
ETH Library

Work-Efficient Parallel
Derandomization II: Optimal
Concentrations via Bootstrapping

Conference Paper

Author(s):
Ghaffari, Mohsen; Grunau, Christoph

Publication date:
2024-06

Permanent link:
https://doi.org/10.3929/ethz-b-000680548

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3618260.3649668

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000680548
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3618260.3649668
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Work-E�icient Parallel Derandomization II:
Optimal Concentrations via Bootstrapping

Mohsen Gha�ari
MIT

Cambridge, MA, USA
gha�ari@mit.edu

Christoph Grunau
ETH Zurich

Zurich, Switzerland
cgrunau@inf.ethz.ch

ABSTRACT

In this paper, we present an e�cient parallel derandomization

method for randomized algorithms that rely on concentrations such

as the Cherno� bound. This settles a classic problem in parallel

derandomization, which dates back to the 1980s.

Concretely, consider the set balancing problem where< sets of

size at most B are given in a ground set of size =, and we should

partition the ground set into two parts such that each set is split

evenly up to a small additive (discrepancy) bound. A random parti-

tion achieves a discrepancy of$ (
√
B log<) in each set, by Cherno�

bound. We give a deterministic parallel algorithm that matches this

bound, using near-linear work $̃ (< + = + ∑<
8=1 |(8 |) and polylog-

arithmic depth poly(log(<=)). The previous results were weaker
in discrepancy and/or work bounds: Motwani, Naor, and Naor

[FOCS’89] and Berger and Rompel [FOCS’89] achieve discrepancy

BY ·$ (
√
B log<) with work $̃ (< += +∑<

8=1 |(8 |) ·<Θ(1/Y) and poly-
logarithmic depth; the discrepancy was optimized to $ (

√
B log<)

in later work, e.g. by Harris [Algorithmica’19], but the work bound

remained prohibitively high at $̃ (<4=3). Notice that these would
require a large polynomial number of processors to even match the

near-linear runtime of the sequential algorithm. Gha�ari, Grunau,

and Rozhon [FOCS’23] achieve discrepancy B/poly(log(=<)) +
$ (

√
B log<) with near-linear work and polylogarithmic-depth. No-

tice that this discrepancy is nearly quadratically larger than the

desired bound and barely sublinear with respect to the trivial bound

of B .

Our method is di�erent from prior work. It can be viewed as

a novel bootstrapping mechanism that uses crude partitioning al-

gorithms as a subroutine and sharpens their discrepancy to the

optimal bound. In particular, we solve the problem recursively, by

using the crude partition in each iteration to split the variables into

many smaller parts, and then we �nd a constraint for the variables

in each part such that we reduce the overall number of variables in

the problem. The scheme relies crucially on an interesting appli-

cation of the multiplicative weights update method to control the

variance losses in each iteration.

Our result applies to themuchmore general lattice approximation

problem, thus providing an e�cient parallel derandomization of

the randomized rounding scheme for linear programs.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649668

CCS CONCEPTS

• Theory of computation→Dynamic graph algorithms; Pseu-

dorandomness and derandomization; Parallel algorithms.

KEYWORDS

Parallel Algorithms, Derandomization

ACM Reference Format:

Mohsen Gha�ari and Christoph Grunau. 2024. Work-E�cient Parallel De-

randomization II: Optimal Concentrations via Bootstrapping. In Proceedings

of the 56th Annual ACM Symposium on Theory of Computing (STOC ’24), June

24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3618260.3649668

1 INTRODUCTION

This paper presents an e�cient parallel method for derandomizing

randomized algorithms that rely on concentrations of measure such

as Cherno� and Hoe�ding bounds. This settles one of the classic

and central questions in parallel derandomization [5, 23].

Let us start with a concrete and simple-to-state problem, known

as the set balancing or set discrepancy problem, which has been

used as the primary target in this line of work1. By known reduc-

tions [23], our result applies to much more general problems such

as lattice approximation [25].

Set balancing: Consider< subsets (1, (2, . . . , (< ⊆ [=] in a ground
set of = elements, where |(8 | ≤ B for each 8 ∈ [<]. We want to

split the ground set into two parts such that each of the subsets

is split as evenly as possible. Concretely, we want a vector j ∈
{−1, 1}= that minimizes the set system’s discrepancy de�ned as

max8∈[<] 38B2 ((8) where the discrepancy of set (8 is de�ned as

38B2 ((8) := |∑9∈(8 j 9 |. For a random j ∈ {−1, 1}= , the Cherno�
bound implies a discrepancy of $ (

√
B log<), via a union bound

over all< sets.2

Results of Spencer [28] and Raghavan [25] present deterministic

algorithms that achieve the same bound, via the method of condi-

tional expectation. But these algorithms are inherently sequential.

1This problem and similar others arise naturally and frequently in algorithm design.
Here is a simple example: supposewewant to partition the edges of a graph� = (+ , �)
into : parts, such that each node has almost equal number of edges in di�erent parts.
Such a partition is useful, e.g., when computing an edge-coloring as di�erent parts
can be colored independently.
2A beautiful result of Spencer [29] gives a discrepancy bound of

$ (
√
= (1 + log(</=))) , and algorithmic variants were provided in recent

breakthroughs [4, 20]. However, our focus here is on bounds that have
√
B as the

leading factor, instead of
√
=, because this is frequently needed in algorithmics, e.g., in

generalization to lattice approximation. Moreover, the di�erence between the second

factors
√
log(2</=) and

√
log< is considerable only in the special case where

< ≪ =1.001 .

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1889

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3618260.3649668
https://doi.org/10.1145/3618260.3649668
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649668&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mohsen Gha�ari and Christoph Grunau

Our objective is to achieve a similar result via a deterministic par-

allel algorithm. We next review the state of the art, after a quick

recap on the parallel terminology.

Parallel model and terminology: depth, work, and work-

e�ciency: We follow the standard work-depthmodel [6, 14], where

the algorithm runs on ? processors with access to a shared mem-

ory. In any algorithm A, its depth � (A) is the longest chain of

computational steps in A each of which depends on the previ-

ous ones. In other words, this is the time that it would take the

algorithm to run even if we were given an in�nite number of

processors. The work, (A) is the total number of the compu-

tational steps inA. Given ? processors, the algorithm clearly needs

max{� (A),, (A)/?} time. By Brent’s principle [8], we can run

the algorithm in � (A) +, (A)/? time using ? processors. The

objective in parallel computations is to devise algorithms that run

faster than their sequential counterpart, ideally with a speed-up

proportional to the number of processors ? . In particular, this re-

quires the parallel algorithm to have a work bound (asymptotically)

equal to the best known sequential algorithm, in which case we

call the algorithm work-e�cient. There have been a number of ex-

citing recent work on achieving work-e�cient parallel algorithms

(or nearly work-e�cient algorithms where the work bound is re-

laxed by a polylogarithmic factor) for various problems; see, e.g.,

[1, 2, 7, 9–12, 15, 19, 26, 27].

1.1 State of the Art

Let us note that the sequential deterministic algorithms of [25, 28]

achieve the desired discrepancy bound of$ (
√
B log<) in $̃ (= +< +∑<

8=1 |(8 |) time, which is near-linear in the input size. Thus, the ideal

parallel algorithm is one with the same near-linear work bound

and polylogarithmic depth, achieving the same discrepancy. The

state-of-the-art deterministic parallel algorithms achieve weaker

results:

(1) Motwani, Naor, and Naor [23], and Berger and Rompel [5],

presented parallel deterministic algorithms with a depth

of poly(log(<=)) that achieve discrepancy BY ·$ (
√
B log<),

for Y ∈ (0, 0.5], using $̃ (= +< + ∑<
8=1 |(8 |) ·<Θ(1/Y) work.

Motwani, Naor, and Naor [23] also present an improvement,

which limits the work to a bound of roughly $̃ (= + < +∑<
8=1 |(8 |) ·<4, though at the expense of increasing the depth

to logΘ(1/Y+1) (<=). Via a parallel randomized automata fool-

ing method of Karger and Koller [16], Mahajan, Ramos, and

Subrahmanyam [22] optimized the discrepancy bound to

$ (
√
B log<), using a high work bound of $̃ (<10=7), which

was later improved by Harris [13] to $̃ (<4=3). All these algo-
rithms are quite far from work e�ciency, and require a large

polynomial number of processors to even match the speed

of sequential algorithms—a prohibitively high requirement.

(2) Recently, Gha�ari, Grunau, and Rozhon [12] gave a parallel

deterministic algorithm using $̃ (= + < + ∑<
8=1 |(8 |) work

and poly(log(<=)) depth that achieves a discrepancy of

B/poly(log(<=))+$ (
√
B log<). That is they split the ground

set into two parts such that for each of the< subsets of size

at most B , the intersection with each part has size at most

B (1/2+1/poly(log(<=)), for B = Ω(poly(log(<=)). However,

notice that the achieved discrepancy is almost quadratically

higher than the desired bound.

1.2 Our Results

In this paper, we present the �rst work-e�cient deterministic par-

allel algorithm that achieves the optimal discrepancy in polyloga-

rithmic depth, thus essentially settling the above question.

Theorem 1.1. Consider< ≥ 2 subsets (1, (2, . . . , (< ⊆ [=] and
suppose |(8 | ≤ B for each 8 ∈ [<] . There is a deterministic parallel

algorithm, with $̃ (= +< +∑<
8=1 |(8 |) work and poly(log(<=)) depth,

that computes a vector j ∈ {−1, 1}= such that, for each 8 ∈ [<], we
have 38B2 ((8) = |∑9∈(8 j 9 | = $ (

√
B log<).

