overall
loss function computationally expensive. To efficiently optimize the
proposed formulation, we parameterize the covariance matrix, assum-
ing that it lies in a rather low-dimensional manifold so that it can be
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learned using a simple neural network. For training our deep network,
we utilize the negative log likelihood as the loss function. The trained
model when tested on standard benchmark datasets gives state-of-the-
art results for SIDP task (see Fig. 2.1 for qualitative comparison).
Contributions. To summarize, our key contributions are:

• A novel formulation to perform multivariate Gaussian covariance
modeling for solving the SIDP task in a deep neural network
framework is introduced.

• The introduced multivariate Gaussian covariance modeling for
SIDP is computationally expensive. To solve it efficiently, the
paper proposes to learn the low-rank covariance matrix approxi-
mation by deep neural networks.

• Contrary to the popular SIDP methods, the proposed approach
provides better depth as well as a measure of the suitability of
the predicted depth value at test time.

2.2 related work

Predicting the scene depth from a single image is a popular problem
in computer vision with long-list of approaches. To keep our review
of the existing literature succinct and on-point, we discuss work of
direct relevance to the proposed method. Roughly, we divide well-
known methods into two sub-category based on their depth prediction
modeling.
(i) General SIDP. By general SIDP, we mean methods that predict one
scalar depth value per image pixel at inference time. Earlier works
include Markov Random Field (MRF) or Conditional Random Fields
(CRF) modeling [197, 198, 199, 230]. With the advancement in neural
network-based approaches, such classical modeling ideas are further
improved using advanced deep-network design [147, 127, 256, 242,
240]. A few other stretches along this line use piece-wise planar scene
assumption [124]. Other variations in deep neural network-based SIDP
methods use ranking, ordinal relation constraint, or structured-guided
sampling strategy [270, 33, 239, 135, 58]. The main drawback with the
above deep-leaning methods is that they provide an over-smoothed
depth solution, and most of them rely on some heuristic formulation
for depth-map refinement as a post-refinement step.
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Recently, transformer networks have been used for better feature
aggregation via an increase in the network receptive field [248, 15, 28,
256] or with the use of attention supervision [28] leading to better SIDP
accuracy. Another mindful attempt is to exploit the surface normal and
depth relation. To this end, [90] introduces both normal and depth
loss for SIDP, whereas [253] proposes using virtual normal loss for
imposing explicit 3D scene constraint and utilizing long-range scene
dependencies. Long et al. [154] improved over [253] by introducing an
adaptive strategy to compute local patch surface normal by randomly
sampling for candidate triplets. A short time ago, [9] showed com-
mendable results using normal-guided depth propagation [181] with
a depth-to-normal and learnable normal-to-depth module.

(ii) Probabilistic SIDP. In comparison, there are limited pieces of lit-
erature that directly target to solve SIDP in a probabilistic way, where
the methods could predict the scene depth and simultaneously can
reason about its prediction quality. Generally, popular methods from
uncertainty modeling in deep-network are used as it is for such pur-
poses. For instance, Kendall et al. [101] Bayesian uncertainty in deep-
networks, Lakshminarayanan et al. [117] deep ensemble-based uncer-
tainty modeling, Amini et al. [6] deep evidential regression approach,
is shown to work also for the depth prediction task. Yet, these meth-
ods are very general and can be used for most, if not all, computer
vision problems [61]. Moreover, these methods treat each pixel inde-
pendently, which may lead to inferior SIDP modeling.

This brings us to the point that application-specific priors, constraints,
and settings could be exploited to enhance the solution, and we must
not wholly depend on general frameworks to tackle the problem with
similar motivation [101, 117, 6]. Therefore, this paper advocate us-
ing per-pixel multivariate Gaussian covariance modeling with efficient
low-rank covariance parametric representation to improve SIDP for
its broader application. Furthermore, we show that the depth likeli-
hood due to multivariate Gaussian distribution modeling can help de-
fine better loss function and allow depth covariance learning based on
scene feature regularity. With our modeling formulation, the derived
loss function naturally unifies the essence of L2 loss, scale-invariant
loss, and gradient loss. These three losses can be derived as a special
case of our proposed loss.
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2.3 proposed method

To begin with, let’s introduce problem setting and some general nota-
tions, which we shall be using in the rest of the paper. That will help
concisely present our formulation, its useful mathematical insights,
discussion, and application to Bayesian uncertainty estimation in deep
networks.

Problem Setting. Given an image I ∈ Rm×n at test time, our goal
is to predict the reliable per-pixel depth map Z ∈ Rm×n, where m, n
symbolize the number of image rows and cols, respectively. For this
problem, we reshape the image and corresponding ground-truth depth
map as a column vector represented as I ∈ RN×1 and Zgt ∈ RN×1,
respectively. Here, N = m × n is the total number of pixels in the
image and D denotes the train set.

2.3.1 Multivariate Gaussian Modeling

Let’s assume the depth map Z corresponding to image I follows a
N-dimensional Gaussian distribution. Accordingly, we can write the
distribution Φ given I as

Φ(Z|θ, I) = N
(
µθ(I), Σθ(I, I)

)
. (2.1)

Where, µθ(I) ∈ RN×1 and Σθ(I, I) ∈ RN×N symbolize the mean and
covariance of multivariate Gaussian distribution N of predicted depth,
respectively. The θ represents the parametric description of mean and
covariance, which the neural network can learn at train time. It is im-
portant to note that with such network modeling, it is easy for the net-
work to reliably reason about the scene depth distribution of similar-
looking images at test time. Using the general form of multivariate
Gaussian density function, the log probability density of Eq.(2.1) could
be elaborated as

log Φ(Z|θ, I) = −N
2

log 2π − 1
2

log det(Σθ(I, I))−
1
2
(Z−µθ)

T(Σθ(I, I))−1(Z−µθ).
(2.2)

Eq.(2.2) is precisely the formulation we strive to implement. Yet, com-
puting the determinant and inverse of a N × N covariance matrix can
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(a) Test Image (b) Scale Ambiguity

(c) Independent Modeling (d) Our Modeling

Figure 2.3: (a) Test image of an indoor bathroom scene. (b) The prob-
lem of scale ambiguity: showing several possible 3D point-
cloud configurations of the towel with same imaging re-
gion. (c) If the depth values from the towel region are back-
projected in the scene space under the independent Gaus-
sian distribution assumption of the depth map. Clearly,
the 3D point cloud results are not encouraging. (d) Sam-
ples due to our multivariate Gaussian distribution model-
ing that constrain the pixel depth with learned covariance.
We observe the samples drawn from our modeling provide
better 3D point clouds. Note: depth map is transformed to
point cloud for visualization.
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be computationally expensive, i.e., O(N3), for a reasonable image res-
olution. Previous methods in this direction usually restrict covariance
to be diagonal [101, 117], i.e., Σθ(I, I) = diag(σ2

θ (I)) with σθ as the
standard deviation learned by the network with parameter θ. Even
though such a simplification leads to computationally tractable algo-
rithm O(N), it leads to questionable depth prediction at test time.
The reason for that is in SIDP, each pixel’s depth could vary by a
single scale value which must be the same for all the pixels under
the rigid scene assumption (see Fig.2.3b). By assuming covariance to
be zero, each pixel is modeled independently; hence the coherence
among scene points is lost completely. It can also be observed from
Fig.(2.3c) when the covariance matrix is restricted to a diagonal matrix,
the sampled depth from Φ(Z|θ, I) is incoherently scattered. Therefore,
it is pretty clear that multivariate covariance modeling is essential (see
Fig. 2.3d) despite being computationally expensive.

To overcome the computational bottleneck in covariance modeling,
we propose to exploit Σθ parametric form with low-rank assumption.
It is widely studied in statistics that multivariate data relation generally
has low-dimensional structure [229, 268, 118]. Since, covariance matrix
is symmetric and positive definite, we write Σθ in parametric form i.e.,

Σθ(I, I) = Ψθ(I)Ψθ(I)T + σ2eye(N), (2.3)

where, Ψθ(I) ∈ RN×M is learned by deep networks with parameter
θ with M ≪ N. eye(N) ∈ RN×N is a slang for identity matrix.
Ψθ(I)Ψθ(I)T is symmetric and σ2eye(N) guarantees positive definite
matrix with σ > 0 as some positive constant. By using the popular
matrix inversion lemma [180] and Eq.(2.3) parametric form, log proba-
bility density defined in Eq.(2.2) can be re-written as

log Φ(Z|θ, I) = −N
2

log 2πσ2 − 1
2

log det(A)−

σ−2

2
rTr +

σ−4

2
rTΨθ(I)A−1Ψθ(I)Tr,

(2.4)

with r = Z − µθ(I), and A = σ−2Ψθ(I)TΨθ(I) + eye(M). It can be
shown that the above form for modeling covariance is computationally
tractable with complexity O(NM + M3) [189] as compared to O(N3)

since M ≪ N . We use Eq.(2.4) as negative log likelihood (NLL) loss
function, i.e., LNLL = − log Φ(Zgt|θ, I) to train the network for learning
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per-pixel depth, and covariance w.r.t.all the pixels, hence overcoming
the shortcomings with prior works in SIDP.

2.3.2 Deeper Insights into the Formulation

A detailed analysis of Eq.(2.4) and how it naturally encapsulates the
notion of popular loss functions are presented for better understand-
ing. Concretely, we show that “L2 Loss”, “Scale Invariant Loss (SI
Loss)”, and “Gradient Loss (G-Loss)” as a special case of Eq.(2.4); thus,
our formulation is more general. Later, in the subsection, we apply
Eq.(2.4) to well-known Bayesian uncertainty modeling [61] in deep neu-
ral networks showing improved uncertainty estimation than indepen-
dent Gaussian assumption.

2.3.2.1 Relation to Popular Loss Function

By taking Eq.(2.4) NLL form as the training loss, i.e., − log Φ(Zgt|θ, I),
we show that using the special values for Ψθ(I), the NLL loss can be
reduced to some widely-used losses (see Fig. 2.4). Here, symbolizes
Zgt ∈ RN×1. Denoting r = Zgt −µθ(I), we derive the relation.

(i) Case I. Substituting Ψθ(I) = 0N in Eq.(2.4) will give

− log Φ(Zgt|θ, I) ∝ rTr, (2.5)

which is equivalent to the “L2 loss” function. Here, 0N is a column
vector with N elements, all set to 0.

(ii) Case II. Substituting Ψθ(I) = 1N in Eq.(2.4) will give

− log Φ(Zgt|θ, I) ∝ rTr− α

N
(rT1N)

2, (2.6)

where, α = (σ−2N)/(σ−2N + 1) and 1N is a column vector with N
elements set to 1. Assuming σ−2N ≫ 1, which is mostly the experi-
mental setting in SIDP, then α ≈ 1 and Eq.(2.6) becomes equivalent to
“Scale Invariant Loss”.

(iii) Case III. Here, we want to show the relation between Eq.(2.4) and
gradient loss. But, unlike previous cases, it’s a bit involved. So, for sim-
plicity, consider the gradient of the flattened depth map (i.e., a column
vector)2. The general squared gradient loss between the ground-truth

2 ignoring border pixels for simple 1D case
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and predicted depth can be computed as (∇Zgt −∇µθ(I))T(∇Zgt −
∇µθ(I)), where ∇ ∈ RN×N is the gradient operator for computing the
first order difference of Zgt and µθ(I) [191]. Taking out the common
factor, we can re-write the gradient loss as

(
∇(Zgt−µθ(I))

)T(∇(Zgt−
µθ(I)

)
. Simplifying using the matrix transpose property and it can be

written in compact form as rT(∇T∇)r, which is equivalent to the Gaus-
sian multivariate form in Eq.(2.2). Let’s denote J ≜ (∇T∇)−1, where
Ji,j = min{i, j} − ij/(N + 1) [44]. However, J is difficult to parameter-
ize and decompose into low-dimensional form. Concretely, we want to
factorize J into Ψθ(I)Ψθ(I)T + σ2eye(N) that fits the notion developed
in Eq.(2.2) and Eq.(2.3), with Ψθ(I) ∈ RN×M and M ≪ N.

Fortunately, it is possible to approximate J as J ≈
(
Ψθ(I)Ψθ(I)T +

σ2eye(N)
)

by using well-known Eigen approximation [67]. To be pre-
cise, setting Ψθ(I) to

Ψθ(I)k,l =
√

λ(J)lU(J)k,l (2.7)

where λ(J) ∈ RN×1 and U(J) ∈ RN×N are the sorted eigenvalues and
corresponding eigenvectors of J, respectively that can be computed
using λ(J)l = (2− 2 cos lπ

N+1 )
−1 and U(J)k,l = (−1)k+1 sin klπ

N+1 [174].

2.3.2.2 Application in Uncertainty Estimation

We apply Eq.(2.4) to the popular Bayesian uncertainty modeling in neu-
ral networks. Given Φ(Z|θ, I) as aleatoric uncertainty for depth map Z
[101], we can compute the Bayesian uncertainty by marginalising over
the parameters’ posterior distribution using the following well-known
equation [17]:

Φ(Z|I,D) =
∫

Φ(Z|θ, I)Φ(θ|D)dθ (2.8)

where D is the train set. The analytic integration of Eq.(2.8) is difficult
to compute in practice, and is usually approximated by Monte Carlo
integration, such as ensemble [117] and dropout [61]. Suppose we have
sampled a set of parameters Θ ≜ {θs}S

s=1 from Φ(θ|D). The integration
is popularly approximated as

Φ(Z|I,D) = 1
S ∑

s
Φ(Z|θs, I). (2.9)
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(a) Ours (LNLL) (b) L2 Loss

(c) SI Loss (d) G-Loss

Figure 2.4: The covariance matrix of loss function. (a) Ours Σθ . (b)-
(d) shows the equivalent covariance matrix for the (b) L2

loss, (c) scale invariant loss, and (d) gradient loss. It can
be observed that our covariance already contains most, if
not all, information that could be recovered by employing
different loss functions, hence showing the generality of our
formulation.
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The Φ(Z|I,D) denotes the mixture of Gaussian distributions [117].
The mean and covariance of the distribution is computed as µ̄(I) =
1
S ∑s µ

s(I) and Σ̄(I, I) = Ψ̄(I)Ψ̄(I)T + σ2eye(N), respectively [234],
which in fact has the same form as Eq.(2.3), where we compute Ψ̄
using the following expression

Ψ̄ =
1√
S

concat(Ψ1, . . . , ΨS,µ1 − µ̄, . . . ,µS − µ̄). (2.10)

So, from the derivations in Sec.(2.3.2.1) and Sec.(2.3.2.2), it is quite clear
that our proposed Eq.(2.4) is more general and encapsulates flavors of
popular loss functions widely used in deep networks. For the SIDP
problem we need such a loss function for deep neural network param-
eters learning. Next, we discuss the implementation in our proposed
pipeline and usefulness of our introduced loss function.

2.3.3 Overall Pipeline

To keep our pipeline description simple, let’s consider the image and
depth map in 2D form instead of a column vector. For brevity, we
slightly abuse the notation hereafter. Here, we use the same notation
we defined for the 1D Gaussian distribution case for simplicity. For a
better understanding of our overall pipeline, we provide architectural
implementation details following Fig.(2.5) blueprint, i.e., (i) Encoder
details, (ii) Decoder details, followed by (iii) Train and test time set-
tings.

