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Long-axis spinning of an optically levitated particle: A levitated spinning top
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An elongated object can be rotated around one of its short axes, like a propeller, or around its long
axis, like a spinning top. Using optically levitated nanoparticles, short-axis rotation and libration
have been systematically investigated in several recent studies. Notably, short-axis rotational degrees
of freedom have been cooled to millikelvin temperatures and driven into GHz rotational speeds.
However, controlled long-axis spinning has so far remained an unrealized goal. Here, we demonstrate
controlled long-axis spinning of an optically levitated nanodumbbell with spinning rates exceeding
1 GHz. We show that the damping rate in high vacuum can be as low as a few millihertz. The
high quality factor of 1012 and the exceptional stability of long-axis spinning open up applications
in inertial torque sensing and studies of rotational quantum interference.

Introduction.— Cylindrically symmetric nanorotors,
when trapped within linearly polarized optical tweezers,
align their most polarizable (long) axis to the polariza-
tion direction of the tweezers. This results in libration
of the rotor, i.e. torsional oscillations around an equi-
librium angle driven by a linear restoring torque. In
particular, two degenerate libration modes emerge, cor-
responding to oscillatory rotations around the two least-
polarizable (short) axes. Significant advances have been
made in controlling short axis rotations, with nanoro-
tors being driven to spin at GHz rates [1–4], libration
oscillations cooled down to mK temperatures [5–8], and
several demonstrations of torque sensing [3, 9–12]. How-
ever, in all these studies the rotation around the long axis
remained unconstrained and was driven by thermal fluc-
tuations [5, 6, 13]. Introducing controlled long-axis spin-
ning would complement the existing research on short
axis rotations by enabling the simultaneous control of
the rotational rate and the orientation of the rotation
axis. This achievement would close a notable gap in the
field and provide a valuable resource for inertial torque
sensing.

A levitated gyroscope with competitive performance
requires large angular momentum and low friction, which
poses constraints on vacuum pressure and rotor size [14,
15]. Inertial torque sensing of rotations has been suc-
cessfully demonstrated using levitated birefringent va-
terite particles [14, 16, 17], but the relatively high ab-
sorption rate of these particles prevents optical trapping
in ultrahigh vacuum (UHV). On the other hand, silica
nanoparticles can withstand UHV conditions [18] and
they can be fused together to generate particles with
shape anisotropy, such as cylindrically symmetric dumb-
bells. Furthermore, silica nanorotors can be precisely
controlled down to their fundamental quantum and ther-
modynamic limits [4, 6] and driven to rotate at GHz rates
around their short axes [1–4]. Nonetheless, gyroscope ap-
plications rely on accurately monitoring the orientation

of the spinning axis of the rotor. This is not feasible for
short-axis rotations, since the spinning axis aligns with
the tweezer propagation direction and is not reliably de-
tected [19]. Therefore, controlled spinning around the
long axis is a key requirement for the realization of an
optically levitated gyroscope, because it simultaneously
enables fast spinning and accurate measurement of the
spinning axis orientation.

Long-axis spinning is also an important resource
for studying quantum interference in the orientational
dynamics of nanorotors [20]. The angular momentum
of a free quantum rotor is quantized and in principle it
can be prepared in a single eigenstate [21]. Thanks to
the cylindrical symmetry of the dumbbell, the spinning
around the long axis is decoupled from other rotations
and defines a free rotational degree of freedom with
quantized angular momentum [21]. This is different from
translational and librational modes, which are governed
by harmonic dynamics or short-axis rotations that are
coupled to each other. Thus, long-axis spinning is a
prerequisite for the exploration of quantum rotational
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Figure 1. A nanodumbbell (not to scale) is trapped by an x
polarized laser beam (red) and spun around its long axis by
a circularly polarized spinning beam (blue).
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effects [20], such as rotational revivals [22].