Weighted set balancing: Our method, with some extra work, ap-

plies to the more general weighted discrepancy problem de�ned as

follows: Consider an<×= matrix�, and< subsets (1, (2, . . . , (< ⊆
[=]. We want a vector j ∈ {−1, 1}= that gives a small weighted dis-

crepancy 38B2 (8) := |∑=
9=1 08 9 j 9 | for each set 8 ∈ [<]. For a random

j , Hoe�ding’s bound implies 38B2 (8) = $ (
√∑=

9=1 0
2
8 9 · log<), for

each set (8 , with high probability. In the full version of this paper,

we give a work-e�cient deterministic parallel algorithm that gets

the same guarantee 3.

Theorem 1.2. Let =,< ∈ N with< ≥ 2, and � ∈ R<×= . There is
a deterministic parallel algorithm algorithm with work $̃ (==I (�) +
=+<) and depth poly(log(<=)) that computes a vector j ∈ {−1, 1}=
such that, for every 8 ∈ [<], it holds that 38B2 (8) = |∑=

9=1 08 9 j 9 | =

$ (
√∑=

9=1 0
2
8 9 · log<).

As a very special case, this implies in the unweighted case that

each set (8 has discrepancy $ (
√
|(8 | log<). With this weighted set

balancing algorithm, via a reduction of [23], our result generalizes

much further, to a problem known as lattice approximation [23, 25].

Informally, this is the problem of �nding an integral point that

approximates a fractional solution, for a number of given linear

constraints.

Lattice approximation: Suppose we are given an< × = matrix

�, with each entry 08 9 ∈ [0, 1], as well as a vector p ∈ [0, 1]= . The
lattice approximation problem asks for a vector q ∈ {0, 1}= with a

small bound on |∑=
9=1 08 9@ 9 −

∑=
9=1 08 9? 9 | for each 8 ∈ [<].

Notice that if we set q randomly where %A [@ 9 = 1] = ? 9 for each

9 ∈ [=], by Cherno� bound we get a solution such that, with high

probability, for each 8 ∈ [<], we have |∑=
9=1 08 9@ 9 −

∑=
9=1 08 9? 9 | ≤

$ (
√
`8 log< + log<), where `8 =

∑=
9=1 08 9? 9 . This is what Ragha-

van called randomized rounding for linear programs [25]. Motwani,

Naor, and Naor [23] provided a parallel algorithm that achieves dis-

crepancy$ (`Y ·
√
`8 log<+ log1/(1−2Y)<) for each 8 ∈ [<], using a

large polynomial work, with Θ(1/Y) in the exponent of the polyno-

mial. The discrepancywas improved later to the ideal bound [13, 22],

but using work bounds that are large polynomials and are thus

far from work e�ciency. The method of Gha�ari, Grunau, and

Rozhon [12] gives a work-e�cient algorithm, but achieving only

3The full version is accessible at https://arxiv.org/abs/2311.13771.

1890

https://arxiv.org/abs/2311.13771

Work-E�icient Parallel Derandomization II STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

a slightly sublinear discrepancy of `8/poly(log(<=)) when the ex-

pectation `8 is lower bounded by a su�ciently high poly(log(<=)).
Our result stated below provides an e�cient deterministic paral-

lel algorithm that achieves the same result as the Cherno� bound.

It thus can be viewed as an e�cient parallel derandomization of

randomized rounding for linear programs.

Theorem 1.3. Suppose we are given an < × = matrix �, with

each entry 08 9 ∈ [0, 1], as well as a vector p ∈ [0, 1]= . There is a
deterministic parallel algorithm that computes a vector q ∈ {0, 1}=
such that, for each 8 ∈ [<], we have |∑=

9=1 08 9@ 9 −
∑=

9=1 08 9? 9 | ≤
$ (

√
`8 log< + log<), where `8 =

∑=
9=1 08 9? 9 . The algorithm has

poly(log(<=)) depth and $̃ (= +< + ==I (�)) work, where ==I (�)
denotes the number of nonzero entries in the matrix �.

This result follows from Theorem 1.2 along with a reduction of

Motwani, Naor, Naor detailed in their journal version [24, Sections

8]. We provide a proof sketch in the full version of this paper.

Example application—edge coloring: By Vizing’s theorem, any

graph with maximum degree Δ admits an edge coloring with at

most Δ + 1 colors. It is not known how to achieve this result using

a poly(log=) depth parallel algorithm (in general graphs; the bi-

partite case is easy and known even with Δ colors [18].) However

there are algorithms that come close to this bound, and our focus is

on deterministic parallel algorithms. Motwani, Naor, and Naor [23]

presented a poly(log=)-depth deterministic parallel algorithm with

Δ+ΔY ·$ (
√
Δ log=) colors, and using work<Θ(1/Y) . This was essen-

tially a direct application of the set balancing problem, by following

the edge coloring framework of Karlo� and Shmoys [17]. The im-

provements of Mahajan et al [22] and Harris [13] improved the

number of colors to Δ +$ (
√
Δ log=), but using prohibitively large

polynomial work bounds. Plugging our set balancing algorithm in-

stead, we get a deterministic parallel edge-coloring algorithm with

the number of colors improved to Δ+$ (
√
Δ log=), with near-linear

work. A proof sketch is presented in the full version of this paper.

Corollary 1.4. There is a deterministic parallel algorithm that,

given an undirected graph � = (+ , �) with maximum degree Δ,

computes an edge-coloring of it with Δ +$ (
√
Δ log=) colors, using

poly(log=) depth and $̃ (<) work, where = = |+ | and< = |� |.

1.3 Method Overview

Our method is di�erent than those of the prior work [5, 12, 13, 22,

23]. In short, the method of [5, 23] works via an e�cient binary

search in a :-wise independent space for : = log</(Y log B), try-
ing to �nd a point in this space that satis�es all the discrepancy

constraints. Methods of [13, 22], which in part rely on those of

[16], work via a scheme of building pseudorandom spaces that fool

certain automata, and they seem to inherently require a large poly-

nomial work. Finally, the method of [12] determines the = random

variables as a result of a poly(log(<=))-iteration randomwalk, with

merely pairwise independence in each iteration, and derandom-

izes each iteration work-e�ciently by maintaining certain pairwise

objectives.

The method we present in this paper can be viewed as an or-

thogonal approach, which makes use of algorithms with weaker

discrepancy bounds as a basic partitioning tool, and sharpens their

discrepancy via bootstrapping. Indeed, our method can be applied

on top of the previousmethods of [5, 12, 23] to improve their discrep-

ancy to the optimal bound (though with di�erent work bounds). We

use in particular the latter result since this yields a work-e�cient

algorithm overall. Below, we provide a high-level and intuitive

(though, admittedly imprecise) overview of our approach. The ac-

tual technical proofs will deviate from this outline in some parts,

due to details not discussed here.

High-level approach: On a high level, our general approach is

to partition the = random variables j 9 ∈ {−1, 1} for 9 ∈ [=] into
! ≤ =/2 parts %1 ⊔ · · · ⊔ %! and constrain the variables in each part

to a one-dimensional space. That is, for each part %C , we compute a

tentative j 9 for 9 ∈ %C , but we allow that potentially all of these vari-

ables in part %C can be negated. More concretely, for each 9, 9 ′ ∈ %C ,

their product j 9 j 9 ′ in the �nal j is �xed, so once we know the �nal

j 9 , we know j 9 ′ for all 9
′ ∈ %C . Then the remaining problem will

be to determine whether each part’s tentative assignment should

be negated or not. This is like computing a vector in {−1, 1}! , indi-
cating the negations, such that we satisfy some linear constraints.

We solve that recursively as another (weighted) instance of the set

balancing problem, with ! ≤ =/2 variables. In the base case, once

the number of variables is as small as poly(log(=<)), we can �x

them one by one via conditional expectations [25].

The crucial point is how to perform the recursive scheme. Note

that the desired output is that each set’s discrepancy is within an

$ (
√
log<) of its standard deviation upper bound

√
B . Also, this is

roughly the best one can hope for, given that wewant to achieve this

for< sets simultaneously. Thus, we need to perform the recursion

such that, in each recursion level, we do not increase the standard

deviation of each set (by more than a 1 + 1/log= factor, as we will

have roughly log= recursion levels). Furthermore, some care and

much extra work will be needed due to the weightedness introduced

in the recursion, even if we start with an unweighted instance; we

will ignore that for now for this brief overview.

Each recursion level, and how to �x the variables in each part:

Let us discuss howwe �x the variables inside each part. We later dis-

cuss how the partition is computed, once we understand the proper-

ties needed from the partition. Consider a �xed part %C , and a set (8
for a �xed 8 ∈ [<]. Consider a random j ∈ {−1, 1}= , let us de�ne its
signed discrepancy B38B2 ((8) =

∑
9∈(8 j 9 , in contrast to the absolute

discrepancy 38B2 ((8) = |∑9∈(8 j 9 |. We have E[B38B2 ((8)] = 0. In-

stead of workingwith the standard deviation, we zoom in on the vari-

ance of B38B2 ((8), due to its nice additiveness properties. We have

+0A (B38B2 ((8)) = E[B38B22 ((8)] − (E[B38B2 ((8)])2 = E[38B22 ((8)] .
In particular, notice that

E[38B22 ((8)] = E[(
∑
9∈(8

j 9)2] = E[
∑
9∈(8

(j 9)2] = |(8 | ≤ B .

Initially, the variables in (8 ∩ %C contribute exactly |(8 ∩ %C | to
+0A (B38B2 ((8)) = E[38B22 ((8)]. After constraining these variables,
their contribution to E[38B22 ((8)] is (

∑
9∈(8∩%C j 9)2, as it will be

independent of the contributions of other parts. Thus, we want to

determine j 9 for 9 ∈ %C such that (∑9∈(8∩%C j 9)2 remains almost

the same bound as |(8 ∩ %C |.

