
DISS. ETH NO. 30184

Adapting database components to
heterogeneous environments

A thesis accepted to attain the degree of

DOCTOR OF SCIENCES

(Dr. sc. ETH Zurich)

presented by

DIMITRIOS KOUTSOUKOS

MSc in Data Science, ETH

born on 20.10.1992

accepted on the recommendation of

Prof. Dr. Gustavo Alonso

Prof. Dr. Ana Klimovic

Dr. Theodoros Rekatsinas

Prof. Dr. Thomas Neumann

2024





IKS-Lab

Institute for Computing Platforms

ETH Department of Computer Science

Dimitrios Koutsoukos



A dissertation submitted to

ETH Zurich

for the degree of Doctor of Sciences

DISS. ETH NO. 30184

examiner:

Prof. Dr. Gustavo Alonso

co-examiners:

Prof. Dr. Ana Klimovic

Dr. Theodoros Rekatsinas

Prof. Dr. Thomas Neumann

Examination date: April 11, 2024



Adapting database components to heterogeneous
environments





Abstract

Data management has seen rapid evolution during the last years, influenced by factors such as

data explosion, the prevalence of machine and deep learning, the slowdown of Moore’s law

and the popularity of hardware accelerators. Data processing systems are trying to adapt to all

these trends by building monolithic and highly specialized systems, which are blazingly fast but

quickly become obsolete.

In this thesis, we show how to adapt data processing components that easily and quickly adapt

to the underlying technology and new applications and deployments. We first explore software

abstractions and how we can use them for general data processing. We find that a more granular

implementation of traditional relational operators, called sub-operators, can be used to port a

query engine to different platforms. Then, we investigate tensors as a core processing element

for graph and relational algorithms. We utilize tensor computing runtimes and we demonstrate

tensors to be a suitable representation to accelerate execution and adapt to the underlying hard-

ware automatically.

Afterwards, we shift our attention to the I/O bottleneck and data movement problem, one of the

biggest challenges databases face today. We perform an extensive experimental data analysis on

Intel Optane Persistent Memory, the first public implementation of Non-volatile memory. Our

analysis provides insights on how to best use it and showcases the weak points of the hardware.

Data movement is also a difficult problem for end users in the cloud, given that cloud providers

have conflicting profit and performance goals. Therefore, we introduce serverless cracking, a

modern form of database cracking adapted to QaaS that can lower both the execution time and

cost for infrequent workloads based on semi-structured data. Both approaches demonstrate that,

although we have made steps towards improving I/O performance, there is still much ground to

cover in this area.

Our findings show how to make data management systems more robust to software and hardware

evolution and how to adapt and adopt them to the expanding data demands. We also underscore
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the critical need for continued innovation in reducing the data movement bottleneck and we

make a step towards developing responsive and more efficient data processing systems.

Keywords: data management systems, software abstractions, adaptability, tensors, hardware

evolution, modular operators, I/O bottleneck, non-volatile memory, serverless cracking, query-

as-a-service systems
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Zusammenfassung

Die Datenverwaltung hat in den letzten Jahren eine rasante Entwicklung erlebt, beeinflusst

durch Faktoren wie die Datenexplosion, die Verbreitung von Machine- und Deeplearning, die

Verlangsamung des Mooreschen Gesetzes und die Popularität von Hardware-Beschleunigern.

Datenverarbeitungssysteme versuchen, sich an all diese Trends anzupassen, indem sie mono-

lithische und hochspezialisierte Systeme entwickeln, die blitzschnell sind, aber schnell veralten.

In dieser Doktorarbeit untersuchen wir, wie man Datenverarbeitungssysteme anpassen kann, die

sich leicht und schnell an die zugrundeliegende Technologie sowie an neue Anwendungen und

Implementierungen anpassen können. Zuerst erforschen wir Software-Abstraktionen und wie

wir sie für die allgemeine Datenverarbeitung nutzen können. Wir zeigen, dass eine detailliert-

ere Version traditioneller relationaler Operatoren, sogenannte Sub-Operatoren, dafür verwendet

werden können, um eine Abfrage-Engine an verschiedene Plattformen anzupassen. Darüber hin-

aus verwenden wir Tensoren als ein Kernelement der Verarbeitung für Graph- und relationale

Algorithmen und nutzen Tensor-Computing-Laufzeiten, um die Ausführung zu beschleunigen

und automatisch an die zugrundeliegende Hardware anzupassen.

Dann verlagern wir unsere Aufmerksamkeit auf das I/O-Flaschenhals- und Datenbewegungsprob-

lem, eine der größten Herausforderungen, mit denen Datenbanken heute konfrontiert sind. Wir

führen eine umfangreiche experimentelle Datenanalyse auf Intel Optane Persistent Memory

durch. Intel Optane Persistent Memory ist die erste öffentliche Implementierung von nichtflüchtigem

Speicher. Unsere Analyse liefert Einblicke, wie man diesen Speicher am besten nutzen kann,

und zeigt die Schwachstellen der Hardware auf. Zusätzlich führen wir serverloses Cracking ein,

eine moderne Form des Datenbank-Crackings, angepasst an QaaS, das sowohl die Ausführungszeit

als auch die Kosten für gelegentliche Workloads auf Basis von semi-strukturierten Daten senken

kann.Unsere Analysen zeigen, dass in diesem Bereich noch viel zu tun bleibt. Unsere beiden

Ansätze machen erste Schritte zur Verbesserung der I/O-Leistung.

Unsere Ergebnisse zeigen, wie man Datenmanagementsysteme robuster gegenüber Software-
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und Hardware-Evolution machen und wie man sie an die wachsenden Datenanforderungen an-

passen und adoptieren kann. Wir betonen auch die kritische Notwendigkeit kontinuierlicher

Innovationen, um das Datenbewegungsproblem zu reduzieren, und machen einen Schritt in der

Entwicklung reaktionsfähiger und effizienterer Datenverarbeitungssysteme.

Schlüsselwörter: Datenmanagementsysteme, Software-Abstraktionen, Anpassungsfähigkeit, Ten-

soren, Hardware-Evolution, modulare Operatoren, I/O-Flaschenhals, nichtflüchtiger Speicher,

serverloses Cracking, Query-as-a-Service-Systeme
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Chapter1
Introduction

1.1 Motivation and Thesis Statement

Data management has changed rapidly over the last few years due to many factors. First of

all, technology has become an integral part of our everyday lives in many forms, leading to an

increased production of data. Sources [49] estimate that in 2024, 149 zetabytes of data will

be produced. The majority of these data need to be stored and processed, with an increasing

need for real-time processing [57], especially for Machine Learning (ML) and Deep Learning

(DL) workloads. These workloads are another reason that aggressively changes data processing.

Since the explosion of deep learning in 2012, it is estimated that ML/DL increases the demand

in computing capacity every year by more than 10x [102]. This trend has been exarcebated

by the recent introduction of Large-Language Models (LLMs), which among other models are

notoriously expensive to be trained from scratch [31]. These new workloads and algorithms have

expanded the types of data that are needed to be stored (e.g. vector embeddings) and have also

made databases part of a pipeline of systems that are used for analysis. Today, it is very common

for data scientists to run SQL queries to extract data from a data management system, to further

preprocess them and perform feature engineering, to finally train ML models. DBMSs, therefor,

have transitioned from a major player for enterprise data to a piece of a large puzzle that also

includes ML/DL during the last decade.

Independently of the above, the end of Moore’s law has also shifted attention to accelerators,

especially FPGAs and GPUs [243, 151, 131, 123, 128, 246, 226, 144, 148, 147], as CPUs do

1



Chapter 1. Introduction

not have the processing capacity to analyze the data produced everyday on the web. For exam-

ple, accelerators such as GPUs have excellent capabilities to perform matrix multiplications, the

basic building block of almost all ML/DL algorithms. To take advantage of these trends, in-

dustry and academia has built a growing number of frameworks to port ML/DL algorithms into

accelerators [219, 8, 6, 7, 15]. Although these frameworks were initially built just for ML/DL

algorithms, they have been expanded to perform other tasks in the data stack, e.g. data prepro-

cessing [56]. At the same time, we also observe the opposite trend, i.e. more and more research

efforts [262, 109, 132, 73] are pushing ML inside databases. We therefore have two opposing

trends that influence data processing. Either expanding ML frameworks to perform data man-

agement tasks or expanding databases to execute ML workloads with the additional support of

accelerators.

These two opposite directions have acted as Procrustes’ bed for today’s data processing leading

to many versions of specialized and monolithic systems. It is not uncommon for a system to

dominate the data plane for a couple of years only to be subsequently replaced by another one,

only because of its lack of support to newer advances in algorithms and/or hardware. This

leads to a lot of repeated development effort that does not conform with the high degree of

specialization we observe.

To this end, in the first part of the thesis we explore two different software abstractions act-

ing as core data processing elements. We first introduce the notion of sub-operators, a form

of relational operators that are more modular and fine-grained than traditional relational opera-

tors. Using these fine-grained operators, we show how a relational query engine with minimal

changes can execute full queries on RDMA clusters, serverless functions, and smart storage with

performance comparable or even better than mature systems. Subsequently, we use the tensor

abstraction as a core component to workloads other than ML/DL where it is traditionally used.

More specifically, we run relational and graph algorithms, showing competitive performance

both for CPUs and GPUs compared to custom kernels and specialized libraries. With these two

approaches, we show that there is not one correct uniform abstraction and/or framework for data

processing. All approaches have their advantages and disadvantages and their suitability. How-

ever, when picking one software abstraction instead of combining differently purposed systems

together, researchers and industry pave the way for more adaptable and efficient data systems,

capable of keeping pace with rapid technological advancements both in the software and the

hardware landscape.

Besides the aforementioned variables, an additional component shaping data management is I/O

overhead. As data keeps growing and the capacity of main memory cannot increase propor-

2



1.2. Contributions & Structure

tionally, new types of memory have emerged, such as disaggregated DRAM [197, 138, 198],

disaggregated persistent memory [202, 247], far memory [186, 77] and smart remote mem-

ory [244, 173]. A further I/O challenge is the increasing prevalence of semi-structured data

(e.g. CSV, JSON, Parquet) especially for cloud data warehouses [65, 61], a trend that has been

intensified by modern data science [182, 139, 58, 59].

Therefore, in the second part of the thesis, we investigate modern techniques in hardware and

software that try to alleviate the I/O bottleneck. Starting with hardware, we perform an exten-

sive experimental analysis on Intel Optane Persistent Memory, the first public implementation

of Non-Volatile Memory (NVM). Our experiments give guidance on best-usage of NVM and

show its role in the future memory hierarchy, but also show the shortcomings of the hardware.

Then, motivated by the data movement problem, a difficult problem for end users in the cloud,

we present a modern form of database cracking, called serverless cracking. Serverless crack-

ing leverages Function-as-a-Service (FaaS) to cut down on cost/latency for Query-as-a-Service

(QaaS) when they are querying external semi-structured data. Our approach can cut down on

cost by an order of magnitude and we outline future directions on how we envision serverless

cracking will be integrated as a cloud module in QaaS.

Thesis statement. Data management has been influenced by many factors during the last years,

including data explosion, machine learning workloads, the memory-CPU gap and the hardware

evolution. In this dissertation, we show how we can adapt different components of database sys-

tems to leverage these trends, bringing databases up to speed with all the recent advancements.

We show how modular operators and tensors can both act as a core processing unit for general

data processing that adapts to the newest trends. We then investigate hardware and software so-

lutions to the I/O bottleneck, demonstrating that although many steps have been done to alleviate

this problem, there is still a long road ahead to be covered.

1.2 Contributions & Structure

The contributions of this thesis to the state-of-the art of heterogeneous data processing are sum-

marized as follows:

In Chapter 2, we develop a modular query engine, called Modularis that can execute distributed

analytics over heterogeneous platforms. More specifically:

• We make a case for modular operators to adapt to the fast-paced landscape of algorithms

and hardware.

3



Chapter 1. Introduction

• We come up with design principles around modular operators, which we call suboperators

and we design a query engine around them.

• We show how we can use these operators to execute a distributed join.

• With the majority of the operators that we used for the join, we execute sequences of joins,

a distributed GROUP BY and end-to-end TPC-H queries.

• We compare our engine against mature systems and specialized operators and we show

competitive performance for the vast majority of the usecases.

In Chapter 3, we investigate if the tensor abstraction is suitable for non DL/ML tasks and more

specifically graph and relational algorithms. Concretely:

• We show how we can use Tensor Computing Runtimes (TCRs) to map a popular graph

algorithm (PageRank) into a tensor program.

• We also map to the tensor abstraction cardinality estimation over DISTINCT queries and

relational joins.

• Our implementations outperform custom kernels and specialized libraries by an order of

magnitude in some cases.

• We also sketch future directions on how we envision the tensor abstraction can be used as

a core component for unified data processing.

In Chapter 4, we explore if Intel Optane Persistent Memory (PMEM/NVM) could work as

a drop-in replacement for relational databases and key-value stores for both OLAP and OLTP

workloads. Precisely:

• We perform microbenchmarks to measure different quantities (throughput, latency) of the

hardware without any system integration.

• We use a popular OLAP benchmark (TPC-H) for a variety of relational databases, to

understand the behavior of PMEM under this type of workloads.

• We utilize an OLTP benchmark (TPC-C) to get insights on how NVM operates under

heavy-write workloads.

• We exploit a key-value store (RocksDB) together with a widely accepted benchmark

(YCSB) to comprehend PMEM characteristics’ for this type of task.

• Based on all our results, we provide insights and recommendations on how researchers

and practicioners can integrate PMEM into the future memory hierarchy and which of its

attributes can be relevant for future memory technologies (CXL).

In Chapter 5, we propose a new form of database cracking, called serverless cracking, which is

adapted to QaaS. More specifically:
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1.2. Contributions & Structure

• We show how simple transformations (transcoding, chunking, sorting) affect the runtime

and cost of QaaS.

• We study the cost/latency tradeoff of these transformations on QaaS.

• We use FaaS to perform these transformations and analyze how time-consuming/expensive

they are.

• We make concrete recommendations on how users can transform their input data to take

the most out of sparse workloads run on semi-structured data on QaaS.

• We provide future directions on how we envision serverless cracking will be integrated as

a module in cloud environments.

Chapter 6 summarizes and shows future directions of the thesis, and how data processing is

going to evolve to integrate different platforms and hardware.

Related Publications This dissertation is based on work that has also been presented in the

following publications:

• Modularis: modular relational analytics over heterogeneous distributed platforms by Kout-

soukos, D., Müller, I., Marroquı́n, R., Klimovic, A. and Alonso, G., 2021. Proceedings of

the VLDB Endowment, 14(13), pp.3308-3321.

• Tensors: An abstraction for general data processing by Koutsoukos, D., Nakandala, S.,

Karanasos, K., Saur, K., Alonso, G. and Interlandi, M., 2021. Proceedings of the VLDB

Endowment, 14(10), pp.1797-1804.

• NVM: Is it Not Very Meaningful for Databases? by Koutsoukos, D., Bhartia, R., Friedman

M., Klimovic, A. and Alonso, G., 2023. NVM: Is it Not Very Meaningful for Databases?.

Proceedings of the VLDB Endowment, 16(10), pp.2444 - 2457.

• Serverless cracking for QaaS by Koutsoukos, D., Marroquı́n, R., Müller, I., Klimovic, A.

and Alonso, G. (under review)

Apart the above-mentioned publications, participation in other projects has resulted in the fol-

lowing publications:

• The collection virtual machine: an abstraction for multi-frontend multi-backend data anal-

ysis Müller, I., Marroquı́n, R., Koutsoukos, D., Wawrzoniak, M., Akhadov, S. and Alonso,

G., 2020, June. In Proceedings of the 16th International Workshop on Data Management

on New Hardware (DaMoN) (pp. 1-10).

• Farview: Disaggregated memory with operator off-loading for database engines Korolija,

D., Koutsoukos, D., Keeton, K., Taranov, K., Milojicic, D. and Alonso, G., 2022. Confer-

ence on Innovative Data Systems Research (CIDR)
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• Wu, B., Koutsoukos, D., Alonso, G. 2023. Efficiently Processing Large Relational Joins

on GPUs. arXiv preprint arXiv:2312.00720.
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Chapter2
Modular operators for heterogenous plat-

forms

2.1 Motivation

The growing popularity of machine learning applications and the increasing amount of data that

analytics applications must process have had a substantial influence on the way systems are

designed and optimized. There is a constant stream of specialized accelerators (TPUs, GPUs,

FPGAs, smart NICs, smart storage, near memory processing) and platforms (large appliances,

InfiniBand clusters, serverless, cloud instances, data centers) that forces a continuous redesign

of data processing engines—often leading to new engines—simply to exploit the capabilities of

new hardware [100].

Often, to gain performance, developers design monolithic operators that are highly tailored to

the underlying hardware [90, 93, 94, 224, 209]. However, as the algorithms and platforms evolve

quickly, it becomes very difficult to reuse these operators in newer versions of the system. Exam-

ples abound: For instance, a join optimized for multi-core machines [90] requires fundamental

changes to run on Remote Direct Memory Access (RDMA) [93, 94] due to the different commu-

nication schemes between NUMA nodes and the network. As another example, although FPGAs

are not competitive with multi-core machines for full joins, they can significantly accelerate the

partitioning phase [166]. Supporting distributed query processing on serverless computing has
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received a lot of attention and requires a specialized exchange operator to allow communica-

tion through storage [209, 224]. With the current approach of highly engineered, monolithic

operators, it is difficult to exploit the potential of new architectures and platforms without major

redesigns.

We argue that to cope with the fast changes in the hardware and platform landscape, query

processing needs to become more modular and composable at a finer granularity than conven-

tional relational operators. Having many versions of highly optimized, monolithic operators

is not a design approach compatible with the high degree of specialization we observe. In

almost all cases where hardware or platform advances offer new opportunities, the potential

advantages affect only part of an operator (e.g., only one of partitioning, build, or phase of

a join) and often require to change other significant parts (e.g., intermediate data placement

in an exchange operator, partitioning strategies, etc.). It is very rare that the whole operator

can become faster or that all operators benefit. This effect is notable in accelerators (FPGA,

GPU) [243, 151, 131, 123, 128, 246, 226, 144, 148, 147], specialized processor components

(AVX, SGX), [90, 74, 172, 210, 115, 237] evolving networks in distributed systems (Infiniband,

RDMA, smart NICs, etc.) [93, 270, 194, 199, 274, 101, 232], and even platforms (Infiniband

clusters [93, 194, 199], cloud/serverless computing [209, 133, 162, 177, 79, 174, 229, 236, 241,

107, 176, 224]). Yet, the current design approaches often require a complete redesign because

they are based on careful tailoring to the underlying platform and hardware.

In this chapter, we focus on the modular design of query processing. We show how to design

a modular distributed query processing engine with performance comparable to its monolithic

counterparts. The topic of modularity in database operators has been visited many times in

the past [126, 157] and recently [125, 165, 180]. However, to our knowledge, we are the first

to implement modularity at the hardware platform level, while at the same time formulating

concrete design principles. We argue that modularity at this level is a necessity rather than

a nice-to-have feature. To this end, we have built Modularis—an execution engine aiming to

maximize performance without specializing neither the engine nor the bulk of the operators to

the target platform. Modularis is based on a collection of composable sub-operators that are

both as small and simple as possible, as well as reusable, while retaining the ability to execute

entire SQL queries. Modularis’ sub-operators share the same goal of composability of operators

present in traditional database engines: sub-operators can be freely and easily combined, have a

well-defined interface, and adhere to a common execution model. Our sub-operators are similar

to the microcode used in processor design to implement more complex instructions. We use

them to build up complex plans like TPC-H queries. This allows Modularis to run seamlessly on
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three different platforms: an InfiniBand RDMA cluster, a serverless cloud service, and a smart

storage engine, by simply replacing in the query plan only those operators actually affected by

the change in the platform (e.g., the exchange operator), leaving everything else unaffected.

We have evaluated Modularis’ performance and behavior extensively. First, to explore the end-

to-end performance of Modularis, we compare it to mature systems using the TPC-H benchmark.

When compared to Presto, a system that is general enough to utilize various storage layers and

distributed set-ups, Modularis is an order of magnitude faster. When compared to SingleStore

(previously called MemSQL), a system that specializes in in-memory analytics using SQL, Mod-

ularis is faster for the majority of the queries. The speed-up compared to both of these systems

comes from the ability to optimize at the sub-operator level and the usage of RDMA for fast data

transfer. Next, we show how Modularis adapts to heterogeneous environments by discussing the

minimal changes necessary to go from running on an RDMA cluster to a serverless platform us-

ing AWS Lambda or a smart storage engine (S3Select) —a very significant architectural change

in the underlying platform. For TPC-H queries, Modularis-on-serverless is competitive against

commercial Query-as-a-Service systems (Athena, BigQuery). This last experiment shows that

modularity does not need to result in end-to-end performance losses while it enables the execu-

tion of workloads on two fundamentally different platforms with minimal development effort,

which mainly involves the design of new exchange and executor operators. That way, we get the

best of both worlds: maximum performance across platforms, without redesigning the whole

system from scratch.

Second, we quantify the potential performance overhead of the modular design by comparing

a join composed from several Modularis’ sub-operators with a hand-tuned join. For the latter,

we use the best monolithic implementations available for RDMA clusters [93, 94]. Modularis

is always within 30 % of the performance of the specialized implementation (and often closer).

Nevertheless, our system uses 3.8× fewer lines of code than the monolithic operator and all its

sub-operators are not specific to the join but can be reused in other query plans.

Third, we demonstrate the advantages of sub-operators over monolithic approaches when it

comes to extending existing operators. We show how to use the same sub-operators that we used

for the join for optimizations for sequences of joins and a distributed GROUP BY (with one addi-

tional sub-operator). In contrast, extending existing manually handcrafted joins [93, 94, 199] to

support, e.g., inner, outer, semi, and anti joins plus grouping for partitioned, sorted, and general

inputs would be very difficult (and has not been attempted, to our knowledge). In Modularis,

once we had the sub-operators for the initial distributed radix hash join, we needed only a small

effort to develop the rest of the operators. These results put into perspective the potential per-
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formance loss when comparing Modularis, which can run code over different platforms, with

handcrafted algorithms tailored to run on a single target system.

2.2 Background

2.2.1 RDMA

Broadly, RDMA allows using the network protocol (InfiniBand [1], RoCE [2]) and the Network

Interface Card (NIC) to move data directly from the memory of the sender machine to the mem-

ory of the receiving machine. This is accomplished by using DMA features that allow the NIC to

read and write from and to the host memory directly over the PCI bus (almost) without involving

neither the CPU nor the OS.

For this chapter, we focus on one-sided operations that do not require any involvement of the

receiving CPU. One-sided operations have Remote Memory Access (RMA) as their basis. RMA

supports access to remote memory regions through one-sided read and write operations. There

is an initial set-up procedure where the target memory region (buffer) is reserved, pinned, and

registered with the NIC. The registration of the memory region to be used involves pinning a

portion of memory to avoid other processes or the OS to interact with it. Memory or buffer

registration has been identified as a bottleneck when using RDMA for data processing [134], an

aspect that our experiments also confirm. After this initialization process, the sending side just

puts or gets the data into or from the memory of the remote host through a one-sided write or

read operation.

