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Abstract

Imagine this: you are hosting a movie night with friends, but the video keeps buffer-
ing due to limited bandwidth. You may consider purchasing a high-speed bundle, but
prioritizing Internet access based on monetary payment can undermine Net Neutrality.
To date, there are no known fair means to elicit truthful demand information, leading
to a polarization of existing bandwidth allocation schemes that either assume truthful-
ness or are fully agnostic to demand. In this project, we design a non-monetary karma
economy for bandwidth allocation to fill this gap. A significant challenge is to choose a
social welfare function that is suitable for the infinitely divisible nature of bandwidth,
for which we propose and axiomatically justify weighted proportional fairness. With
this function, we prove the well-posedness of our karma-based model and demonstrate
our allocation system’s efficiency and fairness in various numerical experiments.
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1 Introduction
Data traffic engineering refers to the problem of finding a bandwidth allocation in a

data network that optimally satisfies user demands without exceeding data link capacities.
Generally, data traffic engineering algorithms could be classified as centralized or decentral-
ized. Centralized algorithms typically involve solving a centralized optimization problem
and are most commonly used in isolated data networks including wide-area backbone net-
works (WANs) of big companies such as Microsoft, Google, etc [1, 2]. On the other hand,
decentralized algorithms, which most famously include the Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP), are used in large-scale networks such as the In-
ternet since they operate in a real-time, distributed fashion by imposing bandwidth control
protocols on the end-devices. Notably, both the centralized and decentralized paradigms are
designed for a cooperative environment: in the former, it is assumed that end-users report
their demands to the central optimization truthfully, while in the latter it is assumed that
end-users truthfully follow the bandwidth control protocol.

However, recent years have seen a rapid increase in the data intensity of common Internet
tasks including streaming high-definition media and playing graphics-intensive games online
[3]. Such simultaneous high bandwidth demands often cannot be satisfied by the scarce
network resources, leading to a competitive environment in which all end-users try to gain as
much bandwidth as possible. To demonstrate this point, we conducted a simple experiment
for the centralized case where multiple clients share a single bottleneck link. As shown in
Figure 1, a client can easily ‘cheat’ by reporting fake demand to get more bandwidth. This
sort of selfish behavior is naturally expected to occur in any medium to large-scale network
and leads to severe performance deterioration when everyone cheats. Similarly, it is well
known that decentralized schemes such as TCP can also be exploited for selfish gain at the
cost of social welfare [4].

Therefore, it is more appropriate to analyze and derive robust bandwidth allocation
algorithms for this scarcity situation based on game theory, which explicitly accounts for the
behavior of rational players in competitive environments and how that behavior influences
social welfare. As a starting point for the analysis, we will focus on centralized traffic
engineering algorithms in this study.

From the perspective of game theory, one way to approach the competitive nature of the
bandwidth allocation problem is to exchange priority with money i.e. purchasing a high-
speed bundle to acquire higher bandwidth. However, monetary approaches could lead to
unfairness where wealthy users persist to gain a systematic advantage [5]. This manifested
in the recent debate over net neutrality where the public expressed severe concerns that the
Internet will lose its integrity as an open and equal resource for everyone if Internet service
providers (ISPs) discriminate Internet data and users based on their willingness to pay[6, 7,
8, 9]. In contrast, recent works have proposed the concept of karma economies, which use
non-monetary credits called karma to allocate shared resources[10, 11]. This approach was
demonstrated to achieve high efficiency without requiring private information about users’
true demand and to solve the unfairness issue since karma is not exchangeable for money. In
this study, we focus on devising a karma economy for the data traffic engineering problem,
which requires modeling such a problem precisely and ensuring it has a tractable solution.
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Figure 1: Effect of competitive behavior in centralized traffic engineering. The detailed
analysis is included in Appendix A.

1.1 Related work
As mentioned above, there are two categories of data traffic engineering algorithms and

we will focus on the case of centralized algorithms in this study. Two well-studied centralized
algorithms in the literature are forward fault correction (FFC) [1] and Traffic Engineering
Applying Value at Risk (TEAVAR) [2]. Notably, the main focus of these and other works
is to be robust against multiple concurrent link failures, rather than being robust against
selfish behavior. In particular, FFC focuses on handling multiple concurrent failures, while
TEAVAR focuses on handling failure cases with high probability. Both of these algorithms
take the truthful reporting of demand for granted, which as discussed above leads to severe
performance degradation in scarce, competitive environments. We consider this study to
be complementary to these approaches, focusing on strategic behavior while neglecting the
important problem of link failure handling for simplicity.

On the other hand, the core concept of a karma economy is: If I give in now, I will be
rewarded in the future. While, to the extent of our knowledge, this concept has not been
applied yet to the traffic engineering problem, it has been previously explored in the context
of peer-to-peer file sharing.

It is well known that peer-to-peer file sharing relies on spontaneous seeding. Similar
to the aforementioned cheating behavior in traffic engineering, if most clients attempt to
free-ride by downloading without seeding, the resource will be lost on the Internet [12].
Therefore, some websites introduce private trackers (PT) to track the download and upload
data of individual clients. Once the ratio of download to upload exceeds a certain threshold,
the client is identified as a free-rider and disallowed further downloads [13].

Notably, this and similar approaches are largely heuristic and lack rigorous game-theoretic
justification. For example, in the case of PT it is difficult to rigorously identify the free
riding threshold in a centralized manner. In contrast, this study builds on the rigorous
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game-theoretic formulation of karma economies proposed in [10], which is reviewed formally
in Section 2.1.

1.2 Main contributions
In this study, we initiate the analysis of centralized data traffic engineering in competitive

environments by considering a simple single-link network topology contested by a large
number of clients. Our analysis first focuses on the important problem of choosing the social
welfare function of centralized optimization, for which we propose the weighted proportional
fairness function as it satisfies several natural properties. We then adapt the original karma
dynamic population game formulation by choosing the immediate reward function carefully.
Under the criterion of weighted proportional fairness, we demonstrate that our bandwidth
allocation algorithm achieves both efficiency and fairness (see Section 2.3) without requiring
access to the private information of clients’ true demand. We instead incentivize clients to
reveal this private information by the actions they made.

The main contributions could be summarized as:

• We formalize the data traffic engineering problem in a competitive environment as
a dynamic population game [14], adapt the karma economy to this game, and prove
the existence of a Stationary Nash Equilibrium so that the dynamic game could be
studied from a static perspective, see Section 3.3.

• We propose weighted proportional fairness function as the centralized social welfare
function, prove that it satisfies a set of natural axioms, and contrast it to other common
choices that do not satisfy the axioms, see Section 3.1.1.

• We choose a specific immediate reward function that is consistent with the social
objective of weighted proportional fairness and satisfies other desirable properties, see
Section 3.2.2.

• Through numerical experiments, we demonstrate that the karma economy for data
traffic engineering achieves both efficiency and fairness in some simple networks.

1.3 Notation
Let a, d ∈ D ⊆ N and c ∈ C ⊆ Rn, then for a vector-valued function f : C 7→ R|D|,

we use f [d](c) to denote the dth element of vector f(c). Similarly, g[a | d](c) denotes the
conditional probability of a given d and c.
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2 Preliminaries

2.1 General karma economy
Here, we revisit the karma economy introduced in [10], which is modeled as a dynamic

population game [14].
We consider a large number of clients N who repeatedly compete for access to a scarce

shared resource and approximate them by a continuum of mass. At each time step, a client
has some karma k ∈ N and can submit an integer bid b ∈ Bk := {b ∈ N|b ≤ k} which should
not exceed the karma. Then the resource is allocated through an auction-like mechanism
and karma is transferred among the clients. Apart from karma, each client has an urgency
state u ∈ U = {u0, u1, . . . , uM} ⊂ R>0 that decribes the urgency to acquire the resource.

Jointly the urgency and karma form the time-varying state of a client, denoted by x =

[u, k] ∈ X = U ×N. In addition to client states, we consider a finite number of client types
τ ∈ Γ ⊂ N, and the urgency of a client of type τ evolves according to an exogenous Markov
chain, denoted by ϕτ [u

+|u]. The distribution of client types is denoted by g ∈ ∆(Γ), where
gτ ∈ [0, 1] represents the mass of client with type τ ∈ Γ. Accordingly, the joint type-state
distribution can be written as

d ∈ D =

d ∈ R|Γ|×|X|
+

∣∣∣∣∣∣
∑
u,k

dτ [u, k] = gτ , ∀τ ∈ Γ

 .