1891

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mohsen Gha�ari and Christoph Grunau

Unfortunately, that is impossible! This is exactly a set balancing

problem for sets (1 ∩ %C , (2 ∩ %C , . . . , (< ∩ %C ⊆ %C , and we know

that, regardless of how we choose j 9 for 9 ∈ %C , some set (8 will

have
(∑9 ∈(8∩%C j 9)2

|(8∩%C | = Ω(log<); this is a Θ(log<) factor loss in
the variance. Thus, it seems we would lose a Θ(log<) factor in
variance in each recursion level. See the warm-up in Theorem 3.1

where we follow this scheme for a two-level recursion, getting an

$̃ (
√
=) depth parallel algorithm with a

√
log< loss in discrepancy.

If we follow this for log= recursion levels, the variance losses would

multiply to (log<)log=—a useless bound.

Enforcing an average-guarantee, and leveraging it via mul-

tiplicative weights update: There is something to be optimistic

about: even though the worst variance loss factor among the< sets

(1∩%C , (2∩%C , . . . , (<∩%C will beΘ(log<), the average loss across
these sets should be smaller. Indeed, by Cherno� bound, for a ran-

dom j , the probability of a I factor loss is 4G? (−Θ(I2)). More useful

for us, we have E[∑<
8=1 (

∑
9∈(8∩%C j 9)2] =

∑<
8=1 |(8 ∩%C |. We will be

able to enforce this (and even a weighted variant of it) as an actual

constraint in the derandomization process, in a work-e�cient man-

ner by utilizing that it uses only pairwise independence. However,

this average across di�erent sets (1 ∩ %C , . . . , (< ∩ %C in one part

%C is not useful on its own. We want each set (8 to have a small

discrepancy. So we need a di�erent averaging, for each set (8 across

di�erent parts %C . That is, we need each set (8 not to experience

too much loss, once we add up the new variances in (8 ∩%1, (8 ∩%2,

. . . , (8 ∩ %! . That is, we want
∑!
C=1 (

∑
9∈(8∩%C j 9)2 ≈ B where the

approximation can tolerate a 1 + 1/log= factor.

For that, we appeal to the Multiplicative Weights Update (MWU)

method [3]. Suppose we work through the parts %1, %2, . . . , %!
sequentially in ! rounds (the algorithm will be di�erent, as we will

discuss, since depth ! would be expensive). In each round, each set

(8 will have an importance value 8<? (8), such that sets with larger

hitherto variance losses have higher importance. We then enforce

an importance-weighted variant of the previous average guarantee

across the sets (1∩%C , . . . , (<∩%C . This in e�ect tries to have smaller

variance losses in this round for sets (8 that have higher importance.

Roughly speaking, this will force an averaging for each set (8 across

di�erent parts %C . As a result, in the end, the overall variance loss

for each set (8 summed up over all its parts (8∩%1, (8∩%2, . . . , (8∩%!
will be small and we get

∑!
C=1 (

∑
9∈(8∩%C j 9)2 ≤ B (1 + 1/log=). See

the warm-up in Theorem 3.4 where we use this idea to sharpen the

discrepancy of the previously discussed $̃ (
√
=)-depth algorithm.

Processing ! parts sequentially would not yield a polylogarith-

mic depth (unless ! itself is just polylogarithmic, which brings other

issues, as each part would have many variables, and they are solved

one after the other). Instead of processing one part in each round,

we process !/) many of them in one round in parallel and inde-

pendently. The number of rounds will be set to) = poly(log(<=)),
and this will be su�cient for MWU to bring down the average loss

in each set to 1 + 1/log=. Roughly speaking, this is because the

worst-case loss in each round is at most an $ (log<) higher than
the average loss factor of 1.

We will set the parts such that each part induces an easy prob-

lem: in one application of the scheme each part will consist of only

poly(log(<=)) variables, and thus we will be able to �x these vari-

ables via sequential derandomization [25]. In another application,

the number of variables in the part will be large but each set will

have an intersection of size poly(log(<=)) with this part, and there-
fore we will be able to use pairwise parallel derandomization, a la

Luby [21].

Partitioning: For the scheme described above to work, we need

that, in each set (8 , the di�erent) = poly(log(<=)) rounds of MWU

process portions of (8 that expect roughly the same variance, up

to 1 + 1/poly(log=) factors. To produce this poly(log(<=))-way
partitioning, we use the work-e�cient result of Gha�ari, Grunau,

Rozhon [12], as the base partitioning tool, in an essentially black-

box way. It is crucial that we do not need partitions with optimal

or near-optimal additive loss here, and the multiplicative error

1+1/poly(log(<=)) of [12] will be tolerable in our overall scheme4.

Finally, the above outline discusses only the unweighted instance

and an intuitive explanation of how we perform one level of recur-

sion. However, even if we start with the unweighted set balancing

problem, the recursion creates a weighted problem for the next

iteration. Fortunately, in the case of the unweighted set balancing

problem, the “weights” will remain within a relatively close range,

and thus an algorithm along the lines discussed above will still

work. We present this in Section 4 as the proof of Theorem 1.1.

For our weighted set balancing result, Theorem 1.2, the parti-

tioning is more complex. We do not provide an overview here but

just mention this: in each constraint, a few variables of very large

weight cannot be handled as before, and we will need the partition-

ing to put essentially all of these into separate parts (modulo a loss,

that will have to be controlled very tightly). We present the proof

of Theorem 1.2 in the full version of this paper.

2 PRELIMINARIES: NOTATIONS AND TOOLS

FROM PRIORWORK

Notations: Throughout, we work with the ground set [=] and
usually< sets in it (1, (2, . . . , (< ⊆ [=]. For a given value assign-

ment vector j ∈ {−1, 1}= , the discrepancy of each set (8 is de-

�ned as 38B2 ((8) = |∑9∈(8 j 9 |. We generally assume that< ≥ 2,

as for < = 1 the problem is trivial. In the weighted generaliza-

tion, we are given a matrix � ∈ R<×= , where the entry 8, 9 is

denoted by 08 9 , and the discrepancy of the 8Cℎ constraint is de-

�ned as 38B2 (8) = |∑=
9=1 08 9 j 9 |. Sometimes, instead of focusing on

the absolute value of the discrepancy, we talk about the signed

discrepancy B38B2 (8) = ∑=
9=1 08 9 j 9 .

Often, we work with a partition of the ground set into parts

%1⊔%2⊔· · ·⊔%! = [=], andwe need to determine a value assignment

for the variables in each part. We use the notation jC ∈ {−1, 1}[%C]
to indicate the part of the value assignment in part %C , which is

a binary vector of length |%C |, but with the convenient indexing

4Let us clarify the distinction between the additive loss and the multiplicative error:
Consider for instance their scheme for partitioning into two parts, and < sets of

size at most B . The ideal additive discrepancy would be$ (
√
B log<) . The additive

discrepancy of [12] will be up to B/poly(log(<=)) . This means, in each set, each of
the two halves will have size in B/2(1 ± 1/poly(log(<=))) . Thus the multiplicative
error is 1+1/poly(log(<=)) . In our scheme, this 1/poly(log(<=)) partitioning loss
will add up with the 1/poly(log(<=)) loss of the MWU method, and still keep the
overall loss in variance per level below a 1 + 1/log= factor.

1892

Work-E�icient Parallel Derandomization II STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

inherited from [=] such that their concatenation forms the output

vector j ∈ {−1, 1}= , that is, j 9 = jC9 for 9 ∈ %C .

2.1 Crude Partitioning

We use the algorithm of Gha�ari, Grunau, and Rozhon [12] as a

crude partitioning tool. We next state their key result here, as well

as two simple generalizations that we derive here with some extra

work. The proofs of these extensions are deferred to the full version

of this paper.

Theorem 2.1 (Ghaffari, Grunau, Rozhon [12]). Let=,<, : ∈ N
with < ≥ 2 and let {(1, (2, . . . , (<} be a family of subsets of [=].
Then, there exists a deterministic parallel algorithm with work $̃ (= +
< + ∑<

8=1 |(8 |) poly(:) and depth poly(log(=<):) that computes a

partition %1 ⊔ %2 = [=] satisfying that max(|(8 ∩ %1 |, |(8 ∩ %2 |) =
|(8 |/2 +$ (

√
|(8 | log<) + |(8 |

:
for every 8 ∈ [<].

In particular, the following states the variant when we partition

into ! parts, instead of just two parts:

Lemma 2.2 (Unweighted multi-way partition). Let =,<, ! ∈
N with < ≥ 2, Y ∈ (0, 0.5], and let {(1, (2, . . . , (<} be a family

of subsets of [=]. Also, let ! be a power of two. Then, there exists

a deterministic parallel algorithm with work $̃ (= +< + ∑<
8=1 |(8 |) ·

poly(1/Y) and depth poly(log(=<)/Y) that computes a partition %1⊔
%2 ⊔ . . . ⊔ %! = [=] satisfying that |(8 ∩ %ℓ | ≤ (1 + Y) |(8 |/! +
$ (log(<)/Y2) for every 8 ∈ [<] and ℓ ∈ [!].

Wealso use the followingweighted variant, which follows roughly

speaking by managing together in each constraint the variables of

almost the same weight.

Lemma 2.3 (Weighted multi-way partition). Let =,<, ! ∈ N
with ! being a power of two,< ≥ 2, � ∈ R=×< and let Y ∈ (0, 1].
There exists a deterministic parallel algorithm with work $̃ (= +< +
==I (�)) · poly(1/Y) and depth poly(log(=<)/Y) that computes a

partition %1 ⊔ %2 ⊔ . . . ⊔ %! = [=] satisfying the following for every
ℓ ∈ [!]:

• |%ℓ | ≤ (1 + Y)=/! +$ (log(=<)/Y2),
• |%ℓ ∩ { 9 ∈ [=] : 08 9 ≠ 0}| ≤ (1+Y)

! |{ 9 ∈ [=] : 08 9 ≠ 0}| +
$ (log(=<)/Y2) for every 8 ∈ [<] and

• ∑
9∈%ℓ 0

2
8 9 ≤

1+Y
!