2.2.2 Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a widely used standard for writing parallel, High-

Performance Computing (HPC) applications. MPI provides platform-independent communi-

cation primitives. Different MPI implementations such as foMPI [140], OpenMPI [4], and

MVAPICH [3] are customized for particular platforms and they select the most applicable com-

munication approach among processes.

The user can define the parallelism of an MPI job by specifying the total number of processes

to be used when dispatching it. Each of these processes is assigned a rank as a unique identifier

for communication purposes. The dispatch system, mpirun, initializes all processes that will run
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the same code on the machines assigned to the job. To perform any one-sided RDMA operation

each process has to allocate a contiguous section of main memory, called memory window. This

is accomplished using a collective call named MPI Win create. This function is implemented

as a collective call such that all processes execute this instruction, even if one of them does not

need to register memory itself.

After the creation of the window and before the program executes any other operation on it, the

user must synchronize the processes with the MPI Win fence function. The synchronization

ensures that all incoming and outgoing RMA operations will complete at that process before the

fence call returns. The time mediating between two fence function calls is called an RMA epoch.

Fence synchronization is also a collective call.

To read and write from a remote window the user should use the MPI Get and MPI Put func-

tions. To ensure that all the pending RMA operations that the calling process starts on the target

window are complete without releasing the lock, MPI has the MPI Win flush function only in

passive target synchronization. After this call, the program can reuse or read all the buffers used

by previous MPI Get and MPI Put function calls.

2.2.3 Experimental setup

We run all of the RDMA experiments of this chapter using all available cores from a cluster of

8 machines (specifications in Table 2.1). Regarding the MPI implementation, we use OpenMPI

3.1.4 as opposed to foMPI [140] used by [94] because foMPI is specific to Cray machines.

Finally, unless otherwise mentioned, we run each experiment five times and report the average

among such runs.

2.3 Modular operators

2.3.1 Modularis architecture

In this section, we describe the architecture of Modularis and how it executes a query. We

show the system architecture in Figure 2.1. The user writes queries in a UDF-based library

interface written in Python (similar to PySpark). When the user submits the query, they specify

the target execution platform using a flag (e.g. ,--rdma, --lambda). The query is then parsed

and translated into an IR, representing a DAG of operators. The DAG is serialized and passed to
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Component Specs

CPUs 2 × Intel Xeon E5–2609 2.40 GHz

Cores/Threads 2 × 4/4

RAM 128 GB

L1 Cache 2 × 4 × 64 KB

L2 Cache 2 × 4 × 256 KB

L3 Cache 2 × 10 MB

InfiniBand Mellanox QDR HCA

Table 2.1: RDMA cluster specification

Modularis’ backend, written in C++, which applies a series of both plan-specific and platform-

specific transformations.

The plan-specific transformations involve projection and selection push-downs, operations typi-

cal in DBMSs to reduce data movement and I/O. Next, Modularis cuts the DAG into tree-shaped

sub-plans, each of which represents a pipeline with a materialization point at its end. Then, we

transform the query into its distributed equivalent. This step involves wrapping the initial plan

into a distributed executor and adding exchange operators in the plan inputs. Depending on the

target platform, we specialize the generic operators with hardware-specific ones. In the case

of serverless, we use the exchange operator of Lambada [209] and an executor that spawns the

workers in a tree-plan fashion. In the case of smart storage, we use a specialized operator to

User Parser Pipeline creation

DAG trans-

formation

LLVM IR

Query compiler

Suboperator

repository

Deployment

RDMA

Serverless

Query DAG executable

plan

platform choice

Figure 2.1: System architecture
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get data from S3Select. In the case of RDMA, we use an MPI executor and an RDMA-based

exchange operator based on the one of Barthels et. al [94] (with modifications to avoid unnec-

essary data movement). We give concrete examples of the final plan in Sections 2.4.4 and 2.4.5.

Finally, the plan is lowered into LLVM IR and Just-in-Time compiled to native machine code.

To translate UDFs into LLVM IR, Modularis uses Numba [52] and inlines the generated LLVM

code into the remainder of the plan to eliminate any function calls or interpretation in inner

loops. The query is then executed on the target platform, based on the specialized operator that

it has been wrapped around. When the results are produced, they are returned back to the user.

2.3.2 Design principles

Modularis builds on the observation that the commonly used operators, e.g., for high-speed

networks [93] or multi-core CPUs [90], are built around the same conceptual building blocks:

when the authors describe their algorithms, they use some visual or textual representation of

“reading data”, “partition by key”, “for each partition”, etc. To readers, these terms imply the

same operation is being done during different phases of query execution. However, there is no

code reuse—the implementations differ in intricacies related to how and where data is stored,

how it is passed from one phase to the next, how they depend on the state of some enclosing

scope, etc.

The goal of Modularis is to identify pieces of code that reoccur in operators in slight variations,

factor out their common logic, and package them behind a well-defined interface such that they

can be reused and recomposed. In other words, our goal is to derive actual building blocks from

the conceptual ones. To derive sub-operators systematically, we follow these design principles:

1. Each sub-operator consists of or is a part of at most one inner loop. If a high-level algorithm

consists of several phases, each of these phases is expressed by at least one sub-operator. Phases

often reoccur across and within monolithic operators, sometimes in slight variations. For ex-

ample, join operators typically use partitioning to improve cache locality. In Section 2.4.3, we

show that by factoring out the partitioning logic into a dedicated sub-operator, we can reuse it to

improve cache locality in grouping operators as well.

2. Use dedicated sub-operators for each physical (in-memory) data materialization format.

This decouples the processing of data from where and how it is stored. Consequently, other sub-

operators become independent of the physical formats of their inputs and outputs and are more

generic. One high-level example is to have different scan sub-operators for reading base tables or

intermediate materializations in RDMA buffers. That way, a single partitioning sub-operator im-
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plementation can consume inputs of two different scan operators (or any other operator) instead

of having two specialized partitioning operators (see Section 2.4.1.2).

3. Express high-level control flow as (nested) operators. This allows connecting plan frag-

ments of sub-operators that express the heavy-lifting data processing through the same operator

interface. In monolithic operators, such orchestration logic is usually implemented as imperative

code specific to that operator and, thus, it makes it necessary to reimplement the data path as

imperative code as well. One high-level example is to express the in-memory join of two parti-

tion pairs occurring in a classical partitioned hash join as a nested query plan that is executed for

each pair of matching partitions. That allows the use of partition-unaware sub-operators in the

inner plan. We introduce the NestedMap sub-operator for this purpose below (Section 2.4.1.2).

Generality of design principles. The above somewhat different implementations do not only

apply to the context of CPUs, but also to other hardware architectures (e.g. FPGAs, GPUs).

Therefore, the goal of the design principles is still applicable, as we can use them to derive the

basic building blocks that the underlying architectures use. By following our design principles,

we do not expect to design operators that work solely in different architectures without any

modifications. We rather want to avoid reimplementing the same conceptual building blocks

with small modifications. Our goal is to end up with a very similar set of operators for different

architectures. For example, an operator that reads data in columnar format is relevant to both

CPUs and FPGAs. By having a similar set of building blocks for different architectures, we can

offload parts of a query to different hardware configurations seamlessly, just by swapping out

the hardware-specific part of the plan. We give a concrete example of how this can be done in

the context of smart storage in Section 2.4.5.

2.3.3 The sub-operator interface

We base the interface of sub-operators on one of the most known models in the database com-

munity, the Volcano model [145]. The model is based on iterators that pass records along the

data path of a tree of Next() function calls. Like in a traditional execution engine, the iterator

interface allows us to combine operators in almost arbitrary ways, limited only by the schema

or types that operators may require.

The main distinctive feature of the sub-operator interface compared to traditional Volcano-style

operators is the type system of the records (or “tuples”) passed between them. While records

in relations (in the First Normal Form) consist of atomic fields, we need a more expressive type

system for a generic physical execution layer. For example, to split the materialize and scan
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operators of a given physical data format into two distinct sub-operators, these operators need

to pass “records” containing the materialization from one to the other. Similarly, if we want

to express operators that work on individual records as well as those that work on batches (or

morsels [191]) in the same interface, we need to be able to represent the concept of a “batch”.

We thus extend the concept of tuples with that of “collections”, which is the generalization of

any physical data format of tuples of a particular type. This allows expressing physical execution

properties into the query plan rather than hard-coding them for the entire execution engine.

More formally, sub-operators are iterators over tuples and the tuples are of a statically known

type from the following recursive type structure:

tuple := ⟨item, . . . , item⟩

item := { atom | collection of tuples } ,

where a tuple is a mapping from a domain of (static) field identifiers to item types, an item is a

(statically known) atomic or collection-based type, an atom is a particular domain of undividable

values, and a collection is the generalization of any physical data format one might want to use

in the execution layer. We denote tuple types by ⟨fieldName0 : ItemType0, . . . , fieldNameK :

ItemTypeK⟩ and collection types by CollectionType⟨TupleType⟩. Most operators are generic in

the sense that they require their upstream operator(s) to produce tuples of a type with a par-

ticular structure but accept any type of that structure. Their output type usually depends on the

type(s) of their upstream(s). For example, the scan operator for a C-array of C-structs (which we

call RowVector) requires from their upstreams to produce tuples of type RowVector⟨TupleType⟩

and returns tuples of TupleType, where TupleType is allowed to be any tuple type. Similarly,

operators consuming or producing batches can do that by consuming or producing tuples with

RowVector fields.

We also extend the Volcano-style execution model to DAGs, whereas operators in the original

Volcano-style execution model could only have one consumer (i.e., plans had to be trees). Before

execution, we cut a DAG of operators into pipelines, where pipelines start with either the original

plan inputs or the result of any operator with several consumers. In each pipeline, that result will

be read only once, so the sub-plan of the pipeline is a tree and can thus be executed with the

iterator model. Pipelines materialize their results, such that multiple downstream pipelines can

read them. For simplicity, we present the plans as DAGs in the remainder of the chapter and

omit the pipelines and materialization points.
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2.3.4 Set of sub-operators

In this section, we introduce the set of sub-operators that we use in Modularis. We choose the

sub-operators such that they are expressive enough to support all the major relational operations,

e.g. selections, projections, aggregations, and joins. At the same time, we follow our design

principles. While the design principle of making operators simple aims indeed at increasing

code re-usage and reducing implementation effort, this does not necessarily mean that there

is no redundancy. In fact, we do add new operators if they provide a sufficiently large and

broad performance benefit. Such an example is the different join implementations (inner, semi,

anti). They could all be based on the same hash-build and a separate probe operator. However,

having a special operator for each of them provides better performance. Similarly, having a

second version for each of them with flipped build and probe sides increases performance further.

Finally, while the set of sub-operators is enough for relational analytics, we expect that to expand

Modularis to more types of analytics (e.g. linear algebra, ML), we need to expand our sub-

operator set.

We present our list of sub-operators in Table 2.2. The sub-operators fall into six categories:

orchestration operators, data processing operators, MPI-specific operators (to support RDMA

clusters), Lambda-specific operators (to support serverless), Smart storage-specific operators,

and generic materialize and scan operators. Orchestration operators enable the execution of

nested computations. Data processing operators express the computations carried out on the

data inside the inner loops. MPI- and Lambda-specific operators are the ones that are aware

of the distributed nature of query execution. Smart storage-specific operators use pushdown

computations to smart storage. Finally, materialize and scan operators read and write tuples

from and to nested collections. We give an overview of our operators in Table 2.2. We believe

that the semantics of most operators are clear given their names. However, the two orchestration

operators merit an explanation, as they differ substantially from other systems.

The ParameterLookup operator encapsulates plan inputs in the operator interface, such that

other operators can consume them. This operator is the only operator aware of plan inputs. The

NestedMap operator executes a nested plan independently on each input tuple, which typically

contains a nested collection. Each invocation of the nested plan produces an output tuple that

may contain nested collections as well. This allows us to process nested collections using the

same building blocks regardless of the nesting level. This operator consumes tuples of any type,

and the ParameterLookup operator(s) in the nested plan return a tuple of that type.
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Category Operators
Orchestration operators Parameter Lookup, NestedMap

Data processing operators (Parametrized) Map, Projection, Cartesian

Product, Filter, Reduce (By Key), GroupBy,

Zip, Local Histogram, Build and Probe, Parti-

tion, Semi-join, Sort, Top-K

MPI-specific operators MPI Executor, MPI Histogram, MPI Exchange

Lambda-specific operators Lambda Executor, Lambda Exchange

Smart storage-specific operators S3Select Scan

Materialize and scan operators Local Partitioning (AVX-based), Partition, Row

Scan, Column Scan, Parquet Scan, Materialize

Row Vector, Arrow table to collection

Table 2.2: Initial set of sub-operators

2.4 From operators to complex query plans

2.4.1 High-performance distributed join

We illustrate how Modularis’ sub-operators can express optimized monolithic operators with a

case study of a state-of-the-art distributed join algorithm proposed by Barthels et al. [94].

2.4.1.1 State-of-the-art distributed join

We start with a very brief summary of the algorithm as it was originally proposed (Figure 2.2).

The algorithm consists of three phases: (1) histogram computation, (2) multi-pass partitioning

including network transfer, and (3) hash table build and probe. The two phases where commu-

nication happens amongst processes, namely the histogram calculation and the network parti-

tioning phase, are depicted using black boxes around them. The original algorithm is optimized

for a workload involving two relations where both relations consist of 16-byte tuples (8 bytes

for the key and another 8 for the payload). For more details, we refer the readers to the original

paper [94].
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Figure 2.2: RDMA-aware hash join algorithm for two processes proposed by [94]

2.4.1.2 Query plan in Modularis

We now show how the same join algorithm can be expressed using sub-operators in our RDMA

backend. The resulting query plan is shown in Figure 2.3. To keep the graphical representation

concise, we abbreviate the operator names as shown in Table 2.3. Furthermore, we omit mate-

rialization points and, instead, express the plan as a DAG as discussed previously. Finally, most

of the operators in the Figure are part of a nested plan inside a MpiExecutor operator, which is

executed concurrently by all MPI processes (which we call ranks in the rest of the section) the

cluster in a data-parallel way, illustrated with a stacked frame.

The join starts by computing the histogram of each of the two inputs using the LocalHistogram

operator. The inputs can be produced by any operator producing tuples with key fields, e.g., a

scan operator reading from a base table stored in main memory. On each of the two sides, a

MpiExecutor
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Figure 2.3: Plan that runs the distributed hash join with modular operators across many nodes
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MpiHistogram computes the global histogram from the local ones until the MpiExchange con-

sumes the local histograms, the global histogram, and the original input. With this information,

each rank allocates a contiguous memory area in the main memory of the host (called RMA win-

dow) that will hold all tuples it will receive in this phase and computes the offsets of its exclusive

regions inside the windows of the target ranks. Then, each rank reads the input again, computes

the target partition for each input tuple the same way as it did for computing the histogram, and

writes the tuple into a buffer corresponding to that partition. This partitioning routine is based

on well-known techniques using streaming stores and software write-combining [227, 237, 210]

to achieve the full memory bandwidth. When the buffer of a partition is full, it is sent to the

target rank using an asynchronous RDMA write operation, it replaces the buffer with an empty

one, and continues partitioning the input immediately. This overlaps computation with commu-

nication and increases performance.

In the network partitioning phase, as in the original algorithm, each rank compresses the 16-byte

workload of the algorithm into 8 bytes to reduce the data transmitted by a factor of two. This

Abbreviation Operator name SLOC

PL Parameter lookup 28

NM Nested map 49

PR Projection 27

BP Hash build and probe 103

LH Local histogram 77

ZP Zip 44

CP Cartesian product 54

PM Parametrized map 51

RK Reduce by key 75

RS Row Scan 59

LP Local partitioning 143

MR Materialize row vector 56

ME MPI Executor 140

MX MPI Exchange 269

MH MPI Histogram 52

Table 2.3: Source line of code per operator
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optimization comes as an additional pass to our query compiler, and although it is very specific,

it is useful for dictionary-encoded data. The compression uses the fact that some bits of the

key are common for each partition. Specifically, if we use the identity hash function and radix

partitioning with a fan-out of 2F, the first F bits of each partition are identical. Furthermore, we

assume that keys and values come from a dense domain and can be represented with P bits each.

Thus, key and value can be stored in a single 64-bit word if 2 · P− F ≤ 64. After the partitioning

and compression, the operator returns the partitions as ⟨networkPartitionID, partitionData⟩ pairs

such that all tuples of each partition end up on only one rank. Because we extend the original

algorithm with materialization of the input tuples, we recover the missing bits by forwarding the

networkPartitionID further downstream. As we can observe, the MPIExchange operator batches

the tuples in order to avoid the overhead of sending a tuple-at-a-time over the network.

The subsequent plan joins the tuples inside two corresponding partitions of the two sides. An

imperative implementation would express this as a loop over matching partition pairs. In Mod-

ularis, we use the NestedMap operator for the same purpose: We take the corresponding

⟨networkPartitionID, partitionData⟩ pairs and pass them through a Zip operator, which pro-

duces ⟨networkPartitionID, partitionData, networkPartitionID, partitionData⟩ tuples (note that

they are produced in dense, ordered sequence). This way, all data belonging to one partition

pair is represented in a single tuple, and we can express the remaining logic as a nested plan

transforming each such tuple. The nested plan starts by dissecting the input tuple. The tu-

ple has four fields: the partition ID and data of the two sides, respectively. A sequence of

ParameterLookup (which returns the entire tuple) and Projection operators (which retains

one of the fields) extracts one of the fields, each. The partition data is partitioned further on

both sides by a sequence of RowScan (which extracts individual tuples from the nested collec-

tion inside the partitionData fields), LocalHistogram, and LocalPartitioning operators.

Note that each of these sequences returns several ⟨localPartitionID, partitionData⟩ pairs. To be

able to recover the dropped bits further downstream, we augment each of these pairs with the

networkPartitionID by using the CartesianProduct operator. Its left side only consists of a

single tuple (containing the network partition ID), so it does not increase the number of tuples.

The hash and probe phase happens inside another nested plan, which is executed for each pair

of sub-partitions. As before, we use a Zip operator to combine all information of each pair

of partitions into a single tuple, on which we call a nested plan using NestedMap. We use

sequences of ParameterLookup and Projection operators to extract the partitions of the two

sides. Each partition is read by a RowScan operator and individual tuples produced by these two

are finally fed into the BuildProbe operator, which produces the matching pairs. To recover
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Figure 2.4: Naive (left) and optimized (right) versions for a sequence of two joins on the same attribute

the dropped bits from the network phase, we use a ParametrizedMap operator: It contains a

function that, given a parameter from upstream (the network partition ID), shifts that parameter

by a certain amount and adds the result to the key field of each input tuple from the other

upstream.

The remainder of the plan depends on what happens with the join output. The Figure shows

a plan that materializes that result. Since each NestedMap needs to return a single tuple, the

result of each nested plan needs to be materialized using a MaterializeRowVector operator.

This operator produces a single tuple containing its input tuples as a nested RowVector. Each

NestedMap thus returns several such tuples (one for each input tuples) and the inner tuples can

be recovered as a flat stream using RowScan operators.

In the above description, we reuse many of our building blocks to construct the high-performance

distributed join. Also, we showcase many of our design principles in action, such as the dedi-

cated read/write operators to read data either from RMA windows or local partitions, how the

high-level control functions work, and finally how we reuse operators across different phases of

the algorithm.

2.4.2 Sequences of joins

A key advantage of Modularis is that, once we have the original join algorithm, it is straightfor-

ward to extend the plan to run sequences of joins. None of the work to date on high-performance

joins on multi-core CPUs or over RDMA has ever addressed this design due to the complexity

of modifying the highly tuned operators. For a cascade of N joins, the output of the n− 1-th join

is joined with the n-th relation, where n = 1, . . . ,N. Therefore, in the original plan of Figure 2.3,

after the RowScan operator, we return the new data to the LocalHistogram and MpiExchange
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operators. On the other side, another upstream operator returns tuples that go through the net-

work partitioning phase. This pattern is repeated on one side of the corresponding join for each

output and on the other side for the corresponding new relation, until all of the N joins are

performed.

However, if all the joins are on the same attribute (i.e., the attribute y in Figure 2.4) and the

relations fit in main memory, we can apply the following optimization: We network-partition

all relations at the beginning instead of reshuffling the output of every join through the network.

This is possible since we execute the output of the first join again on the attribute y, and therefore

we can pre-partition all the relations from the beginning of the query instead of waiting for the

result of each join . This way, for a cascade of N joins, we shuffle through the network N + 1

instead of 2N relations. We show our optimization for a sequence of two joins in Figure 2.4,

where instead of shuffling four relations through the network, namely R, S , T , and the output of

R ▷◁ S , we shuffle only R, S , and T . For conciseness, we depict with the operator EX the chain

of a LocalHistogram, MPI Histogram, and MPI Exchange operators.

This optimization is easily applied because of the operator modularity. In the case of monolithic

operators, a system engineer would have to take special care of this case by adapting a large part

of the system and possibly by reimplementing parts of the algorithm. In contrast, Modularis re-

structures the sub-operators inside the query plans and takes advantage of the common attribute

in a sequence of joins. After it performs all the network partitioning phases at the beginning

of the inner plan of Figure 2.3, it carries out all the local partitioning phases in the first nested

map. Finally, it forms a sequence of BuildProbe operators where the output of the n − 1-th

BuildProbe is the input of the n-th BuildProbe and the final build probe output is the input of

the ParametrizedMap operator.

2.4.3 Distributed GROUP BY

To illustrate how Modularis simplifies operator development and provides extensibility, we im-

plement a distributed GROUP BY operator by re-using components from the previous use cases.

MpiExecutor

. . . LH MH MX

PL

PL

PR

PR

RS LH LP

CP

PL

PL

PR

PR

RS

PM RK MR RS MR RS MR

NestedMap

NestedMap

RS . . .

Figure 2.5: Plan that runs the distributed GROUP BY with modular operators across many nodes
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We show the corresponding plan in Figure 2.5. The algorithm workload is a 16-byte tuple (8

bytes for the key and 8 bytes for the value).

The plan starts with any upstream operator that returns tuples to the LocalHistogram and

MpiExchange operators. Since we have multiple consumers from one operator, these tuples

have to be materialized and put into a separate pipeline (the materialization is not shown in

the Figure as discussed earlier). After the local and global histogram calculations, the tuples

are partitioned and distributed through the network. The operator performs a similar compres-

sion scheme as in Section 2.4.1.2. As before, this compression allows us to reduce the net-

work traffic in half, which is crucial for performance. Every output tuple (which consists of

⟨networkPartitionID, partitionData⟩ pairs) coming from the MpiExchange operator is the input

of a NestedMap, which executes its nested plan for every input partition.

The execution of the nested plan starts with the ParameterLookup operators. The tuples re-

turned by these operators are passed to Projection operators, which ensure that each down-

stream operator gets the correct input. Specifically, the network partitioning data are passed to a

RowScan operator that returns a tuple at a time to the LocalHistogram and LocalPartitioning

operators. After the histogram calculation, the LocalPartitioning consumes both the in-

put data and the calculated histogram to calculate the necessary prefixes inside a partition. It

then performs the data partitioning. The corresponding partitioned data is concatenated with

the network bits that the MpiExchange removed, using a CartesianProduct. Lastly, the

⟨networkPartitionID, localPartitionID, partitionData⟩ triples are the input to NestedMap op-

erator, which executes the final aggregation for each input partition.

