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Abstract

As robots evolve beyond industrial settings to address broader challenges, such as
autonomous inspection, home assistance, and search and rescue, there is a growing de-
mand for them to autonomously navigate and perform meaningful tasks in increasingly
large, unstructured, and unknown environments. Despite improvements in hardware,
sensing, and computational technologies enabling greater robot agility and perception,
a significant bottleneck remains in their software, particularly in autonomous mapping
and navigation capabilities. Volumetric maps offer a general, safe, and task-agnostic
representation of the environment but are hindered by their excessive computational
and memory demands, limiting their practical use on small and affordable robots.

This doctoral thesis investigates the use of adaptive representations as a solution to
these challenges, focusing on enhancing the scalability, efficiency, and accuracy of
volumetric maps. Recognizing that the value of volumetric maps is determined by
the benefits they bring to downstream tasks, we study local and global planning as
two representative applications. Leveraging hierarchical, multi-resolution approaches,
this work aims to dynamically balance the trade-off between detail and computational
cost, tailored to the mission’s needs.

The main contribution of this thesis is the development of a mathematically rigor-
ous multi-resolution mapping framework, named wavemap, that adjusts the map’s
resolution based on the environment’s geometry without reliance on heuristics. The
Multi-Resolution Analysis (MRA) theory guarantees that using wavelet decompo-
sition, new observations can safely and efficiently be integrated into the map in a
coarse-to-fine manner. The resulting gains in computational efficiency, together with
early stopping criteria for the integrator, allow us to use a more complex measurement
model that improves the capture of thin objects, thereby enhancing the safety and
reliability of robotic operations. The framework is extensively evaluated on synthetic
and real data, and shown to efficiently reconstruct large-scale environments while
accurately capturing fine details. Beyond significant improvements in terms of scal-
ability and map quality, the framework’s flexibility facilitates its use across a wide
range of sensors and applications.
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Our second and third contributions are efficient methods for reactive obstacle avoid-
ance and deterministic global path planning, utilizing hierarchical representations and
algorithms alongside the wavemap framework to enable rapid, reliable navigation
through complex environments. Experimental evaluations on maps of diverse, real
environments and deployments on a micro aerial vehicle demonstrate the superiority of
these approaches over existing methods in terms of efficiency, accuracy, and flexibility,
underscoring their potential to significantly advance the field of robotic mapping and
navigation.

In sum, this doctoral thesis presents a comprehensive solution to the challenges of
volumetric mapping and planning in robotics, paving the way for more autonomous,
efficient, and versatile robotic systems capable of operating in diverse and changing
environments.
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Zusammenfassung

Während sich Roboter über industrielle Anwendungen hinaus entwickeln, um breitere
Herausforderungen wie autonome Inspektionen, Hilfe im Haushalt und Such- und
Rettungsaktionen anzugehen, wächst die Nachfrage nach ihrer Fähigkeit, autonom in
zunehmend grossen, unstrukturierten und unbekannten Umgebungen zu navigieren
und sinnvolle Aufgaben zu erfüllen. Trotz Verbesserungen in der Hardware, Sensorik
und Computertechnologie, die eine grössere Agilität und Wahrnehmungsfähigkeit der
Roboter ermöglichen, bleibt ein signifikanter Engpass in ihrer Software, insbesondere
bei den Fähigkeiten zur autonomen Kartierung und Navigation. Volumetrische Karten
bieten eine allgemeine, sichere und aufgabenagnostische Darstellung der Umgebung,
sind jedoch durch ihren übermässigen Rechen- und Speicherbedarf eingeschränkt,
was ihren praktischen Einsatz auf kleinen und erschwinglichen Robotern begrenzt.

Diese Doktorarbeit untersucht die Verwendung adaptiver Darstellungen als Lösung für
diese Herausforderungen und konzentriert sich auf die Verbesserung der Skalierbarkeit,
Effizienz und Genauigkeit volumetrischer Karten. In der Erkenntnis, dass der Wert
volumetrischer Karten durch die Vorteile bestimmt wird, die sie für nachgelagerte
Aufgaben bringen, untersuchen wir lokale und globale Planung als zwei repräsentative
Anwendungen. Durch die Nutzung hierarchischer, mehrstufiger Ansätze zielt diese
Arbeit darauf ab, den Kompromiss zwischen Detailgenauigkeit und Rechenkosten
dynamisch auszugleichen, angepasst an die Bedürfnisse der Mission.

Der Hauptbeitrag dieser Arbeit ist die Entwicklung eines mathematisch rigorosen
Mehr-Ebenen-Mapping-Rahmenwerks, benannt als wavemap, das die Kartenauflö-
sung basierend auf der Geometrie der Umgebung ohne Abhängigkeit von Heuristiken
anpasst. Die Theorie der Multi-Resolution-Analyse (MRA) garantiert, dass durch
die Verwendung der Wavelet-Zerlegung neue Beobachtungen sicher und effizient
in die Karte in einer grob-zu-fein Manier integriert werden können. Die daraus re-
sultierenden Gewinne an Recheneffizienz, zusammen mit frühen Stoppkriterien für
den Integrator, ermöglichen den Einsatz eines komplexeren Messmodells, das die
Erfassung dünner Objekte verbessert und somit die Sicherheit und Zuverlässigkeit
von Roboteroperationen erhöht. Das Rahmenwerk wird ausführlich anhand von syn-
thetischen und realen Daten bewertet und zeigt, dass es grossflächige Umgebungen
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Zusammenfassung

effizient rekonstruieren kann, während es feine Details genau erfasst. Neben signifikan-
ten Verbesserungen hinsichtlich der Skalierbarkeit und Kartenqualität erleichtert die
Flexibilität des Rahmens seinen Einsatz über eine breite Palette von Sensoren und
Anwendungen.

Der zweite und dritte Beitrag sind effiziente Methoden zur reaktiven Hindernisvermei-
dung und zur deterministischen globalen Pfadplanung, die hierarchische Darstellungen
und Algorithmen zusammen mit der wavemap Methode nutzen, um eine schnelle, zu-
verlässige Navigation durch komplexe Umgebungen zu ermöglichen. Experimentelle
Bewertungen auf Karten von diversen, realen Umgebungen und Einsatzauf einem
Mikro-Fluggerät demonstrieren die Überlegenheit dieser Ansätze gegenüber bestehen-
den Methoden in Bezug auf Effizienz, Genauigkeit und Flexibilität und unterstreichen
ihr Potenzial, das Gebiet der robotischen Kartierung und Navigation erheblich vo-
ranzubringen.

Zusammenfassend präsentiert diese Doktorarbeit eine umfassende Lösung für die
Herausforderungen der volumetrischen Kartierung und Planung in der Robotik und
ebnet den Weg für autonomere, effizientere und vielseitigere Robotersysteme, die in
der Lage sind, in diversen und sich verändernden Umgebungen zu operieren.
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Chapter1
Introduction

Robots, long used in industrial settings, are now evolving to address broader global
challenges and human welfare needs, taking on diverse tasks like autonomous in-
spection, home assistance, and search and rescue. Moreover, decreasing hardware
costs and advancements in user interfaces make the deployment of commercial and
personal service robots socially and economically viable. This new generation of
robots, equipped with smaller, more accurate sensors and enhanced computational
hardware, is poised to offer greater agility and perception. However, significant gaps
in their software, particularly in their autonomy, hinder their ability to reliably perform
varied tasks and operate in uncontrolled environments.

A fundamental aspect that limits the flexibility and generalizability of robotic systems
is how they model and reason about their surroundings. Mapping has been a key
research area within the robotics community over the past decades. Many successful
solutions represent the world using sparse sets of distinctive features. While such
feature-based maps can scale well to large environments, choosing features is inher-
ently task and environment-dependent. Sparse feature-based methods, therefore, tend
to be limited to mapping and localization, or planning in controlled environments.

On the other end of the spectrum, volumetric maps focus on estimating relevant
properties of the environment, such as occupancy, at all points in space. They can
represent objects of arbitrary shapes and distinguish observed from unobserved space
without requiring simplifying assumptions or prior knowledge. This makes volumetric
maps particularly safe to deploy in unknown or changing environments. Furthermore,
their generality allows a single map to be used for a broad portfolio of tasks. Volumetric
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1 Introduction

maps allow efficient, typically constant time, retrieval of their estimates at query points.
This motivates their frequent use in solving planning problems ranging from collision
avoidance and manipulation to autonomous exploration. Beyond their generality in
terms of use cases, volumetric maps can be updated using a wide range of sensing
modalities – including sonar, radar, LiDAR, and depth cameras – and serve as a good
common ground for sensor fusion. Conceptually, this representation is therefore
well poised to enable autonomous robots to safely complete more complex tasks in
unstructured environments.

Nevertheless, fundamental challenges remain. The computational and memory com-
plexity of storing and integrating new measurements into 3D volumetric maps gen-
erally scales linearly with the mapped volume and cubically as a function of the
resolution. The latter aspect is particularly problematic since the resolution directly
controls the amount of detail a volumetric map can capture and its maximum achiev-
able accuracy. Beyond storing and updating the map, these costs tend to be incurred
again in downstream applications with tasks such as obstacle avoidance and collision
checking often also scaling cubically in the chosen resolution.

Volumetric methods are a popular choice on research platforms that can afford top-of-
the-line computing hardware and where battery life is not a primary concern. However,
the cost-to-benefit ratio is still too low to justify their adoption on commercial de-
vices. Notable exceptions, such as high-end drones or surveying solutions, only use
volumetric representations for small, local areas at low resolutions or during offline
operations.

Motivated by the fact that real environments predominantly consist of free space
and the amount of detail needed on surfaces depends on their relevance to the task,
adaptive volumetric mapping methods offer a promising avenue for improvement.
Multi-resolution representations can, for example, represent uniform areas such as free
space at low resolutions, while reconstructing high-resolution details where needed.

In this thesis, we investigate ways to make the resource usage of volumetric maps
more scalable. Ideally, we would like the representation to allow a granular trade-off
between cost and accuracy that can dynamically be aligned to the mission objec-
tives. Additionally, we examine the impact of this new mapping representation on
downstream tasks. Using local and global planning as two representative examples,
we show how the advantages of the new representation not only benefit geometric
modeling but also reasoning.

In the rest of this section, we will first briefly summarize the author’s key take-
aways from using existing volumetric mapping frameworks in a number of robotics
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1.1 Practical considerations

competitions and projects. We will then translate them into research objectives to
make volumetric mapping systems more useful in practice. Finally, we will briefly
summarize the approach behind each contributing thesis chapter.

1.1 Practical considerations

From our experience, volumetric maps work well across indoor, outdoor, structured,
and natural environments. We have also successfully used them with sonars, depth
cameras, and LiDARs from all major brands. Once a volumetric framework has been
configured for a given sensor setup, little to no parameter changes are required to
accommodate new environments aside from resolution or other scalability-related
adjustments. In the DARPA Subterranean Challenge (SubT), our team, CERBERUS,
used volumetric maps for local, global, and exploration planning [1, 2]. More generally,
every team in SubT used volumetric maps in at least one part of their system. Some
of our team’s robots further used voxgraph [3], based on volumetric submaps, as the
onboard SLAM solution. In conclusion, volumetric maps offer a good balance between
generality and expressiveness. Additionally, although they come with an upfront
computational cost, they often reduce the computational effort required downstream
and can effectively be reused for multiple tasks.

The most important limitation we experienced is that fixed-resolution volumetric
mapping scales poorly. The fact that its memory and computational complexities grow
cubically with resolution is a major limitation in practice. It meant that, for CPU-based
approaches integrating LiDAR inputs, the best achievable map resolution was limited
to around 15cm. GPU-accelerated implementations can overcome computational bot-
tlenecks but run into memory constraints instead. The problem is made worse because
the costs in downstream applications often scale similarly to their underlying map.
Common operations such as ESDF generation, occupancy-based collision checking,
and mesh generation, for example, also scale cubically in the chosen resolution. One
common workaround is to use multiple maps, such as a low-resolution map for global
mapping, planning, and exploration, complemented by a high-resolution local map for
manipulation, traversability estimation, and local planning.

Another important practical issue is that volumetric maps struggle to capture thin
objects, such as ropes, poles, fences, and vegetation, which can be hazardous obstacles.
One reason for this is that voxel-based representations cannot accurately represent
details below their voxel size. Another reason is that most existing measurement
models assume that measurement rays are always one voxel thick. On the one hand,
when the grid resolution is much higher than the beam density, this leads to aliasing
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1 Introduction

artifacts. On the other hand, when the resolution is low, this leads to issues such as
scanning rays eroding the edges of objects that they miss by less than the width of a
voxel.

1.2 Research objectives

The primary goal of this thesis is to enhance the scalability of volumetric mapping.
Our research concentrates on multi-resolution methods, which maintain the general
applicability and user-friendliness of voxel-based approaches while significantly
improving their efficiency and flexibility. We also investigate how these enhancements
can be used to bolster accuracy. Moreover, we believe mapping representations should
be designed to maximize their utility in downstream applications to ensure their
effectiveness and relevance in practice.

To achieve these goals, we define the following core research objectives:

• Mathematically rigorous multi-resolution: The resolution should adapt to
the environment’s geometry without relying on heuristics or hand-tuning.

• Computational efficiency: The representation should be both memory and
computationally efficient to update, store, and query.

• Flexibility: The framework should allow a granular trade-off between accuracy
and computational efficiency that can, ideally, dynamically be adjusted to the
task.

• Synergy with applications: The representation should be easy to use and
benefit downstream tasks.

1.3 Approach

The work in this thesis is split into three main parts. In the first part, we investigate
how to rigorously, efficiently, and accurately model, store, and update multi-resolution
volumetric maps. The second and third parts then focus on how hierarchical volumetric
maps can benefit downstream tasks, taking local planning and global planning as two
representative and complementary examples. Note that the methods developed in all
three parts could be used independently. Although the mapping framework developed
in part one is particularly well-suited as the backbone for parts two and three, both
planners are general and could also be used with other hierarchical volumetric mapping

6



1.3 Approach

frameworks, such as Octomap [4]. In the following, we summarize the ideas behind
each part.

1.3.1 Volumetric mapping

While working toward the first research objective, we identified the Multi-Resolution
Analysis (MRA) conditions, formalized by Mallat and Meyer [5], as a rigorous
mathematical definition for the desired behavior of multi-resolution volumetric maps.
One way to guarantee that the MRA conditions are always satisfied is to represent
the volumetric map using a wavelet basis. As motivated in Section 1.1, existing
volumetric mapping approaches are constrained by memory, computational, and
accuracy bottlenecks. Wavelet decompositions make it possible to represent volumetric
maps with state-of-the-art compression rates without introducing noticeable query
overheads or impacting accuracy, as they are lossless. We further leverage the fact
that they guarantee that all resolution levels implicitly remain synchronized at all
times to derive a coarse-to-fine measurement integration scheme. By progressively
increasing the update resolution only where it is needed, this integrator simultaneously
increases the computational efficiency and achievable accuracy. Finally, we propose
a novel measurement model that explicitly models the angular uncertainty of each
measurement ray. From a theoretical perspective, removing the assumption that rays
are infinitely thin allows us to directly adapt the resolution of map updates based
on their approximation error. In practice, this new model significantly increases
occupancy recall on thin objects, benefiting the safety of downstream tasks.

1.3.2 Local planning

A question that arises naturally is how multi-resolution can be leveraged to efficiently
and accurately summarize subsections of a volumetric map for downstream tasks.
One particularly challenging and relevant problem is summarizing a robot’s direct
surroundings for collision avoidance. Ideally, it would be possible to update such a
summary with low latency, at sensor rate, and efficiently enough to allow the entire
obstacle avoidance process to continuously run in the background. Intuitively fine
details are relevant when they are near the robot, but lower resolutions suffice for
distant objects. This is convenient, as it makes it possible to simultaneously consider
thin local obstacles while also keeping a wide perceptive radius. Based on this insight,
we propose a hierarchical algorithm that efficiently summarizes the obstacles in the
robot’s vicinity as multi-resolution cubes whose size decays in function of their
distance to the robot. Leveraging the concept of Riemannian Motion Policies (RMPs),
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we then attach one policy to each multi-resolution obstacle and combine them in
parallel to obtain a highly efficient reactive collision avoidance planner. Through
numerical derivations, we analyze the approximation error introduced by considering
distant obstacles at a lower resolution. We then demonstrate how our reactive collision
avoidance policy can easily be combined with additional RMPs to satisfy additional
objectives, such as goal-seeking, to form a complete navigation system. Extensive
evaluations are performed in simulation to analyze how the system compares to
existing methods in terms of latency, success rates, and resource usage. Finally, the
system is used to guide a real Micro Aerial Vehicle (MAV) through an obstacle course
to study how it performs in practice.

1.3.3 Global planning

In the final research segment of this thesis, we investigate how multi-resolution can
be used to increase the efficiency and efficacy of global path planning. Our focus
centers on search-based methods, due to their deterministic nature and their ability
to either find the optimal solution or report that the planning query is infeasible in
finite time. A major drawback of using search-based planners is their execution time,
in contrast to sampling-based planners which are significantly faster in large, open
environments. Drawing inspiration from the ability of hierarchical volumetric maps
to completely yet compactly capture an environment’s inherent structure, we study
whether multi-resolution can also be used to increase the efficiency of search-based
planning. Concretely, we introduce a multi-resolution extension of Theta* [6], a slow
but accurate any-angle planner. Using a dynamic, resolution refinement scheme and
a special initialization procedure, our multi-resolution planner efficiently searches
the shortest path in a coarse to fine manner, while directly controlling its worst-case
sub-optimality with respect to Theta* running at the highest resolution. We extensively
evaluate our proposed multi-resolution planner on a variety of real maps – from tight
indoor spaces to large, structured, and unstructured outdoor environments. The critical
role of each component of our approach is quantified through ablations. Finally, we
compare the success rates, path quality, and execution times of our multi-resolution
planner to a representative range of search and sampling-based planners to get a
comprehensive understanding of its performance.
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1.4 Contributions

1.4 Contributions

The core contributions of this thesis are organized into three parts, corresponding to
the research chapters of this thesis:

• Volumetric mapping
The main contribution of this thesis is wavemap, a hierarchical volumetric
mapping framework inspired by multi-resolution analysis. The MRA theory
guarantees that when the map is represented using wavelet decomposition,
new measurements can safely and very efficiently be integrated in a coarse-
to-fine manner. The resulting gains in computational efficiency, together with
early stopping criteria for the integrator, allow us to use more complex sensor
models. We therefore propose to use a new angular uncertainty-aware model
to increase accuracy. In experiments on synthetic RGB-D and real-world 3D
LiDAR data, we demonstrate that our proposed method achieves high-quality
results while being efficient in terms of memory and compute requirements. We
also demonstrate how our method can incorporate observations from multiple
sensors into a single map with per-sensor resolution. This allows the use of a
single map representation for tasks that would have required several dedicated
maps in the past. This work is the subject of publication [7].

• Local planning
Our second contribution is a method to enable efficient, reactive obstacle avoid-
ance in changing or unknown 3D environments. Following the intuition that
distant geometry does not need to be considered at the same resolution as nearby
obstacles, it leverages multi-resolution to summarize the robot’s surroundings.
A hierarchical algorithm is presented to efficiently extract multi-resolution ob-
stacle summaries from volumetric mapping frameworks such as wavemap. We
then show how the summary can be turned into a reactive collision avoidance
policy using RMPs. Numerical derivations show that reducing the resolution
of distant obstacles makes it possible to consider a much larger perceptive
radius, while only introducing a negligible approximation error. An important
advantage of using RMPs is that it makes it easy to combine our reactive col-
lision avoidance policy with RMPs satisfying additional objectives, such as
goal-seeking, to form a complete navigation system. Extensive statistical evalu-
ations on indoor and outdoor maps show that the proposed system performs on
par with optimization-based planners such as CHOMP [8] while reducing the
planning time by 50× and requiring no pre-processing or post-processing steps,
such as Euclidean Signed Distance Field (ESDF) generation and trajectory
tracking control. Finally, we deploy the system on a real MAV with an Nvidia
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Jetson AGX Orin and show that it runs at 200Hz, with an end-to-end latency of
36ms, using only 2.4 threads for mapping and planning. The drone is shown to
successfully negotiate an indoor obstacle course. This work is the subject of
publication [9].

• Global planning
The final contribution of this thesis is an efficient, accurate, and complete
global planner. We start by studying how multi-resolution can be used to store
the search algorithm’s intermediate solutions more efficiently and introduce
a representation that combines the efficiency of octrees with the accuracy of
any-angle planning representations such as Theta* [6]. We then introduce
a complementary algorithm that efficiently explores the search space by ex-
ploiting the inherent structure of hierarchical occupancy maps. The algorithm
operates in a coarse to fine manner and dynamically increases the resolution
where needed to control its worst-case sub-optimality. A special initialization
procedure is introduced to close the accuracy gap between our multi-resolution
planner and Theta*, without compromising its efficiency. Extensive evalua-
tions are performed across a variety of real indoor and outdoor environments.
Through ablations, we quantify the importance of our method’s core compo-
nents and show how they allow users to intuitively trade off some optimality
for lower runtimes. We further compare our proposed planner to a range of
well-established search and sampling-based planners. The results show that
our method reliably finds shorter paths than RRTConnect and RRT* in all
environments while achieving significantly higher success rates in confined
spaces. We also show that our multi-resolution planner empirically maintains
the completeness guarantees of search-based planners running at the highest
resolution, while being significantly faster. In particular, our method is up to 3
orders of magnitude faster than Theta* when allowed to find solutions that are
longer by 2% at worst and 0.1% on average.

