
ETH Library

Ghost Value Augmentation for k-
Edge-Connectivity

Conference Paper

Author(s):
Hershkowitz, D. Ellis; Klein, Nathan D.; Zenklusen, Rico

Publication date:
2024-06

Permanent link:
https://doi.org/10.3929/ethz-b-000680547

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3618260.3649715

Funding acknowledgement:
184622 - Toward Stronger Approximation Algorithms for Fundamental Network Design and Optimization Problems (SNF)
817750 - Fundamental Problems at the Interface of Combinatorial Optimization with Integer Programming and Online
Optimization (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000680547
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3618260.3649715
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Ghost Value Augmentation for k-Edge-Connectivity

D. Ellis Hershkowitz
Brown University
Providence, USA

delhersh@brown.edu

Nathan Klein
Institute for Advanced Study

Princeton, USA
nklein@ias.edu

Rico Zenklusen
ETH Zurich

Zurich, Switzerland
ricoz@ethz.ch

ABSTRACT

We give a poly-time algorithm for the :-edge-connected spanning
subgraph (:-ECSS) problem that returns a solution of cost no greater
than the cheapest (: + 10)-ECSS on the same graph. Our approach
enhances the iterative relaxation framework with a new ingredi-
ent, which we call ghost values, that allows for high sparsity in
intermediate problems.

Our guarantees improve upon the best-known approximation
factor of 2 for:-ECSSwhenever the optimal value of (:+10)-ECSS is
close to that of :-ECSS. This is a property that holds for the closely
related problem :-edge-connected spanning multi-subgraph (:-
ECSM), which is identical to :-ECSS except edges can be selected
multiple times at the same cost. As a consequence, we obtain a
(1 +$ (1/:))-approximation algorithm for :-ECSM, which resolves
a conjecture of Pritchard and improves upon a recent (1 +$ (1/√:))-
approximation algorithm of Karlin, Klein, Oveis Gharan, and Zhang.
Moreover, we present a matching lower bound for :-ECSM, show-
ing that our approximation ratio is tight up to the constant factor
in $ (1/:), unless P = NP.

CCS CONCEPTS

• Theory of computation → Routing and network design

problems.

KEYWORDS

Approximation Algorithms, Edge Connectivity, Network Design,
Iterative Rounding

ACM Reference Format:

D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen. 2024. Ghost Value
Augmentation for k-Edge-Connectivity. In Proceedings of the 56th Annual

ACM Symposium on Theory of Computing (STOC ’24), June 24–28, 2024,

Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3618260.3649715

1 INTRODUCTION

Computing :-edge-connected subgraphs of minimum cost is a fun-
damental problem in combinatorial optimization. For : = 1, this
is the famous minimum spanning tree (MST) problem. For : ≥ 2,
this problem is known as the :-edge-connected spanning subgraph
(:-ECSS) problem. Formally, in :-ECSS we are given a multi-graph
� = (+ , �) with an edge cost function 2 : � → R≥0 and our goal

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649715

is to �nd a set of edges � ⊆ � where (+ , �) is :-edge-connected
while minimizing 2 (�) ≔ ∑

4∈� 2 (4).
For : ≥ 2, :-ECSS is APX-Hard. More precisely, there exists

an n > 0 such that, unless P = NP, there is no poly-time (1 +
n)-approximate algorithm for :-ECSS for any : ≥ 2 [50]. Thus,
somewhat surprisingly, the problem does not seem to get easier as
: grows. The problem and its special cases have been extensively
studied [1, 4, 8, 9, 12, 15–18, 24, 25, 28, 29, 32, 40, 47, 56–58], but
for any : ≥ 2 the best poly-time approximation algorithm is a
four-decades-old 2-approximation due to [20, 21].1 Designing a
better-than-2 approximation algorithm for any : ≥ 2 is a major
open problem. Connectivity problems have also been considered
for the notion of vertex connectivity (see, e.g., [2, 3, 14, 31, 46, 48]).

In this work, we show that one can achieve a close-to-1 approx-
imation for :-ECSS whenever the cost of the optimal (: + 10)-
edge-connected solution is close to the cost of the optimal :-edge-
connected solution. Speci�cally, we give a resource augmentation

result for :-ECSS whereby we compare the quality of our algo-
rithm’s output to an adversary that has fewer resources (namely,
the resource of cost budget):

We show that one can poly-time compute a :-edge-connected graph

with cost no greater than that of the optimal solution which

(: + 10)-edge-connects the graph.

Similar resource augmentation results are known for other well-
studied network design problems such as in the minimum cost
bounded degree spanning tree problem [10, 26, 41, 42, 51]; here,
the state-of-the-art is an algorithm of [54], which shows that one
can �nd a spanning tree of maximum degree 3 that has cost no
greater than the spanning tree of maximum degree 3 − 1 in poly-
time. Likewise, resource augmentation is often considered in online
and scheduling algorithms [11, 33, 49, 52, 55]. However, to our
knowledge, no similar results are known for :-connectivity-type
problems, and standard techniques [45] would require augmenting
the budget by : rather than $ (1).

Our result is cost-competitive with the optimal LP solution, de-
�ned as follows. For ease of presentation, we �x an arbitrary vertex
A ∈ + , called the root, and represent each cut ((,+ \ () by the side
that does not contain A . Letting X (() be the set of edges crossing a
cut (⊆ + and G (�) ≔ ∑

4∈� G4 for � ⊆ �, we have the following
LP for :-ECSS.

min 2⊤G
G (X (()) ≥ : ∀(⊆ + \ {A }, (≠ ∅

G ∈ [0, 1]�
(:−ECSS LP)

1It also follows from the iterative rounding of [34].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1853

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0862-3715
https://orcid.org/0009-0003-4052-5864
https://orcid.org/0000-0002-7148-9304
https://doi.org/10.1145/3618260.3649715
https://doi.org/10.1145/3618260.3649715
https://doi.org/10.1145/3618260.3649715
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649715&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen

Denoting by LPOPT:−ECSS the cost of an optimal solution to
:−ECSS LP and by OPT:−ECSS the cost of the optimal :-ECSS
solution, our main result for :-ECSS is as follows.

Theorem 1.1. There is a poly-time algorithm that, for any :-ECSS

instance with : ∈ Z≥1, returns a :-ECSS solution of cost at most

LPOPT(:+10)−ECSS ≤ OPT(:+10)−ECSS.

Equivalently, we show that one can �nd in poly-time a (: − 10)-
edge-connected subgraph of cost at mostOPT:−ECSS. Thus, in some
sense, our result demonstrates that achieving the last small constant
amount of connectivity is the NP-hard part of :-ECSS.

One might reasonably wonder if it is often the case that the
optimal :-edge-connected solution has cost close to the optimal
(: + 10)-edge-connected solution. In fact, a well-studied problem
closely related to :-ECSS called the :-edge-connected spanning
multi-subgraph (:-ECSM) problem satis�es exactly this property.
:-ECSM is the same as :-ECSS except our solution � is a multiset
that can include each edge of � as many times as we want (where
we pay for every copy of an edge). The canonical LP for :-ECSM is
the same as that of :-ECSS but has no upper bound on how many
times we choose an edge.

min 2⊤G
G (X (()) ≥ : ∀(⊆ + \ {A }, (≠ ∅

G ∈ R�≥0 .
(:−ECSM LP)

We notate by LPOPT:−ECSM the cost of an optimal solution to
:−ECSM LP and by OPT:−ECSM the cost of an optimal :-ECSM so-
lution. It is easy to see that scaling the optimal :-ECSM LP solution
by (: +10)/: results in a (: +10)-ECSM LP solution, so we have the
claimed relation between the costs of the optimal :-edge-connected
and (: + 10)-edge-connected LP solutions:

LPOPT(:+10)−ECSM ≤
(
1 + 10

:

)
· LPOPT:−ECSM . (1)

Unlike :-ECSS, it is known that, as : → ∞, approximation
factors arbitrarily close to 1 are possible; however, prior to this work,
the correct asymptotic dependence on : was not fully understood.
[24] showed that if the graph � is unweighted (i.e., every edge has
cost 1), then :-ECSM (and :-ECSS) admits (1 + 2/:)-approximation
algorithms. This led Pritchard to pose the following conjecture for
:-ECSM (with general weights).

Conjecture 1.2 ([50]). :-ECSM admits a poly-time (1 + $ (1/:))-
approximation algorithm.

Very recently, [38] made signi�cant progress on this conjecture,
showing there is a poly-time (1+5.06/√:)-approximation for :-ECSM.
However, their approach provably does not give better than a (1 +
$ (1/√:))-approximation.

The result of [38] added to a considerable body of work on :-
ECSM. The �rst notable algorithm for :-ECSM is due to [20, 21],
who gave a 3/2-approximation algorithm for even : and a (3/2 +
$ (1/:)) for odd : . This algorithm essentially follows by a reduc-
tion to the well-known Christo�des-Serdyukov algorithm for the
traveling salesperson problem (TSP). Despite many subsequent
works on :-ECSM [5–7, 13, 22, 23, 35, 39, 43, 50, 53], this algorithm
of [20, 21] remained the best approximation algorithm for nearly
four decades, except when the underlying graph is unweighted,

: ≫ log=, or : = 2. Recently, this was very slightly improved
to a (3/2 − n)-approximation for even : where n = 10−36 [36, 37].
Thus, for large : , the algorithm of [38] considerably improved on
all known prior work for :-ECSM and gave the �rst algorithm with
approximation ratio tending to 1 as : → ∞ independent of =.

As an immediate consequence of Theorem 1.1 and Equation (1),
we are able to settle Pritchard’s conjecture with a poly-time (1 +
$ (1/:))-approximation for :-ECSM.

Theorem 1.3. There is a poly-time algorithm for :-ECSM that, for

any :-ECSM instance with : ∈ Z≥1, returns a :-ECSM solution of

cost at most (1 + 10
:
) · LPOPT:−ECSM ≤ (1 + 10

:
) · OPT:−ECSM.

