A crystallographic noncentrosymmetric versus centrosymmetric study by electron diffraction on the melt-grown Sr and O-deficient n = 5 type CarpyGaly phase Sr17CaBaNb19WO64 of the Schückel-Müller-Buschbaum type which is potentially a polar or ferroelectric quasi-1D metal

Report

[^0]2024-06-28

Permanent link:

https://doi.org/10.3929/ethz-b-000680533

In Copyright - Non-Commercial Use Permitted

A crystallographic non-centrosymmetric versus centrosymmetric study by electron diffraction on the melt-grown Sr - and O -deficient $\mathrm{n}=5$ type Carpy-Galy phase $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ of the Schückel-Müller-Buschbaum type which is potentially a polar or ferroelectric quasi-1D metal

Frank Lichtenberg ${ }^{1}$, Ali Baghi Zadeh ${ }^{2}$, Christian Zaubitzer ${ }^{2}$, Luiz Grafulha Morales ${ }^{2}$, and Arkadiy Simonov ${ }^{3}$
ETH Zurich, 8093 Zurich, Switzerland
${ }^{1}$ Department of Materials, Division of Prof. Nicola Spaldin, https://theory.mat.ethz.ch/lab.html
${ }^{2}$ Scientific Center for Optical and Electron Microscopy (ScopeM), https://scopem.ethz.ch
${ }^{3}$ Department of Materials, Disorder group, https://ferroic.mat.ethz.ch/the-group/disorder.html

This paper in form of a presentation comprises 45 pages, a content overview, an introduction and summary, and many images. It is published by the library of the ETH Zurich / ETH Research Collection via doi 10.3929/ethz-b-000680533:
https://doi.org/10.3929/ethz-b-000680533

It allows the download of this paper as pdf presentation.

Part	Content overview	Pages
1	Introduction \& Summary	$4-17$
2	Experimental	$18-19$
3	Results	$20-36$
4	Author contributions	$37-38$
5	Acknowledgement	$39-40$
6	References	$41-45$

1 Introduction \& Summary ...

Introduction \& Summary

In a paper from 1985 K. Schückel and Hk. Müller-Buschbaum report about the reduced and mixed valence niobate $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16}$ [1]. Small amounts of small crystals were obtained by a special technique which comprises the use of a H_{2} / H plasma. The crystals were studied by single crystal x-ray diffraction and energy-dispersive x-ray spectroscopy. The crystal structure of $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16}$ is perovskite-related, layered, orthorhombic, and non-centrosymmetric. Physical properties are not reported.

In a paper from 2008 F. Lichtenberg et al. present the realization that $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16} \xlongequal[=]{\mathrm{SrNbO}_{3.2}}$ represents an oxygen-deficient variant of $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \xlongequal{=} \mathrm{SrNbO}_{3.4}$ with fully ordered oxygen vacancies [2]. The crystal structure of $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \xlongequal{=} \mathrm{SrNbO}_{3.4}$ is perovskite-related, layered, orthorhombic, and centrosymmetric [3].
$\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \hat{=} \mathrm{SrNbO}_{3.4}$ is an $n=5$ type member of the homologous series $A_{n} B_{n} \mathrm{O}_{3 n+2} \hat{=} A B \mathrm{O}_{x}$ and a quasi-1D metal, see Refs. [2-5] and references therein.
$A_{n} B_{n} \mathrm{O}_{3 n+2} \xlongequal[=]{ } A B \mathrm{O}_{x}$ represent a homologous series of perovskite-related layered oxides and are meanwhile called Carpy-Galy phases. The layers comprise an arrangement of $B \mathrm{O}_{6}$ octahedra which are $[110]_{\text {perovskite }}$ oriented along the c-axis.

Introduction \& Summary

The index or structure type n describes the thickness of the layers which are $n \mathrm{BO}_{6}$ octahedra thick along the c-axis. For $n=\infty$ the non-layered perovskite structure $A B O_{3}$ is obtained. A sketch of their crystal structure and compositional examples are presented on pages 10-15.