1.4.1 Publications

This section lists the publications to which the author contributed during his doctorate.

Discussed in this Thesis

The following publications are directly related to the main contributions of this thesis
and their results are extended in the document at hand.
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1.4 Contributions

• V. Reijgwart, C. Cadena, R. Siegwart and L. Ott, “Efficient volumetric mapping
of multi-scale environments using wavelet-based compression,” RSS 2023

• V. Reijgwart*, M. Pantic*, R. Siegwart, L. Ott, “Waverider: Leveraging Hierar-
chical, Multi-Resolution Maps for Efficient and Reactive Obstacle Avoidance,”
ICRA 2024

Related Publications

The results of the following publications motivate the work presented in this thesis.
However, none of their content is included here.

• V. Reijgwart*, A. Millane*, H. Oleynikova, R. Siegwart, C. Cadena and J. Nieto,
“Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance
Function Submaps,” in RA-L 2020

• L. Gasser, A. Millane, V. Reijgwart, R. Bähnemann and R. Siegwart, “Voxplan:
A 3D Global Planner using Signed Distance Function Submaps,” ICRA 2021

• L. Schmid*, V. Reijgwart*, L. Ott, J. Nieto, R. Siegwart and C. Cadena, “A
Unified Approach for Autonomous Volumetric Exploration of Large Scale
Environments Under Severe Odometry Drift,” RA-L 2021

• M. Kulkarni et al., “Autonomous Teamed Exploration of Subterranean Environ-
ments using Legged and Aerial Robots,” ICRA 2022

• M. Tranzatto et al., “CERBERUS: Autonomous Legged and Aerial Robotic
Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean
Challenge,” Field Robotics 2022

• M. Tranzatto et al., “Team CERBERUS Wins the DARPA Subterranean Chal-
lenge: Technical Overview and Lessons Learned,” In review

Other Publications

The author also contributed to the following publications which are not directly related
to the work presented in this thesis.

• J. Kabzan et al., “AMZ Driverless: The full autonomous racing system,” Journal
of Field Robotics 2020

• L. Andresen et al., “Accurate Mapping and Planning for Autonomous Racing,”
IROS 2020
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• S. Srinivasan, I. Sa, A. Zyner, V. Reijgwart, M. Valls and R. Siegwart, “End-to-
End Velocity Estimation for Autonomous Racing,” RA-L 2020

• P. Pfreundschuh, H. Hendrikx, V. Reijgwart, R. Dubé, R. Siegwart and A.
Cramariuc, “Dynamic Object Aware LiDAR SLAM based on Automatic Gen-
eration of Training Data,” ICRA 2021

• A. Cramariuc et al., “maplab 2.0 – A Modular and Multi-Modal Mapping
Framework,” RA-L 2023

1.4.2 Open-Source Software

Reference implementations for all of the works discussed within this thesis have been
released open-source, to allow others to build on its results. The author also released
or contributed to the development of several other open-source packages.

• Voxblox [10]: a fixed-resolution, voxel-based volumetric mapping library fo-
cusing on truncated and Euclidean distance fields.
https://github.com/ethz-asl/voxblox

• A package to generate ground truth volumetric maps from meshes or simulated
environments, used for accuracy evaluations [3] and simulations [11].
https://github.com/ethz-asl/voxblox_ground_truth

• A package to motion-undistort LiDAR pointclouds based on an odometry input.
https://github.com/ethz-asl/lidar_undistortion

• Voxgraph [3]: a globally consistent volumetric mapping framework leveraging
a collection of submaps aligned through graph optimization.
https://github.com/ethz-asl/voxgraph

• GLocal [1]: a framework for efficient volumetric exploration planning under
severe odometry drift.
https://github.com/ethz-asl/glocal_exploration

• COHORT: a multi-agent volumetric exploration planner, presented together
with GBPlanner 2.0 [2].
https://github.com/ntnu-arl/cohort_exploration

• Wavemap [7]: an efficient and accurate multi-resolution, multi-sensor 3D
occupancy mapping framework, presented in Chapter 3.
https://github.com/ethz-asl/wavemap
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• Waverider [9]: an efficient, low-latency reactive collision avoidance planner
with a wide perceptive radius, presented in Chapter 4.
https://github.com/ethz-asl/waverider

• Wavefinder: an efficient and complete search-based global planner leveraging
multi-resolution, presented in Chapter 5.
https://github.com/ethz-asl/wavefinder

1.4.3 Teaching and Student Supervision

During his doctoral studies, the author had the opportunity to be a teaching assistant
in “Autonomous Mobile Robots” (2020, 2021, 2022) and “Robot Dynamics” (2019,
2023). Furthermore, he supervised the following student projects:

Master Theses, 6-month, full-time

• Bagheri, Davide (Spring 2020): “Autonomous globally consistent exploration
using submaps collections”

• Gasser, Laura (Fall 2019): “Global Path Planning in SDF Submaps”

• Camus, Amaury (Fall 2019): “Optimization-Based Torso Trajectory Planning
for Online Obstacle Avoidance”

• Dall’Olio, Alberto (Fall 2019): “Adaptive Deep Stereo Network for Collision
Avoidance”

• Pfreundschuh, Patrick (Spring 2020): “Dynamic Object Detection for Robust
and Accurate LiDAR SLAM”

• Brits, Sonja (Spring 2020): “Semantics-Based Localization”

• Gulich, Lionel (Spring 2021): “Navigation Planning for wheeled Robots in
multi-layered Environments”

• Brandemuehl, Adrian (Spring 2021): “Tightly Coupled LiDAR-Visual-Inertial
Odometry”

• Phillips, Trevor (Spring 2021): “Vision-based 3D Perception for Aerial Terrain
Reconstruction”

• Pasini, Gianni (Spring 2021): “Autonomous Exploration in Confined Spaces
with a Tiltable Tri-Copter”
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• Cheema, Mansoor (Fall 2021): “Leveraging Deep Learnt Scene Completion for
Fast Exploration Planning and Mapping”

• Marti, Dominic (Fall 2021): “Underwater Volumetric Occupancy Mapping with
Imaging Sonar”

• Anthanasiadis, Ioannis (Spring 2022): “Towards Spatio-temporally Consistent
Volumetric Mapping using Panoptic Submaps with Plane Constraints”

Perception and Learning for Robotics (PLR) student project, 6-months, 4 ECTS credits

• Kieffer Max and Marc Zünd (Spring 2024): “Neural Environment Encoding
with Hierarchical Map Representations”

1.5 Organization

This thesis is organized into six chapters. Chapter 2 provides a brief introduction to the
theory behind Multi-Resolution Analysis and orthogonal wavelet bases. Building on
these mathematical tools, the main contribution of this thesis, a hierarchical volumetric
framework, is presented in Chapter 3. We then investigate how hierarchical volumetric
maps can be used to increase the efficiency of two representative downstream tasks:
local planning, in Chapter 4, and global planning, in Chapter 5. Finally, Chapter 6
summarizes the main findings of this thesis and provides an outlook for possible future
research directions.
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Chapter2
From Multi-Resolution Analysis to Wavelets

This chapter is intended as a primer on wavelet theory, providing additional context for
Chapter 3. We start with a short introduction to the MRA conditions, before showing
how orthogonal wavelet bases fulfill these requirements. We then discuss how wavelet
decompositions can efficiently be computed using the Fast Wavelet Transform. For
readers who are interested in learning more about sparse signal processing using
wavelets, we warmly recommend [5, 12]. Note that an intuitive explanation of the
MRA conditions in the context of volumetric mapping is provided in Section 3.3.

2.1 Multi-Resolution Analysis

Multi-resolution representations are regularly used in the context of computer vision
and robotics. For example, in Laplacian image pyramids introduced by Burt and
Adelson [13]. Mallat and Meyer [5], formalized the expected behavior of multi-
resolution representations through the MRA conditions:

∀(j, k) ∈ Z2, f(x) ∈ Vj ⇔ f(x− 2jk) ∈ Vj (2.1)

∀j ∈ Z, Vj+1 ⊂ Vj (2.2)

∀j ∈ Z, f(x) ∈ Vj ⇔ f(x/2) ∈ Vj+1 (2.3)

lim
j→∞

Vj =

∞⋂
j=−∞

Vj = {0} (2.4)
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2 From Multi-Resolution Analysis to Wavelets

lim
j→−∞

Vj = closure

( ∞⋃
j=−∞

Vj

)
= L2(R) (2.5)

V0 admits a Riesz basis (2.6)

where the sequence of subspaces {Vj}j∈Z corresponds to the map’s representations at
increasing resolution levels 2j , referred to as scales, and each Vj is a closed subspace
of Lebesgue space L2. Starting with condition 2.6, the most common Riesz basis used
in robotics consists of box functions arranged to span the cells of a regular grid. In this
case, the scale 2j corresponds to the cell width. Condition 2.1 ensures self-similarity
in space. Specifically, if subspace Vj can represent function f(x), it can also represent
the same function shifted by integer multiple of the cell size. Condition 2.2 states
that the subspaces are nested. In other words, any function contained in subspace
Vj+1 must also be contained in next finer subspace Vj and by extension in all finer
subspaces. Condition 2.3 ensures self-similarity in scale. If Vj contains f(x), Vj+1

must be able to contain f(x) dilated by 2. Finally, conditions 2.4 and 2.5 ensure
completeness. At the coarsest scale (j → ∞), Vj only contains the zero element,
whereas refining the scale (j → −∞) eventually allows us to represent any signal in
L2.

2.2 Orthogonal wavelet bases

The principal idea behind wavelets is that they represent the difference between the
consecutive resolutions of a signal’s MRA. Formally, they span a second subspace
Wj which is the orthogonal complement to Vj , such that Vj ⊕Wj = Vj−1 where
⊕ is the vector-space direct sum operator. In words, this means that by combining
a signal’s representation Vj with its wavelet details at the same resolution, Wj , we
obtain the signal’s representation at the next higher resolution Vj−1.

An orthogonal basis for all Vj can be obtained by translating and dilating a single
function ϕ, referred to as the scaling function, as ϕjk(x) =

1
2j
ϕ(x−2jk

2j
). The scaling

function can be found by orthogonalizing the Riesz basis of V0 as described in [5].
In similar fashion, an orthogonal basis for Wj can be obtained by translating and
scaling a single wavelet function ψ as ψjk(x) =

1
2j
ψ(x−2jk

2j
). One condition that any

wavelet function has to fulfill in order to be admissible is that its average must be zero∫∞
−∞ ψ(x)dx = 0. More generally, the scaling functions and wavelet functions can be

seen as complementary low and high-pass filters that, when combined, can perfectly
reconstruct the signal from the next finer scale. Since wavelet bases form a valid
MRA, this concept can be applied recursively and the entire map can be represented
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2.2 Orthogonal wavelet bases

by stacking a single scaling function at the coarsest scale with a hierarchy of wavelet
functions at increasing scales.

Note that the Riesz basis consisting of box filters arranged to span the cells of a regular
grid, mentioned previously, is already orthogonal. In fact, the unit box filter can be
used as a scaling function

ϕ(x) =

{
1 0 ≤ x < 1

0 otherwise
(2.7)

and doing so directly leads to the Haar basis [5]. The corresponding Haar wavelet
function can be derived by finding ϕ’s orthogonal complement while enforcing the
MRA conditions and is given by

ψ(x) =


−1 0 ≤ x < 1/2

1 1/2 ≤ x < 1

0 otherwise
(2.8)

Orthogonal wavelet bases of R can be extended to separable orthogonal bases b for
Rn by combining the scaling and wavelet functions along each dimension as

b =

{
n∏

k=1

ϕ(xk)
okψ(xk)

1−ok

}
∀o∈{0,1}n

(2.9)
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2 From Multi-Resolution Analysis to Wavelets

2.3 The Fast Wavelet Transform

The discrete wavelet transform for a function f and wavelet ψ is defined as the
projection of f onto the set of all integer scalings and translations of the wavelet
function {ψjk}j,k∈Z. Each wavelet coefficient djk is thus computed as

djk =

∞∑
x=−∞

f(x)
1

2j
ψ

(
x− 2jk

2j

)
(2.10)

where the summation could be replaced by an integral if the domain of f is real-valued
instead of discrete. Note that this transform is linear and, for orthogonal wavelets,
orthogonal.

The coefficients djk can efficiently be computed using the Fast Wavelet Trans-
form (FWT) algorithm [5], which exploits the hierarchical MRA structure to remove
redundant operations. The FWT is initialized by projecting f onto the scaling func-
tions at the finest scale a0k =

∑∞
−∞ f(x)ϕ (x− k) or with a good approximation

thereof. At each iteration, these coefficients are then filtered and downsampled to
obtain the wavelet and scaling coefficients at the next coarser scale. These iterations
are typically repeated until only 1 scaling coefficient is left, or a desired number of
levels is reached. For wavelets with finite spatial support and functions f sampled atN
points, the FWT computes the full wavelet decomposition in O(N) time. Extending
the FWT to only (de)compress regions-of-interest or single cells is straightforward
and very efficient if the spatial support of the chosen wavelet is small, as is the case
for the Haar wavelet.
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Chapter3
Hierarchical volumetric mapping

Volumetric maps are widely used in robotics due to their desirable properties in ap-
plications such as path planning, exploration, and manipulation. Constant advances
in mapping technologies are needed to keep up with the improvements in sensor
technology, generating increasingly vast amounts of precise measurements. Handling
this data in a computationally and memory-efficient manner is paramount to repre-
senting the environment at the desired scales and resolutions. In this chapter, we
express the desirable properties of a volumetric mapping framework through the lens
of multi-resolution analysis. This shows that wavelets are a natural foundation for
hierarchical and multi-resolution volumetric mapping. Based on this insight we design
an efficient mapping system that uses wavelet decomposition. The efficiency of the
system enables the use of uncertainty-aware sensor models, improving the quality
of the maps. Experiments on both synthetic and real-world data provide mapping
accuracy and runtime performance comparisons with state-of-the-art methods on both
RGB-D and 3D LiDAR data. The framework is open-sourced1 to allow the robotics
community at large to explore this approach.

The work described in this chapter is presented in the following publication:

• Reijgwart, V., Cadena, C., Siegwart, R., & Ott, L. (2023). Efficient volumet-
ric mapping of multi-scale environments using wavelet-based compression.
Proceedings of Robotics: Science and Systems

1https://github.com/ethz-asl/wavemap
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3 Hierarchical volumetric mapping

3.1 Introduction

As robots move from tightly controlled spaces into our everyday lives, there is a
growing need for them to autonomously navigate and work in increasingly large, un-
structured, and unknown environments. For reliable deployments and robust operation
over extended periods of time, robots need to build and maintain their representation
of the world using only onboard sensing and computing. Doing this in a timely manner
on compute restricted devices using sensors producing large amounts of data is a
continual challenge in robotics.

Dense geometric environment representations are widely used to facilitate tasks
ranging from navigation to inspection and manipulation, while also serving as building
blocks for other representations. Robotics is a particularly challenging field for such
representations, due to the demands placed on systems with limited computational
resources. For example, building a map of an unknown environment while localizing
in it with Simultaneous Localization And Mapping (SLAM) requires the ability to
update the map incrementally at interactive rates. To support high-level tasks such as
exploration and navigation the representation must also differentiate between unknown
space and observed (free or occupied) space. Finally, the map must be able to model
arbitrary geometry with sufficient accuracy to guarantee safety when unexpected
environmental structures or objects are encountered.

Volumetric map representations can be updated incrementally and explicitly represent
unknown space. Furthermore, if a sufficiently high resolution is chosen, they can
also represent object surfaces and unknown space boundaries of arbitrary topology.
Beyond robotics, volumetric representations are commonly used in 3D reconstruction,
reality capture, and augmented reality applications. However, a major drawback of
volumetric representations is that their memory usage in naive implementations grows
linearly with the observed volume and cubically with the chosen resolution. Several
research efforts propose to use multi-resolution representations, often based on trees,
and demonstrate significant improvements. In this chapter, we extend these efforts
by approaching the problem from a formal signal processing and data compression
perspective. Specifically, we propose to use wavelet compression to obtain a hier-
archical volumetric representation. Using Haar wavelets we achieve state of the art
lossless compression performance, while also allowing simple yet efficient updates
and queries. This is achieved by compressing the occupancy information using a
Haar wavelet decomposition and storing the individual decomposition components in
a hierarchical data structure. The wavelet transform’s linearity makes it possible to
perform measurement updates directly in the map’s compressed representation. Fur-
thermore, when performing map updates we know that all resolution levels of the map
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Figure 3.1: A reconstruction created by our proposed hierarchical volumetric mapping
framework, wavemap, highlighting its ability to accurately capture fine objects while
also efficiently compressing free space as shown by the adaptive resolution along the
transparent slice.

are always up to date and in a valid state due to the Haar basis’ orthogonality property.
This obviates the need to perform maintenance operations or manual compression
passes that are typically seen in other multi-resolution mapping frameworks.

Another trade-off made by many existing volumetric mapping methods is the reliance
on simplified measurement models to achieve real-time update rates. A common
approach is to use discrete occupancy updates, that systematically inflate obstacles
and do not allow for surfaces to be reconstructed with sub-voxel accuracy. Mea-
surement models based on Truncated Signed Distance Fields (TSDFs) overcome the
latter limitation but use a projective distance heuristic. Such approaches have a hard
time reconstructing thin objects such as branches, cables, or fences. Furthermore,
the implied assumption of infinitely thin rays, underlying these observation models,
leads to aliasing artifacts in regions where the ray density is low compared to the
voxel resolution. In addition to negatively affecting the reconstruction quality, the
resulting high entropy regions are hard to compress. Besides alleviating the challenges
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mentioned above, modeling soft beams provides an opportunity to incorporate an-
gular uncertainties from sensor calibration and pose estimation into the volumetric
reconstruction process. Thanks to the computational benefits of the Haar wavelet
representation we can adopt a continuous occupancy measurement model, accounting
for angular and range uncertainty, inspired by the work of [14].

In order to process data at sensor rate we introduce a specialized measurement inte-
gration algorithm that exploits a hierarchical measurement update approach with the
information provided by the map itself. The proposed algorithm speeds up measure-
ment integration while guaranteeing that the results are identical to a naive integrator
applying the same measurement updates at the highest resolution throughout the field
of view.

In summary, the main contribution of this chapter is a volumetric mapping system that
uses:

• A wavelet-based hierarchical representation, that is guaranteed to keep the
hierarchy consistent at all times;

• A continuous occupancy measurement model accounting for range and angular
uncertainties;

• A highly-efficient coarse-to-fine measurement integrator that adapts to the
observed structure;

The proposed framework is extensively evaluated on synthetic and real-world datasets
with comparisons to several state-of-the-art methods. The results demonstrate that
our approach is memory efficient yet produces high-quality maps, all while being
computationally efficient. The entire framework is open-sourced to enable the robotics
community to build on these results.

3.2 Related work

3.2.1 Map model

Two approaches are commonly used to represent maps in robotics [15], sparse feature-
based maps and dense maps. The first category uses sparse sets of distinctive features
[16, 17] and excels at representing large environments but struggles to model the
connectivity of surfaces and distinguish between free and unknown space. This
makes it ideal for large scale mapping and localization tasks, but limits its use for
manipulation, motion planning, and exploration tasks. The second paradigm uses a
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large number of geometric elements, such as as points [18, 19], surfels [20–24], or
meshes [25] to model observed obstacles. Voxels, discretizing the space into squares
or cubes of fixed size, are another common geometric primitive used to model both
occupancy [4, 26] and signed distance information [27–30].

3.2.2 Measurement model

Approximations of the sensor’s physical operation have been widely explored. Early
approaches modeled uncertainties of the sensors explicitly [26]. Other approaches
aim to achieve specific map properties, such as sharp map boundaries [14]. However,
when building 3D maps using precise sensors the computational cost incurred by these
sensor models motivated the development of simpler ray-based models. These models
treat observations as thin rays tracing through the world [4, 29]. Machine-learning
based methods exploit more complex relationships, such as inverse rendering [31, 32]
or beam-to-beam interactions [33].