System under study.— Our system, illustrated in
Fig. 1, consists of an optically levitated nanodumbbell
exposed to a light field in a three-dimensional (3D) po-
larization state [23, 24]. The light field is composed of
two parts: a strong tweezers field, linearly polarized along
the x axis and propagating in the z direction, and a weak
spinning beam, circularly polarized in the yz plane and
propagating along the x direction. The tweezers field
exerts a conservative restoring torque on the dumbbell,
which aligns its long axis in the x direction and creates
two libration modes around this equilibrium. In con-
trast, the circularly polarized beam generates a constant
(and therefore non-conservative) torque, which drives the
dumbbell into a spinning motion around its long axis.
This torque arises from the optical spin [25, 26] carried
by the beam together with absorption or imperfect cylin-
drical symmetry of the dumbbell [27–29].

The rotational dynamics of the nanodumbbell is thus
governed by two libration angles φ and ϑ with re-
spect to the x axis and the rotation angle ψ around
its long axis [30]. In the presence of friction and as-
suming small-angle libration, the dumbbell’s spinning
rate will accelerate until it reaches its steady-state value
ψ̇0 = τ/(I3γ3) [1, 2, 4], where τ is the magnitude of the
non-conservative torque, I3 is the moment of inertia along
the long axis, and γ3 is the friction coefficient. The spin-
ning motion reveals itself as a coupling g = (I3/2I1)ψ̇0
between the otherwise independent and harmonic libra-
tion modes, where I1 is the moment of inertia along one
short axis. The coupling leads to hybrid modes with
eigenfrequencies

Ω1/2 =
√

Ω2
0 + g2 ± g, (1)

where Ω0 is the natural libration frequency [13, 30]. The
higher frequency Ω1 corresponds to nutation of the long
axis, whereas the lower frequency Ω2 is associated with
precession of the long axis around the x direction [11, 13,
31, 32].

Most importantly, since the spinning rate is directly re-
lated to the torque and friction, with the torque scaling
linearly with the spinning beam power [30], in our exper-
imental implementation we can control the spinning rate
via the optical power of the circularly polarized spinning
beam and the chamber pressure. For high enough spin-
ning rates, we can push our system far into the strong
coupling regime, i.e., g ≫ Ω0. In this regime we can
approximate the eigenfrequencies as

Ω1 = 2g , (2a)

Ω2 = Ω2
0

2g . (2b)

As we increase the spinning rate of the dumbbell, the
amplitude of nutation relative to precession decreases,

ND
PD

PBS

99:1
EOM

1550	nm

1064	nm

COM

to	EOM

from	COM

(COM	feedback)
LD

vacuum

PBS

zy
x

Figure 2. Experimental apparatus for spinning a dumbbell.
The x polarized optical tweezers (wavelength 1550 nm) trap a
dumbbell inside a vacuum chamber, while a circularly polar-
ized beam (wavelength 1064 nm) propagating along x spins
the dumbbell. Forward scattered light from the tweezers is
split and subsequently sent to a quadrant photodiode and a
balanced detector for center-of-mass (COM) and libration de-
tection (LD), respectively. The detected COM motion is used
to drive an electro-optic modulator (EOM) for feedback cool-
ing x and y COM motion. The power of the spinning beam is
monitored on a photodiode (PD). Inset: power spectral den-
sity (PSD, plotted in arbitrary units) of the libration motion
of a trapped dumbbell recorded at a pressure of 0.1 mbar and
without the spinning beam.

and the motion becomes dominated by slow precession
with frequency Ω2 [33].

Experimental setup.— In our experiment, depicted
schematically in Fig. 2, dumbbells composed of two
spherical silica nanoparticles (nominal diameter 143 nm)
are optically trapped inside a vacuum chamber. The par-
ticles are loaded into the trap using a nebulizer. The
tweezers beam forming the trap (wavelength 1550 nm,
power 700 mW) is focused with an NA = 0.8 lens. The
light scattered by the particle is subsequently collected
by an NA = 0.7 lens and analyzed to detect librations in
the xy plane and the center-of-mass (COM) motion along
three main axes. For detecting the COM motion we use
a quadrant photodiode, while libration is recorded with
the help of a balanced detector as in [6]. In order to stabi-
lize the position of the dumbbell inside the trap, we cool
the x and y COM motion by parametric feedback [34] at
pressures below 10−4 mbar.