At each time step, the action of a client is the bid b, which is limited by its karma k.
Clients of the same type τ follow the homogeneous randomized policy

πτ : X → ∆(Bk) :=

{
σ ∈ Rk+1

+

∣∣∣∣∣∑
b

σ[b] = 1

}
,

where πτ [b|u, k] denotes the probabilistic weight that these clients place on bid b when in
state [u, k]. The concatenation of the policies of all types π = (πτ )τ∈Γ is simply referred to
as the policy. The tuple of type-state distribution and policy (d, π) is defined as the social
state.

Let κ[k+|k, b](d, π) be the karma transition function that describes how a client’s karma
changes between two consecutive time steps given its current karma k, bid b, and the social
state (d, π). Then, together with the urgency transition function ϕτ [u

+|u], the joint state
transition function is given by

ρτ [u
+, k+|u, k, b](d, π) = ϕτ

[
u+|u

]
κ[k+|k, b](d, π).

Moreover, we define ζ [u, b] (d, π) as the immediate reward function of each client in
urgency u and taking bid b. Both the karma transition function and immediate reward
function will be discussed thoroughly in Section 3.2.

Given the social state, each client faces a Markov decision process. Specifically, the
expected reward of the clients of type τ is given by

Rτ [u, b] (d, π) =
∑
b

πτ [b|u, k]ζ [u, b] (d, π)
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and the state transition follows

Pτ [u
+, k+|u, k](d, π) =

∑
b

πτ [b|u, k]ρτ [u+, k+|u, k, b](d, π).

Accordingly, the value function in the infinite horizon is derived as

V τ [u, b] (d, π) = Rτ [u, b] (d, π) + δ
∑

u+,k+

Pτ [u
+, k+|u, k](d, π)V τ

[
u+, k+

]
(d, π),

where δ ∈ (0, 1] is the discount factor.
To describe the rational decision of each client, we also need to define the Q-function as

Qτ [u, k, b] (d, π) = ζ [u, b] (d, π) + δ
∑

u+,k+

ρτ [u
+, k+|u, k, b](d, π)V τ

[
u+, k+

]
(d, π).

Then, to maximize the long-term return, each client chooses a policy based on the best
response correspondence, given by

Bτ [u, k] (d, π) =

{
σ ∈ ∆(Bk)

∣∣∣∣∣∀σ′ ∈ ∆(Bk),
∑
b

(σ[b]− σ′[b])Qτ [u, k, b] (d, π) ≥ 0

}
.

Before defining the equilibrium of this game, we need two more conditions:

Condition 2.1. Continuity
The immediate reward function ζ [u, b] (d, π) and the karma transition function
κ[k+|k, b](d, π) are continuous in the social state (d, π).

Condition 2.2. Preservation of Karma
Karma is preserved in expectation for all social state (d, π), i.e., E[k+] = E[k], which
expands to∑

τ,u,k

dτ [u, k]
∑
b

πτ [b|u, k]
∑
k+

κ[k+|k, b](d, π)k+ =
∑
τ,u,k

dτ [u, k] k.

The readers could refer to [10] for a detailed discussion on the conditions and functions
mentioned above. Then, we can finally define the equilibrium state in a karma economy.

Definition 2.3. Stationary Nash Equilibrium
A Stationary Nash Equilibrium is a social state (d∗, π∗) ∈ D × Π such that,
∀(τ , u, k) ∈ Γ× U × N,

d∗τ [u, k] =
∑

u−,k−

d∗τ
[
u−, k−

]
Pτ [u, k|u−, k−](d∗, π∗)

π∗
τ [·|u, k] ∈ Bτ [u, k] (d

∗, π∗)

We conclude this section by stating that the existence of Stationary Nash Equilibrium
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is guaranteed in the above setting. The detailed proof of existence could be found in [10].

Theorem 2.4. Existence of Stationary Nash Equilibrium
If Conditions 2.1 and 2.2 hold, then given k̄ ∈ N, there always exists a Stationary
Nash Equilibrium (d∗, π∗) such that

∑
τ,u,k

d∗τ [u, k] k = k̄, and k̄ is the average amount

of karma per client.

2.2 Data traffic engineering with competition
Following the traffic engineering literature [1, 2], we represent the network topology

with a directed graph G = (V ,A), where vertex set V represents switches and arc set A

represents links between switches. The flow set F ⊆ V ×V contains all source-target switch
pairs with the demand of transmitting data. Each flow f ∈ F is associated with a tunnel set
T f ⊆ Pow(2A) which contains tunnels t ⊆ 2A connecting the source and the target of flow
f . The tunnel set T f represents all tunnels/paths that a flow f ∈ F is allowed to access.
Let C[a] denotes the capacity of link a ∈ A in Gbits/s.

Since we are interested in medium to large-scale networks, and to be compatible with the
karma dynamic population game model, we assume that the number of clients N is large
enough that they can be approximated by a continuum of mass. We further assume that all
clients can be classified in a finite number of types τ ∈ Γ, with Nτ = gτN . Each type τ ∈ Γ

associates the client to a flow fτ and a demand/urgency pattern ϕτ [u
+ |u], where u denotes

the true demand of the client in Gbit/s and belongs to a finite set U . In a competitive
environment, clients report a potentially non-truthful demand b, and we let Nτ [b] denote
the number of clients in type τ reporting demand b.

Given the network topology and the reported demands, the centralized traffic engineering
optimization decides on the bandwidth sfτ

[b, t] (in Gbit/s) on tunnel t ∈ T fτ
to allocate to

a client of type τ ∈ Γ reporting b. Let sfτ [b] =
∑

t∈T fτ

sfτ [b, t] be the bandwidth allocated

to a client of type τ ∈ Γ reporting b. We should notice that we use sfτ
[b, t] instead of

sτ [b, t] since the system can only access a client’s source and target represented by fτ

instead of both fτ and its urgency pattern ϕτ . Let Sτ [t] =
∑
b

Nτ [b]sfτ
[b, t] be the total

supply to type τ ∈ Γ on tunnel t ∈ T fτ
, Sτ =

∑
t∈T fτ

Sτ [t] be the total supply to type

τ ∈ Γ, and S[a] =
∑
τ∈Γ

∑
t∈T fτ : a∈t

Sτ [t] be the total supply on link a. Then we must have

S[a] ≤ C[a], ∀a ∈ A to not exceed the capacity of any link. In addition, let Sf =
∑

τ∈Γ: fτ=f

Sτ

be the total supply to all types τ with the same flow fτ ∈ F .
On a normalized scale, let instead c[a] = C[a]

N be the normalized capacity of link a ∈ A,
ξτ [b] be the proportion of clients of type τ reporting demand b such that Nτ [b] = ξτ [b]Nτ ,
s̄τ [t] =

∑
b

ξτ [b]sfτ
[b, t] be the average bandwidth allocated to type τ ∈ Γ on tunnel t ∈

T fτ , s̄τ =
∑

t∈T fτ

s̄τ [t] be the average bandwidth allocated to type τ ∈ Γ, and s̄[a] =∑
τ∈Γ

gτ
∑

t∈T fτ : a∈t

s̄τ [t] be the normalized supply on link a ∈ A which must satisfy s̄[a] ≤ c[a].

In addition, let s̄f [t] =
∑

τ∈Γ: fτ=f

gτ s̄τ [t] be the normalized supply to all clients with flow

f ∈ F on tunnel t ∈ T f , and s̄f =
∑

τ∈Γ: fτ=f

s̄τ be the normalized supply to all types τ with
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the same flow fτ ∈ F .
After defining some rules for clients to report demand, the centralized traffic engineering

optimization could optimize the allocation scheme sf [b, t] towards a social welfare function
and output an optimal solution s∗f [b, t]. In this study, such rules are defined by the karma
economy and will be discussed in Section 3.

2.3 Common social welfare functions
In this section, we will review several common social welfare functions F appearing

in the literature associated with traffic engineering. In the literature, it is common to
associate individual clients to the flows f , and therefore we will present the social welfare
measures defined with respect to the flow allocations Sf rather than the allocations sfτ

to the
individual clients. Correspondingly, we will use the total true demand Uf of a flow f instead
of the true demand u of individual clients. Concretely, Uf = N

∑
τ∈Γ: fτ=f

∑
u,k

dτ [u, k]u. In order

to simplify the expression of Sf , let S =
{
S
∣∣∣S =

(
Sf1 , Sf2 , . . . , Sf|F |

)T and S feasible
}

containing all feasible total supply to flows F . Since all constraints for S feasible are linear,
S is a polyhedral and thus convex. Similarly to S, let U =

(
Uf1 , Uf2 , . . . , Uf|F |

)T be the
compact representation of Uf , f ∈ F . Then the social welfare function is a function of S

and U: F = F(S,U).
We will first introduce social welfare functions without truncation of overflowed band-

width, which means that we assume there is no waste of bandwidth: Sf ≤ Uf , ∀f ∈ F . We
will derive the version with truncation at the end of this section.