To perform the final aggregation, we first have to restore the original keys as we did in the join

algorithm after the hash build and probe phase. The difference now is that we have to restore the

full keys using the ParametrizedMap operator before we forward each tuple to a ReduceByKey

operator, which aggregates the data per local partition. Afterward, we materialize the output

tuples of the ReduceByKey operator with a MaterializeRowVector operator. Like in the

distributed hash join case, we finish the plan with the RowScan operators that remove nesting

levels of the MaterializeRowVector operators that should end every nested plan. Finally, the

individual results from the workers return to the driver.

Based on the previous description, it is evident that the distributed GROUP BY plan is very similar

to the distributed hash join plan. The main differences are 1) the total number of input relations

and 2) that for distributed GROUP BY operator we do not perform a hash build and probe phase

in the end but an aggregation using a ReduceByKey operator. The large overlap between the two

plans shows how Modularis uses a similar set of sub-operators to implement different relational
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Figure 2.6: Modularis plan for TPC-H Q12 on RDMA
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Figure 2.7: Modularis plan for TPC-H Q12 on Serverless

database operators in contrast to using monolithic operators, where the different operators would

probably have to be reimplemented almost from scratch, although the logic behind shares many

similarities (e.g., the partitioning phases).

2.4.4 TPC-H queries

So far we have used Modularis to implement key components of a relational query processor.

We can use the same sub-operators to implement TPC-H queries. In fact, by altering only our

MPI-specific sub-operators to Lambda-specific we can execute the same set of TPC-H queries

on a different hardware platform. The latter is a strong argument towards modularity, as sys-

tems that operate on different hardware platforms have fundamentally different execution layers

making it almost impossible to apply the techniques used in one for the other without major

reimplementation.

We take as an example TPC-H Q12 and show (simplified) query plans of Modularis in Fig-

ures 2.6 and 2.7 for RDMA and serverless respectively. Although the plans are simplified, they

still preserve the semantics of the system. Since the network bandwidth in serverless is rather

slow (around 80 Mbit/s, see [209]), we use the partitioning only as a pre-processing step required

by the exchange operator and do not partition the exchanged data further. This means that each

worker processes only one data partition after the exchange, so we do not have any NestedMap

operators in that platform. Both plans take Parquet file paths to the base tables as input, either in

S3 or NFS depending on the platform. The paths of the left and right input are zipped and each

resulting pair is used as the input for a nested plan instance by the executor of the respective

platform. The execution of a nested plan starts again with ParameterLookup operators, from
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which we project the paths for the left and right relations, pass them to ParquetScan operators,

and finally extract individual tuples from the column chunks produced by that operator using the

ColumnScan operator. The next operators express the corresponding operations of Query 12.

At this point, we differentiate the plans with the operators that constitute the exchange routine

for each platform. Note that we do not perform any compression of the tuples, such as in the

case of the distributed join and the GROUP BY. In the case of RDMA, the plan looks similar to the

ones that we have presented before. In the case of serverless, we use the exchange algorithm of

Lambada [209]: First, we partition the data into a sequence of partitions using a Partition op-

erator. Subsequently, the GroupBy operator takes the <pid, data> partitions and groups them

by pid. Then the RowScan operator reads each partition and forwards it to the S3Exchange

operator, which writes the data into a file on S3 whose file name is based on the ID of the sender

containing one row group per receiver. The S3Exchange then returns triples of worker-specific

S3 paths and the first and last row group to read from that file, which is then read by the subse-

quent ParquetScan operator. This pattern implements the “write combining” optimization of

Lambada, which significantly reduces the number of write requests to S3. Finally, the column

chunks produced by the ParquetScan operator are consumed by a ColumnScan, which extracts

individual tuples.

After the exchange phase finishes, the plans converge again: We perform the join of the two

relations using the HashProbe operator. The matched tuples are transformed with a series of

Map and ReduceByKey operators to get the final result, and we use a MaterializeParquet

operator to return the individual results of the workers to the driver process. We read the indi-

vidual results using a sequence of ParquetScan and ColumnScan operators. Finally, we merge

the results of the workers using a ReduceByKey operator, we select the first tuple using a TopK

operator and we return the results to the user with a MaterializeRowVector operator.

We therefore show how altering only a handful of operators that are hardware-specific, allows us

to run the same TPC-H query on two very different hardware platforms. That way, implementa-

tion effort is reduced vastly. Using the same ideas, we could extend the TPC-H implementation

to use an exchange operator based on TCP. The addition of more backends only requires chang-

ing the executor and the operators that comprise the network exchange phase.

2.4.5 Integration with smart Storage

To show how Modularis can use a smart storage component offered by a major cloud provider,

we integrate S3Select [53] into our system. S3Select is a smart storage engine offered by Ama-
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zon that follows the trend of pushing computation into storage [258, 161] to overcome the I/O

bottleneck. S3Select pushes computations directly into S3 and thus it pulls only the data that the

user needs from these objects.

S3Select takes as parameters an SQL query, the S3 input path, and an output serialization format

(either JSON or CSV). In our case, the user writes an SQL expression in the frontend, which

pushes selections and projections to S3Select. We have created an additional sub-operator called

S3SelectScan that our query compiler decomposes into three simpler, more re-usable separate

operators. The first sub-operator performs an API call to S3Select and requests the data, which

S3Select returns in CSV format. The sub-operator then uses Apache Arrow to convert the CSV

to an Arrow Table and forwards the table downstream. The next operator converts the Arrow

Table to a collection of tuples as this is defined in Section 2.3.3. Finally, the third operator is a

ColumnScan that gets this collection and returns the individual tuples. Then, we continue with

the execution of the rest of the plan in our serverless backend.

Thus, by following the same design principles, we only develop the sub-operators needed to

integrate S3Select into Modularis. We did not have to redesign the system from scratch to adapt

to this system component. We only had to make small adjustments, whereas other systems would

have to make a major redesign to incorporate such a change. Finally, this integration shows the

generality of our design principles, because the implementation done is not limited to S3Select.

We could use the same architecture to request data from a different smart storage engine that

is based on an accelerator (like Amazon AQUA [50]). As databases push more computation

to storage or to accelerators, we expect that systems like Modularis will be able to use these

components with only minimal changes.

2.5 Modularis evaluation

In this section, we first compare Modularis to commercial systems on TPC-H queries on two

hardware platforms: RDMA and serverless. We then analyze the performance of the system

against a distributed hash join. Finally, we show the runtime of a distributed GROUP BY operator

and variations of plans for sequences of joins.
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Figure 2.8: TPC-H queries runtime using SF-500

2.5.1 TPC-H queries

We start our evaluation by comparing Modularis to commercial systems, both for RDMA and

serverless using TPC-H queries. We present the results for scale factor 500 in Figure 2.8. We

pick TPC-H Queries 1, 3, 4, 6, 12, 14, 18, and 19, which is more than a third of the benchmark

and a representative subset of all the challenges that the benchmark poses. More specifically,

Q1 has a large aggregation, Q3 has a large join, Q4 involves an inclusion test, Q6, Q14, and

Q19 have selective filtering that largely reduces the processed tuples of the input tables, Q12

involves almost all of the major operators a relational engine should implement (join, selection,

projection, aggregation, sorting), and Q18 has a high-cardinality aggregation. As mentioned, the

challenges involved in these queries together make up for the most important challenges of the

benchmark itself and an execution layer that has a good performance on these queries has a high

probability to perform well on the whole benchmark [169, 104]. The inclusion of more queries is

not a limitation of the system but involves the implementation of a more sophisticated optimizer,

which is part of future work and out of the scope of this chapter; for now, we concentrate on the

execution layer alone.

2.5.1.1 RDMA

For the RDMA backend, we compare Modularis against two different systems, Trino (previ-

ously Presto) and SingleStore (previously MemSQL). Both of these systems do not use RDMA

for the network exchange but we configure them to use the InfiniBand network for data transfer
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at higher rates. We verify this by monitoring the network traffic. For all the RDMA experiments,

we run Modularis using 64 workers. For SingleStore, we use version 7.0.12 and deploy a master

aggregator node and 7 leaf nodes. We do a warm run for each of the queries and report averages

of 5 runs. We deploy the TPC-H database using both a row-store [55] and a column-store [54]

format. The row-store format is completely in-memory and has very good random seek perfor-

mance. The disk-backed column-store format has optimizations such as indices, compression,

fast aggregations, and table scans, most of which are not supported by Modularis. We use the

column-store format, as it is the best for all the queries. Although the column-store format is

disk-backed, SingleStore serves all queries from an in-memory cache; for a fair comparison,

we thus exclude the time Modularis needs to read the data from disk as well. We observe that

Modularis is between 30% up to more than 3x faster for all the queries except Q14 and Q19.

For Q19, Modularis is slower because the histogram-based RDMA network exchange is slower

than a broadcast operator for small joins. Modularis is 40% slower in Q14, because the Map

operator does not perform the selective LIKE as fast as SingleStore. For the queries where Mod-

ularis is faster, all except Queries 1 and 6 have large joins, where the RDMA network exchange

has better performance. Another operator responsible for a large part of the overall runtime is

ReduceByKey, which uses a highly optimized version of a parallel hash map in Modularis and

thus executes very fast large aggregations. The difference is obvious in Queries 1 and 18 where

Modularis is 3 and 3.5 times faster, respectively.

For Trino, we deploy Trino SQL version 327 along with HDFS (Hadoop version 2.6.0) in the

eight-machine cluster using one node exclusively as coordinator and NameNode. We configure

HDFS to use replication factor 3 and Trino to use as much memory as possible. We run each

query four times, use the first run as a warm-up and then report the average of the other runs. To

have a fair comparison, we include also the time that Modularis needs to read the input data from

disk. For Queries 3 and 18, Trino cannot execute the queries and fails because of insufficient

resources. Our system is 6-9x faster than Trino, depending on the query, partly because of

the optimized RDMA network exchange and partly because of the highly-performance sub-

operators.

2.5.1.2 Serverless

For the serverless backend, we use the two Query-as-a-Service systems Athena and BigQuery

as baselines. These systems run queries over cloud storage without the need to start or maintain

any infrastructure. For BigQuery, we use external tables [66] that point to 512 Parquet files per
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relation stored on a single-region bucket in Google Cloud Storage in the standard storage tier.

Creating such a table is just a metadata operation and takes < 1s, i.e., no data is loaded. Instead,

the query runs against the original files on cloud storage. We use the same files for Athena, for

which we created an external table [60] as well. The remaining configuration is done by the

cloud provider. For Modularis we use the same Parquet files. For the integration with S3Select,

we use 512 workers and for the experiments with the ParquetScanOperatorwe use 256 work-

ers. The workers for both these configurations have 2 GiB of main memory each. For all three

systems we run each query 6 times and report averages. As we observe, Modularis with S3Select

is comparable to BigQuery for the majority of the queries but slower than Athena. To investigate

the reason, we isolate the calls to S3Select and time them independently of Modularis. We find

out that they make up for the majority of the runtime (e.g. for Q1, 24 out of 27 seconds are spent

getting data from S3Select). The problem is enlarged when we read many relations (e.g. Q3,

Q18) and is almost negligible for high selective queries that read only one relation (e.g. Q6).

In fact, for Q6 Modularis with S3Select is very close to Athena and faster than BigQuery. The

larger running times of calls to S3Select are because the service returns chunks of uncompressed

CSV data, whereas our ParquetScan reads data in compressed format and also pushes down

projections. Our observations agree with the ones made in [266]. This problem is ameliorated if

we read only one Parquet file per worker, which is why we use 512 workers in this experiment.

We can improve the performance significantly by using the specialized ParquetScan oper-

ator. In that case, Modularis outperforms both baselines in all queries except for Query 3,

where Athena is marginally faster thanks to a better query plan. For Queries 1 and 6, the run-

ning time difference is due to the ParquetScan operator, which is optimized to push down

projections while reading data in compressed format. For the other queries, the specialized

LambdaExchange operator can run workloads involving data exchange between workers faster

than the commercial baselines. This is evident because the workers are mostly bounded by net-

work bandwidth and latency. The current performance of S3Select illustrates the advantage of

modularity: today, we can use the much faster alternative of our optimized ParquetScan, but

using S3SelectScan can be enabled easily if AWS improves the performance of their smart

storage engine in the future.
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Figure 2.9: Modularis distributed join execution time per phase and compared to Monolithic design

2.5.2 State-of-the-art distributed join

2.5.2.1 Implementation effort comparison

Before we delve into a performance comparison of the execution of the distributed hash join

algorithm between Modularis and the original codebase, we measure the implementation effort

between the two approaches by using the number of lines of code of each of them. Although this

metric is not always reliable, most of the time it gives a good indication of the implementation

effort. The operators that are used in the plan according to Table 2.3 sum up to 1152 lines of

code while the original implementation adds to 1754 lines of code, leading to a 35% reduction.

One can argue that this can be attributed to coding style but the main take-away from this com-

parison is not only the size reduction but the extensibility of our sub-operators. While to support

other join types (e.g. semi-joins, anti-joins) we only need to modify the HashProbe operator

that consists of 103 lines, the original codebase has to be replicated for every join variant. Fur-

thermore, the only operators that are platform-specific used are: MpiExecutor, MpiHistogram,

and MpiExchange, which sum up to 461 lines of code. In contrast, the original monolithic code
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would have to be rewritten from scratch if we wanted to change the target platform, involving

3.8× more code.

2.5.2.2 Performance comparison

We compare the distributed hash join code by Barthels et al. [93], which consists of a monolithic

operator, against our equivalent Modularis plan. For a fair comparison, we extend the original

code base with a similar materialization operation to our MaterializeRowVector operator.

The workload consists of two relations with 2048 million tuples each. Unless otherwise men-

tioned, we use a 1-to-1 correspondence between the keys in the inner and outer relation. This

setup is consistent with the workload used in the original paper [93] in the scale-out experiment

(shown in Figure 7(a) in [93]).

We present our results in Figure 2.9. To understand how our system performs, we also mi-

crobenchmark our sub-operators. These microbenchmarks show the model performance that

Modularis’ components can achieve. We compare the total runtime of these microbenchmarks

(referred to as model) against the entire Modularis query plan and the original code base. We

present our results for two machine configurations in Figure 2.9a. We start our analysis by

comparing the three execution times phase-by-phase.

Starting with the local histogram phase, we observe that, compared to the original code, both

the model and the whole query plan have a small speedup. We attribute this speedup to the

fact that, as we mention in Section 2.4.1.2, the local histogram calculation is isolated in a small

pipeline because its input has to be consumed by multiple readers. This allows for compiler

optimizations (e.g. automatic usage of SIMD instructions, function inlining) that remove our

sub-operators abstractions. These optimizations are not possible in larger pipelines, because in

larger pipelines the compiler cannot inline all the next() functions effectively.

The global histogram phase has almost the same execution time in our model and the original

code. However, in the full query plan and especially when the join is executed on more machines,

the total time is significantly larger. This is associated with the MPI Allreduce function that

calculates the histogram, which is a collective operation that requires data from all the processes.

In case a process is stalled in a previous phase of the algorithm, then every other process must

wait until it has the required data from it. In the original algorithm, this phenomenon is not

present because the histograms are calculated sequentially for both relations. This also holds

for the model. On the other hand, during the execution of the join in Modularis, the global

histogram calculation happens in two distinct phases, one for each upstream path and a network
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partitioning phase is between the two global histogram phases. Because the network partitioning

phase has a slight variation in its execution time, it causes tail latencies for some processes during

the calculation of the global histogram of the second relation.

The network partitioning phase is slower in the model and the query plan than the original

code base for two reasons. First, this operator is part of a large pipeline in our generated code

and therefore, as mentioned before, the compiler cannot perform all the possible optimizations

and remove all of our abstractions. To validate this assumption and find the cause of the slow-

down, we run the following benchmark: We generate 1 billion integers and record the time that

RowScan needs to read them and compute their sum, compared to a simple C++ program that

does the same. RowScan needs about 1 second, whereas the C++ program needs around 0.8

seconds. The second reason for the slowdown is due to tail latencies because, as before, the

window allocation/synchronization function calls are collective operations. In the original code

base, they are called almost at the same time for both relations but, in Modularis, they happen at

different times, one for each upstream path.

The local partitioning phase is faster in the original code base than in the model and the query

plan. Part of the slowdown can be again explained due to the complex pipelines that this phase

belongs to, which causes a comparative slowdown in the RowScan operator. This effect is more

eminent in the query plan because there the pipeline is even bigger than the one in our mi-

crobenchmarks. Another cause of the slowdown is that in the query plan, we cannot exactly iso-

late the local partitioning phase, but we instead measure the whole sub-plan present in the first

NestedMap of Figure 2.3 and subsequently subtract the one present in the second NestedMap.

This nested plan includes an extra materialization of the output partitions, and the processing

of metadata necessary for later phases of the algorithm. Although the latter is not significantly

compute-heavy, it attributes to a small part of the slowdown present.

The build probe phase is faster in the model, compared to the original code base and the query

plan. The slowdown in the first case is explained by the fact that the MaterializeRowVector

uses the realloc function to request more memory, compared to the allocator interface of the

original code base. In the second case, build probe is again part of a large pipeline. Therefore

we lack some compiler optimizations. On 8 machines, each process materializes fewer tuples

and requests less memory, and these effects are ameliorated.

Finally, in Figure 2.9b, we depict the total runtime of the monolithic operator compared to

the Modularis plan for the distributed join algorithm. Our modular integration is from 12 to

28% slower, depending on the number of machines used, due to the reasons explained before.

However, the operators present in this plan exhibit the advantage that they can be reused in a
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Figure 2.10: Distributed GROUP BY runtime: varying cluster size with fixed key cardinality (left); varying

key cardinality for different cluster sizes (right)

variety of queries.

2.5.3 Distributed GROUP BY

In this section, we run the distributed GROUP BY plan presented in Section 2.4.3. We show our

results in Figure 2.10. On the left side of the Figure, we run the plan across different machine

configurations for a workload of 2048 unique million keys. As expected, the total runtime de-

creases as the algorithm load is distributed across more nodes. On the right side of the Figure, we

increase the number of distinct keys in the input (and hence the number of groups in the result)

and execute the plan for three different machine configurations. Because the total execution time

is dominated by the network time and the materialization of the tuples, the time is almost steady

for each machine configuration. Overall, we observe that Modularis performs grouping of bil-

lion of elements in a few seconds without having to design a specialized monolithic operator for

this cause but mainly by reusing existing system components.

2.5.4 Sequences of joins

Finally, we present the results of executing sequences of joins. As a baseline, we use the naive

version of the plan that shuffles four relations through the network. We compare the naive plan

against an optimized one that shuffles only three. Both of these versions are implemented in our

system. For this experiment, we use multiple relations with 2048 million tuples each, similar to
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the relations used in [93]. Additionally, we use a 1-to-1 correspondence between the keys in the

inner and outer relation unless otherwise mentioned.

Figure 2.11a shows the execution time when performing a sequence of two joins across several

machines with the two variants of the algorithm, naive and optimized. We observe that there is

a constant speedup in the optimized version compared to the baseline, which is partly due to the

network shuffling of one less relation and partly due to the materialization of only the final result

instead of materializing both the intermediate and the final join output. The execution time has

a sublinear speedup as the number of machines increases because the tail latencies mentioned in

the previous section in the network phases are even more eminent. Because the network phases

constitute a larger part of the execution time of the optimized version, these tail latencies are the
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Figure 2.11: Sequences of joins in Modularis
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main reason that the speedup between the baseline and the optimized version is decreased as the

number of machines increases.

However, the advantage of the optimized version is more conspicuous when the first join has

an increasing join output. We show the total runtime of such an experiment across 8 machines

in Figure 2.11b and the time spent on partitioning data through the network in Figure 2.11c.

While the naive version increases linearly with a high rate as the algorithm materializes and

shuffles through the network an extra relation that has an increasing size, the optimized version

has a sublinear increase in its total execution time. To analyze further the cause of this time

difference, we show in Figure 2.11c that for the optimized version the time spent on shuffling

data through the network is constant, as all three relations are pre-partitioned at the beginning

of the plan execution while the network time is increasing linearly as more data are shuffled

through the network. In these two plots, we cannot execute the baseline algorithm for more than

18 million tuples due to memory constraints.

Lastly, we compare the two versions while increasing the number of joins performed. We show

the results in Figure 2.11d. The difference in the total runtime between the two versions is

proportional to the number of joins because for N joins, the optimized plan performs N − 1

materializations and N + 1 network shuffling phases less than the naive plan. This shows, as

in the GROUP BY case, that we can apply optimizations that have a significant performance im-

pact. This comes without rewriting the whole system from scratch, as in the case of monolithic

operators, but mainly by restructuring operators across plans.

2.6 Related Work

Database operators design. Operator modularity is a crucial design decision as it significantly

affects performance. Determining the right granularity of operators has been a reoccurring topic

of research: from the bracket model [124] for parallelization in the early days of databases to

objected-oriented modular designs [126], record-oriented components adapted at runtime [157],

morsel-driven parallelism [191], and “deep” query optimization [125] more recently. In Modu-

laris, we use the Volcano model [145] as the basis for the interfaces between operators, but we

also support collections instead of just flat records. Modularis shares a similar vision to that of

Dittrich and Nix [125, 51], Bandle and Giceva [91], and Kohn et al. [180] in having operators

defined at a finer granularity. Dittrich and Nix argue that this enables a deeper level of query op-

timization and easy implementation of research ideas without sacrificing performance. Bandle
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and Giceva analyze how sub-operators can be used for general data analytics. Both these works

sketch a vision for modular operator design, and they focus on a few variations of aggregation

using different indexes (sorting/hashing) or on how to build more complex algorithms (e.g hash

joins, k-means) out of sub-operators. In contrast, Modularis is a full system comprising a variety

of operators and runs full TPC-H queries using plans tailored to three very different platforms.

Kohn et al. [180] develop a framework that uses modularity to speed up query execution when

the query contains multiple aggregates. Modularis follows a similar spirit but builds a more

generic execution layer that achieves a similar goal for query execution in general. In contrast to

these approaches, we tackle the problem at the platform level and formulate design principles for

these operators. We also do not focus on the optimization aspect from the view of query rewrit-

ing. Our goal is to reduce the implementation effort and keep up with the fast pace with which

the hardware evolves, without having to rewrite systems completely. Finally, efforts seeking to

optimize sets of operators are orthogonal to Modularis as they could be applied to the query plan

generated by Modularis as additional optimization passes. For instance, Leeka et al. [190] fuse

similar operators into a single super-operator by using a streaming interface.

Emerging technologies in data processing. Two of the most recent emerging technologies in

distributed data processing are RDMA and serverless computing. On the one hand, RDMA has

been used to implement highly distributed relational operators [199, 93, 94] and several projects

have explored the network bottleneck and the use of RDMA for query processing and database

design in a variety of contexts [96, 232, 235, 100, 194]. On the other hand, serverless computing

has been extensively studied over the last few years for a variety of applications [133, 162, 177,

176, 79, 174, 229, 236, 241, 107, 224]. In both cases, research focused on solving platform-

specific challenges and was often carried out in built-from-scratch prototypes that were limited

in functionality. In Modularis, by leveraging the granularity of the sub-operators, we develop

specialized platform-specific operators that leverage the latest technologies of both platforms

but keep most of the other operators and the rest of the system hardware-agnostic. This shows

that we can achieve competitive performance without having to redesign the entire system.