We identify a trapped particle as a dumbbell when
its COM x-to-y gas damping ratio is in the 1.1 − 1.15
range [2]. Another characteristic of dumbbells is their
libration spectrum, which consists of a sharp libration
peak at 525(3) kHz flanked by broad shoulders [5, 6, 13,
35], as shown by the inset of Fig. 2.

The spinning beam (wavelength 1064 nm, tunable
power up to 120 mW) is focused onto the dumbbell by
an NA = 0.3 lens with 7.5 mm focal length. The beam is
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Figure 3. Power spectral density (PSD) of the detector signal as a function of (a) spinning beam power and (b) spinning beam
polarization. The color scale for (a) and (b) depicts log(PSD) in arbitrary units and the fits to Eq. (1) are shown as white
dashed lines. Measurements (a)-(c) were performed at a pressure of 10−3 mbar. (a) As the spinning beam power is increased
the libration peak splits into a high frequency nutation mode (Ω1) and a low frequency precession mode (Ω2). (b) As the
quarter-wave plate (QWP) angle is rotated from 0◦ to 45◦, the spinning beam polarization changes from linear to circular and
the libration mode evolves into a precession mode with frequency Ω2. The spinning beam power is 100 mW. Note that the
frequency scale is logarithmic in (a) whereas it is linear in (b). (c) Precession frequency Ω2 and COM z-motion frequency as
a function of trapping beam power (lower curves, spinning beam power 100 mW) and as a function of spinning beam power
(upper curves, trapping beam power 700 mW). The spinning beam is circularly polarized. Fits according to Eq. (2b) are shown
as solid lines.

then collected by another NA = 0.3 lens and its power is
monitored using a photodiode. The polarization state of
the spinning beam is controlled by a quarter-wave plate
(QWP). Due to its low power and weak focusing, the
spinning beam does not significantly alter the libration
potential [30].

Results.— Figure 3(a) shows the measured libration
spectra for different optical powers of the circularly po-
larized spinning beam at 10−3 mbar. For powers below
10 mW the thermally-driven spinning dominates, as evi-
denced by the constant libration frequency accompanied
by the shoulder-like lineshape on both sides (cf. inset in
Fig. 2). As we increase the spinning beam power above
the 10 mW threshold, the libration mode splits into two
hybrid modes created by the spinning motion. The white
dashed curves are theoretical fits according to Eq. (1)
which qualitatively agree with the experimental observa-
tions. We observe a broad high frequency nutation peak
(Ω1) and a narrow low frequency precession mode (Ω2).
As expected, the frequency Ω1 of the nutation mode in-
creases and its amplitude decreases [33] with increasing
spinning beam power. The observed behaviour of Ω2 fre-
quency and Eq. (1) agree well for spinning beam powers
above 40 mW, where the spinning rate of the dumbbell
transitions into the fast spinning regime characterized
by g ≫ Ω0 [see also Fig. 3(c)]. Below 40 mW our model
does not accurately predict the frequencies, including the
10 mW spinning beam power threshold for mode splitting

(also reported in Ref. [35]). We believe these deviations
are related to the factors not included in our model, such
as coupling to the COM motion, or imperfect shape of
the dumbbell.

The torque τ experienced by the dumbbell can also be
controlled by the polarization of the spinning beam. In
Fig. 3(b) we show the measured libration spectra as a
function of the QWP angle that changes the polarization
of the spinning beam from linear to circular (see Fig. 2).
When the QWP is set at 0◦, the beam is linearly polar-
ized in the z direction and has no detectable effect on
the libration dynamics due to lack of optical spin. The
coupling is dominated by thermally driven spinning, as
if the spinning beam was absent. However, when the
polarization becomes elliptical (QWP is rotated by ap-
prox. 5 degrees in either direction) the dynamics tran-
sitions abruptly into consistent spinning, as evidenced
by the emerging low frequency precession mode (Ω2).
For circular polarization, Ω2 decreases to approximately
30 kHz. The minimum of the precession frequency occurs
around 35◦ due to birefringence of the vacuum viewport
(included in the fit).