3.2.3 Map storage

The most common way to store volumetric maps is to discretize the space using a
voxelgrid, i.e. a regular grid with fixed size voxels. In the beginning grids with a
single fixed resolution [26, 28] were used, but over time spatial data structures, such
as hashed voxel blocks [34], trees [4], or hybrids thereof [35] were adopted. These
structures fit the observed volume more tightly, can grow dynamically, and improve
runtime. To model expansive maps with varying levels of detail, multi-resolution maps
[4, 36–39] are widely used due to being memory efficient and capable of adapting to
the needed resolution. Many multi-resolution representations are also hierarchical,
allowing users to query the map at varying resolutions [4, 38]. Taking a signal
processing perspective on compact map storage leads to the use of wavelet transforms
[40], which are inherently multi-resolution and hierarchical, or the discrete cosine
transform [41]. Recent learning-based methods, such as NERF [31] or occupancy
prediction networks [42, 43], take a different approach and learn the coefficients of a
neural network that predicts map information at arbitrary coordinates.

3.2.4 Map updates

The manner in which maps are updated with new observations is crucial for the
efficiency and map quality. Early volumetric frameworks evaluated the measurement
model for all voxels in the observed volume [26, 28]. This was improved by tracing
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rays from the sensor’s center to each measured point and updating the voxels that are
intersected by the ray [4, 29]. Advances in sensor technology, enabling high resolution
maps spurred further efficiency improvements, such as ray-tracers that bundle [29]
or sub-sample [39, 44] similar rays, or rate limit voxel updates [44]. While efficient,
these integrators can produce “holes” in the map depending on the sensor’s ray
density. This motivates the use of projective integrators which avoid this problem
by interpolating the depth image [14, 27]. Other approaches to avoid resolution-
related issues include multi-resolution integrators, ray-tracing [39] or projective [37],
which reduce the update resolution with distance, as well as methods analyzing the
measurement update regularity [38, 45]. While efficient, hierarchical volumetric maps
require maintenance to keep the information in the different levels coherent. Octomap
[4] employs a fine-to-coarse scheme, integrating measurements at the finest resolution
and synchronizing coarser levels in a maintenance pass. Supereight [37, 38] performs
multi-resolution updates and synchronizes the remaining levels using an upward and
downward propagation scheme.

In contrast to others, our volumetric ray-tracing method uses a wavelet decomposition-
based representation which implicitly synchronizes all hierarchy levels at once. Addi-
tionally, unlike most ray-tracing methods we use a continuous sensor model, taking
angular uncertainty into account, to improve map accuracy.

3.3 Multi-Resolution Analysis and Wavelets

Multi-resolution representations have been the subject of intensive study by communi-
ties ranging from computer vision [13] to physics and mathematics [5, 12]. Mallat
and Meyer formalized the expected properties of multi-resolution representations as
the MRA conditions [5]. The full MRA conditions are summarized in Section 2.1. In
informal terms, they state that increasing the resolution should only add detail and
eventually make it possible to represent any signal. Two further requirements are
self-similarity in space and in scale. In a mapping context, these imply that the map
should behave the same regardless of our frame of reference and choice of units.

A corollary of the fact that increasing the resolution only adds information is that,
in areas that are stored at multiple resolutions, the lower resolutions do not carry
any unique information and storing them explicitly is redundant. This motivates
the use of wavelet decompositions, which allow us to work with maps that form
valid MRAs while only storing and processing the differences between the resolution
levels. A given wavelet decomposition is characterized by its chosen scaling function
and complementary wavelet function. In this work, we focus on the Haar wavelet
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and scaling function, which form an orthogonal basis. A summary of orthogonal
wavelet bases is provided in Section 2.2. This orthogonality is particularly beneficial
because it guarantees that any given volumetric map is characterized by a unique
combination of wavelet coefficients. Thus, there are no redundant coefficients that can
go out of sync and manually have to be updated after integrating new measurements.
Another interesting property of Haar wavelets is that the basis resulting from its scaling
functions correspond to box functions arranged to span the cells of a regular grid.
Therefore, Haar decompositions can represent anything a regular grid map can, while
bringing significant benefits in terms of compression and implicitly maintaining the
hierarchy’s consistency.

3.4 Method

In the following, we describe the components of our approach. We first explain how the
map’s occupancy posterior can be efficiently updated in its compressed state, thanks to
the properties of the wavelet transform. Next, we derive our continuous sensor model,
which captures range and angular uncertainties associated with the measurements.
After that, we derive an error bound which enables early stopping during the coarse-to-
fine observation integration process. Further performance improvements are obtained
by skipping updates that do not change the state of the map. Finally, we illustrate how
all these pieces fit together with an algorithmic overview.

3.4.1 Measurement integration

In the following we will explain how the use of wavelets enables efficient measure-
ment integration. As each new beam endpoint measurement z arrives, the map’s
Bayesian occupancy posterior p(mx|z1:t), estimated at each point x in the map m,
can incrementally be updated using

Lp(mx|z1:t) = Lp(mx|z1:t−1) + Ls(mx|zt), (3.1)

where s(mx|zt) is the sensor’s inverse measurement model and the log-odds formula-
tion, Lp = log p

1−p
, is used to make the update linear. As the wavelet transformW is

also linear, the update equation for all cells in the map becomes:

W (Lp(m|z1:t)) =W (Lp(m|z1:t−1)) +W (Ls(m|zt)) . (3.2)

Therefore, once the compressed measurement updateW (Ls(m|zt)) is computed,
the map can be updated directly in wavelet space. This is avoids the costly process,
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3 Hierarchical volumetric mapping

employed by other methods, of decompressing the map’s observed area, applying the
update, and compressing the map again. ComputingW (Ls(m|zt)) is efficient thanks
to the FWT (Section 2.3), which is typically initialized by computing the orthogonal
projection of the original signal onto the scaling functions at a pre-determined finest
resolution.

Since the wavelet transform itself is lossless, the reconstruction error is fully deter-
mined by how well the initial FWT projection approximates the original update. Most
applications use a constant finest resolution, but this is not mandatory. Given that
inverse sensor models tend to be smooth throughout most of the observed volume, only
raising the resolution close to surfaces would improve efficiency and the maximum
achievable detail.

3.4.2 Measurement models

In order to derive multi-resolution sampling and integration approaches, it is important
that the chosen inverse measurement model s(mx|zt) is well-defined at all points
x in the observed volume. We propose to extend the continuous occupancy model
introduced in [14] by modeling the angular uncertainty of each measured beam, in
addition to range uncertainty. We model the probability of occupancy s(mx|z) at
a point x for a single beam z by correlating the probability of occupancy given the
beam’s true endpoint s̄(mx|z̄) with the distribution of the true endpoint position given
a noisy observation o(z̄|z), i.e.:

s(mx|z) =
∫
S
s̄(mx|z̄)o(z̄|z)dz̄, (3.3)

where x, z̄, and z are expressed in sensor coordinate space S, and the beam start point
is at its origin. Extending [14] to include angular uncertainty, we define s̄(mx|z̄) as

s̄(mx|z̄) = s̄(mx|z̄r, z̄θ)

=


0 xr < z̄r ∧ |xθ − z̄θ| ≤ τθ
1 z̄r ≤ xr ≤ z̄r + τr ∧ |xθ − z̄θ| ≤ τθ
1
2

otherwise
(3.4)

where τ is an assumed surface thickness parameter in sensor coordinates, see Fig.
3.2a for a visualization. The subscript r refers to the axis perpendicular to the sensor’s
image plane, whereas θ refers to the offset along the image plane2.

2For pinhole camera projection models, r corresponds to the depth coordinate and θ to the reprojection error.
For spherical projection models, e.g. certain LiDARs, r refers to the range coordinate and θ to the relative
angle.
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Our model assumes that the noise on the measurement beam endpoint position is
normally distributed in sensor coordinates, as

o(z|z̄) ∼ N (z̄,Σ), (3.5)

where Σ is the measurement noise covariance matrix. If Σ is diagonal and z̄ has a
uniform prior, the r and θ components are independent and eq. 3.5 can be simplified
as follows:

o(z̄|z) = o(zr|z̄r)o(zθ|z̄θ) = N (z̄r, σr)N (z̄θ, σθ). (3.6)

We approximate the normal distributions with quadratic B-splines, as in [14], such
that o(z|z̄) ≃ q( z̄−z

σ
), where

q(t) =


1
16
(3 + t)2 −3 ≤ t ≤ −1

1
8
(3− t2) −1 < t < 1

1
16
(3− t)2 1 ≤ t ≤ 3

0 otherwise

. (3.7)

The distribution of the true beam endpoint position given a noisy measurement (Fig.
3.2b) then becomes:

o(z̄|z) = q

(
zr − z̄r
σr

)
q

(
zθ − z̄θ
σθ

)
. (3.8)

As motivated in [14], we match the surface thicknesses to half the width of their
respective B-splines, i.e. τr = 3σr and τθ = 3σθ . This ensures that the measurement
model is continuous and that Lp(mx|z1:t) converges to 0 if x lies on an object’s
surface.

After substituting 3.4 and 3.8 into 3.3, the full inverse measurement model (Fig. 3.2c)
becomes:

s(mx|z) =
∫ ∞

0

∫ ∞

−∞
s̄(mx|z̄r, z̄θ)q(v)q(w)dz̄θ dz̄r

=
1

2
+

(
Q(v)− Q(v − 3)

2
− 1

2

)(
Q(w + 3)−Q(w − 3)

)
, (3.9)

where Q(t) refers to the cumulative distribution of q(t), i.e. the cubic B-splines
resulting from Q(t) =

∫ t

−∞ q(u)du, and v = zr−z̄r
σr

, w = zθ−z̄θ
σθ

.
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(a) (b) (c) (d)

Figure 3.2: Figure illustrating our proposed models for a) the occupancy given the
true beam endpoint s̄(mx|z̄) (eq. 3.4), b) the position of the true endpoint given a
noisy measurement o(z̄|z) (eq. 3.8), c) the complete inverse measurement model
s(mx|z) (eq. 3.9), and d) the local maxima used to derive the worst-case error bounds.
Values of 0.0, 0.5 and 1.0 are shown in white, grey and black, respectively. The true
beam endpoint is indicated in red. Uncertainties are exaggerated for illustration.

For depth cameras, the depth uncertainty is often set as σr(x) = κrx
2
r , where κr

depends on the sensor setup and post-processing algorithms. For laser-based sensors,
the range error is usually assumed to not vary with range, thus σr = κr where κr is
indicated on the sensor’s datasheet.

Note that the shape of our proposed model resembles the original occupancy mea-
surement model proposed by Elfes [26] for 2D sonars, which also considered angular
uncertainty. The key difference is that Elfes’ model reaches its peak, or maximum
occupancy update, at the measured endpoint. As motivated by Loop et al. [14], this
modeling decision inflates obstacles, resulting in biased occupancy maps. In contrast,
our model extends [14], which peaks slightly behind the surface, and preserves its
property that s(mx|z) is exactly 0.5 when xr = zr , i.e. at the endpoint, such that
Lp(mx|z1:t) converges to 0 if x lies on an object’s surface. In addition to reducing
biases, this property simplifies surface reconstruction, as the surface then directly
corresponds to the map’s 0-level iso-surface, which is straightforward to extract.

3.4.3 Worst-case update error bounds

From the MRA theory (Section 3.3) we know that at some point, integrating informa-
tion at finer levels of the hierarchy no longer improves the representation. Therefore,
to fully exploit the coarse-to-fine measurement integration scheme of our method, we
need to know at what level of the hierarchy we can stop integrating data. This requires
determining, for each point x, the resolution beyond which no further improvements
are possible, which we achieve by deriving a conservative approximation error bound.
As this work focuses on the use of Haar wavelets, we can exploit a property unique to
them, namely that neighbors at the same resolution do not overlap. This results in the
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leaves of our multi-resolution Haar decomposition perfectly partitioning the original
space into non-overlapping cubes of varying sizes. Since Haar scaling functions are
constant over their support, the worst-case error ϵmax within each space partition, or
voxel, V is given by:

ϵmax(Ls(m, z),V) = max
x∈V
|Ls(mx′ , z)− Ls(mx, z)| , (3.10)

where x′ is the chosen sample point, which we set to be the partition’s center.

Since ϵmax has to be evaluated millions of times per second in practice, we simplify the
computation by only considering three cases based on the state of the space partition,
defined as follows:

update_type(V, zt) =
FullyUnobserved ∀x ∈ V : Ls(mx|zt) = 0

PossiblyOccupied ∃x ∈ V : Ls(mx|zt) > 0

FreeOrUnobserved otherwise
(3.11)

Looking at Eq. 3.9 we can see that the gradient of s(mx|z) is zero in FullyUnobserved
areas and reaches local maxima where xθ = zθ ± 3σθ or xr = zr as illustrated in
Fig. 3.2d. Using the fact that

∂s(mx|z)
∂xθ

∣∣∣∣
xθ=zθ±3σθ

=
3

16σθ
,

∂s(mx|z)
∂xr

∣∣∣∣
xr=zr

=
3

8σr
(3.12)

and assuming the worst-case orientations for a cube-shaped partition V , i.e. its
diagonal projected into sensor coordinates r and θ aligns with either gradient, we
obtain the following bounds for the approximation error for the three cases:

ϵmax(V) =


0 FullyUnobserved

max
(

3Vhθ
16σθ

,
3Vhr
8σr

)
PossiblyOccupied

3Vhθ
16σθ

FreeOrUnobserved

(3.13)

where Vh is the maximum distance a sample can have to V’s center, namely half of
V’s diagonal. Note that Vhθ decays quickly as the distance to the sensor increases.
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3.4.4 Saturated region skipping

To preserve the ability to quickly adapt the map when dynamic parts of the environment
change, we impose upper and lower bounds on the occupancy posterior Lp(mx|z1:t),
as proposed by Yguel et al. [46]. As observed by Hornung et al. [4], this clamping
policy also significantly improves compression performance by encouraging the
majority of the map’s posterior to converge to constant values. Namely to the lower
bound in areas that are consistently observed as being free, and to the upper bound
in areas that are consistently observed as being occupied. We propose to exploit this
saturating behavior further to reduce the computational cost of map updates. Applying
negative occupancy (free-space) updates in areas where the posterior has already
reached the lower bound has no effect, as the updates are canceled out by the clamping
operation. Similarly, the posterior is not affected by skipping positive occupancy
updates in areas that already converged to the upper bound. Skipping saturated regions
leads to a particularly high speedup if it can be done in a coarse-to-fine manner, but
doing so is only safe if the map’s lower resolutions are always up to date. Both
properties are met by our representation and integration scheme. An algorithm that
interleaves saturated region skipping, adaptive sampling, and thresholding will be
discussed in the next section.

3.4.5 Algorithm and data structure

As described previously, Haar scaling functions do not overlap with their neighbors
at the same resolution and perfectly partition the space. The support of the scaling
functions in a multi-resolution Haar decomposition is, therefore, identical to the
hierarchical partitioning scheme of octrees. We can thus store the wavelet coefficients
in any optimized octree data structure that allows data to be attached to both inner and
leaf nodes, such as supereight [36] or OpenVDB [47].

Leveraging the idea that increasing the resolution in MRAs only adds information, our
proposed adaptive multi-resolution update algorithm determines the appropriate update
resolution for all points in the observed volume in a coarse-to-fine manner (Section
3.4.3). The algorithm is initialized at the octree’s root and recursively evaluates its
children, as illustrated in Algorithm 1. Each recursive call starts by checking which of
the three possible update cases, eq. 3.11, applies to the current node’s partition V . If no
parts of the partition have been observed by the current measurement zt, or if saturated
region skipping applies, no updates are needed. Otherwise, we continue by checking
if the approximation error at the partition’s current resolution is acceptable. If this
is the case, we evaluate the inverse measurement model s(mx′ |zt) at the partition’s
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center and integrate the update into the map. If none of the previous criteria were met,
a higher resolution is needed and the recursive function is called for each of the octree
node’s sub-divisions (octants). In practice, we also compress the measurement update
using the wavelet transform and need to traverse the map’s data structure. Both of
these operations can efficiently be interleaved with the recursive adaptive sampling
procedure. Note that although the presented algorithm is recursive, great flexibility
exists for its implementation. For example, since each Haar scaling function only
overlaps with its parent and children, all partitions at a given resolution and their
descendants can be updated in parallel.

3.5 Experiments

We evaluate our approach on three different datasets, featuring depth cameras and
LiDARs, in indoor as well as outdoor environments. Comparisons are presented to
three state-of-the-art volumetric mapping frameworks: octomap [4], voxblox [29],
and supereight2 [38]. Octomap and supereight2 are both used in multi-resolution
occupancy mapping-mode. Voxblox only supports TSDFs mapping and is configured
to use its default ‘fast’ integration method. In terms of implementation details, all
approaches are evaluated using their publicly available reference implementations345

and wrapped with the same code to process the training data.

For each dataset, we split the original data into training and test sets by reserving
every 20th observation for testing and use the remaining frames for mapping. Test
points are generated by sampling points along all rays in each test observation, with
points along the beam being in free space and the endpoint being occupied. To obtain
insights into the behavior of the different methods in various scenarios we compute
the distance of each free-space test point to the closest surface point. This allows us to
evaluate the performance in different range bands, including: i) small negative values
assessing the ability to capture thin objects, ii) distances close to zero to evaluate the
surface reconstruction quality, and iii) larger distances to obstacles to detect possible
biases or approximation errors. This approach also avoids diluting a small number of
challenging situations with a large number of easy-to-classify free space observations.

For each experiment, we report the overall Area under the ROC Curve (AUC) as a
general indicator of classification performance. By integrating the Receiver Operating
Characteristic (ROC) curve, the AUC quantifies how well each classifier discriminates

3https://github.com/OctoMap/octomap_mapping
4https://bitbucket.org/smartroboticslab/supereight2
5https://github.com/ethz-asl/voxblox
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3 Hierarchical volumetric mapping

Algorithm 1: Wavemap recursive update

Input: Current measurement zt,
Previous map posterior p(m | z1:t−1),
Lower log-odds threshold Lmin,
Approximation error threshold ϵthresh,
Maximum resolution resmax,
Octree’s root partition Vroot

Output: Updated map posterior p(m | z1:t)
1 Function RecursiveAdaptiveUpdate(V, zt) is

// Use Eq.3.11 to skip partitions
2 update_type← UpdateType(V, zt)
3 if update_type = FullyUnobserved then
4 return
5 end
6 if (update_type = FreeOrUnobserved
7 and Lp(mV | z1:t−1) ≤ Lmin) then
8 return
9 end

// Use Eq.3.13 to terminate early
10 ϵmax(V)← ApproximationError(V, zt)
11 if (Vres = resmax or ϵmax(V) < ϵthresh) then
12 Lp(mV | z1:t)← Lp(mV | z1:t−1)
13 +Ls(mV | zt)
14 return
15 end

// Otherwise, increase resolution
16 for Vchild ∈ V do
17 RecursiveAdaptiveUpdate(Vchild, zt)
18 end
19 end
// Initialize map and start recursion

20 p(m | z1:t)← p(m | z1:t−1)
21 RecursiveAdaptiveUpdate(Vroot, zt)
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Table 3.1: Area Under the ROC Curve results for both datasets. Higher is better. The
corresponding resource usages are in table 3.2.

Dataset Res octomap
super-

voxblox
ours ours

eight2 (rays) (beams)
Panoptic 5cm 0.95 0.93 0.99 0.99 0.99
Flat 2cm 0.99 0.95 1.00 1.00 1.00
Newer 20cm 0.82 0.87 0.92 0.91 0.91
College 5cm 0.90 0.89 0.97 0.94 0.97

free and occupied space regardless of the classification threshold. We also report the
classification accuracy for the individual range bands. Note that different accuracies
can be obtained based on the chosen classification threshold. For this study, we set
the thresholds for each framework on each dataset to the value that maximizes the
difference between the True Positive Rate (TPR) and the False Positive Rate (FPR),
weighed equally.

3.5.1 Accuracy evaluations

Panoptic mapping dataset

The first set of experiments is conducted using “Run 1" of the panoptic mapping
dataset [48], which features depth camera recordings of a simulated studio apartment
including realistic household objects. Octomap and voxblox do not support depth
images directly, and hence the dataset’s images were first converted to pointclouds
using the pinhole projection model used by both supereight2 and our method. The
camera poses were obtained from the ground truth.

From the AUC values shown in Table 3.1 we can see that, when using larger cell
sizes, only our proposed method can compete with voxblox. Being TSDF-based,
voxblox can more accurately reconstruct smooth surfaces which account for large
parts of the environment, giving it a distinct advantage. The remaining two methods
have worse overall performance. When moving to a higher resolution the difference
shrinks and all methods perform comparably. Looking at the results shown in Figure
3.3 we can clearly see where octomap and supereight2 accumulate their errors in the
5 cm resolution case. Octomap struggles to properly localize the surface boundary,
while supereight2 is overly pessimistic, labeling cells far from the surface as occupied.
Finally, one can see the trade-off between our method, using a beam-based model,
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Figure 3.3: Accuracy in function of the distance to the surface on the Panoptic
mapping dataset at different resolutions. Higher is better.

and voxblox, using a TSDF model. Voxblox has better at the surface reconstruction
performance while our approach is better at reconstructing thin objects. This difference
can also be seen in Figure 3.4 where the chair is missing its legs in the voxblox
reconstruction. Looking at the 2 cm resolution case, all methods but supereight2
perform almost identically. Supereight2 still produces pessimistic results, which likely
stem from the approximations used to achieve its impressive speed.