Query compilation for data processing. Modularis is also related in part to systems that per-

form Just-in-Time (JiT) query compilation as pioneered in HyPer [213]. Similar techniques

were later used and extended in several other systems: Tupleware [117], which targets machine

learning workloads; Weld [218], which incorporates a large class of data analytics algorithms by

translating frontend languages into an intermediate representation (IR) that is later Just-in-Time

compiled; LegoBase [178], which builds a database using a high-level language; and Flare [129?
], which combines data processing tasks with machine learning. Modularis uses JiT compilation
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techniques similar to those in such systems to eliminate the potential performance overhead of

a modular design. The systems above either have an IR tailored towards single-machine execu-

tion and rely on systems such as Spark [269] for their distributed setup (e.g. Weld) or, if they

have a distributed setting (e.g. Tupleware), they use a very generic model that is very hard to

be adapted in case of platform changes (e.g. from VMs to serverless functions). Modularis on

the other hand, targets directly distributed analytics and focuses on tailoring execution to the

underlying platforms by only using minimal changes to the plans.

2.7 Conclusion

In this chapter, we propose Modularis—an execution engine based on sub-operators. After

sketching the design principles that the sub-operators should follow, we propose an initial set

of sub-operators and demonstrate how they can be combined to build traditional database op-

erators such as a distributed hash join or a GROUP BY query as well as more complex query

plans like sequences of joins and TPC-H queries. We show that by changing a small subset

of our sub-operators we can execute the same TPC-H query plans on diverse hardware plat-

forms (RDMA, serverless clusters, smart storage). Through extensive experiments, we show

that modularity reduces implementation effort without requiring users to sacrifice performance.

Modularis is an order of magnitude faster than Presto, a data warehouse supporting various stor-

age layers and distributed setups, and more performant in the majority of cases than SingleStore,

an in-memory analytics SQL engine. Modularis also outperforms Query-as-a-Service systems

such as BigQuery and Athena by simply changing the RDMA-specific operators with dedicated

serverless-based ones so that queries run on the cloud.
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Chapter3
Tensor Computing Runtimes for graph and

database workloads

3.1 Motivation

Applications such as large-scale data analytics and machine learning (ML) are driving an un-

precedented demand for computing capacity. ML model training alone is responsible for a 10×

yearly increase in demand for computing capacity [102]. Informal data suggest that it costs

as much as several millions of dollars to train a complex model from scratch [31]. This huge

compute demand has been partially met by distributed computing, leveraging data center and

cloud infrastructures to speed up data processing [8, 238].

To further boost processing efficiency, but to also reduce the number of machines required [206],

specialized hardware and hardware acceleration are gaining momentum. The former refers to

hardware tailored to the task at hand (typically tensor computations), while the latter to the use

of standard components such as GPUs or FPGAs to replace CPUs, as their architecture is more

suitable to tensor computations. However, specialized hardware increases the complexity for the

programmer and often requires careful optimizations to improve performance. Thus, in parallel

to these developments, a significant effort and investment is being made on software frameworks

such as PyTorch [219], Tensorflow [8], or TVM [112] that simplify the development, manage-

ment, deployment, and optimization of Deep Learning (DL) models. In such tools, DL models
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are created as a composition of tensor operations. This tensor abstraction is the basis for auto-

matic optimizations [175, 160, 33, 272, 113, 250] and enables the compilation of the same code

over heterogeneous hardware, e.g., CPUs, GPUs, TPUs [164], IPUs [18], FPGAs [208, 29], etc.

The investments in Tensor Computing Runtimes (TCRs) is likely to continue and specialized

hardware tailored to tensor computations will evolve accordingly. It thus makes sense to con-

sider whether TCRs can be used to support computations other than just DL—this would allow

additional classes of computation to benefit from the continuous advances in TCRs. The chal-

lenge behind the vision of making tensors a general purpose abstraction for data processing lies

in the tensor abstraction itself: the close relation between tensors and DL algorithms is what has

made these frameworks so efficient. But is this abstraction, which is so far dedicated to DL, a

good match for other use cases too?

Recent work has mapped traditional ML algorithms (e.g., decision trees) to the tensor model [211].

The resulting system, Hummingbird, is the starting point for what we present in this chapter: to

investigate whether such mappings exist and can be beneficial for conventional data processing

tasks as well. In particular, we explore how to map selected graph processing and relational

operator algorithms to tensor computations. We use PyTorch and TVM to compile these imple-

mentations into code executable on CPUs and GPUs. Despite leveraging a high-level abstraction

and using the same source code regardless of the underlying hardware, the resulting machine

code often outperforms custom-built C++ and CUDA kernels. These initial results are promis-

ing and support the idea that the tensor abstraction and existing TCRs can be a good fit for data

processing tasks well beyond ML.

3.2 Background

3.2.1 The Tensor Abstraction

DL models are a family of ML models based on artificial neurons [143]. Frameworks used

to implement DL models include TensorFlow [8], PyTorch [219], CNTK [6], MXNet [7], and

ONNX [22]. DL models are expressed in terms of operations over tensors. DL frameworks such

as TensorFlow and PyTorch provide hundreds of tensor operators. A new class of compilers for

tensor programs has recently emerged. Systems like Halide [230], XLA [33] and TVM [112]

employ the tensor abstraction to generate highly optimized code targeting heterogeneous hard-

ware. While such frameworks and compilers have been mostly used in the computer vision
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and DL domains, in this chapter we explore their potential to serve as generic compilers and

runtimes for hardware accelerators. In the remainder of the chapter we refer to compilers (e.g.,

TVM) and DL frameworks as Tensor Computing Runtimes (TCRs).

3.2.2 Tensor Operators

TCRs offer a rich set of operators over tensors. To help less familiar readers, we provide a quick

overview of the operators commonly found in TCRs and the categories that they belong to (for

the sake of explanation, we will use the PyTorch API here and in the following sections, but

similar operators can be found in other TCRs).

Transformation operators. This category involves operations for selecting one or more ele-

ments of a tensor (using the square bracket notation), slicing a row/column (slice, index select),

concatenating two tensors ( cat), sorting (sort), and reorganizing the elements of a tensor

(gather, scatter).

Reduction operators. This category contains operations for calculating aggregates such as

sum or mean, as well as the size of a tensor. It also includes more complex operations like

scatter add and histograms (bincount, histc).

Arithmetic operators. These operators implement basic arithmetic operations between tensors

or between scalars and tensors (add, mul, div, sub), matrix-vector (mv) or matrix-matrix

(mm) multiplications, and cross product (cross).

Logical operators. Finally, logical operations contain element-wise comparisons between ten-

sors (=, >, <), as well as operations such as where implementing conditional statements.

3.2.3 Hummingbird: Traditional ML to Tensors

The first step in motivating the work outlined in this chapter was Hummingbird [211], which

enables inference of traditional ML algorithms (i.e., non-DL ML algorithms, such as linear

regression, decision tree, one-hot encoding) on TCRs. Unlike DL, traditional ML algorithms

and featurizers do not follow a common pattern as the tensor abstraction. Instead, they are

often implemented using imperative programming in Python (e.g., scikit-learn [222]), .NET

(ML.NET [75]) or Java (eg., H2O [5]). Expressing them efficiently using tensor computations

is not trivial. We briefly explain the key intuition behind Hummingbird with an example [211].

Decision tree inference involves traversing a tree by comparing input features to the inner nodes

to define the path from the root to a leaf node. This are sparse computations as only a small part
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Figure 3.1: Translation of a decision tree (left) to an equivalent Neural Network (right) using Humming-

bird.

of the tree is activated each time. For example, the decision tree of Figure 3.1a is composed of

four inner nodes over three input features. Starting from the root node n1, feature x3 is compared

with 5.1, and based on the result, either the left (n2) or the right (n4) child are selected. The

process continues until a leaf node is reached.

Hummingbird supports three different strategies for translating a decision tree to tensor compu-

tations, and it picks the most promising one using a mix of heuristics and structural information

of the input tree. Figure 3.1b depicts one of these strategies, whereby the decision tree of Fig-

ure 3.1a is translated into a neural network composed of two hidden layers: the first containing

all the internal nodes, and the second containing all the leaf nodes. At inference time, the input

features are multiplied with an adjacency matrix that encodes which feature is used by each

internal node. The output is then compared against the thresholds, thereby returning the active

internal nodes. Finally, another matrix multiplication and comparison are used to check which

(unique) leaf node is active and to return the final leaf value.

A characteristic of the translation is that all internal and leaf nodes are evaluated at inference

time. In other words, the computation becomes dense. Despite the redundancy introduced,

the approach is implemented using two matrix multiplication operations that can be efficiently

executed by TCRs both on CPU (e.g., using BLAS libraries such as MKL [19]) and GPU. This

strategy is able to deliver state-of-the-art performance when the input trees are not too deep.

For example, in [211] we show up to 3× better performance than the XGBoost [111] custom

implementation both on CPU and GPU, as well as better performance than RAPIDS FIL [9] just
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by using PyTorch, without having to implement any of the custom operations that these systems

implement on CPU and GPU.

3.2.4 Hardware Setup

For the experiments in this chapter we use an Azure NC6 v2 machine with 112 GB of RAM,

an Intel Xeon CPU E5-2690 v4 @ 2.6GHz (6 virtual cores), and an NVIDIA P100 GPU. The

machine runs Ubuntu 18.04 with PyTorch 1.7.0, TVM 0.8-dev, and CUDA 10.2. We run TVM

with opt level 3. TVM models are compiled automatically from the PyTorch models. We

report averages of 5 runs.

3.3 Graphs to tensors

Existing efforts such as GraphBLAS [17] have already studied how to express graph algorithms

using linear algebra. These approaches rely on the fact that graphs can be represented using

adjacency or incidence matrices. Therefore, one could use such linear-algebra implementations

to directly execute graph algorithms over TCRs. However, such implementations turn out to

be suboptimal when executed over TCRs, because they rely on sparse representations of the

graph, while TCRs are not efficient for sparse computations. Hence, novel implementations are

required.

As an example, below we show how to efficiently execute PageRank [217], one of the most

common graph algorithms, over TCRs. Several other graph algorithms (e.g., affinity propaga-

tion, all-pairs shortest paths, connected components) perform operations similar to PageRank,

i.e., iterations and aggregations over sparse graphs. Therefore, we believe that TCRs can also

be used for such algorithms, yielding similar performance benefits. Additionally, one can also

express graph algorithms using more traditional approaches, such as BFS and DFS, over TCRs.

Although the necessary data structures (e.g. queues, stacks) may not exist directly in TCRs, they

can be implemented using TCRs’ available operations.

3.3.1 PageRank

PageRank is used to rank web pages or, in general, influential nodes on a graph. It is based on the

idea that the important nodes are more likely to receive links from other nodes. The algorithm
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receives as inputs a matrix M with dimensions N ×N, where N is the number of nodes that need

to be ranked. Each entry M(i, j) contains a number, specifying a probability transition from j to

i, such that for all j,
∑

i M(i, j) = 1. A damping factor d represents the probability that a person

will continue clicking on links. The output of the algorithm is a vector v with dimensions N × 1,

which contains the rank vi of each page. The vector v is normalized and its entries sum up to 1.

The algorithm consists of two initialization steps and a loop that runs for a specific number of

iterations niter or until the ranks v in two consecutive iterations change less than a predefined

threshold. In the initialization steps the vector v is filled with random values and a matrix M̂ is

calculated using the following equation for each element: M̂(i, j) = d · M(i, j) +
1
N · (1 − d). The

core step of the algorithm is to multiply the matrix M̂ with the vector v and assign the result to

v for the next iteration.

3.3.2 Tensor Implementation

Implementing the algorithm on the tensor abstraction may look straightforward. Since its core is

a matrix-vector multiplication, an operation that is heavily used and optimized in TCRs, PageR-

ank should run efficiently on them. However, web or social graphs are extremely sparse and the

number of connections is significantly smaller than the quadratic number of connections that a

full graph would have. Therefore, by naı̈vely implementing the algorithm over dense tensors, we

cannot execute PageRank even for a graph with 100K nodes (orders of magnitude smaller than

real world examples) because it will require the allocation of terabytes of main memory. A first

solution to this problem is to use the sparse modules that TCRs frameworks offer. Nevertheless,

as the majority of calculations in DL models involves dense operations, these modules are highly

experimental and not optimized. This is confirmed by our experimental results in Section 3.3.3.
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Figure 3.2: Schematic representation of one iteration of PageRank using scatter add (before normal-

ization). The source nodes are used to index the values contained in vold[target]. The resulting sums are

stored into vnew.

44



3.3. Graphs to tensors

In this algorithm, the matrix-vector multiplication is the bottleneck. To see why, let’s assume that

d = 1 and therefore M̂ = M. We also assume that M is an adjacency matrix, i.e. it contains only

0s and 1s. Without these assumptions, M̂ is an affine transformation of our simplified matrix

and we will re-introduce them after we have explained how the algorithm works. Note that M

cannot be represented explicitly for very large inputs because it is a sparse matrix. Therefore we

represent M as two 1-dimensional tensors which contain the source and target nodes for every

edge.

Since M contains only 0s and 1s, its multiplication with vector v consists of the following steps:

(1) for every node i gather the values of v for the target nodes to which i is connected (that’s

where M(i, ∗)=1); (2) sum them and store the result in a copy of v that contains the ranks of the

next iteration, as follows:

vnew[i] += vold[M[i, *] != 0]

The steps of gathering indices and adding values together is implemented in TCRs as a single

scatter add(dim, Index, Input) operator, where Input is the input tensor (vold[target]

in our case) and Index contains the indexes to gather (source). We have dim=0, since our

input tensors (source and v) are 1-d. Briefly, the scatter add operator calculates the following

quantity for 1-dimensional tensors:

output.scatter add(0, Index, Input)→ output[index[i]] += input[i]

We also show scatter add schematically for a single PageRank iteration in Figure 3.2. Since

we used two 1-d tensors that contain the source and target nodes for every edge, and the M̂

contains an affine transformation of the adjacency matrix, the final form of the function is:

vnew.scatter add(0, source, d· vold[target] +
1
N · (1 − d))

To keep the semantics of the algorithm intact and because M is a probability matrix where for

all j,
∑

i M(i, j) = 1, we have to normalize vnew at the end of every iteration by dividing each entry

with the number of ingoing connections. Although the scatter-gather approach is well-known

in distributed frameworks [187], to the best of our knowledge we are the first to apply it to

PageRank with the tensor abstraction.
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Figure 3.3: PageRank runtime comparison on CPU and GPU. For the GPU we report the computation

time as well as the total time including data transfer (stacked gray boxes). For cugraph, the data transfer

time includes the time to read the data from disk.

3.3.3 Performance Analysis

To evaluate our algorithm we use the LiveJournal Social Network,1 consisting of 4,847,571

nodes and 68,993,773 edges. This dataset is often used to benchmark libraries performing graph

computations [263, 242]. We compare the scatter add approach implemented on PyTorch

and TVM (denoted hb-torch, and hb-tvm, respectively), both on CPU and GPU. For the CPU

experiments, we use the following baselines: 2 specialized libraries able to efficiently handle

sparse linear algebra operations (scipy [26] and taco [175]); a PyTorch implementation using

sparse matrix-vector multiplications (denoted torch-sparse); pygraphblas (a Python wrap-

per around GraphBLAS [17], a specialized library that expresses graph operations as linear

algebra blocks on top of BLAS [10]); and neo4j [20] (a graph database). Besides Neo4j that is

implemented in Java, all other CPU baselines are implemented in C/C++ with Python bindings.

1https://snap.stanford.edu/data/soc-LiveJournal1.html
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For the GPU experiments we further compare against graphblast [263] (a GPU implementa-

tion of GraphBlas); and cugraph [15] (a library developed by NVIDIA and implementing GPU

accelerated graph algorithms).

We run 50 iterations of PageRank, which are enough for the algorithm to converge across all

frameworks. The running time does not include the construction of the prerequisites of the algo-

rithm (e.g. the construction of the sparse adjacency matrix M from the original indices), because

this procedure and the optimal format for the sparse matrix are different across frameworks.

CPU Results. As shown in Figure 3.2, our PyTorch implementation is on par with scipy and

taco. By adding TVM on top of our PyTorch implementation, we gain an additional 45%

performance, as TVM unrolls the loops and fuses the different operators into one, and we out-

perform the aforementioned baselines by almost 30%. The Pytorch and TVM implementations

are more than 2 and 3× faster, respectively, than pygraphblas. Finally, if we compare our

implementations with neo4j and torch-sparse, we outperform both by orders of magnitude.

GPU Results. In this setting, if we take into account only the computation time, our PyTorch

implementation is 2× slower than graphblast and 2.3× faster than cugraph. However, TVM

improves the performance and it is 5× faster than the PyTorch implementation, making the over-

all runtime 3.2× faster than graphblast and 15× faster than cugraph. If we take into account

both the transfer and the computation time, PyTorch is 10% slower than graphblast and 3×

faster than cugraph. With TVM, Hummingbird is 2× faster than graphblast and 10× faster

than cugraph. The scatter add operation is non-deterministic in GPUs for floating point

numbers due to the use of atomic add instructions which do not enforce a deterministic order-

ing. However this problem does not arise for integers (i.e., in our PageRank implementation).

3.4 Relational to Tensors

Among the operators composing relational database engines, selections, projections, and simple

aggregates (e.g., count(*) but also sum, avg, max, min) are already naı̈vely expressible in TCRs

operators. As an example of a non-trivial relational operation over tensors, below we describe

the implementation of cardinality calculation.
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3.4.1 Cardinality Calculation

Knowing the cardinality of operators is crucial in query optimization [12] and to answer distinct

queries. TCRs can also calculate histograms on the input data, which can be used by the query

optimizer to decide the right type of scan or join operators [28] or to distribute the data evenly

across nodes on a distributed join [95]. We thus show how to calculate the output cardinality of

relational operators like distinct or join using tensor computations.

3.4.2 Tensor Implementation

Our cardinality estimation implementation is based on the bincount(T) operator, which counts

the frequency of each value in the input one-dimensional tensor T, with the assumption that T

contains only non-negative integers. The result of this operation is a frequency histogram over

the input values. Specifically, the result is another 1-d tensor O of length equal to the maximum

element present in T, where O[i] contains the number of times the number i appears in T. Using

bincount, we can calculate the output cardinality of a distinct operator by counting the number

of elements that have a value > 1 in O. In case the input has negative numbers, we can apply

tuple renaming, e.g., map the negative numbers to positive ones by using hashing or by adding

a positive constant.

To estimate the output cardinality of a join if the keys are unique, we simply concatenate the

inner and outer relation keys and call directly the function in the concatenated 1-d tensor. Every

element > 1 is a match, therefore we only need to count the number of elements satisfying this

condition. If the keys are not unique, we slightly modify the algorithm. We first call bincount

function on the keys of the individual relations S, R. For the result of these calls, namely BS , BR,

we calculate lmin = min(size(BS ), size(BR)), since the matching keys are only in this range.

We truncate BS , BR to length lmin. Finally, to cover all the possible pairs of keys with more than

one match in case the keys are not unique, we multiply BS , BR and sum the entries in the resulting

one-dimensional tensor. Although our algorithm is very simple, it is sub-optimal when the keys

do not come from a dense domain. We can overcome this obstacle similar to the distinct case,

e.g. by tuple renaming.
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Figure 3.4: Cardinality estimation comparison.

3.4.3 Performance Analysis

To evaluate the performance of our cardinality calculation, we compare against an handwritten

C++ program that calculates the cardinality of distinct using an optimized hashmap (denoted

with distinct-hash in Figure 3.4a). We choose this baseline as hashing is one of the main

techniques used to calculate the distinct number of elements in DBMSs [16]. We additionally

preallocate the memory for the hashmap and we do not report this as part of the runtime. Finally,

we also compare against an instance of the latest edition of SQLServer to qualify our perfor-

mance against a real-world DBMS. For SQLServer, we create a table that we fill with unique

keys with the desired cardinality and we run the query select count(distinct(id)) from

table.

For the join output cardinality, we compare against CPU and GPU baselines that compute the

full join. In order to have a fair comparison, we modify these latter baselines such that they

return only the number of matching tuples (e.g., the cardinalities) instead of performing mate-

rialization. For the CPU baseline, we use the hash-join implementations provided by Balkesen

et. al [89] that, to our knowledge, are the state-of-the-art on CPU. We run all of the algorithms

contained in the chapter (hardware oblivious join, hardware conscious join, parallel-radix hash

join histogram-based, parallel-radix hash join histogram-based optimized), but for the sake of

conciseness, we report only the numbers for the hardware oblivious join (denoted by npo) that is

the fastest among all implementations, and the hardware conscious join (denoted by rpo) which
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is the fastest of all the parallel-radix implementations. Finally, for the GPU experiments, we

compare against crystal [239], a recent library specifically tailored for relational operators on

GPU.

DISTINCT Results. For the distinct cardinality estimation the input consists of a vector of

integers where each element occurs only once. We run the C++ baseline and the PyTorch im-

plementation on a single thread, while we let the SQLServer query run over all the available

virtual cores (6). We report the results in Figure 3.4a. As we observe, our implementation (de-

noted with hb-pytorch) is 2–4× faster than the C++ implementation, because of the vectorized

processing that PyTorch offers, compared to the scan loop of the C++ program. Compared to

SQLServer, our implemenation is almost 2-20× faster. The difference is larger for small inputs,

as a DBMS has a larger overhead to distribute and parallelize the plan.

JOIN Results. For the join cardinality estimation, we use as input {key, value} tuples where

each field is a 32-bit integer. We generate the inner and the outer relation such as all the keys are

distinct and there is a 1-on-1 match for the inner and the outer side.

We use 6 threads both for the PyTorch implementation and the baselines. For small inputs, the

hardware-oblivious implementation outperforms our implementation (denoted hb-pytorch-cpu),

but the difference gets smaller as we increase the number of elements. On the other hand, the

PyTorch implementation is from 50% to 5× faster than the hardware-conscious implementation,

but the runtime is almost the same when the input is more or equal than 10 million elements for

each relation. However, we observe that our implementation does not fully utilize the CPU, and

therefore there is plenty of room for improvement.

For the GPU experiments, our implementation is 2-16× slower than crystal, but the difference

is decreasing as the input grows. The difference comes from the fact that crystal leverages

its optimized CUDA implementation, while PyTorch show some constant overhead (due to the

Python interpreter) for small sizes.

Remarks. Our join cardinality estimation outperforms or is comparable to full join implemen-

tations performing counting (i.e., they do not execute materialization). The observed speedup

shows the promise of TCRs in simple relational calculations. We are actively working towards

supporting full joins with materialization and other relational operators. Finally, compiling the

code with TVM did not give us additional performance but, as for scatter add, support for the

bincount function was only recently introduced.
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3.5 Related work

Much as the MapReduce [122] abstraction helped democratizing distributed computing, the

tensor abstraction could play a similar role for hardware accelerators. Similarly to how Apache

Spark [268] proved that is possible to run ML [207], graph [142], and relational [82] workloads

end-to-end on the MapReduce abstraction, in this chapter we test the expressivity of the tensor

abstraction, as well as the efficiency of TCRs for different classes of computations.