∑=
9=1 0

2
8 9 +$ (log2 (=<)/Y3) (0<0G)2 for ev-

ery 8 ∈ [<],
where we de�ne 0<0G = max8∈[<], 9∈[=] |08 9 |.

2.2 Sequential Derandomization

We also make use of the sequential derandomization method of

Raghavan [25], which solves the weighted set balancing problem

by �xing the random variables one by one, using the method of

conditional expectations. The following theorem abstracts this re-

sult. We do not provide a proof for this version, but we will later

state and use a more general result as Theorem 3.2, and we present

a proof for that in the full version of

Theorem 2.4 (Seqential derandomization). There exists an

absolute constant � > 0 for which the following holds. Let =,< ∈
N, and � ∈ R<×= . There exists a deterministic parallel algorithm

algorithm with work $̃ (==I (�) + = +<) and depth = poly(log<)

that computes a vector j ∈ {−1, 1}= such that, for every 8 ∈ [<], it
holds that 38B228 = � log< · ∑=

9=1 0
2
8 9 .

3 WARM-UP

In this section, we present two warm-up results, and in their con-

text, we discuss two of the ideas that we use in our main results.

Suppose we are given< sets (1, (2, . . . , (< ⊆ [=], for< ≥ 2, such

that |(8 | ≤ B for each 8 ∈ [<]. By Cherno� bound, we know that

a random value assignment j ∈ {−1, 1}= creates a discrepancy

of at most 38B2 ((8) = |∑9∈(8 j 9 | = $ (
√
B log<) in each of the<

set. In the �rst result, Theorem 3.1, we show a deterministic par-

allel algorithm that achieves a slightly suboptimal discrepancy of

$ (
√
B log<) in near-linear work and $̃ (

√
=) depth. In the second

result, Theorem 3.4, we show how to improve the discrepancy to

the optimal bound of $ (
√
B log<) while keeping near-linear work

and $̃ (
√
=) depth. As stated before, these are warm-up results, pre-

sented chie�y as contexts for introducing two of the ideas that we

use frequently in our main results. Next, we discuss these two ideas

from a high-level and informal viewpoint.

The key idea that we will present in the �rst result is how to

create some parallelism in the task of computing a low-discrepancy

value assignment, by partitioning the variables. Roughly speaking,

we partition the ground set [=] into about
√
= parts and we �nd

a value assignment in each part independently and all in parallel.

This is such that the discrepancy of each set in each part is “small".

Then, in the end, we need to �nd a good mixture of the assignments

of the di�erent parts. Intuitively, this mixture selection will involve

negating the solution coming from some of the parts; we will choose

the negated parts carefully to achieve a good discrepancy in the

output for all the< sets.

As we will see, compared to the standard deviation upper bound

of
√
B , the above approach loses a

√
log< in the discrepancy in the

parts and another
√
log< in �nding a good mixture, thus creating

the suboptimal discrepancy of $ (
√
B log<). To remedy this, in the

second result, we create a certain multi-round game for the process

of determining the solutions in di�erent parts, and we use an instan-

tiation of the Multiplicative Weights Update method to “average

out" the losses of each set throughout the rounds of this game. As

a result, we will be able to remove one of the
√
log< factor losses

essentially completely.

3.1 Near-Optimal Discrepancy with $̃ (
√
=)

Depth

Theorem 3.1. Let =,< ∈ N with< ≥ 2, and let {(1, (2, . . . , (<}
be a family of subsets of [=]. Then, there exists a deterministic parallel

algorithm that can compute a vector j ∈ {−1, 1}= with $̃ (= +< +∑<
8=1 |(8 |) work and $̃ (

√
=) depth such that, for every 8 ∈ [<], it

holds that 38B22 ((8) = (∑9∈(8 j 9)2 = $ (|(8 | log2<).

Proof. Recall that the sequential derandomization method (The-

orem 2.4) provides a method to �x the = variables j 9 for 9 ∈
[=] one by one, in depth $̃ (=), such that we have (∑9∈(8 j 9)2 =

$ (|(8 | log<) for every 8 ∈ [<]. To reduce this $̃ (=) depth to $̃ (
√
=),

we use the following approach: (1) �rst we partition the variables

into roughly
√
= parts each with $ (

√
=) variables, (2) we perform

a sequential derandomization inside each part and all in parallel,

1893

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mohsen Gha�ari and Christoph Grunau

and then (3) we determine how to merge the
√
= parts together via

another sequential derandomization. We next make this outline

concrete.

(1) We compute a partitioning of the [=] into ! = 2⌈log2 (
√
=) ⌉

parts %1 ⊔ %2 ⊔ . . . ⊔ %! = [=] such that for each C ∈ [!], we
have |%C | ≤ 2

√
=. This can be achieved easily via the unweighted

partitioning recalled in Lemma 2.2, in $̃ (= +< + ∑<
8=1 |(8 |) work

and poly(log(=<)) depth.
(2) As a result of the above partitioning, we have ! independent

discrepancy problems on disjoint variables: problem C consists of

sets (1∩%C , (2,∩%C , . . . , (<∩%C . We solve these problems in parallel

and independently of each other, each using sequential derandom-

ization. Since each part has at most 2
√
= variables, we can invoke

the sequential derandomization method (cf. Theorem 2.4) to solve

each part C in $̃ (
√
=) depth, getting a vector j̄C ∈ {−1, 1}[%C] such

that for each 8 ∈ [<], we have (∑9∈(8∩%C j̄
C
9)
2
= |(8 ∩%C | ·$ (log<).

This works for all the ! parts in parallel, in $̃ (
√
=) depth, and using

a total of $̃ (= +< + ∑<
8=1 |(8 |) work. To ensure this work bound,

we need a simple clean-up before invoking the sequential deran-

domization in each part C : we discard from each part %C sets 8 for

which (8 ∩ %C = ∅.
(3) Finally, we need to determine how to merge these ! ≈

√
=

solutions j̄C for C ∈ [!]. Let us �rst discuss the situation from an

intuitive viewpoint. Notice that naively taking the output vector

j ∈ {−1, 1}= as the “concatenation" of vectors j̄C ∈ {−1, 1}[%C]
computed in di�erent parts can result in a large discrepancy. For

instance, in the absence of any further guarantee on how the parts

are mixed, for set (8 , we can have a discrepancy as large as

|
∑
9∈(8

j 9 | = |
!∑
C=1

∑
9∈(8∩%C

j 9 |

=

√
|(8 ∩ %1 | ·$ (log<) +

√
|(8 ∩ %2 | ·$ (log<) + . . .

+
√
|(8 ∩ %! | ·$ (log<) .

This can reach
√
|(8 |! ·$ (log<), which is an

√
! factor loss com-

pared to the ideal bound of
√
|(8 | ·$ (log<). This loss stems from

mixing ! variables, each expected to be roughly
√
|(8 |/! ·$ (log<),

in an arbitrary way. This arbitrary way allows all of the ! terms

to contribute positively and thus the absolute values add up. The

challenge is that this can happen in any one of the< sets.

To remedy the above issue, we need to �nd a good mixture of the

solutions. More concretely, to obtain the output vector j ∈ {−1, 1}= ,
for each part C , we can determinewhether to take j̄C as is or to negate

it. The negation of course does not change the absolute value of

discrepancy in each part. However, if we choose it wisely, it can

help us avoid the unfortunate case of discrepancies of the ! di�erent

parts adding up in the same direction.

Formally, we set up a new discrepancy problem with a variable

j ′ ∈ {−1, 1}!—which determines whether each part is negated

or not—with the interpretation that we will set the overall output

vector as j 9 = j̄C9 · j
′
C where 9 ∈ %C . For each set 8 ∈ [<], we have

(
∑
9∈(8

j 9)2 = (
!∑
C=1

∑
9∈(8∩%C

j 9)2 = (
!∑
C=1

∑
9∈(8∩%C

j̄C9 · j
′
C)2

= (
!∑
C=1

j ′C · (
∑

9∈(8∩%C
j̄C9))

2 .

To summarize, we have a new “weighted" discrepancy problemwith

an output vector j ′ ∈ {−1, 1}! , which consists of< sets where each

set (8 has ! elements and element C has weight 08,C = (∑9∈(8∩%C j̄
C
9)

in the discrepancy of set (8 . That is, we have 38B2 ((8) = (∑!
C=1 08,C ·

j ′C). The guarantee provided is that for each C ∈ [!], we have

028,C = (∑9∈(8∩%C j̄
C
9)
2
= |(8 ∩ %C | ·$ (log<) .

We can solve this discrepancy problem via sequential derandom-

ization of Theorem 2.4 in depth $̃ (!) = $̃ (
√
=). Also, the work is no

more than $̃ (= +< +∑<
8=1 |(8 |). We get a vector j ′ ∈ {−1, 1}! such

that 38B22 ((8) = (∑!
C=1 08,C · j ′C)2 = (∑!

C=1 0
2
8,C · $ (log<)) . Hence,

overall, we have an output vector j ∈ {−1, 1}=—with the de�nition

j 9 = j̄C9 · j
′
C where 9 ∈ %C—such that for each 8 ∈ [<], we have

38B22 ((8) = (
∑
9∈(8

j 9)2

=

!∑
C=1

028,C ·$ (log<)

=

!∑
C=1

|(8 ∩ %C | ·$ (log<) ·$ (log<)

= |(8 | ·$ (log2<). □

3.2 Optimal Discrepancy with $̃ (
√
=) Depth

An intuitive/informal discussion of the suboptimality in The-

orem 3.1 and how we remedy it: Theorem 3.1 has a suboptimal

discrepancy of 38B2 ((8) =

√
|(8 | · $ (log<), instead of the ideal

bound of 38B2 ((8) =
√
|(8 | · $ (

√
log<). Intuitively, there are two

$ (
√
log<) factors in the achieved discrepancy: one$ (

√
log<) fac-

tor from the sequential derandomization in solving each of the
√
=

parts as described in step (2), and another $ (
√
log<) factor from

the process of �nding a good mixture of the parts as described in

part (3). In this subsection, we discuss how to remedy this loss.