The following items are examples why oxides of the type $A_{n} B_{n} \mathrm{O}_{3 n+2} \xlongequal{ } A B O_{x}$ are interesting, see Refs. [2-8] and references therein:

- In contrast to most layered materials they display a pronounced structural anisotropy also within the layers which extend along the $a b$-plane
- They comprise the highest- T_{c} ferroelectrics such as the $n=4$ type $\mathrm{La}_{4} \mathrm{Ti}_{4} \mathrm{O}_{14} \hat{=} \mathrm{La}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7} \hat{=} \mathrm{LaTiO}_{3.5}$ with $T_{\mathrm{c}}=1770 \mathrm{~K}$
- They comprise quasi-1D metals in which the delocalized electrons are embedded in a ferroelectric-like environment such as the $n=5$ type $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \hat{=} \mathrm{SrNbO}_{3.4}$ and some of the quasi-1D metals are most probably polar or ferroelectric quasi-1D metals
- Many compounds can be synthesized in a single phase and crystalline form via a solidification from the melt by using the floating zone technique
- They might have a potential to create superconductors and / or multiferroics
- There are many possible chemical compositions including non-stoichiometric compounds
- The quasi-1D metals $\mathrm{SrNbO}_{3.45}(n=4.5)$ and Sr - and O-deficient $\mathrm{Sr}_{0.95} \mathrm{NbO}_{3.37}(n=5)$ were studied by special optical techniques which revealed the presence of photoinduced metastable dd-exciton-driven metal-to-insulator transitions
- The Sr - and O-deficient $n=5$ type qausi-1D metal $\mathrm{Sr}_{0.95} \mathrm{NbO}_{3.37}$ was studied by resonant soft x-ray scattering which revealed the presence of two distinct and simultaneous charge density waves along the non-metallic c-axis
The already mentioned $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68} \hat{=} \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \hat{=} \mathrm{SrNbO}_{3.4}$ and $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{64} \hat{=} \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16} \hat{=} \mathrm{SrNbO}_{3.2}$ represent another interesting topic and associated comments and open questions are presented on pages $225-227$ in part 6.7 of Ref. [5]. The quasi-1D metal $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \hat{=} \mathrm{SrNbO}_{3.4}$ can be prepared via the melt by using the floating zone technique but attempts to prepare $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16} \hat{=} \mathrm{SrNbO}_{3.2}$ in the same way were not successful $[2,5]$. Meanwhile, however, the synthesis of related materials in a single phase and crystalline form via the melt by using the floating zone technique is reported in a paper from 2020, namely $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ and $\mathrm{Sr}_{17} \mathrm{Ca}_{2} \mathrm{Nb}_{19} \mathrm{WO}_{64}$ [5]. They are called Sr - and O-deficient $n=5$ type Carpy-Galy phases of the Schückel-Müller-Buschbaum type.

Introduction \& Summary

The availability of melt-grown $\mathrm{Sr}_{17} \mathrm{CaBaNb}{ }_{19} \mathrm{WO}_{64}$ and $\mathrm{Sr}_{17} \mathrm{Ca}_{2} \mathrm{Nb}_{19} \mathrm{WO}_{64}$ leads to several comments and open questions which are presented in part 6.9.8 of Ref. [5]. The topic of this work is $\mathrm{Sr}_{17} \mathrm{CaBaNb}{ }_{19} \mathrm{WO}_{64}$ and here we present from Ref. [5] some pictures of the melt-grown material:

The magnetic susceptibility $\chi(\mathrm{T})$ of melt-grown $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ and $\mathrm{Sr}_{17} \mathrm{Ca}_{2} \mathrm{Nb}_{19} \mathrm{WO}_{64}$ indicates that they are quasi-1D metals like $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68}$ [5]. The reported non-centrosymmetric space group for $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{64} \xlongequal{=} \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16}$ [1] suggests that $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ and $\mathrm{Sr}_{17} \mathrm{Ca}_{2} \mathrm{Nb}_{19} \mathrm{WO}_{64}$ are likewise non-centrosymmetric.

Introduction \& Summary

If a non-centrosymmetric crystal structure can be experimentally confirmed, then $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ and $\mathrm{Sr}_{17} \mathrm{Ca}_{2} \mathrm{Nb}_{19} \mathrm{WO}_{64}$ are most probably polar or ferroelectric quasi-1D metals. $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ was studied with respect to the question if its crystal structure is non-centrosymmetric or centrosymmetric and this paper presents the results.