Proof of Theorem 1.3 assuming : is given in unary. We
give an algorithm which runs in poly-time assuming : is repre-
sented in unary in the input. See this proof in Section 2 for a more
general proof in which we assume : is represented in binary.

Suppose our instance of ECSM is on graph � = (+ , �) with
costs 2 , and optimal : and : + 10 LP costs LPOPT:−ECSM and
LPOPT(:+10)−ECSM, respectively. Then, consider the (: + 10)-ECSS
instance on � ′

= (+ , �′) with costs 2 and optimal LP cost
LPOPT(:+10)−ECSS, where �

′ is � with : + 10 copies of each 4 ∈ �.
Apply Theorem 1.1 to our (: + 10)-ECSS instance to compute

a multiset � ⊆ �′ which :-edge-connects + . By construction, �
is a feasible solution to our :-ECSM instance, when interpreting
the selection of parallel edges by one multi-selection of the edge
in � they correspond to (and any :-ECSM solution on � can be
interpreted as a solution to :-ECSS on � ′), and by Equation (1) it
has cost at most

LPOPT(:+10)−ECSS ≤ LPOPT(:+10)−ECSM

≤
(
1 + 10

:

)
· LPOPT:−ECSM . □

Our algorithm improves upon the 1 + 5.06/√: algorithm of [38] for
all relevant : (i.e., those in which that algorithm was better than
3/2 − n).

As previously noted [27, 50], a poly-time algorithm for :-ECSM
whose solutions are approximate with respect to LPOPT:−ECSM
gives an approximation algorithm with the same approximation
bounds for subset (a.k.a. Steiner) :-ECSM. Here, we only need to
:-edge-connect a subset of the nodes. Thus, as a consequence of
Theorem 1.3, we get a 1 + 10/: for this more general subset :-ECSM
problem. See the full version for a formal statement of this problem
and the result.

Complementing this solution to Pritchard’s conjecture, we show
that the dependence on : in our algorithm is essentially optimal.
Speci�cally, we show that Theorem 1.3 is almost tight by showing
(1+Ω(1/:))-hardness-of-approximation for :-ECSM. (The tightness
is up to the constant in front of the term 1/:.)

Theorem 1.4. There exists a constant n > 0 such that there does

not exist a poly-time algorithm which, given an instance of (un-

weighted) :-ECSM where : is part of the input, always returns a(
1 + n

:

)
-approximate solution, unless P = NP.

Such a hardness result was also identi�ed as an open question by
[50].

1854

Ghost Value Augmentation for k-Edge-Connectivity STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

We �rst give a proof sketch in Section 1.1. In Section 2, we
then describe our main technical rounding theorem and how it
implies our results on :-ECSS and :-ECSM. In particular, we show
it allows us to compute a :-ECSS solution with cost at most that
of the optimal (: + 10)-ECSS solution, and we also show it implies
a 1 +$ (1/:)-approximate :-ECSM algorithm—settling Pritchard’s
:-ECSM conjecture. Later, in Section 5, we further discuss our
1 + Ω(1/:) hardness of approximation result for :-ECSM, although
we defer the proof to the full version. In Section 3, we describe
our algorithm and give further intuition on why it gives strong
guarantees before formally analyzing its performance in Section 4.

1.1 Iterative Relaxation Barriers and Ghost
Value Augmentations to Overcome Them

First note that for the rest of the paper, to slightly simplify notation,
we will work with a solution to the :-ECSS LP and round it to
a (: − 10)-edge-connected graph. This is of course equivalent to
working with :-edge-connectivity and the (: + 10)-ECSS LP.

Our approach to showing Theorem 1.1 is to apply iterative LP
relaxation methods to the :-ECSS LP and obtain a (: − 10)-edge-
connected graph. Iterative LP methods are a well-studied approach
�rst pioneered by [34]. See [44] for a comprehensive overview.
Generally, iterative relaxation algorithms repeatedly compute an
optimal solution to a suitable LP and then make progress towards
producing a desired output by either �nding an edge with LP value
0 that can be deleted, a newly integral edge that can be frozen at its
integral value, or some LP constraint which is nearly satis�ed and
can be dropped from future LP recomputations while approximately
preserving feasibility.

Applying such an iterative relaxation approach to the :-ECSS
LP is naturally suited to proving Theorem 1.1 since we are allowed
$ (1) slack in connectivity. Speci�cally, one might hope to argue
that if no edge can be frozen then there is some constraint of the :-
ECSS LP corresponding to a cut which has at least : −$ (1) frozen
edges crossing it. Such a constraint can be safely dropped from
future recomputations since our ultimate goal allows for slack$ (1)
in connectivity. However, it is not too hard to see that such a natural
approach faces a signi�cant barrier and so a non-standard idea is
required.

In what follows, we describe this approach and barrier in more
detail and how our key non-standard idea of “ghost value augmen-
tations” allows us to overcome this barrier.

A Standard Iterative Relaxation Approach. A�rst attempt to prove
Theorem 1.1 is as follows, where we replace the constant 10 with
an arbitrary constant 2 ∈ Z≥1. Repeat the following until there are
no remaining variables.

(i) Let ~ be an extreme point solution to :-ECSS LP. For each
edge 4 with ~4 = 0, delete 4 from the LP. For each edge 4
with ~4 = 1, add the constraint G4 = 1 to the LP and call 4
“frozen.” We let � be all edges we have frozen so far.

(ii) Now suppose that whenever we cannot delete or freeze a new
edge, there is always a cut (⊆ + \ {A } such that |X (() ∩ � | ≥
: − 2 . We call this the light cut property. In this case, we can
delete the constraint G (X (()) ≥ : from the LP. This is a safe
operation since X (() already has at least : − 2 frozen edges.

Once there are no remaining variables, we have an integral solu-
tion and can return the set of frozen edges. Provided one can still
e�ciently solve the LP even after dropping constraints and so long
as the light cut property always holds when we cannot delete or
freeze a new edge, standard arguments would demonstrate that the
above algorithm always returns an integral (: − 2)-ECSS solution
of cost no more than the cost of LPOPT:−ECSS.

A Barrier to the Standard Approach. We do not know if the light
cut property is true or not, and proving or disproving it is a very
interesting open problem. However, there is a major barrier to
proving it using known techniques for iterative relaxation, which
we detail here.

To prove results like the light cut property, one generally �rst
demonstrates that the set of tight constraints at any stage of the
algorithm’s execution can be “uncrossed” to obtain a laminar fam-
ily.2 In our case, a set (⊆ + is tight if ~ (X (()) = : and one wants
to show that there is a laminar family L ⊆ 2+ such that every con-
straint G (X (()) ≥ : where (is tight is spanned by the constraints
{G (X (()) ≥ : : (∈ L}.3

The major barrier to the standard iterative relaxation approach
is that it does not appear that uncrossing is possible. One su�cient
criteria for uncrossing is if the constraints can be expressed as
G (X (()) ≥ 5 (() where the “requirement function” 5 : + → Z≥0 is
skew supermodular [34].

A function 5 : + → Z≥0 is called skew supermodular if for all
(,) ⊆ + we have either

5 (() + 5 ()) ≤ 5 ((∩)) + 5 ((∪)), or
5 (() + 5 ()) ≤ 5 ((∖)) + 5 () ∖ ().

At the beginning of our process, 5 (() = : for all (⊆ + , and
thus both of these inequalities trivially hold with equality. However,
once we drop a constraint (for which we had |� ∩ X (() | ≥ : − 2 ,
this property fails to hold. In particular, we may have dropped the
constraint for (∩) and (∖) so that 5 ((∩)) = 5 ((∖)) = 0.
Thus, in this situation, the left-hand side of each equation would be
2: and the right-hand side : . For example, the situation in Figure 1
could occur, where we dropped cuts with at least : −2 frozen edges.

Figure 1 shows that we cannot apply the result of Jain as a black
box. However, one can still successfully uncross in this situation.
The reason is that the constraints (∖),) ∖ (, (∩), (∪) are all
still tight. Therefore, even though the constraints are not present
in the LP, one can still replace the constraints (and) with the
constraints (∖) and) ∖ ((or (∩) and (∪)).

The true issue arises when the connectivity of some sets drop
below : , as in Figure 2. In Figure 2, none of (∖) ,) ∖ (, (∩) , and
(∪) are tight constraints. One could still consider adding them
to the family. However, if we did this, we would face two major
issues.

(1) The constraints may not be integers, as is the case for all of
the sets here. This leads to problems in the next phase of

2A family of sets L is called laminar if it does not contain any pair of intersecting
sets (,) , which are sets such that (∩) ∉ {(,) , ∅}. Moreover, two sets (,) ⊆ + are
crossing if all of (∩) ,+ \ ((∪)) , (\) , and) \ (are non-empty. We typically use
these notions for vertex sets that correspond to cuts. Because we assume that cuts do
not contain A , the notions of crossing and intersecting sets coincide for cuts.
3Here, and throughout this work, we treat G as a variable and ~ as a �xed solution to
our LP.

1855

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen

:
2 − 2 :

2
:
2 − 2

2 2 :
2

()

Figure 1: An example where skew supermodularity of the

requirement function fails. The solid blue edges represent

collections of frozen edges between sets. The dashed edges

represent collections of non-frozen edges. Here, (∖) and

(∩) have been dropped as they have at least :−2 frozen edges.

However, (,) ,)∖(, and (∪) have fewer than:−2 frozen edges

and thus remain. So, 5 (() = 5 ()) = : but 5 ((∖)) = 5 ((∩)) = 0.

the iterative relaxation argument which uses integrality of
the constraints to argue that if (,) are two tight sets in the
family then the symmetric di�erence X (()ΔX ()) has size at
least 2.