Let us zoom in on the �rst loss: the $ (
√
log<) loss in solving

each of the
√
= parts in step (2). This loss is optimal in the worst-case

sense, meaning that in each part, there will be at least one set that

experiences an$ (
√
log<) factor loss. However, there is something

to be optimistic about: in each part, most of the sets should not

experience such a loss. As a matter of fact, the
√
log< factor in the

sequential derandomization is to allow a union bound over all the

< sets, by reducing the probability of each set breaking the bound

to 1/<. But most sets should have a much smaller loss.

Indeed, we observe that, with some extra work, we can cre-

ate a variant of the sequential derandomization result stated in

Theorem 2.4 that ensures the average of the losses to be only a

1 + > (1) factor. We next state this variant (for the �rst reading, the

1894

Work-E�icient Parallel Derandomization II STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

reader can think of all 8<? (8) as equal to 1; later we will need the

importance-weighted generality).

Theorem 3.2 (Seqential derandomization, augmentedwith

importance-weighted averaging). There exists an absolute con-

stant � > 0 for which the following holds. Let =,< ∈ N, " ∈ R
with " ≥ max(<, 2), � ∈ R<×= , and 8<? (8) ∈ R≥0 for each

8 ∈ [<]. There exists a deterministic parallel algorithm with work

$̃ (==I (�) += +<)) and depth = poly(log") that computes a vector

j ∈ {−1, 1}= such that
∑<
8=1 8<? (8) ·38B228 ≤

(
1 + 1

"

) ∑<
8=1 8<? (8) ·(∑=

9=1 0
2
8 9

)
. Moreover, for every 8 ∈ [<], it also holds that 38B228 =

� log" · ∑=
9=1 0

2
8 9 .

The proof of this variant is deferred to the full version of this

paper. Intuitively, this variant says that the average loss among the

sets is “negligible". However, the average loss among the sets is not

directly helpful. We somehow need the overall loss of each of the

< sets to be small. That is, we need a mechanism that ensures that

the average loss of each set, averaged over all the parts, is small

(ideally 1 + > (1)).
For this mechanism, we appeal to the Multiplicative Weights

Update (MWU) method. This method uses varying degrees of im-

portance for di�erent sets based on the losses they have experienced

so far, ensuring that sets with large hitherto losses have large im-

portance. Theorem 3.2 allows us to make use of this, by enforcing

that sets with larger importance experience smaller losses in the

next part. To make this MWU averaging work, we need to set up

some sequential dependency between the parts (previously, the

parts were solved in parallel, independently). Next, we �rst provide

a reminder on MWU, phrased concretely for our usage, and then

present the algorithm that formalizes this intuition. A proof of this

MWU lemma is presented in the full version of this paper.

Lemma 3.3 (MultiplicativeWeightsUpdate). Consider amulti-

round game with< constraints and an oracle. Each constraint 8 ∈
[<] has an importance value 8<? (8) ∈ R+, which is initially set

8<?1 (8) = 1 and changes over the rounds. In each round C , we give

the oracle the importance 8<?C (.) of the constraints, and the ora-

cle gives back for each constraint a value 60?C (8) ∈ [0,,], with the

guarantee that
∑<
8=1 8<?C (8) ·60?C (8) ≤ ∑<

8=1 8<?C (8). For any given
value Y ∈ [0, 1/2], there is a way to set the importance values during

the game such that, at the end of a game with) = Ω(, log</Y2)
rounds, for each constraint, we have (∑)

C=1 60?
C (8))/) ≤ 1 + Y. The

rule for updating the importance values is simple: in each round C , set

8<?C+1 (8) = 8<?C (8) · (1 + [· 60?C (8)) where [= Y/(3,).

We are now ready for our second warm-up, which achieves the

optimal discrepancy in $̃ (
√
=) depth.

Theorem 3.4. Let =,< ∈ N with< ≥ 2, and let {(1, (2, . . . , (<}
be a family of subsets of [=] such that |(8 | ≤ B for all 8 ∈ [<]. Then,
there exists a deterministic parallel algorithm that can compute a

vector j ∈ {−1, 1}= with $̃ (=+<+∑<
8=1 |(8 |) work and $̃ (

√
=) depth

such that, for every 8 ∈ [<], it holds that 38B22 ((8) = (∑9∈(8 j 9)2 =
$ (B log<).

Proof. Set Y = 1/(10 log<). Also, we assume = ≥ log5< (oth-

erwise, we can solve the entire problem in poly(log<) depth and

near-linear work using sequential derandomization), and that B ≥

Ω(log10<) (otherwise, the statement of the theorem follows from

Theorem 2.1, by setting : =
√
B).

First, we partition the variables into) = Θ(log5<) parts %1⊔%2⊔
. . . ⊔ %) = [=] with the following guarantee: For each set 8 ∈ [<]
and each part C ∈ [)], we should have |(8 ∩%C | ≤ (1+Y) (|(8 |/) +X)
for X = $ (log</Y2), and moreover, for each C ∈) , we should have

|%C | ≤ (1+Y)=/) . This partition can be done directly via Lemma 2.2,

in $̃ (= +< +∑<
8=1) work and poly(log(=<)) depth. We will process

these) = Θ(log5<) parts sequentially, using MWU, in the sense

that processing part C ∈) will be regarded as round C of the MWU

game, as described in Lemma 3.3.

Let us �rst discuss what we do in each part. Consider part C ,

which has |%C | = Θ(=/log5<) variables, and the sets (1∩%C , (2∩%C ,
. . . , (< ∩ %C . To solve this part in $̃ (

√
=) depth, we perform some-

thing similar to steps (1) and (2) of the proof of Theorem 3.1. Con-

cretely, �rst we partition %C further into ! = 2
⌈log

√
=/log5<⌉ ≈√

=/log5< pieces %C,1 ⊔ %C,2 ⊔ . . . ⊔ %C,! such that for each C ′ ∈ [!],

we have |%C,C ′ | ≤ 2|%C |/! = $ (
√
=/log5<). This can be done via

Lemma 2.2, in poly(log(=<)) depth and using $̃ (= +< + ∑<
8=1)

total work (again, we need to perform the simple clean-up of re-

moving from each part sets that have an empty intersection with

the part). Then, we use sequential derandomization inside each

of the pieces, all independently and in parallel. In particular, by

invoking Theorem 3.2 in each piece C ′ ∈ [!], we get an output

j̄C,C
′ ∈ {−1, 1}[%C,C ′] with the following two guarantees:

• For each set 8 , we have (∑9∈(8∩%C,C ′ j̄
C,C ′

9)2 ≤ |(8 ∩ %C,C ′ | ·
$ (log<)

• ∑<
8=1 8<? (8) · (∑9∈(8∩%C,C ′ j̄

C,C ′

9)2 ≤ (1+Y)∑<
8=1 8<? (8) · |(8 ∩

%C,C ′ |

Over all the pieces C ′, which are solved in parallel, the algorithm

works in $̃ (= +< + ∑<
8=1 |(8 |) work and $̃ (

√
=) depth. Also, from

the second inequality, we can deduce that

<∑
8=1

8<? (8) ·
(!∑
C ′=1

(
∑

9∈(8∩%C,C ′
j̄C,C

′

9)2
)

=

!∑
C ′=1

<∑
8=1

8<? (8) · (
∑

9∈(8∩%C,C ′
j̄C,C

′

9)2

≤
!∑

C ′=1

(1 + Y)
<∑
8=1

8<? (8) · |(8 ∩ %C,C ′ |

= (1 + Y)
<∑
8=1

8<? (8) ·
(!∑
C ′=1

|(8 ∩ %C,C ′ |
)

= (1 + Y)
<∑
8=1

8<? (8) · |(8 ∩ %C |

≤ (1 + Y)
<∑
8=1

8<? (8) ·
(
(1 + Y) (B

)
+ X)

)

= (1 + Y)2 (B
)

+ X) ·
<∑
8=1

8<? (8) .

1895

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mohsen Gha�ari and Christoph Grunau

Now, let us de�ne

60?C (8) =
∑!
C ′=1 (

∑
9∈(8∩%C,C ′ j̄

C,C ′

9)2

(1 + Y)2 (B) + X)
.

Notice that

60?C (8) =
∑!
C ′=1 (

∑
9∈(8∩%C,C ′ j̄

C,C ′

9)2

(1 + Y)2 (B) + X)

≤
∑!
C ′=1 |(8 ∩ %C,C ′ | ·$ (log<)

(1 + Y)2 (B) + X)

=
|(8 ∩ %C | ·$ (log<)
(1 + Y)2 (B) + X)

≤ $ (log<)
(1 + Y)2

,

and moreover,

<∑
8=1

8<? (8) · 60?C (8) =
<∑
8=1

8<? (8) ·
∑!
C ′=1 (

∑
9∈(8∩%C,C ′ j̄

C,C ′

9)2

(1 + Y)2 (B) + X)

≤
(1 + Y)2 (B) + X) · ∑<

8=1 8<? (8)
(1 + Y)2 (B) + X)

=

<∑
8=1

8<? (8).

Hence, the values 60?C (8) satisfy the two properties of the MWU

statement in Lemma 3.3 with , = $ (log<). Thus, after run-

ning the game for) rounds by going through the parts %1, %2,

. . . , %) and doing the above for each of them sequentially, since

) = Ω(, log</Y2), we get that for each set 8 ∈ [<], we have∑)
C=1 60?

