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Abstract

As robots evolve beyond industrial settings to address broader challenges, such as
autonomous inspection, home assistance, and search and rescue, there is a growing de-
mand for them to autonomously navigate and perform meaningful tasks in increasingly
large, unstructured, and unknown environments. Despite improvements in hardware,
sensing, and computational technologies enabling greater robot agility and perception,
a significant bottleneck remains in their software, particularly in autonomous mapping
and navigation capabilities. Volumetric maps offer a general, safe, and task-agnostic
representation of the environment but are hindered by their excessive computational
and memory demands, limiting their practical use on small and affordable robots.

This doctoral thesis investigates the use of adaptive representations as a solution to
these challenges, focusing on enhancing the scalability, efficiency, and accuracy of
volumetric maps. Recognizing that the value of volumetric maps is determined by
the benefits they bring to downstream tasks, we study local and global planning as
two representative applications. Leveraging hierarchical, multi-resolution approaches,
this work aims to dynamically balance the trade-off between detail and computational
cost, tailored to the mission’s needs.

The main contribution of this thesis is the development of a mathematically rigor-
ous multi-resolution mapping framework, named wavemap, that adjusts the map’s
resolution based on the environment’s geometry without reliance on heuristics. The
Multi-Resolution Analysis (MRA) theory guarantees that using wavelet decompo-
sition, new observations can safely and efficiently be integrated into the map in a
coarse-to-fine manner. The resulting gains in computational efficiency, together with
early stopping criteria for the integrator, allow us to use a more complex measurement
model that improves the capture of thin objects, thereby enhancing the safety and
reliability of robotic operations. The framework is extensively evaluated on synthetic
and real data, and shown to efficiently reconstruct large-scale environments while
accurately capturing fine details. Beyond significant improvements in terms of scal-
ability and map quality, the framework’s flexibility facilitates its use across a wide
range of sensors and applications.
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Our second and third contributions are efficient methods for reactive obstacle avoid-
ance and deterministic global path planning, utilizing hierarchical representations and
algorithms alongside the wavemap framework to enable rapid, reliable navigation
through complex environments. Experimental evaluations on maps of diverse, real
environments and deployments on a micro aerial vehicle demonstrate the superiority of
these approaches over existing methods in terms of efficiency, accuracy, and flexibility,
underscoring their potential to significantly advance the field of robotic mapping and
navigation.

In sum, this doctoral thesis presents a comprehensive solution to the challenges of
volumetric mapping and planning in robotics, paving the way for more autonomous,
efficient, and versatile robotic systems capable of operating in diverse and changing
environments.



Zusammenfassung

Wihrend sich Roboter iiber industrielle Anwendungen hinaus entwickeln, um breitere
Herausforderungen wie autonome Inspektionen, Hilfe im Haushalt und Such- und
Rettungsaktionen anzugehen, wéchst die Nachfrage nach ihrer Féhigkeit, autonom in
zunehmend grossen, unstrukturierten und unbekannten Umgebungen zu navigieren
und sinnvolle Aufgaben zu erfiillen. Trotz Verbesserungen in der Hardware, Sensorik
und Computertechnologie, die eine grossere Agilitit und Wahrnehmungsfahigkeit der
Roboter ermoglichen, bleibt ein signifikanter Engpass in ihrer Software, insbesondere
bei den Fihigkeiten zur autonomen Kartierung und Navigation. Volumetrische Karten
bieten eine allgemeine, sichere und aufgabenagnostische Darstellung der Umgebung,
sind jedoch durch ihren iiberméssigen Rechen- und Speicherbedarf eingeschrinkt,
was ihren praktischen Einsatz auf kleinen und erschwinglichen Robotern begrenzt.

Diese Doktorarbeit untersucht die Verwendung adaptiver Darstellungen als Losung fiir
diese Herausforderungen und konzentriert sich auf die Verbesserung der Skalierbarkeit,
Effizienz und Genauigkeit volumetrischer Karten. In der Erkenntnis, dass der Wert
volumetrischer Karten durch die Vorteile bestimmt wird, die sie fiir nachgelagerte
Aufgaben bringen, untersuchen wir lokale und globale Planung als zwei représentative
Anwendungen. Durch die Nutzung hierarchischer, mehrstufiger Ansitze zielt diese
Arbeit darauf ab, den Kompromiss zwischen Detailgenauigkeit und Rechenkosten
dynamisch auszugleichen, angepasst an die Bediirfnisse der Mission.