Next, we investigate the dependence of the precession
frequency Ω2 on the trapping beam power Pt and the
spinning beam power Ps in the fast spinning regime
(g ≫ Ω0). The natural libration frequency Ω0 was shown
to depend on the square root of Pt [13]. This implies,
according to Eq. (2b), that the precession frequency
Ω2 depends linearly on Pt, as long as the coupling rate
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g is not affected by the trapping beam. The expected
behavior is indeed confirmed by our measurements
shown in Fig. 3(c). On the other hand, since the torque
τ exerted on the dumbbell depends linearly on the
spinning power Ps we expect, according to Eq. (2b),
that Ω2 scales inversely with Ps. We compare the
behaviour of Ω2 with that of the eigenfrequency of the
COM z mode (which is expected to follow a square-root
behavior on Pt and remain unaffected by changes in
the spinning beam power Ps). The measured Ω2 and
COM z frequencies shown in Fig. 3(c) agree well with
their respective predicted behaviors. We therefore
conclude that Eq. (2b) correctly predicts the precession
frequency in the fast spinning regime where g ≫ Ω0.
Note that the coupling strength surpasses the natural
libration frequency even for moderate Ps, akin to deep
ultrastrong coupling. According to Eq. (2b), the preces-
sion frequency of 30 kHz [see Figs. 3(a-c)] corresponds
to a coupling rate g = 2π × 4.6 MHz. Assuming our
dumbbells have a length-to-diameter ratio of 1.8 (as
in Ref. [27]), we estimate I3/I1 ≈ 0.6, which yields a
spinning rate of ψ̇0 ≈ 2π × 15 MHz.

Ringdown measurements.— The steady-state spin-
ning rate ψ̇0 = τ/(I3γ3) is inversely proportional to the
damping rate γ3, which in turn is proportional to the gas
pressure. Thus, controlling the pressure allows us to tune
ψ̇0 over several orders of magnitude. As described be-
fore, we can infer the dumbbell’s spinning rate from the
measured hybrid mode frequencies. However, in prac-
tice we are only able to detect the precession mode Ω2
for spinning rates up to ψ̇0 ≈ 30 MHz. The reason for
this is two-fold: first, as Ω2/(2π) decreases below 3 kHz
it becomes obscured by electronic noise in our detection
system [visible in Figs. 3(b) and 4(a)]; second, large spin-
ning rates lead to large angular momenta which stabilize
the system and reduce the precession amplitude which
results in poor signal-to-noise in our measurements. We
circumvent this problem by performing ringdown mea-
surements, in which Ps is set to zero and and the slowing
down of the dumbbell’s spinning rate is monitored [1].
For sufficiently high spinning rates thermal fluctuations
can be ignored and the ringdown turns into a determin-
istic trajectory described by ψ̇(t) = ψ̇(0)e−γ3t. Conse-
quently, according to Eq. (2b), the precession frequency
exponentially increases in time as:

Ω2(t) = Ω2
0

2g(0)e
γ3t. (3)

Note that this description is valid for g ≫ Ω0, and thus
we only use Eq. (3) to determine g(0), ψ̇(0) and γ3 in
this parameter regime.

Figure 4(a) shows a ringdown measurement performed
at a pressure of 6.3 × 10−5 mbar. The spinning beam is
switched back on at t ≈ 12.5 s (red dashed line), before
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Figure 4. Ringdown measurements for different pressures. (a)
PSDs as a function of time t, after blocking the spinning beam
(initial power 50 mW) at t = 0, marked by the dashed red
line. The vacuum pressure is 6.3×10−5 mbar. The dumbbell’s
spinning rate decreases due to friction, which is evidenced
by the increase of the precession mode frequency Ω2. The
time the spinning beam is switched back on is indicated by a
dashed green line. Color shows log(PSD) in arbitrary units.
(b): Damping rate γ3 as a function of pressure extracted from
ringdown measurements. Error bars are smaller than the size
of the data points. The solid line is a linear fit.