C (8) ≤ (1 + Y)) . This means

)∑
C=1

!∑
C ′=1

(
∑

9∈(8∩%C,C ′
j̄C,C

′

9)2 ≤ (1+Y)3 (B +)X) = (1+Y)3B +$ (log8<) .

Thus, we have)! = Θ(
√
= log5<) solutions j̄C,C ′ ∈ {−1, 1}[%C,C ′]

for C ∈ [)] and C ′ ∈ [!] and we need to �nd a good mixture of

them. That is, we want to �nd a mixture vector j ′ ∈ {−1, 1})!
which determines for each of these solutions whether to take itself

or its negation, by setting the output vector j ∈ {−1, 1}= as j 9 =

j̄C,C
′

9 · j ′C,C ′ where 9 ∈ %C,C ′ . This part is quite similar to step (3)

in the proof of Theorem 3.1. In particular, de�ne 08,(C−1))+C ′ =

(∑9∈(8∩%C,C ′ j̄
C,C ′

9) . By invoking the sequential derandomization

of Theorem 3.2, which runs in $̃ (
√
=) depth and with $̃ (= +< +∑<

8=1 |(8 |) work, we get a mixture vector j ′ ∈ {−1, 1})! such that

38B22 (8) = (∑)!
:=1

08,: ·j ′:)
2
= (∑)!

:=1
02
8,:

·$ (log<)) .Hence, overall,

for each 8 ∈ [<], we have

38B22 ((8) = (
∑
9∈(8

j 9)2

= (
)!∑
:=1

08,: · j ′
:
)2

≤
)!∑
:=1

02
8,:

·$ (log<)

=

)∑
C=1

!∑
C ′=1

(
∑

9∈(8∩%C,C ′
j̄C,C

′

9)2 ·$ (log<)

≤ ((1 + Y)3B +$ (log8<)) ·$ (log<)
= $ (B log<).

Here, the last inequality uses that Y = 1
10 log<

and B ≥ Ω(log10<).
□

4 OPTIMAL DISCREPANCY IN

POLYLOGARITHMIC DEPTH —

UNWEIGHTED

In this section, we present a deterministic parallel algorithm that

achieves an asymptotically optimal discrepancy for the (unweighted)

set balancing problem—i.e., matching what follows from the Cher-

no� bound—using near-linear work and polylogarithmic depth,

therefore proving Theorem 1.1.

In Section 4.1, we present the core ingredients in this result, in

the format of a lemma that achieves $ (
√
= log<) discrepancy. The

lemma will actually be somewhat more general for two reasons: (1)

to make way for its own proof via recursion, and (2) to facilitate its

later usage. Later, in Section 4.2, we use this result and some extra

helper lemma to get discrepancy $ (
√
B log<).

4.1 A Polylogarithmic-Depth Recursive

Algorithm for $ (
√
= log<) Discrepancy

In this subsection, we prove the following result:

Lemma 4.1. There is an absolute constant �′
> 0 for which the

following holds. Let =,< ∈ N with <,= ≥ 2 and Δ ∈ R≥0. Let
� ∈ R<×= satisfying that

∑=
9=1 0

2
8 9 ≤ Δ for every 8 ∈ [<] and

max8∈[=], 9∈[<] 0
2
8 9 ≤

(log5 (=<))
= Δ. Then, there exists a deterministic

parallel algorithm that can compute a vector j ∈ {−1, 1}= with

$̃ (=+<+==I (�)) work and poly(log(=<)) depth such that, for every
8 ∈ [<], it holds that (∑=

9=1 08 9 j 9)2 = (2 − 1/log=) · (�′ log<) · Δ.

This result itself can be viewed as a generalization of achieving

discrepancy $ (
√
= log<) in the unweighted setting. In particular,

for that purpose, the reader can interpret 08 9 = 1 for 9 ∈ (8 and

08 9 = 0 otherwise, and Δ = =. The lemma generalizes the statement

mainly by allowing a polylogarithmic range of weights for nonzero

coe�cients 08 9 . As mentioned before, this generality is necessary

for our recursive algorithm that proves the lemma, and moreover,

it helps in later applications of the result.

The key ingredient in proving Lemma 4.1 is a helper lemma,

which we next state as Lemma 4.2. The former provides a certain

1896

Work-E�icient Parallel Derandomization II STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

partitioning scheme for the variables, alongwith a value assignment

inside each part, which basically sets up the recursion. Then the

task of �nding a good mixture of these assignments will be solved

by recursion. We �rst prove Lemma 4.2, and then go back to proving

Lemma 4.1.

Lemma 4.2. There exists an absolute constant 2 > 0 such that

the following holds. Let =,< ∈ N with< ≥ 2 and = ≥ 2 log30 (<)
and Δ ∈ R≥0. Let � ∈ R<×= satisfying that

∑=
9=1 0

2
8 9 ≤ Δ and

max8∈[<], 9∈[=] 0
2
8 9 ≤

(log5 (=<))
= Δ. Then, there exists a deterministic

parallel algorithm that can compute a vector j ∈ {−1, 1}= and a

partition [=] = %1 ⊔ %2 ⊔ . . . ⊔ %! for some ! ≤ =/2 with $̃ (= +< +
==I (�)) work and $̃ (1) depth satisfying that

(A)
∑
ℓ∈!

(∑
9∈%ℓ 08 9 j 9

)2
≤

(
1 + 1

10 log2 =

)
Δ, and

(B) for every 8 ∈ [<] and ℓ ∈ [!],
(∑

9∈%ℓ 08 9 j 9
)2

≤ $ (log(=<))
! Δ.

Proof. Set Y = 1/(100 log2 (=<)). First, we partition the = vari-

ables into ! = 2
⌈log(=

log20 (=<)) ⌉ ≈ =
log20 (=<) parts %1⊔%2⊔ . . .⊔%! =

[=] with the following two properties:

(I) For each part ℓ ∈ [!], we have |%ℓ | ≤ 2=/! = $ (log20 (=<))
(II) For each part ℓ ∈ [!] and each set 8 ∈ [<], we have∑

9∈%ℓ 0
2
8 9 ≤

(1 + 2Y)Δ/!.
This can be computed via Lemma 2.3 using $̃ (==I (�) + = +<))
work and poly(log(<=)) depth. In particular, the third property in

Lemma 2.3 implies that for each set 8 ∈ [<] and each part ℓ ∈ [!],
we have∑

9∈%ℓ
028 9 ≤ (1 + Y) Δ

!
+$ (log

2 (=<)
Y3

) · (max
8∈[<], 9∈[=]

028 9)

≤ (1 + Y) Δ
!
+$ (log

2 (=<)
Y3

) · (log
5 (=<))
=

Δ

= (1 + Y) Δ
!
+$ (log

2 (=<)
Y3

) · (log5 (=<))
! log20 (=<)

Δ

≤ (1 + Y) Δ
!
+ Y

Δ

!

= (1 + 2Y) Δ
!
.

Notice that we can easily apply sequential derandomization (The-

orem 3.2) in each part ℓ ∈ [!] to obtain a vector jℓ ∈ {−1, 1}[%ℓ]

such that for every 8 ∈ [<], we have
(∑

9∈%ℓ 08 9 j
ℓ
9

)2
≤ $ (log(<))

! Δ.

This would satisfy guarantee (B) in the lemma we are proving.

Furthermore, since each part has only 2=/! = $ (log20 (=<)) vari-
ables, and we solve di�erent parts in parallel, this would take depth

poly(log(<=)) and work $̃ (==I (�) += +<)). But that alone would
not provide the more important guarantee (A). To achieve (A),

we work somewhat di�erently by appealing to the Multiplicative

Weight Updates (MWU) method, as recalled in Lemma 3.3, in a

manner similar to what we did in the proof of Theorem 3.4.

Concretely, we break the parts into) = Θ(log2 (=<)/Y2) groups,
by viewing parts (C−1) (!/))+1 to C!/) as group C , for each C ∈ [)].
Here, we choose) to be a power of 2 so that) |!. We will process

the groups sequentially, each as one round of MWU. Initially, we

set the importance value of each set 8 ∈ [<] as 8<? (8) = 1. Then,

we process the groups one by one and adjust the importance values

as we will describe. Let us zoom in on one round.

Consider round C ∈ [)] and the corresponding group of !/)
parts % (C−1) (!/))+1, % (C−1) (!/))+2, . . . , %C (!/)) . We invoke the se-

quential derandomization of Theorem 3.2 in each of the parts inde-

pendently, all with the current importance value 8<? (8) for each
set 8 ∈ [<]. Since each part has at most 2=/! = $ (log20 (=<))
variables, and we solve di�erent parts in parallel, this takes depth

poly(log(<=)). From Theorem 3.2 (setting " = <=), we get two

properties for each set 8 ∈ [<] and each ℓ ∈ [(C − 1) (!/)) +
1, C (!/))]:

•
(∑

9∈%ℓ 08 9 j
ℓ
9

)2
≤ $ (log(=<))

! Δ

• ∑<
8=1 8<? (8) ·

(∑
9∈%ℓ 08 9 j

ℓ
9

)2
≤ (1+Y)∑<

8=1 8<? (8) · (1+2Y) Δ! .
As mentioned before, the �rst already gives property (B) of the

lemma. We next examine property (A). Let us de�ne

60?C (8) =

∑C (!/))
ℓ=(C−1) (!/))+1

(∑
9∈%ℓ 08 9 j

ℓ
9

)2
(1 + Y) (1 + 2Y) Δ)

From the above two properties, we conclude the following two

guarantees about 60?C (8):
• for all 8 ∈ [<], 60?C (8) ∈ [0,,] for, = $ (log(<=)),
• ∑<

8=1 8<? (8) · 60?C (8) ≤ ∑<
8=1 8<? (8)

Hence, the guarantees �t exactly the de�nition of the oracle in the

MWU framework, as recapped in Lemma 3.3. Thus, by running the

game for) = Θ(, log</Y2) rounds and processing all the groups

with importance values updated according to Lemma 3.3, we get

the following guarantee: for each 8 ∈ [<], we have ∑)
C=1 60?