Der Hauptbeitrag dieser Arbeit ist die Entwicklung eines mathematisch rigorosen
Mehr-Ebenen-Mapping-Rahmenwerks, benannt als wavemap, das die Kartenauflo-
sung basierend auf der Geometrie der Umgebung ohne Abhéngigkeit von Heuristiken
anpasst. Die Theorie der Multi-Resolution-Analyse (MRA) garantiert, dass durch
die Verwendung der Wavelet-Zerlegung neue Beobachtungen sicher und effizient
in die Karte in einer grob-zu-fein Manier integriert werden konnen. Die daraus re-
sultierenden Gewinne an Recheneffizienz, zusammen mit frithen Stoppkriterien fiir
den Integrator, ermdglichen den Einsatz eines komplexeren Messmodells, das die
Erfassung diinner Objekte verbessert und somit die Sicherheit und Zuverlassigkeit
von Roboteroperationen erhoht. Das Rahmenwerk wird ausfiihrlich anhand von syn-
thetischen und realen Daten bewertet und zeigt, dass es grossflachige Umgebungen
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effizient rekonstruieren kann, wihrend es feine Details genau erfasst. Neben signifikan-
ten Verbesserungen hinsichtlich der Skalierbarkeit und Kartenqualitit erleichtert die
Flexibilitdt des Rahmens seinen Einsatz iiber eine breite Palette von Sensoren und
Anwendungen.

Der zweite und dritte Beitrag sind effiziente Methoden zur reaktiven Hindernisvermei-
dung und zur deterministischen globalen Pfadplanung, die hierarchische Darstellungen
und Algorithmen zusammen mit der wavemap Methode nutzen, um eine schnelle, zu-
verldssige Navigation durch komplexe Umgebungen zu erméoglichen. Experimentelle
Bewertungen auf Karten von diversen, realen Umgebungen und Einsatzauf einem
Mikro-Fluggerit demonstrieren die Uberlegenheit dieser Ansitze gegeniiber bestehen-
den Methoden in Bezug auf Effizienz, Genauigkeit und Flexibilitdt und unterstreichen
ihr Potenzial, das Gebiet der robotischen Kartierung und Navigation erheblich vo-
ranzubringen.

Zusammenfassend prisentiert diese Doktorarbeit eine umfassende Losung fiir die
Herausforderungen der volumetrischen Kartierung und Planung in der Robotik und
ebnet den Weg fiir autonomere, effizientere und vielseitigere Robotersysteme, die in
der Lage sind, in diversen und sich verindernden Umgebungen zu operieren.
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Chapter

Introduction

Robots, long used in industrial settings, are now evolving to address broader global
challenges and human welfare needs, taking on diverse tasks like autonomous in-
spection, home assistance, and search and rescue. Moreover, decreasing hardware
costs and advancements in user interfaces make the deployment of commercial and
personal service robots socially and economically viable. This new generation of
robots, equipped with smaller, more accurate sensors and enhanced computational
hardware, is poised to offer greater agility and perception. However, significant gaps
in their software, particularly in their autonomy, hinder their ability to reliably perform
varied tasks and operate in uncontrolled environments.

A fundamental aspect that limits the flexibility and generalizability of robotic systems
is how they model and reason about their surroundings. Mapping has been a key
research area within the robotics community over the past decades. Many successful
solutions represent the world using sparse sets of distinctive features. While such
feature-based maps can scale well to large environments, choosing features is inher-
ently task and environment-dependent. Sparse feature-based methods, therefore, tend
to be limited to mapping and localization, or planning in controlled environments.