(i) Encoder Details. Our encoder takes the image I ∈ Rm×n as input
and gives a hierarchical feature maps F = {F1, F2, F3, F4} as output,
where Fi ∈ RCi×mi×ni

denotes a feature map with channels Ci, and res-
olution mi × ni. We adopt the Swin-Large [152] as the encoder. Specif-
ically, it includes four stages of non-linear transformation to extract
features from the input image, where each stage contains a series of
transformer blocks to learn non-linear transformation and a downsam-
pling block to reduce the resolution of the feature map by 2. We collect
the output feature map from the last block of the i-th stage as Fi.

(ii) Decoder Details. The U-decoder (see Fig.2.5) estimates a set of
depth maps {µi

θ(I)}4
i=1. The U-decoder first estimates µ4

θ(I) only from
F4 by a convolution layer, then upsamples and refines the depth map
in a hierarchical manner. At the i-th stage, where i decreases from 3 to



2.3 proposed method 19

(R
ef

er
 to

 E
q.

( 
 )

)
Im

ag
e

U
-D

ec
od

er

K
-D

ec
od

er

Encoder

L
ow

-R
an

k 
C

ov
ar

ia
nc

e

N
-d

im
en

si
on

al
 G

au
ss

ia
n

P
re

di
ct

ed
 a

nd
 G

ra
du

al
ly

 R
ef

in
ed

 D
ep

th
s

G
ro

un
d 

T
ru

th

...
...

4

F
ea

tu
re

 M
ap

R
es
ha
pe

R

R

Fi
gu

re
2
.5

:O
ve

rv
ie

w
of

ou
r

fr
am

ew
or

k.
G

iv
en

an
im

ag
e,

fir
st

an
en

co
de

r
is

em
pl

oy
ed

to
ex

tr
ac

t
fe

at
ur

es
.

Th
en

th
e

U
-D

ec
od

er
w

ill
pr

ed
ic

t
an

d
gr

ad
ua

lly
re

fin
e

th
e

de
pt

h
m

ap
s.

A
nd

th
e

K
-D

ec
od

er
is

re
sp

on
si

bl
e

fo
r

pr
ed

ic
ti

ng
th

e
fa

ct
or

Ψ
θ
(I
)

fo
r

m
od

el
in

g
th

e
co

va
ri

an
ce

.
In

th
e

en
d,

w
e

co
m

pu
te

th
e

ne
ga

ti
ve

lo
g

lik
el

ih
oo

d
of

th
e

N
-d

im
en

si
on

al
G

au
ss

ia
n

di
st

ri
bu

ti
on

as
th

e
lo

ss
fu

nc
ti

on
to

su
pe

rv
is

e
tr

ai
ni

ng
.



20 multivariate gaussian for depth

1, we first concatenate µi+1
θ (I) and Fi+1 from the previous stage, and

then feed into a stack of convolution layers to refine the depth map
and feature map. The refined depth map is upsampled via bi-linear
interpolation to double the resolution, and denoted as µi

θ(I). Similarly,
the refined feature map is upsampled and added to Fi. In the end,
we upsample all the depth maps {µi

θ(I)}4
i=1 into m× n resolution via

bi-linear interpolation as the final output of the U-decoder.
The K-decoder (see Fig. 2.5) estimates Ψθ(I). It first upsamples and

refines the feature maps in F. Specifically, at the i-th stage, where i
decreases from 3 to 1, it upsamples Fi+1 from the previous stage and
adds to the Fi. We utilize a stack of convolution layers to further refine
the added feature map. In the end, we upsample the refined feature
map F1 to m× n resolution by bi-linear interpolation, and predict the
Ψθ(I) by a convolution layer.

(iii) Train and Test Time Setting. At train time, we collect {µi
θ(I)}4

i=1,
and Ψθ(I) and compute loss using our proposed loss function (refer
to Sec. 2.3.4). At test time, our approach provides µ1

θ(I) as the final
depth map prediction. Furthermore, we can query Ψθ(I) to infer the
distribution of the depth map if necessary depending on the applica-
tion.

2.3.4 Loss Function

As shown in Sec. 2.3.2.1, the negative log likelihood loss can approx-
imate the scale invariant loss and the gradient loss when Ψθ(I) and
σ take special values. Consequently, we propose the following overall
loss function:

Ltotal =
4

∑
j=1
Lj

NLL +
1
N ∑

i
(µ1

θ(I)i − Zgt
i )2 (2.11)

where Lj
NLL is the negative log likelihood loss applying to µ

j
θ(I) and

Ψθ(I). Note, however, Eq.(2.11) second term is optional. Yet, it is
added to provide train time improvement.

2.4 experiments and results

implementation details . We implemented our framework in
PyTorch 1.7.1 and Python 3.8 with CUDA 11.0. All the experiments
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Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
GeoNet[181] ResNet-50 - 0.128 0.569 - 0.834

DORN [58] ResNet-101 - 0.115 0.509 - 0.828

VNL[253] ResNeXt-101 - 0.108 0.416 - 0.875

TransDepth [248] ViT-B - 0.106 0.365 - 0.900

ASN [154] HRNet-48 - 0.101 0.377 - 0.890

BTS [124] DenseNet-161 11.533 0.110 0.392 0.142 0.885

DPT-Hybrid [186] ViT-B 9.521 0.110 0.357 0.129 0.904

AdaBins [15] EffNet-B5+ViT-mini 10.570 0.103 0.364 0.131 0.903

ASTrans [28] ViT-B 10.429 0.103 0.374 0.132 0.902

NeWCRFs [256] Swin-L 9.102 0.095 0.331 0.119 0.922

Ours Swin-L 8.323 0.087 0.311 0.110 0.933
% Improvement 8.56% 8.42% 6.04% 7.56% 1.18%

Table 2.1: Comparison with the state-of-the-art methods on the NYU
test set [206]. Please refer to Sec. 2.4.1 for details.

Method SILog↓ Abs Rel↓ Sq Rel↓ iRMS↓
DLE [142] 11.81 9.09 2.22 12.49

DORN [58] 11.80 8.93 2.19 13.22

BTS [124] 11.67 9.04 2.21 12.23

BANet [5] 11.55 9.34 2.31 12.17

PWA [125] 11.45 9.05 2.30 12.32

ViP-DeepLab [182] 10.80 8.94 2.19 11.77

NeWCRFs [256] 10.39 8.37 1.83 11.03

Ours 9.93 7.99 1.68 10.63
% Improvement 4.43% 4.54% 8.20% 3.63%

Table 2.2: Comparison with the state-of-the-art methods on the the
KITTI official test set [64]. We only list the results from the
published methods.

and statistical results shown in the draft are simulated on a computing
machine with Quadro RTX 6000 (24GB Memory) GPU support. We
use evaluation metrics including SILog, Abs Rel, RMS, RMS log, δi, Sq
Rel, iRMS to report our results on the benchmark dataset. For exact
definition of the metrics we refer to [124].

Datasets. We performed experiments and statistical comparisons with
the prior art on benchmark datasets such as NYU Depth V2 [206],
KITTI [64], and SUN RGB-D [210].

(a) NYU Depth V2: This dataset contains images of indoor scenes with
480× 640 resolution [206]. We follow the standard train and test split
setting used by previous works for experiments [124]. Precisely, we
use 24, 231 image-depth pairs for training the network and 654 images
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Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
DORN [58] ResNet-101 - 0.072 0.273 0.120 0.932

VNL [253] ResNeXt-101 - 0.072 0.326 0.117 0.938

TransDepth [248] ViT-B 8.930 0.064 0.275 0.098 0.956

BTS [124] DenseNet-161 8.933 0.060 0.280 0.096 0.955

DPT-Hybrid [186] ViT-B 8.282 0.062 0.257 0.092 0.959

AdaBins [15] EffNet-B5+ViT-mini 8.022 0.058 0.236 0.089 0.964

ASTrans [28] ViT-B 7.897 0.058 0.269 0.089 0.963

NeWCRFs [256] Swin-L 6.986 0.052 0.213 0.079 0.974

Ours Swin-L 6.757 0.050 0.202 0.075 0.976
% Improvement 3.28% 3.85% 5.16% 5.06% 0.21%

Table 2.3: Comparison with the state-of-the-art methods on the KITTI
Eigen test set [55]. Please refer to Sec. 2.4.1 for details.

for testing the performance. Note that the depth map evaluation for
this dataset has an upper bound of 10 meters.

(b) KITTI: This dataset contains images and depth data of outdoor
driving scenarios. The official experimental split contains 42, 949 train-
ing images, 1, 000 validation images, and 500 test images with 352×
1216 resolution [64]. Here, the depth map accuracy can be evaluated
up to an upper bound of 80 meters. In addition, there are few works
following the split from Eigen [55], which includes 23, 488 images for
training and 697 images for the test.

(c) SUN RGB-D: It contains data of indoor scenes captured by different
cameras [210]. The depth values range from 0 up to 10 meters. The
images are resized to 480× 640 resolution for consistency. We use the
official test set [210] of 5050 images to evaluate the generalization of
the frameworks.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
AdaBins[15] EffNet-B5+ViT-mini 13.652 0.110 0.321 0.137 0.906

NeWCRFs [256] Swin-L 13.695 0.105 0.322 0.138 0.920

Ours Swin-L 11.985 0.090 0.282 0.120 0.936
% Improvement 12.49% 14.29% 12.42% 13.04% 1.74%

Table 2.4: Comparison with AdaBins [15] and NeWCRFs [256] on SUN
RGB-D test set [210]. All methods are trained on NYU Depth
V2 train set without fine-tuning on SUN RGB-D. Please refer
to Sec. 2.4.1 for details.



2.4 experiments and results 23

Training Details. We use Adam optimizer [106] to minimize our pro-
posed loss function and learn network parameters. At train time, the
learning rate is decreased from 3e−5 to 1e−5 by the cosine annealing
scheduler. Our encoder–which is inspired from [152], is initialized by
pre-training the network on ImageNet [46]. For the KITTI dataset, we
train our framework for 10 and 20 epochs on the official split [64] and
Eigen [55] split, respectively. For the NYU dataset [206], our frame-
work is trained for 20 epochs. We randomly apply horizontal flipping
on the image and depth map pair at train time for data augmentation.

2.4.1 Performance Comparison with Prior Works

Tab. 2.1, 2.2, 2.3, and 2.4 show our method’s statistical performance
comparison with popular state-of-the-art (SOTA) methods on NYU
Depth V2 [206], KITTI official [64] and Eigen [55] split, and SUN RGB-
D [210]. From the tables, it is easy to infer that our approach con-
sistently performs better on all the popular evaluation metrics. The
percentage improvement over the previous SOTA is indicated in green
for better exposition. In particular, on the NYU test set, which is a
challenging dataset, we reduce the SILog error from the previous best
result of 9.102 to 8.323 and increase δ1 metric from 0.922 to 0.933

3. Fig.
2.6 shows qualitative comparison results. It can be observed that our
method’s predicted depth is better at low and high-frequency scene
details. For the SUN RGB-D test set, all competing models, including
ours, are trained on the NYU DepthV2 train set without fine-tuning on
SUN RGB-D [210]. In addition, we align the predictions from all the
models with the ground truth by a scale and shift following [187]. Tab.
2.4 results indicate our method’s better generalization capability than
other approaches.

2.4.2 Bayesian Uncertainty Estimation Comparison

In this part, we compare with the classical Bayesian dropout [101],
which uses independent Gaussian distribution to quantify uncertainty.
As for our approach, we also use dropout to sample multiple depth
predictions, and compute the negative log likelihood following the dis-

3 At the time of submission, our method’s performance on the KITTI official leader-
board was the best among all the published works.
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(a) Test (b) DPT[186] (c) AdaBins[15]

(d) NeWCRFs[256] (e) Ours (f) Ground Truth

Figure 2.6: Qualitative Comparison. Our method recovers better
depth even for complex scenes. Our depth results even
qualitatively looks closer to the ground truth than the prior
art such as (b) DPT [186], (c) AdaBins [15], (d) NeWCRFs
[256] on NYU Depth V2 test set [206].
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tribution in Eq.(2.9). More specifically, in each block of Swin trans-
former [152], we randomly drop feature channels before the layer nor-
malization [7] operation with probability 0.01. We first sample S = 10
predictions for each test image, then compute the mean and covari-
ance of the mixture of Gaussian distributions in Eq.(2.9), and further
approximate the entire distribution as single Gaussian following [117].
We present the comparison results of the negative log likelihood in
Fig. 2.7. Our multivariate Gaussian distribution achieves much lower
negative log likelihood cost.

0.075

-0.222

1.0 0.50.00.5 1.0

Classical Bayesian Dropout
Ours

0.106
-1.342

1.0 0.50.00.5 1.0

Figure 2.7: Comparison with the classical Bayesian dropout for uncer-
tainty estimation. The left and right figures present the
Negative Log Likelihood (NLL) of the predicted depth map
distribution on KITTI Eigen [64, 55] split and NYU test set
[206] respectively. Our multivariate Gaussian distribution
achieves lower NLL than the independent Gaussian distri-
bution in classical Bayesian dropout.

2.4.3 Ablations and Further Analysis

To better understand our introduced approach, we performed abla-
tions on the NYU Depth V2 dataset [206] and studied our trained
model’s inference time and memory footprint for its practical suitabil-
ity.

(i) Effect of NLL Loss. To realize the significance of NLL loss in
Eq.2.11, we replaced it with L2 loss, SI loss [55], gradient loss, and vir-
tual normal loss [253] one by one, while keeping the remaining term
in Eq.2.11 fixed. The statistical results are shown in Tab.2.5. The stats
show that our proposed NLL loss achieves the best performance over
all the widely used metrics.
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Loss SILog ↓ Abs Rel ↓ RMS ↓ δ1 ↑
L2 8.912 0.090 0.324 0.929

SI [55] 8.762 0.089 0.322 0.929

Gradient 8.886 0.090 0.323 0.929

VNL [253] 8.543 0.090 0.325 0.926

Ours 8.323 0.087 0.311 0.933

Table 2.5: Comparison of our NLL loss function with widely used loss
functions for solving SIDP task.
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Figure 2.8: Depth prediction accuracy of our method using different
evaluation metrics w.r.t change in the rank of the covari-
ance matrix. The increase in the rank improves prediction
accuracy and shows saturation at 128, thereby showing the
effectiveness of our low-dimensional modeling.

(ii) Performance with the change in the Rank of Covariance. We vary
the rank of Ψθ(I), and observe our method’s prediction accuracy. We
present the accuracy under various evaluation metrics in Fig. 2.8. With
increase in the rank, the distribution is better approximated, and the
performance improves, but saturates later showing the suitability of its
low-dimensional representation.

(iii) Evaluation on NeWCRFs. We evaluate our loss function on NeWCRFs
[256] network design using their proposed training strategies. The
depth prediction accuracy is shown in Tab. 2.6. The results convinc-
ingly indicate the benefit of our proposed loss on a different SIDP
network.