C (8) ≤
(1 + Y)) . That is,

)∑
C=1

∑C (!/))
ℓ=(C−1) (!/))+1

(∑
9∈%ℓ 08 9 j

ℓ
9

)2
(1 + Y) (1 + 2Y) Δ)

=

∑!
ℓ=1

(∑
9∈%ℓ 08 9 j

ℓ
9

)2
(1 + Y) (1 + 2Y) Δ)

≤ (1 + Y)),

which implies

!∑
ℓ=1

©«
∑
9∈%ℓ

08 9 j
ℓ
9
ª®¬
2

≤ (1 + Y)2 (1 + 2Y)Δ ≤
(
1 + 1

10 log2 =

)
Δ.

This proves property (A) and thus concludes the proof of the lemma.

□

We can now go back to proving Lemma 4.1.

Proof of Lemma 4.1. We present a proof by induction on = (i.e.,

creating a recursive algorithm as a function of =). Also, we �rst

describe how the algorithm works and provides the desired guar-

antees, and then in the end come back to bound its computational

depth and work.

If= < 2 log30<where 2 is the constant in Lemma 4.2, then we are

in the base case. Then, we simply solve the problem by invoking the

sequential derandomization of Theorem 3.2, which provides a vector

j ∈ {−1, 1}= such that that (∑=
9=1 08 9 j 9)2 ≤ (� log<) · Δ. Here, �

is the constant in Theorem 3.2 which satis�es � (2 − 1/log=) ≤ �′

1897

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mohsen Gha�ari and Christoph Grunau

by choosing�′
= 2� . Otherwise, we are in the case where we solve

the problem via recursion, as we discuss next.

By invoking Lemma 4.2, we spend $̃ (= + < + ==I (�)) work
and poly(log(<=)) depth and we get a vector j̄ ∈ {−1, 1}= and a

partition [=] = %1 ⊔ %2 ⊔ . . . ⊔ %! for some ! ≤ =/2 satisfying the
following two properties:

(A)
∑
ℓ∈!

(∑
9∈%ℓ 08 9 j̄ 9

)2
≤

(
1 + 1

10 log2 =

)
Δ, and

(B) for every 8 ∈ [<] and ℓ ∈ [!],
(∑

9∈%ℓ 08 9 j̄ 9
)2

≤ $ (log(=<))
! Δ.

Then, the remaining task is to determine a mixture vector j ′ ∈
{−1, 1}! so that we can mix the j̄ solutions of parts %1 to %! ac-

cordingly, i.e., by setting j 9 = j̄ 9 · j ′ℓ where 9 ∈ %ℓ . This problem

is similar to the mixture selection in the proofs of Theorem 3.1

and Theorem 3.4. However, unlike those results, which solve the

mixture selection via sequential derandomization, we now have

a large number of parts !, which can be as large as =/2. Thus, it
would be too slow to use sequential derandomization here. Instead,

we can invoke recursion.

In particular, for each 8 ∈ [<] and each ℓ ∈ [!], de�ne 0′8ℓ =(∑
9∈%ℓ 08 9 j̄ 9

)
, and de�ne Δ′

=

(
1 + 1

10 log2 =

)
Δ. These satisfy the

conditions of our inductive lemma (Lemma 4.1) for =′ = ! ≤ =/2,
in the sense that for each 8 ∈ [<], we have ∑=′

ℓ=1 (0′8ℓ)
2 ≤ Δ

′ and

max8∈[<],ℓ∈[!] (0′8ℓ)
2 ≤ log5 (=′<)

=′ Δ
′. Thus, by invoking Lemma 4.1

recursively/inductively on this instance with =′ ≤ =/2 variables,
we get a vector j ′ ∈ {−1, 1}! with the guarantee that for each set

8 ∈ [<], we have (∑=′
ℓ=1 0

′
8ℓ j

′
9)
2
= (2 − 1/log=′) · (�′ log<) · Δ′.

Hence, we can conclude that for every set 8 ∈ [<], we have

(
=∑
9=1

08 9 j 9)2 = (
=′∑
ℓ=1

∑
9∈%ℓ

08 9 j 9)2 = (
=′∑
ℓ=1

∑
9∈%ℓ

08 9 j̄ 9 j
′
ℓ)
2

= (
=′∑
ℓ=1

j ′ℓ
∑
9∈%ℓ

08 9 j̄ 9)2 = (
=′∑
ℓ=1

j ′ℓ0
′
8ℓ)

2

≤ (2 − 1

log=′
) · (�′ log<) · Δ′

= (2 − 1

log=′
) (1 + 1

10 log2 =
) · (�′ log<) · Δ

≤
(
(2 − 1

log= − 1
) (1 + 1

10 log2 =
)
)
· (�′ log<) · Δ

≤ (2 − 1

log=
) · (�′ log<),

which satis�es the desired output guarantee.

Finally, we discuss the computational depth and work of this al-

gorithm. If we are in the base case of = = $ (log30<), the algorithm
follows just by invoking the sequential derandomization of The-

orem 3.2, which has poly(log(=<)) depth and $̃ (= +< + ==I (�))
work. Let us now examine the depth in the recursive case. For

larger =, we invoked Lemma 4.2, which has depth poly(log(=<)),
and then we solved the remaining (mixture) problem by applying

a recursion on an instance with ! ≤ =/2 variables. Hence, the

depth of the instance with = variables and< sets satis�es the re-

cursion � (=,<) ≤ poly(log(=<)) + � (=/2,<) with the base case

of � (=,<) ≤ poly(log(=<)) if = = $ (log30<). Hence, � (=,<) ≤

poly(log(=<)). A similar argument shows that the work, (=,<)
of the instance with= variables and< satis�es, (=,<) ≤ $̃ (=+<+
==I (�)) +, (=/2,<), which thus shows that the work is bounded

by $̃ (= +< + ==I (�)). □

4.2 A Polylogarithmic-Depth Algorithm for

$ (
√
B log<) Discrepancy

In this subsection, we prove Theorem 1.1, using Lemma 4.1 devel-

oped in the previous subsection. For that, we will need an additional

helper lemma about the derandomization of pairwise analysis.

Lemma 4.3. Let =,< ∈ N with< ≥ 2, and let {(1, (2, . . . , (<} be
a family of subsets of [=] such that |(8 | ≤ : for all 8 ∈ [<]. Also,
suppose that for each 8 ∈ [<] we are given an importance value

8<? (8) ≤ R+. There exists a deterministic parallel algorithm that can

compute a vector j ∈ {−1, 1}= , using $̃ (= +< +∑<
8=1 |(8 |) · poly(:)

work and poly(: log(<=)) depth such that we have
∑<
8=1 8<? (8) ·

(∑9∈(8 j 9)2 ≤ ∑<
8=1 8<? (8) · |(8 |.

Proof Sketch. Notice that under a random selection of j with

merely pairwise independence—i.e., for each 9, 9 ′ ∈ [=], where
9 ≠ 9 ′, and each (0, 1) ∈ {−1, 1}2 we have P[j 9 = 0] = 1/2 and

P[(j 9 , j 9 ′) = (0, 1)] = 1/4—we have

E[
<∑
8=1

8<? (8) · (
∑
9∈(8

j 9)2] =
<∑
8=1

8<? (8) · E[(
∑
9∈(8

j 9)2]

=

<∑
8=1

8<? (8) ·
∑
9∈(8

� [(j 9)2]

=

<∑
8=1

8<? (8) · |(8 |,

where the penultimate equality relied on the pairwise independence

of j 9 and j 9 ′ for 9 ≠ 9 ′. Given this, such a vector j can be com-

puted deterministically and in parallel, using Luby’s method for

work-e�cient parallel derandomization of pairwise independent

analysis [21]. Following this method, the statement follows as a

black-box application of Lemma 3.4 in [12]. □

Finally, we prove our unweighted set balancing result.

Theorem 4.4. Consider< ≥ 2 subsets (1, (2, . . . , (< ⊆ [=] and
suppose |(8 | ≤ B for each 8 ∈ [<] . There is a deterministic parallel

algorithm, with $̃ (= +< +∑<
8=1 |(8 |) work and poly(log(<=)) depth,

that computes a vector j ∈ {−1, 1}= such that, for each 8 ∈ [<], we
have 38B2 ((8) = |∑9∈(8 j 9 | = $ (

√
B log<).

Proof. If B ≤ poly(log(<=)), the result follows from Theo-

rem 2.1. Let us assume that B is larger. Set Y = 0.01. First, we partition

the = variables into ! =
B

Θ(log</Y2) parts %1 ⊔ %2 ⊔ . . . ⊔ %! = [=],
where ! is a power of two, with the following two properties:

(I) For each part ℓ ∈ [!] and each set 8 ∈ [<], we have |(8∩%ℓ | ≤
(1 + Y)B/!.

This can be computed using Lemma 2.3 using work $̃ (==I (�) +
= +<)) and depth poly(log(<=)). We bundle the parts into) =

Θ(, log</Y2) groups, by viewing parts (C − 1) (!/)) + 1 to C!/)
as group C , for each C ∈ [)]. Again,) is a power of two, so we have

) |!. We will process the groups sequentially, each as one round of

1898

Work-E�icient Parallel Derandomization II STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

MWU. Initially, we set the importance value of each set 8 ∈ [<] as
8<? (8) = 1. Then, we process the groups one by one and adjust the

importance values as we will describe.