On the other end of the spectrum, volumetric maps focus on estimating relevant
properties of the environment, such as occupancy, at all points in space. They can
represent objects of arbitrary shapes and distinguish observed from unobserved space
without requiring simplifying assumptions or prior knowledge. This makes volumetric
maps particularly safe to deploy in unknown or changing environments. Furthermore,
their generality allows a single map to be used for a broad portfolio of tasks. Volumetric
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maps allow efficient, typically constant time, retrieval of their estimates at query points.
This motivates their frequent use in solving planning problems ranging from collision
avoidance and manipulation to autonomous exploration. Beyond their generality in
terms of use cases, volumetric maps can be updated using a wide range of sensing
modalities — including sonar, radar, LiDAR, and depth cameras — and serve as a good
common ground for sensor fusion. Conceptually, this representation is therefore
well poised to enable autonomous robots to safely complete more complex tasks in
unstructured environments.

Nevertheless, fundamental challenges remain. The computational and memory com-
plexity of storing and integrating new measurements into 3D volumetric maps gen-
erally scales linearly with the mapped volume and cubically as a function of the
resolution. The latter aspect is particularly problematic since the resolution directly
controls the amount of detail a volumetric map can capture and its maximum achiev-
able accuracy. Beyond storing and updating the map, these costs tend to be incurred
again in downstream applications with tasks such as obstacle avoidance and collision
checking often also scaling cubically in the chosen resolution.

Volumetric methods are a popular choice on research platforms that can afford top-of-
the-line computing hardware and where battery life is not a primary concern. However,
the cost-to-benefit ratio is still too low to justify their adoption on commercial de-
vices. Notable exceptions, such as high-end drones or surveying solutions, only use
volumetric representations for small, local areas at low resolutions or during offline
operations.

Motivated by the fact that real environments predominantly consist of free space
and the amount of detail needed on surfaces depends on their relevance to the task,
adaptive volumetric mapping methods offer a promising avenue for improvement.
Multi-resolution representations can, for example, represent uniform areas such as free
space at low resolutions, while reconstructing high-resolution details where needed.

In this thesis, we investigate ways to make the resource usage of volumetric maps
more scalable. Ideally, we would like the representation to allow a granular trade-off
between cost and accuracy that can dynamically be aligned to the mission objec-
tives. Additionally, we examine the impact of this new mapping representation on
downstream tasks. Using local and global planning as two representative examples,
we show how the advantages of the new representation not only benefit geometric
modeling but also reasoning.

In the rest of this section, we will first briefly summarize the author’s key take-
aways from using existing volumetric mapping frameworks in a number of robotics
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competitions and projects. We will then translate them into research objectives to
make volumetric mapping systems more useful in practice. Finally, we will briefly
summarize the approach behind each contributing thesis chapter.

1.1 Practical considerations

From our experience, volumetric maps work well across indoor, outdoor, structured,
and natural environments. We have also successfully used them with sonars, depth
cameras, and LiDARs from all major brands. Once a volumetric framework has been
configured for a given sensor setup, little to no parameter changes are required to
accommodate new environments aside from resolution or other scalability-related
adjustments. In the DARPA Subterranean Challenge (SubT), our team, CERBERUS,
used volumetric maps for local, global, and exploration planning [1, 2]. More generally,
every team in SubT used volumetric maps in at least one part of their system. Some
of our team’s robots further used voxgraph [3], based on volumetric submaps, as the
onboard SLAM solution. In conclusion, volumetric maps offer a good balance between
generality and expressiveness. Additionally, although they come with an upfront
computational cost, they often reduce the computational effort required downstream
and can effectively be reused for multiple tasks.

The most important limitation we experienced is that fixed-resolution volumetric
mapping scales poorly. The fact that its memory and computational complexities grow
cubically with resolution is a major limitation in practice. It meant that, for CPU-based
approaches integrating LiDAR inputs, the best achievable map resolution was limited
to around 15cm. GPU-accelerated implementations can overcome computational bot-
tlenecks but run into memory constraints instead. The problem is made worse because
the costs in downstream applications often scale similarly to their underlying map.
Common operations such as ESDF generation, occupancy-based collision checking,
and mesh generation, for example, also scale cubically in the chosen resolution. One
common workaround is to use multiple maps, such as a low-resolution map for global
mapping, planning, and exploration, complemented by a high-resolution local map for
manipulation, traversability estimation, and local planning.