(2) Unlike in the case in which (and) are minimum cuts of the
graph (in which we can apply standard uncrossing) it is not
necessarily the case that

jX (() + jX ())
= jX ((\)) + jX () \() ,

where j� for � ⊆ � is the vector in {0, 1}� that is 1 at the
edges in � and 0 elsewhere. In this example this equality
does not hold due to the edge with value 0. Similarly, it is
not necessarily the case that

jX (() + jX ())
= jX ((∩)) + jX ((∪)) .

To see this, one can extend the example by adding a small
fractional edge between (∖) to) ∖ (and adjusting other
edges accordingly (since only (,) are tight, this is not di�-
cult).
However, relations as the two highlighted above are central
in classical uncrossing arguments.

Therefore, to prove the light cut property, one would likely have to
deal with a fairly complicated family of tight sets.

Overcoming the Barrier with Ghost Values. Instead of working
with this uncrossable family, we introduce a relaxation approach
we call “ghost value augmentation.” We consider the LP solution
~ together with a ghost vector 6 that augments ~, so that the LP
constraints are now of the form G (X (())+6(X (()) = (G+6) (X (()) ≥
: . We say such a constraint is tight with respect to solution ~ if
(~ +6) (X (()) = : . This ghost vector will help us achieve uncrossing
of tight sets. However, crucially, it will never be used in the �nal
solution. This ensures that we never increase the cost of the solution
compared to the LP.

We will still follow the general framework of iterative relax-
ation. Given an extreme point solution ~, we will delete edges with
~4 = 0 and freeze edges with ~4 = 1. And, as before, we will drop
constraints corresponding to tight sets (with the property that
|X (() ∩ � | ≥ : −$ (1) (where � is the set of frozen edges). However,
we will only drop such a set (if:

:
2 − ℓ :

2 − ℓ + 2
:
2 − ℓ

ℓ − 0 ℓ :
2 + ℓ − 2 − 0

0()

:
2 − 6 :

2 − 4 :
2 − 6

6 − 0 6 :
2 + 4 − 0

0()

Figure 2: An example of where uncrossing breaks down,

where in the top �gure we let ℓ = ⌈2+12 ⌉ and in the bottom

�gure we assume 2 = 10 for concreteness. The blue edges

represent collections of frozen edges and the dotted edges

represent collections of fractional edges. To ensure feasibil-

ity we let 0 < 0 < 1. In this example, we drop cuts when there

are : − 2 frozen edges (or : − 10 in the bottom picture). Then,

in both examples we have dropped (∖) and (∩) , but we

have not yet dropped (and) .

(i) (is a minimal tight set corresponding to an LP con-

straint. We restrict ourselves to tight sets for which there is
no) ⊊ (such that the cut constraint corresponding to) is
tight and still in the LP. Such sets (are desirable because they
have the additional property that they are either vertices or
all edges with both endpoints inside them are frozen.

(ii) X (() has only $ (1) fractional edges. This allows us to en-
sure that the cut X (() does not change much over the course
of the remainder of the algorithm. In particular, this will let
us derive upper bounds on the number of edges crossing a
dropped set, which in turn helps to lower bound the value
of other cuts.

Of course, point (ii) implies that there are : −$ (1) frozen edges, so
it is su�cient to check (i) and (ii) for all sets. These points together
allow us to argue that after dropping such a constraint (with
|(| ≥ 2, it is safe to contract (to a vertex.4 This is because cuts
contained in (will not change by more than $ (1) throughout the
execution of the entire algorithm, as they only contain edges inside
(, which are all frozen by (i), and edges in X ((), of which all but
$ (1) are frozen by (ii). See Figure 3.

Contraction now gives us the crucial property that at every
iteration of the algorithm, operating on a graph� = (+ , �) resulting
from contracting some number of sets, we have ~ (X (()) ≥ : for all
(⊆ + ∖ {A } for which 2 ≤ |(|. For all vertices E ∈ + , we only have
the weaker guarantee that ~ (X (E)) ≥ : −$ (1) where we use the
notation X (E) = X ({E}). Even though the connectivity of the graph

4Contracting a vertex set (⊆ + in � = (+ , �) means that we remove (from +
and add a single new vertex (. An edge (D, E) ∈ � before contraction with D ∈ (
and E ∈ + \ (will become an edge between (and E; moreover, edges with both
endpoints in (will be removed in the contracted graph. As is common, when having
an edge 4 = (D, E) ∈ � before contraction that gets transformed into an edge ((, E)
after contraction, we still consider this to be the same edge. In particular, any LP
value or constraint on 4 before contraction will be interpreted as a value or constraint,
respectively, on the new edge after contraction.

1856

Ghost Value Augmentation for k-Edge-Connectivity STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

:
2 + 5

:
2 + 5

:
2 + 5

:
2 + 5

:
2 − 4

Figure 3: The blue edges are frozen, and the dotted edges are

fractional. Consider the red set (with 2 incident fractional

edges. Since X (() has only 2 fractional edges, and the edges

inside (are all frozen, any set contained in (is already safe,

as is the case with the blue vertex.

is not uniform, the fact that the only cuts below : are the vertices
allows us to show that either:

(a) There is an edge 4 = (D, E) with (~ + 6) (� (D, E)) ∈ [:2 −
$ (1), :2) (where � (D, E) is the set of edges between D and
E). In this case, we perform a ghost value augmentation: we
arti�cially increase the value of (~ +6) (� (D, E)) to at least :

2
by increasing 64 by $ (1) for an edge in � (D, E).

(b) Otherwise, the set of tight constraints can be successfully
uncrossed. In this case, we argue that there must be a set (
that is safe to drop that has no tight children and at most 3
fractional edges. If (is not a singleton, then we additionally
contract it.

At �rst, (a) may look like a strange property to expect for :-ECSS
solutions. Indeed, the underlying input graph may not have any
multi-edges, so that at the �rst iteration ~ (� (D, E)) ≤ 1 for all
vertices D, E . However, as sets are contracted, these structures may
begin to emerge as barriers for uncrossing. For example, in Fig. 2,
since (∖) and (∩) have been dropped, they are now singletons.
This allows us to study ~ (� (D, E)) for {D} = (∖) and {E} = (∩) .
And one can see that ~ (� (D, E)) = :

2 −$ (1), giving us a candidate
for ghost value augmentation.5 For more intuition about why these
structures should appear, one can study the cactus representation of
minimum cuts (see [19] for a nice overview of this representation).

In both cases (a) and (b) we make progress: we either drop a
constraint that is safe to drop (and possibly contract its correspond-
ing set), or we �x an edge in our current graph to at least :

2 . We
describe this process in more detail in Section 3. In Section 4 we
show that one of these two cases must occur. We defer the proof
that at the end of the algorithm the frozen edges (:−$ (1))-connect
the graph to the full version.

2 MAIN ROUNDING THEOREM

Our main result will follow immediately from a general rounding
theorem.

5Note that Fig. 2 is not quite representative of the situations we will arrive at over
the course of the algorithm since it was designed to handle the situation in which
we drop all constraints with : − $ (1) frozen edges and not$ (1) fractional edges.
However, it is quite similar to situations we study in the following sections. See Fig. 4
for an instance tailored to our algorithm which shows the importance of ghost value
augmentation.

Theorem 2.1 (Main Rounding Theorem). There is a poly-time

algorithm that, given ~ ∈ R�≥0 where ~ (X (()) ≥ : for all non-empty

(⊊ + , returns a I ∈ Z�≥0 that is:
(1) Cost-Preserved: 2⊤I ≤ 2⊤~;
(2) Integrally-Rounded: I4 ∈ {⌊~4 ⌋, ⌈~4 ⌉};
(3) Highly-Connected: I (X (()) ≥ : − 9 − ⊮ [: odd] for all

non-empty (⊊ + .6

We now observe that both our main result for :-ECSS (The-
orem 1.1) and our main result for :-ECSM in polynomial time
(Theorem 1.3) are immediate from this rounding theorem.

Theorem 1.1. There is a poly-time algorithm that, for any :-ECSS

instance with : ∈ Z≥1, returns a :-ECSS solution of cost at most

LPOPT(:+10)−ECSS ≤ OPT(:+10)−ECSS.

Proof. The result is immediate from applying Theorem 2.1 to
any optimal solution ~ to (: + 10)-ECSS LP. ~ is poly-time com-
putable by the Ellipsoid Method [30] and standard separation ora-
cles. □

We note that in fact the same proof shows we can get the same
guarantee for a slightly more general problem than :-ECSS. In
particular, edges can be given arbitrary lower and upper bounds,
and we can still obtain a solution in polynomial time (this includes
the case in which : and possibly the lower and upper bounds are
exponentially large compared to the input size).

Theorem 1.3. There is a poly-time algorithm for :-ECSM that, for

any :-ECSM instance with : ∈ Z≥1, returns a :-ECSM solution of

cost at most (1 + 10
:
) · LPOPT:−ECSM ≤ (1 + 10

:
) · OPT:−ECSM.

Proof of Theorem 1.3. We now give the proof without assum-
ing that : is given in unary. Let ~ be an optimal solution to (: + 10)-
ECSS LP of cost at most LPOPT(:+10)−ECSM. Next, apply Theo-
rem 2.1 to ~ to compute a solution I. Return (the edge multiset
naturally corresponding to) I as our solution. ~ is computable by
the Ellipsoid Method [30] and standard separation oracles. Further-
more, by the guarantees of Theorem 2.1 we have that our solution
is feasible for :-ECSM and computable in poly-time. Lastly, by
Theorem 2.1 and Equation (1) its cost is upper bounded by

LPOPT(:+10)−ECSM ≤
(
1 + 10

:

)
· LPOPT:−ECSM . □

Thus, in what follows, we focus on showing Theorem 2.1. Further-
more, observe that in order to do so it su�ces to show the result
for even : since, if we are given an odd : , applying the result to
(the even number) : − 1 immediately gives the result for (the odd
number) : . Thus, in what follows we assume that : is even.

3 ALGORITHM FOR THE ROUNDING
THEOREM

Having reduced our problem to showing Theorem 2.1, we proceed
to describe the algorithm for Theorem 2.1.