Newer College dataset

The second set of experiments uses the Cloister sequence from Collection 2 in the
Newer College dataset [49]. This sequence was chosen because it captures geometry
with a wide range of scales including wide-open outdoor spaces, indoor spaces with
arches and sculptures, and vegetation. Odometry estimates and undistorted point
clouds were obtained using FastLIO2 [50] processing the Ouster OS0-128 IMU and
point cloud data. The motion-compensated point clouds were used for all frameworks
except supereight2, which operates using dense range images and does not yet support
motion-undistortion.

Looking at the AUC numbers in Table 3.1 we immediately see that this real-world
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octomap supereight2 voxblox ours (beams)

Figure 3.4: Qualitative reconstruction comparisons featuring detailed geometry on
scenes of the Panoptic mapping (top) and Newer College (bottom) datasets, both at
5cm resolution.

LiDAR dataset is more challenging than the previous synthetic one. When using a
coarse 20 cm resolution octomap performs the worst, with voxblox and our method
achieving the best results, and supereight2 landing in the middle. Moving to a higher
resolution of 5 cm octomap and supereight2 end up performing similar while voxblox
slightly outperforms our approach. However, the detailed results shown in Figure 3.5
reveal interesting insights. At 20 cm resolution octomap struggles to produce accurate
surfaces. We also see that our approach and supereight2 have similar performance
when it comes to reconstructing the surface but our approach performs slightly better
when classifying free space in the vicinity of obstacles. Voxblox again performs the
best in surface reconstruction and free space classification, but suffers in the thin
object reconstruction domain. Moving to a finer 5 cm resolution the change is similar
to that observed in the Panoptic dataset. The accuracy of every method improves and
they move closer together, with supereight2 failing to accurately predict free space
close to surfaces. The differences between the other three methods are characterized
by octomap not reconstructing thin objects accurately while both voxblox and ours
(beams) perform equally well.

Sensor model ablation

To verify the benefit of the more costly uncertainty aware sensor model proposed in
Section 3.4.2, we conduct an ablation comparing our proposed sensor model, ours
(beams), with one that disregards angular uncertainty, ours (rays). As the Panoptic
Flat dataset contains no noise on observation or pose there is, as to be expected, no
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Figure 3.5: Accuracy in function of the distance to the surface on the Newer College
dataset at different resolutions. Higher is better.

difference between the two models. On the Newer College dataset, however, there
are visible differences. In the coarse setting the proposed uncertainty-aware model
improves the ability to reconstruct thin objects. Moving to the higher resolution case
both the ability to reconstruct surfaces and thin objects are significantly improved by
our proposed model.

These accuracy evaluations showed several things. The proposed method ours (beams)
compares favorably to the other three methods. Despite the natural advantage voxblox
has in surface reconstruction tasks, being a TSDF-based method, our approach per-
forms on par while having superior performance in thin object reconstruction. The
uncertainty-aware sensor model also improves the quality of the map close to surfaces
and when dealing with thin surfaces, allowing the reconstruction of objects that other
methods can’t capture when using the same cell size.

3.5.2 Efficiency evaluations

We evaluate the memory usage as well as the runtime of our method in comparison
to the three baseline methods. Memory usage is reported as the amount of RAM
used by the method as well as the memory used by the map data structure. While
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our framework can be implemented using various data structures, we used octomap’s
octree implementation to keep the comparison as fair as possible. The runtime is
reported as the elapsed wall time and the cumulative CPU time across all threads,
allowing a fair comparison between single-threaded and multi-threaded methods. All
frameworks have their visualizations disabled and all experiments are performed on
the same desktop computer with an Intel i9-9900K CPU.

From the numbers shown in Table 3.2 we can see that supereight2 ranks first in terms
of wall time on the depth camera dataset, and second best for LiDAR. However,
the memory usage of its maps is relatively large owing to the fact that it estimates
occupancy using weighted averaging instead of log-odds updates (requiring 2 floats per
cell instead of 1) and focuses its implementation primarily on speed. Voxblox, as to be
expected from a TSDF-based method, has the largest map sizes at higher resolutions
but is computationally efficient. Octomap produces large maps, in comparison to
our method, and is the slowest of all compared methods by an order of magnitude.
Octomap’s significant slowdown at high resolutions is caused by the fine-to-coarse
model employed by their integrator which needs to touch every single cell. Our
proposed method obtains maps that are significantly smaller than those of octomap
despite using the same underlying data structure.

The runtime of our method, when looking at the CPU time, is equal or better than
that of supereight2. However, as supereight2’s implementation uses multiple threads
the real-world performance of it is still better. The difference in runtime and memory
usage between our method and octomap clearly shows the benefits of using wavelets
to represent the map as it enables good compression and allows the use of an efficient
coarse-to-fine integrator capable of skipping unnecessary work.

Comparing the memory and runtime of ours (rays) and ours (beams) we can see that
the price for the improved quality is larger maps by about 30% to 70% depending on
the resolution and an increase in runtime of around 50%. These increases stem from
the fact that the uncertainty-aware model needs to update more voxels and that the
map contains more fine details and voxels with partial occupancy values. Overall, our
proposed method shows good general performance in both memory usage and runtime,
with clear avenues for improvements. The wall time could be reduced significantly
using multi-threading, which is easily achievable due to the independence of the voxel
updates. Moreover, we believe the memory used to store the map itself could be
reduced further by using a more efficient data structure such as the one proposed by
OpenVDB [47]. These extensions will be added to the open-source code.
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Table 3.2: Computational resource usage at different resolutions. Lower is better.
Memory (MB) Time (s)

Dataset Res Framework RAM Map only CPU time Wall time

Panop.
Flat

5cm

octomap 162.35 6.50 130.32 129.00
supereight2 158.23 46.09 27.79 4.76
voxblox 229.96 36.90 58.58 10.68
ours (rays) 135.69 4.17 5.58 6.78
ours (beams) 130.04 5.65 6.94 7.20

2cm

octomap 6202.39 50.94 773.16 763.39
supereight2 448.38 285.07 50.83 9.32
voxblox 663.53 348.15 244.69 24.61
ours (rays) 343.26 39.09 33.00 34.80
ours (beams) 294.58 67.81 57.56 57.51

Newer
Coll.

20cm

octomap 203.25 20.78 688.71 709.99
supereight2 249.03 107.79 411.67 67.14
voxblox 261.02 66.32 228.12 48.07
ours (rays) 180.86 6.94 87.39 88.78
ours (beams) 138.92 8.82 107.67 113.26

5cm

octomap 14404.76 981.02 36252.70 35790.60
supereight2 2926.42 2333.93 2853.12 404.19
voxblox 3718.85 2362.58 1788.90 162.36
ours (rays) 1192.95 241.84 1656.26 1671.58
ours (beams) 1065.21 402.18 2085.05 2083.61

3.5.3 Multi-sensor multi-resolution mapping

One key advantage of our framework is its natural ability to integrate multiple sensors
with different settings. In this experiment, we show qualitative results of our mapping
framework running in multi-sensor mode on the DARPA SubT Finals dataset [51].
In Figure 3.6, we show the output of our framework simultaneously integrating two
Robosense Bpearl dome-LiDAR sensors and one Velodyne VLP-16 LiDAR. The
Bpearls were angled to scan the ground around the robot, while the VLP-16 was
mounted horizontally to provide long-range observations. As the sensors provide
information for different purposes, we integrate them with different resolutions into the
map. The VLP-16, responsible for long-range mapping and exploration, is integrated
up to a maximum range of 30m and a maximum resolution of 16 cm. At the same
time, the Bpearls, responsible for local terrain mapping to enable navigation of a
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Figure 3.6: Example of our framework performing multi-sensor, multi-resolution
volumetric mapping on the DARPA SubT Finals dataset, combining data from 2
ground-facing LiDARs at 2cm resolution (left) and 1 horizontal LiDAR at 16cm
resolution up to a range of 30m (center) into a single map (right).

quadruped, are integrated up to a resolution of 2 cm and range of 2.5m. This results
in a unified map that supports foot placement, local trajectory and global exploration
planning without wasting resources on high-resolution map reconstruction in areas
where it is not needed. While shown here for multiple LiDAR sensors, the same
approach has also been used for mobile manipulation setups using a 3D LiDAR for
navigation and RGB-D cameras for scene reconstruction, resulting in a map that
supports navigation as well as fine-grained manipulation.

Note that existing frameworks, such as UFOMap [39] and supereight2 [38], could also
be extended to support multi-sensor, multi-resolution mapping. The key difference
is that they cannot do this efficiently since the resolution levels in their maps require
explicit synchronization. The associated overhead is often reduced by performing
the synchronization in a lazy fashion. However, this optimization is ineffective when
regions of the map are concurrently updated at multiple resolutions, which requires
continuous synchronization. Our framework does not suffer from this limitation
because wavelet decompositions synchronize their resolution levels implicitly. A
further advantage of wavelet encoding is that when a region is updated at a lower
resolution, the region’s high-resolution cells remain consistent without requiring any
additional processing. In other words, the computational complexity of our framework
purely scales with the update resolution, regardless of each region’s effective maximum
resolution. In practice, this makes it possible to seamlessly and efficiently fuse long-
range, lower-resolution sensors such as LiDARs with local, high-resolution sensors
such as depth cameras.
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3.6 Conclusion

In this chapter, we introduced wavemap, a hierarchical volumetric mapping framework
inspired by multi-resolution analysis. The MRA theory guarantees that using wavelet
decomposition, we can safely and very efficiently integrate new observations in a
coarse-to-fine manner. The resulting gains in computational efficiency, together with
early stopping criteria for the integrator, allow us to use more complex sensor models
such as the proposed angular uncertainty-aware model. In experiments on synthetic
RGB-D and real-world 3D LiDAR data, we demonstrate that our proposed method
achieves high-quality results while being efficient in terms of memory and compute
requirements. We also demonstrate how our method can incorporate observations
from multiple sensors into a single map with per-sensor resolution. This allows the
use of a single map representation for tasks that would have required several dedicated
maps in the past. Finally, we open source the implementation of our approach to
facilitate future research.
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Chapter4
Multi-resolution collision avoidance

Fast and reliable obstacle avoidance is an important task for mobile robots. In this
chapter, we propose an efficient reactive system that provides high-quality obstacle
avoidance while running at hundreds of hertz with minimal resource usage. Our
approach combines wavemap, a hierarchical volumetric map representation, with a
novel hierarchical and parallelizable obstacle avoidance algorithm formulated through
Riemannian Motion Policies (RMP). Leveraging multi-resolution obstacle avoidance
policies, the proposed navigation system facilitates precise, low-latency (36ms), and
extremely efficient obstacle avoidance with a very large perceptive radius (30m). We
perform extensive statistical evaluations on indoor and outdoor maps, verifying that the
proposed system compares favorably to fixed-resolution RMP variants and CHOMP.
Finally, the RMP formulation allows the seamless fusion of obstacle avoidance with
additional objectives, such as goal-seeking, to obtain a fully-fledged navigation system
that is versatile and robust. We deploy the system on a Micro Aerial Vehicle and show
how it navigates through an indoor obstacle course. Our complete implementation,
called waverider, is made available as open-source1.

The work described in this chapter is presented in the following publication:

• V. Reijgwart*, M. Pantic*, R. Siegwart, L. Ott, “Waverider: Leveraging Hierar-
chical, Multi-Resolution Maps for Efficient and Reactive Obstacle Avoidance,”
ICRA 2024

1https://github.com/ethz-asl/waverider
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4 Multi-resolution collision avoidance

4.1 Introduction

Reactive, precise, and reliable obstacle avoidance is vital for mobile robots to safely
and efficiently navigate through changing or partially unknown environments. Since
obstacle avoidance is an always-on process, it must use minimal computational re-
sources and seamlessly integrate with the robot’s other tasks. Existing approaches
range from simple reactive methods using 1D distance sensors to optimization-based
systems requiring complete 3D maps and vary in complexity, reaction time, and
obstacle resolution.

While collision avoidance systems that operate directly on raw sensor data may exhibit
exceptionally low latency, they can only guarantee safety with respect to consistently
observed obstacles within the Field of View (e.g. [52]). One way to introduce memory
without losing generality is to use volumetric maps. They can model obstacles of
arbitrary shape and explicitly distinguish free and unobserved space. Volumetric
maps are well suited to ensure safety even in unknown environments. However, fixed-
resolution volumetric mapping frameworks tend to suffer from excessive memory
overheads and latency. These can be overcome by using hierarchical volumetric
representations such as octomap [4], UFOMap [39], supereight [36], or wavemap [7].
While several works investigated the use of hierarchical maps for global path planning,
most collision avoidance systems still process all obstacles at the highest resolution.
Yet, intuitively, one would expect that distant obstacles could be considered at a lower
resolution than nearby ones without significantly affecting the robot’s behavior.

We use RMPs [53] to formulate a navigation algorithm that is inherently multi-scale
and hierarchical. RMPs are purely reactive in nature, and as such, can be formulated
extremely efficiently and executed with low latency at controller frequency. Other
sampling- or optimization-based methods often need pre- and post-processing steps
such as the generation of an ESDF or trajectory smoothing. Conversely, RMPs are for-
mulated as second-order dynamical systems and directly output accelerations, which
typically leads to gradual changes and smooth paths. RMPs have some similarities to
the well-known potential fields [54], but are a much more expressive framework due
to the inclusion of the Riemannian metric that modulates each policy’s strength and
directionality.

In this chapter, we develop a reactive and safe obstacle avoidance method using
RMPs [53] that is tailored to hierarchical volumetric map representations. We nu-
merically analyze the effects of obstacle resolution on the policy’s approximation
error as a function of the distance between the robot and the policy. Based on this
analysis, we derive a function that computes the ideal resolution for querying the
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4.1 Introduction

Figure 4.1: Example trajectories comparing our multi-resolution collision avoidance
method (red) to equivalent RMP-based formulations that consider all obstacles at
the highest resolution within a radius of 1m (green) and 3m (blue). The fixed-
resolution RMP trajectories are jerkier and more prone to get stuck (top-left). CHOMP
(brown) yields smooth, albeit overly cautious trajectories and occasionally cuts through
obstacles (top-right, bottom-left).
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4 Multi-resolution collision avoidance

map at a given distance from the robot – allowing us to balance computational effort
and accuracy. Using this function, we develop an algorithm that efficiently generates
multi-resolution avoidance policies from a hierarchical map.

The contributions of this chapter are:

• An efficient hierarchical obstacle policy generation algorithm;

• Numerical analysis of the approximation error induced by hierarchical naviga-
tion policies;

The correctness of the numerical analysis is statistically validated through a large
number of experiments in simulation. Extensive comparisons with baselines and
CHOMP [8] demonstrate the favorable runtime and efficiency of our method. Finally,
we demonstrate real-world applicability by deploying our system onboard an MAV
running at 200Hz.

4.2 Related Work

A core decision in any obstacle avoidance system is the environment representation.
State-of-the-art systems combine a volumetric map such as a truncated signed distance
field [10, 55] or an octree-based occupancy map [4, 7, 36, 39] with either a search-
based method such as A*[56], a sampling-based approach such as RRT [57], or an
optimizer such as CHOMP [8, 58]. All of these methods are comparably slow, as the
mapping-planning cycle has multiple performance bottlenecks, and the sampling or
optimization steps often rely on post-processed maps. Recently, end-to-end learning-
based methods were shown to be effective for collision avoidance [59]. However,
their data-driven nature still comes with a lack of generalizability across different
environments, sensors, and robot dynamics.

Reactive approaches that operate directly on volumetric maps or even raw LiDAR
data exist [60], but these methods have considerable memory and computing require-
ments due to their dense data representation. Although hierarchical volumetric maps
have received considerable attention from the planning community, most works fo-
cused on global planning [38, 61, 62]. Multi-resolution anytime planners [63] have
been proposed that bridge the gap to local planning. However, their global context
makes achieving the update rates required for low-latency reactive collision avoidance
challenging in 3D. Funk et al. [64] propose a full planning pipeline that leverages
multi-resolution for efficient orientation-aware planning in environments with very
narrow openings. However, their evaluations are performed on pre-computed static
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4.3 Method
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Figure 4.2: Block diagram of the proposed navigation system. External components
are highlighted in yellow, tightly integrated components in blue, and new components
introduced in this chapter in green.

maps without perception in the loop, which makes it difficult to judge the system’s
latency in a reactive collision avoidance setting. Closest to our work is the hierarchical
collision avoidance system presented by Goel et al. [65] that adapts the map resolution
based on the motion primitives considered by the planner. The method is used in a
teleoperation setting and shows promising results in simulated and real environments.
However, a significant part of the system’s efficiency results from using a bespoke,
purely local map representation whose resolution is set by the planner, which is harder
to reuse for additional tasks, including global planning. In comparison, our system
achieves comparable efficiency levels using generic hierarchical occupancy maps.
This is explained by the efficiency of RMPs, and the fact that our method does not
rely on expensive ESDFs. One final benefit of our proposed architecture, compared to
both [64, 65], is its high degree of modularity. Formulating obstacle avoidance as a
motion policy makes it easy to combine with other policies representing additional
objectives such as goal-seeking, visual servoing, or aerial manipulation.

4.3 Method

In the following sections, we describe our approach to efficiently extract multi-
resolution obstacle avoidance policies from hierarchical maps and how they integrate
with high-level task policies. Figure 4.2 shows the main parts of the system, consisting
of: 1) a volumetric, hierarchical map representation (Section 4.3.1), 2) an algorithm
for obstacle extraction (Section 4.3.2), 3) an RMP-based reactive navigation system
(Section 4.3.4). For each obstacle cell extracted in 2) an individual obstacle avoidance
policy is generated (Section 4.3.3), and combined with all other policies through the
RMP framework.
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4 Multi-resolution collision avoidance

4.3.1 Hierarchical map

The proposed method is compatible with any hierarchical occupancy mapping frame-
work, e.g. [4, 36, 39]. We chose to use wavemap [7], as it simultaneously achieves
state-of-the-art accuracy, memory, and computational efficiency. In a similar fashion to
other methods, wavemap leverages octrees to achieve this efficiency. However, instead
of storing absolute occupancy values, each node stores Haar wavelet coefficients. Us-
ing wavelets achieves significant compression and, more importantly, guarantees that
all resolution levels are implicitly synchronized and always up to date. An efficient
coarse-to-fine measurement integration algorithm allows wavemap to integrate depth
measurements with low latency, even on computationally constrained platforms.

4.3.2 Obstacle cell extraction

As will be substantiated in Section 4.4, reducing the resolution of obstacles as the
distance to the robot increases does not introduce significant approximation errors. By
representing obstacles at the appropriate resolution, it is therefore possible to efficiently
consider fine nearby obstacles and the broader spatial context simultaneously. In this
section, we present a hierarchical algorithm that efficiently gathers multi-resolution
obstacles by traversing the map in a coarse-to-fine manner. The algorithm (Algorithm
2) starts at the lowest resolution level (root node) of the map and recursively visits
each node’s higher-resolution children. The algorithm stops expanding a node when
that node either has no children or its distance d to the robot exceeds dmax(λ). We
use dmax(λ) = 3λ/3 − 0.25 where λ corresponds to the node’s height in the octree2.
Once such a terminal node is found, an obstacle cell is created if the node or any of
its children is occupied. Figure 4.4 visualizes dmax(λ) and the resulting maximum
distance up to which obstacles are included.