(iv) Inference Time & Parameter Comparison. We compared our
method’s inference time, and the number of model parameters to the
recent state-of-the-art NeWCRFs [256]. The inference time is measured
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Method SILog ↓ Abs Rel ↓ RMS ↓ δ1 ↑
NeWCRFs 9.102 0.095 0.331 0.922

+Our Loss 8.619 0.086 0.316 0.935

Table 2.6: Results using our loss on [256] network on NYU Depth.

on the NYU Depth V2 test set [206] with batch size 1. As shown in
Tab.2.7, our method achieves lower scale invariant logarithmic error
(SILog) with fewer network parameters and comparable FPS. Such a
statistical performance further endorse our approach’s practical ade-
quacy.

Method SILog↓ Speed (FPS)↑ Param (M)↓
NeWCRFs 9.171 10.551 258

Ours 8.323 9.909 244

Table 2.7: Comparison of the inference time and parameters with
NeWCRFs [256] on NYU Depth V2 [206].

2.4.4 Visualization of Learned Covariance

To understand the covariance learned by the proposed negative log
likelihood loss function, we visualize the covariance for selected pixels.
More specifically, for each image we select a pixel (marked as a green
cross), and visualize the covariance between the pixel and all other pix-
els. The results are shown in Fig. 2.9. We observe that the pixels from
nearby regions or the same objects usually have higher covariance.

2.5 conclusion

This work suitably formalizes the connection between robust statistical
modeling techniques, i.e., multivariate covariance modeling with low-
rank approximation, and popular loss functions in neural network-
based SIDP problem. The novelty presented in this chapter arises from
the fact that the proposed pipeline and loss term turns out to be more
general, hence could be helpful in the broader application of SIDP in
several tasks, such as depth uncertainty for robot vision, control and
others. Remarkably, the proposed formulation is not only theoretically
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compelling but observed to be practically beneficial, resulting in a loss
function that is used to train the proposed network showing state-of-
the-art SIDP results on several benchmark datasets.
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(a) (b)

Figure 2.9: Visualization of Covariance. Left: test image. Right: co-
variance with respect to the pixel which is marked as a
green cross. The yellow and light regions have higher co-
variance than the blue and dark ones.





3
VA R I AT I O N A L C O N S T R A I N T

This chapter is based on our paper: Ce Liu et al. “VA-DepthNet: A
Variational Approach to Single Image Depth Prediction.” In: The
Eleventh International Conference on Learning Representations. 2022.

3.1 introduction

Over the last decade, neural networks have introduced a new prospect
for the 3D computer vision field. It has led to significant progress on
many long-standing problems in this field, such as multi-view stereo
[92], [100], visual simultaneous localization and mapping [218], novel
view synthesis [165], etc.Among several 3D vision problems, one of the
challenging, if not impossible, to solve is the single-image depth pre-
diction (SIDP) problem. SIDP is indeed ill-posed—in a strict geomet-
ric sense, presenting an extraordinary challenge to solve this inverse
problem reliably. Moreover, since we do not have access to multi-view
images, it is hard to constrain this problem via well-known geomet-
ric constraints [155, 173, 60, 115, 114]. Accordingly, the SIDP problem
generally boils down to an ambitious fitting problem, to which deep
learning provides a suitable way to predict an acceptable solution to
this problem [256, 253].

Impressive earlier methods use Markov Random Fields (MRF) to
model monocular cues and the relation between several over-segmented
image parts [198, 199]. Nevertheless, with the recent surge in neu-
ral network architectures [112, 208, 78], which has an extraordinary
capability to perform complex regression, many current works use
deep learning to solve SIDP and have demonstrated high-quality re-
sults [256, 5, 15, 55, 58, 124, 125]. Popular recent methods for SIDP
are mostly supervised. But even then, they are used less in real-
world applications than geometric multiple view methods [116, 168].
Nonetheless, a good solution to SIDP is highly desirable in robotics
[250], virtual-reality [86], augmented reality [52], view synthesis [86]
and other related vision tasks [150].

31
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In this chapter, we advocate that despite the supervised approach
being encouraging, SIDP advancement should not wholly rely on the
increase of dataset sizes. Instead, geometric cues and scene priors
could help improve the SIDP results. Not that scene priors have not
been studied to improve SIDP accuracy in the past. For instance, [33]
uses pairwise ordinal relations between points to learn scene depth.
Alternatively, [253] uses surface normals as an auxiliary loss to im-
prove performance. Other heuristic approaches, such as [181], jointly
exploit the depth-to-normal relation to recover scene depth and sur-
face normals. Yet, such state-of-the-art SIDP methods have limita-
tions: for example, the approach in [33] - using ordinal relation to
learn depth - over-smooths the depth prediction results, thereby fail-
ing to preserve high-frequency surface details. Conversely, [253] relies
on good depth map prediction from a deep network and the idea of
virtual normal. The latter is computed by randomly sampling three
non-collinear points with large distances. This is rather complex and
heuristic in nature. [181] uses depth and normal consistency, which is
good, yet it requires good depth map initialization.

This brings us to the point that further generalization of the regression-
based SIDP pipeline is required. As mentioned before, existing ap-
proaches in this direction have limitations and are complex. In this
chapter, we propose a simple approach that provides better depth ac-
curacy and generalizes well across different scenes. To this end, we
resort to the physics of variation [166, 25] in the neural network design
for better generalization of the SIDP network, which by the way, keeps
the essence of affine invariance [253]. An image of a general scene—
indoor or outdoor, has a lot of spatial regularity. And therefore, intro-
ducing a variational constraint provides a convenient way to ensure
spatial regularity and to preserve information related to the scene dis-
continuities [25]. Consequently, the proposed network is trained in a
fully-supervised manner while encouraging the network to be mindful
of the scene regularity where the variation in the depth is large. In sim-
ple terms, depth regression must be more than parameter fitting, and
at some point, a mindful decision must be made—either by imaging
features or by scene depth variation, or both. As we demonstrate later
in the chapter, such an idea boosts the network’s depth accuracy while
preserving the high-frequency and low-frequency scene information
(see Fig.3.1).
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(a) Test Image (b) AdaBins [15]

(c) NeWCRFs [256] (d) Ours

Figure 3.1: Qualitative comparison of our method’s depth result
with recent state-of-the-art methods such as AdaBins [15],
NeWCRFs [256] on NYU Depth V2 test set [206]. It can be
observed that our method predicts high-frequency details
better than other recent methods.
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Our neural network for SIDP disentangles the absolute scale from
the metric depth map. It models an unscaled depth map as the op-
timal solution to the pixel-level variational constraints via weighted
first-order differences, respecting the neighboring pixel depth gradi-
ents. Compared to previous methods, the network’s task has been
shifted away from pixel-wise metric depth learning to learning the first-
order differences of the scene, which alleviates the scale ambiguity and
favors scene regularity. To realize that, we initially employ a neural net-
work to predict the first-order differences of the depth map. Then, we
construct the partial differential equations representing the variational
constraints by reorganizing the differences into a large matrix, i.e., an
over-determined system of equations. Further, the network learns a
weight matrix to eliminate redundant equations that do not favor the
introduced first-order difference constraint. Finally, the closed-form
depth map solution is recovered via simple matrix operations.

When tested on the KITTI [64] and NYU Depth V2 [206] test sets, our
method outperforms prior art depth prediction accuracy by a large
margin. Moreover, our model pre-trained on NYU Depth V2 better
generalizes to the SUN RGB-D test set.

3.2 prior work

Depth estimation is a longstanding task in computer vision. In this
work, we focus on a fully-supervised, single-image approach, and
therefore, we discuss prior art that directly relates to such approach.
Broadly, we divide the popular supervised SIDP methods into three
sub-categories.
(i) Depth Learning using Ranking or Ordinal Relation Constraint.
[270] and [33] argue that the ordinal relation between points is easier
to learn than the metric depth. To this end, [270] proposes constrained
quadratic optimization while [33] relies on the variation of the incep-
tion module to solve the problem. Later, [239] proposes structure-
guided sampling strategies for point pairs to improve training effi-
ciency. Recently, [135] elaborates on the use of listwise ranking method
based on the Plackett-Luce model [158]. The drawback of such ap-
proaches is that the ordinal relationship and ranking over smooth the
depth solution making accurate metric depth recovery challenging.
(ii) Depth Learning using Surface Normal Constraint. [90] introduces
normal loss in addition to the depth loss to overcome the distorted and
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blurry edges in the depth prediction. [253] proposes the concept of vir-
tual normal to impose 3D scene constraint explicitly and to capture the
long-range relations in the depth prediction. The long-range depen-
dency in 3D is introduced via random sampling of three non-colinear
points at a large distance from the virtual plane. Lately, [154] proposes
an adaptive strategy to compute the local patch surface normals at
train time from a set of randomly sampled candidates and overlooks
it during test time.
(iii) Depth Learning using other Heuristic Refinement Constraint.
There has been numerous works attempt to refine the depth prediction
as a post-processing step. [147], [127] and [256] propose to utilize
the Conditional Random Fields (CRF) to smooth the depth map. [124]
utilizes the planar assumptions to regularize the predicted depth map.
[181] adopts an auxiliary network to predict the surface normal, and
then refine the predicted depth map following their proposed heuristic
rules. There are mainly two problems with such approaches: Firstly,
these approaches rely on a good depth map initialization. Secondly,
the heuristic rules and the assumptions might result in over-smoothed
depth values at objects boundaries.

Meanwhile, a few works, such as [185, 36, 129] were proposed in
the past with similar inspirations. [185, 36] methods are generally mo-
tivated towards depth map refinement predicted from an off-the-shelf
network. On the other hand, [36] proposes to use an affinity matrix
that aims to learn the relation between each pixel’s depth value and its
neighbors’ depth values. However, the affinity matrix has no explicit
supervision, which could lead to imprecise learning of neighboring
relations providing inferior results. On the contrary, our approach
is mindful of imposing the first-order difference constraint leading to
better performance. Earlier, [129] proposed two strategies for SIDP,
i.e., fusion in an end-to-end network and fusion via optimization. The
end-to-end strategy fuses the gradient and the depth map via convo-
lution layers without any constraint on convolution weights, which
may not be an apt choice for a depth regression problem such as SIDP.
On the other hand, the fusion via optimization strategy is based on a
non-differentiable strategy, leading to a non-end-to-end network loss
function. Contrary to that, our method is well-constrained and per-
forms quite well with a loss function that helps end-to-end learning of
our proposed network. Not long ago, [122] proposed to estimate rela-
tive depths between pairs of images and ordinary depths at a different
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scale. By exploiting the rank-1 property of the pairwise comparison
matrix, it recovers the relative depth map. Later, relative and ordinary
depths are decomposed and fused to recover the depth. On a slightly
different note, [123] studies the effectiveness of various losses and how
to combine them for better monocular depth prediction.

To sum up, our approach allows learning of confidence weight to
select reliable gradient estimation in a fully differentiable manner. Fur-
ther, it proffers the benefits of the variational approach to overcome
the limitations of the existing state-of-the-art methods. More impor-
tantly, the proposed method can provide excellent depth prediction
without making extra assumptions such as good depth initialization,
piece-wise planar scene, and assumptions used by previous works
mentioned above.

3.3 method

In this section, we first describe our proposed variational constraint
and then present the overall network architecture leading to the overall
loss function.

3.3.1 Variational Constraint

Here we introduce our variational constraint and how it can be useful
for depth estimation. Consider an unscaled depth map as Zu ∈ RH×W ,
with (H, W) symbolizing the height and width, respectively. Assum-
ing Γx ∈ RH×W and Γy ∈ RH×W as the gradient of Zu in the x and y
axis, we write

∇Zu = [Γx, Γy]
T. (3.1)

Here, x and y subscript corresponds to the direction from left to right
(x-axis) and top to bottom of the image (y-axis), respectively. Elaborat-
ing on this, we can write

Γi,j
x = ∇xZi,j

u = Zi,j+1
u − Zi,j

u ; Γi,j
y = ∇yZi,j

u = Zi+1,j
u − Zi,j

u . (3.2)

Suppose we augment Eq.(3.2) expression for all (i, j), i ∈ {1, ..., H}
and j ∈ {1, ..., W}. In that case, we will end up with an over-determined
system with 2HW equations in total. Given the predicted Γx and Γy,
we aim to recover the HW unknown variables in Zu.
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However, some of the equations could be spurious and deteriorate
the overall depth estimation result rather than improving it. As a re-
sult, we must be mindful about selecting the equation that respects
the imposed first-order constraint and maintains the depth gradient to
have a meaningful fitting for better generalization. To that end, we in-
troduce confidence weight Σx ∈ [0, 1]H×W , Σy ∈ [0, 1]H×W for gradient
along x, y direction. Consequently, we multiply the above two equa-
tions by the confidence weight term Σi,j

x and Σi,j
y , respectively. On one

hand, if the confidence is close to 1, the equation will have priority to
be satisfied by the optimal Zu. On the other hand, if the confidence is
close to 0, we must ignore the equation. For better understanding, we
illustrate the first-order difference and weighted matrix construction
in Fig. 3.2 (a) and Fig. 3.2(b).

Next, we reshape the Σx, Σy, Γx, Γy, and Zu into column vectors
Σ̃x ∈ [0, 1]HW×1, Σ̃y ∈ [0, 1]HW×1, Γ̃x ∈ RHW×1, Γ̃y ∈ RHW×1, and Z̃u ∈
RHW×1, respectively. Organizing Σ̃ = diag([Σ̃x; Σ̃y]) ∈ R2HW×2HW and Γ̃ =

concat[Γ̃x; Γ̃y] ∈ R2HW×1, we can write the overall expression in a com-
pact matrix form using simple algebra as follows

Σ̃PZ̃u = Σ̃Γ̃ (3.3)

where P ∈ {1, 0,−1}2HW×HW is the first-order difference operator. Specif-
ically, P is a sparse matrix with only a few elements as 1 or -1. The ith

row of P provides the first-order difference operator for the ith equa-
tion. The position of 1 and -1 indicates which pair of neighbors to be
considered for the constraint. Fig.3.2 (b) provides a visual intuition
about this matrix equation.

Eq.(3.3) can be utilized to recover Zu from the predicted Γx, Γy, Σx,
and Σy. As alluded to above, we have more equations than unknowns,
hence, we resort to recovering the optimal depth map Z̃∗u ∈ RHW×1 by
minimizing the following equation:

Z̃∗u = arg min
Z̃u

||Σ̃(PZ̃u − Γ̃)||2. (3.4)

The closed-form solution can be written as follows:

Z̃∗u =

KΣ̃︷ ︸︸ ︷
(PTΣ̃2P)−1PTΣ̃2 Γ̃. (3.5)

Denote KΣ̃ ≜ (PTΣ̃2P)−1PTΣ̃2 in Eq.(3.5), we write overall equation as
Z̃∗u = KΣ̃Γ̃. Next, we describe the overall network architecture.
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Figure 3.3: Overview of our framework. Given an input image, first an
encoder is employed to extract features. Then we predict the
depth map by the V-layer. Next, we gradually upsample and
refine the depth map. In the end, we recover the metric depth by
the metric layer.