As discussed earlier, our algorithm for Theorem 2.1 uses iterative
relaxation techniques. Informally our algorithm is as follows. We
repeatedly solve an LP that tries to round ~. Each time we solve
our LP, either our solution is integral in which case we return our

6⊮ [: odd] is 1 if : is odd and 0 otherwise.

1857

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen

solution, it has a newly integral edge which we freeze at its current
value, it has an edge with value 0 which we delete, or we perform
one of the following two relaxations of our LP:

(1) Ghost Value Augmentation: we costlessly increase the LP
value between two carefully chosen vertices. Speci�cally, if
there are two vertices D and E that have nearly :/2 total LP
value on edges between them (namely total edge value in
[:/2 − 2, :/2)) then we add “ghost values” by increasing the
LP value between D and E by 2 at cost 0.

(2) Drop/Contract: we drop a carefully chosen set’s constraint
and contract it. Speci�cally, if there is a tight set ((i.e., a set
with exactly : total LP edge mass leaving it) corresponding
to a constraint in the LP, such that (is (i) minimal in the
sense that it contains no strict subset corresponding to a
tight LP constraint, and (ii) has at most 3 fractional edges
incident to it, then we remove the constraint corresponding
to (from our LP and (if the set contains 2 or more vertices)
we contract it into a single vertex.

As we later argue, we will always be in one of the above cases.
The �nal solution we return will ignore the ghost values, and we
will show that even after ignoring the ghost values our solution is
well-connected.

We now more precisely de�ne our LP given an input vector
~ ∈ R�≥0 which we would like to round. We denote by ⌊~⌋ and ⌈~⌉
the integral vector obtained from ~ by taking the �oor and ceiling
of each component respectively. We let G ∈ [⌊~⌋, ⌈~⌉] denote that
⌊~4 ⌋ ≤ G4 ≤ ⌈~4 ⌉ for each 4 ∈ �. To achieve a clean and elegant
bookkeeping of our ghost values, we will save them in a separate
vector 6 ∈ Z�≥0. Thus, for a given~ and 6, the LP we will solve is the
following (potentially with extra constraints for frozen coordinates).

min 2⊤G
G (X (()) ≥ : − 6(X (()) ∀(⊆ + \ {A }, (≠ ∅

G ∈ [⌊~⌋, ⌈~⌉] .
(:−EC Ghost LP)

For a ghost value vector 6 ∈ Z�≥0, we call the constraint G (X (()) ≥
: −6(X (()) the 6-cut constraint for (. We say that such a constraint
is ~-tight if ~ (X (()) = : − 6(X (()). Analogously, we will say that
a constraint G4 = ?4 for ?4 ∈ Z≥1 on a single edge 4 is ~-tight if
~4 = ?4 .

Our algorithm is formally described in Algorithm 1 and uses the
following notation. For any vector ~ ∈ R� , we denote by frac(~) ≔
{4 ∈ � : ~4 ∉ Z} all edges with a fractional ~-value. To clearly
distinguish between the original input graph and the graph at each
iteration of our algorithm, we will denote the original input graph
by� = (+ , �) and the graph used in each iteration of the algorithm
(i.e., � after some vertex contractions and edge deletions) by � =

(+ , �). We will be explicit about the speci�c graph considered. For
any two vertex sets (,) ⊆ + , we denote by � ((,)) ⊆ � all edges
with one endpoint in (and one in) . For vertices D, E and (⊆ + ,
we also use the shorthand � (D, E) ≔ � ({D}, {E}) and � (D, () ≔
� ({D}, (). For (⊆ + , we let � [(] := {{D, E} ∈ � : D, E ∈ (} be
all edges with both endpoints in (. We note that even though one
could perform multiple ghost value augmentations or multiple
cut relaxations in a single iteration of the while loop, Line 9 only
performs a single such operation per iteration for simplicity.

Algorithm 1:Main Algorithm. (: is even.)

1 Initialization

2 I (4) = 0 for all 4 ∈ �. // I ∈ Z�≥0 will be the

returned solution.

3 6(4) = 0 for all 4 ∈ �. // Start with all ghost

values being set to 0.

4 � = (+ , �) ≔ (+ , �).
5 Let LPAlg be :−EC Ghost LP using ~ and update ~ to an

optimal vertex solution.

6 Delete from � all edges 4 ∈ � with ~4 = 0.

7 while ~ ∉ Z� do

8 if there are distinct vertices D, E ∈ + with

(~ + 6) (� (D, E)) ∈
[
:
2 − 2, :2

)
then

9 Ghost Value Augmentation: set 64 = 64 + 2 for an
arbitrary edge 4 ∈ � (D, E).

10 else if there is a ~-tight 6-cut constraint

G (X (()) ≥ : − 6(X (()) in LPAlg such that

(i) LPAlg does not contain a ~-tight 6-cut constraint

G (X ())) ≥ : − 6(X ())) for) ⊊ (, and

(ii) | frac(~) ∩ X (() | ≤ 3,

11 then

12 I4 = ~4 for all 4 ∈ � [(].
13 Drop/Contract: Contract set (in � and remove

6-cut constraint for (from LPAlg.

14 Compute an optimal vertex solution ~ to LPAlg (with

ghost values g).

15 Delete from � (and from LPAlg) all edges 4 ∈ � with

~4 + 64 = 0.

16 For all 4 ∈ � with ~4 ∈ Z, we add the constraint G4 = ~4
to LPAlg.

17 I4 = ~4 for all 4 ∈ �.

18 Return I.

Algorithm Intuition. We summarize the intuition for our algo-
rithm. As discussed earlier, a natural approach to rounding our
vector ~ would be to argue that whenever we re-solve our LP and it
does not have a newly integral edge, there must be a constraint of
our LP corresponding to a set that has at most$ (1) fractional edges
crossing it. Such a constraint can be safely dropped from our LP
and doing so corresponds to our drop/contract relaxation. However,
standard arguments that the non-existence of such a set implies a
newly integral edge would require showing that the relevant cut
constraints can be uncrossed into a laminar family. This uncrossing
is not necessarily possible if we have already dropped some of our
cut constraints. The somewhat unusual operation of ghost value
augmentations will rescue us from this situation. In particular, we
will see that the cases where uncrossing fails are exactly those
when we are able to perform a ghost value augmentation. Indeed,
a ghost value augmentation can be thought of as its own sort of
cut relaxation: putting a ghost value of 2 units on some edge 4 ∈ �,

1858

Ghost Value Augmentation for k-Edge-Connectivity STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

simply corresponds to replacing the cut constraints G (X (()) ≥ : by
G (X (()) ≥ : − 2 for all (⊆ + with 4 ∈ X (().

4 ANALYSIS OF OUR ALGORITHM

We proceed to analyze our algorithm. Doing so will require ad-
dressing several non-trivial issues. First, it is not a priori clear that
our algorithm terminates and, in particular, that we can always
make progress by some relaxation or edge deletion or freezing.
Second, even if the algorithm terminates, it is not clear that the
returned vector I is integral, much less that it has value at least
: −$ (1) on every cut. For integrality, we will need to argue that,
whenever we contract a set, all of its internal edges are integral. For
near-:-edge-connectivity, it is particularly not clear that we do not
end up with a single cut across which we have performed many
ghost value augmentations, and so we will need to argue that this
does not happen. Lastly, there are several e�ciency concerns to
address, including how to �nd the set (⊆ + of Line 13 if there is
one satisfying the stated criteria.

Before addressing these challenges, we introduce some notation
we use throughout our analysis. For brevity, when saying that a
property holds at any iteration of the algorithm, we mean that it
holds at the beginning of any iteration of the while loop in Algo-
rithm 1. As in Algorithm 1, we will let LPAlg be the LP used by our
algorithm at the beginning of an iteration. Note that although we
compute our vertex solution ~ at the end of an iteration and then
possibly delete edges from � and LPAlg, even after deleting said

edges ~ remains a vertex to the resulting LPAlg.
7 In other words,

~ is a vertex solution to LPAlg at the beginning of each iteration.

Likewise, we denote by � = (+ , �), ~ ∈ R�≥0, and 6 ∈ Z�≥0 the
current graph, the current vertex solution to LPAlg, and the current
ghost values, respectively, at that iteration. Throughout our anal-

ysis, we will represent by R ⊆ 2+ \{A } all sets that are contracted
throughout the algorithm. More precisely, for some set ' ⊆ + \ {A },
we have ' ∈ R if ' is not a singleton and during some point in the
algorithm we had a vertex that, when undoing the contractions,
corresponds to the vertex set '. Because we perform contractions
consecutively, the family R is laminar. At any iteration of the algo-
rithm, each vertex E ∈ + of the current graph � = (+ , �) is either
an original vertex, i.e., E ∈ + , or it corresponds to a set ' ∈ R that
was contracted in a prior iteration of the algorithm.

4.1 Termination of Algorithm

We start by showing that Algorithm 1 terminates.
To show that Algorithm 1 terminates, we show that, at any

iteration of the while loop, if ~ is not yet integral, and we cannot
perform a ghost value augmentation, then we can perform a cut
relaxation. Because cut relaxations require cut constraints with
high integrality, i.e., the number of fractional edges must be at most
3, we will derive sparsity results in the following. These results
provide upper bounds on the number of ~-fractional edges, or show
that certain edges must have integral ~-values.

7This can be seen by, e.g., observing that ~ is a vertex solution if and only if it is
feasible and it is the unique solution to �̄G = 1 (i.e., the columns of �̄ are independent)
where �̄ is the subsystem of constraints of� tight for ~. For LPAlg , the columns of �̄
remain independent even after deleting the column and row corresponding to an 4
with ~4 = 0 so ~ without this coordinate remains a vertex solution.

We start with a basic property on the (~ +6)-load on each cut. A
consequence is that at any iteration, we have (~ + 6) (X (E)) ≥ : − 2

for any vertex E , and for every (⊆ + with 2 ≤ |(| ≤ = − 2 we have
(~ + 6) (X (E)) ≥ : . Thus our graph is close to being fractionally
:-edge-connected.