For FFC [1], they use the sum of supply as the social welfare function, which could be
written as

F(S,U) =
∑
f∈F

Sf

For TEAVAR [2], they use the minimum availability as the social welfare function, which
could be written as

F(S,U) = min
f∈F

{
Sf

Uf

}
Proportional fairness [15] is a kind of fairness such that any possible aggregate percentage

increase of supply for a group of clients results in an equal or greater aggregate percentage
decrease of supply. Formally, the definition is:

Definition 2.5. Proportional fairness
A specific allocation S∗ is proportionally fair if:

∀S ∈ S,
∑
f∈F

Sf − S∗
f

S∗
f

≤ 0

Such fairness could be achieved by maximizing the following proportional fairness func-
tion:

F(S,U) =
∑
f∈F

ln (Sf )

More concretely, we have the following theorem
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Theorem 2.6. If the feasible allocation set S is convex, then there exists a unique
allocation S∗ that maximizes the following social welfare function

F(S,U) =
∑
f∈F

ln (Sf )

and S∗ is also proportionally fair.

The proof of theorem 2.6 could be found in Appendix B.
However, such a kind of fairness doesn’t consider the different demands of each flow.

Therefore, we could derive a modified version of proportional fairness, which takes the
different demands of each client as weight and could be named per-unit-demand proportional
fairness or just weighted proportional fairness.

Definition 2.7. Weighted proportional fairness (Per-unit-demand propor-
tional fairness)
A specific allocation S∗ is weighted proportionally fair if:

∀S ∈ S,
∑
f∈F

Uf

Sf − S∗
f

S∗
f

≤ 0

The modified version with weight could be regarded as splitting both the supply and the
demand of a flow f into Uf sub-flows evenly if the demand Uf is integral. Each sub-flows
created from f has a demand of 1 and a supply of Sf/Uf . The weighted proportional
fairness is indeed the proportional fairness after substituting all flows f ∈ F with sub-flows
with unit demand.

Similarly, we could achieve weighted proportional fairness by maximizing the following
weighted proportional fairness function:

F(S,U) =
∑
f∈F

Uf ln (Sf )

More concretely, we have the following theorem:

Theorem 2.8. If the feasible allocation set S is convex, then there exists a unique
allocation S∗ that maximizes the following social welfare function

F(S,U) =
∑
f∈F

Uf ln (Sf )

and S∗ is also weighted proportionally fair.

The proof of theorem 2.8 is given in Appendix C.
Besides these social welfare functions related to proportional fairness, we also propose

the fairness with quadratic loss:
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F(S,U) =
∑
f∈F

− (Sf − Uf )
2

and the sum of availability:

F(S,U) =
∑
f∈F

Sf

Uf

We should notice that the assumption: Sf ≤ Uf , ∀f ∈ F made at the beginning of this
section is not guaranteed in all feasible allocations S. Therefore, we need to truncate the
overflowed bandwidth by substituting Sf with min {Sf , Uf} as shown in Table 1.

Table 1: Different social welfare functions with and without truncation.

Social welfare function Without truncation With truncation

Sum of supply
∑
f∈F

Sf

∑
f∈F

min {Sf , Uf}

Minimum availability min
f∈F

{
Sf

Uf

}
min
f∈F

{
min

{
Sf

Uf
, 1
}}

Proportional fairness
∑
f∈F

ln (Sf )
∑
f∈F

ln (min {Sf , Uf})

Weighted proportional fairness
∑
f∈F

Uf ln (Sf )
∑
f∈F

Uf ln (min {Sf , Uf})

Fairness with quadratic loss
∑
f∈F

− (Sf − Uf )
2 ∑

f∈F

− (min {Sf − Uf , 0})2

Sum of availability
∑
f∈F

Sf

Uf

∑
f∈F

min
{

Sf

Uf
, 1
}

We will discuss the performance of these social welfare functions thoroughly and also
show how to assess the individual allocations in Section 3.1.1.
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3 Data traffic engineering with karma
To adapt the general karma economy to traffic engineering with competition, we will

describe the behavior of the karma mechanism from two perspectives: system and client.
From the perspective of the system, we will mainly discuss how bandwidth is allocated to
different clients according to their bids. From the perspective of the client, we will discuss
how clients act based on the rules of the bandwidth allocation system.

3.1 Karma-based bandwidth allocation system

3.1.1 Choice of social welfare function

Like other data traffic engineering algorithms, we need to first determine our social
welfare function as the objective to be optimized. Therefore, we compare the different
social welfare functions introduced in Section 2.3. In line with Section 2.3, we will first
discuss the social welfare function at the level of flows f , before deriving an expression of
the chosen function at the client level at the end of the section.

To guide our choice of social welfare function, we introduce the following two basic
axioms that the social welfare function without truncation should satisfy.

Axiom 3.1. Uniqueness

∀S∗,S∗∗ ∈ S s.t. F(S∗,U) = F(S∗∗,U) = max
S∈S
F(S,U), S∗

f = S∗∗
f ∀f ∈ F .

Axiom 3.2. Client-splitting invariance
Let (F ,U) be a set of flows and the corresponding demand vector, and let S∗ be
an optimal allocation under F for (F ,U). Let f̃ ∈ F be an arbitrary flow. Let
(F ′,U′) be another set of flows and demands such that F ′ =

(
F \

{
f̃
})
∪
{
f̃1, f̃2

}
,

f̃1 = f̃2 = f̃ , U ′
f̃1

+ U ′
f̃2

= U f̃ , U ′
f ′ = Uf ′∀f ′ ∈ F \ f̃ . Then the following allocation

S′∗ is optimal under F for (F ′,U′):

∀f ′ ∈ F ′, S′∗
f ′ =


U ′

f̃1

U f̃
S∗
f̃
, f ′ = f̃1;

U ′
f̃2

U f̃
S∗
f̃
, f ′ = f̃2;

S∗
f ′ , else.

The first axiom is Uniqueness, which means that the optimal allocation scheme S∗ ∈ S
with respect to the social welfare selected is unique at the level of flows. With such an
axiom, it is possible to represent the optimal allocation by a variable s∗ instead of a set
containing all possible optimal allocations. The second axiom is Client-splitting invariance,
which means that the splitting of any flow f will not affect the optimal allocation of the
other flows f ′ ∈ F \ {f}. If we combine both axioms, the aggregation of any flow f will also
not affect the optimal allocation of the other flows.

Table 2 compares the social welfare functions introduced in Section 2.3 with respect to
Axioms 3.1 and 3.2. We find that weighted proportional fairness function is the only one
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that satisfies both axioms according to Theorem 3.3, which has important consequences
for the proposed karma scheme and will be discussed in detail in Sections 3.1.1 and 3.2.2.
In addition, optimizing towards the weighted proportional fairness function could result in
weighted proportional fairness defined in Section 2.3. Therefore, we select weighted propor-
tional fairness function as the social welfare function in the upcoming analysis. The proof
of Table 2 is in Appendix D.

Table 2: Comparison of social welfare functions with respect to Axioms 3.1 and 3.2.

Fairness function Uniqueness Client-splitting
invariance

Sum of supply × ✓
Minimum availability × ✓
Proportional fairness ✓ ×

Weighted proportional fairness ✓✓✓ ✓✓✓
Fairness with quadratic loss ✓ ×

Sum of availability × ×

Theorem 3.3. Weighted proportional fairness function meets both Axioms 3.1 and
3.2.

Proof of Theorem 3.3:
First, let’s prove that Axioms 3.1 holds for the weighted proportional fairness function.
Let S∗,S∗∗ ∈ S be two optimal solutions of F(S,U) =

∑
f∈F

Uf ln (Sf ): F(S∗,U) =

F(S∗∗,U) = max
S∈S
F(S,U). Since the set S that contains all feasible allocations is convex,

S∗+S∗∗

2 ∈ S. Then we have

F(S
∗ + S∗∗

2
,U) =

∑
f∈F

Uf ln

(
S∗
f + S∗∗

f

2

)

≥
∑
f∈F

Uf

ln
(
S∗
f

)
+ ln

(
S∗∗
f

)
2

=
1

2

∑
f∈F

Uf ln
(
S∗
f

)
+
∑
f∈F

Uf ln
(
S∗∗
f

)
=

1

2
(F(S∗,U) + F(S∗∗,U))

=
1

2

(
max
S∈S
F(S,U) + max

S∈S
F(S,U)

)
= max

S∈S
F(S,U).