The following pages $10-14$ present some sketches of the crystal structure of Carpy-Galy phases $A_{n} B_{n} \mathrm{O}_{3 n+2} \hat{=} A B O_{x}$, compositional examples from the system $\mathrm{SrNbO} \mathrm{X}_{\mathrm{x}}$, and sketches of the crystal structure of $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68} \xlongequal{=} \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \xlongequal{=} \mathrm{SrNbO}_{3.4}$ and $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{64} \xlongequal[=]{ } \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16} \xlongequal{=} \mathrm{SrNbO}_{3.2}$

Introduction \& Summary 6 / 13

Sketch of the perovskite-related layered
$\boxtimes=B O_{6}$ octahedra (O located at corners, B hidden in center) structure of $A_{n} B_{n} \mathrm{O}_{3 n+2} \hat{=} A B O_{x}$

$$
B-O \text { and } B \mathrm{O}_{6} \text { chains along a-axis, i.e. } \perp \text { drawing plane }
$$

For Refs. see [2-5] and references therein

$n=4.5$
$A B O_{3.44}$

$n=6$
$\mathrm{ABO}_{3.33}$

Light and heavy drawing of the BO_{6} octahedra as well as filled and open circles indicate a height difference perpendicular to the drawing plane

- 区○ 区
$n=\infty$
$A B O_{3}$ perovskite

Introduction \& Summary

Sketch of the perovskite-related layered structure of $A_{n} B_{n} \mathrm{O}_{3 n+2} \xlongequal{\wedge} A B \mathrm{O}_{\mathrm{x}}$
$\boxtimes=B O_{6}$ octahedra (O located at corners, B hidden in center)
$\square=B O_{4}$ polyhedra (O located at corners, B in the center)

$$
B-O \text { and } B \mathrm{O}_{6} \text { chains along a-axis, i.e. } \perp \text { drawing plane }
$$

For Refs. see [1-5] and references therein

$n=4$
$A B O_{3.5}$
$n=4.5$
$A B O_{3.44}$

$n=5$ (I)
$A B O_{3.4}$

$n=5$ (II)
$A B O_{3.2}$

Light and heavy drawing of the BO_{6} octahedra and BO_{4} polyhedra as well as filled and open circles indicate a height difference perpendicular to the drawing plane

$$
n=\infty
$$

$A B O_{3}$ perovskite

Introduction \& Summary

Sketch of the perovskite-related layered structure of $A_{n} B_{n} O_{3 n+2} \hat{=} A B O_{x}$
$\boxtimes=B \mathrm{O}_{6}$ octahedra (O located at corners, B hidden in center)
$\square=B O_{4}$ polyhedra (O located at corners, B in the center)

$$
B-O \text { and } B \mathrm{O}_{6} \text { chains along a-axis, i.e. } \perp \text { drawing plane }
$$

Compositional examples from the system SrNbO_{x} with $\mathrm{Nb}^{5+}\left(4 \mathrm{~d}^{0}\right)$ and $/$ or $\mathrm{Nb}^{4+}\left(4 \mathrm{~d}^{1}\right)$

$n=4$
$A B O_{3.5}$
$\mathrm{SrNbO}_{3.5}$ non-centrosym.
ferroelectric
For Refs. see [1-5] and references therein

$n=4.5$
$A B O_{3.44}$
$\mathrm{SrNbO}_{3.44}$
centrosymmetric
quasi-1D metal

$n=5$ (I)
$A B O_{3.4}$
$\mathrm{SrNbO}_{3.4}$ centrosymmetric quasi-1D metal

$n=5$ (II)
$A B O_{3.2}$ $\mathrm{SrNbO}_{3.2}$ non-centrosym. quasi-1D metal?