Ω2 reaches the COM z frequency. The data show that Ω2
increases exponentially after switching off the spinning
beam. From a fit to Eq. (3), shown as a black dashed
line, we extract the spinning rate ψ̇(0) = 2π×210(7) MHz
and damping rate γ3 = 204(2) mHz, together with their
standard errors.

We repeated similar ringdown measurements for
even lower pressures, down to 1.5 × 10−6 mbar, where
we reached the exceptionally high spinning rate of
ψ̇(0) = 2π × 1.20(6) GHz. The extracted damping rates
γ3, measured for pressures between 10−6 and 10−3 mbar,
are shown in Fig. 4(b) together with a linear fit [36].
Despite the GHz rotational rates reached, throughout
our experiments we did not observe consistent particle
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deformations [30].

Conclusion.— We have experimentally achieved con-
trolled spinning of an optically levitated nanodumbbell
around its long axis and demonstrated GHz spinning
rates and damping rates of a few mHz. This demonstra-
tion is of interest for applications in inertial torque sens-
ing. The parameters demonstrated in this work trans-
late into a thermally limited gyroscope sensitivity (an-
gular random walk) of ΩARW =

√
4kBTγ/(

√
I3ψ̇0) ≈

4 × 10−6 rad/s/
√

Hz [15], which is only two orders of
magnitude larger than the self-noise of the best high-end
gyroscopes [37]. Our experiment can be further opti-
mized, e.g. by using larger dumbbells (ΩARW ∝ r−5/2,
where r is the nanoparticle radius) or by lower vacuum
pressures.

Our system is fully described by classical dynamics,
but we note that recent advances have brought rotational
levitodynamics close to the quantum regime [20, 38].
The demonstration of long-axis spinning expands the
understanding of the interaction of rotational degrees
of freedom with light and provides an important step
towards the observation of macroscopic quantum ef-
fects [20, 22, 39].

Furthermore, our system can also serve as a platform
for studying deep-strong coupling between mechanical
modes [40] since the coupling rate g between libration
modes, introduced by long-axis spinning, is shown to be
nearly three orders of magnitude larger than the natural
libration frequency Ω0, thereby outperforming the g/Ω0
values reached with trapped atoms [41].
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I. PARTICLE DESCRIPTION

In this work we focus on nanodumbbell particles, which are cylindrically symmetric objects comprised of two spheres
attached to each other. We assume that the moment of inertia tensor as well as the real and imaginary parts of the
polarizability tensor can be simultaneously diagonalized in the principal axes reference frame of the particle. We refer
to this frame of reference as the ”particle frame” and represent the principal axes by the unit vectors (e1, e2, e3).
We further let α′ = diag(α′

1, α
′
1, α

′
3) and α′′ = diag(α′′

1 , α
′′
1 , α

′′
3) denote the real and imaginary parts of the static

polarizability tensor of the object in the intrinsic body frame, respectively, assuming α′
1 < α′

3. The moment of inertia
of the particle is described by the tensor I = diag(I1, I1, I3), where we assume I1 > I3. We refer to e3 (the principal
axis with the largest polarizability) as the ”long axis” of the object.

In order to describe the orientation of the particle frame with respect to the laboratory frame (x, y, z), we use the
intrinsic x-convention of Euler angles denoted as ϕ, θ and ψ (see [1] and §35 in [2]). The Euler angles ϕ and θ describe
the orientation of the long axis of the rotor. In turn, the Euler angle ψ describes rotation of the nanodumbbell around
its long axis, i.e., ψ̇ is the spinning speed. The angle measured in the experiment is ϕ, which corresponds to the
orientation of the long axis in the xy plane with respect to the y axis.

In order to transform a vector from the laboratory to the particle frame we first rotate it by the angle ϕ around z,
then by θ around e1 and finally by ψ around e3. The transformation matrix R corresponding to these three rotation
operations is given in [1].

II. CONSERVATIVE TORQUES

In this section we calculate the potential arising from the real part α′ of the polarizability tensor of the particle.
The libration dynamics is dictated by the direction of the electric dipole moment induced by the optical field, whose
orientation depends on the particle orientation and in general is not parallel to the electric field.