3.3.2 Overall Network Architecture

Our overall network architecture is composed of four main modules
as follows.
(a) Encoder. Given an input image, the encoder computes the hierarchi-
cal feature maps through a series of stages. To be precise, our encoder
has four stages. Each stage contains transformer blocks [152]. At the
end of each stage, we collect the final feature map as the output of
the encoder resulting in the encoded feature maps with strides 4, 8, 16,
and 32, respectively. Our encoder module is inspired by [152], a recent
state-of-the-art transformer network design. We use it as our backbone
by removing the final global pooling layer and fully connected layer.
(b) Variational Layer (V-Layer). The goal of this layer is to compute
a map from encoded feature maps to unscaled depth map, which ad-
heres to the first-order variational constraint. As of V-layer, we feed the
feature maps of strides 16 and 32 as input which is the output of the
encoder. Since these features are at different resolutions, we upsample
the feature map of stride 32 to stride 16 via bi-linear interpolation and
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concatenate to construct IΦ ∈ RC×H×W , where (H, W, C) symbolizing
the height, width, and the number of channels, respectively.

Note that H, W is not the same as the original resolution of the
ground-truth depth and images. We use of two convolutional layers
on IΦ to predict the depth gradient and corresponding weight for each
pixel as follows:

{Γx, Γy, Σx, Σy} = f (IΦ; θ) (3.6)

where, f (IΦ; θ) denotes the convolutional layers with parameters θ.
The predicted depth gradients Γx and Γy are observed to be more ac-
curate at smooth surface than at boundaries. This brings us again
to the point made above that we must take care of which first-order
constraint must be included and discarded during regression. Using
the Eq.(3.6) prediction, we construct the variational constraint Eq.(3.3),
and obtain the unscaled depth map following Eq.(3.5). The resulting
depth map has a resolution of 1/16 to the original image, which is
later upsampled to the appropriate resolution.

To capture more scene features, we generate multiple channels (de-
noted as S) of {Γx, Γy, Σx, Σy} using Eq.(3.6). As a result, we have a
group of depth maps stacked along the channel dimension. For a fea-
ture map with spatial resolution H ×W, our V-layer has a complexity
of O(H3W3). To overcome complexity issue, we perform V-layer op-
eration on feature maps with stride 16 and then upsample and refine
the depth maps in the later stage. The V-layer pipeline is shown in Fig.
3.3(b).
(c) Upsample and Refine. This module upsamples and refines the in-
put depth map via encoded features at a given depth map resolution.
To this end, we perform refinement at three different resolutions in
a hierarchical manner. Given the V-layer depth map at 1/16 resolu-
tion, we first refine the depth via encoded features at this resolution.
Concretely, this refinement is done using the following set of opera-
tions. (1) concatenate the feature map and the depth map; (2) use
one convolutional layer with ReLU activation to fuse the feature and
depth information; and (3) predict refined feature and depth map via
a convolutional layer. Later, the refined feature and depth map are
upsampled and fed into 1/8 for later refinement using the same above
set of operations. Finally, the exact is done at 1/4 resolution. Note that
these steps are performed in a sequel. At the end of this module, we
have a depth map of 1/4 of the actual resolution. The upsample and
refine procedure are shown in Fig. 3.3(c).
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(d) Metric Layer. We must infer the global scene scale and shift to re-
cover the metric depth. For this, we perform global max pooling on
the encoded feature map of stride 32. The resulting vector is fed into a
stack of fully connected layers to regress the two scalars, i.e., one rep-
resenting the scale and while other representing the shift. Using the
feature map of stride 32 is motivated by the observation that we have
a much richer global scene context using it than at higher depth res-
olution. It also provides a good compromise between computational
complexity and accuracy.

3.3.3 Loss Function

Depth Loss. It estimates the scale-invariant difference between the
ground-truth depth and prediction at train time [55]. The difference
is computed by upsampling the predicted depth map to the same res-
olution as the ground truth via bi-linear interpolation. Denoting the
predicted and ground-truth depth as Ẑ ∈ Rm×n, Zgt ∈ Rm×n we com-
pute the depth loss as follows

Ldepth(Ẑ, Zgt) =
1
N ∑

(i,j)
(ei,j)2− α

N2 (∑
(i,j)

ei,j)2, where, ei,j = log Ẑi,j− log Zi,j
gt .

(3.7)
Here, N is the number of positions with valid measurements and α ∈
[0, 1] is a hyper-parameter. Note that the above loss is used for valid
measurements only.

Variational Loss. We define this loss using the output of V-layer. Sup-
pose the ground-truth depth map to be Zgt ∈ Rm×n and the predicted
depth map for S channels as Zu ∈ RS×H×W . Since the depth resolu-
tion is not same at this layer, we downsample the ground truth. It
is observed via empirical study that low-resolution depth map in fact
help capture the first-order variational loss among distant neighbors.
Accordingly, we downsample the Zgt instead of upsamping Zu. We
downsample Zgt denoted as Qgt ∈ RH×W by random pooling opera-
tion, i.e., we randomly select a location where we have a valid measure-
ment since ground-truth data may have pixels with no depth values.
The coordinates of selected location in Zgt 7→ Zu ∈ RS×H×W and the
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corresponding depth value is put in Q̂ ∈ RS×H×W via bi-linear inter-
polation. We compute the variational loss as

Lvar(Q̂, Qgt) =
1

N′ ∑
(i,j)
|Conv(Q̂)i,j −∇Qi,j

gt| (3.8)

where N′ is the number of positions having valid measurements, ∇
symbolises the first-order difference operator, and Conv refers to the
convolutional layer. Here, we use the Conv layer to fuse S depth maps
into a single depth map and also to compute its horizontal and vertical
gradient.
Total Loss. We define the total loss as the sum of the depth loss and the
variational loss i.e., L = Ldepth + λLvar, where λ is the regularization
parameter set to 0.1 for all our experiments.

3.4 experiments and results

Implementation Details We implemented our method in PyTorch 1.7.1
(Python 3.8) with CUDA 11.0. The software is evaluated on a comput-
ing machine with Quadro-RTX-6000 GPU. Datasets. We performed ex-
periments on three benchmark datasets namely NYU Depth V2 [206],
KITTI [64], and SUN RGB-D [210]. (a) NYU Depth V2 contains im-
ages with 480× 640 resolution with depth values ranging from 0 to
10 meters. We follow the train and test set split from [124], which
contains 24,231 train images and 654 test images. (b) KITTI contains
images with 352× 1216 resolution where depth values range from 0 to
80 meters. The official split provides 42,949 train, 1,000 validation, and
500 test images. [55] provides another train and test set split for this
dataset which has 23,488 train and 697 test images. (c) SUN RGB-D
We preprocess its images to 480× 640 resolution for consistency. The
depth values range from 0 to 10 meters. We use the official test set
(5050 images) for evaluation.
Training Details. We use [152] network as our backbone, which is pre-
trained on ImageNet [46]. We use the Adam optimizer [106] without
weight decay. We decrease the learning rate from 3e−5 to 1e−5 by the
cosine annealing scheduler. To avoid over-fitting, we augment the im-
ages by horizontal flipping. For KITTI [64], the model is trained for 10

epochs for the official split and 20 epochs for the Eigen split [55]. For
NYU Depth V2 [206], the model is trained for 20 epochs.
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Table 3.1: Comparison with the state-of-the-art methods on the NYU
test set [206]. Please refer to Sec.3.4.1 for details.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
GeoNet [181] ResNet-50 - 0.128 0.569 - 0.834

DORN [58] ResNet-101 - 0.115 0.509 - 0.828

VNL [253] ResNeXt-101 - 0.108 0.416 - 0.875

TransDepth [248] ViT-B - 0.106 0.365 - 0.900

ASN [154] HRNet-48 - 0.101 0.377 - 0.890

BTS [124] DenseNet-161 11.533 0.110 0.392 0.142 0.885

DPT-Hybird [186] ViT-B - 0.110 0.357 - 0.904

AdaBins [15] EffNet-B5+ViT-mini 10.570 0.103 0.364 0.131 0.903

ASTrans [28] ViT-B 10.429 0.103 0.374 0.132 0.902

NeWCRFs [256] Swin-L 9.102 0.095 0.331 0.119 0.922

Ours Swin-L 8.198 0.086 0.304 0.108 0.937
% Improvement -9.93% -9.47% -8.16% -9.24% +1.63%

Table 3.2: Comparison with the state-of-the-art methods on the the
KITTI official test set [64]. We only list the results from the
published methods. Please refer to Sec.3.4.1 for details.

Method Backbone SILog↓ Abs Rel↓ Sq Rel↓ iRMS↓
DLE [142] ResNet-34 11.81 9.09 2.22 12.49

DORN [58] ResNet-101 11.80 8.93 2.19 13.22

BTS [124] DenseNet-161 11.67 9.04 2.21 12.23

BANet [5] DenseNet-161 11.55 9.34 2.31 12.17

PWA [125] ResNeXt-101 11.45 9.05 2.30 12.32

ViP-DeepLab [182] - 10.80 8.94 2.19 11.77

NeWCRFs [256] Swin-L 10.39 8.37 1.83 11.03

Ours Swin-L 9.84 7.96 1.66 10.44
% Improvement -5.29% -4.90% -9.29% -5.35%
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Table 3.3: Comparison with the state-of-the-art methods on the KITTI
Eigen test set [55].

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
DORN [58] ResNet-101 - 0.072 0.273 0.120 0.932

VNL [253] ResNeXt-101 - 0.072 0.326 0.117 0.938

TransDepth [248] ViT-B 8.930 0.064 0.275 0.098 0.956

BTS [124] DenseNet-161 8.933 0.060 0.280 0.096 0.955

DPT-Hybird [186] ViT-B - 0.062 0.257 - 0.959

AdaBins [15] EffNet-B5+ViT-mini 8.022 0.058 0.236 0.089 0.964

ASTrans [28] ViT-B 7.897 0.058 0.269 0.089 0.963

NeWCRFs [256] Swin-L 6.986 0.052 0.213 0.079 0.974

Ours Swin-L 6.817 0.050 0.209 0.076 0.977
% Improvement -2.42% -3.85% -1.88% -3.80% +0.03%

Evaluation Metrics. We report statistical results on popular evaluation
metrics such as square root of the Scale Invariant Logarithmic error
(SILog), Relative Squared error (Sq Rel), Relative Absolute Error (Abs
Rel), Root Mean Squared error (RMS), and threshold accuracy.

3.4.1 Comparison to State of the Art

Tab.(3.1), Tab.(3.2), Tab.(3.3), and Tab.(3.4) provide statistical compar-
ison results with the competing methods on NYU Depth V2, KITTI
official split, KITTI Eigen split, and SUN RGB-D, respectively. Our
proposed approach shows the best results for all the evaluation met-
rics. Particularly on the NYU test set, we reduce the SILog error from
the previous best result, 9.102 to 8.198, and increase δ1 from 0.922 to
0.937. For the SUN RGB-D test set, all competing models, including
ours, are trained on the NYU Depth V2 training set [206] without fine-
tuning on the SUN RGB-D. In addition, we align the predictions from
all the models with the ground truth by a scale and shift following
[187]. Tab.(3.4) results show our method’s better generalization capa-
bility than other approaches.

3.4.2 Ablation Study

All the ablation presented below is conducted on NYU Depth V2 test
set [206].
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Table 3.4: Comparison with AdaBins and NeWCRFs on SUN RGB-D
test set. All methods are trained on NYU Depth V2 train set
without fine-tuning on SUN RGB-D.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
AdaBins[15] EffNet-B5+ViT-mini 13.652 0.110 0.321 0.137 0.906

NeWCRFs [256] Swin-L 13.695 0.105 0.322 0.138 0.920

Ours Swin-L 12.596 0.094 0.299 0.127 0.929
% Improvement -7.73% -10.48% -6.85% -7.30% +0.98%

Table 3.5: Benefit of V-layer. We replace the proposed V-layer with a
single convolutional layer and a self-attention layer, and eval-
uate the accuracy of depth map predicted with and without
subsequent refinements.

Layer Refine SILog ↓ Abs Rel ↓ RMS↓ RMS log ↓ δ1 ↑ δ2 ↑

Convolution
w/o 8.830 0.090 0.325 0.114 0.927 0.990

w/ 8.688 0.089 0.317 0.113 0.928 0.991

Self-Attention + PE
w/o 8.790 0.090 0.318 0.114 0.927 0.990

w/ 8.595 0.089 0.316 0.112 0.929 0.991

V-Layer
w/o 8.422 0.087 0.308 0.110 0.936 0.990

w/ 8.198 0.086 0.304 0.108 0.937 0.992

(i) Effect of V-Layer. To understand the benefit and outcome of our
variational layer compared to other popular alternative layers in deep
neural networks for this problem, we performed this ablation study.
We replace our V-layer firstly with a convolutional layer and later with
a self-attention layer. Tab.(3.5) provides the depth prediction accuracy
for this ablation. For each introduced layer in Tab.(3.5), the first and
second rows show the performance of the depth map predicted with
(w) and without (w/o) subsequent refinements (cf. Sec.3.3.2 (c)), re-
spectively. For the self-attention layer, we follow the ViT [50] and set
the patch size to be one as we use the feature map with stride 16. We
also adopt the learnable position embedding (PE) with 128 dimensions.
We set the number of heads to be 4 and the number of hidden units
to be 512. As shown in Tab.(3.5), our V-layer indeed helps improve the
accuracy of depth prediction compared to other well-known layers.
(ii) Performance with Different Network Backbone. We evaluate the
effects of our V-layer with different types of network backbones. For
this ablation, we use Swin-Large [152], Swin-Small [152], and ConvNeXt-
Small [153]. The SILog error is shown in Fig. 3.4. The results show that
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Figure 3.4: Evaluation on Swin-L, Swin-S, ConvNeXt-S w/ and w/o the
V-layer.

our V-layer improves the transformer and the convolutional network
performance. An important observation is that our V-layer shows ex-
cellent improvements in depth prediction accuracy on weaker network
backbones.

(iii) Performance with Change in the Value of S. For this ablation, we
change the value of S in the V-layer and observe its effects (cf. Sec.3.3.2
(b)). By increasing S, we generate more channels of Γ̃ and Σ̃ which in-
effect increases V-layer parameters. In the subsequent step, we expand
the number of channels to 128 by a convolutional layer to use the sub-
sequent layers as they are. The results are shown in Tab.(3.6). For
reference, we also present the result by replacing the V-layer with a
convolutional layer in the first row in Tab.(3.6). By increasing S, we
reduce the SILog error, at the price of the speed (FPS). Yet, no real
benefit is observed with S more than 16.

(iv) Effect of Confidence Weight Matrix & Difference Operator in
V-Layer. For this ablation, we study the network’s depth prediction
under four different settings. (a) without V-layer and replace it with
convolutional layer (b) without the confidence weight matrix (c) with
learnable difference operator and (d) our full model. The depth pre-
diction accuracy observed under these settings is provided in Tab.(3.7).
Clearly, our full model has better accuracy. An important empirical
observation, we made during this test is when we keep P learnable V-
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Table 3.6: Analysis of the number of feature groups. More groups re-
duce the SILog error.

SILog↓ Abs Rel↓ RMS↓ FPS ↑
w/o V-layer 8.688 0.089 0.317 9.343
1 8.456 0.088 0.310 8.175

16 8.198 0.086 0.304 7.032

128 8.172 0.085 0.309 3.320

Table 3.7: Analysis of the confidence weight matrix Σ̃ and the differ-
ence operator P.