Hardware-portable languages [23] and compilers [52, 189] allow targeting both CPU and ac-

celerators. However, they require programmers to write custom code in low-level languages,

whereas our goal is to leverage already available optimized CPU and accelerator kernels exposed

through the tensor abstraction of TCRs. Dandelion [234], Hocelot [152], and Voodoo [225] share

the same goals, although they provide custom kernels or they use OpenCL to target the differ-

ent hardware with a single implementation. More recently, offload annotations [267] suggests

annotating functions implemented in high-level languages (i.e., Python) with a corresponding

function from an accelerator library. This approach works well for specific domains where ef-

ficient kernels are already available (e.g., Numpy), while it is not clear how the approach will

work in the generic case, i.e., how to map a tree-traversal algorithm.

In the database domain, in the past few years several efforts [255, 154, 183] have suggested to

map tensor algebra into relational algebra for leveraging database optimizer over linear algebra

expressions. We deem this approach complimentary, and we plan to explore in the future the

opportunities brought by the unified representation. Tensor execution of relational operators

has natural commonalities with vectorized execution over columnar data [105]. Indeed tensor

operators are mapped to vectorized instruction sets on CPU (when available). Interestingly,

we find that TCRs (and the tensor abstraction) is flexible enough to support both vectorized

and compiled execution [214]; the latter implemented through the TVM compilation stack for

example. In both cases, no low-level details on vectorized execution or LLVM compilation are

required, which we think makes easier the exploration of novel (hybrid) strategies.

It is well known that graph algorithms can be mapped over linear algebra operations [17]. To

our knowledge, we are however the first showing that graph algorithms can be run efficiently

over TCRs. As for relational operators, TCRs are flexible enough to allow switching between a

linear algebra-based implementation to an imperative one, as we describe in Section 3.4.

Finally, several proposals exist on how to run relational operators on hardware accelerators (e.g.,

GPU [239], FPGA [130] and even TPU [153]). The same applies for graph algorithms and tra-
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ditional ML [263, 111]. In this work we claim that similar, or even better, performance can

be reached by targeting the tensor abstraction and using TCRs, rather than using low-level

languages and primitives (e.g., CUDA). In recent years, several companies have proposed to

accelerate specific workloads or systems, e.g., Spark-RAPIDS [27], BlazingSQL [11], Omnis-

ciDB [21]. Compared to these, we think that the tensor abstraction will allow us to be hard-

ware and library agnostic, while enabling similar performance. There is a growing amount of

work [118, 137, 149] that proves that indeed tensor-based systems have competitive perfor-

mance.

3.6 Conclusion

In this chapter we investigate whether the tensor abstraction can be used for programming gen-

eral computations that can be run end-to-end on hardware accelerators. Our experience [211]

and experiments show that good performance is achievable, thanks to the massive investments

poured into TCRs, as well as the related optimizations [175, 160, 33, 272, 113, 250]. Our im-

plementations outpeform custom kernels and specialized libraries both for graph and relational

workloads. We now present future directions and lines of investigation that could stem from our

work.

TCR coverage landscape. TCRs have an excellent coverage of dense arithmetic operations as

well as operations manipulating statically sized tensors. Additionally, sorting and simple ag-

gregation is very efficient, and we therefore expect sort-based grouping and sort-merge joins to

have good performance. However, there are also “pain points” that hinder TCRs from executing

efficiently and easily operations common in other classes of algorithms. For example, as we saw

in the experimental evaluation of PageRank, sparse operations are very inefficient compared to

other libraries (e.g. scipy). However, the current trend towards Graph Neural Networks (GNNs)

and sparsity in DNNs in general [30] has increased the interest of the community towards this

important topic. As GNNs are getting more popular, we expect better TCR coverage of sparse

data operations in the near future. Additionally, there is limited coverage of group aggregates

(except for very basic cases such as scatter add, but the community is trying to fix this lim-

itation [24]) and pipelining operators to avoid intermediate materialization of results (although

TVM is improving this thanks to its ability to do operation fusion). There is almost no sup-

port in regards to other data structures (e.g., hash maps), non-numeric data types (e.g., strings),

and inputs of irregular shape and size. These features are specifically required for supporting,
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for example, compression or text data types. Finally, we find that the tensor abstraction shines

when one needs to do bulk data transformations, while it lacks flexibility and performance for

fine-grained operations. For example, predication [233] is hard to express using the tensor API.

Challenges. While our initial results are promising, there are several limitations that need to be

addressed. The two bigger challenges are (1) compilation time, (2) data movement between CPU

and memory. The database community is actively working on improving compilation perfor-

mance for SQL queries [179], and similarly the systems community is working on Just-In-Time

compilation approaches for DL models [159]. Driven by these ideas, we could devise a scheme

where interpreted code is executed first while generating machine code on-the-fly. Regarding

data movements, our goal is to compile computations end-to-end such that data movement is

minimized. Other techniques such as pipelining data access with compute, paging, and batching

can be used both at conversion and runtime to improve data movement performance.

Hardware trends. In this chapter, we focused on hardware acceleration over GPUs, given

their widespread adoption and availability. An emerging trend in hardware acceleration is

dataflow-based architectures both in academia [252] and in industry by companies such as Sam-

baNova [25], Graphcore [18], or Cerebras [13]. Interestingly, those approaches also expose

TCRs as a programming interface [208, 32, 14]. We are planning to test our approach on this

hardware for relational and graph workloads.

Compiled vs vectorized execution. Main memory query processors [268] and databases [214,

105] are increasingly getting compute-bound rather than memory-bound. This is because com-

pilation [214] and vectorization [105] approaches allow achieving even better hardware utiliza-

tion. TCRs are built from the ground up for compute-bound workloads (i.e., DL). Additionally,

the high-level tensor abstraction on top of TCRs considerably simplifies the process of imple-

menting new algorithms, since there is no need to understand LLVM internals, or to write GPU

kernels. We therefore believe that using TCRs as a component of main memory query proces-

sors will enable a new wave of systems and innovative algorithms. For instance, any vectorized

algorithm (or in general any algorithm over columnar data) can be implemented on top of TCRs.

Since TCRs also allow compilation and operator fusion, an exciting direction is the exploration

of vectorized vs compiled implementations [170], and when to pick one or the other based on,

e.g., the hardware.

Cross-optimizations. Apache Spark [268] has shown that Data Frames can be used to express

relational, graph, and ML computations, although cross-optimizations between them is lim-

ited. SystemML [171] and others [255] have considered using relational algebra (and database-
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style optimizers) for logically (co-) optimizing linear and relational algebra. For example in

Raven [167] we explored how to cross-optimize relational and traditional ML, beyond linear

algebra (e.g., decision trees). With the approach presented in this chapter, a new level of cross-

optimizations will be possible since all computations are expressed using the same (tensor) ab-

straction.
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Chapter4
NVMe as a storage solution

4.1 Motivation

To alleviate the memory pressure [186] and to accelerate I/O, Persistent or Non Volatile Memory

(PMEM) has been proposed as a solution. PMEM is both cheaper and has a higher capacity than

DRAM, it is byte-addressable, and it persists data. This comes at the price of higher latency and

lower bandwidth.

Database researchers have extensively studied how to integrate PMEM into a DBMS [83, 84,

85, 86, 231]. Nevertheless, most of these studies are based on simulating PMEM since they

were done before it was commercially available. The picture changed with the release of In-

tel®Optane©DC [68]. Intel®Optane©DC can be configured in Memory, AppDirect or Mixed

mode. In Memory mode it operates as a volatile memory extension, in AppDirect mode it serves

as byte-addressable persistent memory, and finally in Mixed mode part of it runs in AppDirect

mode and the rest in Memory mode.

Optane sparked numerous studies benchmarking and explaining the behaviour of the hard-

ware [158, 220, 223, 257]. These studies evaluate the hardware’s characteristics and compare

them to DRAM and SSDs. For example, they show the large latency difference between se-

quential and random accesses and the asymmetric behaviour of PMEM between read and write

bandwidth.
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However, DBMSs are complex systems with many knobs that behave very differently as work-

loads and input size vary. Existing studies [119, 106, 260] give only a partial picture as they

provide only high-level conclusions and are mostly based on micro- or small-scale benchmarks.

Furthermore, they do not explore how database knobs and different operations (e.g. join types)

or query plans affect PMEM’s behaviour. To this end, in this chapter we provide the first exten-

sive analysis of database engines using Intel®Optane©DC Persistent Memory. We run OLAP,

OLTP, and key-value store workloads on various engines (PostgreSQL, MySQL, SQLServer,

DuckDB, VoltDB, and RocksDB) under various PMEM configurations altering a variety of

database/workload knobs.

Our results provide a complex picture showing that using PMEM does not always lead to better

performance, despite its nominal advantages. Although PMEM is faster than SSDs, the I/O path

is not fully optimized since there is no OS prefetching and the CPU is involved in I/O when

using PMEM as persistent memory, wasting valuable and often scarce processing capacity. Fur-

thermore, in systems with resource contention due to mixed or write-heavy workloads, PMEM

experiences a large performance drop. This makes SSDs competitive in scenarios such as CPU-

heavy queries with high selectivity. Similarly, although PMEM offers extra volatile memory

capacity in Memory mode, this does not translate to performance benefits. In conclusion, our

findings indicate that in its current form, PMEM does not provide large advantages to database

engines, particularly when considering its additional cost.

4.2 Background

4.2.1 Persistent Memory

Persistent memory, also known as non-volatile or storage class memory, combines the byte-

addressability and low latency of DRAM with the persistence and high capacity of disks. The

technology is available in the Intel®Optane©DC Persistent Memory Module [68] (referred to

as PMEM in the rest of the chapter). It is faster and more expensive than NAND Flash but slower

and cheaper than DRAM. PMEM comes in a DIMM form factor in 128, 256, or 512 GB sizes

and it is attached to a memory channel.

Each memory channel connects to the CPU via an integrated Memory Controller (iMC) (Fig-

ure 4.1), which maintains read/write queues for PMEM DIMMs and ensures persistence on

power failure. With a maximum memory capacity of 6TB for a 2-socket server, PMEM’s inter-
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nal access granularity is 256 bytes, which can cause read/write amplification [158]. Sequential

access patterns have highest bandwidth, just 2-3x lower than DRAM [158].

PMEM operates in three modes: Memory Mode, AppDirect Mode, and Mixed Mode. In Mem-

ory Mode, PMEM acts as volatile memory while DRAM serves as an L4 direct-mapped cache.

The iMC manages data traffic between DRAM and PMEM, with applications experiencing

DRAM latency for cache hits and both PMEM and DRAM latency for cache misses. Appli-

cations do not need any source code changes to use this mode.

In AppDirect Mode, PMEM serves as persistent storage, offering striped read/write operations

in interleaved or standalone regions. Configurable namespaces modes include fsdax, devdax,

sector, and rawmode [71], with Intel recommending fsdax for DAX-aware file systems. [71]

Fsdax eliminates the OS page cache in the I/O path, allowing mmap(2) to directly map to

persistent memory media. Finally, Mixed Mode combines Memory and AppDirect modes, using

DRAM as an L4 cache. Users can configure the PMEM percentage for volatile memory or disk

usage, but Intel suggests a minimum 1:4 DRAM to PMEM ratio for cost efficiency.

In the rest of the section, we briefly compare memory management in traditional systems and

AppDirect Mode, covering the OS page cache, prefetching, and Direct Memory Access (DMA)

operations, as these are crucial for the results of the chapter.

The OS page cache caches recently accessed data from disk. This improves the performance of
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I/O operations. User-level programs access the page cache through system calls like read(2)

and write(2). The page cache uses techniques such as prefetching to further improve I/O.

Prefetching anticipates the data that will be accessed and proactively caches them to ensure that

the data is readily available in memory when needed.

Direct memory access (DMA) is a feature that allows data to be transferred between peripheral

devices (such as network or storage devices) and memory without going through the CPU. DMA

operations transfer data directly between the peripheral device and memory, bypassing the CPU

and the page cache altogether.

In a traditional system, the OS page cache and prefetching are used to improve the performance

of I/O operations. However, in the case of AppDirect mode, the OS page cache is not available

and applications use directly mmap(2) to establish mappings to persistent memory. Also since

Intel Optane Persistent Memory is not a peripheral device, DMA is not available and the CPU

is necessarily involved in every data transfer between PMEM and the CPU. Finally, although

PMEM has its own prefetcher, it cannot use the OS page cache for extra memory capacity and

it has to rely directly in the memory allocated by the application.

4.3 Experimental setup

4.3.1 System specification

All the experiments in this chapter were conducted on a dual-socket server (Table 4.1) and the

socket topology shown in Figure 4.1. Each CPU socket has two memory controllers and three

channels per controller. The DRAM and Intel Optane DIMMs are installed in a 1-1-1 topology.

We disable the turbo mode and we set the CPU power governor to performance mode with

2GHz as the maximum frequency, so that we can have reproducible experiments with minimum

variation. We refer to Default Mode as the configuration that does not use PMEM at all and,

unless otherwise mentioned, to AppDirect mode as the configuration that mounts PMEM in

AppDirect mode with fsdax enabled, since this is the one recommended by Intel. When we use

PMEM in the AppDirect mode, we do not use the SSD at all. In Memory mode, we configure all

the available PMEM capacity (512GB) as volatile memory. We collect system statistics with the

Intel Vtune Platform Profiler [34]. To get more accurate statistics, we modify the source code

of the profiler to increase the sampling hardware counter frequency. We use PostgreSQL 13.2,

MySQL 8.0.23, SQLServer 2019-15.0.4178, DuckDB v0.6.1 919cad22e8, VoltDB 11.4.0.beta1
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Table 4.1: Server specifications

Component Specs

Sockets 2
CPU Intel(R) Xeon(R) Gold 6248R

Microarchitecture Cascade Lake
Cores 48 physical (96 logical)

L1 cache 64KB
L2 cache 1MB
L3 cache 36MB

RAM 128GB (16GB DDR4 @ 2666 MHz × 8)
PMEM 512GB (128GB × 4)

SSD KIOXIA KPM6XRUG1T92 (2TB)

Community Edition, YCSB 0.17.0 and RocksDB 5.11.3. Finally, we are aware that our SSD

is not the fastest, but having a cheaper SSD gives a better perspective on the average case and

shows even more clearly how small can the performance gap be besides the hardware difference.

We expect that with a high-end SSD disk, the performance advantage of PMEM would become

even smaller.

For all our benchmarks, we pin database processes to socket 0 to avoid remote NUMA access to

better interpret the results, as done by other studies [106, 260]. That also ensures the working set

is larger than the DRAM capacity for most queries. Before executing each query or workload,

we clear the OS page and the database cache.

For TPC-H, we use SF-100 and a buffer cache of 16GB across databases. We also add foreign

indexes, when the DBMS does not do that automatically. We use PMEM in interleaved mode,

since the data together with the indexes do not fit in a single PMEM DIMM.

We use 1000 warehouses for all TPC-C experiments and set the warmup and running time to 3

minutes to sufficiently load the buffer pool and stabilize database activity. To reduce the pro-

portion of reads to writes, we employ a large buffer pool (48GB). Additionally, we found that

using only one of the two available PMEM DIMMs in the socket was sufficient to reach maxi-

mum tpmC for most experiments. Thus, unless otherwise noted, we use non-interleaved mode

(e.g., one PMEM DIMM) for TPC-C in AppDirect mode, ensuring a better comparison with

Default mode, which uses only one SSD. For MySQL, PostgreSQL, and SQLServer, we use

HammerDB [47] as a TPC-C implementation, while for VoltDB, we use the official implemen-

tation provided in the VoltDB repository [48].
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We adjust DBMS checkpointing strategies and parameters for frequent checkpoints, offering

a clearer picture of hardware impact on performance. Specifically, for PostgreSQL (using

PGTune [37]), we set checkpoint timeout to 30 seconds and max wal size to 5GB. For

SQLServer, we do automatic checkpoints every minute. For MySQL, we disable binary logs,

keeping default log buffer and log file sizes, causing checkpointing every second. For VoltDB,

we set the flush interval to 1 second and use one snapshot copy that’s continuously overwrit-

ten, exploring PMEM’s behaviour to concurrent writes. Frequent checkpoints, while atypical,

expose PMEM’s weaknesses under stress, providing valuable insights.

Furthermore, SQLServer requires fsdax to store data and sector to store logs [43]. We thus

have to use both memory sockets, as it is not possible to create a mixed namespace in one

socket that has the capacity for 1000 warehouses. Finally, although we run the Memory mode

for TPC-C for many configurations across DBMSs, in most cases its performance is almost

identical to the Default mode as requests are served by the L4 DRAM cache and not by PMEM.

We therefore do not report any Memory mode results for TPC-C. Finally, we do not compare

against Intel Optane SSDs, because Optane Persistent Memory is significantly faster that Optane

SSDs [106].

For RocksDB, we use the Yahoo Cloud Serving Benchmark [116], specifically Workload A

(update-heavy), Workload B (read-heavy), and Workload C (read-only). We generate 110GB

of data per workload and set the operation count to 10 million to enable a more comprehensive

analysis of the hardware behavior. We leave all other parameters of the benchmark to their

default values.

Finally, we do not run experiments for Mixed mode. This mode requires a minimum volatile

memory ratio of 1:4, which Intel suggests for PMEM to be cost and performance-effective over

a DRAM only solution. Furthermore, different sizes and ratios are needed to understand this

mode but each one requires its own hardware configuration and individual insights might not

generalize.

4.3.2 Basic microbenchmarks

As a baseline, we measure the latency and bandwidth of our system for different memory types

(Tables 4.2 and 4.3), following a similar methodology to Wang et al. [264]. We use one socket

for all microbenchmarks to avoid NUMA-node effects, employing AVX-512 instructions and

PMEM in interleaved mode. We don’t perform measurements for PMEM in Memory Mode due

to Intel’s lack of public information on its operation [70, 72].
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Table 4.2: Latency measurements for different memory types

Memory type Read latency [us] Write latency [us]

DRAM 0.147 0.250

PMEM 0.333 0.262

SSD (random) 4.97 108.9

SSD (sequential) 4.85 94.9

For PMEM and DRAM, we measure load and store latencies by issuing a 64-byte instruction

for sequential and random memory accesses and not using any caching. For loads, we issue a

64-byte load instruction with a cold cache. For stores, we load the memory address into the

cache, and afterwards measure the 64-byte store, followed by a flush (clwb) and a fence (sfence)

instruction. For the SSD we use ioping [42]. The SSD has 10× larger read latency than PMEM

and more than 30× larger read latency than DRAM. The gap is much larger for write latencies,

where the SSD has up to 435× larger latency than both DRAM and PMEM.

We measure bandwidth on sequential and random accesses and we vary the number of threads

from 1 to 8. We pick the access granularity that maximizes bandwidth for every hardware type

(64B for DRAM, 256B for PMEM, 4KB for SSD). For DRAM and PMEM, we execute a flush

and a fence instruction after each store. For loads, we only execute a fence instruction. For SSDs

we use fio [41]. We notice that for 1 thread, DRAM has 2.9× more bandwidth for sequential

reads and 12% more bandwidth for sequential writes than PMEM. The gap increases as we

increase the number of threads, where DRAM has more than 5× larger bandwidth for reads and

more than 3× more bandwidth for writes. For random accesses and 1 thread, DRAM has 2.4×

more read bandwidth and the same write bandwidth. Increasing the thread count to 8, shows that

DRAM has 4.7× larger read bandwith and 3× larger write bandwidth. If we compare PMEM

with the SSD, there is a very large gap for reads, but a smaller gap for writes. For 8 threads

and sequential accesses, PMEM has 25× higher read bandwidth and 5× larger write bandwidth.

However, for random accesses and 8 threads, PMEM has 9× higher read bandwidth and 2.8×

larger write bandwidth. The difference is analogous for smaller number of threads with random

accesses. For sequential accesses and 1 thread, PMEM has 20× more read bandwidth and 5×

more write bandwidth than SSD.
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Table 4.3: Bandwidth for different memory types

Memory type Read bw [MB/s] Write bw [MB/s]

DRAM (random, 8 threads) 20480 2529

DRAM (sequential, 8 threads) 67550 7615

DRAM (random, 1 thread) 3185 324

DRAM (sequential, 1 thread) 11460 969

PMEM-storage (random, 8 threads) 4341 830

PMEM-storage (sequential, 8 threads) 12628 2425

PMEM-storage (random, 1 thread) 1306 323

PMEM-storage (sequential, 1 thread) 3977 861

SSD (random, 8 threads) 470 293

SSD (sequential, 8 threads) 504 477

SSD (random, 1 thread) 160 157

SSD (sequential, 1 thread) 191 166

4.4 OLAP workloads (TPC-H)

4.4.1 General observations

We present the running times of the TPC-H benchmark for all four systems in Figures 4.2.

DuckDB cannot execute queries 17 and 21 because of insufficient memory.In general, the Ap-

pDirect mode is consistently faster than the Default mode. This happens because PMEM has

lower latency and higher througput than SSDs and, thus, all I/O is faster. MySQL is the slow-

est database, since it does not support multiple threads per query, except for particular type of

queries, e.g., SELECT COUNT(*) [36]. When doing I/O with only one thread, the bandwidth in

both PMEM in AppDirect mode and the SSD are far from their maximum. PostgreSQL is in

the middle, as it uses 8 threads for processing and I/O. SQLServer and DuckDB use in general

all the available logical cores in socket 0 (48 in total) and that is why the running time is much

lower than the other two databases. The PMEM read bandwidth is up to 8 GB/s for some queries

of SQLServer. Besides using all the available logical cores in socket 0, DuckDB uses a native

compressed column format to which it pushes selections and projections and therefore it reduces

I/O costs vastly. For MySQL, PostgreSQL, and SQLServer, the time difference is more obvious

for queries involving larger tables (e.g. the lineitem table, which is around 100GB of storage

together with indexes). For DuckDB, although the AppDirect mode is faster for the majority
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Figure 4.2: Running time (log-scale) for TPC-H SF-100 on various DBMSs for different system config-

urations
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of the queries, the time difference is smaller, since I/O is not in the critical path. Additionally,

as mentioned in Section 4.2.1, DMA is not available in AppDirect mode. As a result, CPU re-

sources are used for I/O. In scenarios with CPU-intensive queries or a low number of threads, the

CPU spends computation time on I/O, leading to suboptimal PMEM bandwidth and making the

Default mode’s performance competitive. We can observe this for DuckDB when the optimizer

chooses CPU-heavy operations (e.g. index joins, hash group-bys) where the AppDirect mode is

very close or has worse performance than the Default mode (e.g. queries 2, 15, 18).