Lemma 4.1. At any iteration of Algorithm 1, we have

(~ + 6) (X (()) ≥ : − 2 ∀(⊆ + \ {A }, (≠ ∅.

Also, if for any non-empty set (⊆ + \ {A }, we have (~ + 6) (X (()) =
: − 2, then ~4 ∈ Z≥0 ∀4 ∈ X (().

Proof. If the6-cut constraint corresponding to (is still in LPAlg,
then we even have (~ + 6) (X (()) ≥ : . Otherwise, let ~̃ and 6̃ be the
LPAlg solution and ghost values, respectively, at the iteration when
the 6-cut constraint corresponding to (got relaxed. Hence, (~̃ +
6̃) (X (()) ≥ : , because, as before, the6-cut constraint corresponding
to (is part of LPAlg at the beginning of the iteration when (gets
relaxed. Moreover, | frac(~̃) ∩ X (() | ≤ 3, which implies

(⌊~̃⌋ + 6̃) (X (()) > : − 3.

Because the left-hand side is integral, we get

(⌊~̃⌋ + 6̃) (X (()) ≥ : − 2.

The �rst statement now follows by observing that integral ~-values
get �xed, and hence ~ ≥ ⌊~̃⌋, and that 6 ≥ 6̃, because ghost values
are non-decreasing. Moreover, this reasoning shows that to get
(~ + 6) (X (()) = : − 2, we need ~ (X (()) = ⌊~̃⌋ (X (()). Because
~ ≥ ⌊~̃⌋, this implies as desired ~4 = ⌊~̃4 ⌋ ∈ Z≥0 ∀4 ∈ X ((). □

The following lemma formalizes that ~ has low fractionality on
any set of parallel edges. Below, recall that ~ is a vertex solution to
the relevant LP in each iteration.

Lemma 4.2. At any iteration of the algorithm, we have

| frac(~) ∩ � (D, E) | ≤ 1 ∀D, E ∈ + ,D ≠ E .

Proof. Assume for the sake of deriving a contradiction that
there is a pair of verticesD, E ∈ + ,D ≠ E with | frac(~) ∩� (D, E) | ≥ 2.
Let 41, 42 ∈ frac(~) ∩ � (D, E) be two distinct edges. Observe that for

n = min
{
~41 − ⌊~41⌋, ⌈~41⌉ − ~41 , ~42 − ⌊~42⌋, ⌈~42⌉ − ~42

}
> 0,

we have that both ~ + n (j {41 } − j {42 }) and ~ − n (j {41 } − j {42 })
are feasible for the LP. This holds because there is no constraint
that contains 41 and not 42 or vice-versa, except for integral bounds
(lower/upper bounds, or equality constraints) on the values of ~41
and ~42 . This contradicts that ~ is a vertex solution to the LP. □

To obtain strong enough sparsity to show that a cut relaxation
is possible, we use a classic strategy. Namely, we �rst show that, at
any iteration of Algorithm 1, a vertex solution can be described as
the unique solution to a very structured system of ~-tight LP con-
straints. More precisely, the ~-tight 6-cut constraints in this system
correspond to sets that form a laminar family. This is where we
crucially exploit the use of ghost values, without which a statement
as below would be wrong, as demonstrated in Fig. 4.

1859

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen

:
2 − 1 :

2 − 1
:
2 − 1 :

2 − 1

()

Figure 4: A situation in which ghost value augmentation is

necessary. All dotted edges have value 1/2, so (and) are

tight but not dropped. (∩) and (∖) , however, have been

dropped and thus are allowed to drop below connectivity

: . Therefore it is not possible to uncross (and) . Note that

the integrality of the rightmost blue edge leaving) is not

necessary. In particular, this rightmost blue edge could be

any number of fractional edges and the instance would have

the same behavior.

Lemma 4.3. Consider any iteration of Algorithm 1 where no ghost

value augmentation can be performed. Let

L ⊆ {(⊆ + \ {A } : ~ (X (()) = : − 6(X (())} be a maximal laminar

family corresponding to ~-tight 6-cut constraints in LPAlg. Then, the

linear equation system consisting of

G (X (!)) = : − 6(X (!)) ∀! ∈ L,

together with all ~-tight constraints on single edges in LPAlg, i.e.,

constraints of type G4 = ?4 for some 4 ∈ � and ?4 ∈ Z, form a full

column rank system8 of ~-tight constraints of LPAlg. Thus, because ~

is a vertex solution to LPAlg, it is the unique solution to this system.

Proof. Assume for the sake of contradiction that there is an
iteration of the algorithm where no ghost value augmentation can
be performed, and such that there is a maximal laminar family
L ⊆ 2+ \{A } corresponding to ~-tight 6-cut constraints in LPAlg
ful�lling the following: The linear equation system consisting of
all equations corresponding to ~-tight 6-cut constraints of sets in
L, together with equations corresponding to all ~-tight constraints
on single edges in LPAlg, does not have full column rank. We call
this linear equation system the reference system.

The reference system not having full column rank implies that
there must be a ~-tight 6-cut constraint G (X (()) ≥ : − 6(X (()) not
implied by it. Among all such sets (⊆ + \ {A }, we choose one
where

L(≔ {! ∈ L : ! and (are crossing}
has smallest cardinality. Because the constraint G (X (()) ≥ : −
6(X (()) is not implied by the reference system, and we did not add
that constraint to it, it must be that (crosses some set in L. Hence,
|L(| ≥ 1. Let ! ∈ L(. We continue by showing that the 6-cut
constraints corresponding to certain sets must have been dropped,
allowing us to reduce to a setting similar to Fig. 4.

Claim 4.4. We have

(i) • The6-cut constraint corresponding to (∩! has been dropped

from LPAlg and the equation G (X ((∩!)) = : −6(X ((∩!))
is not implied by the reference system,

• (~ + 6) (X ((∩ !)) ≤ : , and

8A system of linear equations�G = 1 has full column rank if the rank of� is equal to
the number of columns of�.

• if (~ + 6) (X ((∩ !)) = : , then (~ + 6) (X ((∪ !)) = : and

� ((\ !, ! \ () = ∅.
(ii) There is a set &1 among {(\ !, ! \ (} (let &2 be the other set)

such that

• the 6-cut constraint corresponding to &1 has been dropped

from LPAlg,

• (~ + 6) (X (&1)) ≤ : , and

• if (~ + 6) (X (&1)) = : , then also (~ + 6) (X (&2)) = : and

� ((∩ !,+ \ ((∪ !)) = ∅.

Proof. We start by proving (i). If (~ + 6) (X ((∩ !)) < : , then
the 6-constraint corresponding to (∩ ! must have been dropped,
and all conditions of (i) are ful�lled. Hence, assume from now on
(~ + 6) (X ((∩ !)) ≥ : .
We use the following well-known basic relation, which can be

veri�ed by checking that the shown equation holds for each coor-
dinate (note that every coordinate corresponds to an edge):

jX (() + jX (!) = jX ((∪!) + jX ((∩!) + 2j� ((\!,!\() . (2)

By taking the scalar product of the above equation with ~ + 6, we
establish that (~ + 6) (X (()) + (~ + 6) (X (!)) is equal to:
(~ +6) (X ((∪!)) + (~ +6) (X ((∩!)) + 2(~ +6) (� ((\!, ! \()). (3)

Note that the 6-cut constraint corresponding to (∪ ! has not been
dropped yet because |(∪ ! | ≥ 2. Hence, (G + 6) (X ((∪ !)) ≥ : .
Together with (~ +6) (X (()) = (~ +6) (X (!)) = : and (~ +6) (X ((∩
!)) ≥ : , Equation (3) thus implies (~ +6) (X ((∩!)) = (~ +6) (X ((∪
!)) = : and (~ + 6) (� ((\ !, (\ !)) = 0. The last equation implies
� ((\ !, ! \ () = ∅, because supp(~ + 6) = �, which holds because
we deleted all edges with (~ +6)-value zero. Hence, (3) simpli�es to

jX (() + jX (!) = jX ((∪!) + jX ((∩!) .

Because jX (!) is a row of our reference system and jX (() is not
spanned by the rows of our reference system, we have that either the
equationG (X ((∪!)) = :−6(X ((∪!)) orG (X ((∩!)) = :−6(X ((∩!))
is not implied by our reference system. Note that both equations
correspond to ~-tight 6-cut constraints as shown above. Because
the 6-cut constraint corresponding to (∪ ! is still part of LPAlg
as |(∪ ! | ≥ 2, and L(∪! ⊊ L(,

9 this 6-cut constraint must be
implied by the reference system. For otherwise, we could have
chosen (∪ ! instead of (, which violates our choice of (. Hence,
the 6-cut constraint corresponding to (∩ ! is not implied by our
reference system. Because also L(∩! ⊊ L(, the 6-cut constraint
corresponding to (∩ ! cannot be part of LPAlg anymore, as this
would again violate our choice of (.

For point (ii) we can follow an analogous approach as for (i). If
there is a set & ∈ {(\ !, ! \ (} with (~ + 6) (X (&)) < : , then we
choose &1 ≔ & . Indeed, the 6-cut constraint corresponding to &1

must have been dropped from LPAlg because (~ + 6) (X (&1)) < : .
Thus, &1 ful�lls all conditions of point (ii). Hence, from now on
assume (~ + 6) (X ((\ !)) ≥ : and (~ + 6) (X (! \ ()) ≥ : .

We use the following well-known basic relation:

jX (() + jX (!) = jX ((\!) + jX (!\() + 2j� ((∩!,+ \((∪!)) .

9L(∪! ⊊ L((and analogously L(∩!, L(\!, L!\(⊊ L() follows from the following
observation on laminar families. Let L be a laminar family over some �nite ground
set # , and let (⊆ # and ! ∈ L be such that (crosses !. Then any set in L that
crosses (∪! also crosses (. However, the set !, which crosses (, does not cross (∪!.