SILog↓ Abs Rel↓ RMS ↓
(a) w/o V-layer 8.688 0.089 0.317

(b) w/o Σ̃ 8.537 0.089 0.316

(c) learnable P 8.355 0.088 0.310

(d) full 8.198 0.086 0.304

layer has more learnable parameters, the performance becomes worse
than with fixed difference operator.

3.4.3 Network processing time & Parameters

We compared our method’s inference time and the number of model
parameters to the AdaBins [15] and the NeWCRFs [256]. The inference
time is measured on the NYU Depth V2 test set with batch size 1. We
have removed the ensemble tricks in AdaBins and NeWCRFs for an
unbiased evaluation, resulting in a slight increase in SILog error as
compared to Tab.(3.1) statistics. As is shown in Tab.(3.8), our method
is faster and better than AdaBins and NeWCRFs using Swin-Small
backbone. With the same backbone as the NeWCRFs, i.e., Swin-Large,
we achieve much better depth prediction results. Hence, our method
with Swin-Small backbone provides a better balance between accuracy,
speed and memory foot-print.

3.5 visualization of v-layer

We visualize the confidence weight map Σx, the difference map Γx,
and the depth map Zu from the V-layer in Fig.3.5. We observe that
the depth value of a pixel shows correlation with respect to the image
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Table 3.8: Comparison of the inference time and parameters to Ad-
aBins and NeWCRFs on NYU Depth V2. We show our re-
sults using the Swin-Small and Swin-Large backbone.

AdaBins NeWCRFs Ours Ours
[15] [256] (Small) (Large)

SILog Error ↓ 10.651 9.171 9.069 8.198
Speed (FPS) ↑ 5.638 10.551 11.891 7.032

Param (M) ↓ 75 258 76 249

coordinates of the pixel. For example, in the last example in Fig.3.5, for
different pixels at the door, the depth values are usually different but
the first-order difference are approximately the same. This observation
shows that the difference map might be easier to predict than the depth
map.

3.6 conclusion

In conclusion, a simple and effective approach for inferring scene depth
from a single image is introduced. The proposed SIDP approach is
shown to better exploit the rigid scene prior, which is generally over-
looked by the existing neural network-based methods. Our approach
does not make explicit assumptions about the scene other than the
scene gradient regularity, which holds for typical indoor or outdoor
scenes. When tested on popular benchmark datasets, our method
shows significantly better results than the prior art, both qualitatively
and quantitatively.
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Figure 3.5: Visualization of V-layer Prediction. We visualize the confi-
dence weight Σx, the difference map Γx and the depth map
Zu from the V-layer when predicting on NYU Depth V2 test
set.





4
L I N E P R I O R S F O R D E P T H

This chapter is based on our paper: Ce Liu et al. “Deep line encoding
for monocular 3d object detection and depth prediction.” In: 32nd
British Machine Vision Conference. BMVA Press. 2021, p. 354.

4.1 introduction

Recovering depth from RGB images has been a long-standing problem
in vision and robotics. For example, a key step in 3D object detection
is to predict the distance (depth) of foreground objects. Whereas in 3D
reconstruction, the depth of all pixels is often required. It is known
that for a single RGB image, in general, the problem is ill-posed [77].
Thereby the dominant approaches resort to multiple images from dif-
ferent viewpoints and locate points in 3D space by triangulation [77].
However, the human being can make a rough estimate of depth even
from a single eye. The observation motivates researchers to explore
various cues for single-image depth perception, such as shading [262,
87], defocus [72], and so on.

Restricted to street scenes, Dijk and Croon [49] show an important
cue to infer objects’ depth, i.e., objects that are further away tend to
appear higher in the image. However, bringing into full play the prior
for accurate depth perception is by no means trivial. Because the road
surface is assumed to be a rough plane, which is often violated in re-
ality. For example, there are usually different slopes in different areas,
and cars might even be on curb bricks. Road condition impacts greatly
the actual relation between objects’ depth and their image coordinates.
How to model the above complex situation effectively is still an open
question.

In this paper, we propose to exploit the basic primitives, like straight
lines and vanishing points, in man-made environments, especially in
autonomous driving scenarios. Because their angle or position indi-
cates the slope of the road and even the 3D layout of the whole scene.
To explicitly represent the semantics (e.g., guard rail, horizontal line,
etc.) and algebraic parameters of lines, we perform deep Hough trans-

51
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form [53, 138] on the feature map of deep networks. It’s known that in
deep neural networks, the features in last convolutional blocks are rich
in semantics [120]. The voting for a line is obtained by aggregating the
features along the line, which encodes the semantic information from
the entire line. In addition, the angle and position are indicated by the
voting location in parameter space.

In parameter space, feature maps are sparser than the ones in image
space in the sense that most of the locations are meaningless. Only
a few elements represent straight lines that make sense, whereas the
vast majority correspond to random aggregation. For efficiency, we
propose the line pooling module to select important lines in parameter
space. The lines in the scene are finally represented as a distributed
vector.

We apply our design to off-the-shelf frameworks for monocular 3D
object detection and depth prediction in autonomous driving scenar-
ios. The main challenges in the two tasks are to predict the distance
(depth) of foreground objects and estimate the dense depth map re-
spectively. With deep line encoding, we advance the state-of-the-art
on KITTI monocular 3D object detection and depth prediction bench-
marks [64]. The improvements demonstrate the effectiveness of our
design.

In summary, our main contributions are as follows: (1) We intro-
duce the line information in scenes as a novel cue for single-image
depth perception. (2) We propose a novel architecture to exploit the
line information, which fits well into off-the-shelf frameworks. (3) We
advance the state-of-the-art on KITTI single-image 3D object detection
and depth prediction benchmarks.

4.2 related work

In this section, we briefly review recent advances in monocular 3D
object detection and depth prediction.

4.2.1 Monocular 3D Object Detection

In monocular 3D object detection, a series of attributes of the object
is required to estimate, including the 3D coordinate, size and orien-
tation. However, our method only aims to help the network better
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estimate the Z coordinate (depth) of the object. Thereby we divide
existing methods into three main categories according to their way to
infer the depth of objects. It’s noteworthy that, compared with the
dense depth estimation task, only the depth of foreground objects are
required. Thereby more priors can be exploited, and the methods can
be more sophisticated.

The most popular way is to make use of the depth information pro-
vided by external models. A typical example of the external model
is DORN [58], which learns to convert images to dense depth maps.
Pseudo-LiDAR [231] back-projects the depth map into 3D points and
then apply off-the-shelf LiDAR-based 3D object detectors. PatchNet [160]
encodes camera calibration information by spatial coordinates trans-
formation. However, instead of further improving depth estimation
accuracy, such approaches focus more on making better use of the pre-
diction results from existing models.

Deep3DBox [167] and RTM3D [130] infer depth through perspec-
tive relationships between 3D corners and their 2D projections. The
motivation is to explicitly encode the geometric prior that objects that
are further away appear smaller. However, other cues such as object’s
image position may be ignored. In addition, prediction error in ori-
entation, dimension, and 2D bounding box will harm the accuracy of
depth estimation.

4.2.2 Monocular Depth Prediction

Focusing on fully-supervised methods, we find that recent works mainly
proceed in two directions.

One line is to design more sophisticated loss functions. Eigen et
al. [55] proposed the scale-invariant loss to save the network from learn-
ing the absolute global scale. DORN [58] and SORD [48] treat depth
network learning as an ordinal regression problem. Jiao et al. [96] in-
vestigated the long tail property of depth values and proposed the
attention-driven loss. Wei et al. [254] formed a high-order geometric
constraint called virtual normal, biasing the network to produce depth
maps with better surface. Zhang et al. [264] jointly predict depth, sur-
face normal and semantic segmentation to exploit cross-task affinity
patterns.

Proposing novel network architectures is the other direction. Aich et
al. [4] and Xu et al. [241] fuse the feature maps from different stages
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of the backbone by the bidirectional attention modules and continu-
ous graphical models respectively. Lee et al. [121] combine multi-scale
depth map candidates in the Fourier domain. Chen et al. [32] proposed
the spatial attention blocks to guide the network attention to global
structures or local details across different feature layers. Huynh et
al. [93] developed the depth-attention volume to exploit planar struc-
tures in the scene.

4.3 approach

In this section, we start with an analysis of the simplified projection
model. Its limitation motivates us to explicitly encode the line infor-
mation from the scene. As an effective way, the Hough transform is
briefly reviewed, and then we take a step further by proposing the
novel line pooling module. At last, we present the overall architecture
with deep line encoding.

4.3.1 Depth from Lines

In autonomous driving scenarios, an important cue to depth prediction
is object’s vertical position in the image. As shown in Figure 4.1 (a),
in the ideal case where the ground plane is perfectly horizontal, the
distance of the object can be easily obtained by:

Z =
f Y
y

, (4.1)

where f and Y are camera’s focal length and height respectively, and y
is the image vertical coordinate difference between the principal point
and the 2D projection of object’s ground contact point.

In real-world applications, the projection relation can be affected by
various factors, such as slope, step, camera pose variation, and so on.
Special structures in the scene, especially straight lines and vanishing
points, can indicate the geometric layout of the scene and help the
convolutional networks reason the real projection relation, as shown
in Figure 4.1 (b)-(d).
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Figure 4.1: (a) Illustration of depth estimation from the image coordi-
nate of the object. (b)-(d) Examples of real situations. We
highlight some representative lines (red) that provide infor-
mation about slope, step and camera pose variation respec-
tively.

4.3.2 Deep Line Encoding

In this section, we introduce the deep line encoding to make better ues
of the line information from the scenes.

4.3.2.1 Hough Transform

Comparing with conventional networks, the Hough transform [53] pro-
vides a different perspective to represent lines in the scene. Given an
image, a straight line l can be represented by a point (θ, ρ) in the pa-
rameter space, where θ is the angle between the x-axis and the normal
vector of the line, and ρ is the distance from the origin to the line.

The traditional Hough transform algorithm usually takes a binary
edge map as input. Its power is limited because the edge map is short
of semantic context and prone to noise. Recently, Lin et al. [138] and
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Han et al. [76] proposed the deep Hough transform. The input is re-
placed with features from deep networks, which enables end-to-end
training and is more robust. Given a feature map X, the transformed
map Y is calculated by the following equation:

Y(θ, ρ) = ∑
(x,y)∈l

X(x, y), (4.2)

where l is the line parameterized by (θ, ρ).
It’s known that in last convolutional blocks of deep networks, the

feature maps are rich in semantics [120]. Thereby the aggregation of
features along the line can be an encoding for the semantics of the
entire line, which is necessary for the line pooling module to select
the most important lines. The voting position (θ, ρ) in the transformed
map Y indicates the algebraic parameters of the line.

In implementation, we set the origin to be the center of the feature
map X, and discretize θ ∈ [0, 180◦) and ρ ∈ [−

√
W2 + H2/2,

√
W2 + H2/2]

into bins, where W and H are the width and height of the feature map
X respectively.

4.3.2.2 Line Pooling

In deep Hough transform, the size of the transformed map Y is usually
large but most of the elements are invalid aggregation. As only a
few elements of Y represent lines that make sense, we propose a line
pooling module to compress Y. The pipeline of our proposed line
pooling module is shown in Figure 4.2 (a).

4.3.3 Overall Architecture

Our method is generic and can be applied to various frameworks. For
generality, we suppose the rough architecture for monocular 3D object
detection or depth prediction to be as shown in Figure 4.2 (b). Given
an input image, the backbone extracts features at first, and then the
head makes prediction for the specific task.

In most cases, such as in VGG [207] and ResNet [78], the backbone is
composed of a series of stages. The feature maps from early stages are
of high resolution but semantically weak. After stacks of convolution
and pooling layers, features from different locations are hierarchically
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Figure 4.2: (a) Pipeline of the line pooling module. The circle with
black dot denotes element-wise product. (b) Overview of
the architecture with deep line encoding. Dotted box indi-
cates the backbone.

aggregated in a complex way. Thereby in later stages the feature maps
are semantically stronger but of lower resolution.

We perform deep Hough transform [138, 76] on feature maps from
an early stage of i. The choice is natural since high resolution maps pre-
serve more accurate location information. A key step in deep Hough
transform [138, 76] is to aggregate the features along the line. The
resulting vector can be viewed as an explicit representation for the
semantics of the entire line, which is necessary for the line pooling
module to distinguish between the guard rail and the horizontal line.
The angle and position of the line are indicated by the voting location.
After deep Hough transform [138, 76], key lines in the scene will be
selected by the line pooling module and encoded as a short vector.

To incorporate the line information into the backbone, we concate-
nate the feature map F from the stage of j with the line vector. To do
so, we up-sample the line vector to the same resolution as F in advance.
The relative position of the object with respect to the lines or the princi-
ple point is an important factor, thereby we also append the coordinate
map [148]. We concatenate F, the line vector and the coordinate map
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and compress into the same number of channels as F. The resulting
feature map will replace F and be fed into the stage of j + 1.

While the deep line encoding module is plugged into the backbone,
other parts of the framework are kept the same as original. We train the
framework in an end-to-end manner, without any extra supervision
than the common monocular 3D object detection or depth estimation
frameworks. In experiment, we found the network can discover related
lines automatically.

4.4 experiment

In this section, we analyze and verify each component in deep line
encoding by detailed ablation study and visualization. We also apply
deep line encoding to the state-of-the-art frameworks for monocular
3D object detection and depth prediction.

4.4.1 Monocular 3D Object Detection

Dataset The KITTI 3D Object Detection dataset [64] consists of 7,481

training images and 7,518 testing images from autonomous driving
scenes. Following Chen et al. [34], we split the training data into 3,712

training and 3,769 validation images. As has been the focus of prior
work [20], we primarily compare methods using the car class.
VisualDet3D We apply deep line encoding to the state-of-the-art monoc-
ular 3D object detector, i.e., VisualDet3D [151]. It is a single end-to-end
network composed of a backbone and two task-specific heads. The
backbone is responsible for extracting feature maps over the input im-
age. The default is to take the first three stages of ResNet-101 [78] as
backbone. The first head performs convolutional object classification;
the second head performs convolutional 3D bounding box regression.
The 3D bounding box is disentangled into a group of parameters to
be regressed, including 2D projection of the 3D center, depth, size and
orientation. The detector is trained with focal loss [137] for the classifi-
cation branch and smooth l1 loss [65] for the regression branch.
Line Encoding We choose feature maps from the first stage to perform
deep Hough transform. The transformed map will be compressed into
a short vector by the line pooling module. The line vector and coor-
dinate map will be fused with the feature map from the second stage
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Configuration Coordinate Line Vector
AP3D

Easy Moderate Hard
a 23.63 16.16 12.06

b ✓ 25.21 16.48 12.46

c ✓ 24.92 16.41 12.33

d ✓ ✓ 26.49 16.75 13.07

Table 4.1: Different configurations ablation study. Configuration a is
from Liu et al. [151].

and then fed into the third stage.
Training Details We adopt the Adam algorithm [107] to optimize net-
work parameters for 40 epochs. We use an initial learning rate of 1e-4,
a cosine annealing scheduler [156] with target learning rate of 1e-5, a
batch size of 8, and no weight decay. The data pre-processing and
augmentation are exactly the same as VisualDet3D [151]. We increase
the loss weight of depth prediction branch from 3.0 to 5.0, while other
hyper-parameters are kept the same. For deep Hough transform [138,
76], we set the resolution of ρ and θ to be 3 pixel units and 3◦.