The Memory mode has similar or slightly worse running times than the Default mode for

the vast majority of queries. To understand where the overhead comes from, in Figure 4.3

we show the DRAM read and write bandwidth consumed by each query for the Default and

Memory modes, respectively, only for PostgreSQL. We observe similar results for MySQL and

SQLServer. DuckDB has a different behaviour, since it minimizes I/O because of its columnar

compressed format. For all the queries, we read and write more data from DRAM in Memory

Mode compared to the Default mode across databases. For reads, that happens because a DRAM

(L4 cache) read miss in Memory mode results in a read from PMEM, which consequently leads

to a DRAM write. Another reason for the increased DRAM reads is that during a DRAM write,

the system has to read the dirty lines and flush them to PMEM. Due to prefetching by the iMC,

the DRAM writes are more than the L4 cache misses. Also, the increased DRAM bandwidth

for both reads and writes is because there are collisions in the L4 direct-mapped cache, since

multiple PMEM memory lines map to the same DRAM memory line. If we allocate memory

space such that two PMEM memory lines map to different DRAM memory lines (e.g. by having

the exact same capacity in PMEM and DRAM), that will decrease the cache conflicts and makes

the two modes comparable.

Insights. For general OLAP workloads, Memory mode does not offer a significant performance

advantage, as it slightly hinders performance for the majority of the queries. AppDirect mode

can significantly speed up workload execution, if the queries are I/O intensive and there are

enough system resources dedicated to the database. If system resources are limited, the design

restricts the number of cores/threads involved or the queries are CPU-intense, SSDs offer a

competitive and cheaper alternative.

4.4.2 Scans

Sequential scans in AppDirect mode have a much lower latency in PMEM [119, 158]. We ob-

serve this advantage for the AppDirect mode compared to the Default mode for all the systems.
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configurations

However, this advantage becomes more pronounced for queries that involve larger sequential

scans (e.g. queries 3, 4, 5, 6, 7, 8, 11, 12, 19, and 20), especially the more threads are used.

Although the lower latency does provide a significant benefit, it is not as substantial as we ini-

tially anticipated based on our microbenchmarks. We expected to see a 9-25× difference across

all queries, but the actual advantage is somewhat lower. This is due to the fact that, as explained

in Section 4.2.1, the AppDirect mode with fsdax does not utilize DMA or the OS page cache.
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Figure 4.4: Increasing selectivity microbehmark for PostgreSQL
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This is especially true for queries that have large sequential scans and are also compute-heavy

(such as query 1), where valuable CPU resources are used by PMEM for memory transfers in

the absence of DMA, and the Default mode gains an advantage. In contrast, simpler queries that

mostly involve scans (such as query 6) benefit greatly from PMEM. To validate that, we run a

variant of TPC-H SF-100 query 6 using PostgreSQL, where we increase the selectivity of the

predicates (i.e. we select more data) and we present the results in Figure 4.4. As we observe,

by increasing the selectivity, both PMEM and the SSD have a sublinear time increase but their

relative difference stays constantly between 9-10x and it is due to the sequential scan of the

lineitem table. Furthermore, SQLServer writes data directly to physical hardware, bypassing the

OS page cache [44], and it is also more efficient at pipelining I/O and processing. As a result,

there is a larger time difference between queries, since SQLServer can take full advantage of the

higher bandwidth. Finally, MySQL prefers nested loop joins over hash or merge joins. Nested

loop joins have many random accesses when there are no indexes available compared to hash or

sort/merge joins. Especially in the case of MySQL, the secondary indexes are non-clustered and

in case of matches, the DBMS has to go into the base table to materialize the result. However,

as these accesses have large block sizes (i.e. 16KB), PMEM has similar bandwidth to sequen-

tial accesses. In contrast, prefetching and the OS page cache cannot help in Default mode for

random accesses. Insights. The AppDirect mode is largely beneficial for non-CPU intensive

queries with sequential scans. When the majority of the data has to be heavily processed, then

the lack of the page cache and prefetching in AppDirect mode reduces most of PMEM’s ad-

vantages. Users should tune the block size to a large size (≥ 8KB), when the DBMS performs

random scans, because then PMEM has similar bandwidth to sequential accesses.

4.4.3 Index lookups

Index lookups cause random accesses. Thus, we would expect a performance drop in AppDirect

mode. However, because all tested databases use large block sizes (≥ 8KB) the lookup accesses

are about 10× faster for the AppDirect mode (queries 2, 4, 5) or have the same latency as a

sequential scan for PMEM (queries 8, 9, 10, 19, 20, 21). We also observe that the type of index

can affect the lookup time. More specifically, MySQL stores primary clustered indexes together

with the data and secondary indexes separately. That puts PMEM at a disadvantage, because an

access to a secondary index needs to locate the data in the tables and in the Default mode part

of these accesses are served by the OS page cache. This behaviour is not present in the other

engines, because PostgreSQL does not have the notion of a clustered index and SQLServer by-
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passes the page cache. DuckDB uses indexes only to perform index joins once the data are

already in DRAM, and therefore the storage medium is irrelevant at this point in the query plan.

Compared to the other systems it has much less I/O due its compressed columnar format, mak-

ing the effects of the page cache inconspicuous.

Insights. When creating indexes or running query plans that operate on indexes (e.g. joins), the

block size should be tuned to be large (≥ 8KB) to maximize the read bandwidth in AppDirect

mode for PMEM. Additionally, whenever possible, clustered indexes should be used. The addi-

tional lookup in a non-clustered index has a performance penalty for PMEM due to the lack of

an OS page cache.

4.4.4 Working set size in Memory mode

As databases try to minimize I/O as much as possible, we would expect that adding a larger

volatile memory capacity with PMEM in Memory Mode would improve the running time of

queries with a large working set. However, across all three engines, we observe that the majority

of the queries perform the same or slightly (less than 5%) worse in Memory Mode because of

the increased traffic between the L4 DRAM cache and PMEM as mentioned in Section 4.4.1.

We can split the queries in 2 categories based on the working set size. Queries 1, 4, 5, 6, 12,

14 and 17 have a working set of less than 64GB and therefore most of the accesses are served

from the L4 DRAM cache. The rest of the queries have a working set larger than the L4 and/or

the OS page cache, but the majority of them does not benefit from the larger volatile memory

capacity and any improvements of the Memory mode over the Default mode are due to the

memory structures that the systems use to handle memory and how the DBMS utilizes the OS

page cache. For PostgreSQL, these are queries 9, 15, and 20. For MySQL, these are queries 3, 7,

9, and 21. For SQLServer, no query is significantly faster in Memory mode as the DBMS does

not utilize the OS page cache. Finally, DuckDB has very small working sets for all the queries.

Thus, in Memory mode the data are directly transferred to the L4 DRAM cache and PMEM is

not used.

Insights. A very large working size can run slightly (up to 10%) faster in some cases in Memory

mode, due to the larger OS page cache available in main memory. On the other hand, the running

times of queries with small working sets is not affected at all by the larger volatile memory

capacity.
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4.4.5 Query plans

PostgreSQL, MySQL and DuckDB as open-source databases offer valuable statistics about their

query plans. We isolate a subset for all, providing valuable observations on how the DBMSs use

the underlying hardware. In this section we only compare the Default with the AppDirect mode.

4.4.5.1 PostgreSQL

Query 1 has a parallel sequential scan and a parallel aggregation of lineitem. The selection

predicate is satisfied by 98% of the rows. In AppDirect mode, 85 out of the 106 seconds are

spent in the aggregations, and only 17 seconds are spent in scanning the data. PMEM has a

latency of 10us for 4KB application reads [35]. Therefore, for the block size of Postgres (8KB),

the latency should be less than 20us. We can confirm that because we have 10 parallel workers

with an overall bandwidth of 4-5 GB/s which explains the 17 seconds needed to scan the 86GB

table. In contrast, in Default mode, SSDs have a 10x latency, but only 5x of the time is spent in

scanning because of the OS page cache and prefetching.

In query 3 the Default mode spends the majority of the time scanning the lineitem table. The

time is larger than query 1 because the prefetcher does not work so effectively. That happens

because the inter-arrival time of read calls is lower as fewer operations are performed in higher-

level operators. For the AppDirect mode, the scan time increases to 19 seconds compared to

query 1. This is due to the fact that parallel workers are also involved in writing data to PMEM

during the join and sorting of the query. It is well known that writing in PMEM requires more

CPU and memory resources and provides lower bandwidth [119, 158]

Query 13 has an index-only sequential scan on customer, which takes the same time in both

modes due to prefetching in the Default mode. There is also an index scan in orders, which

takes approximately the same time in the AppDirect and Default mode. That happens because

the index is not correlated, and therefore the database can scan more than one block at the same

time. This leads to a large working set that is larger than the buffer cache, which subsequently

leads to many reads from PMEM in AppDirect mode. The amount of data read in AppDirect

mode is 12× more than that in the Default mode. However, AppDirect mode still performs

better, because PMEM bandwidth is 6× larger and it does not involve the synchronous read

from DRAM as the Default mode.

In query 15, we observe the asymmetric behaviour of PMEM as we have to read lineitem

twice. The maximum read bandwidth is 4 GB/s and the maximum write bandwidth is 1 GB/s.

68



4.4. OLAP workloads (TPC-H)

To maintain the price/performance ratio, we need to increase the working memory or use a

separate storage drive for temporary writes.

Lastly, in query 17 there is a hash join between lineitem and part with lineitem on the

probe side without any filtering. For the sequential scan of lineitem, prefetching is effective

and the main performance difference is caused by index lookups on lineitem. In such CPU in-

tensive queries, when CPU operations overshadow I/O requests, prefetching is very effective in

sequential accesses. On the other hand, for random accesses asynchronous I/O is more bene-

ficial. Therefore, if Postgres adopts asynchronous I/O, the performance difference between the

two modes would be negligible.

4.4.5.2 MySQL

In query 1, most of the time is spent on aggregation and filtering. The scan time of lineitem in

the Default mode is 436s and in AppDirect mode it is 392s. The small performance difference

has two reasons. First, prefetching and the OS page cache is very effective for sequential scans

of large tables. Second, the average block size is around 100KB for both modes. The increase in

response time for larger block sizes is sublinear in SSDs due to the inherent parallelism. On the

other hand, in AppDirect mode the CPU is involved in reading, and the response time is exactly

linear.

In query 3, there is a table scan on customer and index lookups on orders that use a secondary

index. The cost of a lookup is 140us for the AppDirect mode and 250us for the Default mode.

The difference is not as large as we would expect based on the hardware, but the Default mode

has the advantage of prefetching and the OS page cache. Additionally, PMEM has a larger

latency when secondary indexes are used because some accesses are served by the OS page

cache in the Default mode.

In queries 4 and 5 there are index lookups on lineitem using a primary clustered index, and

the cost of a lookup is 15us for the AppDirect and 30us Default mode. The lookup times are

close, because the queries have a smaller working set that mainly fits in the buffer cache. In

general, for smaller working sets secondary and primary index lookups have comparable lookup

times since they fit in the buffer cache and the OS page cache is not useful. We also observe this

behaviour in query 7.

In query 13, both modes take the same amount of time, because the working set is larger than the

buffer cache but smaller than the page cache. Thus, a memory copy from DRAM to DRAM has

similar latency to a memory copy from PMEM to DRAM. Queries 19 and 20 involve a join with
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lineitem using a secondary index lookup. Every lookup returns 30 and 7 tuples, respectively.

PMEM is faster, because of large block random accesses, even when a small number of tuples

is returned within a lookup.

4.4.5.3 DuckDB

Query 1 has a sequential scan on lineitem that takes 2.6s for PMEM and 5s for the Default mode

which is a 2x performance increase, much less than our microbenchmarks suggest. DuckDB

streams data in chunks using a vectorized push-based model, meaning that CPU resources have

to be split between I/O and processing. That gives an advantage to the Default mode, which

is visible in the subsequent operations that take 1.4s for the Default mode and 1.8s for the

AppDirect mode.

Query 2 is very CPU intensive and does not perform a lot of I/O, because it does not involve

lineitem. Most of the time is spent on index joins between the tables, and therefore since

I/O is a negligible portion of the query execution time, the total runtime for the Default and the

AppDirect mode is almost the same.

Query 15 has two sequential scans on lineitem, that for PMEM take 3.04s while for the Default

mode they take 5.75s combined. However, since there is a hash group by and an index join

afterwards that are very CPU intensive, the absence of DMA gives an advantage to the Default

mode. These two operations take 20s for the Default mode and 23s for the AppDirect mode,

essentially covering PMEM’s bandwidth advantage completely.

Query 19 has a lot of projections and selections on the lineitem and part tables. As DuckDB

pushes most of these directly to the columnar storage, the I/O operations contain effectively

most of the running time for this query. The Default mode takes 7.5s to scan the lineitem table,

whereas the AppDirect mode does 3.5s.

Insights. A few of the characteristics presented in the last sections are now revealed in more

detail through the query plans. We see that the absence of DMA and the page cache closes the

gap from 25 (the value observed in our microbenchmarks) to 2 times between PMEM and the

SSD in some queries. We also notice the advantage of prefetching in CPU intensive queries (e.g.

queries 17, 18) that involve large tables on the probe side of a join.
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Figure 4.5: tpmC for TPC-C with 1000 warehouses on all three systems for different system configura-

tions

4.5 OLTP workloads (TPC-C)

4.5.1 General observations

We present the TPC-C results for MySQL, PostgreSQL, SQLServer, and VoltDB in the Default

and AppDirect modes in Figure 4.5. In general, and for different number of concurrent users,

the AppDirect mode performs better than the Default mode but depending on the engine the

differences vary.

For PostgreSQL, the AppDirect mode outperforms the Default mode by 3-10× for 8-128 threads

respectively. That happens because the checkpoint, background, and WAL writer processes

use only one thread and this write combining minimizes resource contention for PMEM. We

also conduct experiments with the no-dax mode, where the page cache is enabled, but the

tpmC drops drastically. This happens because the latency of PMEM is low compared to that of

SSDs/HDDs and since PostgreSQL relies on the OS for prefetching, keeping/updating the page

cache is an additional overhead.

SQLServer, as mentioned, uses all the available cores in socket 0. As we notice, for small

number of concurrent users, the higher bandwidth PMEM offers gives a small performance

advantage of around 10% compared to the Default mode, due to the lower latency PMEM has

compared to SSDs. However, as the number of concurrent users increases, the Default mode
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is very competitive and outperforms the AppDirect mode for 64 concurrent users by 37%. For

such high number of users, there is a lot of interference between I/O and processing in the system

and the tpmC drops drastically because of thrashing. Additionally, there is a large number of

concurrent reads and writes, which causes a significant performance drop for PMEM [119].

Finally, we observe that CPU utilization is very low for the AppDirect mode, indicating that I/O

is in the critical path, despite the much lower latency that PMEM offers.

In MySQL, the AppDirect mode consistently outperforms the Default mode by up to 20%. This

happens because of the smaller latency that PMEM offers and also due to the fact that MySQL

does not use a large number of threads for writing. The latter helps in avoiding write contention

in the iMC, which is one of the main reasons that affect significantly PMEM’s performance.

VoltDB’s performance is worse than other databases in all but a few cases, with the AppDirect

mode showing only marginal improvement over the Default mode. The lower transaction count

is due to several factors. Firstly, VoltDB is designed for distributed, high-throughput environ-

ments, limiting its performance in single-node setups. Furthermore, VoltDB is the only tested

system written in Java, while the others use C/C++. Additionally, upon examining VoltDB’s

TPC-C implementation, we find that it relies heavily on writing to the storage medium whole

snapshots instead of just the changes in the database/log like the other databases. High concur-

rency high volume writing does not scale well, particularly for PMEM, which struggles with

numerous concurrent users. This is also the main reason that contributes to the minimal perfor-

mance difference between AppDirect and Default modes.

Insights. As TPC-C is a write-heavy workload, we confirm what other studies have found

about the effect of writes on the performance of PMEM [158]. Having low number of write

threads and/or combining writing operations in one thread provides a much larger transaction

rate than the Default mode and it also avoids thrashing, as we observe in the case of MySQL

and PostgreSQL. Conversely, heavy contention and mixed read/write workloads significantly

impact PMEM performance, bringing it close to or even worse than the Default mode, as seen

with SQLServer and VoltDB.

4.5.2 Log and data placement

We assess PMEM’s effectiveness as a data or WAL store for MySQL, PostgreSQL, and SQLServer

(Table 4.4). We could not separate the log and data checkpointing process for VoltDB. We tested

configurations with data and WAL on SSD (SSD-both), data on SSD and WAL on PMEM
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Table 4.4: tpmC (in 100K) for different database configurations and concurrent users
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(SSD-data-PMEM-wal), data on PMEM and WAL on SSD (PMEM-data-SSD-wal), and data

and WAL on PMEM (PMEM-both).

For PostgreSQL, for a small number of clients, when we place the WAL in PMEM instead of the

SSD, we see only a slight increase in tpmC. That means that buffered I/O does not significantly

affect performance in log writing. However, the gap increases when we increase the clients due

to the bandwidth limitations of the SSD. On the other hand, when we place the data in PMEM

instead of the SSD, we see a large increase in tpmC, even for a small number of clients. Thus,

PMEM should be used as a data rather than just as a log store, because databases can utilize

PMEM’s read bandwidth more effectively than its write bandwidth.

In SQLServer, placing the log in PMEM offers only a small performance advantage, compared

to placing the data in PMEM, indicating that I/O is more on the critical path than the redo logs.

As the number of clients increases, log placement does not affect performance significantly.

Lastly, placing the data on PMEM and the log on SSD has a higher throughput than placing both

on PMEM, but this is due to the remote accesses to socket 1 for the log (that is necessary due to

the configuration enforced by SQLServer).

For MySQL that log placement in PMEM does not offer a significant performance advantage

since the tpmC increases marginally (up to 5%). Thus, redo logs are not the bottleneck and

buffered I/O hides the latency for the Default mode.

Insights. Placing only the logs in PMEM does not offer a significant performance advantage

irrespective of the DBMS. We therefore conclude that PMEM should be used as a data or a data

and log store rather than just a WAL store, because DBMSs can utilize PMEM’s read bandwidth

more effectively than its write bandwidth.

4.5.3 Varying database configurations

As open source DBMSs, PostgreSQL and MySQL give us the freedom to experiment with a

number of parameters that affect transactions. We analyze various options in this section.

4.5.3.1 WAL compression

WAL compression is widely used for PostgreSQL to close the CPU-storage gap. However, in

our case even though it is slightly useful for the Default mode, it causes a drop in tpmC for

the AppDirect mode. The number of transactions is almost 50% less for 16 clients. Due to the
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Figure 4.6: tpmC for TPC-C with 1000 warehouses on PostgreSQL with and without log compression

for different configurations

lower latency of PMEM, the compression step involving an additional read and write from/to

memory becomes unnecessary. Lastly, because PostgreSQL depends on the OS page cache

for read-ahead and buffering of writes, we enable the page cache in AppDirect Mode with the

no-DAX option. However, as we have mentioned, in AppDirect mode the CPU is involved in

reading/writing and this causes an increase in CPU usage and a drop in tpmC as we can see in

Figure 4.6. Therefore, although PostgreSQL is very effective at hiding the storage latency of

HDDs and SSDs, this is not the case with PMEM and the techniques it uses for HDDs and SSDs

hurt performance in PMEM.

4.5.3.2 Double write buffer

In MySQL, the double-write buffer is a storage area where dirty pages are flushed to, before

writing to their respective positions in the data files [39]. This buffer does not incur additional

costs, because InnoDB writes data in a large sequential chunk with a single fsync call at the

end. We disable the double-write buffer and present the results in Figure 4.7 for the two modes.

We can observe that the tpmC for the Default mode stays stable, since double writes are a part

of the background flushing. Therefore, the storage can follow along and transactions are not

affected. Conversely, the tpmC increases significantly by up to 20% for the AppDirect mode

when double-writes are disabled, confirming again that concurrent writes are a pain point for

PMEM.
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Figure 4.7: tpmC for TPC-C on MySQL for different number of clients with and without the double-

write buffer

4.5.3.3 Number of write threads

By default, MySQL uses async I/O to perform reads and writes. This removes control over how

many concurrent requests are pending, which might be detrimental to PMEM’s performance.

By using sync I/O, we can control the number of background write threads. Read threads are

mainly used for prefetching and with a large buffer pool they do not play a significant role in the

TPC-C workload. We vary the number of write threads from 1 to 16 for different numbers of

concurrent users and we present the results in Figure 4.8. The throughput reaches a maximum

for 8 threads across all numbers of concurrent users and decreases after that, confirming again

that PMEM is not effective at performing many concurrent accesses.

4.5.3.4 Flushing methods

In MySQL, we have to opportunity to experiment with different flushing methods of InnoDB,

e.g. enabling the O DIRECT flag, which uses direct I/O (bypassing the OS page cache) for data

files and buffered I/O for logs. We present the results in Figure 4.9. In general, the AppDirect

mode is faster than the Default mode, both with and without direct I/O, due to the smaller latency

that PMEM offers. However, direct I/O does not offer a significant performance advantage in the

AppDirect mode, because it does not provide any additional benefit on top of DAX. Furthermore,

using the AppDirect mode with the no-dax option and the O DIRECT flag, provides the same

performance as the default AppDirect mode (with dax enabled). This is expected, since both
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Figure 4.8: tpmC for TPC-C on MySQL for different number of write threads

configurations skip the OS page cache. For the Default mode, when we have a small number

of clients this happens because MySQL manages its own buffer pool and does not depend upon

the OS page cache for prefetching and caching. As the number of clients increases, the Default

mode with direct I/O performs much better, since we have restricted the execution to one socket.

Thus, the database is not doing unnecessary memory copy from/to the OS page cache, which in

turn reduces contention and leaves more resources available.

We also investigate how disabling fsync affects performance. This function is used to ensure

that writes are flushed to disk and not to the device cache. Because these calls may degrade

performance, MySQL provides a flushing method called O DIRECT NO FSYNC that takes them
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Figure 4.9: tpmC for TPC-C on MySQL with different flushing methods
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away. As we see in Figure 4.9, when using this flag, the performance increase is negligible,

especially in AppDirect mode. This happens because of two reasons. First, fsync calls are

not totally eliminated and they are still used for synchronizing file system metadata changes,

e.g. during appends [40]. Second, writing dirty pages to the tablespace is done in batches that

require a single fsync call that happens in the background. Therefore, this does not affect

transactions directly [38]. Contrary to the Default mode, when we disable fsync we see a large

improvement in the AppDirect mode. This happens because overwrites in AppDirect mode with

DAX use non-temporal stores. Thus, no cache lines are flushed and only a sfence instruction

is issued to make sure writes complete.

4.5.3.5 ext4 block size

In MySQL, we evaluate how the ext4 block size affects PMEM’s performance. (Table 4.5). We

set the ext4 block size to 1KB and 4KB in AppDirect mode with nodax and O DIRECT enabled,

because direct access is only supported when the block size is equal to the system page size. As

we observe in the figure, for a small number of clients 1KB block size performs worse than 4KB,

because the amount of I/O is increased and I/O is more in the critical path for a small number of

clients. Contrary to that, tpmC is larger for 1KB block size for larger number of clients, because

access size must be lower for higher thread counts [119].

4.5.3.6 no-dax mode

Regarding different configurations in the AppDirect mode, we experiment with the no-dax

mode in both PostgreSQL and MySQL. In MySQL, the no-dax options is on par with fsdax.