Another important practical issue is that volumetric maps struggle to capture thin
objects, such as ropes, poles, fences, and vegetation, which can be hazardous obstacles.
One reason for this is that voxel-based representations cannot accurately represent
details below their voxel size. Another reason is that most existing measurement
models assume that measurement rays are always one voxel thick. On the one hand,
when the grid resolution is much higher than the beam density, this leads to aliasing
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artifacts. On the other hand, when the resolution is low, this leads to issues such as
scanning rays eroding the edges of objects that they miss by less than the width of a
voxel.

1.2 Research objectives

The primary goal of this thesis is to enhance the scalability of volumetric mapping.
Our research concentrates on multi-resolution methods, which maintain the general
applicability and user-friendliness of voxel-based approaches while significantly
improving their efficiency and flexibility. We also investigate how these enhancements
can be used to bolster accuracy. Moreover, we believe mapping representations should
be designed to maximize their utility in downstream applications to ensure their
effectiveness and relevance in practice.

To achieve these goals, we define the following core research objectives:

¢ Mathematically rigorous multi-resolution: The resolution should adapt to
the environment’s geometry without relying on heuristics or hand-tuning.

* Computational efficiency: The representation should be both memory and
computationally efficient to update, store, and query.

¢ Flexibility: The framework should allow a granular trade-off between accuracy
and computational efficiency that can, ideally, dynamically be adjusted to the
task.

* Synergy with applications: The representation should be easy to use and
benefit downstream tasks.

1.3 Approach

The work in this thesis is split into three main parts. In the first part, we investigate
how to rigorously, efficiently, and accurately model, store, and update multi-resolution
volumetric maps. The second and third parts then focus on how hierarchical volumetric
maps can benefit downstream tasks, taking local planning and global planning as two
representative and complementary examples. Note that the methods developed in all
three parts could be used independently. Although the mapping framework developed
in part one is particularly well-suited as the backbone for parts two and three, both
planners are general and could also be used with other hierarchical volumetric mapping
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frameworks, such as Octomap [4]. In the following, we summarize the ideas behind
each part.

1.3.1 Volumetric mapping

While working toward the first research objective, we identified the Multi-Resolution
Analysis (MRA) conditions, formalized by Mallat and Meyer [5], as a rigorous
mathematical definition for the desired behavior of multi-resolution volumetric maps.
One way to guarantee that the MRA conditions are always satisfied is to represent
the volumetric map using a wavelet basis. As motivated in Section 1.1, existing
volumetric mapping approaches are constrained by memory, computational, and
accuracy bottlenecks. Wavelet decompositions make it possible to represent volumetric
maps with state-of-the-art compression rates without introducing noticeable query
overheads or impacting accuracy, as they are lossless. We further leverage the fact
that they guarantee that all resolution levels implicitly remain synchronized at all
times to derive a coarse-to-fine measurement integration scheme. By progressively
increasing the update resolution only where it is needed, this integrator simultaneously
increases the computational efficiency and achievable accuracy. Finally, we propose
a novel measurement model that explicitly models the angular uncertainty of each
measurement ray. From a theoretical perspective, removing the assumption that rays
are infinitely thin allows us to directly adapt the resolution of map updates based
on their approximation error. In practice, this new model significantly increases
occupancy recall on thin objects, benefiting the safety of downstream tasks.