4.4.2 Ablation Study

We perform detailed ablation study on the validation set. The exper-
iments are repeated 5 times for average. We first evaluate the effects
of critical components in deep line encoding, including the coordinate
map and the line vector. Main results are shown in Table 4.1. From
Table 4.1 (b), we observe that simply adding the coordinate map to
the framework can boost the performance significantly. The result co-
incides with the conclusion of Liu et al. [148], i.e., the vanilla network
might fail to learn the absolute coordinate information. Table 4.1 (c)
shows the improvement from the line vector alone, indicating that the
information about straight lines in scenes is beneficial for depth per-
ception. We observe a further improvement from Table 4.1 (d) by
combining the coordinate map with the line vector.

Then we evaluate the effects of each component in the line pooling
module, the results are shown in Table 4.2. One of the most important
design is the coordinate map, which represents the algebraic parame-



60 line priors for depth

Pooling
APBEV AP3D

Easy Moderate Hard Easy Moderate Hard
LinePooling 34.06 22.59 16.96 26.43 16.72 13.02
-Coordinate 33.25 22.11 16.77 24.96 16.44 12.52

-Soft-max (avg) 33.34 22.55 16.91 24.77 16.26 12.55

-Soft-max (max) 31.50 21.68 16.29 23.28 15.80 11.75

Table 4.2: Pooling ablation study.

ters of lines. If we remove the coordinate map, there will be a drop in
performance, especially in the hard case of AP3D. The other key design
is the soft-max operation. We verify its effects by directly selecting the
average or maximum in each channel of Z. The results show that the
soft-max operation is better. Particularly, selecting the maximum even
harms the performance.

We further apply deep line encoding to M3D-RPN [20] to demon-
strate the generalization ability across frameworks. M3D-RPN [20] is
a simple single-stage network composed of a backbone and two task-
specific heads. It takes DenseNet-121 [91] as backbone, while removing
the final pooling layer and dilating each convolutional layer in the last
Dense-Block by a factor of 2. The heads are used for object classifica-
tion and attributes regression respectively. We optimize the model for
100 thousands iterations. Other hyper-parameters are kept the same.

We select the feature map from the second Dense-Block to extract
the line vector. Then together with the coordinate map, we fuse the
line vector with the original feature map and feed into following mod-
ules. As shown in Table 4.3, deep line encoding module improves the
performance of M3D-RPN [20] under all the metrics. We also list the
performance of VisualDet3D [151] for comparison.

4.4.3 Computation Cost

The number of trainable parameters and test time are shown in Ta-
ble 4.4. Following Lin et al. [138], the deep Hough transform is imple-
mented as matrix multiplication. We compress the feature maps into
16 channels before feeding into the deep Hough transform module.
The accumulator is then expanded to 256 channels through convolu-
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Method
APBEV AP3D

Easy Moderate Hard Easy Moderate Hard
M3D-RPN [20] 20.85 15.62 11.88 14.53 11.07 8.65

+ Line Encoding (ours) 22.97 16.59 13.33 16.36 11.93 9.35
VisualDet3D [151] 29.70 20.98 16.20 23.63 16.16 12.06

Line Encoding (ours) 34.06 22.59 16.96 26.43 16.72 13.02

Table 4.3: Frameworks ablation study.

tional layers. Thereby the line vector has a length of 256. We evaluate
the test time for the two models both on NVIDIA Tesla V-100 GPU
with a batch size of 1.

Method Param (M) Test Time (s/image)
VisualDet3D [151] 55.68 0.053

+ Line Encoding (ours) 61.84 0.060

Table 4.4: Model size and processing time.

4.4.4 Visualization of Lines

We perform inverse Hough transform on the probability map M to
visualize the lines selected by the line pooling module. The results are
shown in Figure 4.3. The first column shows the input image. The
second column shows an example of the feature map to perform deep
Hough transform. The third and the forth columns show the inverse
Hough transform of different channels of M.

In Figure 4.3 (c) and (d), the bright areas show the distribution of
important lines generated by different channels of M. The areas are
blur because the probability is often distributed among a combination
of multiple lines. However, we still observe that the selected lines often
align with special structures in scenes, such as guard rails, horizontal
lines, vanishing points and so on. Specifically, Figure 4.3 (c) focuses on
vanishing points or horizontal lines, while Figure 4.3 (d) is sensitive
to the guard rails. Although we select only a single value from each
channel, the soft-max operation is flexible such that the probability can
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(a) Image (b) Feature Map (c) 1st Example (d) 2nd Example

Figure 4.3: Visualization of the probability map M.

concentrate on a single global maximum, or several local maxima. On
Figure 4.3 (d) it is obvious that both the left and right guard rails are
selected.

4.4.5 Comparison with State-of-The-Art Methods

Table 4.5 presents the performance of recent methods on the KITTI
monocular 3D object detection benchmark [64]. Our method shows
superiority over VisualDet3D [151] and achieves the state-of-the-art on
easy and moderate cases. Particularly, on the easy case of AP3D our
method increases by 2.58 points of AP (24.23 vs.21.65). For the hard
case, our method lags behind MonoPair [35]. However, our method
does not exploit many popular improvements, such as the feature pyra-
mid network [136] and deep layer aggregation [255], which are helpful
for small objects. These improvements are complementary to deep line
encoding and should boost the accuracy of hard case further.

4.4.6 Monocular Depth Prediction

Dataset The KITTI monocular depth prediction dataset [64] consists of
42,949 training images, 1,000 validation images, and 500 test images,
annotated with sparse point clouds. The NYU Depth V2 dataset [206]
consists of 120,000 images captured in indoor scenes. Following the of-
ficial split, we use 249 scenes for training and 215 scenes (654 images)
for testing. In the training set, 24,231 images and depth maps are as-
sociated and sampled using timestamps by even-spacing in time. We
train and test on the center cropping proposed by Eigen et al. [55].
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Method
APBEV AP3D

Easy Moderate Hard Easy Moderate Hard
M3D-RPN [20] 21.02 13.67 10.23 14.76 9.71 7.42

MonoPair [35] 24.12 18.17 15.76 16.28 12.30 10.42
RTM3D [130] 19.17 14.20 11.99 14.41 10.34 8.77

PatchNet [160] 22.97 16.86 14.97 15.68 11.12 10.17

VisualDet3D [151] 29.81 17.98 13.08 21.65 13.25 9.91

+ Line Encoding (ours) 31.09 19.05 14.13 24.23 14.33 10.30

Table 4.5: Performance comparison on KITTI monocular 3D object de-
tection benchmark.

GAC We select the open-source framework GAC [151] to evaluate deep
line encoding. GAC is based on the U-Net structure [195], and is com-
posed of a backbone and a head. The default is to take the ResNet-
34 [78] as backbone. The head is to fuse features from different stages
into a feature map with high resolution and rich semantic informa-
tion, and then perform convolutional depth regression. The network
is trained with a scale-invariant loss [55] and a smoothness loss.
Line Encoding We perform deep Hough transform [138, 76] on the
features from the second stage of the backbone. The line vector will be
fused with coordinate maps and feature maps from the third stage.
Training Details We adopt the Adam algorithm [107] to optimize net-
work parameters for 8 epochs. We use an initial learning rate of 1e-4,
a cosine annealing scheduler [156] with target learning rate of 1e-5, a
batch size of 8, and no weight decay. For deep Hough transform [138,
76], we set the resolution of ρ and θ to be 3 pixel units and 3◦.
Performance on KITTI As shown in Table 4.6, with deep line encoding,
we achieve a better performance than GAC [151] under all the metrics.
Especially in sqErrorRel, we observe a significant improvement (2.22

vs.2.61). Comparing with other published methods, we achieve the
state-of-the-art in terms of the metric of sqErrorRel, and the second
best rating under absErrorRel and iRMSE.
Performance on NYUDv2 NYU Depth V2 data set is captured in in-
door scenes by Microsoft Kinect. Thereby the camera poses with re-
spect to the ground plane are more variable than in KITTI, and the
simplified projection model in Figure 4.1 (a) might be inapplicable in
a lot of images. However, we still observe an improvement in Table 4.7
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Method SILog sqErrorRel absErrorRel iRMSE
DORN [58] 11.77 2.23 8.78 12.98

VNL [254] 12.65 2.46 10.15 13.02

SORD [48] 12.39 2.49 10.10 13.48

BANet [4] 11.55 2.31 9.34 12.17
GAC [151] 12.13 2.61 9.41 12.65

+ Line Encoding (ours) 11.81 2.22 9.09 12.49

Table 4.6: Performance comparison on KITTI single-image depth pre-
diction benchmark.

Method SILog sqErrorRel absErrorRel iRMSE
GAC [151] 13.72 3.79 13.15 8.67

+ Line Encoding (ours) 12.71 3.20 12.44 8.22

Table 4.7: Performance comparison on NYU Depth V2 test set.

with deep line encoding. The improvement shows that the line infor-
mation is beneficial even in indoor scenes.

4.5 conclusion

Recovering depth from a single RGB image is a challenging task. In
this paper, we have shown that line structures in scenes provide valu-
able information for depth perception. Furthermore, we presented a
simple architecture to exploit the lines inside ConvNets. Our method
obtains state-of-the-art results on single-image 3D object detection and
depth prediction benchmarks. Finally, our study suggests that despite
the success of deep ConvNets, it is still necessary to incorporate prior
knowledge and design more efficient representation for the specific
task.
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S T E R E O R I S K

This chapter is based on our paper: Ce Liu et al. “Stereo Risk: A
Continuous Modeling Approach to Stereo Matching.” In: Proceedings
of the 41st International Conference on Machine Learning. PMLR, 2024.

5.1 introduction

Stereo Matching is one of the most important and fundamental prob-
lems in computer vision [85, 97, 200, 215]. Given a rectified stereo
image pair captured at the same timestamp, the goal of stereo match-
ing is to estimate the per-pixel displacement from left to right images,
popularly known as a disparity map. Under the rectified image pair
setup, the stereo matching problem boils down to a well-structured 1D
search problem in the image space [215].

Due to its effectiveness and affordability, stereo camera rigs have
been widely adopted in commercial and industrial applications, in-
cluding autonomous driving cars [57, 16], smartphones [164, 159, 175],
and other robotic automation systems [105, 89].

Classical well-known stereo matching methods—often categorized
as local methods, use a predefined support window to find suitable
matches between stereo image pair [200, 81]. Yet, approaches that
optimize for all disparity values using a global cost function were ob-
served to provide better results [110, 108, 18, 246]. In recent years, with
the surge in high-quality, large-scale synthetic ground-truth data, avail-
ability of high-end GPUs’ and advancements in deep-learning architec-
ture, the neural network-based stereo matching models trained under
supervised setting has outperformed classical methods accuracy by a
significant margin [103, 26, 259, 139]. Nevertheless, one fundamental
challenge still remains, i.e.how to model continuous scene disparity val-
ues given only a limited number of candidate pixels to match? After
all, the scene is continuous in nature.

Many recent works have attempted to overcome the above challenge
of predicting continuous scene disparities, which can be broadly di-
vided into two categories. (i) Regression-based approaches predict a

65
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real-valued offset by neural networks for each hypothesis of discrete
disparity. The offset is then added to the discrete disparity hypothesis
as the final continuous prediction. Typical examples include RAFT-
Stereo [139], CDN [62], and more recent IGEV [244] and DLNR [265].
(ii) Classification-based approaches first estimate the categorical dis-
tribution1 for the discrete disparity hypotheses and then take the ex-
pectation value of the distribution as the final disparity, which can be
any arbitrary real value even though the categorical distribution is dis-
crete [103, 26, 259].

In this chapter, we aim to address the importance of continuous dis-
parity modeling in stereo matching, given the categorical distribution
of disparity hypotheses. We introduce a radically different perspective
on the disparity prediction problem by framing it as a search problem
of finding the minimum risk [126, 226, 14] of disparity values. Specifi-
cally, the risk is defined by averaging the prediction error with respect
to all possible values of the ground-truth disparity. At the time of mak-
ing the prediction, the ground truth is unavailable, which is therefore
approximated by the disparity hypotheses with a categorical distribu-
tion. We search for a disparity value as our prediction that achieves
minimal overall risk involved with it. Moreover, we demonstrate that
the commonly used disparity expectation [103] is a special case of L2

error function within the proposed risk formulation, which is sensitive
to multi-modal distribution and may result in the over-smooth solu-
tion [29, 222]. In contrast, we advocate the use of the L1 error function
during risk minimization.

Despite the theoretical soundness of the L1 risk minimization, there
is no closed-form solution to L1 formulation. To that end, in this paper,
we search for the solution by computing derivatives of our proposed
risk function and performing its continuous optimization. By interpo-
lating the disparity categorical distribution, we define our continuous
probability density function. Then, we propose a binary search algo-
rithm to find the optimal disparity that minimizes the proposed risk
efficiently. To enable the end-to-end network training, we compute the
backward gradient of the final disparity with respect to the categorical
distribution by the implicit function theorem [111].

1 A categorical distribution is a discrete probability distribution that describes the pos-
sible results of a random variable that can take on the K possible categories, with the
probability of each category separately specified.
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(a) Image (b) IGEV

(c) DLNR (d) Ours

Figure 5.1: Qualitative Comparison. We compare our method
with recent state-of-the-art methods such as IGEV [244],
DLNR [265] on Middlebury [200]. All methods are trained
only on SceneFlow [161], and evaluated at quarter reso-
lution. It can be observed that our method generalizes
and predicts high-frequency details better than other recent
methods.
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We have extensively evaluated the proposed method on a variety of
stereo matching datasets. Our approach demonstrates superior per-
formance compared to many state-of-the-art methods on benchmarks
such as SceneFlow [161], KITTI 2012 [64], and KITTI 2015 [163]. More-
over, our approach achieves significantly better cross-domain general-
ization, as observed on Middlebury [200], ETH 3D [203], KITTI 2012 &
2015. An example of qualitative comparison is given in Fig. 5.1. Ab-
lation studies confirm the effectiveness of risk minimization, not only
within the proposed network but also in the context of general stereo
matching networks, such as ACVNet [243] and PCWNet [205].

5.2 related work

5.2.1 Deep Neural Network For Stereo Matching

In recent years, the deep-learning based approaches have improved
the accuracy of stereo matching by a significant margin. Designing
powerful and efficient network architectures for stereo matching is a
popular research topic. [257] apply deep convolutional networks [119]
to learn discriminative features for image patches. DispNetCorr [161]
designs explicit correlation in networks to construct cost volume. GC-
Net [103] constructs volume by concatenation and refines by 3D con-
volution. PSM-Net [26] exploits spatial pyramid pooling [266] and
stacked hourglass [171] to learn context information. STTR [132] ap-
plies transformers [227, 51] to relax the limitation of a fixed disparity
range. Moreover, the uniqueness constraint is considered by optimal
transport [43]. ACVNet [243] weights the matching costs by attention.