On the other hand, we know that F(S∗+S∗∗

2 ,U) ≤ max
S∈S
F(S,U) . Therefore, F(S∗+S∗∗

2 ,U) =

max
S∈S
F(S,U). The equality of

∑
f∈F

Uf ln
(

S∗
f+S∗∗

f

2

)
≥
∑
f∈F

Uf
ln(S∗

f)+ln(S∗∗
f )

2 is achieved when
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S∗
f = S∗∗

f , ∀f ∈ F . Therefore, S∗ = S∗∗. The Axiom 3.1 holds for the weighted proportional
fairness function.

Then, let’s prove that Axioms 3.2 holds.
By contradiction, we assume that Axioms 3.2 does not hold for the weighted proportional

fairness function, which is equivalent to assume ∃S′∗∗ ∈ S ′ such that S′∗∗ is optimal under
F for (F ′,U′), so F(S′∗∗,U′;F ′) > F(S′∗,U′;F ′). We can expand F(S′∗∗,U′;F ′) as

F(S′∗∗,U′;F ′) = U ′
f̃1
ln
(
S′∗∗
f̃1

)
+ U ′

f̃2
ln
(
S′∗∗
f̃2

)
+

∑
f∈F\{f̃1,f̃2}

Uf ln
(
S∗∗
f

)
.

We assert
S′∗∗

f̃1

S′∗∗
f̃2

=
U ′

f̃1

U ′
f̃2

. To prove this assertion, we can construct S′∗∗∗ ∈ S ′:

∀f ′ ∈ F ′, S′∗∗∗
f ′ =


U ′

f̃1

U ′
f̃1

+U ′
f̃2

(
S′∗∗
f̃1

+ S′∗∗
f̃2

)
, f ′ = f̃1;

U ′
f̃2

U ′
f̃1

+U ′
f̃2

(
S′∗∗
f̃1

+ S′∗∗
f̃2

)
, f ′ = f̃2;

S′∗∗
f ′ , else.

which redistribute the bandwidth of flows f̃1 and f̃2 proportionally to their demand U ′
f̃1

and U ′
f̃2

. We have that

F(S′∗∗,U′;F ′)−F(S′∗∗∗,U′;F ′)

= U ′
f̃1
ln
(
S′∗∗
f̃1

)
+ U ′

f̃2
ln
(
S′∗∗
f̃2

)
−
(
U ′

f̃1
ln
(
S′∗∗∗
f̃1

)
+ U ′

f̃2
ln
(
S′∗∗∗
f̃2

))
= U ′

f̃1
ln

(
S′∗∗
f̃1

S′∗∗∗
f̃1

)
+ U ′

f̃2
ln

(
S′∗∗
f̃2

S′∗∗∗
f̃2

)

=
(
U ′

f̃1
+ U ′

f̃2

)[ U ′
f̃1

U ′
f̃1

+ U ′
f̃2

ln

(
S′∗∗
f̃1

S′∗∗∗
f̃1

)
+

U ′
f̃2

U ′
f̃1

+ U ′
f̃2

ln

(
S′∗∗
f̃2

S′∗∗∗
f̃2

)]

≤
(
U ′

f̃1
+ U ′

f̃2

)
ln

(
U ′

f̃1

U ′
f̃1

+ U ′
f̃2

S′∗∗
f̃1

S′∗∗∗
f̃1

+
U ′

f̃2

U ′
f̃1

+ U ′
f̃2

S′∗∗
f̃2

S′∗∗∗
f̃2

)
(Jensen’s inequality)

=
(
U ′

f̃1
+ U ′

f̃2

)
ln

(
S′∗∗
f̃1

S′∗∗
f̃1

+ S′∗∗
f̃2

+
S′∗∗
f̃2

S′∗∗
f̃1

+ S′∗∗
f̃2

)
(Substitute S′∗∗∗ with S′∗∗)

=
(
U ′

f̃1
+ U ′

f̃2

)
ln (1)

= 0

Since S′∗∗ is an optimal solution, we have that F(S′∗∗,U′;F ′) ≥ F(S′∗∗∗,U′;F ′). Therefore,
F(S′∗∗,U′;F ′) = F(S′∗∗∗,U′;F ′). Since the equality in the Jensen’s inequality above holds
if and only if

S′∗∗
f̃1

S′∗∗∗
f̃1

=
S′∗∗

f̃2

S′∗∗∗
f̃2

, which is equivalent to S′∗∗ = S′∗∗∗,
S′∗∗

f̃1

S′∗∗
f̃2

=
U ′

f̃1

U ′
f̃2

, the assertion is
proved.

Then, we can construct an allocation S∗∗ for (F ,U):

∀f ∈ F , S∗∗
f =

S′∗∗
f̃1

+ S′∗∗
f̃2

, f = f̃ ;

S′∗∗
f , else.
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where we merge the bandwidth of the flows f̃1, f̃1 ∈ F ′ into the bandwidth of the flow f̃ ∈ F

and keep the bandwidth of other flows unchanged. From the definition of S∗∗ we should
notice that S′∗∗

f̃1
=

U ′
f̃1

U ′
f̃

S∗∗
f̃

and S′∗∗
f̃2

=
U ′

f̃2

U ′
f̃

S∗∗
f̃

. Since S′∗∗ ∈ S ′, we know that S∗∗ ∈ S.
Since F(S′∗,U′;F ′) < F(S′∗∗,U′;F ′), we could expand it as∑

f ′∈F ′

U ′
f ′ ln

(
S′∗
f ′

)
<
∑

f ′∈F ′

U ′
f ′ ln

(
S′∗∗
f ′

)
⇒ U ′

f̃1
ln
(
S′∗
f̃1

)
+ U ′

f̃2
ln
(
S′∗
f̃2

)
+

∑
f ′∈F ′\{f̃1,f̃2}

U ′
f ′ ln

(
S′∗
f ′

)
< U ′

f̃1
ln
(
S′∗∗
f̃1

)
+ U ′

f̃2
ln
(
S′∗∗
f̃2

)
+

∑
f ′∈F ′\{f̃1,f̃2}

U ′
f ′ ln

(
S′∗∗
f ′

)

⇒ U ′
f̃1
ln

(
U ′

f̃1

U f̃

S∗
f̃

)
+ U ′

f̃2
ln

(
U ′

f̃2

U f̃

S∗
f̃

)
+

∑
f ′∈F ′\{f̃1,f̃2}

U ′
f ′ ln

(
S′∗
f ′

)

< U ′
f̃1
ln

(
U ′

f̃1

U f̃

S∗∗
f̃

)
+ U ′

f̃2
ln

(
U ′

f̃2

U f̃

S∗∗
f̃

)
+

∑
f ′∈F ′\{f̃1,f̃2}

U ′
f ′ ln

(
S′∗∗
f ′

)
⇒
(
U ′

f̃1
+ U ′

f̃2

)
ln
(
S∗
f̃

)
+

∑
f ′∈F ′\{f̃1,f̃2}

U ′
f ′ ln

(
S′∗
f ′

)
<
(
U ′

f̃1
+ U ′

f̃2

)
ln
(
S∗∗
f̃

)
+

∑
f ′∈F ′\{f̃1,f̃2}

U ′
f ′ ln

(
S′∗∗
f ′

)
⇒ U f̃ ln

(
S∗
f̃

)
+

∑
f∈F\{f̃}

Uf ln
(
S∗
f

)
< U f̃ ln

(
S∗∗
f̃

)
+

∑
f∈F\{f̃}

Uf ln
(
S∗∗
f

)
⇒
∑
f∈F

Uf ln
(
S∗
f

)
<
∑
f∈F

Uf ln
(
S∗∗
f

)
F(S∗∗,U;F ) < F(S∗,U;F )

Also, since S∗ is an optimal solution of F under (F ,U), we have that F(S∗∗,U;F ) ≥
F(S∗,U;F ), which contradicts the inequality between F(S∗∗,U;F ) and F(S∗,U;F ) de-

rived above.
Therefore, we prove that Axioms 3.2 holds for weighted proportional fairness function

by contradiction. Together with the proof above for Axioms 3.1, we prove Theorem 3.3.
Given our choice of weighted proportional fairness function on the flow level, we could

rely on Axiom 3.2 to derive a consistent weighted proportional fairness function on the client
level. What we are doing is splitting flows f ∈ F infinitesimally to all clients on f .