1.3.2 Local planning

A question that arises naturally is how multi-resolution can be leveraged to efficiently
and accurately summarize subsections of a volumetric map for downstream tasks.
One particularly challenging and relevant problem is summarizing a robot’s direct
surroundings for collision avoidance. Ideally, it would be possible to update such a
summary with low latency, at sensor rate, and efficiently enough to allow the entire
obstacle avoidance process to continuously run in the background. Intuitively fine
details are relevant when they are near the robot, but lower resolutions suffice for
distant objects. This is convenient, as it makes it possible to simultaneously consider
thin local obstacles while also keeping a wide perceptive radius. Based on this insight,
we propose a hierarchical algorithm that efficiently summarizes the obstacles in the
robot’s vicinity as multi-resolution cubes whose size decays in function of their
distance to the robot. Leveraging the concept of Riemannian Motion Policies (RMPs),
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we then attach one policy to each multi-resolution obstacle and combine them in
parallel to obtain a highly efficient reactive collision avoidance planner. Through
numerical derivations, we analyze the approximation error introduced by considering
distant obstacles at a lower resolution. We then demonstrate how our reactive collision
avoidance policy can easily be combined with additional RMPs to satisfy additional
objectives, such as goal-seeking, to form a complete navigation system. Extensive
evaluations are performed in simulation to analyze how the system compares to
existing methods in terms of latency, success rates, and resource usage. Finally, the
system is used to guide a real Micro Aerial Vehicle (MAV) through an obstacle course
to study how it performs in practice.

1.3.3 Global planning

In the final research segment of this thesis, we investigate how multi-resolution can
be used to increase the efficiency and efficacy of global path planning. Our focus
centers on search-based methods, due to their deterministic nature and their ability
to either find the optimal solution or report that the planning query is infeasible in
finite time. A major drawback of using search-based planners is their execution time,
in contrast to sampling-based planners which are significantly faster in large, open
environments. Drawing inspiration from the ability of hierarchical volumetric maps
to completely yet compactly capture an environment’s inherent structure, we study
whether multi-resolution can also be used to increase the efficiency of search-based
planning. Concretely, we introduce a multi-resolution extension of Theta* [6], a slow
but accurate any-angle planner. Using a dynamic, resolution refinement scheme and
a special initialization procedure, our multi-resolution planner efficiently searches
the shortest path in a coarse to fine manner, while directly controlling its worst-case
sub-optimality with respect to Theta* running at the highest resolution. We extensively
evaluate our proposed multi-resolution planner on a variety of real maps — from tight
indoor spaces to large, structured, and unstructured outdoor environments. The critical
role of each component of our approach is quantified through ablations. Finally, we
compare the success rates, path quality, and execution times of our multi-resolution
planner to a representative range of search and sampling-based planners to get a
comprehensive understanding of its performance.
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1.4 Contributions

The core contributions of this thesis are organized into three parts, corresponding to
the research chapters of this thesis:

Volumetric mapping

The main contribution of this thesis is wavemap, a hierarchical volumetric
mapping framework inspired by multi-resolution analysis. The MRA theory
guarantees that when the map is represented using wavelet decomposition,
new measurements can safely and very efficiently be integrated in a coarse-
to-fine manner. The resulting gains in computational efficiency, together with
early stopping criteria for the integrator, allow us to use more complex sensor
models. We therefore propose to use a new angular uncertainty-aware model
to increase accuracy. In experiments on synthetic RGB-D and real-world 3D
LiDAR data, we demonstrate that our proposed method achieves high-quality
results while being efficient in terms of memory and compute requirements. We
also demonstrate how our method can incorporate observations from multiple
sensors into a single map with per-sensor resolution. This allows the use of a
single map representation for tasks that would have required several dedicated
maps in the past. This work is the subject of publication [7].

Local planning

Our second contribution is a method to enable efficient, reactive obstacle avoid-
ance in changing or unknown 3D environments. Following the intuition that
distant geometry does not need to be considered at the same resolution as nearby
obstacles, it leverages multi-resolution to summarize the robot’s surroundings.
A hierarchical algorithm is presented to efficiently extract multi-resolution ob-
stacle summaries from volumetric mapping frameworks such as wavemap. We
then show how the summary can be turned into a reactive collision avoidance
policy using RMPs. Numerical derivations show that reducing the resolution
of distant obstacles makes it possible to consider a much larger perceptive
radius, while only introducing a negligible approximation error. An important
advantage of using RMPs is that it makes it easy to combine our reactive col-
lision avoidance policy with RMPs satisfying additional objectives, such as
goal-seeking, to form a complete navigation system. Extensive statistical evalu-
ations on indoor and outdoor maps show that the proposed system performs on
par with optimization-based planners such as CHOMP [8] while reducing the
planning time by 50 and requiring no pre-processing or post-processing steps,
such as Euclidean Signed Distance Field (ESDF) generation and trajectory
tracking control. Finally, we deploy the system on a real MAV with an Nvidia
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Jetson AGX Orin and show that it runs at 200Hz, with an end-to-end latency of
36ms, using only 2.4 threads for mapping and planning. The drone is shown to
successfully negotiate an indoor obstacle course. This work is the subject of
publication [9].