4.3.3 Collision avoidance policy generation

For each obstacle cell returned by the previously described algorithm, an individual
obstacle-avoidance policyP [53] is created. In the following, we give a short summary
of the most important aspects of motion planning using RMP, however for more details
and complete formulas of helper functions we refer to the original text [53]. A policy
P consists of an acceleration function ẍ = f(x, ẋ) ∈ R3 and a Riemannian metric
A(x, ẋ) ∈ R3×3, where x ∈ R3 refers to the robot’s current position. The function
f drives the robot according to the policy, while the Riemannian metric A defines a

2A height of 0 corresponds to the highest resolution/smallest voxel size.
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4.3 Method

Algorithm 2: Hierarchical obstacle extractor

Input: Hierarchical occupancy mapM,
Robot position p

Output: Set of multi-resolution obstacles O
1 Function RecursiveExtractor(V,p) is
2 d← ||Vcenter − p||2
3 if dmax(Vλ) < d then
4 if IsOcc(V) or HasOccChild(V) then
5 O.insert(V)
6 end
7 return
8 end
9 if not HasOccChild(V) then

10 return
11 end
12 for Vchild ∈ V do
13 RecursiveExtractor(Vchild,p)
14 end
15 end
// Initialize and start recursion

16 Vroot ← GetOctreeRoot(M)
17 O ← RecursiveExtractor(Vroot,p)

Figure 4.3: Comparison of an environment represented using fixed-resolution (left)
and hierarchical obstacle cells (right). Our approach uses hierarchical cells, whose
resolution (light brown to dark green) is high close to the robot (red) and decreases
with distance.
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4 Multi-resolution collision avoidance

(possibly directional or isotropic) weight of the policy in comparison to other policies.
Following [53], multiple policies {P0, . . . ,PN} can be summed into an equivalent
policy PC using

Pc = (fc,Ac) =

((∑
i

Ai

)+∑
i

Aifi,
∑
i

Ai

)
. (4.1)

We use the obstacle avoidance repulsor from [53] as a policy template for each found
obstacle cell. It is formulated as a combinationof a pure repulsor frep, a velocity-
dependent damper fdamp, and a metric (weight) that becomes 0 if the robot’s velocity
does not point towards the obstacle. The repulsor is defined as

frep (x, r, d) = ηrep exp

(
− d

υrep

)
r , (4.2)

where d is the distance to the obstacle, r is the unit vector pointing from the obstacle to
the robot, and ηrep and υrep are tuning parameters to set the repulsor strength (ηrep)
and scaling (υrep). Similarly, the damper is defined as

fdamp (ẋ, r, d) = ηdamp

/(
d

υdamp
+ ϵ

)
·Pobs (ẋ, r) , (4.3)

again with ηdamp as a strength parameter and υdamp as a scaling parameter. ϵ is a
sufficiently small constant to ensure numerical stability. Pobs (ẋ, r) projects the robot
velocity onto the direction vector pointing from the obstacle to the robot and captures
how much the robot moves towards the obstacle. Finally, the full obstacle avoidance
policy is defined as the tuple Pobs = (fobs,Aobs):

fobs (x, ẋ, r, d) = frep (x, r, d)− fdamp (ẋ, r, d) (4.4)

Aobs (x, ẋ, r, d) = wr (d, ) · s (fobs) s (fobs)T . (4.5)

s (·) is a soft-normalization function. Please refer to [53] for the detailed formula-
tions of Pobs (eq. 68) and s (eq. 24). wr scales the policy response based on a
distance parameter r, which influences the policy’s maximum active range according
to wr (d) =

1
r2
d2 − 2

r
d+ 1. For each of the thousands of found obstacle cells such

a policy is created. All cells at the same scale level λ are then summed according
to Eq. (4.1), and all resulting combined policies of all scales are then again summed
using Eq. (4.1). The scale level λ is used to set the RMP’s parameters as follows:
υdamp = 0.45λ, υrep = 0.75λ, and r = 1.5λ. Modulating υdamp, υrep, and r,
allows setting the sphere of influence of policies, and for example determines the
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Figure 4.4: Left: Perceptive radius defined by dmax(λ) as used in the obstacle filter
(red). Limited, fixed-resolution comparison variants used in 4.5.1 are marked with
a blue resp. green cross. Right: Worst-case counts of voxels to visit. Even with
small perceptive radii, the fixed-resolution variants need to potentially iterate over
significantly more voxels to provide the same quality of obstacle avoidance (log scale).

traversability of narrow corridors. By using the tuning proposed above, coarse obsta-
cles naturally have a larger sphere of influence. The distance and size of the obstacle
cell are used to scale the policy’s Riemannian metric, which can be interpreted as a
multi-dimensional weight and modulates the policy’s strength and activation radius.
The Riemannian metric ensures that the relative direction to the obstacle cell is taken
into account such that there is only a repulsion component if the robot’s velocity points
towards this obstacle. In Figure 4.3, examples of obstacle cells are shown for both
uniform and hierarchical cell generation.

4.3.4 Navigation system integration

We use the simple goal-attractor policy described in [53] to combine the previously
described summation of obstacle avoidance policies with goal-seeking behavior. The
goal-attractor policy is defined as:

fa(x, ẋ) = αas (xa − x)− βaẋ
Aa(x, ẋ) = I3×3

, (4.6)
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4 Multi-resolution collision avoidance

Figure 4.5: Example of obstacles that can be either modeled by a single, large policy
(PF ) or multiple small, high-resolution policies (P i

f ). The distance d represents the
distance from the robot to the center of the obstacle block.

where αa, βa > 0 are tuning parameters, and xa is the desired goal location. In
each iteration, all policies are evaluated, summed up, and the resulting acceleration
executed on the robot. For simulation experiments, the policies are run as fast as
possible, whereas during field tests the policies are evaluated at the robot’s control
frequency (200Hz). Note that it is straightforward to replace or combine the goal-
seeking policy with other policies addressing tasks such as visual servoing, terrain
following, manipulation, or assisted manual control, as has been shown e.g. in [66].

4.4 Hierarchical Policy Approximation Error

Naturally, one wonders what the impact of incorporating distant obstacles at a reduced
resolution is. In this section, we study the influence of replacing a sum of obstacle
avoidance policies with a single policy at the center of such a block. In the obstacle cell
extraction algorithm, the octree is traversed to a deeper or shallower level depending
on the distance to the robot. This implies that at larger distances, fewer policies at
slightly different locations contribute to the overall navigation result instead of a sum
of many individual policies. In the following, we show what relative changes in policy
outputs and quality these abstractions entail, using the toy example in Figure 4.5 for
the analysis.

We conduct a numerical analysis to simulate the relative changes between the single
simplified policy PF and the granular, high-resolution set of policies

∑
P i
f in both

policy strength and directionality for three scenarios: 1) the toy example in Figure 4.5
(labeled “Fig” in Figure 4.6), 2) a random sampling of 16 occupied voxels, respectively
their resulting policies (“R16"), and 3) a completely occupied block resulting in 64
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4.5 Experiments

policies (“All”). The same 4× 4× 4 block with 10 cm voxels is used in all scenarios.
As is visible in Figure 4.6, the induced errors are negligible both in angular error as
well as relative strength (magnitude) of the resulting policies. As to be expected, errors
are higher when the distance to the voxels is smaller. The combination of multiple
policies at different scales provides the best compromise; it minimizes the number of
policies needed while also providing low approximation error over the entire distance.

4.5 Experiments

We perform a comprehensive set of experiments to evaluate the navigation success
rates, computational efficiency, and real-world applicability of the proposed system.
To provide context, we include comparisons with CHOMP [8]. CHOMP generates
complete trajectories and requires an Euclidean Distance Field (EDF), which is time-
consuming to generate (≈ 30 s for the maps used). By contrast, an RMP-based
navigation framework is inherently reactive and only needs obstacle information
which is readily available in the volumetric map.

4.5.1 Statistical evaluation and comparison

Despite the purely reactive nature of the proposed system, we are interested in its
capability and performance in finding moderately complex trajectories in realistic
maps. To this end, we perform an in-depth randomized evaluation on maps generated
from the Newer College LiDAR dataset [49] with a min voxel size of 10 cm. We
use subsections of two maps – mine and math, visualized in Figure 4.7 – in which
we sample random start and end points and let each navigation algorithm find a
smooth, collision-free trajectory. We evaluate a total of four algorithms; a) the
proposed hierarchical system as described in Section 4.3, b) an implementation of
CHOMP [8], c) a non-hierarchical variant of our system that only uses the highest
resolution voxels, up to a maximum distance of 1m, and d) 3m, respectively. The
non-hierarchical variants serve to illustrate the effects of the reduced perceptive radius,
which is limited due to the significantly higher computational costs inherent to single-
resolution approaches at small voxel sizes. All reactive, RMP-based variants are
used in an end-to-end fashion, meaning that the policies are repeatedly updated and
integrated until the robot is at a stand-still, either at the goal or in a local minima.
Obstacle cells are updated from the map whenever the displacement since the last
update exceeds 0.05m. CHOMP is configured to run with N = 500 trajectory points
until it converges (ϵrel < 1e−5) or a maximum iteration count (100) is reached.
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Figure 4.6: a) Plot of the typical absolute policy strength (log-plot) w.r.t. obstacle
distance. Subfigure b) and c) visualize the angular and relative magnitude error of
approximating the high-resolution policies with a single coarse approximation. ‘Fig’
shows this for the exact configuration seen in Fig. 4.5, ‘R16’ for a random selection
of 16 occupied voxels at high resolution (thus the covariance), and ‘All’ for a fully
occupied volume. d) Illustration of the approximation error for a hierarchical policy,
where a full-resolution policy is used below 2.5m distance and a single summary
policy at larger distances. The spike in the approximation error’s magnitude at a
distance of 10m is unimportant, as the absolute strength at this distance nears 0.
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Figure 4.7: Qualitative visualization of the map scenarios used for statistical evalua-
tion. Left shows a perspective rendering of the math scenario, right is a top-down
rendering of the mine scenario. The red lines are example trajectories from our
proposed navigation algorithm. Trajectories stuck in local minima are marked in dark
red.
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Figure 4.8: Success rates for all algorithms on both maps with 500 randomized trials
each. CHOMP runs that did not terminate within the allocated time budget are labeled
as stuck.
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Figure 4.9: Timing distributions for rest-to-rest trajectories on map math. Green parts
only include successful trajectories, red parts only stuck ones. CHOMP clearly shows
increased calculation time for failing trajectories as it runs more solver iterations. Note
the log scale and the drastically increased runtime for the fixed-resolution variant. For
context, CHMP+E visualizes the cost of a trajectory, including the necessary collision
distance (EDF) pre-processing for a map for CHOMP.

To demonstrate the relative performance of the proposed system, we provide a detailed
look at planning success rate, planning time, and distances to obstacles. Figure 4.8
shows the relative amount of successfully found trajectories, i.e. that reach the goal
location and do not get stuck. All algorithms perform similarly well and solve about
75% of all tasks, which is rather good considering that they are all local and not
global planners. Due to their different nature, the reactive algorithms get (safely) stuck
in local minima, whereas the optimization-based CHOMP method may simply not
converge to a solution that is collision-free.

Figure 4.9 provides detailed statistics of the measured runtimes of the different al-
gorithms. Noteworthy is the drastic increase in runtime with larger perceptive radii,
which makes the use of large amounts of occupancy information intractable when
a fixed-resolution representation is used. A major difference between our proposed
method and CHOMP is its purely reactive nature. While we compare full rest-to-rest
trajectory runtimes in Figure 4.9, in practice only a single iteration is calculated at
every controller iteration. Effectively, this provides full obstacle avoidance navigation
at a marginal compute cost – approximately 100 µs per step on average – and a few
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Figure 4.10: Histogramms of distance to obstacles over 50 000 random trajectory
traces from each algorithm. The EDF used in the evaluation is truncated at 2m, with
everything above that value being considered far away from obstacles.

milliseconds per step involving obstacle updates. Conversely, CHOMP only provides
results after full convergence. To provide insights into trajectory safety, we evalu-
ate the distance to the closest occupied obstacle for each step along each evaluated
trajectory from the randomized tests. The resulting distributions are visualized as his-
tograms in Figure 4.10. The proposed hierarchical approach shows a safe distribution
with no parts of the trajectories getting close to obstacles. The two fixed-resolution
algorithms frequently travel much closer to obstacles due to their limited perceptive
fields, whereas CHOMP may output unsafe states in case of non-convergence. Finally,
Figure 4.1 shows a visualization of trajectories generated in four example scenarios.
These examples show that both fixed-resolution variants produce poor and unsteady
trajectories due to their limited perceptive range. Combining all the presented results,
the proposed multi-resolution, purely reactive, hierarchical algorithm provides an
attractive balance between success rate, trajectory quality, and computational cost.
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Figure 4.11: Top: Stackplot of data latency (LiDAR) and processing latency
(Map/Policy). Bottom: Visualization of the number of policies at different levels,
where yellow is the finest resolution and dark green is the coarsest, in similar fashion
to Figure 4.3. The system is on the outdoor terrace between 55 s− 130 s. Especially
after the robot reenters the building, it is in close proximity to many obstacles, leading
to more policies at a higher resolution.

4.5.2 Computational efficiency

We benchmark the computational efficiency of the proposed navigation system on
a NVidia Jetson Orin AGX computer, using data from a Livox Mid-360 LiDAR.
The navigation algorithm only uses the computer’s 12-core ARM Cortex-A78AE
CPU. Figure 4.11 visualizes the latency and policy processing times on a dataset that
traverses indoor offices before transitioning to a terrace, including a large 30m radius
open space. Together, the mapping and planning use 2.4 CPU threads (average) and
355MB of RAM (peak). The LiDAR delivers new data every 100ms and integrating
these observations takes 29ms (average), while selecting and executing the obstacle
avoidance policies takes 6.9ms (average). All together, the mapping and planning
steps are completed almost instantaneously after the LiDAR data is received.
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Figure 4.12: Left: Rendering of an executed flight path (black) and the map that was
created during a traversal of a cluttered region with the specified goal location. Right:
Obstacle distance histogram for the same flight. The MAV successfully cleared all
obstacles with sufficient margin. Note: For operational reasons, the tuning for the
field test was more conservative (stronger) than for the map-based evaluation.

4.5.3 Platform tests

The proposed navigation pipeline (Figure 4.2) is deployed on an MAV with a Livox
Mid-360 LiDAR for odometry [67] and mapping. We run the aerial robot through an
indoor obstacle course without a prior map, such that all data used for navigation must
be gathered and processed on the fly. The operator sets a desired goal location prior
to the flight, which the robot then autonomously tries to reach using the proposed
reactive navigation algorithm. Figure 4.12 visualizes a typical path taken by the
aerial robot to avoid an obstacle and fly towards a (potentially unreachable) goal
position. Upon setting a desired goal position, the goal-seeking policy starts to drive
the robot. After about 130ms, the first scan is received, the map is populated and
the obstacle avoidance policies become active. As can be seen from Figure 4.12, the
robot avoids the obstacles with sufficient distance. During the full run, the robot never
got closer than 0.75m to an obstacle and kept an average closest-obstacle distance of
1.16m± 0.32m.
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4.6 Conclusion

In this chapter, we presented a novel method for multi-resolution, reactive obstacle
avoidance in generic 3D environments. A key insight is the efficient use of multi-
resolution, hierarchical obstacle information. This follows the intuition that geometry
further away does not need to be incorporated at the same resolution as nearby ob-
stacles. As demonstrated through numerical analysis and ablations, the proposed
approach enables locally precise and safe collision avoidance while keeping a very
large perceptive radius. Multi-resolution obstacles can efficiently be extracted by di-
rectly exploiting the hierarchical structure present in hierarchical volumetric mapping
frameworks such as wavemap [7]. The proposed system achieves planning success
rates comparable to CHOMP while reducing the planning time by 50× and requiring
no pre-processing or post-processing steps, such as EDF generation and trajectory
tracking control. Finally, the system is deployed on a real MAV negotiating an indoor
obstacle course while only using minimal computational resources.
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Chapter5
Multi-resolution global planning

Being able to find a path that allows a robot to travel from one point to another in a
known environment is a core competency of most robotic systems. Typically, this is
solved in a two-step process. First, a global path is computed, which in a second step
is followed by a local method. The previous chapter showed how multi-resolution
maps enable safe and efficient local navigation. This obviously begs the question
of whether exploiting such multi-resolution representations for global planning is
possible as well. A multi-resolution map captures the connectivity between large
regions of space with explicit knowledge about their occupancy status. Commonly
used sampling and trajectory optimization methods do not take advantage of this
information. Search-based methods such as A* can make use of such connectivity
information but do not scale well computationally. Intuitively, paths composed of
straight lines link corners of obstacles, which is exploited by any-angle search-based
methods. We extend this idea into a multi-resolution paradigm, representing the map
as well as the search information using multi-resolution data structures. Experiments
demonstrate how the proposed approach achieves results on par with fixed-resolution
methods while being several orders of magnitude faster, beating even sampling-based
methods. An open-source implementation of the method is available1.

1https://github.com/ethz-asl/wavefinder
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5 Multi-resolution global planning

5.1 Introduction

A core competency of robots is the ability to autonomously navigate between areas
of interest, such as storage spaces, work sites, and inspection points, even if these
locations are far apart. Methods that find a globally optimal solution to this planning
problem can be categorized into sampling and search-based methods. Both categories
extract the shortest path from a graph representing a discretization of the robot’s
configuration and transition space. While search-based methods generally operate
on a graph with a fixed topology, such as a grid map’s adjacency graph or a state
lattice constructed from motion primitives, sampling-based methods build the graph
by randomly sampling and connecting collision-free robot configurations. Sampling-
based solutions are popular in practice due to their ability to find solutions while only
sparsely covering large, possibly high-dimensional configuration spaces. However,
extracting a graph from a volumetric map through random sampling discards a lot
of the information embedded in the map and neglects its underlying structure. The
amount of data contained in a discretized map is finite, yet sampling-based methods
are only asymptotically complete and cannot report infeasibility in finite time. This
is particularly problematic in environments with narrow passages, where solving a
feasible planning query can take a long time, and feasibility is not guaranteed. This
gives rise to a hard-to-answer question in sampling-based methods, namely: How long
should one try to find a solution before giving up?

In many applications, including long-range navigation, a volumetric map’s adjacency
graph provides a reasonable representation of the transition graph. Pairing the adja-
cency graph with a standard graph search algorithm results in a planner that is both
resolution complete and able to report whether a solution exists in finite time. While
searching for the shortest path, methods based on Dijkstra’s algorithm [68], including
A* [69], will explicitly compute the optimal cost-to-come and predecessor for each
explored grid vertex. This creates a cost field that can be interpreted as a volumetric
property of the environment. Similar to other volumetric methods, including occu-
pancy mapping and ESDF generation, the time and space complexity of running A*
on a fixed-resolution grid scales linearly with the number of explored grid cells2.
Therefore, the cost grows linearly with the explored volume and cubically with the
grid resolution, which is problematic when the search has to overcome local minima,
such as dead-ends, that are large compared to the chosen resolution. In this chapter,
we investigate how a multi-resolution map representation can be used to overcome
this limitation.

2When using a bucket queue for the min-priority queue.
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sstart

sgoal

Figure 5.1: Illustration of the sub-optimality of A* when applied to an octree’s leaves
while only considering their center points, adapted from [70]. The path found by A*
(solid blue) is significantly longer than the true shortest path (green). Although the
octree completely captures the free space (white) and a path belonging to the right
homotopy class is available (dashed blue), it is ignored by A* because the leaves’
centers introduce a significant detour.

Octrees are commonly used to compactly encode an environment’s occupancy or
traversability information using multi-resolution. Early works show that running A*
directly on an octree’s adjacency graph [61] is resolution complete. However, only
considering the centers of the octree’s nodes results in paths that are far from optimal
in terms of length and smoothness [70]. Since the retrieved shortest path often does
not even fall in the same homotopy class as the true shortest path, as illustrated in
Figure 5.1, this issue cannot be overcome with traditional post-processing steps such as
path-shortening. Several research efforts have proposed to interleave the global search
with local approaches to find better paths through the interiors of the octree’s free leaf
cells. In contrast to such methods, we propose a method that only requires a single,
global search routine. We combine a novel multi-resolution cost field representation
with an algorithm to dynamically adjust the search resolution where needed, enabling
us to accurately plan through large free-space areas.
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5 Multi-resolution global planning

By construction, adjacent vertices in the cost field rarely have the same cost-to-come
(g cost). Using multi-resolution to encode the g costs directly, therefore, does not sig-
nificantly reduce the number of cells unless high approximation errors are acceptable.
When search-based planners are constrained to plan along grid edges, neighboring
vertices generally also have different predecessors. However, true shortest paths in
continuous space are straight except at points where they tightly wrap obstacles. Based
on this insight, any-angle planning algorithms aim to find shorter paths on grid maps
by allowing the path to deviate from the grid’s edges. One such algorithm, Theta* [6],
attempts to set each vertex’s predecessor to the best vertex within its line of sight,
without constraining it to be a direct neighbor. As shown by Nash et al. [71], this
allows Theta* to find paths that are up to ≈ 13% shorter than A* solutions. Another
interesting consequence is that large subregions of the cost field tend to point to
identical predecessors. Our proposed multi-resolution representation leverages this
property to model the cost field accurately and memory-efficiently.

Although improving accuracy and memory efficiency is important, the main bottleneck
for search-based planners operating in large environments is often runtime. The key
question of this chapter is, therefore, how multi-resolution can be used to speed up the
search. Concretely, we want to reduce the number of multi-resolution cells expanded
by the planner by exploring each region of the search space at the lowest possible
resolution. We present a practical algorithm that achieves this by extending Theta* to
operate on an octree structure. The search cost field initially covers the entire search
space at the lowest resolution. During the search, the resolution is increased in a
coarse to fine manner where needed by dynamically subdividing nodes until each node
has a single dominant predecessor. Finally, we present a simple procedure to ensure
that all inflection points that could be optimal predecessors are efficiently considered.