The original weighted proportional fairness function at the flow level is

F(S,U) =
∑
f∈F

Uf ln (Sf ) .
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By splitting each flow into types we have

F =
∑
τ∈Γ

Uτ ln
(
S̄τ

)
=
∑
τ∈Γ

Nτ ūτ ln (Nτ s̄τ )

= N
∑
τ∈Γ

gτ ūτ ln (s̄τ ) +N
∑
τ∈Γ

gτ ūτ ln (Nτ ) ,

where Uτ is the total true demand of clients in type τ and ūτ is the average true demand of
clients in type τ . Since F is the objective function to be optimized, we could discard terms
N and ln (Nτ ) without changing the optimal solution. Thus, weighted proportional fairness
function at the type level could be written as

F(s̄τ , ūτ ) =
∑
τ∈Γ

gτ ūτ ln (s̄τ ) .

Similarly, from the perspective of clients we have

F(sf [b, t], dτ ) =
∑
τ∈Γ

∑
u,k,b

πτ [b|u, k]dτ [u, k]u ln

 ∑
t∈T fτ

sfτ [b, t]



=
∑
f∈F

∑
b

ln
∑

t∈T f

sf [b, t]

 ∑
u,k

τ∈Γ: fτ=f

πτ [b|u, k]dτ [u, k]u

 ,

F(sf [b], dτ ) =
∑
τ∈Γ

∑
u,k,b

πτ [b|u, k]dτ [u, k]u ln (sfτ
[b])

=
∑
f∈F

∑
b

ln (sf [b]) ∑
u,k

τ∈Γ: fτ=f

πτ [b|u, k]dτ [u, k]u

 .

Therefore, an allocation that maximizes client-level weighted proportional fairness will
maximize flow-level weighted proportional fairness once clients are aggregated to flows (and
vice-versa).

3.1.2 Karma-based bandwidth allocation algorithm

In the previous section, we use the the weighted proportional fairness function:

F(S,U) =
∑
f∈F

Uf ln (Sf )

F(s̄τ , ūτ ) =
∑
τ∈Γ

gτ ūτ ln (s̄τ )

F(sf [b], dτ ) =
∑
f∈F

∑
b

ln (sf [b]) ∑
u,k

τ∈Γ: fτ=f

πτ [b|u, k]dτ [u, k]u



17



to describe the social welfare at the flow, the type and the client level respectively. We should
notice that from the perspective of the bandwidth allocation system, the true demand of
each client is not accessible since true demand is private information which clients tend not
to report truthfully as shown in Figure 1. Therefore, we need to find a way to approximate
the true demand. Here, we use the bid b of each client to substitute the true demand u for
the bandwidth allocation system. In such a way, the weighted proportional fairness function
could be modified as:

F(S,B) =
∑
f∈F

Bf ln (Sf )

F(s̄τ , b̄τ ) =
∑
τ∈Γ

gτ b̄τ ln (s̄τ )

F(sf [b], dτ ) =
∑
f∈F

∑
b

ln (sf [b]) ∑
u,k

τ∈Γ: fτ=f

πτ [b|u, k]dτ [u, k]b

 ,

where b̄τ = 1
gτ

∑
b

[∑
u,k

πτ [b|u, k]dτ [u, k]b

]
represents the average bid of all clients with type

τ , Bf = N
∑

τ∈Γ: fτ=f

∑
u,k,b

πτ [b|u, k]dτ [u, k]b represents the total bid of all clients in the flow

f and B is the vector obtained by stacking Bf of all flows f ∈ F .
In such a way, the centralized system could optimize the allocation of bandwidth to-

wards the modified weighted proportional fairness function just like other traffic engineering
algorithms, as shown in Algorithm 1.

Then, we have a proposition for the output s∗f [b, t] of Algorithm 1:

Proposition 3.4. The output s∗f [b, t] of Algorithm 1 optimizes F(S,B), F(s̄τ , b̄τ )
and F(sf [b], dτ ) simultaneously.

Proposition 3.4 guarantees that the optimal social welfare value at three different levels
(flows, types and clients) could be achieved simultaneously. By the hierarchical algorithm,
the optimal allocation is tractable with a flow-level optimization instead of a more complex
and intractable client-level optimization. Proposition 3.4 could be derived from Axioms 3.2
and 3.1 obviously.

3.2 Clients’ strategic problem
After defining the rules of the bandwidth allocation system, we could analyze the behav-

ior of clients by defining the two most important functions in karma mechanisms – karma
transition function κ[k+|k, b](d, π) and immediate reward function ζ [u, b] (d, π).

3.2.1 Karma transition function

The karma transition function κ[k+|k, b](d, π) encodes the rules of how karma is trans-
ferred between clients. Here we suppose a simple scheme in which every client pays their
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Algorithm 1: Karma-based bandwidth allocation algorithm
Input: Social state (d, π)
Output: allocations s∗f [b, t]

/* Aggregate bids */
1 for f in F do
2 Bf ← 0
3 for τ in Γ do
4 if fτ = f then
5 for u in U do
6 for k in 0, 1, 2, . . . , kmax do
7 for b in {0, 1, 2, . . . , k} do
8 Bf ← Bf + πτ [b|u, k]dτ [u, k]b

/* Solve optimization on level of flows */

9 s̄∗f [t]← arg
s̄f [t]

max
∑
f∈F

Bf ln

( ∑
t∈T f

s̄f [t]

)
/* Get allocation of bandwidth for different bids */

10 for f in F do
11 gf ← 0
12 for τ in Γ do
13 if fτ = f then
14 gf ← gf + gτ

15 b̄f = B/gf
16 for b in {0, 1, 2, . . . , kmax} do
17 s∗f [b, t]← b/b̄f ∗ s̄∗f [t]
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bid. Let p[b] be the karma payment made by a client who bids b, then we have

p[b] = b

Accordingly, the average payment over all clients is

p̄(d, π) =
∑
τ,u,k

(
dτ [u, k]

∑
b

b πτ [b|u, k]

)

To preserve the integer value of karma, dp̄(d, π)e karma is randomly distributed to some
clients and bp̄(d, π)c karma to the others. To make sure that all karma paid is distributed
completely, we should keep E[karma received] = p̄(d, π), from which we get

P(karma received = dp̄(d, π)e) = p̄(d, π)− bp̄(d, π)c

P(karma received = bp̄(d, π)c) = dp̄(d, π)e − p̄(d, π)

This yields the following karma transition function

κ[k+|k, b](d, π) =


p̄(d, π)− bp̄(d, π)c, k+ = k − b+ dp̄(d, π)e,

dp̄(d, π)e − p̄(d, π), k+ = k − b+ bp̄(d, π)c,

0, otherwise.

3.2.2 Immediate reward function

In this section, we define the immediate reward function ζτ [u, b](d, π) as a function r(s, u)

of the bandwidth allocated to a specific client sfτ [b] and its demand u, which depends on
the output s∗f [b, t] of Algorithm 1 since sfτ [b] =

∑
t∈T fτ

s∗f [b, t].

Since we are using the weighted proportional fairness function which achieves per-unit-
demand proportional fairness, we want to make every client bid and thus gain bandwidth
proportionally to their demand/urgency. Therefore, we want a kind of function r(s, u) such
that

Condition 3.5. For a specific immediate reward function r(s, u),

∀m ∈ Z>0, ∀i ∈ {1, 2, . . . ,m} , ∀ui > 0, ∀stotal ∈

[
0,

m∑
i=1

ui

]
 u1

m∑
i=1

ui

stotal,
u2
m∑
i=1

ui

stotal, . . . ,
um
m∑
i=1

ui

stotal


T

= argmax
s1,s2,...,sm≥0

m∑
i=1

si=stotal

m∑
i=1

r(si, ui)

In Condition 3.5, we are assuming that one client is playing against its future self.
The array u1, u2, . . . , um represents the true demand of the same client at different time
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steps and stotal is a total budget of the client over the time horizon t = 1, 2, . . . ,m. Being
strategic over the m time steps, a client’s optimal strategy shoud be splitting the bandwidth
proportionally if it knows the true demand of the whole time period. To construct r(s, u)

that meets condition 3.5, we have the following theorem:

Theorem 3.6. Function r(s, u) meets condition 3.5 if

∃C(·) : R 7→ R, ∃f(·) : R 7→ R s.t. ∀x ∈ [0,
stotal
min

i∈1,2,...,n
ui

],

f ′′(x) < 0, r(s, u) = uf(
s

u
) + C(u)

The proof of Theorem 3.6 could be found in Appendix E.
From Theorem 3.6, we can construct r(s, u) by choosing a specific f(·) and a specific C(·).