Light and heavy drawing of the BO_{6} octahedra and BO_{4} polyhedra as well as filled and open circles indicate a height difference perpendicular to the drawing plane

$$
n=\infty
$$

ABO_{3} perovskite SrNbO_{3} centrosym. metal

Introduction \& Summary

The crystal
$\searrow \boxtimes=\mathrm{NbO}_{6}$ octahedra (O located at the corners, Nb hidden in the center)
Light and heavy drawing of $\square \quad=\mathrm{NbO}_{4}$ (O located at the corners, Nb in the center) $\quad \circ=\mathrm{Sr}$ the BO_{6} octahedra
$\stackrel{c}{{ }^{c}}{ }^{\text {. }} b$

$\stackrel{c}{c}{ }^{4} a$
$n=5$ (I) type
$\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68}$

Nb - O polyhedra
distortion in percent

25	Nb^{5+}	Nb^{5+}	23
21	Nb^{5+}	Nb^{5+}	17
20	Nb^{4+}	Nb^{4+}	3
9	Nb^{4+}	Nb^{5+}	17
36	Nb^{4+}	Nb^{5+}	23
36	Nb^{4+}	Nb^{5+}	23
9	Nb^{4+}	Nb^{5+}	17
20	Nb^{4+}	Nb^{4+}	3
21	Nb^{5+}	Nb^{5+}	17
25	Nb^{5+}	Nb^{5+}	23

$$
\begin{aligned}
& \mathrm{Nb}^{5+} / 4 \mathrm{~d}^{0} \\
& \mathrm{Nb}^{4+} / 4 \mathrm{~d}^{1}
\end{aligned}
$$

F. Lichtenberg et al., Progress in Solid State Chem. 36 (2008) 253

$\mathrm{SrNbO}_{3.4} \hat{=} \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \hat{=} \mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68}$
Centrosymmetric • Space group No. 58
Quasi-1D metal

[^1]
Introduction \& Summary
 $10 / 13$

The crystal structure of the $n=5$ (II) type

$\mathrm{SrNbO}_{3.2} \xlongequal[=]{\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16} \hat{=} \mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{64}, ~}$
Non-centrosymmetric! • Space Group No 31 Probably also a quasi-1D metal
K. Schückel and Hk. Müller-Buschbaum
Z. Anorg. Allg. Chem. $\underline{528}$ (1985) 91
F. Lichtenberg et al., Progress in

Solid State Chem. 36 (2008) 253

Light and heavy drawing of the $B \mathrm{O}_{6}$ octahedra and BO_{4} polyhedra as well as filled and open circles indicate a height difference perpendicular to the drawing plane
$\mathrm{SrNbO}_{3.4} \xlongequal[=]{ } \mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \xlongequal[=]{ } \mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68}$
Centrosymmetric • Space group No. 58
Quasi-1D metal
S. C. Abrahams et al.

Acta Cryst. B $\underline{54}$ (1998) 399

Three-dimensional representation of the non-centrosymmetric crystal structure of
 of K. Schückel and Hk. Müller-Buschbaum [1].

The O ions are depicted as small open balls, the Nb ions as small black balls, and the Sr ions as large open balls. The hatched objects represent the NbO_{6} octahedra.

The definition of the specified $a-$, $b-$, and $c-a x i s$ is not the same as in the paper from K. Schückel and Hk. Müller-Buschbaum but in agreement with the used definition on the previous pages.
Image source:
[1] Ein weiteres gemischtvalentes Oxoniobat: $\mathrm{Sr}_{5} \mathrm{Nb}_{3}{ }^{4+} \mathrm{Nb}_{2}{ }^{5+} \mathrm{O}_{16}$ K. Schückel and Hk. Müller-Buschbaum

Zeitschrift für anorganische und allgemeine Chemie 528 (1985) 91-97
Paper in German but title and abstract also in English https://doi.org/10.1002/zaac. 19855280909
© Copyright (1985) Wiley-VCH GmbH. All rights reserved.

Introduction \& Summary

First it was intended to study the melt-grown $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ (sample No. 838) by single crystal x-ray diffraction. However, it was not possible to prepare from the melt-grown material small crystals with a suitable size and shape because the material displays a pronounced cleavage behavior. It suggests the presence of a particular weak bond strength between the layers that might result from the Sr - and O vacancies which are most probably located at the boundary of the layers.

Then it was tried to study the melt-grown $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ by electron diffraction.
An analysis of melt-grown $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), and Transmission Electron Microscopy (TEM) indicates the presence of a single phase material. This is in accordance with the results from an analysis by powder x-ray diffraction [5].

The similarity of the non-centrosymmetric structure (space group Pmn2 ${ }_{1}$ / No. 31) and centrosymmetric structure (space group Pnnm / No. 58) makes a symmetry analysis difficult.