We describe the electric field of the linearly polarized trapping beam at the tweezers focal point as Et =
(Ete

iωtt, 0, 0)T . In turn, we can write the electric field of the spinning beam (also at the tweezers focal point)
as Es = (0, Ese

iωst, iEse
iωst)T. The dipole moment induced on the trapped anisotropic particle, expressed in the

laboratory frame, is given by

p = R−1α′RE, (S1)

where E = Et +Es is also expressed in the laboratory reference frame. Since in general p and E are not parallel, the
potential energy U associated with the orientation of the particle (after averaging over optical frequencies) is

U = −1

4
Re (p ·E∗) . (S2)

Due to the fact that the trapping and spinning fields oscillate at different optical frequencies ωt and ωs, corresponding
to their respective wavelengths λt = 1550 nm and λs = 1064 nm, we can average out the cross terms oscillating at
ωs − ωt and calculate the potential components arising from both components independently. The potential arising
from the trapping beam then reads

Ut = −1

4
E2

t

(
α′
1 +∆α′ sinϕ2 sin θ2

)
, (S3)
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where ∆α′ = α′
3 − α′

1. The term Ut aligns the long axis of the particle with the trapping beam electric field, which
points along x axis. The potential arising from the spinning beam is

Us = −1

4
E2

s

(
α′
1 + α′

3 −∆α′ sinϕ2 sin θ2
)
. (S4)

In turn, the potential term Us tries to align the long axis of the particle to the yz plane, thus counteracting Ut.
However, since the trapping field is much stronger than the spinning beam, |Et|2 ≫ |Es|2, we can approximate the
total potential as U ≈ Ut.

The long axis of the dumbbell oscillates in the potential minimum, occurring for ϕ = θ = π/2, which gives rise
to two libration modes ϑ = θ − π/2 and φ = ϕ − π/2. Expanding the potential around minimum and removing
orientation-independent terms leads to

U ≈ 1

2
I1Ω

2
0 (φ2 + ϑ2), (S5)

where Ω0 =
√
∆αE2

t /2I1 denotes the libration frequency.
Finally, let us describe the libration dynamics due to the potential U in terms of the restoring torque κ, whose

components in the particle frame read

κ1 = −I1Ω2
0(ϑ cosψ + φ sinψ), (S6a)

κ2 = −I1Ω2
0(−ϑ sinψ + φ cosψ), (S6b)

κ3 = 0. (S6c)

Note that the restoring torque components in the particle frame of reference depend on angle ψ, describing the rotation
of the particle around its long axis.

III. NON-CONSERVATIVE TORQUE

The non-conservative dynamics in our experiment arises from the circular polarization of the spinning beam, which
provides constant torque spinning the particle around its long axis. This torque can arise from optical absorption or
scattering [3] and depends on the x component of the optical spin Sx = Im ⟨E∗ ×E⟩x of the focused electric field E at
the location of the dumbbell. The torque from absorption relies on the imaginary part of the dumbbell polarizability
and is given by τabs =

1
2α

′′
3Sx.

Optical torque transfer by scattering requires some optical anisotropy that breaks the dumbbell’s cylindrical sym-
metry. The scattering torque is given by τsc = 1

2 (δα
′)2gscSx [3], where δα′ is a measure for the optical anisotropy

and gsc = ω3/(6πϵ0c
3). This anisotropy could arise from a deviation from the perfectly spherical shape of the two

particles constituting the dumbbell [4].
Regardless of the mechanism of the angular momentum transfer from the light to the particle, we describe the effect

of the circularly polarized spinning beam propagating along x as a constant torque τ = (τ, 0, 0) in the lab frame.
We expect the torque magnitude to be proportional to the spinning beam power, in other words τ ∝ |Es|2. The
components of τ in the particle frame read:

τ1 = (−φ cosψ + ϑ sinψ)τ, (S7a)

τ2 = (ϑ cosψ + φ sinψ)τ, (S7b)

τ3 = τ , (S7c)

where we have expanded to the first order around the particle orientation in the potential minimum (set by the
trapping beam).