For example, if we choose f(x) = ln(x) and C(u) = ln(u), which meet the condition 3.5,
then r(s, u) = u ln(s). To discourage waste of bandwidth, we could truncate the overflowed
supply by substituting s with min{s, u}. Then, we could formulate the immediate reward
function as:

ζτ [u, b](d, π) = u ln (min {sfτ
[b], u}) , τ ∈ Γ

Where sfτ
[b] could be calculated by Algorithm 1.

After defining the immediate reward function, we will discuss the inherent relevance
between the immediate reward function and the weighted proportional fairness function to
demonstrate the rationality of such an immediate reward function.

Recall the weighted proportional fairness function at the level of clients defined in section
3.1.1:

F(sf [b], dτ ) =
∑
τ∈Γ

∑
u,k,b

πτ [b|u, k]dτ [u, k]u ln (sfτ
[b]) .

If we truncate the overflowed bandwidth, then the weighted proportional fairness function
is

F(sf [b], dτ ) =
∑
τ∈Γ

∑
u,k,b

πτ [b|u, k]dτ [u, k]u ln (min {sfτ
[b], u}) .

We should notice the inner part ‘u ln (min {sfτ
[b], u})’ of the weighted proportional fair-

ness function with truncation coincides with the immediate reward function ζτ [u, b](d, π) =

u ln (min{sfτ [b], u}), which builds consistency between social welfare and individual Utili-
tarianism.

3.3 At the equilibrium
After defining the rules of the bandwidth allocation system and the reward for individual

clients, we can study the behavior of clients and their interaction with the system. However,
it is intractable to analyze them from the perspective of dynamic games since the evolution
of the dynamic process is too complicated. If we could satisfy all prerequisites of Theorem
2.4, then we could analyze the system and clients at the Stationary Nash Equilibrium, where
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the social state (d, π) becomes stationary. With such a static social state, the system could
also be studied statically.

The two prerequisites of Theorem 2.4 are Conditions 2.1 and 2.2. It is obvious that
Condition 2.2 holds since the invariance of the average karma is guaranteed by the karma
transition function in Section 3.2.1. Therefore, we only need to discuss Condition 2.1.

For the immediate reward function introduced in Section 3.2.2, we could observe that
when the bid is 0, the reward is negative infinity: ζτ [u, 0](d, π) = u ln (min{0, u}) →
−∞, which violates Condition 2.1. Therefore, we can apply small trick to fit the con-
dition. We could add a term ϵ � 1 to the immediate reward function: ζτ [u, 0](d, π) =

u ln (min{0, u}+ ϵ), which is equivalent to

ζτ [u, b](d, π) =

u ln (min{sτ [b], u}) , b > 0

−C , b = 0

Where C � 1 is a positive number large enough, i.e. 1e10. In other words, when the bid
is not 0, we keep the immediate reward function unchanged; when the bid is 0, we set the
immediate reward to a large negative constant.

On the other hand, for the case that all clients bid zero, the behavior of the bandwidth
allocation system is still undefined. Therefore, we need to modifiy Algorithm 1. At the
beginning of the algorithm, we could increase the bids of all clients with a infinitely small
value ϵ � 1: b ← b + ϵ. With this modified bids, the algorithm will allocate bandwidth
assuming the same bid of all clients. Otherwise, the algorithm will allocate zero bandwidth
to the client who bids zero, just as the original one.

With the approximation introduced above, the immediate reward function satisfies Con-
dition 2.1. Therefore, a Stationary Nash Equilibrium is guaranteed by Theorem 2.4, and
we could use numerical methods to solve this equilibrium.
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4 Numerical experiments
In this section, we will test the performance of the karma economy for the traffic en-

gineering problem in competitive environments. First, we will test with different network
topologies. Then, we will test with different parameters of the karma economy. Since it is
intractable to solve the Stationary Nash Equilibrium analytically, all experiments will be
conducted by numerical methods. We use the weighted proportional fairness function with
truncation mentioned in Section 3.2.2

F(sf [b], dτ ) =
∑
τ∈Γ

∑
u,k,b

πτ [b|u, k]dτ [u, k]u ln (min {sfτ [b], u})

to evaluate the performance.

4.1 Simple network topology
The simple network topology could be represented as G = (V ,A) with V = 1, 2 and A =

(1, 2). This simple network contains only one arc with the normalized capacity c[(1, 2)] = 5.
Therefore, the only possible flow is f = (1, 2).

4.1.1 Single type of clients

Let all N clients share the same type τ and the true demand follows a uniform distribu-
tion

ϕτ [u |u−] =

0.05 , u ∈ {1, 2, . . . , 20}

0 , else
.

Then the Stationary Nash Equilibrium calculated with discount factor δ = 0.99 and average
karma of 10 is shown in Figure 2.

Figures 2a, 2b, 2c, 2d, 2e and 2f show the equilibrium bidding policy π∗ of the clients
with the true demand of 1, 5, 9, 12, 16 and 20 respectively, where for a given level of karma
(x-axis) the intensity of the red color in each cell denotes the probabilistic weight placed on
the bids (y-axis) and invalid bids that exceed the one’s karma are displayed black. These
two figures exhibit multiple intuitive behaviors. We could notice that the client with higher
true demand tends to bid more, which means clients could look into the future and bid
rationally. In addition, if the amount of karma is large enough, the client will not tend to
bid all its karma at once to save for further usage, which reflects the core concept of karma
economies: If I give in now, I will be rewarded in the future.

Figure 2g shows the distribution of karma at the equilibrium. Combined with the distri-
bution of true demand ϕτ [u |u−], the figure could represent the equilibrium joint distribution
of client state d∗. Figure 2h shows the distribution of bid at the equilibrium, which could
be calculated by P[b] =

∑
k,u

π∗
τ [b|u, k]d∗τ [u, k]b.

The evaluation of performance is shown in Figure 3. The experiment is conducted twice
with the Monte Carlo method and analytical method respectively. It is shown that the gap
between the two methods is very close, therefore, we will only use the Monte Carlo method
hereafter. From Figure 3 we could notice that the value of social welfare function of the
karma economy is close to the global optimum where all clients reveal their true demand
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: The Stationary Nash Equilibrium for the case with a single type of clients
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and the karma economy is closer to the global optimum than the case that all clients cheat,
which shows the efficiency of the karma economy.

Figure 3: Evaluation of the karma economy with a single type of clients

Although the allocation system is designed for weighted proportional fairness function
in this study, the experiment could still give a positive result if we change the social welfare
function and the corresponding immediate reward function. For more details, please refer
to Appendix F.

4.1.2 Multiple types of clients

Let 1
2N clients share the type τ1 and the other 1

2N clients share the type τ2. The true
demand of τ1 and τ2 follows different uniform distribution

ϕτ1
[u |u−] =

0.05 , u ∈ {1, 2, . . . , 20}

0 , else

ϕτ2
[u |u−] =

0.1 , u ∈ {1, 2, . . . , 10}

0 , else
.

Then the Stationary Nash Equilibrium calculated with discount factor δ = 0.99 and average
karma of 10 is shown in Figure 4.

Figures 4a and 4b show the equilibrium bidding policy π∗ of the clients with the true
demand of 10 and the types τ1 and τ2 respectively. Since the average true demand of τ1
is higher than τ2, τ1 prefers saving karma for the future while τ2 prefers spending karma
instantly.

Figures 4c and 4d show the distribution of karma at the equilibrium of τ1 and τ2 respec-
tively. Figures 4e and 4f show the distribution of bids. We could notice that the variance of
bid of τ1 is wider than τ2, so that τ1 could deal with the wider range of true demand more
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flexibly.

(a) (b)

(c) (d)

(e) (f)

Figure 4: The Stationary Nash Equilibrium for the case with multiple types of clients

The evaluation of performance is shown in Figure 5. From Figure 5 we could notice
that the karma economy is not as good as the one in Section 4.1.1 due to the invisible
heterogeneity of the true demand of different types of clients. However, the karma economy
could still improve social welfare compared to the case that all clients report fake demands.

4.2 General network topology
In this section, we will test the karma economy with a more complex network as shown

in Figure 6. The network could be represented as G = (V ,A) with V = 1, 2, 3 and A =
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Figure 5: Evaluation of the karma economy with multiple types of clients

(1, 2), (2, 3). This network contains two arcs with the normalized capacity c[(1, 2)] = 2.5

and c[(2, 3)] = 4. There are 3 flows in the flow set F = {(1, 2), (2, 3), (1, 3)}.