Another line of research is to improve efficiency. In GANet [259] the
computationally costly 3D convolutions are replaced by the differen-
tiable semi-global aggregation [81]. GWCNet [71] constructs the cost
volume by group-wise correlation. AANet [245] proposes the adaptive
cost aggregation to replace the 3D convolution for efficiency. AnyNet
[232], DeepPruner [54], HITNet [216], CasMVSNet [70], PCWNet [205]
and Bi3D [8] prune the range of disparity in the iterative manner.
RAFT-Stereo [139], CREStereo[128], IGEV [244] and DLNR [265] use
recurrent neural networks [38] to predict and refine the disparity itera-
tively.

In this chapter, our network structure is inspired by CasMVSNet [70],
and consists of two stages to predict and refine the disparity map. The
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hierarchical design reduces the time and memory cost, while keeping
the matching accuracy.

5.2.2 Continuous Disparity by Classification

In deep networks that have cost volumes, the most popular way to
predict the disparity from the volume is the weighted average oper-
ation, i.e. expectation. [29] find the average operation suffers from
the over-smoothing problem, especially at the boundaries of objects.
Therefore they propose the single-modal weighted average. [62] pro-
pose to predict a continuous offset to shift the distribution modes of
disparity. Furthermore, they generate multi-modal ground truth dis-
parity distributions and supervise the network to learn the distribution
by Wasserstein distance [228]. SMD-Net [222] exploit bimodal mixture
densities as output representation for disparities. UniMVSNet [176]
attempts to unify the advantages of classification and regression by
designing a novel representation, and further proposes a unified focal
loss. [249] use top-K hypotheses for the disparity to alleviate the multi-
modal problem. In this paper, we propose to minimize the risk under
L1 norm to capture continuous disparity and solve the multi-modal
problem. Moreover, our approach can be trained in an end-to-end
manner.

5.2.3 Cross-Domain Generalization

Existing real-world stereo datasets are small and insufficient to train
neural networks from scratch, therefore exploiting synthetic images to
pre-train networks and reducing the domain gap play an important
role. [219, 220, 221] fine tune the stereo matching networks on the tar-
get domain using unsupervised loss. [149] jointly optimize networks
for domain translation and stereo matching during training. [260, 211]
normalize features to reduce domain shifts. [23, 140] design robust
features for stereo matching. [141] find the cost volume built by cosine
similarity generalizes better to different image features. [261] apply the
stereo contrastive loss and selective whitening loss to improve feature
consistency. [27] proposed the hierarchical visual transformation to
learn shortcut-invariant robust representation from synthetic images.
In this paper, we present a novel perspective to improve robustness by
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L1 risk minimization. We also show that our approach can be com-
bined with above methods to further improve the robustness.

5.3 method

5.3.1 Probability Density of Continuous Disparity

For each pixel in the left image, suppose the possible disparities are in
the range of [dmin, dmax]. Typical stereo matching algorithms will com-
pute a cost that merely can be described as a probability mass function
(PMF) with a finite set of disparities d = [d1, ..., dN ]

T and compute
a discrete distribution pm = [pm

1 , ..., pm
N ]

T, where di ∈ [dmin, dmax] and
pm

i is the probability that the ground truth disparity is di. The pm is
required to satisfy the conditions pm

i ≥ 0 and ∑i pm
i = 1.

The discrete formulation reasons the probability only at a finite set
of disparities. However, in real-world applications, the ground-truth
disparity is continuous. Therefore we propose to interpolate the dis-
crete distribution by the Laplacian kernel, and the probability density
function of disparity x ∈ R is computed by

p(x; pm) =
N

∑
i

k(x, di)pm
i (5.1)

where k(x, di) is defined as 1
2σ exp− |x−di |

σ , and σ is the hyper-parameter
for bandwidth. The above density function is valid because p(x; pm) ≥
0 for ∀x ∈ R and

∫
p(x; pm)dx = 1. An illustration of the interpolation

is shown in Fig. 5.2 (c). The orange bars represent the given discrete
distribution pm, and the green curve is the interpolated density func-
tion. In the following we show the continuous formulation enables us
to compute the derivative of the risk function.

5.3.2 Risk of Disparity

To choose a value as the final prediction, we propose to minimize the
following risk:

argminyF(y, pm) = argminy

∫
L(y, x)p(x; pm)dx (5.2)

where F(y, pm) is called as the risk at y, and L(y, x) is the error function
between y and x. By risk we mean that if we take y as predicted
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Figure 5.2: Illustration of the difference between the expectation and
our method. In (a) the pixel in the red circle is located at
the boundary of the chair, thereby the distribution of the
disparity has multiple modes. We plot the discrete distri-
bution of disparity hypotheses by orange bars in (b) and
(c). In (b) the prediction obtained by averaging is blurred
and far from any of the modes. In (c) we find the optimal
solution under L1 norm, which is more robust and closer
to the ground truth. The green curve is the interpolated
probability density.

disparity, how much error there shall be with respect to the ground
truth. Since the exact ground truth is unavailable at the time of making
the prediction, we average the error across all possible ground-truth
disparities with the distribution p(x; pm).

Previous methods usually compute the expectation value of x as the
final prediction for the disparity:

y =
∫

xp(x; pm)dx. (5.3)

In our framework, we can derive the same prediction when using the
squared L2 norm as the error function. More specifically,

argminyF(y, pm) =
∫

xp(x; pm)dx (5.4)

when L(y, x) = (y− x)2.
However, it is well known that the L2 norm is not robust, and prones

to outliers [17]. As shown in Fig. 5.2 (b), the expectation is inaccurate
when there are multiple modes in the distribution. Instead, we select
the L1 norm in our risk function:

argminyF(y, pm) = argminy

∫
|y− x|p(x; pm)dx. (5.5)
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Given the distribution p(x; pm) of the disparity, the optimal y will min-
imize the L1 error with respect to all possible disparities weighted by
the corresponding probability density. As shown in Fig. 5.2 (c), our
final prediction is more robust to the incorrect modes and closer to the
ground truth.

5.3.3 Differentiable Risk Minimization

One challenge of the L1 norm is that there is no closed-form solution
to the minimal risk in Eq.(5.5). To search for the optimal solution and
enable end-to-end training, we introduce the details for the forward
prediction and backward propagation below.

Forward Prediction. Given the discrete distribution pm, we find the
optimal y of Eq.(5.5) efficiently based on the following two observa-
tions. Firstly, the target function F(y, pm) is convex with respect to y,
thereby we find the optimal solution at where ∂F/∂y = 0.

G(y, pm) ≜
∂F(y, pm)

∂y
= ∑

i
pm

i Sign(y− di)(1− exp−|y− di|
σ

) = 0

(5.6)
where Sign() is the sign function, which a slight abuse of notation.
Sign() can be thought of as an indicator function, where it is 1 if y > di
and −1 otherwise. Secondly, the second-order derivative ∂2F/∂2y ≥ 0,
so the first-order derivative is a non-decreasing function. We find the
optimal disparity, i.e. the zero point of G(y, pm), by binary search, as
shown in Alg. 1. In all experiments, we set the σ and τ as 1.1 and 0.1
respectively. For N disparity hypotheses, the binary search algorithm
can find the optimal solution with time complexity of O(log N) [42].

Backward Propagation. As alluded to above, the procedure of the
forward prediction (Alg. 1) to solve Eq.(5.5) contains non-differentiable
operations. However, to enable end-to-end training, we have to com-
pute dy/dpm to backward propagate the gradient. Our method is in-
spired by the Implicit Function Theorem [111]. More specifically, be-
cause G(y, pm) ≡ 0 at the optimal y, we obtain

dG(y, pm) =
∂G
∂y

dy +
∂G

∂pm dpm = 0. (5.7)
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Algorithm 1 Forward Prediction

Require: τ > 0, σ > 0, d = [d1, ..., dN ], d1 < d2 < · · · < dN , and
pm = [pm

1 , ..., pm
N ]

dl ← d1 ▷ Initialize search boundaries
dr ← dN

g← τ + 1 ▷ Initialize the derivative
while |g| > τ do

dm ← (dl + dr)/2.0 ▷ Compute the mid point
g← ∑i pm

i Sign(d
m − di)(1− exp− |d

m−di |
σ ) ▷ Compute the

derivative by Eq.(5.6)
if g > 0 then ▷ Update search boundaries

dr ← dm

else
dl ← dm

end if
end while
return dm ▷ Return the mid point

By organizing the terms, we obtain

dy
dpm = −∂G/∂pm

∂G/∂y
= [. . . ,

σSign(di − y)(1− exp− |y−di |
σ )

∑j pm
j exp− |y−dj|

σ

, . . .]T. (5.8)

We clip the denominator, i.e., ∑j pm
j exp− |y−dj|

σ in the above equation
to be no less than 0.1 to avoid large gradients.

5.3.4 Network Architecture

To find the disparity value, we match the image patches of left and
right images by constructing stereo cost volumes, as in [104] and [26].
However, an exhaustive matching requires extensive memory and com-
putation. For efficiency, we adopt a cascade structure following [70].
Specifically, we first sample the disparity hypothesis by a coarse match-
ing, which is performed on low-resolution image features. The sam-
pled hypothesis reduce the search space for matching to a large extent.
Then we refine the sampled hypothesis at high-resolution image fea-
tures. The overall pipeline is shown in Fig. 5.3, and includes 5 parts:
(a) feature extraction (b) disparity hypotheses sampling (c) matching
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(d) cost aggregation (e) risk minimization. We introduce the details of
each part below.
(a) Feature Extraction. Given an input image, the module aims to
output multi-scale 2D feature maps. More specifically, we first use a
ResNet [78] to extract 2D feature maps of resolution 1/4 and 1/2 with
respect to the input image. The ResNet contains 4 stages of transfor-
mation with 3, 16, 3, 3 residual blocks respectively. And the spatial
resolution is downsampled before the beginning of the first and third
stages of transformation. Then we apply the spatial pyramid pool-
ing [266] on the 1/4-resolution feature map from the fourth stage to
enlarge the receptive field. In the end, we upsample the enhanced fea-
ture map from 1/4 to 1/2 and fuse it with the 1/2-resolution feature
map from ResNet. The final outputs are the feature maps of 1/4 and
1/2 resolution. We apply the same network and weights to extract fea-
tures from left and right images.
(b) Disparity Hypotheses Sampling. The disparity hypotheses pro-
vide the candidates of pixel pairs to match. In the coarse stage, we sam-
ple 192 hypotheses uniformly within the range from 0 to the maximum
possible disparity. In the refined stage, we reduce the sampling space
according to the predicted disparity from the coarse stage. Specifically,
for each pixel we sample 16 hypotheses between the maximum and
minimum disparity in the local window of size 12× 12.
(c) Matching. We match the 2D feature maps from the left and right
images according to the sampled disparity hypothesis. The features
at each pair of candidates pixels for matching will be concatenated
along the channel dimension, which forms a 4D stereo cost volume
(feature× disparity×height×width). In the coarse stage, we match the
feature map of 1/4 resolution for efficiency. To capture high-frequency
details, we match the 1/2-resolution feature map in the refined stage.
(d) Cost Aggregation. We use the stacked hourglass architecture [171]
to transform the stereo cost volume and aggregate the matching cost.
For the coarse and refined stages, the structures are the same except for
the number of feature channels. Specifically, the network consists of
three 3D hourglasss as in [26]. Each hourglass first downsamples the
volume hierarchically to 1/2 and 1/4 resolution with respect to the in-
put volume, and then upsample in sequence to recover the resolution.
The procedure helps aggregate information across various scales. The
final output is a volume that represents the discrete distribution of dis-
parity hypotheses.
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(e) Risk Minimization. The module applies Alg. 1 to compute the opti-
mal continuous disparity for each pixel given the discrete distribution
of disparity hypotheses. During training, we additionally compute the
gradient according to Eq.(5.8) to enable backward propagation.

5.3.5 Loss Function

Given the predicted disparity xpred ∈ R and the ground-truth disparity
xgt ∈ R, we compute the smooth L1 loss [66]:

L(xgt, xpred) =

{
0.5(xgt − xpred)2 if |xgt − xpred| < 1.0

|xgt − xpred| − 0.5 otherwise
(5.9)

We apply the above loss function to the predicted disparities from both
the coarse and refined stages, and obtain Lcoarse and Lrefined respec-
tively. The total loss L = 0.1Lcoarse + 1.0Lrefined.

5.4 experiments and results

Implementation Details. We implement our method in PyTorch 2.0.1
(Python 3.11.2) with CUDA 11.8. The software is evaluated on a com-
puting machine with GeForce-RTX-3090 GPU.
Datasets. We perform experiments on four datasets namely SceneFlow
[161], KITTI 2012 & 2015 [64, 163], Middlebury 2014 [200], and ETH
3D [203]. (a) SceneFlow is a synthetic dataset containing 35,454 im-
age pairs for training, and 4,370 image pairs for test. (b) KITTI 2012
& 2015 are captured for autonomous driving. There are 194 training
image pairs and 195 test image pairs in KITTI 2012. And there are
200 training image pairs and 200 test image pairs in KITTI 2015. (c)
Middlebury 2014 is an indoor dataset including 15 image pairs for
training. (d) ETH 3D is a gray-scale dataset providing 27 image pairs
for training.
Training Details. We train our network on SceneFlow. The weight
is initialized randomly. We use AdamW optimizer [157] with weight
decay 10−5. The learning rate decreases from 2× 10−4 to 2× 10−8 ac-
cording to the one cycle learning rate policy. We train the network for
2× 105 iterations. The images will be randomly cropped to 320× 736.
For KITTI 2012 & 2015 benchmarks, we further fine tune the network
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Table 5.1: Comparison with state-of-the-art methods on SceneFlow test
set. The first and second bests are in red and blue respec-
tively. Our method in bold.

Method Param (M) Time (s) EPE ↓ > 0.5px ↓ > 1px ↓ > 2px ↓
CFNet [204] 21.98 0.13 1.04 15.91 10.30 6.89

PCWNet [205] 34.27 0.25 0.90 17.59 8.08 4.57

ACVNet [243] 6.84 0.16 0.47 9.70 5.00 2.74

DLNR [265] 54.72 0.44 0.53 8.75 5.44 3.44

IGEV [244] 12.60 0.36 0.47 8.51 5.21 3.26

Ours 11.96 0.35 0.43 8.10 4.22 2.34

on the training image pairs for 2.5× 103 iterations. The learning rate
starts from 5× 10−5 to 5× 10−9.

5.4.1 In-Domain Evaluation

Tab.(5.1), Tab.(5.2) and Tab.(5.3) provide statistical comparison results
with the competing methods on SceneFlow, KITTI 2012 & 2015 bech-
marks, respectively. All the methods have been trained or fine-tuned
on the corresponding training set. In SceneFlow test set, our proposed
approach shows the best results for all the evaluation metrics. Partic-
ularly, we reduce the > 1px error from 5.00 to 4.22, and the > 0.5px
error from 8.51 to 8.10. In KITTI 2012 & 2015 benchmarks, the match-
ing accuracy of our approach in the non-occluded regions rank the first
among the published methods. Especially, in KITTI 2012, we reduce
the > 2px error in non-occluded regions by 0.11.