Therefore, the total torque K experience by our particle, which includes both the conservative torque arising from
the potential U and non-conservative spinning torque τ amounts to

K1 = τ1 + κ1 ≈ −I1Ω2
0(ϑ cosψ + φ sinψ), (S8a)

K2 = τ2 + κ2 ≈ −I1Ω2
0(−ϑ sinψ + φ cosψ), (S8b)

K3 = τ3 + κ3 ≈ τ. (S8c)

when expressed in the particle frame of reference. We have neglected the terms τ1 and τ2 [see Eqs. (S7a) and (S7b)],
which introduce a small coupling between libration modes φ and ϑ. This coupling has a negligible effect on the
libration dynamics (dominated by the strong coupling introduced by the spinning motion), as |Es|2 ≪ |Et|2 implies
that τ ≪ I1Ω

2
0.
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FIG. S1. Precession modes Ω1 and Ω2 calculated from Eq. (S14) in the units of natural libration frequency Ω0.

IV. EQUATIONS OF MOTION

This section contains the analysis of the Euler equations of motion in presence of the torque derived in the previous
section. We begin by expressing the angular velocity ω in the particle frame and expanding it to the first order in
libration angles φ and ϑ:

ω1 ≈ φ̇ sinψ + ϑ̇ cosψ, (S9a)

ω2 ≈ φ̇ cosψ − ϑ̇ sinψ, (S9b)

ω3 ≈ −φ̇ϑ+ ψ̇. (S9c)

In the remainder of this work we are interested in the regime of large ψ̇ and small-amplitude libration, therefore we
further approximate the third component of the angular velocity as ω3 ≈ ψ̇.
Particle-frame Euler equations of motion for our cylindrically symmetrical dumbbell read:

K1 = I1ω̇1 −∆Iω2ω3, (S10a)

K2 = I1ω̇2 +∆Iω1ω3, (S10b)

K3 = I3ω̇3, (S10c)

where ∆I = I1−I3. Using the expressions for torque (see Eqs. (S8a)–(S8c)) and angular velocity (see Eqs. (S9a)–(S9c))
components, we can rewrite Eqs. (S10a)–(S10c) as:

I1ϑ̈+ I3φ̇ψ̇ = −I1Ω2
0ϑ , (S11a)

I1φ̈− I3ϑ̇ψ̇ = −I1Ω2
0φ , (S11b)

I3ψ̈ = τ. (S11c)

Note that Eqs. (S11a) and (S11b) describe two coupled harmonic oscillators ϑ and φ, whereas according the Eq. (S11c),

the velocity of the spinning around the long axis ψ̇ increases to infinity. In order to avoid this problem, we have to
expand the model to include friction in Eq. (S11c). In presence of friction (described by coefficient γ3), the spinning

speed ψ̇ will increase until it reaches a stationary value ψ̇0 = τ/(I3γ3), for which driving torque τ is balanced by the
friction [5, 6].

V. COUPLED LIBRATION MODES

Let us now focus on the coupled libration modes described by Eqs. (S11a) and (S11b) and rewrite them explicitly
introducing the coupling rate g,

ϑ̈+ 2gφ̇ = −Ω2
0ϑ , (S12a)

φ̈− 2gϑ̇ = −Ω2
0φ , (S12b)
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where g = (I3/2I1)ψ̇0. In agreement with [7], the solution can be written as

ϑ = α1 cos (Ω1t+ δ1) + α2 cos (Ω2t+ δ2) , (S13a)

φ = α1 sin (Ω1t+ δ1)− α2 sin (Ω2t+ δ2) (S13b)

where α1/2 and δ1/2 depend on initial angular displacements and velocities and the eigenfrequencies read

Ω1/2 =
√
Ω2

0 + g2 ± g. (S14)

Note that the fast precession (nutation) mode with frequency Ω1 corresponds to a circular motion of the long axis in the
counterclockwise direction (for τ pointing along the positive x direction), and the slow precession mode corresponds
to a clockwise long axis motion.