Figure 6: A more complex network topology

We set 3 types of clients Γ = {τ1, τ2, τ3}. For each type, the correponding flow is
fτ1

= f1 = (1, 2), fτ2
= f2 = (2, 3) and fτ3

= f3 = (1, 3). Let the proportion of population
with different type as gτ1

= 0.2, gτ2
= 0.4, gτ3

= 0.4. The true demand of all three types
follows the same uniform distribution

ϕτ1
[u |u−] = ϕτ2

[u |u−] = ϕτ3
[u |u−] =

0.05 , u ∈ {1, 2, . . . , 20}

0 , else
.

Then the Stationary Nash Equilibrium calculated with discount factor δ = 0.99 and average
karma of 10 is shown in Figure 7.

Figures 7a, 7b and 7c show the equilibrium bidding policy π∗ of the clients with the
true demand of 20 and the types τ1, τ2 and τ3 respectively. Figures 7d, 7e and 7f show the
distribution of karma at the equilibrium of clients with τ1, τ2 and τ3 respectively. From
those figures, we could find that clients with type τ1 or τ2 are easier to acquire bandwidth
while clients with type τ3 are the most difficult since the average karma of τ1 and τ2 are
higher than τ3 and the policy of τ1 and τ2 are more conservative than τ3. Figures 7g, 7h
and 7i show the distribution of bid of different types τ ∈ Γ.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: The Stationary Nash Equilibrium for the case with a more complex network
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The evaluation of performance is shown in Figure 8. From Figure 8 we could notice
that the performance of the karma economy is close to the global optimum. Therefore, this
experiment proves that the karma economy could improve social welfare in a more complex
and more general network effectively.

Figure 8: Evaluation of the karma economy with a more complex network

4.3 Different discount factor
For common dynamic programming with a receding horizon, the closer the discount

factor δ is to 0, the more myopia a client could be and vice versa. We will calculate the
Stationary Nash Equilibrium according to the same topology and type settings as in Section
4.1.1 and with the different discount factor δ to analyze the impact of the choice of δ.

The Stationary Nash Equilibrium calcualted under discount factor δ = 0.5, 0.9 and 0.99

is shown in Figure 9. From Figures 9a, 9b and 9c we could notice that the closer the discount
factor δ is to 1, the more conservative the client is. Figures 9d, 9e and 9f show that the
karma distribution of far-sighted clients is smoother than myopia ones, which also means
that far-sighted clients tend to save more karma for the future.

The performance of the karma economy under different discount factors is shown in
Figure 10. From this figure, it is obvious that a community of far-sighted clients could
result in equilibrium with social welfare closer to the global optimum than one of myopia
clients, which is consistent with the intuitive interpretation of discount factor δ.

4.4 Different distribution of demand
In all experiments above, we assume that the true demand of each client is sampled from

some uniform distribution. However, in daily life, it is more frequent for a client to have
a low demand (i.e. chatting online, browsing websites, etc.) rather than a high demand
(i.e. downloading software, watching movies online, etc.). Therefore, we will test the karma
economy for the case that the true demand of clients tends to be small and seldomly large.
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(a) δ = 0.5 (b) δ = 0.9 (c) δ = 0.99

(d) (e) (f)

(g) (h) (i)

Figure 9: The Stationary Nash Equilibrium under different discount factors δ

Figure 10: Evaluation of the karma economy under different discount factors delta
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We will use the same topology and type settings as in Section 4.1.1 except for the different
distribution of true demand of clients with type τ :

ϕτ [u |u−] =

Z
u , u ∈ {1, 2, . . . , 20}

0 , else
,

where Z = 1∑20
i=1

1
i

≈ 0.278 is the normalization factor. We name this ϕτ [u |u−] as inverse
proportion distribution for further discussion.

The Stationary Nash Equilibrium calculated under different distributions of true demand
is shown in Figure 11. From Figures 11a, and 11b we could notice that the clients with the
inverse proportion distribution of true demand are more conservative than the clients with
uniform distribution. Figures 11c and 11d show that the karma distribution of clients with
inverse proportion distribution of true demand is smoother, which also means that such
clients tend to save more karma for the future. Also, from Figure 11e and 11f it is obvious
that the average bid of clients with the inverse proportion distribution of true demand is
smaller, which makes the client with high true demand easier to gain enough bandwidth
that it needs.

The performance of the karma economy under different distributions of true demand is
shown in Figure 12. By comparing the relative social welfare of the two cases, we could
find that the gap between the global optimum and the worst is larger for the clients with
the inverse proportion distribution of true demand. However, the karma economy could
still improve social welfare greatly under the inverse proportion distribution of the true
demand. This experiment could validate the robustness of the karma economy against
different distributions of the true demand.
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(a) Inverse proportion distribution (b) Uniform distribution

(c) (d)

(e) (f)

Figure 11: The Stationary Nash Equilibrium under different demand distributions
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Figure 12: Evaluation of the karma economy under different demand distributions

5 Conclusion
In this study, we propose a dynamic population model for the data traffic engineering

problem in a competitive environment from the perspective of game theory, adapt the karma
economy to this game, and state the existence of a Stationary Nash Equilibrium of such
a game. To evaluate the allocation scheme given by the traffic engineering algorithm, we
propose weighted proportional fairness function as the centralized social welfare function
and prove the two important axioms the function holds. According to this social welfare
function and the two axioms, we derive the bandwidth allocation algorithm hierarchically.
By choosing a specific immediate reward function consistent with weighted proportional fair-
ness function, we implement the karma economy for traffic engineering at the level of clients.
The numerical experiments conducted in this study show both efficiency and robustness of
the karma economy that we introduced for traffic engineering.

The future study includes developing measures against the heterogeneity between differ-
ent types of clients in traffic engineering with competition i.e. taxing clients according to
the karma held, analyzing the behavior of the current karma economy for traffic engineering
on all kinds of network topology thoroughly, and also applying the current karma economy
to traffic engineering problems in reality. In addition, it is very important to study the
properties of the Stationary Nash Equilibrium. If such an equilibrium is not evolutionary
stable, then the system will diverge after a small perturbation. It will also be impossible to
study both the system and the behavior of clients from a static perspective then.
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Appendices
A The inefficiency and unfairness of centralized control

caused by dominant strategy
The experiment shown by Figure 1 is a simple traffic engineering problem. A total of

30 clients are sharing the same bottleneck network with a total capacity of bandwidth of
150. Each client has a true demand drawn from the uniform distribution of {1, 2, 3, . . . , 20},
which has the same unit as the capacity of the network. The system will allocate the
total bandwidth of 150 proportionally to all clients based on the reporting demand. The
overflowed bandwidth allocated will be discarded.

The experiment is conducted with three different client strategies: All clients report the
true demand, One client reports a fake demand of 20, which is the upper bound of possible
true demand while other clients keep truthful and all clients report fake demands as large
as possible. The experiment is repeated 1000 times to approximate the expectation.

Figure 1 shows the average bandwidth allocated to the cheating client and among all
clients respectively. From the figure we could find that for a specific client, while others
are truthful, cheating results in higher bandwidth allocated at the cost of social welfare.
Therefore, reporting true demand is not an equilibrium for clients since rational clients tend
to cheat. However, if every client is cheating, then the bandwidth that every client gets will
be reduced, which demonstrates the importance to set rules for the allocation system and
also for clients to control the damage to social welfare.

B Proof of Theorem 2.6
Since F(S,U) =

∑
f∈F

ln (Sf ) is strictly concave with respect to S and the set S that

contains all feasible allocations S is convex, an unique maximizer of F(S,U) is guaranteed
within S. In other words, there exists an unique S∗ ∈ S such that S∗ = argmax

S∈S

∑
f∈F

ln (Sf ).

Next, let’s prove that S∗ achieves proportional fairness.
Since S∗ is the unique maximizer of F(S,U), ∀S ∈ S \ {S∗}, F(S,U) < F(S∗,U).
Define

D(t) =
F (S∗ + t · (S− S∗),U)−F (S∗,U)

t

Then ∀t ∈ (0, 1], D(t) is well defined since S is convex. Also, we know that ∀t ∈ (0, 1],
D(t) < 0. Therefore, lim

t→0+
D(t) ≤ 0. By the definition of the directional derivative, we have

that
lim
t→0+

D(t) = ∇S′F(S′,U)|S′=S∗ · (S− S∗) =
∑
f∈F

Sf − S∗
f

S∗
f

≤ 0

And when S = S∗,
∑
f∈F

Sf−S∗
f

S∗
f

= 0 ≤ 0.

Therefore, S∗ achieves proportional fairness.
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C Proof of Theorem 2.8
The proof of theorem 2.8 if very similar to the proof of theorem 2.6.
Since F(S,U) =

∑
f∈F

Uf ln (Sf ) is strictly concave with respect to S and the set S that

contains all feasible allocations S is convex, an unique maximizer of F(S,U) is guaranteed
within S. In other words, there exists an unique S∗ ∈ S such that S∗ = argmax

S∈S

∑
f∈F

Uf ln (Sf ).