Introduction \& Summary
 $13 / 13$

The simulation of the powder x-ray diffraction pattern of the parent compounds $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68}$ (centrosymmetric, space group Pnnm / No. 58) and $\mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{64}$ (non-centrosymmetric, space group $\mathrm{Pmn}_{1} / \mathrm{No}$. 31) indicates the presence of peaks in the non-centrosymmetric phase which do not appear in the centrosymmetric phase. Based on those reflections a lamella was prepared with an [100] orientation by using the Focused Ion Beam (FIB) technique. That allows the detection of those specific peaks in the low symmetry phase by comparing the results of simulated and experimental of the electron diffraction patterns of the respective structures acquired by TEM.

Both experimental and simulated diffraction results show that the (050) peak, a characteristic Bragg peak of the non-centrosymmetric structure, which is absent in the centrosymmetric structure, can be observed in the experimental electron diffraction pattern. It indicates that the melt-grown material $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ displays a non-centrosymmetric structure. The magnetic susceptibility $\chi(\mathrm{T})$ of $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ suggests it is a quasi-1D metal [5] and because of its non-centrosymmetric structure it is most probably a polar or ferroelectric quasi-1D metal.

Note: On this page and in part 3 the above-mentioned (050) peak refers to a definition where the b-axis is the longest axis, whereas on pages 5,6 , and $10-15$ and in Refs. [2, 4-8] the c-axis is defined as the longest axis

2 Experimental ...

Experimental

From a piece of the melt-grown material some lamellae for TEM investigations were prepared by the Focused Ion Beam (FIB) technique using a dual beam Gallium FIB-SEM of the type FEI Helios 600i. The Energy-dispersive X-ray Spectroscopy (EDS) was performed in another SEM.

Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) experiments were performed with a JEOL F200 STEM / TEM at 200 kV . Simulation of TEM images were performed with the JEMS simulation package, and STEM images with the Dr. Probe software.

JEMS: https://www.jems-swiss.ch/default.htm
Dr. Probe: https://er-c.org/barthel/drprobe

3 Results ...

Study of melt-grown $\mathrm{Sr}_{17} \mathrm{CaBaNb}_{19} \mathrm{WO}_{64}$ (sample No. 838) with respect to the structure of $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17} \hat{=} \mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{68}$ and $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16} \hat{=} \mathrm{Sr}_{20} \mathrm{Nb}_{20} \mathrm{O}_{64}$

$\mathrm{Sr}_{5} \mathbf{N b}_{5} \mathbf{O}_{17}$	$\mathbf{S r}_{5} \mathbf{N b}_{5} \mathbf{O}_{\mathbf{1 6}}$
ICSD database code 54058	ICSD database code 48207
Centrosymmetric	Non- centrosymmetric
$\mathrm{a}=32.4560(50) \AA$	$\mathrm{a}=3.992(1) \AA$
$\mathrm{b}=5.674(2) \AA$	$\mathrm{b}=32.476(10) \AA$
$\mathrm{c} 3.995(2) \AA$	$\mathrm{c}=5.677(2) \AA$
$\alpha=90^{\circ}$	$\alpha=90^{\circ}$
$\beta=90^{\circ}$	$\beta=90^{\circ}$
$\gamma=90^{\circ}$	$\gamma=90^{\circ}$
$\mathrm{V}=735.7 \AA^{3}$	$\mathrm{~V}=735.99 \AA^{3}$
Number of unit cells per formula unit: $\mathrm{Z}=2$	Number of unit cells per formula unit: $\mathrm{Z}=2$
Space group P n n m (No. 58)	Space group P m n 2 2 (No. 31)

Note: The definition of the $a-, b-$, and c-axis in the left and right column is different. It is the same which is used in Ref. [3] and [1], respectively. On pages 5, 6 and $10-15$ and in Refs. [2, 4-8] the c-axis is defined as the longest axis

SEM image and the area for an Electron Back Scatter Diffraction (EBSD) analysis

Left: SEM image with
enhanced resolution
when compared to that
on the previous page

Top: From pole figure analysis with space group No. 31 the normal to the surface of the melt-grown material is along the b-axis. In this case the b-axis is defined as the longest axis.