5.4.2 Cross-Domain Generalization

In this part, we compare the methods when dealing with environments
never seen in the training set. Specifically, all methods are trained only
on SceneFlow training set, and then evaluated on the training set of
Middlebury, ETH 3D and KITTI 2012 & 2015 without fine-tuning.

The statistical comparison results are shown in Tab.(5.4), Tab.(5.5),
Tab.(5.6) and Tab.(5.7), respectively. Our proposed approach achieves
the first or the second best accuracies under all the evaluation metrics
on the four real-world datasets. Particularly, for Middlebury we reduce
the > 1px error from 13.76 to 12.63. Further more, on ETH 3D we
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Table 5.2: Comparison with state-of-the-art methods on KITTI 2012

Benchmark. † denotes using extra data for pre-training. The
first and second bests are in red and blue respectively. Our
method in bold. The results are obtained from KITTI official
website.

Method Param (M) Time (s)
> 2px > 3px

Noc All Noc All
LEAStereo [37] 1.81 1.90 2.39 1.13 1.45

CFNet [204] 21.98 0.12 1.90 2.43 1.23 1.58

ACVNet [243] 6.84 0.15 1.83 2.34 1.13 1.47

ACFNet [31] 1.83 2.35 1.17 1.54

NLCA-Net v2 [188] 1.83 2.34 1.11 1.46

CAL-Net [31] 1.74 2.24 1.19 1.53

CREStereo [128] † 1.72 2.18 1.14 1.46

LaC+GANet [140] 9.43 1.72 2.26 1.05 1.42

IGEV [244]† 12.60 0.32 1.71 2.17 1.12 1.44

PCWNet [205] 34.27 0.23 1.69 2.18 1.04 1.37

Ours 11.96 0.32 1.58 2.20 1.00 1.44

Table 5.3: Comparison with state-of-the-art methods on KITTI 2015

Benchmark. † denotes using extra data for pre-training. The
first and second bests are in red and blue respectively. Our
method in bold. The results are obtained from KITTI official
website.

Method Param (M) Time (s)
All Noc

D1 bg D1 fg D1 all D1 bg D1 fg D1 all
LEAStereo [37] 1.81 1.40 2.91 1.65 1.29 2.65 1.51

CFNet [204] 21.98 0.12 1.54 3.56 1.88 1.43 3.25 1.73

ACVNet [243] 6.84 0.15 1.37 3.07 1.65 1.26 2.84 1.52

ACFNet [31] 1.51 3.80 1.89 1.36 3.49 1.72

NLCA-Net v2 [188] 1.41 3.56 1.77 1.28 3.22 1.60

CAL-Net [31] 1.59 3.76 1.95 1.45 3.42 1.77

CREStereo [128] † 1.45 2.86 1.69 1.33 2.60 1.54

LaC+GANet [140] 9.43 1.44 2.83 1.67 1.26 2.64 1.49

IGEV [244] † 12.60 0.32 1.38 2.67 1.59 1.27 2.62 1.49

DLNR [265] 54.72 0.39 1.60 2.59 1.76 1.45 2.39 1.61

PCWNet [205] 34.27 0.23 1.37 3.16 1.67 1.26 2.93 1.53

CroCo-Stereo [233]† 417.15 1.38 2.65 1.59 1.30 2.56 1.51

Ours 11.96 0.32 1.40 2.76 1.63 1.25 2.62 1.48
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Table 5.4: Cross-domain evaluation on Middlebury training set of quar-
ter resolution. † denotes using extra data for pre-training.
The first and second bests are in red and blue respectively.
Our method in bold. All methods are trained on Scene-
Flow and evaluated on Middlebury training set without fine-
tuning.

Method Param (M) Time (s)
> 0.5px > 1px

Noc All Noc All
CFNet [204] 21.98 0.11 29.50 34.30 17.85 22.16

ACVNet [243] 6.84 0.12 39.04 42.97 22.68 26.49

DLNR [265] 12.60 0.63 19.43 23.75 10.16 13.76

IGEV [244]† 12.60 0.34 19.05 23.33 10.44 14.05

PCWNet [205] 34.27 0.19 33.33 38.00 16.80 21.36

Ours 11.96 0.25 19.22 23.33 9.32 12.63

reduce the > 0.5px error from 10.39 to 8.59, and > 1px error from 4.05

to 2.71. It can be observed our approach is more robust and generalizes
better than recent state of the arts on the cross-domain setting.

5.4.3 Ablation Studies

In this subsection, we perform ablation studies to analyze the effects of
the risk minimization method for disparity prediction. All the models
are trained on SceneFlow and then tested on Middlebury without fine-
tuning.

(a) Effect of Risk Minimization. We compare the expectation and
the L1-norm risk minimization for disparity prediction during training
and test. We present the comparison results in Tab.(5.8). Even using
the expectation to predict disparities during training, we still slightly
improve the accuracy by changing to the L1-norm risk minimization
during test. Moreover, if we use the L1-norm risk minimization in
both training and test, the best accuracy is achieved under all metrics.

(b) Performance with Different Networks. We replace the disparity
prediction method in ACVNet [243] and PCWNet [205] from expec-
tation to L1-norm risk minimization only during test. The results are
shown in Tab.(5.8). Our proposed method improves the accuracy un-
der all metrics without re-training.
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5.4.4 Network Processing Time & Paremeters

We present the networks’ inference time and number of parameters in
Tab.(5.1), Tab.(5.2), Tab.(5.4), and Tab.(5.5). For a fair comparison, all
networks are evalutated on the same machine with a GeForce-RTX-
3090 GPU. Our network outperforms many state of the arts on in-
ference time, including IGEV and DLNR. Moreover, our network has
fewer learnable parameters than PCWNet, IGEV and DLNR.

In addition, our proposed L1-norm risk minimization module doesn’t
require extra learnable parameters. The running time is shown in
Tab.(5.8). By changing the disparity prediction method from expecta-
tion to our proposed approach, the running time is slightly increased.

5.4.5 Qualitative Results

In this section, we present more qualitative results on Middlebury in
Fig. 5.4. It can be observed that in general our method generalizes and
predicts high-frequency details better than other recent methods.

5.4.6 Conclusion

Our work provides a novel way of thinking and solving stereo-matching
problems in computer vision via the principle of risk minimization
[226]. The paper provides in-depth theoretical and practical benefits
of using our proposed formulation. It is shown that the presented ap-
proach is more robust to multi-modal distributions and outliers, and
generalizes better on cross-domain stereo images. Furthermore, a new
mathematical fabric to research stereo-matching problems is presented,
enabling adaptations from fields such as robotics and control engineer-
ing.
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(a) Image (b) IGEV (c) DLNR (d) Ours

Figure 5.4: Qualitative Comparison. We compare our method
with recent state-of-the-art methods such as IGEV [244],
DLNR [265] on Middlebury [200]. All methods are trained
only on SceneFlow [161], and evaluated at quarter resolu-
tion.
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Table 5.5: Cross-domain evaluation on ETH 3D training set. † denotes
using extra data for pre-training. The first and second bests
are in red and blue respectively. Our method in bold. All
methods are trained on SceneFlow and evaluated on ETH
3D training set without fine-tuning.

Method Param (M) Time (s)
> 0.5px > 1px

Noc All Noc All
CFNet [204] 21.98 0.11 15.57 16.24 5.30 5.59

ACVNet [243] 6.84 0.12 21.83 22.64 8.13 8.81

DLNR [265] 12.60 0.34 18.66 19.07 13.11 13.39

IGEV [244]† 12.60 0.29 9.83 10.39 3.60 4.05

PCWNet [205] 34.27 0.20 18.25 18.88 5.17 5.43

Ours 11.96 0.26 7.90 8.59 2.41 2.71

Table 5.6: Cross-domain evaluation on KITTI 2012 training set. † de-
notes using extra data for pre-training. The first and sec-
ond bests are in red and blue respectively. Our method in
bold. All methods are trained on SceneFlow and evaluated
on KITTI 2012 training set without fine-tuning.

Method Param (M) Time (s)
> 2px > 3px

Noc All Noc All
CFNet [204] 21.98 0.12 7.08 7.97 4.66 5.31

ACVNet [243] 6.84 0.15 20.34 21.44 14.22 15.18

DLNR [265] 12.60 0.39 12.01 12.81 8.83 9.46

IGEV [244]† 12.60 0.32 7.55 8.44 5.03 5.70

PCWNet [205] 34.27 0.23 6.63 7.49 4.08 4.68

Ours 11.96 0.32 5.82 6.70 3.84 4.43

Table 5.7: Cross-domain evaluation on KITTI 2015 training set. † de-
notes using extra data for pre-training. The first and sec-
ond bests are in red and blue respectively. Our method in
bold. All methods are trained on SceneFlow and evaluated
on KITTI 2015 training set without fine-tuning.

Method Param (M) Time (s)
All Noc

D1 bg D1 fg D1 all D1 bg D1 fg D1 all
CFNet [204] 21.98 0.12 4.77 13.26 6.07 4.64 12.88 5.88

ACVNet [243] 6.84 0.15 12.35 19.97 13.52 12.04 18.82 13.06

DLNR [265] 9.43 0.39 18.67 14.86 18.08 18.42 14.18 17.78

IGEV [244] † 12.60 0.32 4.01 15.58 5.79 3.88 14.94 5.55

PCWNet [205] 34.27 0.23 4.25 14.40 5.81 4.11 13.95 5.60

Ours 11.96 0.32 3.68 13.52 5.19 3.57 13.05 5.00
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Table 5.8: Ablation studies on Middlebury training set of quarter res-
olution. The first and second bests are in red and blue re-
spectively. Our method in bold. All methods are trained on
SceneFlow and evaluated on Middlebury training set with-
out fine-tuning.

Backbone Training Test Param(M) Time(s)
> 1px > 2px

Noc All Noc All

ACVNet[243]
Expectation Expectation 6.84 0.12 22.68 26.49 13.54 16.49

Expectation L1-Risk 6.84 0.18 22.32 26.14 13.13 16.05

PCWNet[205]
Expectation Expectation 34.27 0.19 16.80 21.36 8.93 12.62

Expectation L1-Risk 34.27 0.26 16.53 21.08 8.65 12.30

Ours

Expectation Expectation 11.96 0.17 9.88 13.27 4.92 7.29

Expectation L1-Risk 11.96 0.25 9.83 13.22 4.90 7.27

L1-Risk Expectation 11.96 0.17 9.83 13.19 4.79 7.06

L1-Risk L1-Risk 11.96 0.25 9.32 12.63 4.49 6.70





6
C O N C L U S I O N A N D O U T L O O K

6.1 conclusion

In this thesis, we investigate the problem of depth perception from a
single or stereo images. Focusing on the learning-based approaches,
novel perspectives on thinking and modeling the depth or disparity
are presented, which are not only theoretically compelling but also
facilitate the design of neural networks and loss functions to enable
higher-quality depth perception.

In Chapter 2, we suitably formalize the connection between robust
statistical modeling techniques, i.e., multivariate covariance modeling
with low-rank approximation, and popular loss functions in neural
network-based SIDP problem. The novelty presented in this chapter
arises from the fact that the proposed pipeline and loss term turns out
to be more general, hence could be helpful in the broader application
of SIDP in several tasks, such as depth uncertainty for robot vision,
control and others. Remarkably, the proposed formulation is not only
theoretically compelling but observed to be practically beneficial, re-
sulting in a loss function that is used to train the proposed network
showing state-of-the-art SIDP results on several benchmark datasets.

In Chapter 3, we introduce a simple and effective approach to ex-
ploit the rigid scene prior in depth perception tasks by making use
of the variational constraint. Our approach does not make explicit
assumptions about the scene other than the scene gradient regularity,
which holds for typical indoor or outdoor scenes. When tested on pop-
ular benchmark datasets, our method shows significantly better results
than the prior art, both qualitatively and quantitatively.

In Chapter 4, we show that line structures in scenes provide valu-
able information for depth perception. Furthermore, we present a sim-
ple architecture to exploit the lines inside ConvNets. Our method ad-
vances state-of-the-art results on single-image 3D object detection and
depth prediction benchmarks.

In Chapter 5, we turn attention to stereo images and introduce a
novel way of thinking and solving stereo matching problems in com-

85
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puter vision via the principle of risk minimization [226]. We provide
in-depth theoretical and practical benefits of using our proposed for-
mulation. It is shown that the presented approach is more robust to
multi-modal distributions and outliers, and generalizes better on cross-
domain stereo images. Furthermore, a new mathematical fabric to re-
search stereo matching problems is presented, enabling adaptations
from fields such as robotics and control engineering.

6.2 future work

Considering the inherent challenges in image-based depth perception
and the existing limitations of the proposed methods, there are several
promising research directions that warrant further exploration in the
future.

6.2.1 Mixture of Gaussian for Depth

In practical applications, the real distribution of depth map given a
single image might be asymmetric or multi-modal. Yet, the Gaussian
assumption in our approach is too simple to cope with the complex
situations. Hence, it would be beneficial to extend our approach with
more powerful mathematical models. One straightforward solution is
to make use of the mixture of Gaussian distributions, which is known
as a universal approximator of densities. The advantage is that with
more components, we could provide a more precise distribution about
the depth given the input image. Moreover, the likelihood might be a
more effective loss function to supervise the training procedure.

6.2.2 Depth Map Generation

It’s well known that single-image depth prediction is an ill-posed prob-
lem. Because there are many possible 3D configurations that could
produce the same 2D image after projection onto the camera plane.
Nonetheless, one natural question is how to sample possible depth
maps and evaluate the quality of the samples? We pursue this prob-
lem not only for a scientific thrill but mainly because there are several
possible real-world applications. For example, we could synthesize
diverse novel views of the image by generating multiple depth maps.
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Although there has already been numerous research on image genera-
tion, the depth map has distinguished properties from the image, and
might require special algorithms for generation and evaluation. There-
fore it is a meaningful research direction to design generative models
and evaluation metrics for depth map generation.

6.2.3 Relation between Depth and Semantics

The semantic attributes of the object are important cues for its depth,
especially when only a single image is available. There has already
been research showing that joint learning of semantic segmentation
and single-image depth prediction helps improve the accuracy of the
network on both tasks. Moreover, in our experiments we also observe
that pretraining on ImageNet is critical to the learning of single-image
depth prediction. In summary, the above empirical results show a
strong connection between the depth and semantics. However, there
is little theoretical analysis about the relation, and it is unknown how
to maximize the benefits of the interaction. One possible research di-
rection is to formulate the semantics into the depth perception frame-
work. It might inspire us to design more effective network structures,
loss functions and training strategies.

6.2.4 Fusion with Special Sensors

In recent years various novel sensors have been proposed to perceive
depth more efficiently. The most popular ones include LiDAR and
Kinect. It’s noteworthy that they are suitable for different scenarios.
LiDAR is often equipped on autonomous cars, and can perceive obsta-
cles in the long distance. While Kinect is widely used in indoor devices,
such as interactive gaming. Nonetheless, the above sensors also have
drawbacks. For example, LiDAR can provide only sparse measure-
ments. While the depth map from Kinect has noises. A meaningful
direction is to fuse the predicted depth from images with the depth
measurements from special sensors. Because the depth map from a
single image is often dense and smooth, but lacks the absolute scale. It
is possible to obtain a better depth map by combining the camera with
LiDAR or Kinect.
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