1860

Ghost Value Augmentation for k-Edge-Connectivity STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Because (~ + 6) (X (()) = : and (~ + 6) (X (!)) = : , we must have
(~+6) (X ((\!)) = : , (~+6) (X (!\()) = : , and � ((∩!,+ \((∪!)) = ∅.
This implies

jX (() + jX (!) = jX ((\!) + jX (!\() .

Because jX (!) is a row in our reference system and jX (() is not
spanned by the rows of your reference system, we have that either
the equation G (X ((\!)) = :−6(X ((\!)) or G (X (!\()) = :−6(X (!\
()) (or both) is not implied by the reference system. Note that both
equations correspond to ~-tight 6-cut constraints as shown above.
Let &1 ∈ {(\ !, ! \ (} be such that G (X (&1)) = : − 6(X (&1)) is
not implied by the reference system. Because L&1

⊊ L(, the 6-
cut constraint corresponding to &1 must have been dropped from
LPAlg. For otherwise, we could have chosen &1 instead of (, which
violates our choice of (. Hence,&1 ful�lls all conditions of point (ii).

□ (Claim 4.4)

By Claim 4.4 (i), the 6-cut constraint corresponding to (∩ ! got
relaxed/dropped from LPAlg and G (X ((∩!)) = :−6(X ((∩!)) is not
implied by the reference system. Moreover, Claim 4.4 (ii) implies
that the constraint corresponding to at least one of the sets (\ !
or ! \ (got dropped. Recall that dropped sets got contracted and
therefore correspond to singletons. We �nish the proof by showing
that a ghost value augmentation could have been performed with
respect to the singleton (∩ ! and either (\ ! or ! \ (.

To this end consider the di�erent (~ + 6)-loads between the four
sets (\ !, (∩ !, ! \ (, and + \ ((∪ !). For brevity let

0 ≔ (~ + 6) (� ((∩ !, (\ !))
1 ≔ (~ + 6) (� ((∩ !, ! \ ())
2 ≔ (~ + 6) (� (! \ (,+ \ ((∪ !)))
3 ≔ (~ + 6) (� ((\ !,+ \ ((∪ !)))
4 ≔ (~ + 6) (� ((\ !, ! \ ())
5 ≔ (~ + 6) (� ((∩ !,+ \ ((∪ !))) .

(!

0 1

23

4

5

The above de�nitions immediately lead to the following basic
relations

: = (~ + 6) (X (()) = 1 + 3 + 4 + 5

: = (~ + 6) (X (!)) = 0 + 2 + 4 + 5

: ≥ (~ + 6) (X ((∩ !)) = 0 + 1 + 5

: − 2 ≤ (~ + 6) (X ((∩ !)) = 0 + 1 + 5

: − 2 ≤ (~ + 6) (X ((\ !)) = 0 + 3 + 4

: − 2 ≤ (~ + 6) (X (! \ ()) = 1 + 2 + 4,

(4)

where the equalities at the start of the �rst two lines hold because
(and ! correspond to ~-tight 6-cut constraints, the inequality in
the third line follows from Claim 4.4 (i), and the inequalities at the
start of the last three lines hold by Lemma 4.1.

By subtracting the �rst relation above from the sum of the forth
and �fth one, we get

0 ≥ :

2
− 2. (5)

Analogously, by subtracting the second relation in (4) from the
sum of the forth and sixth one, we get

1 ≥ :

2
− 2. (6)

Let &1 ∈ {(\ !, ! \ (} be the set as described in Claim 4.4 (ii).
We will show that a ghost value augmentation could have been per-
formed between &1 and (∩ !. Note that these two sets correspond
to singletons, and (5)/(6) show that the (parallel) edges between
them ful�ll the lower bound condition necessary to apply a ghost
value augmentation. It remains to show that, if &1 = (\ !, we
have 0 <

:
2 , and analogously, if &1 = ! \ (, then 1 <

:
2 . Then all

conditions are ful�lled to apply a ghost value augmentation, which
is the desired contradiction.

The proof for the two cases is identical; hence, we assume from
now on &1 = (\ !. We have

0 = (~ + 6) (� ((\ !, (∩ !))

=
1

2
[(~ + 6) (X ((∩ !)) + (~ + 6) (X ((\ !)) − (~ + 6) (X (())]

≤ :

2
,

where the inequality follows from the �rst and third relation in (4),
and from (~ + 6) (X ((\ !)) ≤ : , which holds by Claim 4.4 (ii)
and the assumption &1 = (\ !. It remains to show that 0 ≠

:
2 .

Assume for the sake of deriving a contradiction that 0 =
:
2 . We

therefore must have (~ +6) (X ((∩!)) = : and (~ +6) (X ((\!)) = : ,
which implies by Claim 4.4 (ii) in particular (~ + 6) (X ((∪ !)) = : ,
(~+6) (X (!\()) = : , and � ((∩!,+ \ ((∪!)) = ∅. The contradiction
we derive will be that the equation G (X ((∩ !)) = : − 6(X ((∩ !))
is implied by LPAlg, which violates Claim 4.4 (i). Note that because
� ((∩ !,+ \ ((∪ !)) = ∅, we get

jX ((∩!) = j� ((\!,(∩!) + j� (!\(,(∩!) . (7)

Moreover, 0 =
:
2 ∈ Z (recall we are assuming : is even) implies

~ (4) ∈ Z for 4 ∈ � ((\ !, (∩ !) because of Lemma 4.2. Hence, the
~-values on the edge � ((\ !, (∩ !) are �xed by the integrality
constraints, which are part of the reference system. Moreover, we
also have 1 = (G + ~) (X ((∩ !)) − 0 =

:
2 , where the �rst equality

holds because � ((∩ !,+ \ ((∪ !)) = ∅. Hence, if also the 6-cut
constraint corresponding to ! \ (got dropped from LPAlg, then
we have analogously ~ (4) ∈ Z for 4 ∈ � (! \ (, (∩ !). However,
then (7) implies that G (X ((∩ !)) = : − 6(X ((∩ !)) is implied by
LPAlg, which is a contradiction. Thus, it remains to consider the
case where the 6-cut constraint corresponding to ! \ (is still part
of LPAlg. Note that

j� (!\(,(∩!) =
1

2

[
jX (!\() + jX (() − jX ((∪!)

]
.

Observe that jX (!\() , jX ((∪!) , and jX (() are all row vectors of
our reference system. Hence, also the row vector j� (!\(,(∩!) is
implied by our reference system. This in turn implies by (7) that the
equation G (X ((∩ !)) = : −6(X ((∩ !)) is implied by our reference
system, which leads to the desired contradiction. □ (Lemma 4.3)

For completeness, we now present a classic reasoning, adjusted
to our context, showing that the sparsity of LPAlg at any iteration
of the algorithm can be bounded by the number of linearly indepen-
dent~-tight 6-cut constraints in a full column rank equation system
of tight LP constraints. We state the result for an equation system
de�ning the LPAlg vertex ~ with an arbitrary family L correspond-
ing to ~-tight 6-cut constraints. We later apply the statement with

1861

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen

an equation system of ~-tight constraints coming from Lemma 4.3,
where the family L is laminar.

Lemma 4.5. Consider an iteration of Algorithm 1 where ~ is not

yet integral, and no ghost value augmentation can be performed.

Consider a full column rank system of equations corresponding to

~-tight constraints of LPAlg, and let L ⊆ 2+ \{A } be all cuts of ~-

tight 6-cut constraints that correspond to an equation in the equation

system. Then | frac(~) | ≤ |L|.

Proof. First, we can assume that the considered equation sys-
tem, for simplicity we call it the reference system, is a square system.
Indeed, if the reference system is not square, then we can succes-
sively remove equations from the system that are implied by the
other equations of the system until we get a square system. More-
over, the implication of the statement for the square system implies
the statement for the original system.

The square reference system has two types of equations:
• equations corresponding to ~-tight 6-cut constraints, i.e.,
G (X (()) = : − 6(X (()) ∀(∈ L, and

• equations corresponding to ~-tight constraints on single
edges, i.e., these are of the form G4 = ?4 , where 4 ∈ � and
?4 ∈ Z≥1.

Let � ⊆ � be all edges for which an equation of the second type
is in the system. Because the reference system is square, we have
|� | = |L| + |� |. Moreover, all edges in � have integral ~-values,
which implies the result because of

| frac(~) | ≤ |� | − |� | = |L|. □

Finally, the following lemma shows that we make progress in
each iteration of Algorithm 1.

Lemma 4.6. At any iteration of Algorithm 1, if ~ is not integral and

no ghost value augmentation can be applied (i.e., the algorithm is at

an iteration where it reaches Line 10), then there is a 6-cut constraint

of LPAlg that can be relaxed.

Proof. Let L ⊆ {(⊆ + \ {A } : G (X (()) = : − 6(X (())} be
a maximal laminar family of sets corresponding to ~-tight 6-cut
constraints of LPAlg. By Lemma 4.3, these constraints, together
with all ~-tight constraints of LPAlg on single edges, correspond to
a full column rank equation system with~ being its unique solution.
We successively remove from L constraints that are redundant in
that system, until no 6-cut constraint corresponding to a set in L
is redundant.

Assume for the sake of deriving a contradiction that no cut
relaxation can be applied.Wewill derive a contradiction by showing
that this would imply |L| > | frac(~) |, which contradicts Lemma 4.5.
To this end we use a token counting argument, where we assign
two tokens to each edge in frac(~), and assign those tokens to the
sets L such that each set in L gets at least 2 tokens, and at least
one set gets strictly more than 2 tokens.