Two ways to prepare a FIB lamella with a direction of [001] or [100]

TEM images of the lamella after FIB preparation

The left image is a normal bright field image and the right one is the lower magnification bright field image with an introduced contrast aperture to enhance the contrast of the image for better visibility of potential defects or lattice distortions in the structure of the crystal

High-resolution TEM images of the sample display a nearly uniform lattice and only a few dislocations

What is the difference between the centrosymmetric and non-centrosymmetric unit cell ?

The Wyckoff positions of the two unit cells from the ICSD crystallography database

[^2]The general Wyckoff positions of the two unit cells calculated from space group *

Space group P n n m (No. 58)

Multiplicity	Wyckoff letter	Site symmetry	Coordinates
8	h	1	$\begin{array}{ll} \left(\frac{(x, y, z)}{(-x,-y, z)}\right. \\ (-x,-y,-z) & \frac{(-x+1 / 2, y+1 / 2,-z+1 / 2)}{(x, y+1 / 2,-y+1 / 2,-z+1 / 2)} \\ \frac{(x+1 / 2,-y+1 / 2, z+1 / 2)}{(x-x+1 / 2, y+1 / 2, z+1 / 2)} \end{array}$
4	g	..m	
4	f	.. 2	$(0,1 / 2, z)(1 / 2,0,-z+1 / 2)(0,1 / 2,-z)(1 / 2,0, z+1 / 2)$
4	e	.. 2	$(0,0, z)(1 / 2,1 / 2,-z+1 / 2)(0,0,-z)(1 / 2,1 / 2, z+1 / 2)$
2	d	..2/m	$(0,1 / 2,1 / 2)(1 / 2,0,0)$
2	c	..2/m	(0,1/2,0) (1/2,0,1/2)
2	b	..2/m	$(0,0,1 / 2)(1 / 2,1 / 2,0)$
2	a	..2/m	(0,0,0) (1/2, 1/2,1/2)

Space group $\mathrm{Pm} \mathrm{n} 2_{1}$ (No. 31)

| Multiplicity | Wyckoff
 letter | Site
 symmetry | Coordinates |
| :---: | :---: | :---: | :--- | :--- |
| 4 | b | 1 | $(x, y, z)\left(\frac{(-x+1 / 2,-y, z+1 / 2)}{(x+1 / 2,-y, z+1 / 2)}\left(\frac{(-x, y, z)}{(1 / 2,-y, z+1 / 2)}\right.\right.$ |
| 2 | a | $\mathrm{m} .$. | $(0, y, z)(\underline{(1 / 2)}$ |

Red colors show the Wyckoff positions which are not in our unit cell.

* Calculated from https://www.cryst.ehu.es/cgi-bin/cryst/programs/symm_modes

Wyckoff positions continued ...

Wyckoff Positions Splitting for group - subgroup pair Pnnm(58)>Pmn2 $\mathbf{1}_{1}(31)$
The group subgroup chain you want to consider is characterized by:

- an index 2 ;
- a transformation matrix which relates the coordinate system of the subgroup to that of the supergroup:
Wyckoff positions of group Pnnm(58)
Only bold Wyckoff positions are considered according to unit cell

WP	Representatives
8h	$\mathbf{x , y , z}$
$\mathbf{4 g}$	$\mathbf{x , y , 0}$
$\mathbf{4 f}$	$0,1 / 2, z$
4e	$0,0, z$
2d	$\mathbf{0 , 1 / 2 , 1 / 2}$
2c	$0,1 / 2,0$
2b	$\mathbf{0 , 0 , 1 / 2}$
2a	$\mathbf{0 , 0 , 0}$

Result from splitting

No	Wyckoff position(s)	
	Group	Subgroup
1	4 g	2a 2a
2	2d	2a
3	2b	2a
4	2a	2a

\rightarrow From a symmetry analysis of the parent-child groups it is difficult to draw a conclusion on which specific Wyckoff position we should look at because the low symmetry structure (space group No. 31) has only the Wyckoff position 2a for all elements

Simulation of the powder x-ray diffraction pattern by VESTA Version 3.5.8*

ICSD database code 54058: $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17}$

* VESTA: https://jp-minerals.org/vesta/en

According to ICSD 48207 the first peak at $2 \Theta=2.71^{\circ}$ is indexed with $(\mathrm{hkl})=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$

ICSD database code 48207: $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{16}$