Let us zoom in on one round. Consider round C ∈ [)] and the cor-
responding group of!/) parts % (C−1) (!/))+1, % (C−1) (!/))+2, . . . , %C (!/)) .
We invoke the pairwise derandomization of Lemma 4.3 on the fam-

ily of sets (8 ∩ %ℓ for all 8 ∈ [<] and ℓ ∈ [(C − 1) (!/)) + 1, C (!/))].
Moreover, all subsets of set (8 are given importance value 8<? (8)
inherited from set (8 where 8 ∈ [<].

Since in each part ℓ ∈ [!], each set (8∩%ℓ has size at most: = (1+
Y)B/! = $ (log<), applying Lemma 4.3 takes depth poly(log(<=)).
From Lemma 4.3, we get the following property:

<∑
8=1

8<? (8) ·
(

C (!/))∑
ℓ=(C−1) (!/))+1

©
«

∑
9∈(8∩%ℓ

j̄ℓ9
ª®
¬
2)

≤ (1 + Y)
<∑
8=1

8<? (8) · B
)
.

(1)

Let us de�ne

60?C (8) =

(∑C (!/))
ℓ=(C−1) (!/))+1

(∑
9∈(8∩%ℓ j̄

ℓ
9

)2)

(1 + Y) B)
From Equation (1), we can conclude that

∑<
8=1 8<? (8) · 60?C (8) ≤∑<

8=1 8<? (8). Furthermore, we have that 60?C (8) ≤ $ (log<). The

reason is that
(∑

9∈(8∩%ℓ j̄
ℓ
9

)2
≤ (|(8 ∩ %ℓ |)2 ≤ (1 + Y): (B/!), and

thus(
C (!/))∑

ℓ=(C−1) (!/))+1

©«
∑

9∈(8∩%ℓ
j̄ℓ9

ª®¬
2)

≤ (1 + Y): · (B/!) · (!/))

= : · (1 + Y) (B/)).

So, 60?C (8) ≤ : , which means we have 60?C (8) ∈ [0,,] for
, = $ (log<).

Hence, the guarantees �t exactly the de�nition of the oracle in the

MWU framework, as recapped in Lemma 3.3. Thus, by running the

game for) = Θ(, log</Y2) rounds and processing all the groups

with importance values updated according to Lemma 3.3, we get

the following guarantee: for each 8 ∈ [<], we have ∑)
C=1 60?

C (8) ≤
(1 + Y)) . That is,

)∑
C=1

∑C (!/))
ℓ=(C−1) (!/))+1

(∑
9∈(8∩%ℓ j̄

ℓ
9

)2
(1 + Y) B)

=

∑!
ℓ=1

(∑
9∈(8∩%ℓ j̄

ℓ
9

)2
(1 + Y) B)

≤ (1 + Y)),
which implies

!∑
ℓ=1

©
«

∑
9∈(8∩%ℓ

j̄ℓ9
ª®
¬
2

≤ (1 + Y)2B ≤ (1 + 3Y)B .

There is also the trivial bound that for each 8 ∈ [<] and ℓ ∈ [!],
we have

©
«

∑
9∈(8∩%ℓ

j̄ℓ9
ª®
¬
2

≤ (1 + Y):B/! ≤ $ (log<) · B/!.

These two conditions prepare us to invoke Lemma 4.1. In partic-

ular, for each 8 ∈ [<] and each ℓ ∈ [!], de�ne 0′8ℓ =
(∑

9∈(8∩%ℓ j̄ℓ
)
,

and de�ne Δ′
= (1 + 3Y) B . These satisfy the condition of Lemma 4.1

for =′ = !, in the sense that for each 8 ∈ [<], we have∑=′
ℓ=1 (0′8ℓ)

2 ≤
Δ
′ and max8∈[<],ℓ∈[!] (0′8ℓ)

2 ≤ log5 (=′<)
=′ Δ

′. Thus, by invoking

Lemma 4.1, we get a vector j ′ ∈ {−1, 1}! with the guarantee that

for each set 8 ∈ [<], we have (∑=′
ℓ=1 0

′
8ℓ j

′
ℓ)
2
= 2(�′ log<) · Δ′.

Hence, we can conclude that for every set 8 ∈ [<], we have

(
∑
9∈(8

j 9)2 = (
=′∑
ℓ=1

∑
9∈(8∩%ℓ

j 9)2 = (
=′∑
ℓ=1

∑
9∈(8∩%ℓ

j̄ 9 j
′
ℓ)
2

= (
=′∑
ℓ=1

j ′ℓ
∑

9∈(8∩%ℓ
j̄ 9)2 = (

=′∑
ℓ=1

j ′ℓ0
′
8ℓ)

2

≤ 2(�′ log<) · Δ′ ≤ (3�′ log<) · B

which satis�es the desired output guarantee. □

REFERENCES
[1] Daniel Anderson and Guy E Blelloch. 2021. Parallel Minimum Cuts in

$ (<;>62=) Work and Low Depth. In ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA).

[2] Alexandr Andoni, Cli�ord Stein, and Peilin Zhong. 2020. Parallel approximate
undirected shortest paths via low hop emulators. In ACM SIGACT Symposium on
Theory of Computing (STOC). 322–335.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of computing 8, 1
(2012), 121–164.

[4] Nikhil Bansal. 2010. Constructive algorithms for discrepancy minimization. In
IEEE Symposium on Foundations of Computer Science (FOCS). 3–10.

[5] Bonnie Berger and John Rompel. 1989. Simulating (log2 =)-wise independence
in NC. In IEEE Symposium on Foundations of Computer Science (FOCS). 2–7.

[6] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3
(1996), 85–97.

[7] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Parallelism in ran-
domized incremental algorithms. Journal of the ACM (JACM) 67, 5 (2020), 1–27.

[8] Richard P Brent. 1974. The parallel evaluation of general arithmetic expressions.
Journal of the ACM (JACM) 21, 2 (1974), 201–206.

[9] Nairen Cao, Jeremy T Fineman, and Katina Russell. 2020. E�cient construction
of directed hopsets and parallel approximate shortest paths. In ACM SIGACT
Symposium on Theory of Computing (STOC). 336–349.

[10] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2021. Theoretically e�cient
parallel graph algorithms can be fast and scalable. ACM Transactions on Parallel
Computing (TOPC) 8, 1 (2021), 1–70.

[11] Jeremy T Fineman. 2018. Nearly work-e�cient parallel algorithm for digraph
reachability. In ACM Symposium on Theory of Computing (STOC). 457–470.

[12] Mohsen Gha�ari, Christoph Grunau, and Václav Rozhoň. 2023. Work-E�cient
Parallel Derandomization I: Cherno�-like Concentrations via Pairwise Indepen-
dence. In IEEE Symposium on Foundations of Computer Science (FOCS). to appear.

[13] David G Harris. 2019. Deterministic parallel algorithms for bilinear objective
functions. Algorithmica 81 (2019), 1288–1318.

[14] Joseph JáJá. 1992. An introduction to parallel algorithms. Reading, MA: Addison-
Wesley 10 (1992), 133889.

[15] Arun Jambulapati, Yang P Liu, and Aaron Sidford. 2019. Parallel reachability in
almost linear work and square root depth. In IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE, 1664–1686.

[16] DR Karger and D Koller. 1994. (De) randomized construction of small sample
spaces in NC. In IEEE Symposium on Foundations of Computer Science (FOCS).
252–263.

[17] Howard J Karlo� and David B Shmoys. 1987. E�cient parallel algorithms for
edge coloring problems. Journal of Algorithms 8, 1 (1987), 39–52.

[18] Gavriela Freund Lev, Nicholas Pippenger, and Leslie G Valiant. 1981. A fast
parallel algorithm for routing in permutation networks. IEEE transactions on
Computers 100, 2 (1981), 93–100.

[19] Jason Li. 2020. Faster parallel algorithm for approximate shortest path. In ACM
SIGACT Symposium on Theory of Computing (STOC). 308–321.

[20] Shachar Lovett and Raghu Meka. 2012. Constructive Discrepancy Minimization
by Walking on the Edges. In IEEE Symposium on Foundations of Computer Science
(FOCS). 61–67.

1899

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mohsen Gha�ari and Christoph Grunau

[21] Michael Luby. 1988. Removing randomness in parallel computation without a
processor penalty. In IEEE Symposium on Foundations of Computer Science (FOCS).
162–173.

[22] Sanjeev Mahajan, Edgar A Ramos, and KV Subrahmanyam. 2001. Solving some
discrepancy problems in NC. Algorithmica 29, 3 (2001), 371–395.

[23] Rajeev Motwani, Joseph Naor, and Moni Naor. 1989. The probabilistic method
yields deterministic parallel algorithms. In IEEE Symposium on Foundations of
Computer Science (FOCS). 8–13.

[24] Rajeev Motwani, Joseph Se� Naor, and Moni Naor. 1994. The probabilistic
method yields deterministic parallel algorithms. J. Comput. System Sci. 49, 3
(1994), 478–516.

[25] Prabhakar Raghavan. 1986. Probabilistic construction of deterministic algorithms:
Approximating packing integer programs. In IEEE Symposium on Foundations of
Computer Science (FOCS).

[26] Václav Rozhoň, Michael Elkin, Christoph Grunau, and Bernhard Haeupler. 2022.
Deterministic low-diameter decompositions for weighted graphs and distributed
and parallel applications. In IEEE Symposium on Foundations of Computer Science
(FOCS). 1114–1121.

[27] Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason
Li. 2022. Undirected (1+ Y)-shortest paths via minor-aggregates: near-optimal
deterministic parallel and distributed algorithms. In ACM Symposium on Theory
of Computing (STOC). 478–487.

[28] Joel Spencer. 1977. Balancing games. Journal of Combinatorial Theory, Series B
23, 1 (1977), 68–74.

[29] J. Spencer. 1985. Six standard deviations su�ce. Trans. of the American Mathe-
matical Society 289, 2 (1985), 679–706.

Received 13-NOV-2023; accepted 2024-02-11

1900