First, each edge {D, E} ∈ frac(~) assigns one token to the smallest
set inL that containsD (if there is such a set) and one to the smallest
set in L that contains E (if there is such a set). We then consider
the sets in L in any smallest-to-largest order, and reassign excess
tokens from children to their parent.10 With a smallest-to-largest

10We use the usual notions like children, parents, and descendants for the laminar family
L. More precisely, for !1, !2 ∈ L with !2 ⊊ !1 , we call !1 an ancestor of !2 , and

order, we mean any order such that when considering ! ∈ L,
then all descendants of ! in L have already been considered. We
maintain the following invariant: After considering a set ! ∈ L, we
have reassigned the tokens of ! and its descendants in a way that
! has at least 4 tokens, and each of its descendants has 2 tokens. By
showing that this invariant can be maintained, the results follows
because at the end of the procedure, the maximal sets in L will
have obtained at least 4 tokens, and all other sets in L obtained 2

tokens.
We start by showing that the invariant holds for each minimal

set ! in L. If the edges frac(~) have at least 4 endpoints in !, then
the invariant holds. Otherwise, we have | frac(~) ∩ � (!,+) | ≤ 3,
and because we assumed that we cannot apply a cut relaxation to !,
there must be a smaller set (⊆ ! corresponding to a ~-tight 6-cut
constraint. We choose (to be a minimal such set. However, because
X (() ⊆ � (!,+), we have | frac(~) ∩X (() | ≤ | frac(~) ∩� (!,+) | ≤ 3,
i.e., the set X (() contains at most 3 edges with fractional ~-values.
This implies that we could have applied a cut relaxation to (, which
contradicts our assumption that no cut relaxation was possible.

Consider now a non-minimal set ! in L, and assume that the
invariant holds for all of its children. If ! has at least two children
in L, then it can get 2 tokens from each of them, and the invariant
holds for !. Hence, assume that ! has only one child � ∈ L in L.
In this case, ! can get two tokens from � , which has 4 tokens. We
complete the proof by showing that there are at least two edges of
frac(~) with one endpoint in ! \� , which will give an additional 2
tokens to !, to obtain the 4 tokens required by the invariant. First
observe that we must have

frac(~) ∩ X (�) ≠ frac(~) ∩ X (!);
since otherwise the ~-tight 6-cut constraint corresponding to ! is
implied by the ~-tight 6-cut constraint that corresponds to � and
the ~-tight equality constraints on single edges. This implies

frac(~) ∩ X (! \�) ≠ ∅,
and already shows that ! obtains at least one more token due to
a fractional edge with an endpoint in ! \� . Because both ! and �
correspond to ~-tight 6-cut constraints, we have

~ (X (!)) = : − 6(X (!)), and (8)

~ (X (�)) = : − 6(X (�)) . (9)

Due to integrality of the ghost values 6, this implies ~ (X (!)) ∈ Z
and ~ (X (�)) ∈ Z. Thus,
~ (X (!)) −~ (X (�)) = ~ (� (! \�,+ \ !)) −~ (� (! \�,�)) ∈ Z. (10)
Note that

X (! \�) = � (! \�,+ \ !) ∪ � (! \�,�),
and (10) thus implies that X (! \�) cannot have a single edge with
fractional~-value. Because frac(~)∩X (!\�) ≠ ∅, we have | frac(~)∩
X (! \�) | ≥ 2, showing as desired that ! gets at least two tokens
from edges of frac(~) with one endpoint in ! \� . □

Note that Lemma 4.6 readily implies that Algorithm 1 terminates.
Indeed, the number of ghost value augmentations one can perform
on an edge 4 is nomore than ⌈:/4⌉, because then just the ghost values

!2 is a descendant of !1 . If !2 is a descendant of !1 and there is no set ! ∈ L with
!2 ⊊ ! ⊊ !1 , then !2 is a child of !1 , and !1 is called the parent of !2 .

1862

Ghost Value Augmentation for k-Edge-Connectivity STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

alone already provide a load of at least :/2 on 4 , and 4 therefore does
not qualify anymore for a ghost value augmentation. Moreover, the
sets we relax correspond to the laminar family R, which can have
size at most $ (|+ |).

However, bounding the number of ghost value augmentations
per edge by ⌈:/4⌉ turns out to be very loose. Actually, as we will
show next, we can perform at most one ghost value augmentation
per edge, which is a result that is also helpful later on. This holds
because whenever a ghost value augmentation is performed on
an edge with endpoints D and E , then a large ~-value on � (D, E) is
integral and, because we �x/freeze integral values, we will have
a load of at least ⌊~⌋ (� (D, E)) between the vertices D and E in any
future iteration where D and E did not yet get contracted through a
cut relaxation. This load will be too high for another ghost value
augmentation to be performed on an edge with endpoints D and E .

The following lemma implies in particular that at most one ghost
value augmentation can be applied per edge. We defer the proof to
the full version.

Lemma 4.7. At any iteration of the algorithm when a ghost value

augmentation is performed between two verticesD and E , then no edge

in � (D, E) has strictly positive ghost value, i.e., 65 = 0 for 5 ∈ � (D, E).

This is a desirable property when proving that the output is
highly connected after removing the ghost values.

4.2 Guarantees on Cut Constraints

Our goal now is to show that the solution I returned by Algorithm 1
satis�es I (X (()) ≥ : − 9 for all (⊆ + \ {A } with (≠ ∅ (again, recall
we are assuming that: is even; hence the 9 instead of 10). To achieve
guarantees on I, we crucially and repeatedly exploit that integral
~-values get frozen/�xed. This guarantees that at any iteration of
Algorithm 1, the solution ~ to LPAlg provides the following lower
bound on entries of I, i.e., the solution returned by the algorithm.

⌊~⌋4 ≤ I4 ∀4 ∈ �.

We recall that I in the above inequality is the �nal solution returned
by our algorithm (not an intermediate value of I).

Due to space constraints, we defer the proof that the output is
(: − 9)-edge-connected to the full version.

4.3 Cost of Returned Solution and Running
Time

The required cost bound is easily proven.

Observation 4.8. The solution I returned by Algorithm 1 has cost

bounded by 2⊤~ where ~ is the input vector of Theorem 2.1.

Proof. We denote by LPOPT:−Ghost the optimal value of the
LPAlg solution computed in Line 5 of Algorithm 1. Observe that

LPOPT:−Ghost ≤ 2⊤~

since ~ is feasible for this LP (where again, ~ is the input to The-
orem 2.1). Whenever we change LPAlg in Algorithm 1, we do so
by either increasing ghost values in Line 9, performing a cut re-
laxation in Line 13, or by adding equality constraints in Line 16.
All of these operations have the property that the previous LP
solution is still valid for the new LP. (In case of a cut relaxation,

we can use the values of the previous LP solution on the non-
contracted edges.) This implies that the returned solution I ful�lls
2⊤I ≤ LPOPT:−Ghost ≤ 2⊤~, as desired. □

We defer the proof that the algorithm can be implemented in
polynomial time to the full version.

5 HARDNESS OF APPROXIMATION OF
:-ECSM

[50] showed APX-hardness for 2-ECSM by showing it is essentially
the same problem as the metric version of 2-ECSS but left hardness
of :-ECSM for : > 2 and as a function of : open, stating

What [APX-hardness of 2-ECSM] leaves to be desired is hardness for

:-ECSM, : > 2 and asymptotic dependence on : . Why is it hard to

show these problems are hard?. . .A new trick seems to be needed to

get a good hardness result for k-ECSM.

We provide such a trick to show 1 + Ω(1/:) hardness for :-ECSM.
Speci�cally, we reduce from the unweighted tree augmentation
problem (TAP) problem, which is known to be (1 + nTAP)-hard-
to-approximate for some constant nTAP > 0. We recall below the
hardness statement we show.

Theorem 1.4. There exists a constant n > 0 such that there does

not exist a poly-time algorithm which, given an instance of (un-

weighted) :-ECSM where : is part of the input, always returns a(
1 + n

:

)
-approximate solution, unless P = NP.

The above hardness shows the tightness of Theorem 1.1 up to
constants. We prove Theorem 1.4 by showing hardness for all odd
: . The basic idea is to reduce from unweighted TAP by using the
following trick: if a :-ECSM solution on graph� ′ has value exactly
: on a node F with two incident edges in � ′ and : is odd, then
one can always make one edge incident toF have value ⌈:/2⌉ and
one edge have value ⌊:/2⌋ while preserving the feasibility of the
:-ECSM solution.

We defer the proof to the full version.

ACKNOWLEDGMENTS

This project received funding from Swiss National Science Foun-
dation grant 200021_184622 and the European Research Council
(ERC) under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No 817750). The second
author was supported by the National Science Foundation under
Grants No. DMS-1926686, DGE-1762114, and CCF-1813135.

REFERENCES
[1] David Adjiashvili. 2018. Beating approximation factor two for weighted tree

augmentation with bounded costs. ACM Transactions on Algorithms (TALG) 15,
2 (2018), 1–26.

[2] H. Angelidakis, D. Hyatt-Denesik, and L.j Sanitá. 2023. Node Connectivity
Augmentation via Iterative Randomized Rounding. Mathematical Programming,
Series A 199 (2023), 995–1031.

[3] V. Auletta, Y. Dinitz, Z. Nutov, andD. Parente. 1999. A 2-ApproximationAlgorithm
for Finding an Optimum 3-Vertex-Connected Spanning Subgraph. Journal of
Algorithms 32 (1999), 21–30.

1863

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada D. Ellis Hershkowitz, Nathan Klein, and Rico Zenklusen

[4] André Berger andMichelangelo Grigni. 2007. Minimumweight 2-edge-connected
spanning subgraphs in planar graphs. In International Colloquium on Automata,
Languages and Programming (ICALP). Springer, 90–101.

[5] Sylvia Boyd, Joseph Cheriyan, Robert Cummings, Logan Grout, Sharat Ibrahim-
pur, Zoltán Szigeti, and Lu Wang. 2020. A 4/3-Approximation Algorithm for
the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral
Case. In International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), Vol. 176. 61:1–61:12.

[6] Sylvia Boyd, Yao Fu, and Yu Sun. 2016. A 5/4-approximation for subcubic 2EC
using circulations and obliged edges. Discrete Applied Mathematics 209 (2016),
48–58.