The dependence of Ω1/2 on the coupling rate g is shown in Fig. S1. For a fast spinning dumbbell (g ≫ Ω0) the
frequencies can be approximated as:

Ω1 = 2g , (S15a)

Ω2 =
Ω2

0

2g
. (S15b)

Finally, let us turn our attention to the amplitudes of precession and nutation. For a rapidly spinning top, the ratio
between the amplitude of nutation α1 and the amplitude of precession α2 decreases proportionally to the spinning
speed ψ̇ squared [8]. Therefore we expect nutation will be negligible for a rapidly spinning dumbbell and the dynamics
will be dominated by slow precession with frequency Ω2. The amplitude of the slow precession α2 is equivalent to the
tilt between the long axis of the dumbbell and x axis. This angle will stay almost constant as the dumbbell precesses,
except for fast, small-amplitude oscillations caused by nutation. The effective potential governing the motion of the
tilt angle α2 can be written as Uef =

1
2I1(g

2 + Ω2
0)α

2
2 [2]. Applying equipartition theorem to this degree of freedom

allows us to predict the average precession amplitude (tilt angle) of the thermally driven spinning top, which yields:

⟨α2
2⟩ =

kBT

I1(Ω2
0 + g2)

(S16)

Comparing the above result with Eq. S13b indicates that the oscillation amplitude of the libration angle φ measured
in our experiment will behave similarly (if the angular degrees of freedom except ψ are in thermal equilibrium with the
surrounding gas). To summarize, we expect that both the amplitude of the nutation and precession will diminish as
we increase the spinning speed, with nutation signal diminishing much faster. In practice, the amplitude of precession
motion may be affected by misalignment between the spinning beam and the tweezers’ polarization and external
rotation of the experimental apparatus (e.g. due to the floating optical table).

VI. THE SPINNING TORQUE

We estimate that the magnitude of the spin vector Im ⟨E∗
s ×Es⟩ [9] carried by the spinning beam can reach up to

5 × 1012 V2/m2. For comparison, the electric field squared corresponding to the trapping beam at the focal spot is
200 times larger. Additionally, it is interesting to compare the spin angular momentum carried by the spinning field
to the transverse spin generated by focusing the linearly polarized trapping beam near the trapping region [10, 11]–
in our experiment the angular momentum of the spinning beam is an order of magnitude smaller.

The damping rates γ3 and the spinning rates extracted from the ringdown measurements (see main text) allow us to
estimate the torque exerted on the dumbbell by a circularly polarized beam, arriving at τ = 5×10−25 Nm for 100mW
of the optical power. The torque value remained consistent across different dumbbells used in our experiments. We
are unable to determine whether the torque arises from optical absorption, scattering (which requires breaking the
cylindrical symmetry of the dumbbell) or other processes [12]. Attributing this torque to absorption requires the
dumbbell’s absorption coefficient to be two orders of magnitude larger than expected for bulk silica at 1064 nm [13].
On the other hand, attributing the torque to the scattering process [3], requires the polarizability of the dumbbell
along the two short axes to differ by approximately 3%. Both increased absorption and imperfect spherical shape of
the silica nanoparticles have been reported by other researchers [4, 14].
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VII. PARTICLE DEFORMATION DUE TO CENTRIFUGAL FORCES

The calculated tensile stress generated by centrifugal force in silica nanodumbbells in our experiments reaches
0.5 GPa [5, 15], and approaches the regime of deforming the particle shape [16]. However, no consistent changes in
characteristic frequencies and damping rates, temporary or permanent, were observed. We have recorded a single case
of deformation (out of ∼ 15 dumbbells investigated in total). After spinning with approx. 200 MHz, the particle’s
x-to-y gas damping ratio changed from 1.14 to 1.07, and the natural libration frequency decreased by 35%. The data
obtained from this particle is not used in the manuscript.
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[9] J. J. Gil, A. Norrman, A. T. Friberg, and T. Setälä, Spin of random stationary light, Phys. Rev. A 107, 053518 (2023).

[10] L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University Press, 2012).
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