However, on PostgreSQL, the no-dax options performs significantly worse. This is because

PostgreSQL depends heavily on the OS page cache for read-ahead and buffering of writes and

as we have mentioned, in AppDirect mode, the CPU is involved in reading/writing from DRAM

Table 4.5: tpmC [in 100K] for TPC-C on MySQL for different block sizes on AppDirect mode

Configuration
Users

8 16 32 64 128

AppDirect-nodax-bs-1kb 210.2 358.9 450.4 404.2 415.8

AppDirect-nodax-bs-4kb 213.6 368.2 433.7 389.7 372.5
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Figure 4.10: tpmC for TPC-C on MySQL and PostgreSQL with and without fsdax

to PMEM as there is no DMA available. This causes an increase in CPU usage and a drop in

tpmC.

4.5.3.7 Interleaved vs. non-interlaved

We compare the AppDirect mode in PostgreSQL using only one PMEM DIMM with the AppDi-

rect Mode using both PMEM DIMMs (denoted with AppDirect-interleaved) in Table 4.6. The

interleaving access block size is 4KB and any read/write for PostgreSQL happens in multiples

of 8KB. Therefore, when using PMEM in interleaved mode, we would expect a large increase

in tpmC, since the access latency is halved and the max bandwidth is doubled. However, as we

see in the figure, the increase in tpmC is minimal. For a small number of clients, that happens

Table 4.6: tpmC for TPC-C on PostgreSQL using different number of DIMMs

Configuration
Users

8 16 32 64 128

AppDirect 319.3 428.9 438 431.4 429.6

AppDirect-

interleaved

346.8 524.2 524.6 533.9 477.4

AppDirect-

interleaved-

increased-wal

356.6 578 831.7 1029.1 1132
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because the workload is already CPU-bound even when using a single PMEM DIMM. For a

larger number of clients, the bottleneck is the checkpointing process. Thus, we increase the

max wal size to reduce the number of checkpoints and the tpmC for 128 clients is more than

2x higher and is bounded by the max bandwidth of the interleaved setup.

Insights. As PMEM is sensitive to write workloads and its performance can deteriorate heavily,

we should carefully tune the underlying parameters to avoid additional writes (e.g. the double-

write buffer), use small access sizes for higher thread counts and limit the number of write

threads to at most 8 threads. Additionally, since the bandwidth of PMEM in AppDirect mode

is much larger than the one that SSDs offer, we do not have to resolve to I/O optimizations,

especially if these involve CPU operations.

4.6 Key-value stores (YCSB)

We evaluate RocksDB, an open-source key-value store, using YCSB. We choose YCSB due to

its use in PMEM-native key-value store studies [97]. Figure 4.11 presents throughput and read

latency results, while Figure 4.12 shows write latency for two workloads as the thread count

increases. Workload A is update-heavy (50% reads - 50% writes), Workload B is read-heavy

(95% reads - 5% writes), and Workload C is read-only (100% read).

In all the graphs, the AppDirect mode consistently achieves higher throughput and lower read

latency across all workloads, with the gap widening as the number of threads increases. Mean-

while, Memory mode performs similarly to the Default mode. To understand why, we must

examine the workload details. Each workload accesses all fields of a 1000-byte row. With

RocksDB processing vast amounts of wide rows, the AppDirect mode experiences read and

write amplification, particularly as thread count rises. This results in up to 6.5 GB/s read band-

width for PMEM (compared to 0.9 GB/s for SSD) and up to 1.3 GB/s write bandwidth for

PMEM (compared to 0.4 GB/s for SSD).

We can also make some interesting observations. For Workload A, as we increase the number

of threads, reading and writing concurrently, causes the throughput to plateau and slightly drop

for the Default and Memory modes, and to heavily drop for the AppDirect mode. In fact, the

throughput for 48 threads for the AppDirect mode drops to the level of 16 threads for the same

configuration, showing that mixed read-write workloads should keep a moderate number of

threads to achieve maximum performance. The plateau effect for the AppDirect mode is also

visible if we have a very small percentage of writes such as in Workload B, but it is not visible
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Figure 4.11: RocksDB throughput (left) and read latency (right) for Workload A, B, and C of the YCSB

respectively

in Workload C where the throughput continues to increase as we increase the number of threads.

For the Default and Memory modes the throughput plateaus consistently after 32 threads because

we reach the bandwidth limits of the SSD.

While the read latency of the Default and Memory mode keep increasing for all the workloads,

for PMEM in AppDirect mode we observe a plateau in Workload A for the read latency. For

the rest of the workloads in AppDirect mode, the read latency keeps slighly increasing. Addi-

tionally, the read latency for the Memory mode is slighly lower for higher number of threads

compared to the Default mode and the corresponding throughput is higher. Since the workload

is 110GB in total the additional volatile memory capacity comes handy as the number of threads

increases, because the DRAM capacity is not enough and the requests go to a faster storage

medium (PMEM) instead of the SSD. Finally, the write latency of PMEM in AppDirect mode
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Figure 4.12: RocksDB write latency for Workload A and B of the YCSB respectively

is consistently lower than the rest of the modes, with the exception of 48 threads for Workload

B, where the latency is marginally higher. This confirms that even a very low number of writes

with a high number of threads can be highly problematic for PMEM.

Insights. The AppDirect mode consistently achieves higher throughput and lower latency across

all workloads. However, increasing the number of threads leads to a throughput plateau or drop

for mixed workloads. Additionally, the results indicate that even a low number of writes com-

bined with a high number of threads can be problematic for PMEM, highlighting the importance

of proper tuning in achieving peak performance. Finally, the Memory mode performs almost

identically to the Default mode. Even if the larger volatile memory capacity is handy, the ad-

vantage is very marginal.

4.7 Related work

Even before the first PMEM commercial implementation, researchers adapted DBMS compo-

nents to PMEM characteristics. Chatzistergiou et al. [108] developed a library for transactional

updates in data structures designed for PMEM and Wang et al. [254] came up with a distributed

logging protocol for PMEM. Similarly, Arulraj and Pavlo adapted different parts of a database

engine to PMEM, such as the buffer manager [273], and the storage and recovery [87, 85] pro-

tocol. With their findings, they developed a DBMS, Peloton [221, 69], built to leverage PMEM.

Similarly, SAP HANA adapted their engine to integrate PMEM [78], Alibaba developed their

own durable PMEM database [141] and Liu et al. [200] built a log-free OLTP engine for PMEM.
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Van Renen et al. [231] evaluated how DBMSs perform when they use either PMEM exclu-

sively or a hybrid approach with a page-based DRAM cache in front of PMEM. There has

also been considerable work on algorithms such as index joins [228], or data structures such

as B+-Trees [110, 251, 265, 155, 114], hash tables [201, 275, 121, 135, 212, 136], and other

indexes [193, 150, 271] on PMEM.

Most of the above efforts simulate PMEM using software tools [127]. With the introduction

of Intel Optane, it is possible to experiment on the actual hardware. This has led to several

performance studies. Outside of the database context, Izraelevitz et al. [158] provided the first

comprehensive performance measurements of Intel Optane including read/write latency with se-

quential and random access patterns as well as the effect of factors such as the number of threads

on different PMEM modes (Memory-mode and AppDirect-mode). This study was followed by

others [223, 264] providing more in-depth analysis and elaborating on the insights of Izraelevitz

et al. Xiang et al. [261] study the read/write buffering performance of PMEM and they provide

new insights on how read/write buffers are managed. In HPC, a number of studies [220, 257]

have shown promising results in hybrid DRAM-NVM configurations.

Database researchers have primarily focused on OLAP workloads. Benson et al. [119, 106] em-

ploy microbenchmarks and OLAP benchmarks (Star Schema, TPC-H) to identify best practices

for using Intel Optane and assess its viability as an NVMe SSD replacement, exclusively utiliz-

ing the AppDirect mode (with and without fsdax). Shanbhag et al. [240] evaluate the AppDirect

mode in an OLAP context using the SSB benchmark. Wu et al. [260] conduct a brief study run-

ning microbenchmarks, TPC-H, and TPC-C on SQLServer 2019 using PMEM in Memory and

AppDirect mode (with and without fsdax), presenting high-level conclusions on DBMSs lever-

aging PMEM, primarily related to SQLServer, without experimenting with database knobs or

examining how query plans affect PMEM performance. Renen et al. [249] measure Intel Op-

tane Persistent Memory’s bandwidth and latency, while tuning log writing and block flushing.

Lastly, Benson et al. [98] develop a benchmark framework to evaluate various customizable

database-related PMEM access characteristics [98].

Table 4.7 summarizes the landscape of available benchmarking papers, denoting our contribu-

tions with the symbol ‡ and prior work with references. We use NVMe for Intel Optane SSD

disks and AppDir and Mem rows to represent the corresponding Intel Optane Persistent Memory

modes. As shown in the table, we evaluate five DBMSs in both AppDirect and Memory modes

using complete benchmarks (TPC-H and TPC-C) rather than microbenchmarks. In TPC-H, we

demonstrate how query plans, operations, and system statistics are affected by using PMEM.

We also extensively evaluate Memory mode, providing insights on its usefulness with working
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Table 4.7: Landscape of Intel Optane benchmark papers in the DB community (our contributions are

denoted with ‡)

PostgreSQL MySQL SQLServer DuckDB VoltDB Benchmark

SSD ‡ ‡ ‡, [260], [259] ‡ - TPCH

SSD ‡ ‡ ‡, [260], [259] - ‡ TPCC

NVMe [106] - [259] - - TPCH

NVMe - - [259] - - TPCC

AppDirect ‡, [106] ‡ ‡, [260] ‡ - TPCH

AppDirect ‡ ‡ ‡, [260] - ‡ TPCC

Memory ‡ ‡ ‡, [260] ‡ - TPCH

Memory ‡ ‡ ‡, [260] - ‡ TPCC

sets larger than DRAM. We use both row and column stores to show how memory accesses and

compression affect Intel Optane. In TPC-C, we explore the impact of database knobs. Further-

more, we are the only ones benchmarking a key-value store (RocksDB) under varying read-write

workloads.

4.8 Conclusion

We evaluated PMEM on various engines and popular benchmarks (TPC-H, TPC-C, and YCSB).

Our study sheds light on how to efficiently integrate PMEM into the memory hierarchy and how

to tune relational and non-relational systems to get the best performance out of each config-

uration, given the higher cost both in terms of storage and CPU. In Memory mode, increasing

volatile memory capacity using PMEM does not offer any performance advantage. In AppDirect

mode, PMEM offers a lower latency than SSDs, which can increase performance significantly

when I/O is in the critical path. However, when there is a lot of resource contention or mixed

workloads and because the I/O path is not fully optimized in the case of PMEM, SSDs still re-

main a competitive solution. In the rest of the section we summarize the main insights from our

study and we present future directions of our research.

4.8.1 Insights

(i) Memory mode does not offer a significant performance advantage: As we observe for

all engines and benchmarks, in the vast majority of cases, Memory mode with its larger volatile
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memory capacity does not offer any performance advantage. There are even cases, where perfor-

mance is slightly worse. This happens due to the conflict cache misses in the DRAM L4 cache,

which also causes additional memory traffic between PMEM and DRAM. The only case where

Memory mode is useful is for queries with sequential accesses and low number of reads/writes

to memory. That happens because the DBMS can take advantage of the larger OS page cache

offered by the larger memory capacity and together with prefetching, these queries can have a

small speedup compared to configurations that do not use PMEM at all. Nevertheless, it is worth

noting that other studies in the HPC context [220] show that a working set considerably larger

than typical DRAM capacities, makes the Memory mode useful.

(ii) Performance gains when using PMEM vs. SSDs can be due to application limitations
rather than differences in hardware: Although PMEM has superior performance compared to

SSDs for sequential read accesses with many threads, this is not the same for random accesses.

If applications adopt asynchronous I/O for random accesses (e.g., index lookups) for workloads

in which CPU requests overshadow I/O, the Default and the AppDirect mode will have a very

small performance difference.

(iii) The lower latency of PMEM in AppDirect mode does not translate to an advantage
equal to the hardware characteristics: Our microbenchmarks reveal PMEM has 30x lower

latency than SSDs and, in some cases, over 10x higher read and write bandwidth. However, this

difference does not result in the expected runtime reduction, as the I/O path is not fully opti-

mized. In AppDirect mode with fsdax (recommended by Intel), there is no OS page cache, and

DMA is unavailable since PMEM is managed by the iMC, not as a peripheral device. Conse-

quently, CPU resources are spent on I/O in AppDirect mode, while in Default mode, DMA and

the OS page cache can cover part of the lower latency, especially in CPU-intensive, I/O-heavy

queries or in cases involving secondary indexes with table data stored in the OS page cache.

(iv) In systems where resources are limited, PMEM in AppDirect mode is not as useful: In

general PMEM in AppDirect mode involves the CPU as no DMA is available. When there is

a lot of resource contention, the hardware advantage of PMEM is almost negligible. We notice

this behaviour in various DBMSs (in MySQL for TPC-H, when we restricted PostgreSQL to

one core, and in SQLServer and VoltDB for TPC-C).

(v) PMEM requires fine-tuning for write or mixed workloads: As noticed by previous

studies [119, 158] heavy-write workloads and read/write interference decrease PMEM’s per-

formance dramatically. We notice the same behaviour when running TPC-C or when we use

Workload A and B in the YCSB. Even a small number of writes with a high thread count in

mixed workloads can hinder the performance of PMEM significantly. Thus, the number of
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(write) threads has to be carefully tuned to avoid interference. Especially in a DBMS context,

several configurations that increase additional writes should be turned off to increase perfor-

mance (e.g., the double-write buffer).

(vi) Optimizations made for SSDs/HDDs need to be re-designed when using PMEM: Many

traditional optimizations avoid I/O as much as possible due to the latency gap between DRAM

and storage (e.g. log compression). However, this gap is not as large with PMEM and these

optimizations may not offer any performance advantage. In general, as the CPU is involved in

I/O in AppDirect mode, it is preferable to avoid devoting CPU resources to optimize I/O.

(vii) Log placement in PMEM does not increase performance significantly: Across DBMSs,

placing only the log in PMEM does not increase the transaction rate for TPC-C significantly.

Placing data or both the log and data in PMEM increases throughout for TPC-C due to the lower

latency and higher bandwidth of PMEM compared to SSDs/HDDs.

4.8.2 Future directions

As of July 2022, Intel decided to discontinue the Optane series [46]. Although DRAM may

reach capacities up to 512GB with DDR5, those will come with a significant cost. Therefore,

there is still a need for an intermediate storage tier between DRAM and SSDs. That gap can

be filled with CXL [45], which is a cache-coherent interface for connecting CPUs, memory and

accelerators. CXL-attached memory can increase the memory capacity of servers, offering a

fast storage memory tier to place “hot” data that does not fit in DRAM. Several characteristics

of PMEM are relevant to CXL-attached memory, such as byte-addressability and near-DRAM

performance with higher capacity and opportunities for higher energy efficiency. Especially the

last point will be highly valuable in the context of data centers, where CXL will be deployed

first. Therefore our study provides insights on what system function (e.g., pre-fetching, low

CPU utilization, query optimization hints, etc.) are valuable in the database context, to avoid

performance regressions.
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5.1 Motivation

Data management and analysis has changed rapidly over the last few years, influenced by both

the increasing amount of data produced every day and the effect that Machine and Deep Learning

(ML/DL) had over data processing. This evolution is further exacerbated by the prevalent use

of semi-structured data (e.g. CSV, JSON, Parquet), which are very popular both for the scien-

tific domain and for ML datasets [182, 139, 58, 59]. Especially CSV offers simplicity and aligns

well with the flexible nature of ML/DL algorithms, but on the other hand lacks complex schemas

and data structures. Organizations, influenced by the evolving landscape, find themselves stor-

ing an increasing portion of their data in CSV, which they need to analyze, get insights from,

and use to their benefit. To do so, they can use cloud data warehouses or analytics platforms

(e.g. Databricks, Snowflake) or QaaS systems (e.g. Amazon Athena, Google Big Query). Data

warehouses are a very good fit for data that need to be continuously processed and maintained.

However, there are many use cases that produce data that will only be used and processed a

handful of times or even just once. Take for example a particle physicist producing insights on a

single experiment for High-Energy Physics [146]. For these sparse, infrequent workloads, main-

taining an always-on infrastructure is not efficient, and QaaS are an ideal solution. By declaring

semi-structured data as external tables, users can query them and extract the necessary informa-

tion while only paying for the amount of data they scanned and without the need to worry about

scaling the infrastructure or optimizing the input data layouts.
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CSV Parquet

Runtime[s] Cost[$] Runtime[s] Cost[$]

BigQuery 227 9.05 71.5 2.11

Athena 273.3 9.09 132.3 0.76

Table 5.1: Runtime and cost of running TPC-H SF-100 on Parquet and CSV for Amazon Athena and

Google BigQuery

Between the two extremes of data warehousing and QaaS, there are many opportunities for

improvement. For example, it is widely known that transforming the input data to a columnar

format (e.g. Apache Parquet) can have a huge impact on the execution time and cost of QaaS.

Consider the cost and runtime for TPC-H SF-100 on two popular QaaS (Amazon Athena, Big

Query) in Table 5.1. We observe that the runtime can be reduced more than 3x and the cost

by an order of magnitude just by making this simple transformation. Nevertheless, for sporadic

execution, converting the whole dataset to Parquet might be ineffective in terms of cost and/or

latency.

Hence, in this chapter we present our vision for serverless cracking, a modern form of database

cracking for QaaS. Serverless cracking relies on simple transformations (e.g. transcoding, sort-

ing, chunking) that have a large impact on the cost and/or execution time of QaaS. Serverless

cracking is based on FaaS, as serverless functions are a good fit for occasional, bursty work-

loads [209]. In this way QaaS could invoke FaaS only when additional budget is given by the

customer such that it does not interfere with query processing. To understand the various trade-

offs, we use Amazon Athena and AWS Lambda as a use case for our transformations. Based

on our observations, we provide actionable advice on where and which transformation pays off

and how users can reduce their cost and latency for their sporadic workloads. Our insights are

easily transferable between different cloud providers and also pave the way to practical storage

optimization in the cloud, an area that is becoming increasingly important through data lake-

houses [81, 245, 248]. Finally, we sketch future directions on how serverless cracking can be

integrated in the cloud as part of QaaS and what are the challenges there. For example, cloud

providers can offer a cost/runtime advisor that can help clients to perform incremental transfor-

mations based on their own needs.
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5.2 Background

In this section we give an overview of the technologies that we use in the chapter. We start

with Apache Parquet, a popular columnar storage format and then present QaaS and serverless

functions.

5.2.1 Apache Parquet

Apachet Parquet [62] is an open-source columnar storage file format, designed to improve stor-

age and access efficiency of tabular data compared to row-based files like CSV. Internally, Par-

quet files are divided into smaller units called row groups. Each row group contains a subset of

the data and within a row group, data are organized into column chunks. Each column chunk

is divided into pages, which include data for a specific column in a specific row group. Finally,

each file has footer metadata that contain information about row groups and columns chunks

(e.g. data types, total row group size, encodings, min-max indexes). The columnar storage, to-

gether with the footer metadata allow for numerous compression techniques such as dictionary

or run-length encoding. Additionally, using metadata, query engines can apply various optimiza-

tions (e.g. predicate pushdown, bloom filters, column statistics) to skip reading irrelevant row

groups based on query predicates, therefore improving query performance. All these features,

together with its wide tooling and ecosystem support and the fact that it is language-agnostic

have made Parquet the backbone of lakehouse formats, such as Deltalake [65] and Apache Ice-

berg [61].

5.2.2 Query-as-a-Service (QaaS)

Query-as-a-Service (QaaS) systems are a new wave of cloud computing systems that allow users

to execute SQL or SQL-like queries directly on data stored in the cloud. They offer significant

advantages compared to traditional databases, as they are able to query datasets on demand

through external tables without the need to ingest the input for creating tables. Additionally,

there is no need to manage the underlying infrastructure. Popular examples of such systems

are Amazon Athena [60] and Google BigQuery [66]. QaaS support a variety of data formats

including CSV, JSON, Avro, and Parquet. One of their biggest benefits is that they only charge

the client based on the amount of data scanned of individual queries. However, when working

on external data, they are lacking other traditional optimizations (e.g. join reordering).
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Figure 5.1: Runtime and cost of running TPC-H on Amazon Athena with different tables on Parquet

5.2.3 Serverless functions

Serverless functions, also known as Function-as-a-Service (FaaS) are a cloud execution model

where cloud providers dynamically manage the allocation and provisioning of servers. They are

called serverless as managing the instrastructure is abstracted away from developers, who only

need to focus on writing the functions that comprise the application code. The functions are ex-

ecuted in response to events (e.g. HTTP requests, file uploads to cloud storage, messages from a

queue). Popular examples of serverless functions are AWS Lambda [63], Azure Functions [64],

and Google Cloud Functions [67]. FaaS offer a number of advantages for sparse, bursty work-

loads. First of all, they are on a pay-per-use base, meaning that users only pay for the compute

time they consume. They are also highly scalable, reaching up to a few thousand requests per

second, while keeping a simple and quick deployment. Additionally, they are especially useful

for data-independent tasks that can start up and shut down quickly and run on an infrequent

basis [209].

5.3 Data transformations

To quantify the potential of serverless cracking, we study three different transformations (transcod-

ing, chunking, and sorting) and how they affect the overall runtime and cost of QaaS. We an-
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alyze the runtime and cost of performing these conversions on serverless functions. We use

AWS Athena as an example to run the QaaS workloads and AWS Lambda to run the data trans-

formations. To reduce the variability of serverless function latency, in particular due to cold

starts [196, 253, 163], we pre-warm the functions and take the median of 10 runs for each ex-

periment.

5.3.1 Transcoding to columnar format

Conversion to a columnar format (or transcoding), such as Apache Parquet, is one of the most

effective transformations users can perform to reduce cost and latency for QaaS, because Parquet

has a number of advantages (Section 5.2.1) compared to CSV or JSON.

Although transcoding is generally beneficial, for sparsely-running workloads, it is not obvious

which tables a user should convert to Parquet to maximize its benefit. To understand the various

trade-offs, we run TPC-H SF-100 with 300 files per table on Amazon Athena. We transform

combinations of tables in Parquet and we show the execution time and cost in Figure 5.1. For

the transformation, we pick either all the tables or a combination of the three bigger tables of the

workload (lineitem, orders, and partsupp), which constitute 97% of the total dataset size.

Transforming all data to Parquet, reduces the overall runtime in half, and the total cost around

10x. Since the first three tables make up almost the entire dataset, transforming them brings the

cost and the runtime very close to having all data on Parquet.

We now experiment with transcoding combinations of two tables from lineitem, orders, and

partsupp. Transforming lineitem and orders is very similar to transforming all three tables,

whereas converting lineitem and partsupp has both higher runtime and cost, respectively 20s

and 0.5$. This increase is much larger proportionally than the 5GB difference between orders

(17GB) and partsupp (12GB). We make similar observations when we convert only orders

and partsupp or individual tables in the right side of the figure. Finally, we observe the impact

of only changing lineitem. The table is 70% of the workload but having it in Parquet reduces

the runtime almost 40% and the cost more than 4x. Overall, the size of a table is only one of the

factors that influence the runtime and cost of the workload. There are other aspects that affect

these quantities, such at the frequency that each table appears in the query set, and the projection

and the selection predicates of each query.