In summary, the main contribution of this chapter is a global planner that uses:

• A multi-resolution cost field representation that combines the accuracy of
any-angle planning methods with the memory efficiency of octree-based repre-
sentations;

• A complimentary algorithm that improves computational efficiency by dynami-
cally adjusting the search resolution, in a coarse-to-fine manner, to control the
worst-case approximation error;

• An initialization routine that allows our multi-resolution planner to achieve
accuracy in line with that of Theta* running at the highest resolution;

The proposed multi-resolution planner is extensively evaluated in a variety of real
indoor and outdoor environments. Through ablations, we quantify the properties of
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our method’s core components and show how they allow users to intuitively control
the worst-case sub-optimality of the solution with respect to Theta* running at the
highest resolution. We further compare our proposed planner to a range of well-
established search and sampling-based planners. The results demonstrate that it
reliably finds shorter paths than RRTConnect and RRT* in all environments and
achieves significantly higher success rates in confined spaces. Furthermore, the results
empirically show that our method maintains the completeness guarantees of high-
resolution search-based planners while being significantly faster, both in finding a
solution and reporting that none exists. In particular, our method runs 1 to 3 orders of
magnitude faster than Theta* when allowed to find solutions that are longer by 2% at
worst and 0.1% on average. The entire framework will be open-sourced to allow the
robotics and planning communities to build on these results.

5.2 Related work

Path planning methods can generally be categorized into sampling- and search-based
approaches. Sampling-based methods are commonly used for global planning, espe-
cially in large environments. While very fast, randomized variants such as RRT [72]
and RRTConnect [73] are non-deterministic and provide no guarantees on the quality
of their solutions. Optimal variants, such as RRT* [74], are guaranteed to converge
to the optimal solution as the number of samples grows to infinity. However, they do
not provide bounds on the quality of their intermediate solutions. Stopping them after
a limited amount of time leads to different solutions, even when the start and goal
positions are the same. This inconsistency is due to their stochastic nature and gener-
ally worsens as the number of obstacles in the environment increases. A challenge in
practice is that randomized planners can take a very long time to find any solution in
environments with narrow passages.

Search-based planners, such as A* [69], are directly applied to a specific space
discretization. Given their deterministic nature, they are perfectly consistent, and in
bounded spaces, they terminate in finite time. Furthermore, they are complete and
explicitly report when no solution exists within their discretized space. When an
occupancy map is used to represent the environment, a common choice is to apply
the search directly to its adjacency graph. Unfortunately, search-based planners suffer
from the curse of dimensionality and are expensive to run on large, high-resolution
3D maps.

Several research efforts have investigated the use of hierarchical approaches to improve
the scalability of search-based planning. Kambhampati et al. [61] used an octree
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to compactly represent the free space and showed how running A* directly over
the octree’s leaves yields significant efficiency improvements, albeit at the cost of
significantly longer, jagged paths. Funk et al.[64] show how this approach can be
extended to allow efficient orientation-aware planning through large environments with
narrow openings. Instead, CFA* [75] uses only two resolution levels and obtains paths
that are comparable to those of A* running at the highest resolution by performing an
initial search over coarse blocks, which is then used to restrict a final search at the grid
cell level. In a more general vein, HPA* [76] performs a coarse-to-fine search over
clusters with pre-computed traversal costs, which can be generalized to an arbitrary
number of hierarchical levels but requires more pre-processing. Iterative [77] and
information theoretic [78] methods have also been proposed. Recently, Du et al. [62]
showed how multiple weighted-A* searches, running simultaneously at different
resolution levels, can share information to combine their strengths. An important
drawback of all the aforementioned methods is that they are sub-optimal or, at best,
equivalent to A* running on the highest resolution grid.

Any-angle planning algorithms are variants of A* that can find solutions that are
up to ≈ 13% shorter by allowing the path to deviate from the grid’s edges [71].
Intuitively, these deviations allow the path to get closer to the true shortest paths in
continuous space, which are taut, i.e., straight except at inflection points where they
tightly wrap an obstacle. Just like A*, any-angle planners only propagate information
along grid edges which allows for an efficient implementation. Theta* [6] is popular
in practice due to its simplicity and ability to reliably find very short paths in diverse
environments [79]. However, it performs a large number of visibility checks to verify
whether each considered grid deviation is collision-free, which introduces a significant
runtime overhead in 3D. LazyTheta* [71] shows how lazy visibility checking can
reduce the overhead by an order of magnitude without significantly affecting the
resulting paths.

Multi-resolution methods have also been employed for efficient any-angle planning.
For example, early work by Chen et al. [70] proposed to plan on framed quadtrees, i.e.,
quadtrees whose leaf nodes are padded with high-resolution vertices. By allowing the
path to take on a broad range of angles through each leaf, this approach effectively finds
any-angle paths. Unfortunately, the connectivity within each leaf grows quadratically
with the chosen maximum resolution in 2D and quartically in 3D. Although Chen et
al. show how this complexity can be overcome in 2D using a linear-time dynamic
Voronoi diagram computation algorithm, efficient generalizations to 3D remain an
open problem. Closest to our work is the global planner proposed by Faria et al. [80],
which uses an octree-based occupancy map to decompose the free space and applies
LazyTheta* to its leaves. In a similar fashion, we extend Theta* (and LazyTheta*) to
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operate on an octree. However, in contrast to their method, we show that decoupling
the planner’s resolution from the occupancy map’s octree allows it to find better paths.
Furthermore, we introduce an initialization procedure that closes the sub-optimality
gap with respect to Theta* running at the highest resolution.

5.3 Overview of Theta*

Given that our method’s cost field formulation and search algorithm can be seen as a
multi-resolution extension of Theta*, we briefly introduce it in this section. Theta* [6]
is an any-angle path-finding extension to the A* [69] search algorithm. Just like A*, it
only propagates information along grid edges. The key distinction between the two
search algorithms lies in how they select each vertex’s predecessor. Since A* only
considers each vertex’s direct neighbors, the paths it returns are strictly composed of
grid edges. Theta* additionally considers connections to each direct neighbor’s best
predecessor, if it is within the vertex’s line of sight. This allows Theta* to deviate
from the grid and find paths that are up to ≈ 13% shorter than those found by A*, at
the cost of increased runtime due to the additional visibility checks.

The main loop of A* and Theta*, shown in Algorithm 3, is identical. Both search
algorithms store two values per vertex, namely the vertex’s cost-to-come (g cost) and
an index or pointer to its best predecessor. Furthermore, both algorithms use a
priority queue (open) to expand vertices in order of their minimum f score, where
f(s) = g(s) + h(s) with h(s) a consistent heuristic function. Using a consistent
heuristic guarantees that a node is only expanded from the queue once its optimal g
cost and predecessor have been found [81]. A closed set (closed) can therefore
be used to track and explicitly skip updates of already expanded nodes (Line 13).
It also means that both algorithms can terminate immediately once the goal vertex
sgoal is expanded (Line 8). Since the paths found by A* can only contain edges of
the 26-connected grid, using the octile distance to the goal, h(s) = ∥sgoal − s∥oct, is
consistent. In contrast, Theta* must use the Euclidean distance, h(s) = ∥sgoal − s∥2,
because its paths are not constrained to the grid’s edges.

As highlighted earlier, the key difference between A* and Theta* is how they find each
vertex’s best predecessor. When expanding vertex s, function UpdateVertexCost
is called for each neighboring vertex s′ to check if using s could lead to a shorter
path. In that check A* only considers connecting s′ directly to s (Algorithm 4, note
that c(sa, sb) refers to the edge cost between two vertices sa and sb). As shown in
Algorithm 5, Theta* considers connections from s′ to both s and predecessor(s).
By virtue of the triangle inequality, a connection to predecessor(s) – when
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5 Multi-resolution global planning

Algorithm 3: Heuristic-guided search over graph vertices

1 open← ∅
2 closed← ∅
3 g(sstart)← 0
4 predecessor(sstart)← sstart

5 open.insert(sstart, g(sstart) + h(sstart))
6 while open ̸= ∅ do
7 s← open.pop()

8 if s = sgoal then
9 return PathFound

10 end
11 closed← closed ∪ {s}
12 foreach s′ ∈ neighbors(s) do
13 if s′ /∈ closed then
14 if s′ /∈ open then
15 g(s′)←∞
16 predecessor(s′)← NULL
17 end
18 UpdateVertex(s, s′)

19 end
20 end
21 end
22 return NoPathFound

23 Function UpdateVertex(s, s′) is
24 Status← UpdateVertexCost(s, s′)
25 if Status = Changed then
26 if s′ ∈ open then
27 open.remove(s′)
28 end
29 open.insert(s′, g(s′) + h(s′))

30 end
31 end
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Algorithm 4: Definitions for A*

1 Function UpdateVertexCost(s, s′) is
2 if g(s) + c(s, s′) < g(s′) then
3 predecessor(s′)← s
4 g(s′)← g(s) + c(s, s′)
5 return Changed
6 end
7 return Unchanged
8 end

Algorithm 5: Definitions for Theta*

1 Function UpdateVertexCost(s, s′) is
2 sp ← predecessor(s)
3 if LineOfSight(sp, s′) then

// Evaluate ray traced connection
4 if g(sp) + c(sp, s′) < g(s′) then
5 predecessor(s′)← sp

6 g(s′)← g(sp) + c(s, s′)
7 return Changed
8 end
9 else

// Evaluate direct neighborhood connection
10 if g(s) + c(s, s′) < g(s′) then
11 predecessor(s′)← s
12 g(s′)← g(s) + c(s, s′)
13 return Changed
14 end
15 end
16 return Unchanged
17 end
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available – is guaranteed to yield a candidate g cost that is equal to or lower than a
direct connection to s. Therefore, Theta* only considers connecting to direct neighbor
s when its predecessor(s) is not visible from s′.

5.4 Method

In the following, we describe the components of our approach. We start by describing
our multi-resolution cost field representation. Next, we present a complementary
search algorithm that explores the search space in a coarse to fine manner. Finally,
we explain how the paths found by the planner can be improved further without
significantly decreasing the planner’s efficiency using a dedicated inflection point
initialization procedure.

5.4.1 Multi-resolution cost field representation

When applied directly to a grid-based map’s adjacency graph, planners such as A*
and Theta* compute the cost-to-come and best predecessor for all grid vertices that
are explored during the search. As motivated in the introduction, the g cost and
predecessor fields can, therefore, be interpreted as volumetric properties. Since
both properties are often stored together, going forward, we will simply refer to their
combination as ‘the cost field’. In this section, we introduce how multi-resolution can
be used to encode the cost field more efficiently without sacrificing accuracy.

By construction, neighboring grid vertices rarely share the same g cost. In contrast,
the predecessor field of Theta* tends to contain many constant subregions where
all grid vertices point to the same dominant inflection point, as illustrated in Fig-
ure 5.2. Many subregions of the cost field of Theta* could, therefore, be represented
at a lower resolution without affecting the accuracy of the planner. Concretely, we
propose to divide the cost field into subvolumes V and, for each subvolume, only
store predecessor(V) and g(predecessor(V)). The g cost of each vertex s in
subvolume V is then stored implicitly, and can be obtained by evaluating

ĝ(s) = g
(
predecessor(V)

)
+ c
(
predecessor(V), s

)
. (5.1)

We further propose to organize the subvolumes such that they correspond to an octree’s
leaf nodes. The main motivation for this is that octrees have a regular structure and
that their leaves divide the space into non-overlapping partitions, which simplifies
neighborhood operations. Since octree data structures support efficient random access
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Figure 5.2: Illustration of the predecessor field of Theta* for a 2D environment
with a single obstacle (black box). All vertices in the upper half of the environment
are directly visible from the start vertex (green circle) and thus use sstart as their
predecessor. Due to the obstacle, paths to the bottom right of the environment are no
longer visible from sstart and instead use inflection point s1 (blue circle). Finally, paths
to the bottom left of the environment pass through s2 (light blue circle). Each grid cell
is colored according to its predecessor. As can be seen, the field is mostly constant.

and insertions, it is possible to not only store but also generate the cost field more
efficiently using multi-resolution. Ideally, we want to explore each region of the search
space at the lowest possible resolution to minimize the number of (multi-resolution)
cells that have to be processed by the planner. The hierarchical structure of octrees
can be exploited to initially represent the entire cost field at the lowest resolution and
dynamically increase the resolution only where needed. In other words, they make it
tractable to generate the cost field in a coarse to fine manner.

As shown in Figure 5.3, Theta*’s predecessor field is constant in areas that have direct
visibility to the start vertex sstart but breaks into many thinner constant subregions
after wrapping around the first obstacle’s edges. These thin, Voronoi-like regions,
which are dominated by a single inflection point, can extend forever. However, as
the distance of a subvolume V to two conflicting inflection points that are adjacent
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sstart

Figure 5.3: Top view showing a 2D slice of the predecessor field of Theta*
planning through a 3D environment with a single obstacle (black box). As can be
seen, the field is initially constant (green region). However, once the paths pass over
the obstacle, direct visibility to the start vertex, sstart, is lost, and the field splits into
many thin, Voronoi-like subregions (alternating dark and light blue), each dominated
by a different inflection point (black circle) on the obstacle’s border.

to each other increases, the importance of choosing one inflection point over the
other quickly decreases. By tolerating very small sub-optimalities, we can therefore
represent wide-open free space regions at a significantly lower resolution. Concretely,
we propose to quantify the approximation error over a subvolume V conservatively, as

E
(
V
)
= max

s∈V

∣∣ĝ(s)− ḡ(s)∣∣
ḡ(s)

(5.2)

= max
s∈V

1

ḡ(s)

∣∣g(predecessor(V))+ c
(
predecessor(V), s

)
− ḡ(s)

∣∣
where ḡ(s) refers to the cost that would be obtained by Theta* running at the maximum
resolution and ĝ(s) refers to the cost extracted from our multi-resolution representation
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through Equation (5.1).

Algorithm 6: Heuristic-guided search over octree nodes

1 open← ∅
2 closed← ∅
3 g(sstart)← 0
4 predecessor(V start)← sstart

5 open.insert(V start,ComputeFScore(V start))
6 while open ̸= ∅ do
7 V ← open.pop()

8 if sgoal ∈ V then
9 return PathFound

10 end
11 closed← closed ∪ {V}
12 g(Vcenter)← g(predecessor(V)) + c(predecessor(V),Vcenter)
13 UpdateNode(V,Vroot)

14 end
15 return NoPathFound

5.4.2 Multi-resolution search

We now present our approach to efficiently generate multi-resolution cost fields in a
coarse to fine manner, dynamically increasing the resolution where needed to keep
the approximation error below a user-defined threshold ϵ. We start by discussing how
heuristic-guided search can be applied to an octree’s nodes. Thereafter, we present
the specific subroutines that are needed to realize our multi-resolution formulation of
Theta*.

The main loop of our multi-resolution planner, shown in Algorithm 6, follows the same
general structure as the main loop of A* and Theta* (Algorithm 3). The most obvious
difference is that it now operates on subvolumes V instead of individual vertices s.
For each expanded subvolume V , we first check if it contains the goal vertex sgoal

(Line 8), in which case the search terminates, otherwise, we mark V as closed. On
Line 12, we compute and store the g cost for the vertex at the subvolume’s center
(Vcenter). This is necessary because Vcenter might itself become a predecessor in
the future, and we store the g cost of each predecessor explicitly. Finally, we
process every subvolume V ′ that is adjacent to V , to evaluate whether the cost of V ′
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can be improved. As motivated earlier, the cost field is generated in a coarse to fine
manner. This can be implemented using a recursive UpdateNode function, which
always starts at the octree’s root node (Vroot).

The UpdateNode function is shown in Algorithm 7. It recursively visits every
multi-resolution neighbor V ′ of the expanded subvolume V and evaluates whether
information from V could be used to improve the path to V ′. It also dynamically
increases the resolution of the cost field to keep the worst-case approximation error
below a user-defined threshold ϵ. The function’s logic consists of two main parts.

The first part (Line 2) is only executed if the current subvolume V ′ is a leaf of the
octree and calls UpdateNodeCost, which tests whether the g cost of some or
all of the vertices in the subvolume can be improved based on information from
V . Depending on the outcome, UpdateNodeCost can update the predecessor
of V ′ and return Changed, do nothing and return Unchanged, or determine that the
best predecessor is ambiguous and return ShouldRefine. If UpdateNodeCost
changes the predecessor, we update the priority of subvolume V ′ in the open
queue based on its new f score. When UpdateNodeCost returns Unchanged,
no action is required. These first two cases imply that the current resolution is
adequate, and no further recursion is required. Finally, if UpdateNodeCost returns
ShouldRefine, we remove V ′ from the priority queue at its current resolution, and the
control flow proceeds to the for-loop on Line 16.

The second part of UpdateNode (Line 16) is executed if subvolume V ′ has already
been refined in the past, or was marked for refinement by UpdateNodeCost, see
above. Since we use an octree subdivision scheme, each subvolume V ′ has exactly 8
children. Note that updates to children that have already been closed are skipped,
for the same reasons as in A* and Theta*. Newly created children inherit their parent’s
predecessor sp

′
and are directly inserted into the open queue. This ensures that the

entire volume covered by parent V ′, which was removed from the queue on Line 13,
will eventually be expanded. The algorithm then recursively visits each child node
that is a direct neighbor of V (Line 23), possibly updating the child’s priority in the
open queue (Line 8).

We now present the definitions of UpdateNodeCost and ComputeFScore that
extend Theta* to the multi-resolution case. As shown in Algorithm 8, function
UpdateNodeCost follows the same overall structure as its fixed resolution coun-
terpart, UpdateVertexCost (Algorithm 5). The key difference is that, instead of
only considering the effect of new connections on the g cost of a single vertex, we
now consider all the vertices in subvolume V ′. We refer to the subvolume’s current
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Algorithm 7: Recursive algorithm to update octree nodes

1 Function UpdateNode(V,V ′) is
2 if IsLeaf(V ′) then
3 Status← UpdateNodeCost(V,V ′)
4 if Status = Changed then
5 if V ′ ∈ open then
6 open.remove(V ′)
7 end
8 open.insert(V ′,ComputeFScore(V ′))
9 return

10 else if Status = Unchanged then
11 return
12 else // Status = ShouldRefine
13 open.remove(V ′)
14 end
15 end
16 foreach V ′child ∈ V ′ do
17 if V ′child /∈ closed then
18 sp

′ ← predecessor(V ′)

19 if V ′child /∈ open then
20 predecessor(V ′child)← sp

′

21 open.insert(V ′child,ComputeFScore(V ′child))

22 end
23 if AreAdjacent(V,V ′child) and V ′child ̸= V then
24 UpdateNode(V,V ′child)

25 end
26 end
27 end
28 end
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Algorithm 8: Definitions for Multi-Resolution Theta*

1 Function UpdateNodeCost(V,V ′) is
2 s← Vcenter, s

p ← predecessor(V), sp′ ← predecessor(V ′)
3 if LineOfSight(sp,V ′) then

// Evaluate ray traced connection

4 if IsBetterOrSimilar(sp
′
, sp,V ′) then

5 return Unchanged
6 else if IsBetterOrSimilar(sp, sp

′
,V ′) then

7 predecessor(V ′)← sp

8 return Changed
9 end

10 else
// Evaluate direct neighborhood connection

11 if IsBetterOrSimilar(sp
′
, s,V ′) then

12 return Unchanged
13 else if IsBetterOrSimilar(s, sp

′
,V ′) then

14 predecessor(V ′)← Vcenter

15 return Changed
16 end
17 end
18 return ShouldRefine
19 end

20 Function IsBetterOrSimilar(sa, sb,V ′) is
21 if ∀s ∈ V ′ : g(sa) + c(sa, s) < g(sb) + c(sb, s) + ϵ c(sa, s) then
22 return True
23 else
24 return False
25 end
26 end

27 Function ComputeFScore(V) is
28 sp ← predecessor(V)
29 return mins∈V [g(sp) + c(sp, s) + h(s)]

30 end
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predecessor as sp
′

and to the candidate predecessors as sp and s, which correspond to
the predecessor and center point of V , respectively. Note that the reasoning behind
using s ← Vcenter will be explained in the next section. If keeping the subvolume’s
current predecessor sp

′
yields a lower or similar g cost for all the vertices s ∈ V ′

when compared to switching to sp or s, no changes are required. When the inverse is
true for all s ∈ V , we update the predecessor and return Changed to signal that the
priority of V ′ in the open queue should be updated. In ambiguous cases, where the
current predecessor outperforms the candidate by more than ϵ for at least one vertex
while the opposite is also true, UpdateNodeCost returns ShouldRefine to signal
that the resolution should be increased to control the approximation error.