Simulation of the powder x-ray diffraction pattern by VESTA Version 3.5.8*

ICSD database code 54058: $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17}$

According to ICSD 48207
the second peak at $2 \Theta=13.62^{\circ}$ is indexed with $(\mathrm{hkI})=\left(\begin{array}{ll}0 & 5\end{array}\right)$

[^3]

Simulation of the powder x-ray diffraction pattern by VESTA Version 3.5.8*

ICSD database code 54058: $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17}$

According to ICSD 48207
the peak at

$$
2 \Theta=40.22^{\circ}
$$

is indexed with $(\mathrm{hkl})=\left(\begin{array}{lll}1 & 12 & 0\end{array}\right)$

[^4]

Comparison of the electron diffraction patterns and if the missing peaks are observed or not
Simulation of the diffraction pattern by Single Crystal Version 4.1.9 * of the space group No. 58 and 31 along the [001] and [100] zone axis, respectively. Note that the zone axis is the same in both cases when taking into account the different definitions of the $a-, b-$, and c-axis, see page 21

Space group Pnnm(No. 58)

Space group P m n 2_{1} (No. 31)

[^5]Comparison of the electron diffraction patterns and if the missing peaks are observed or not The same but magnified diffraction patterns to see the details. The (050) reflection is only observed for the non-centrosymmetric space group No. 31 as it was simulated and predicted by the XRD pattern

Space group P n n m (No. 58)

Space group P m n 2_{1} (No. 31)

Experimental electron diffraction patterns obtained from two different areas of the lamella The observations from XRD and electron diffraction pattern simulations match well with the [100] or [001] direction, even if the intensities in the second image are slightly different. Based on EBSD the lamella was prepared with an electron beam parallel to the a-axis, i.e. along the [100] direction

Experimental (left) and simulated (right) electron diffraction pattern

They show the match of the diffraction spots. As expected the intensities in the experimental pattern is slightly different from that in the simulated pattern because of the additional elements $\mathrm{Ca}, \mathrm{Ba}, \mathrm{W}$ and the Sr-deficiencies in the lattice and the slight tilt of the sample.

Space group P m n 2_{1} (No. 31)

4 Author contributions ...

Author contributions

Ali Baghi Zadeh performed the SEM and TEM experiments and simulations and prepared a report about the results of the crystallographic studies.

Frank Lichtenberg provided pieces of the melt-grown material and its powder x-ray diffraction data and prepared this paper in form of a presentation by using Ali Baghi Zadeh's report and parts of Ref. [5].

Christian Zaubitzer prepared from the melt-grown material some lamellae by the FIB technique.

Luiz Grafulha Morales performed the EBSD experiments and analysis.

Arkadiy Simonov tried to prepare from the melt-grown material small crystals which are suitable for single crystal x-ray diffraction.

5 Acknowledgement ...

ETH

Acknowledgement

Nicola Spaldin and Frank Lichtenberg thank the ETH Zurich for financial support.

Frank Lichtenberg thanks Nicola Spaldin for her support, Marc Petitmermet for his IT support, and Susanne Blatter for her administrative support.

Ali Baghi Zadeh acknowledges the access to computational resources and software for image analysis at ScopeM.

6 References ...

References 1/4

[1] Ein weiteres gemischtvalentes Oxoniobat: $\mathrm{Sr}_{5} \mathrm{Nb}_{3}{ }^{4+} \mathrm{Nb}_{2}{ }^{5+} \mathrm{O}_{16}$
K. Schückel and Hk. Müller-Buschbaum

Zeitschrift für anorganische und allgemeine Chemie 528 (1985) 91-97
https://doi.org/10.1002/zaac. 19855280909
Paper in German but title and abstract also in English
[2] Synthesis, structural, magnetic and transport properties of perovskite-related layered titanates, niobates and tantalates of the type $A_{n} B_{n} O_{3 n+2}, A^{\prime} A_{k-1} B_{k} O_{3 k+1}$ and $A_{m} B_{m-1} O_{3 m}$
F. Lichtenberg, A. Herrnberger, and K. Wiedenmann