[7] Robert Carr and R. Ravi. 1998. A New Bound for the 2-Edge Connected Subgraph
Problem. In Conference on Integer Programming and Combinatorial Optimization
(IPCO). 112–125.

[8] Federica Cecchetto, Vera Traub, and Rico Zenklusen. 2021. Bridging the Gap
between Tree and Connectivity Augmentation: Uni�ed and Stronger Approaches.
370–383.

[9] Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai, Thatchaphol
Saranurak, Pattara Sukprasert, and Sorrachai Yingchareonthawornchai. 2022.
Approximating k-edge-connected spanning subgraphs via a near-linear time LP
solver. arXiv preprint arXiv:2205.14978 (2022).

[10] Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. 2009.
What would Edmonds do? Augmenting paths and witnesses for degree-bounded
MSTs. Algorithmica 55, 1 (2009), 157–189.

[11] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. 2004. Multi-
processor scheduling to minimize �ow time with Y resource augmentation. In
Annual ACM Symposium on Theory of Computing (STOC). 363–372.

[12] Joseph Cheriyan and Zhihan Gao. 2018. Approximating (unweighted) tree aug-
mentation via lift-and-project, part I: stemless TAP. Algorithmica 80 (2018),
530–559.

[13] J. Cheriyan and R. Thurimella. 2000. Approximating minimum- size k-connected
spanning subgraphs via matching. SIAM J. Comput. 30 (2000), 528–560.

[14] J. Cheriyan and L. A. Végh. 2014. Approximating Minimum-Cost :-Node Con-
nected Subgraphs via Independence-Free Graphs. SIAM J. Comput. 43, 4 (2014),
1342–1362.

[15] Artur Czumaj, Michelangelo Grigni, Papa A Sissokho, and Hairong Zhao. 2004.
Approximation schemes for minimum 2-edge-connected and biconnected sub-
graphs in planar graphs.. InAnnual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Vol. 4. 496–505.

[16] Artur Czumaj and Andrzej Lingas. 1999. On Approximability of the Minimum-
Cost k-Connected Spanning Subgraph Problem.. In Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), Vol. 99. 281–290.

[17] Michal Dory. 2018. Distributed approximation of minimum k-edge-connected
spanning subgraphs. In ACM Symposium on Principles of Distributed Computing
(PODC). 149–158.

[18] Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. 2018. Ap-
proximating weighted tree augmentation via Chvátal-Gomory cuts. In Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 817–831.

[19] Tamás Fleiner and András Frank. 2009. A quick proof for the cactus representation
of mincuts. Technical Report QP-2009-03. Egerváry Research Group, Budapest.
www.cs.elte.hu/egres.

[20] G. N. Fredrickson and Joseph F. JáJá. 1981. Approximation Algorithms for Several
Graph Augmentation Problems. SIAM J. Comput. 10, 2 (1981), 270–283.

[21] G. N. Fredrickson and Joseph F. JáJá. 1982. On the relationship between the bicon-
nectivity augmentation and traveling salesman problem. Theoretical Computer
Science 19 (1982), 189 – 201.

[22] H. Gabow. 2005. An improved analysis for approximating the smallest k-edge
connected spanning subgraph of a multi-graph. SIAM Journal on Discrete Math
19 (2005), 1–18.

[23] H. Gabow and S. Gallagher. 2008. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM J. Comput. 41 (2008), 61–103.

[24] Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson.
2009. Approximating the smallest k-edge connected spanning subgraph by
LP-rounding. Networks 53, 4 (2009), 345–357.

[25] Harold N Gabow, Michel X Goemans, and David P Williamson. 1998. An ef-
�cient approximation algorithm for the survivable network design problem.
Mathematical Programming 82, 1-2 (1998), 13–40.

[26] Michel X. Goemans. 2006. Minimum Bounded Degree Spanning Trees. In Sym-
posium on Foundations of Computer Science (FOCS). 273–282.

[27] Michel X. Goemans and Dimitris Bertsimas. 1993. Survivable networks, lin-
ear programming relaxations and the parsimonious property. Mathematical
Programming 60 (1993), 145–166.

[28] F. Grandoni, A. Jabal Ameli, and V. Traub. 2022. Breaching the 2-Approximation
Barrier for the Forest Augmentation Problem. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing (STOC). 1598–1611.

[29] F. Grandoni, C. Kalaitzis, and R. Zenklusen. 2018. Improved approximation for
tree augmentation: Saving by rewiring. In Annual ACM Symposium on Theory of

Computing (STOC). 632–645.
[30] M. Grötschel, L. Lovász, and A. Schrijver. 1981. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica 1, 2 (1981), 169–197.
[31] D. Hyatt-Denesik, A. Jabal Ameli, and Sanità L. 2023. Finding Almost Tight Wit-

ness Trees. In International Colloquium on Automata, Languages and Programming
(ICALP). 79:1–79:16.

[32] Jennifer Iglesias and R Ravi. 2017. Coloring Down: 3/2-approximation for special
cases of the weighted tree augmentation problem. arXiv preprint arXiv:1707.05240
(2017).

[33] Patrick Jaillet and Michael R Wagner. 2008. Generalized online routing: New
competitive ratios, resource augmentation, and asymptotic analyses. Operations
Research 56, 3 (2008), 745–757.

[34] Kamal Jain. 2001. A Factor 2 Approximation Algorithm for the Generalized
Steiner Network Problem. Combinatorica 21 (2001), 39–60.

[35] D. Karger. 1999. Random sampling in cut, �ow, and network design problems.
Math OR 24 (1999), 383–413.

[36] Anna Karlin, Nathan Klein, and Shayan Oveis Gharan. 2022. A (Slightly) Im-
proved Bound on the Integrality Gap of the Subtour LP for TSP. In Symposium
on Foundations of Computer Science (FOCS). 844–855.

[37] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. 2021. A (Slightly)
Improved Approximation Algorithm for Metric TSP. In Annual ACM Symposium
on Theory of Computing (STOC). ACM.

[38] Anna R Karlin, Nathan Klein, Shayan Oveis Gharan, and Xinzhi Zhang. 2022. An
improved approximation algorithm for the minimum k-edge connected multi-
subgraph problem. In Annual ACM Symposium on Theory of Computing (STOC).
1612–1620.

[39] S. Khuller and B. Raghavachari. 1996. Improved approximation algorithms for
uniform connectivity problems. Journal of Algorithms 21 (1996), 434–450.

[40] Samir Khuller and Uzi Vishkin. 1994. Biconnectivity approximations and graph
carvings. Journal of the ACM (JACM) 41, 2 (1994), 214–235.

[41] Jochen Könemann and Ramamoorthi Ravi. 2000. A matter of degree: Improved ap-
proximation algorithms for degree-bounded minimum spanning trees. In Annual
ACM Symposium on Theory of Computing (STOC). 537–546.

[42] Jochen Könemann and Ramamoorthi Ravi. 2003. Primal-dual meets local search:
approximating MST’s with nonuniform degree bounds. In Annual ACM Sympo-
sium on Theory of Computing (STOC). 389–395.

[43] Bundit Laekhanukit, Shayan Oveis Gharan, and Mohit Singh. 2012. A Rounding
by Sampling Approach to the Minimum Size k-Arc Connected Subgraph Problem.
In International Colloquium on Automata, Languages and Programming (ICALP).
606–616.

[44] Lap-Chi Lau, R. Ravi, and Mohit Singh. 2011. Iterative Methods in Combinatorial
Optimization (1st ed.). Cambridge University Press, New York, NY, USA.

[45] C. St. J. A. Nash-Williams. 1961. Edge disjoint spanning trees of �nite graphs.
Journal of the London Mathematical Society 36 (1961), 445–45.

[46] Z. Nutov. 2014. Approximating Minimum-Cost Edge-Covers of Crossing Biset-
Families. Combinatorica 43, 1 (2014), 95–113.

[47] Z. Nutov. 2017. On the tree augmentation problem. In Annual European Sympo-
sium on Algorithms (ESA). 61:1–61:14.

[48] Z. Nutov. 2022. A 4 + n approximation for :-connected subgraphs. J. Comput.
System Sci. 123 (2022), 64–75.

[49] Cynthia A Phillips, Cli� Stein, Eric Torng, and Joel Wein. 1997. Optimal time-
critical scheduling via resource augmentation. In Annual ACM Symposium on
Theory of Computing (STOC). 140–149.

[50] David Pritchard. 2011. k-Edge-Connectivity: Approximation and LP Relaxation.
In Approximation and Online Algorithms.

[51] Ramamoorthi Ravi and Mohit Singh. 2006. Delegate and conquer: An LP-based
approximation algorithm for minimum degree MSTs. In International Colloquium
on Automata, Languages and Programming (ICALP). Springer, 169–180.

[52] Tim Roughgarden. 2020. Resource Augmentation.
[53] András Sebö and Jens Vygen. 2014. Shorter tours by nicer ears: 7/5-Approximation

for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected
subgraphs. Combinatorica 34, 5 (2014), 597–629.

[54] Mohit Singh and Lap Chi Lau. 2015. Approximating minimum bounded degree
spanning trees to within one of optimal. Journal of the ACM (JACM) 62, 1 (2015),
19 pages.

[55] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized E�ciency of List Update
and Paging Rules. Commun. ACM 28, 2 (feb 1985), 202–208.

[56] Vera Traub and Rico Zenklusen. 2021. A Better-Than-2 Approximation for
Weighted Tree Augmentation. (2021).

[57] Vera Traub and Rico Zenklusen. 2022. Local search for weighted tree augmenta-
tion and Steiner tree. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 3253–3272.

[58] V. Traub and R. Zenklusen. 2023. A (1.5 + Y)-Approximation Algorithm for
Weighted Connectivity Augmentation. In Annual ACM Symposium on Theory of
Computing (STOC).

Received 11-NOV-2023; accepted 2024-02-11

1864