The function IsBetterOrSimilar (Line 20) formally describes how the prede-
cessors are compared. When ϵ is set to zero, IsBetterOrSimilar returns True
if connecting to vertex sa is strictly better than connecting to vertex sb for every
single vertex in subvolume V ′. Setting ϵ = 0 thus results in our algorithm refining
every subvolume until it is strictly dominated by a single vertex. As motivated in
the previous sections, our planner’s efficiency can be improved by tolerating small
sub-optimalities as quantified by Equation (5.2). However, to interleave the refinement
with the search itself, the sub-optimality must be estimated incrementally. We propose
to estimate the worst-case suboptimality of predecessor sp

′
with respect to sp using

Ê
(
sp

′
, sp,V ′) = max

s∈V
g(sp

′
) + c(sp

′
, s)− g(sp)− c(sp, s)
c(sp′ , s)

(5.3)

where c(sp, s) is the straight line distance from sp to s. Note that this equation
quantifies the error for each candidate edge relative to the edge’s length, instead of the
accumulated g cost as in Equation (5.2). Formally, UpdateNode will then recurse
until the following invariant is satisfied by every V ′ adjacent to V and sa ∈ {sp, s}:

Ê
(
predecessor

(
V ′), sa,V ′) ≤ ϵ (5.4)

The intended outcome of bounding the worst-case, relative sub-optimality of every
path segment is that it also bounds the worst-case sub-optimality of the path as a whole.
Although the experiments we conducted thus far seem to support this hypothesis, we
are still investigating whether more formal guarantees can be provided.

Finally, ComputeFScore illustrates how our multi-resolution planner generalizes
the f score computation to operate on subvolumes instead of single vertices. Note that
although IsBetterOrSimilar and ComputeFScore formally consider all the
vertices in V ′ or V , only a few critical vertices need to be checked in practice given
that c(sp, s) and h(s) are Euclidean distances.
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5.4.3 Initializing inflection points

Another way to interpret what our refinement strategy does is that it detects when a
subvolume in the cost field has conflicting predecessors and increases the subvolume’s
resolution until the conflict is resolved. As shown in the previous section, this refine-
ment strategy can efficiently be integrated into a standard search algorithm. However,
a restriction of this approach is that a given vertex will only be considered as a poten-
tial predecessor for other nodes after it has been expanded. Furthermore, expanded
nodes are added to the closed set and are no longer updated. In other words, the
refinement strategy only operates based on hindsight. In a fixed resolution setting, this
is not a problem since the predecessors, or inflection points, directly correspond to
the vertices. In our multi-resolution formulation, however, each subvolume that is
not at the highest resolution contains multiple vertices and could, therefore, contain
multiple inflection points. This is a situation we would like to avoid, as propagating
and considering multiple predecessors per subvolume in UpdateNode would be
complex and computationally expensive. An alternative would be to detect when a
subvolume is first used as a predecessor and subdivide it then. But since it would
already have been expanded, this would lead to repeated work. A natural question at
this point is what would happen if we only considered a single inflection point for
each node, such as its center point. The center point is guaranteed to be sub-optimal
unless the node is at the highest resolution, in which case the center point is the only
vertex it contains. This is because a path can only be the shortest path if it is taut,
i.e. if all of its inflection points are directly adjacent to an obstacle. Fortunately, we
can leverage this property to fill in our multi-resolution planner’s missing foresight
by initializing all the inflection points that could appear on the shortest path ahead of
time. This way, we effectively trade some computational cost for path optimality.

Implementing our proposed initialization procedure is straightforward. Every subvol-
ume that is occupied in the occupancy map is padded by high-resolution, allocated
nodes in the cost field. Note that since UpdateNode (Algorithm 7) only operates
on the cost field’s leaves (Line 2), simply allocating the cost field nodes containing
the candidate inflection points is sufficient to guarantee that they will be updated and
eventually expanded at the highest resolution. Note that the initialization procedure
can be performed at startup for the whole map or interleaved with the search, for
example, by dividing the map into sectors and initializing each sector when it is first
touched by UpdateNode. In our implementation, we apply the latter approach such
that the initialization cost scales with the volume that is explored during the search
instead of incurring a constant cost that is proportional to the map’s entire volume.
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5.5 Experiments

We evaluate our multi-resolution planner on four real maps representing a variety
of indoor and outdoor environments. In particular, we use the Mine, Cloister,
Math, and Park sequences of the Newer College Dataset [49]. The Newer College
Mine sequence was chosen to represent a constrained indoor environment consisting
of rooms connected by narrow passages. The Cloister sequence features an indoor
space with arches, structured obstacles, and tight doorways connected to two wide-
open outdoor spaces. Math represents a large, structured outdoor urban environment,
while Park represents an even larger unstructured outdoor environment.

A multi-resolution occupancy map of each environment was generated by wavemap,
running at a maximum resolution of 10cm and using odometry estimated by FastLIO2
[50]. The obstacles in the map are inflated by 35cm to account for the robot’s radius.
For each map, we randomly sample 100 pairs of collision-free start and goal positions
(400 in total). Note that start-goal position pairs corresponding to infeasible planning
queries are not filtered out, since we are also interested in seeing how efficiently the
planner can report whether or not a solution exists.

In the following sections, we first present ablations quantifying the behavior of the
approximation-error-driven refinement strategy presented in Section 5.4.2, and the
initialization strategy presented in Section 5.4.3. We then compare the success rates,
path quality, and runtime of our proposed multi-resolution planner to a representative
selection of search and sampling-based planners.

5.5.1 Ablations

Refinement strategy

To evaluate the effect of our proposed refinement strategy, we run our planner with
different approximation error thresholds ϵ (Eq. (5.4)). We then compare the resulting
path lengths and execution times to Theta* running at the highest resolution. Two
special cases are included. In the first case, we set ϵ = 0, which forces the planner
to subdivide each node in the cost field until it is strictly dominated by a single
predecessor. The second case represents the other extreme where refinement is
disabled altogether. Note that we use an octree-based occupancy map to represent
the traversable space and the planner is only allowed to plan through fully traversable
nodes. In a compressed octree, fully traversable nodes will always be leaves. At each
point in space, the resolution of the cost field will therefore be at least as high as the
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map’s leaf resolution. When refinement is disabled the resolutions are equal, which is
why we refer to the second special case as Match map.

In general, the results in Figure 5.4 show that as threshold ϵ is decreased, the planner
finds shorter paths at the cost of increased runtime. It also shows that the path lengths
are very close to those of Theta* on average, especially for longer paths (deep
purple). Most of the outliers correspond to very short paths (light orange). This is
partially explained by the fact that noise gets amplified when paths and runtimes for
Theta* are very short.

Another important observation is that once ϵ reaches 10−1, the path lengths become
comparable to refinement being disabled completely (Match map), aside from having
fewer outliers. This can be explained by the geometry of real environments and the
properties of the sensors used to create the occupancy maps, which makes it unlikely
for an occupancy map’s leaves to grow very large. Worst-case approximation errors
beyond ϵ = 10−1 are therefore rarely encountered in practice, even without refinement.
In general, the worst-case approximation error naturally tends to stay well below ϵ
for most path segments and even further below ϵ when computed over the entire
path. One specific thing to note is that we store the occupancy map and cost field
using an optimized octree data structure which limits the maximum size of its nodes
to 6.4 × 6.4 × 6.4m. This has the side effect of avoiding outliers from extremely
sub-optimal segments for Match map.

Looking at the execution timings in Figure 5.4, we see that the planner is the fastest
when refinement is disabled (Match map). However, the runtime does not signifi-
cantly increase when enabling refinement with a relaxed threshold (ϵ = 10−1). We
thus recommend always enabling refinement to reduce outliers. As ϵ is reduced further,
the runtimes increase but even at ϵ = 0 the planner remains about 1 order of magnitude
faster than Theta*. This shows that meaningful speedups can be achieved even when
the refinement strategy is not allowed to introduce any approximations.

Inflection point initialization

We now quantify the importance of the inflection point initialization procedure pre-
sented in Section 5.4.3 by running our planner with and without it. We then compare
the resulting path lengths and execution times to Theta*. Note that initializing
the inflection points at the highest resolution might not be necessary. We, therefore,
repeat the experiment for different initialization resolution levels going from 10cm
to 6.4m. To isolate the effect of the initialization procedure, we set ϵ = 0 such that
the refinement strategy is not allowed to introduce its own approximation errors. The
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Figure 5.4: Ablation showing how our proposed refinement strategy affects the path
length and speedup (log scale) of our method relative to Theta* (blue line). All
successful queries on all maps are shown, and each data point is colored by its
absolute path length. Reading the plot from right to left, we see that as the threshold
is tightened, the path lengths decrease while runtime moderately increases. Note that
Theta* is not guaranteed to be optimal, which explains why our method occasionally
discovers slightly shorter paths. Finally, notice that even at ϵ = 0, the paths do not
match those of Theta*. This is because this ablation does not yet include our inflection
point initialization procedure, which is addressed in Figure 5.5.
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planner runs without initialization, labeled No explicit init in these evaluations,
are therefore identical to the runs labeled ϵ = 0 in Figure 5.4.

As shown in Figure 5.5, increasing the inflection point initialization resolution makes
the path lengths of our planner converge to those of Theta* and significantly re-
duces the number of outliers. A further observation is that initializing inflection
points at low resolutions (1.6m and higher) yields no measurable improvement over
No explicit init. As explained in the previous subsection, our planner always
increases the resolution of the cost field until it matches or surpasses the compressed
occupancy map. Furthermore, occupied nodes tend to naturally be surrounded by
medium to high-resolution free space nodes. Manually initializing cost field nodes at
very low resolutions therefore has no effect.

Looking at the bottom plot of Figure 5.5, we see that increasing the initialization
resolution negatively affects runtime. This is not surprising, as it forces the search to
expand more cost field nodes and to consider more inflection points as predecessors.
One interesting observation is that setting ϵ = 0 and initializing inflection points at the
highest resolution allows our planner to find paths that are almost indistinguishable
from Theta*, while still being significantly faster – by more than one order of
magnitude for longer paths (deep purple).

5.5.2 Comparisons

In this section, we compare the success rates, path lengths, and execution times of our
proposed multi-resolution planner to a representative sample of search and sampling-
based planners. In terms of search-based planners, we implemented fixed-resolution
versions of A* [69], Theta* [6], and LazyTheta* [71]. Note that although the
Euclidean and octile distance heuristics are both consistent when A* is applied to
a 26-connected grid, the resulting performance varies significantly. We therefore
include both A*Euclidean and A*Octile in our evaluations. For sampling-
based planning, we used the RRTConnect [73] and RRT* [74] implementations
included in the Open Motion Planning Library [82]. While RRTConnect terminates
immediately once a path is found, RRT* does not. Therefore, we include three RRT*
variants with increasing time budgets, namely RRT*0.1s, RRT*1s and RRT*10s.
Note that RRTConnect is also limited to a maximum time budget of 10s, to keep it
from running forever when a planning query is infeasible.

For our proposed multi-resolution planner, we include three variants: Ours, OursLazy
and OursFast. The first variant, Ours, exactly matches the algorithm described in
the method. The other two variants improve runtime using lazy visibility checking,
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Figure 5.5: Ablation showing how our proposed inflection point initialization proce-
dure affects the path length and speedup (log scale) of our method relative to Theta*
(blue line). All successful queries on all maps are shown, and each data point is
colored according to its absolute path length. Reading the plot from right to left, we
see how explicitly initializing inflection points at a low resolution is equivalent to
performing no initialization (No explicit init). However, once it exceeds 80cm,
increasing the resolution moderately increases runtime and closes the path length
sub-optimality gap relative to Theta*. Note how initializing inflection points at the
maximum resolution (10cm) allows our method to find paths that are indistinguishable
from Theta* while remaining almost one order of magnitude faster.

81



5 Multi-resolution global planning

following the idea of LazyTheta* [71]. Note that this requires minimal changes in the
code. The key difference is that on Line 3 of UpdateNodeCost (Algorithm 8), we
assume LineOfSight(sp,V ′) is always true. The search algorithm then checks if
this assumption was valid once V ′ is expanded (Line 7, Algorithm 6). If it turns out
the assumption was false and the visibility check fails, the predecessor of V ′ is
updated to point to the best direct neighbor of V ′. The rest of the algorithm remains
unchanged. The specific settings we use for our three planner variants are:

• Ours: ϵ = 10−2, rinit = 10cm, as motivated by the ablations

• OursLazy: ϵ = 10−2, rinit = 10cm, lazy collision checking

• OursFast: ϵ = 10−2, rinit = 40cm, lazy collision checking

To make the comparisons as fair as possible, we use the same optimized data structures
and subroutines for all planners including ours. The fixed-resolution search-based
planners store their cost field using a hashed voxel block data structure, while our
multi-resolution planner uses a hashed octree data structure similar to OpenVDB [47].
Every planner uses wavemap’s hierarchical occupancy map for fast traversability
checking and its multi-resolution ray tracer for fast visibility checking. Finally, all
the planners are single-threaded and all the experiments are performed on the same
benchmarking server featuring an Intel i9-9900K CPU pinned to 3.6GHz, and 64GB
of RAM.

Success rates

Starting with the success rates, shown in Table 5.1, we see that all the search-based
planners are equally successful. Note that the evaluated start and goal pose pairs are
chosen randomly without filtering out infeasible planning queries. Even complete
planners might therefore not always succeed, as is most evident from the Mine where
none of the planners succeed on more than 89 out of 100 queries. Turning to the
sampling-based planners, the highest success rates are achieved by RRTConnect,
which is almost as successful as the search-based planners. RRT*10s comes in
at a close second. Both planners are given a maximum time budget of 10s, but
RRTConnect probably has a slight edge as it grows trees in both directions and
does not spend any time on rewiring. RRT*1s trails shortly behind RRT*10s in
easy environments, but its success rate drops significantly once the environment
becomes too large (Park) or features very narrow passages (Cloister). Finally,
RRT*0.1s has the lowest success rate of all planners and only performs reasonably
well in the Math environment, which is large but mainly consists of free space with
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Table 5.1: Planning success rates compared across different maps, for 100 randomly
sampled start and goal position pairs per map. Note that the queries are not guaranteed
to be feasible, which is why even complete planners are not guaranteed to reach 100%
success rates.

Success rate (%) Mine Cloister Math Park
A* Euclidean 89.0 100.0 99.0 99.0
A* Octile 89.0 100.0 99.0 99.0
Theta* 89.0 100.0 99.0 99.0
LazyTheta* 89.0 100.0 99.0 99.0
RRTConnect 89.0 98.0 99.0 99.0
RRT* 0.1s 77.0 46.0 94.0 51.0
RRT* 1s 88.0 55.0 97.0 90.0
RRT* 10s 89.0 84.0 98.0 98.0
Ours 89.0 100.0 99.0 99.0
Ours Lazy 89.0 100.0 99.0 99.0
Ours Fast 89.0 100.0 99.0 99.0

good visibility.

We also verified that for every query for which at least one planner succeeded, every
search-based planner succeeded. This empirically suggests that our multi-resolution
planners maintain the completeness guarantee of their fixed-resolution counterparts.
Furthermore, there were no queries in which a sampling-based planner found a solution
while the search-based planners did not. This supports the idea that an occupancy
map’s adjacency graph provides a reasonable representation of the transition graph for
long-range navigation, as suggested in this chapter’s introduction.

Path quality

Moving on to the path quality evaluations, we start by comparing the average path
lengths for all planners. Note that we only include queries on which all planners
succeeded in the averages, to avoid giving an unfair advantage to planners that failed
more often on longer paths. As shown in Table 5.2, Theta* finds the shortest paths
on average on all maps. LazyTheta* comes in at a close 2nd place with paths that are
only 0.1% longer on average, and Ours achieves comparable results. OursLazy and
OursFast still perform well, with OursFast producing slightly longer paths but never
falling behind Theta* by more than 0.6%. Note that our planners outperform all the
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Table 5.2: Path lengths compared across different maps for 100 randomly sampled
start and goal position pairs per map. Averaged across all queries for which all
planners succeeded.

Mean path length (m) Mine Cloister Math Park
A* Euclidean 18.21 21.93 43.36 81.9
A* Octile 18.21 21.93 43.36 81.9
Theta* 16.93 20.2 40.48 76.86
LazyTheta* 16.95 20.2 40.49 76.88
RRTConnect 34.53 44.38 70.58 125.03
RRT* 0.1s 19.99 24.44 42.07 82.14
RRT* 1s 18.0 20.64 41.14 79.26
RRT* 10s 17.29 20.34 40.78 77.57
Ours 16.95 20.2 40.49 76.89
Ours Lazy 16.99 20.23 40.53 76.96
Ours Fast 17.04 20.25 40.57 76.99

RRT* variants, whose path lengths gradually increase as their time budgets decrease
from RRT*10s to RRT*0.1s. Interestingly, the path lengths of A*Euclidean
and A*Octile lie in between those of RRT*0.1s and RRT*1s. This indicates
that, on queries where they succeed, optimizing sampling-based planners such as
RRT* can already outperform A* within a fairly short time budget. We interpret
this to mean that A*’s worst-case sub-optimality of ≈ 13%, which results from only
considering the occupancy grid map’s 26-connected edges, is quite large in practice.
Finally, RRTConnect finds the longest paths, which on average are almost twice as
long as those of Theta*.

Looking at the absolute and relative path length distributions in Figure 5.6, we see
that while the random planning queries feature a good spread in terms of evaluated
path lengths, ranging from 0 up to 500m, shorter paths are more frequent. This
follows from the fact that we sampled 100 trajectories per map and that the Mine and
Cloister maps feature smaller connected areas. In terms of absolute path lengths,
most planners find reasonable paths. RRTConnect stands out with significantly
longer paths, while RRT*0.1s appears to have slightly shorter paths on average.
This bias is explained by the fact that RRT*0.1s rarely succeeds when the start and
goal are far apart and failed runs are not shown in this plot. Turning our attention
to the relative path lengths, we see that Theta* very consistently finds the shortest
path and is closely followed by LazyTheta*. The only planners that occasionally

84



5.5 Experiments

surpass Theta* are the RRT* variants. The sampling-based planners are, however,
the least consistent in terms of optimality. Although the spread of RRT*’s path lengths
decreases as the time budget increases, RRT*10s still features occasional outliers
where its solution is 1.8 times longer than Theta*. We also see that the paths of
RRTConnect are not only twice as long as those of Theta* on average, but also
feature an extremely high variance with worst-case outliers where the path is up to
16.8 times longer. The discrepancy between RRT* and RRTConnect highlights the
importance of RRT* improving its paths by rewiring its tree. As predicted by Nash
et al. [71], the paths found by A*Euclidean and A*Octile are up to ≈ 13%
longer than the true shortest paths. What is interesting is that finding such worst-case
paths in practice is not uncommon and that most paths found by A* are at least 2%
sub-optimal. Finally, we see that Ours is not only close to Theta* on average but
also features very few outliers. Running our planner with lazy visibility checking
(OursLazy) reduces the consistency of its results slightly, and decreasing the inflection
point initialization resolution reduces it further. Yet, even OursFast still produces
paths that would be deemed satisfactory for many applications.

The last path quality metric that we will evaluate is path smoothness. We base our
analysis on two metrics that we average across all planned paths: the total curvature
and the number of turning points. Both metrics are computed by measuring the angle
between the incoming and outgoing edge at each waypoint along the path. To obtain
the total curvature, the angles are summed, while the number of turning points simply
corresponds to the number of non-zero angles. Although the total curvature mathemat-
ically quantifies how the angle changes along the path, the perceived smoothness of a
path is highly task and robot-dependent. The number of turning points is therefore
included as an alternative, broader metric. Note that many local planners or low-level
controllers benefit from having to consider fewer turning points or waypoints, as it
gives them more freedom to smooth the path.

The total curvature for each planner and environment is shown in Table 5.3. The
most apparent trend is that the paths computed by both A* variants are the rough-
est by a large margin. This is to be expected because only considering grid edges,
that are short and limited to 26 possible angles, results in jagged paths. Note that
although A*Euclidean and A*Octile always find paths that are identical in
terms of length, A*Octile finds slightly smoother paths as corroborated by other
studies [79]. Among all planners, the paths found by Theta* consistently have the
lowest curvature. Using multi-resolution planning results in slightly curvier paths and
enabling lazy visibility checking or reducing the inflection point initialization resolu-
tion increases the curvature further. Ours therefore tails Theta* but still outperforms
LazyTheta*, which in turn outperforms OursLazy and finally OursFast. Looking
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Figure 5.6: Comparison showing the lengths of the paths found by three variants of
our multi-resolution planner and a representative selection of search- and sampling-
based planners. The upper plot shows the absolute path lengths, while the lower plot
shows the path lengths relative to Theta* (blue line). All successful queries on all
maps are shown. Each data point is colored by its absolute path length, highlighting
how most of the outliers in terms of relative path length correspond to very short
paths. Note that not all outliers of the sampling-based planners are shown in the lower
plot. The paths of RRTConnect, in particular, are so long that only the bottom few
quantiles are visible.
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Table 5.3: Total path curvature across different maps for 100 randomly sampled start
and goal position pairs per map. Averaged across all queries for which all planners
succeeded.