To understand how expensive and time consuming the transcoding of the tables is, we show

the runtime and cost of converting the same table combinations as in the previous experiment

91



Chapter 5. Adaptive storage layout for QaaS

all l-o-p l-o l-p o-p l o p
0

5

10

15

20

25

30

35
Ti

m
e[

s]
Running time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
st

[$
]

Cost

Figure 5.2: Runtime and cost of transcoding different tables on Amazon Lambda

to Parquet in Figure 5.2. Every table is split across 300 files of equal size, and we invoke one

function per file for the conversion using a large degree of parallelism for the function invocation.

The experiment mirrors up to a degree what we noticed previously. First, we observe a sub-

linear behavior, depending on the table size, both for latency and cost. That comes from the fixed

“setup” cost (e.g. invocation of functions, time until a function starts etc.), which is independent

from the input size. Additionally, converting lineitem with other table combinations takes

roughly the same time as converting lineitem alone, although the cost increases as we convert

more tables. That indicates that the transformation of a large table dominates the running time

and it is the last step that completes when the overall number of function invocations is not

very large (up to a 1000). On the other hand, when we convert all tables to Parquet, the overall

runtime and cost increase significantly, in a disproportionate way compared to the additional

data transformed. In particular, the rest of the tables are only 5GB, but the overall increase both

in runtime and cost is more than 30%. That shows the influence of the setup cost in the overall

runtime as well as the impracticality of always transforming everything into a more suitable

format as it may not be cost effective, especially for large data amounts.

5.3.2 Splitting by size (chunking)

Changing the number of files a table consists of is another effective transformation that influ-

ences the latency but not the cost of a workload. However, it is not obvious what partition
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Figure 5.3: Runtime of running TPC-H on Amazon Athena with different number of parquet partitions

per table

file size to choose because cloud providers do not provide explicit instructions. For example,

Athena’s documentation says that “datasets that consist of many small files result in poor overall

query performance”1 but does not give indications on what the file size should be.

The performance drop that Athena mentions happens because, first, QaaS need to keep a list of

all the partition locations and therefore with an increasing number of partitions the listing time

increases and, second, because QaaS usually schedule the number of tasks based on the number

of partitions. If there are too many small files, each task has minimal work and most of the time

is spent communicating across different tasks in exchange phases. However, a few large files

can also be detrimental because not enough tasks are scheduled and the overall CPU power is

not sufficient.

To understand the file size effect, we alter the number of partitions a table comprises of from 20

to 900 using CSV as the input format. In a plot not shown, we see that the number of partitions

on CSV has no influence on the execution time. Because the actual implementation of Athena

is not open source, we can only speculate about why parallelism does not increase with higher

number of partitions on CSV. When observing the query plans, we notice that the number of

tasks stays the same independently of the number of partitions and is also quite high. Therefore,

1https://docs.aws.amazon.com/athena/latest/ug/performance-tuning.html
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Figure 5.4: Runtime of running TPC-H on Amazon Athena with different number of csv partitions per

table

a plausible explanation is that Athena sets a high degree of parallelism directly when reading

CSV and splits the data across the workers with a mechanism that is independent of the number

of files.

In contrast, the number of Parquet files has a big influence on the query runtime. We observe this

in Figure 5.3, where we run TPC-H SF 100 with an increasing number of Parquet files per table.

The plot has a U-shape: If we have very small or very large number of files, the performance is

not optimal. Especially, for small numbers of files (e.g., 20 files per table), the overall runtime

is even larger than running the same workload on CSV. The optimal performance occurs with

100 partitions per table. After that, increasing the number of partitions increases gradually the

execution time. We look again into the query plans to understand why this happens. We observe

that Athena sublinearly increases the number of tasks as the number of partitions increases. For

small a number of partitions, based on the CPU time, there is not enough parallelism to process

data as fast as possible, whereas for large number of partitions, the CPUs are underutilized.

We repeat a similar experiment to Section 5.3.1. Specifically, we run the benchmark using 20

partitions per table while we use 100 chunks for the tables denoted in the x-axis in Figure 5.5.

We pick either all tables or combinations of the three largest tables. We notice that chunking

orders, partsupp, or both at the same time gives a marginal or even no performance advan-

tage, especially when taking into account their size in the overall benchmark (around 25%). On
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Figure 5.5: Runtime of running TPC-H on Amazon Athena when having different number of parquet

partitions in a subset of tables

the other hand, transforming only lineitem is 8% slower than splitting all the tables into 100

partitions and dividing more tables other than that gives marginal increases, if any. The rationale

for that is that the number of tasks that can be scheduled for a particular table increases for tables

like lineitem but not for small tables like partsupp.

To gain insights into how time and cost-effective chunking is, we use serverless workers to divide

an individual Parquet file into smaller ones for various TPC-H tables. We use one function per

input file, load the file gradually from S3, and transform it in batches to be as memory efficient

as possible. We present the results in Figure 5.6. We see that the overall cost is much lower than

if we convert files from CSV to Parquet because we use a smaller number of functions compared

to transcoding and we transfer less data from S3 to Lambda due to the compression that Parquet

has.

A second key observation is that any transformation involving lineitem has roughly the same

execution time, except for partitioning all the tables. The difference between splitting lineitem

alone or together with other tables comes from the natural variation of cloud environments.

Ideally, all these experiments should take exactly the same time because lineitem is the last

table to finish transforming. Using this, we can partition a couple of additional smaller tables

together with a very large table without increasing the overall execution time and with minimal

additional cost. Finally, transforming orders and partsupp separately or together, has exactly
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the same runtime and a negligible difference in cost. This occurs because, for transformation of

small tables and for a small number of files, the setup cost has minor duration compared to the

actual work the function does.

5.3.3 Sorting a selection column (sorting)

As a final transformation, we explore sorting Parquet files based on a column: each FaaS invo-

cation reads the Parquet file it gets assigned, sorts the input by the sorting column, and writes the

result into a new Parquet file. This improves compression and makes min/max indexing more

effective. Sorting does not offer any performance advantage on semi-structured file formats such

as CSV.

We first experiment with isolating l shipdate, the column in lineitem that has the most

selection predicates. This will give an indication of the largest reduction that we can get since

(1) lineitem is the largest table and (2) one third of the benchmark discards large amounts of

data based on l shipdate. We run these queries on tables split over 20 files with and without

the sorted column and present the results in Table 5.2. The queries have a ranging degree of

selectivity from 1% to 99%. However, the decrease in runtime and cost is also affected by other

factors such as the query plan and the other tables the query scans from. The biggest decrease

both for latency and cost is for Queries 6 and 20. Both of these have a 43% cost and latency
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Figure 5.6: Runtime (left axis) and cost (right axis) of splitting tables into smaller files on Amazon

Lambda
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Table 5.2: TPC-H SF-100 queries with sorted and unsorted selection predicate

Query Selectivity No sorting l shipdate sorting
Runtime[s] Cost[$] Runtime[s] Cost[$]

Query 1 1% 23.21 0.026 21.75 0.021

Query 3 46% 12.33 0.033 11.58 0.040

Query 6 85% 9.53 0.023 5.31 0.013

Query 12 51% 14.44 0.021 11.55 0.020

Query 14 99% 11.18 0.037 7.07 0.020

Query 15 96% 12.52 0.070 8.21 0.046

Query 20 84 % 13.37 0.039 7.95 0.022

TPC-H total
(common data)

- 283.19 0.718 272.6 0.737

TPC-H total
(separate data)

- 283.19 0.718 260.36 0.650

improvement due to less data scanned. In contrast, for Query 3, we notice an interesting trend:

although the latency is reduced, the cost increases, meaning that Athena scans more data.

We investigate why this happens. By sorting on a column, we are disrupting the order of other

columns. That may lead to unwanted results, e.g. for tables that are sorted on the primary key,

which is the case for TPC-H by default. As a consequence, we cannot predict the effect of

altering the primary key order on the runtime and cost. To verify this assumption, we run the

whole benchmark with the data sorted on l shipdate (Table 5.2). The total runtime is reduced

only by 4% and the cost is increased by 3%. To avoid this and to make sure that sorting will

have a positive effect, we keep two separate copies of the data: (1) the original data for queries

that do not include a selection predicate on the columns that is sorted and (2) the transformed

data for the rest of the queries. With this approach, we maximize the expected return. We verify

this by running TPC-H with two data copies (Table 5.2). The execution time is reduced by 8%

and the total cost is decreased by 10%.

Sorting also interacts with chunking. When we have small files sorted by a previously unsorted

column, the value range of each fixed-size row group after sorting is larger. That effectively

means larger distance between the min and max values per row group and, hence, less effective

min/max filters.

We verify this hypothesis by increasing the number of files and running TPC-H SF 100 with

sorted and unsorted data on l shipdate (Figures 5.7 and 5.8). If running with sorted data,

we have two separate data copies. We observe similar trends for both plots: As we increase
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Figure 5.7: Runtime of unsorted vs sorted on l shipdate for different number of partitions on Amazon

Athena

the number of partitions, sorting provides a smaller latency/cost reduction. Especially for 100

partitions, the time difference is less than 2%. We conclude that that sorting and chunking are

negating each other and that we have to pick only one of them if the input file sizes are large.

Finally, we discuss the cost and runtime of sorting the l shipdate column of lineitem using

AWS Lambda. While we used serverless functions with 2GB of main memory for the previous

transformations, for sorting, this is not sufficient. As every file is around 1.1GB and sorting is

memory-intensive, we need to use the lambda functions with the highest memory (10GB). Thus,

sorting might not be feasible for every workload, table, and partition size. The total execution

time is 63s and the cost is 0.25$. From a first look, sorting does not provide any advantage,

given the runtime and cost of transforming the files. While this is the case for TPC-H, the actual

advantage might be different for other workloads or queries and depending on how many times

we run a workload.

5.4 Serverless cracking

In the previous section, we present insights on the effect that different transformations have on

the latency and cost of QaaS. We also give details on how expensive these transformations are,

both in terms of cost and time. In this section, we give practical recommendations on how users
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Figure 5.8: Cost of unsorted vs sorted on l shipdate for different number of partitions on Amazon

Athena

can (gradually) transform their data to minimize latency and cost for QaaS and sketch an initial

architecture that integrates this module into a cloud offering.

5.4.1 Insights

(i) Converting a table to Parquet is a good starting point but not always a solution: As we

have seen, converting to Parquet can make a big difference on runtime and improve cost by an

order of magnitude. Although converting all the input data to Parquet might not give always

such margins, it is a very good starting point for large tables that are used frequently in the query

workload, especially if the queries have many projections and predicates with high selectivity

(discarding a lot of data). In contrast, for very small or even medium-sized, infrequently used

tables (e.g., partsupp in TPC-H), converting to Parquet might spend more resources than the

expected gain as the transformation on serverless has a fixed setup cost, e.g., spinning the work-

ers and transferring data from/to S3, which increases significantly as we are converting more

tables.

(ii) Parquet files should always be less than 200MB: Although chunking does not have any

effect on CSV, it can have a very large effect when running QaaS workloads on Parquet. QaaS’

parallelism increases with more files. In our experiments, we see that the optimal Parquet size

file is around 200MB and splitting below that does not offer any advantages. Given that chunk-
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ing has a very low cost on AWS Lambda, it is beneficial to devote a very small budget to lower

the overall latency.

(iii) Sorting by a column only pays off if the workload has many queries and highly se-

lective predicates: Although sorting Parquet files can, in theory, have a large impact both on

latency and cost, in practice we found out that it makes little sense given its relatively high cost.

It only pays off for very large files and queries with a very high selectivity. Moreover, given that

the additional memory on the serverless workers increases the cost further and that we can get

almost the same benefit simply by splitting into smaller files for a considerably lower cost, we

consider sorting mainly suitable for workloads with large and highly selective queries.

5.4.2 System architecture

We briefly describe how we imagine serverless cracking will be integrated as a cloud module

(Figure 5.9). The user submits a workload, consisting of data and queries to QaaS. Our sys-

tem has visibility on these queries. After analysis, the controller launches serverless functions

through the transformer, which has access to the data through the cloud storage, to perform the

required transformations. The “cracked” data are then available to the QaaS for running the

initial workload. Subsequent executions of the workload are again follow the same loop.
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5.5 Related work

Our vision is inspired by database cracking [156] but has many important differences. First,

our approach examines data copying and not only reorganization through different formats and

other transformations and it is not necessarily done on a per-query basis but can be also done

ahead of time. Additionally, it is tailored for QaaS and not for in-memory databases. Serverless

cracking is also similar in spirit with many in-situ and caching efforts [216, 215, 88, 76]. How-

ever, all these approaches are based on on-premise, disk-based systems, which consequently

do not consider data copies but substituting data, or use different data layouts in caches. Our

approach is cloud-based and does not use caching but different data copies. Additionally, data

formats like the one proposed by Snowflake [120] or in self-organizing data containers [203]

are orthogonal to our work since we do not explore new data structures but instead reorganize

data on a per-need basis to take advantage of various QaaS characteristics for querying external

data. Systems that use FaaS to do query processing [209, 99, 224] are independent from our

approach as we use FaaS not to perform query processing but to lower the runtime and cost for

QaaS. Finally, in parallel to our strategy, Boncz et al [103] propose adaptive indexing for query

optimization in the cloud given a particular budget and Bang et al [92] suggest to avoid using

ML techniques to optimize cloud systems but instead to use systems as oracles and perform

convex optimization. Serverless cracking does not necessarily build indexes but performs data

reorganization tailored for QaaS infrastructures and could also potentially build on linear/con-

vex optimization to investigate which transformations are feasible and worth given a particular

cost/latency budget.

5.6 Conclusion

In this chapter, we introduce the notion of serverless cracking, a form of database cracking for

QaaS. We show how the end user can leverage simple transformations to reduce the cost and

latency of infrequent workloads that run on QaaS, leveraging FaaS infrastructure. This opens a

few exciting avenues for future work.

“Infinite”-resource cloud. Compared to traditional database deployments, the cloud has “un-

limited” resources in terms of compute and storage. Although in our study, which uses FaaS, we

are minimizing cost and chose the workers with the least amount of memory with the task given,

there are many potential optimizations that can speed up transformation latency with additional
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cost [168]. For tasks that are not data-parallel and require communication, we could potentially

explore function communication [256] or using VMs as a coordinator [177]. This would allow

exchanging data across multiple files that are being sorted and thus increase the effectiveness

of our current per-file sorting to a point where it is actually beneficial. In terms of storage,

databases are usually limited by the amount of system memory, which is not the case for the

cloud. Theoretically, we could keep a large amount of copies tailored to minimize runtime and

cost of a specific queries inside a workload. However, this would become infeasible in terms

of cost and version management. Although storage solutions like S3 are relatively cheap, keep-

ing multiple copies of the same dataset and querying them can increase the cost significantly.

Deltalake and Iceberg have versioning that could potentially help with the organization but this

versioning tracks data evolution and it is not about different views of the same dataset.

Workload-instance advisor. Based on our study, we can develop an advisor to minimize work-

load latency given a particular cost budget. The advisor will be part of the controller in the

system architecture of Figure 5.9. Besides the queries, it can take as input the queries of the

workload and metadata about the dataset (e.g., data types) and use optimization algorithms or

ML techniques to propose transformations. This type of advisor comes with various advantages

but also a number of challenges. The cloud has a lot of variability due to tail latencies. It is also

very difficult to understand how systems like Athena or BigQuery work without having access

to the internals. However, this type of advisor is also data-agnostic as it does not need access to

the actual data to calculate the transformations. It is also very easily extensible to more transfor-

mations that have impact on QaaS and it is transferable between cloud deployments if we can

re-calibrate our method on different providers. Although in our work, we mainly focused on

CSV and Parquet, the advisor could also work with other unstructured data formats (e.g. JSON,

Avro).

Incremental transformations. In database cracking, the data is continuously being transformed

as queries are coming. Should transformations be applied a per query or per batch of queries?

This is still an open question. We made the implicit assumption that every workload is run only

once but the transformations applied could be very different if a workload has many queries or

is executed multiple times. The same question applies on how long we have to keep the dif-

ferent data versions. Is the five-minute rule [80] going to apply here as well? Given that we

have transcoded a table to Parquet, do we have to keep the original CSV version? We imagine

that serverless cracking would work on a query-batch basis to alleviate for the FaaS setup cost.

Periodically, we will need to clean up our storage by deleting unnecessary dataset versions.
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Chapter6
Conclusion

This chapter concludes the thesis by summarizing the main findings and their implications. It

also outlines future directions.

6.1 Summary and implications

In this thesis, we took a step forward in understanding how analytical database engines can

adapt to the quickly changing landscape of hardware and software. In the first part, we explored

the correct software abstraction for this step, utilizing both traditional relational operators at a

finer granularity and also tensor computing runtimes. In the second part, we focused more on

storage and we explored both NVMe and also adaptive data reorganization as a solution to the

I/O bottleneck.

Chapter 2 introduces the notion of sub-operators, which are traditional operators at a finer gran-

ularity and builds Modularis, an analytical query engine around them. The resulting system

shows competitive performance against mature systems both installed locally and on the cloud,

while vastly reducing the development effort.

While using a different software abstraction for relational operators is indeed feasible, a com-

pletely different path is to utilize tensor computing runtimes like PyTorch for graph and relational

workloads. Therefore, in Chapter 3, we show how the tensor abstraction is not limited to just

DL and ML workloads but can be extended to more general data processing. Our implementa-

tions outperform custom solutions by orders of magnitude in some cases, proving that tensors is

another software granularity, suitable for data analysis.
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While Chapter 2 and Chapter 3 focused on the software abstraction side, in the rest of the thesis,

we investigate solutions to the I/O pressure, one of the biggest bottlenecks that database systems

traditionally face.

Chapter 4 investigates if Intel Optane Persistent Memory can operate as a drop-in storage re-

placement for databases. Our results are negative, showing that the commercial hardware im-

plementation sometimes is even slower than cheaper and older storage hardware. We showcase

this with numerous experiments both on OLAP and OLTP workloads for a variety of systems.

Furthermore, we summarize our main findings and advice on how to best use PMEM to get the

most out of it.

Finally, Chapter 5 tackles the lack of traditional data structures on QaaS, by introducing server-

less cracking. Serverless cracking uses FaaS to perform simple data transformations to reduce

the latency and cost of infrequent workloads of QaaS. We give actionable recommendations on

how users can take advantage and transform their input data based on their budget and runtime

restrictions.

Overall, this thesis shows how database engines can adapt to the newest trends both on the

hardware and software front, making them a first-class citizen for data processing.

6.2 Future Directions

Modularis extensions. In Chapter 2, we show how the sub-operator approach produces promis-

ing result for relational analytics. A natural extension of this is to cover more ground in the

analytics space, e.g. by expanding Modularis in the ML space. This would require the intro-

duction of additional data processing operators, and the incorporation of more elaborate query

compiler rules. To facilate the analytics unification, we could use compiler infrastructure like

MLIR [188]. MLIR could make the compiler that Modularis uses in the backend more mature

and advanced and also extend Modularis to arithmetic computations. Finally, we can explore

using Farview [181] as an alternative smart storage engine instead of S3Select. By using the

FPGA as a smart buffer cache, we could offload simple selections, projections and aggregations,

thereby transferring a decreased amount of data to the main engine for further query processing.

CXL as a memory pool for data processing. In Chapter 4, we observed the disadvantages of

Optane and we also gave light to the future of the memory hierarchy through CXL after the Op-

tane discontinuation. As CXL is a relatively new technology and the standard is not completely

finalized or brought to production through a commercial implementation, there are many open
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questions. For example, how would similar technologies to Optane (e.g. flash memory) be in-

corporated in the memory hierarchy? Also, several of the characteristics that we found missing

in Optane (e.g. hardware prefetching) could be relevant to CXL, especially as the memory pool

would be larger there. Although, there has been initial work in this area [195], we believe that

CXL would make scale-up databases increasingly relevant [192].

Data-layout advisor for cloud databases. In Chapter 5, we gave initial results on workload-

instance data layout optimization for QaaS, using Faas infrastructure. This paves the way for

an advisor that will be plugged as a module on OLAP engines in the cloud with the intend to

transform data based on monetary and/or latency constraints. As data management in the cloud

transitions more and more to semi-structured data and datalakes [81], and workloads require

more on-the-fly computations and analysis, instance-optimized advisors become more relevant.

The advisor could operate using either mathematical optimization, or it could be based on the

many ML techniques applied to database components [204, 184, 185, 205] over the last few

years.
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hash joins on multi-core cpus: Tuning to the underlying hardware. In ICDE.

[91] Maximilian Bandle and Jana Giceva. 2021. Database technology for the masses: Sub-

operators as first-class entities. PVLDB.

[92] Tiemo Bang, Conor Power, Siavash Ameli, Natacha Crooks, and Joseph M. Hellerstein.

2023. Optimizing the cloud? don’t train models. build oracles!

[93] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015. Rack-

scale in-memory join processing using rdma. In SIGMOD.

[94] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten Hoefler.

2017. Distributed join algorithms on thousands of cores. PVLDB, 10(5).

[95] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten Hoefler.

2017. Distributed join algorithms on thousands of cores. Proceedings of the VLDB En-

dowment, 10(5):517–528.

[96] Claude Barthels, Ingo Müller, Konstantin Taranov, Gustavo Alonso, and Torsten Hoefler.

2019. Strong consistency is not hard to get: Two-Phase Locking and Two-Phase Commit

on Thousands of Cores. PVLDB, 12(13).

[97] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An efficient hybrid

pmem-dram key-value store. Proceedings of the VLDB Endowment, pages 1544–1556.

[98] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. Perma-bench: benchmarking

persistent memory access. Proceedings of the VLDB Endowment, pages 2463–2476.

[99] Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki. 2023. Using cloud functions as

accelerator for elastic data analytics. Proc. ACM Manag. Data, 1(2).

118

https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/ICDE.2013.6544839
http://arxiv.org/abs/2308.06815
https://doi.org/10.1145/2723372.2750547
https://doi.org/10.1145/2723372.2750547
https://doi.org/10.14778/3055540.3055545
https://doi.org/10.14778/3358701.3358702
https://doi.org/10.14778/3358701.3358702
https://doi.org/10.1145/3589306
https://doi.org/10.1145/3589306


Bibliography

[100] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian. 2016.

The end of slow networks: it’s time for a redesign. PVLDB, 9(7).

[101] Spyros Blanas, Paraschos Koutris, and Anastasios Sidiropoulos. 2020. Topology-aware

Parallel Data Processing: Models, Algorithms and Systems at Scale. In CIDR.

[102] OpenAI Blog. 2018. AI and Compute. openai.com/blog/ai-and-compute/.

[103] Peter Boncz, Yannis Chronis, Jan Finis, Stefan Halfpap, Viktor Leis, Thomas Neumann,

Anisoara Nica, Caetano Sauer, Knut Stolze, and Marcin Zukowski. 2023. Spa: Econom-

ical and workload-driven indexing for data analytics in the cloud. In 2023 IEEE 39th

International Conference on Data Engineering (ICDE), pages 3740–3746. IEEE.

[104] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. Tpc-h analyzed: Hidden mes-

sages and lessons learned from an influential benchmark. In Technology Conference on

Performance Evaluation and Benchmarking.

[105] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. Monetdb/x100: Hyper-

pipelining query execution. In CIDR, pages 225–237. www.cidrdb.org.
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[236] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro Garcı́a-López. 2018. Server-
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