Progress in Solid State Chemistry $\underline{36}$ (2008) 253 - 387
https://dx.doi.org/10.1016/j.progsolidstchem.2008.10.001
[3] Centrosymmetric or non-centrosymmetric ? Case study, Generalization, and Structural Redetermination of $\mathrm{Sr}_{5} \mathrm{Nb}_{5} \mathrm{O}_{17}$
S.C. Abrahams, H.W. Schmalle, T. Williams, A. Reller, F. Lichtenberg, D. Widmer, J.G. Bednorz, R. Spreiter, Ch. Bosshard, and P. Gunter

Acta Crystallographica Section B $\underline{54}$ (1998) 399 - 416

References 2 / 4

[4] Synthesis of perovskite-related layered $A_{n} B_{n} O_{3 n+2}=A B O_{x}$ type niobates and titanates and study of their structural, electric and magnetic properties
F. Lichtenberg, A. Herrnberger, K. Wiedenmann, J. Mannhart

Progress in Solid State Chemistry 29 (2001) 1 - 70
https://dx.doi.org/10.1016/S0079-6786\(01\)00002-4
[5] Carpy-Galy phases $A_{n} B_{n} \mathrm{O}_{3 n+2}=A B O_{x}$: Overview, properties, special and hypothetical systems, and melt-grown synthesis of A - and O-deficient $n=5$ types such as $\mathrm{Sr}_{19} \mathrm{Nb}_{19} \mathrm{WO}_{66}$ and $\mathrm{Sr}_{17} \mathrm{Ca}_{2} \mathrm{Nb}_{19} \mathrm{WO}_{64}$ and $n=6$ type $L n_{6} \mathrm{Ti}_{4} \mathrm{Fe}_{2} \mathrm{O}_{20}$ and $\mathrm{Ca}_{6} \mathrm{Nb}_{5} \mathrm{FeO}_{20}$
Frank Lichtenberg
Published by the library of the ETH Zurich / ETH Research Collection in July 2020 (477 slides or pages) https://doi.org/10.3929/ethz-b-000424221

References 3/4

[6] Photoinduced metastable dd-exciton-driven metal-insulator transitions in quasi-one-dimensional transition metal oxides

Teguh Citra Asmara, Frank Lichtenberg, Florian Biebl, Tao Zhu, Pranab Kumar Das, Muhammad Avicenna Naradipa, Angga Dito Fauzi, Caozheng Diao, Ping Yang, Philipp Lenzen, Sören Buchenau, Benjamin Grimm-Lebsanft, Dongyang Wan, Paolo E. Trevisanutto, Mark B. H. Breese, T. Venkatesan, Michael Rübhausen, and Andrivo Rusydi
Communications Physics 3 (2020) article number 206 (1-9)
https://doi.org/10.1038/s42005-020-00451-w
[7] Excitonic quenching of the oxygen-chain phonon in the photoinduced metal-to-insulator transition of photoexcited $\mathrm{Sr}_{0.95} \mathrm{NbO}_{3.37}$ studied by ultraviolet-resonance Raman scattering
Sören Buchenau, Florian Biebl, Benjamin Grimm-Lebsanft, Philipp Lenzen, Teguh C. Asmara, Andrivo Rusydi, Frank Lichtenberg, andMichael Rübhausen
Physical Review B 107 (2023) $035149(1-5)$
https://doi.org/10.1103/PhysRevB.107.035149

References 4/4

[8] Two distinct charge density waves in the quasi-one-dimensional metal $\mathrm{Sr}_{0.95} \mathrm{NbO}_{3.37}$ revealed by resonant soft X-ray scattering

Angga Dito Fauzi, Caozheng Diao, Thomas J. Whitcher, Frank Lichtenberg, Ping Yang, Mark B. H. Breese, and Andrivo Rusydi
NPG Asia Materials 16 (2024) article number 27 (1-13)
https://doi.org/10.1038/s41427-024-00547-7

[^0]: Author(s):
 Lichtenberg, Frank; Baghi Zadeh, Ali (D); Zaubitzer, Christian (D); Grafulha Morales, Luiz; Simonov, Arkadiy (D)
 Publication date:

[^1]: S. C. Abrahams et al.

 Acta Cryst. B 54 (1998) 399

[^2]: Non-centrosymmetric unit cell

[^3]: * VESTA: https://jp-minerals.org/vesta/en

[^4]: * VESTA: https://jp-minerals.org/vesta/en

[^5]: * Single Crystal: https://crystalmaker.com/singlecrystal