Mean total curvature (rad) Mine Cloister Math Park
A* Euclidean 27.52 33.04 50.80 76.30
A* Octile 26.37 29.05 50.09 72.06
Theta* 1.76 0.49 1.16 1.46
LazyTheta* 2.18 0.64 1.34 1.78
RRTConnect 8.81 4.74 5.02 9.23
RRT* 0.1s 2.20 0.79 1.35 1.85
RRT* 1s 1.95 0.61 1.32 1.39
RRT* 10s 1.97 0.53 1.45 1.54
Ours 1.97 0.55 1.32 1.69
Ours Lazy 2.57 0.96 1.64 2.38
Ours Fast 2.77 0.90 1.68 2.50

at the sampling-based planners, we see that the smoothest paths are obtained by
RRT*1s. We believe this happens since RRT*1s has enough time to find reasonable
paths, but does not yet significantly optimize their lengths. Minimum-length paths
must tightly wrap the obstacles along their way, which intuitively makes them more
sensitive to the geometry of the obstacles’ boundaries. Finally, the paths found by
RRTConnect are significantly rougher than those of RRT*. This is not surprising
given that the excess length of RRTConnect’s paths has to be folded into the same
amount of free space.

Table 5.4 lists the average number of turning points (black) and waypoints (grey)
generated by each planner. Generally, the paths found by both A* variants have
the highest number of turning points, while those of RRT*0.1s have the fewest.
Increasing RRT*’s time budget from RRT*0.1s to RRT*10s allows it to find paths
that are shorter, as we saw earlier, but also contain roughly twice as many turns as
its paths get closer to the obstacles. The remaining planners, including ours, exhibit
this same sensitivity and produce paths whose average number of turning points is
approximately equal to RRT*10s.
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Table 5.4: Number of turning points (black) and waypoints (grey) across different
maps for 100 randomly sampled start and goal position pairs per map. Averaged
across all queries for which all planners succeeded.

Mean # of turning points Mine Cloister Math Park
A* Euclidean 67 152 85 181 137 371 225 724
A* Octile 66 152 82 181 136 371 222 724
Theta* 6 9 2 4 5 8 8 10
LazyTheta* 7 10 2 4 5 8 8 13
RRTConnect 6 8 3 5 4 6 7 9
RRT* 0.1s 3 5 1 3 2 4 3 5
RRT* 1s 4 6 1 3 3 5 4 6
RRT* 10s 6 8 2 5 7 9 7 9
Ours 7 10 2 4 6 8 9 11
Ours Lazy 8 11 3 5 6 8 9 12
Ours Fast 7 10 2 4 5 7 8 11

Runtime

The last metric we evaluate is execution time, starting with the average execution time
of each planner operating in each environment shown in Table 5.5. Note that all runs
are included in the averages, such that unsuccessful queries are also represented, and
that the planning times of the RRT* variants are not listed since they are constant.
Theta* is the slowest of all planners by a large margin. Enabling lazy visibility
checking (LazyTheta*) improves runtime by 6 to 9 times. However, LazyTheta*
is still significantly slower than either A* variant. The results also clearly indicate that
choosing a heuristic that better confines the explored volume significantly improves
runtime, with A*Octile being up to 70% faster than A*Euclidean. Turning to
our proposed planners, we see that leveraging multi-resolution results in a significant
speedup. On average, Ours is 6 times faster than its fixed resolution counterpart,
Theta*, in confined environments, and up to 17 times faster in large open spaces.
The speedup of OursLazy with respect to LazyTheta* is slightly smaller but still
meaningful, being 2 to 6 times faster. Finally, OursFast and RRTConnect are tied
for first place. While OursFast is up to 12 times faster than RRTConnect in confined
environments such as the Mine, RRTConnect is up to 14 times faster in large open
spaces such as Park. Yet, even in the Park environment, OursFast still performs
favorably and is at least 3 times faster than any of the other baseline planners.

We conclude our evaluations by briefly analyzing how the runtimes are distributed.

88



5.5 Experiments

Table 5.5: Execution times compared across different maps for 100 randomly sampled
start and goal position pairs per map. Averaged across all queries. Note that the RRT*
variants are omitted as their execution times were fixed to 0.1s, 1.0s, and 10.0s.

Mean execution time (s) Mine Cloister Math Park
A* Euclidean 0.32 1.58 3.29 12.47
A* Octile 0.24 1.06 2.02 7.41
Theta* 3.16 25.26 65.78 249.22
LazyTheta* 0.5 3.09 7.37 28.51
RRTConnect 1.12 1.36 0.12 0.16
Ours 0.53 2.15 3.89 18.11
Ours Lazy 0.21 0.69 1.15 5.45
Ours Fast 0.09 0.28 0.47 2.28

The upper plot in Figure 5.7 shows the absolute execution times for each planner on a
logarithmic scale, while the bottom plot shows their execution times relative to Theta*
on a linear scale. Following the style of the previous plots, the data points are colored
by path length. Looking at the upper plot, we see that for all search-based planners,
the execution time is directly correlated to the path length. In contrast, the execution
times of RRTConnect do not show a meaningful correlation and the execution times
of the RRT* variants are constant. In the bottom plot, we see that the runtimes of the
search-based planners are strongly correlated to those of Theta*, while the relative
runtimes of the sampling-based planners have much higher variance. The results also
show that the speedup of all planners over Theta* generally increases as the path
length increases, emphasizing that Theta* scales relatively poorly. Looking at our
proposed planners, we see that Ours and OursLazy are rarely slower than Theta*
and can be up to 40 and 120 times faster, respectively. Finally, OursFast is strictly
faster, yielding speedups of 5 to 1000×.
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Figure 5.7: Comparison showing the execution times of three variants of our multi-
resolution planner and a representative selection of search- and sampling-based plan-
ners. The upper plot shows the absolute execution times (log scale), while the lower
plot shows the speedups relative to Theta* (blue line). All successful queries on all
maps are shown. Each data point is colored by its absolute path length, highlighting
how the speedup of all planners over Theta* grows as the path length increases.
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5.6 Conclusion

In this chapter, we presented a search-based global planning method that exploits an
octree-like data structure to improve planning speed in occupancy-map environments.
We extend the ideas of any-angle planners like Theta* to a hierarchical representation
to exploit the sparsity of space. Our proposed method generalizes the concept of
inflection points from a fixed-resolution grid representation to a hierarchical one.

Extensive evaluations and comparisons to search-based methods show that we achieve
paths of competitive quality but at a substantially reduced computational cost. Show-
casing that exploiting the inherent sparsity of real environments does not significantly
impact accuracy but provides significant computational benefits. Comparisons to
search-based methods demonstrate that our method is capable of detecting feasibility
while finding high-quality paths at comparable run times. Together, these results
show that our approach, exploiting the spatial structure encoded in a hierarchical
map, gives us the benefits and guidance of search-based methods with the speed of
sampling-based methods.
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Chapter6
Conclusion and Outlook

This final chapter summarizes the presented work and reflects on the research objec-
tives of this thesis, before discussing interesting avenues for future research.

6.1 Summary

The first research chapter of this thesis introduced an efficient and accurate hierarchical
volumetric mapping framework. Using Haar wavelets, it encodes the occupancy
posterior as a sparse set of non-zero coefficients that can conveniently be stored
using a memory-efficient octree data structure. Beyond memory efficiency, wavelet
decompositions guarantee that all resolution levels implicitly remain synchronized.
As guaranteed by the MRA conditions, they also ensure that new measurements
can safely be integrated into the map in a coarse-to-fine manner. We introduce a
hierarchical measurement integrator that uses this fact to incorporate lossless early
stopping criteria. The resulting gains in computational efficiency allow the use of
more complex measurement models to increase the map’s accuracy, such as a novel
angular uncertainty-aware measurement model. Validated with synthetic RGB-D
and real-world 3D LiDAR datasets, the method has been shown to be effective in
achieving high-quality mapping results with reduced memory and computational
demands. In particular, the method is shown to achieve state-of-the-art recall on
challenging obstacles such as thin surfaces and vegetation. Moreover, we demonstrate
the system’s flexibility by integrating multiple sensors into a single map with per-
sensor resolution. This feature enables the use of a single map for tasks that would have
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required dedicated maps in the past, offering a more efficient solution for autonomous
robotic systems.

In the second research chapter, we presented an efficient, low-latency reactive obstacle
avoidance method to safely navigate unknown or changing 3D environments. The
approach is based on the idea that objects that are far from the robot do not have
to be processed at the same level of detail as nearby obstacles for effective and
safe navigation. We therefore propose to represent obstacles surrounding the robot
using multi-resolution cells and introduce a hierarchical algorithm to extract such
an abstraction from hierarchical volumetric maps efficiently. Using the framework
of RMPs, we then attach one policy to each multi-resolution obstacle and combine
them in parallel to obtain a highly efficient reactive collision avoidance and navigation
system. Our numerical analyses demonstrate that lowering the resolution for distant
obstacles allows the system to significantly expand its perceptive radius without losing
accuracy. A key benefit of using RMPs is their high degree of modularity, which makes
it easy to combine our reactive collision avoidance policy with other RMPs to satisfy
additional objectives, such as goal-seeking, to create a comprehensive navigation
system. Thorough evaluations, conducted across a range of indoor and outdoor maps,
reveal that our system matches the performance of optimization-based planners such
as CHOMP while achieving a 50× reduction in planning time, removing the need for
pre- or post-processing steps, such as ESDF generation or trajectory tracking control.
Deployed on a real MAV powered by an Nvidia Jetson AGX Orin, the system is shown
to successfully negotiate an indoor obstacle course and operates at 200Hz with an
end-to-end latency of 36ms while only using 2.4 threads for mapping and planning.

The final research chapter introduced an efficient, accurate, and resolution-complete
global planner. The fundamental building block for our algorithm is a multi-resolution
representation that can be used to store the planner’s intermediate solutions. By
generalizing the representation used by any-angle planners such as Theta* [6] to multi-
resolution and encoding it into an octree data structure, it combines high accuracy
and memory efficiency. A multi-resolution algorithm that efficiently explores the
search space and computes the shortest path in a coarse-to-fine manner, dynamically
increasing the resolution only where needed, further improves runtime. Finally, a
special initialization procedure closes the accuracy gap between our multi-resolution
planner and Theta* without compromising efficiency. Extensive evaluations are
performed across a variety of maps of real indoor and outdoor environments. Ablations
are presented to quantify the properties of each core component of our method. We
also compare our method to a representative selection of search and sampling-based
planners. The results show that our multi-resolution planner empirically maintains the
completeness guarantees of search-based planners running at the highest resolution.
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6.2 Conclusions

Reflecting on the research objectives of this thesis, our study on multi-resolution
representations yielded substantial improvements across several key areas. In terms of
the first research objective, mathematical rigor, using wavelet decomposition allowed
us to define a hierarchical representation whose properties are clearly defined and
satisfy the MRA conditions, which eliminate the need for heuristics and guarantee
correctness when the map is updated or queried in a coarse-to-fine manner.

The second research objective was to increase efficiency, which we addressed by
capitalizing on multi-resolution representations and hierarchical algorithms. This
approach significantly reduced memory and computational demands by leveraging
the fact that real environments predominantly consist of free space. We selected
Haar wavelets for their optimal balance between compact storage, efficient updates,
and compatibility with efficient data structures, notably improving the scalability of
volumetric mapping.

Our final two research objectives were to improve the flexibility and usability of
volumetric maps. As shown in all three research chapters, multi-resolution allows
for a granular trade-off between efficiency and accuracy. In Chapter 3, we first
showed how, using wavelet decomposition, a single map can seamlessly be updated
by multiple sensors with per-sensor resolution and queried at any resolution at any
time, eliminating the need to maintain dedicated volumetric maps for different tasks.
In Chapter 4 and Chapter 5, we then demonstrated how our map representation can be
combined with hierarchical algorithms to enable accurate, reliable, and highly efficient
global path planning and reactive navigation. In conclusion, the work presented in this
thesis paves the way for more autonomous, versatile robotic systems that can reliably
accomplish complex tasks in large and diverse environments.

All the methods developed in this thesis, including the wavemap framework and
reference implementations of waverider and wavefinder, are released as open-source
projects. When combined, these tools constitute a full navigation system. However,
we believe the true potential of wavemap lies in its versatility and flexibility. The
framework, therefore, includes a growing toolbox of general-purpose algorithms and
extensive documentation. We look forward to seeing how researchers and practitioners
will leverage and customize these tools to advance their autonomous systems.
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6.3 Future Work

The findings of this thesis open up many opportunities for future research, some of
which we highlight in the following.

High-Level Scene Understanding and Semantics

In order to reason about and interact with their environment, autonomous agents often
need an understanding of their surroundings that goes beyond pure geometry. A wide
range of formulations are currently in use to represent environments while incorporat-
ing high-level information such as semantics. One family of approaches divides the
scene into submaps on a per-object or panoptic basis. These methods typically model
the geometry within each submap using a general geometric representation, such as a
fixed-resolution occupancy grid or TSDF. By instead using wavemap to model each
submap’s geometry, they could significantly increase their overall efficiency, scalabil-
ity, accuracy, and flexibility. Another common approach is to model the entire scene
using a single volumetric map and estimate the semantic labels per voxel. Note that
closed-vocabulary semantic classes could directly be included in traditional hierarchi-
cal volumetric maps such as Octomap [4], for example, using bit masks. This would
already be interesting, as it makes it possible to use semantics-aware hierarchical
algorithms in downstream tasks. However, if closed- or perhaps even open-vocabulary
semantic labels could be represented in a way that their numerical differences become
meaningful, they could even be encoded using wavelet decomposition. This would be
particularly interesting, as all of the advantages of wavemap would then readily apply
to storing, updating, and querying semantic-volumetric maps.

Hierarchical volumetric maps as an input to learning-based systems

Learning-based approaches are increasingly outperforming classical methods across a
wide array of robotic tasks, ranging from object segmentation to traversability estima-
tion and locomotion policies. However, many learning-based systems are still limited
to 2D inputs due to the complexity of processing 3D data. Static, fixed-resolution 3D
grids are simple to use but require excessive amounts of memory and processing power
to cover a reasonable volume at a sufficiently high resolution for most applications.
Alternative methods, such as PointNet, can directly operate on sparse, unstructured
3D data but are inherently approximate. In contrast, hierarchical volumetric maps can
efficiently represent 3D geometry at variable levels of detail without sub-sampling.
Furthermore, many parallels exist between the wavelet transform and convolutional
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neural networks. It would, thus, be interesting to investigate whether an encoder net-
work can be designed to efficiently extract feature embeddings directly from wavemap
for learning-based spatial perception or navigation tasks.

Spatio-temporal mapping

Spatio-temporal volumetric maps are often represented by splitting the world into
submaps, each covering distinct time intervals. Although this approach is reasonably
efficient in terms of resource usage, it can only capture the world at a very low temporal
resolution. At the start of this thesis, we were drawn to wavelets due to their successful
applications in 2D and 3D (medical) image compression. In a similar vein, many
parallels exist between compression of spatio-temporal volumetric maps and (wavelet-
based) video compression. It would, therefore, be interesting to combine the outcomes
of this thesis with those from the video compression research community. With the
goal of developing a method to efficiently store, update, and query high-resolution
spatio-temporal volumetric maps.

Efficient and Accurate Deformations

Various applications call for efficient and accurate methods to deform volumetric maps.
For example, to correct errors introduced by drifting pose estimates after detecting
a loop closure. Existing solutions often solve this problem by de-integrating and
re-integrating measurements to rebuild the parts of the map that require the largest
amount of change, which is computationally expensive and requires all measurements
to be stored. Another solution is to represent the world using a collection of movable,
interpolated submaps. However, this approach can only simulate smooth deformations
when the submaps are small and feature a high degree of overlap. This is also ineffi-
cient, as the amount of redundant information to store and interpolate increases linearly
with the number of overlapping submaps. One way to overcome these limitations
would be to continuously deform the volumetric map. Deforming volumetric models
has received significant attention in the computer graphics community and shares
significant similarities with the more general problem of (mesh) parameterization, i.e.
smoothly mapping mesh or grid vertices to corresponding coordinates on a 2D or 3D
texture. We believe that similar methods could successfully be applied to hierarchi-
cal volumetric maps and would significantly increase their efficiency, accuracy, and
applicability within or in combination with SLAM systems.
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Anytime mapping

The current version of wavemap integrates measurements into the map up to a fixed,
sensor-specific, maximum resolution. By virtue of the coarse-to-fine integrator’s
early stopping criteria, the computational cost, therefore, drops significantly when
updating a region where the map’s occupancy estimates have already converged. For
many applications, this is convenient since it saves energy and frees up computational
resources for other tasks. However, for certain tasks, it would be better for map updates
to take a fixed amount of time while dynamically adjusting the update resolution. In
the spirit of anytime planning, we refer to this feature as anytime mapping. Some
inherent benefits of this approach are that it relieves the user from choosing the
resolution a priori, guarantees a fixed latency even when the robot transitions between
confined and wide-open spaces, and naturally adjusts the resolution to the robot’s
velocity. Given wavemap’s flexibility, it would even be possible to prioritize specific
parts of the scene – in a similar fashion to how humans concentrate on objects they
manipulate or narrow passages they want to traverse.

Advancing scalability

Although wavemap already exhibits better scaling than the state of the art, substantial
improvements are still within reach. Our open-source implementation currently needs
about 1.6GB of memory to reconstruct 140×240×20m environments at a resolution
of 5cm. On a high-end laptop CPU, it can integrate LiDAR and depth camera data
up to a resolution of 5 cm and 1 cm, respectively, at sensor rate. Optimizing the
implementation further might be worthwhile for applications requiring extremely
large, high-resolution maps and industrial users targeting low-cost or low-powered
devices. For very large-scale applications, one interesting aspect of wavelet-encoded
volumetric maps is that they are particularly well-suited for out-of-core processing.
Wavelet decompositions allow maps stored on disk to be loaded into memory gradually,
starting with a coarse approximation that can progressively be refined in regions of
interest by only loading missing detail coefficients. Given that the wavelet transform is
linear, orthogonal, and localized, this approach is not limited to read-only operations,
and changes can just as efficiently be written back to disk. Another interesting property
of the wavelet transform is its compatibility with fixed-precision arithmetic, which
might benefit certifiability by eliminating lossy floating point types and operations.
Finally, significant gains could be achieved using hardware acceleration, advanced data
structures, fixed-precision low-width numerical types, and more advanced encoding
schemes – bridging the gap to lossless image encoders such as JPEG 2000.
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Distributed systems

Although this thesis primarily focused on single-robot systems, wavelet-based rep-
resentations are particularly well-suited to distributed applications. The previous
subsection highlighted several ways to further decrease wavemap’s memory usage,
which has even bigger implications when maps have to be transmitted over low-
bandwidth or unreliable networks. The ability to initially exchange maps at a coarse
resolution and progressively refine regions of interest without transmitting redundant
data would significantly improve the efficiency and reliability of multi-robot or cloud-
aided systems. Progressive transmissions can be taken one step further by sorting
the transferred bits individually in order of their significance. Encoders that exhibit
this property are referred to as embedded coders [5], and wavelet decompositions are
naturally amenable to this type of encoding. One final advantage we have not yet
mentioned is that the linearity of the wavelet transform means that map changes can
be communicated differentially and incorporated by the receiver by simply summing
up the changes. This enables particularly efficient collaborative mapping.

Multi-resolution distance fields

Many similarities exist between the algorithms used for any-angle planning and ESDF
generation. The key difference is that planners are typically initialized using a single
start vertex, while ESDF generators are initialized using a set of surface vertices.
Furthermore, any-angle planners need to handle the fact that the shortest path can
bend around obstacles, while the ESDF’s magnitude and gradient always point to the
closest obstacle. Therefore, changing wavefinder’s initialization procedure suffices to
turn it into a coarse-to-fine, multi-resolution ESDFs generator. Just like wavefinder,
multi-resolution ESDFs can exploit the inherent sparsity of real environments to be
significantly more efficient than their fixed-resolution counterparts. They also offer
significant advantages in terms of flexibility since their accuracy can dynamically be
adjusted to the task. Furthermore, ESDFs are commonly used as a building block for
other geometric operations, such as computing generalized Voronoi diagrams. We
thus believe their development is a promising avenue for future research.
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Exploration planning

An important capability for robot autonomy in unknown environments is autonomous
exploration. However, determining the most informative exploration trajectory based
on a robot’s incomplete and changing model of the world fundamentally has a very
high computational complexity. To make this problem tractable, existing exploration
planners typically narrow down the options they consider by focusing on the map’s
frontiers or randomly sampling a small subset of candidate viewpoints or paths. Only
considering frontiers is restrictive in terms of the gain formulations and tasks that can
be achieved, while random sampling discards a lot of the information embedded in the
map and neglects its underlying structure. It would be ideal if next-best viewpoints,
or even paths, could efficiently and deterministically be extracted from the map.
Hierarchical algorithms can generally be used to significantly speed up a broad range
of expensive geometric operations, such as the computation of Generalized Voronoi
Diagrams. Furthermore, in Chapter 5, we saw how hierarchical representations
facilitate efficient, accurate, and reliable global planning. Based on these insights,
we believe the use of hierarchical representations and algorithms could significantly
improve the consistency, reliability, and efficiency of exploration planning – making it
a promising direction for future research.
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