Next, let’s prove that S∗ achieves weighted proportional fairness.
Since S∗ is the unique maximizer of F(S,U), ∀S ∈ S \ {S∗}, F(S,U) < F(S∗,U).
Define

D(t) =
F (S∗ + t · (S− S∗),U)−F (S∗,U)

t

Then ∀t ∈ (0, 1], D(t) is well defined since S is convex. Also, we know that ∀t ∈ (0, 1],
D(t) < 0. Therefore, lim

t→0+
D(t) ≤ 0. By the definition of the directional derivative, we have

that
lim
t→0+

D(t) = ∇S′F(S′,U)|S′=S∗ · (S− S∗) =
∑
f∈F

Uf

Sf − S∗
f

S∗
f

≤ 0

And when S = S∗,
∑
f∈F

Uf
Sf−S∗

f

S∗
f

= 0 ≤ 0.

Therefore, S∗ achieves weighted proportional fairness.

D Proof of Table 2
We will only prove why certain social welfare functions do not meet Axioms 3.1 and 3.2

by giving counterexamples.
For the sum of supply, let F = {f1, f2}, S = {S|Sf1 + Sf2 = 1} and U = (1, 1)T .

Define S∗ = (0.3, 0.7)T and S∗∗ = (0.4, 0.6)T , then we could verify that S∗,S∗∗ ∈ S and
F(S∗,U) = F(S∗∗,U) = 1 = max

S∈S
F(S,U). Therefore, the sum of supply violates Axiom

3.1.
For the minimum availability, let F = {f1, f2}, S = {S|Sf1 < 1, Sf2 = 1} and U =

(1, 2)T . Define S∗ = (1, 1)T and S∗∗ = (0.5, 1)T , then we could verify that S∗,S∗∗ ∈ S and
F(S∗,U) = F(S∗∗,U) = 0.5 = max

S∈S
F(S,U). Therefore, the minimum availability violates

Axiom 3.1.
For the proportional fairness function, let F = {f1, f2}, S = {S|Sf1 + Sf2 = 1} and

U = (1, 1)T . We select flow f1 as f̃ to be splitted. Therefore, F =
{
f̃1, f̃2, f2

}
and

S ′ =
{
S′
∣∣∣S′

f̃1
+ S′

f̃2
+ S′

f2
= 1
}

. If we distribute the demand of f1 to f̃1 and f̃2 evenly, then
U′ = (0.5, 0.5, 1)T . We could verify that S∗ = (0.5, 0.5)T is the maximizer for F(S,U;F )

but S′∗ = (0.25, 0.25, 0.5)T is not the maximizer for F(S′,U′;F ′) since F(S′∗,U′;F ′) =

−5 ln(2) = −3.47 < −3.30 = −3 ln(3) = F(S′∗∗,U′;F ′), where S′∗∗ = ( 13 ,
1
3 ,

1
3 )

T ∈ S ′.
Therefore, the proportional fairness function violates Axiom 3.2.

For the fairness with quadratic loss, let F = {f1, f2}, S = {S|Sf1 + Sf2 = 2} and
U = (4, 4)T . We select flow f1 as f̃ to be split. Therefore, F =

{
f̃1, f̃2, f2

}
and S ′ ={

S′
∣∣∣S′

f̃1
+ S′

f̃2
+ S′

f2
= 1
}

. If we distribute the demand of f1 to f̃1 and f̃2 evenly, then
U′ = (2, 2, 4)T . We could verify that S∗ = (1, 1)T is the maximizer for F(S,U;F ) but
S′∗ = (0.5, 0.5, 1)T is not the maximizer for F(S′,U′;F ′) since F(S′∗,U′;F ′) = −13.5 <
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−12 = F(S′∗∗,U′;F ′), where S′∗∗ = (0, 0, 2)T ∈ S ′. Therefore, the fairness with quadratic
loss violates Axiom 3.2.

For the sum of availability, let F = {f1, f2}, S = {S|Sf1 + Sf2 = 1} and U = (1, 1)T .
Define S∗ = (0.3, 0.7)T and S∗∗ = (0.4, 0.6)T , then we could verify that S∗,S∗∗ ∈ S and
F(S∗,U) = F(S∗∗,U) = 1 = max

S∈S
F(S,U). Therefore, the sum of supply violates Axiom

3.1.
Still for the sum of availability, let F = {f1, f2}, S = {S|Sf1 + Sf2 = 1} and U = (3, 2)T .

We select flow f1 as f̃ to be split. Therefore, F =
{
f̃1, f̃2, f2

}
and S ′ =

{
S′
∣∣∣S′

f̃1
+ S′

f̃2
+ S′

f2
= 1
}

.
If we distribute the demand of f1 to f̃1 and f̃2 evenly, then U′ = (1.5, 1.5, 2)T . We
could verify that S∗ = (0, 1)T is the maximizer for F(S,U;F ) but S′∗ = (0, 0, 1)T is not
the maximizer for F(S′,U′;F ′) since F(S′∗,U′;F ′) = 0.5 < 2

3 = F(S′∗∗,U′;F ′), where
S′∗∗ = (1, 0, 0)T ∈ S ′. Therefore, the sum of availability violates Axiom 3.2 as well.

By these counterexamples, we prove all the × cells in Table 2

E Proof of Theorem 3.6

We could solve argmax
s1,s2,...,sm≥0

m∑
i=1

si=stotal

m∑
i=1

r(si, ui) by the method of Lagrange multipliers.

Let L(s, λ) =
m∑
i=1

r(si, ui) − λ

[(
m∑
i=1

si

)
− stotal

]
be the Lagrangian function. Then at

the maximum of
m∑
i=1

r(si, ui), we have that

∇sL(s, λ) = 0

∂L(s, λ)
∂λ

= 0,

or equivalently

∂r(si, ui)

∂si
− λ = 0, ∀i ∈ {1, 2, . . . ,m}(

m∑
i=1

si

)
− stotal = 0.

By substituting r(s, u) with r(s, u) = uf( su ) + C(u), we have that

f ′(
si
ui

)− λ = 0, ∀i ∈ {1, 2, . . . ,m}(
m∑
i=1

si

)
− stotal = 0.
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We could verify that one solution of the equations above is
s∗ =

 u1
m∑

i=1
ui

stotal,
u2

m∑
i=1

ui

stotal, . . . ,
um
m∑

i=1
ui

stotal

T

λ∗ = f ′

 stotal
m∑

i=1
ui

 .

Since f ′′(x) < 0, we could verify that s∗ is the unique maximizer of
m∑
i=1

r(si, ui) under

the constraints of s1, s2, . . . , sm ≥ 0 and
m∑
i=1

si = stotal, which proves the Theorem 3.6.

F Experiment with different fairness functions
Here we will use two different social welfare functions to replace the original weighted

proportional fairness function. First, we choose the sum of supply F(S,U) =
∑
f∈F

Sf as

the social welfare function. Correspondingly, we choose ζτ [u, b](d, π) = min{sfτ
[b], u} as

the immediate reward function for all clients. If we keeps all other setting the same as in
Section 4.1.1, then we could calculate the Stationary Nash Equilibrium as shown in Figure
13.

The evaluation of performance is shown in Figure 14. The experiment is conducted
twice with the Monte Carlo method and analytical method respectively. We can see that
our karma economy still works under the social welfare function of the sum of supply.

Then, we choose the fairness with quadratic loss F(S,U) =
∑
f∈F

− (Sf − Uf )
2 as the

social welfare function. Correspondingly, we choose ζτ [u, b](d, π) = − (min {sfτ
[b]− u, 0})2

as the immediate reward function for all clients. If we keeps all other setting the same as in
Section 4.1.1, then we could calculate the Stationary Nash Equilibrium as shown in Figure
15.

The evaluation of performance is shown in Figure 16. The experiment is conducted twice
with the Monte Carlo method and analytical method respectively. We can see that our
karma economy also works under the social welfare function of the fairness with quadratic
loss. The two experiments conducted in this section could reveal the robustness of our
karma-based bandwidth allocation system against different social welfare functions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: The Stationary Nash Equilibrium for the sum of supply as social welfare function
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Figure 14: Evaluation of the karma economy for the sum of supply as social welfare function
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: The Stationary Nash Equilibrium for the quadratic loss as social welfare function
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Figure 16: Evaluation of the karma economy for the quadratic loss as social welfare function
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