¢ Global planning

The final contribution of this thesis is an efficient, accurate, and complete
global planner. We start by studying how multi-resolution can be used to store
the search algorithm’s intermediate solutions more efficiently and introduce
a representation that combines the efficiency of octrees with the accuracy of
any-angle planning representations such as Theta* [6]. We then introduce
a complementary algorithm that efficiently explores the search space by ex-
ploiting the inherent structure of hierarchical occupancy maps. The algorithm
operates in a coarse to fine manner and dynamically increases the resolution
where needed to control its worst-case sub-optimality. A special initialization
procedure is introduced to close the accuracy gap between our multi-resolution
planner and Theta*, without compromising its efficiency. Extensive evalua-
tions are performed across a variety of real indoor and outdoor environments.
Through ablations, we quantify the importance of our method’s core compo-
nents and show how they allow users to intuitively trade off some optimality
for lower runtimes. We further compare our proposed planner to a range of
well-established search and sampling-based planners. The results show that
our method reliably finds shorter paths than RRTConnect and RRT* in all
environments while achieving significantly higher success rates in confined
spaces. We also show that our multi-resolution planner empirically maintains
the completeness guarantees of search-based planners running at the highest
resolution, while being significantly faster. In particular, our method is up to 3
orders of magnitude faster than Theta* when allowed to find solutions that are
longer by 2% at worst and 0.1% on average.

1.4.1 Publications

This section lists the publications to which the author contributed during his doctorate.

Discussed in this Thesis

The following publications are directly related to the main contributions of this thesis
and their results are extended in the document at hand.

10
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* V. Reijgwart, C. Cadena, R. Siegwart and L. Ott, “Efficient volumetric mapping
of multi-scale environments using wavelet-based compression,” RSS 2023
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Function Submaps,” in RA-L 2020

* L. Gasser, A. Millane, V. Reijgwart, R. Bihnemann and R. Siegwart, “Voxplan:
A 3D Global Planner using Signed Distance Function Submaps,” ICRA 2021

* L. Schmid*, V. Reijgwart*, L. Ott, J. Nieto, R. Siegwart and C. Cadena, “A
Unified Approach for Autonomous Volumetric Exploration of Large Scale
Environments Under Severe Odometry Drift,” RA-L 2021

* M. Kulkarni et al., “Autonomous Teamed Exploration of Subterranean Environ-
ments using Legged and Aerial Robots,” ICRA 2022

* M. Tranzatto et al., “CERBERUS: Autonomous Legged and Aerial Robotic
Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean
Challenge,” Field Robotics 2022

¢ M. Tranzatto et al., “Team CERBERUS Wins the DARPA Subterranean Chal-
lenge: Technical Overview and Lessons Learned,” In review

Other Publications

The author also contributed to the following publications which are not directly related
to the work presented in this thesis.

* J. Kabzan et al., “AMZ Driverless: The full autonomous racing system,” Journal
of Field Robotics 2020

)

e L. Andresen et al., “Accurate Mapping and Planning for Autonomous Racing,’
IROS 2020
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3

S. Srinivasan, 1. Sa, A. Zyner, V. Reijgwart, M. Valls and R. Siegwart, “End-to-
End Velocity Estimation for Autonomous Racing,” RA-L 2020

P. Pfreundschuh, H. Hendrikx, V. Reijgwart, R. Dubé, R. Siegwart and A.
Cramariuc, “Dynamic Object Aware LiIDAR SLAM based on Automatic Gen-
eration of Training Data,” ICRA 2021

A. Cramariuc et al., “maplab 2.0 — A Modular and Multi-Modal Mapping
Framework,” RA-L 2023

1.4.2 Open-Source Software

Reference implementations for all of the works discussed within this thesis have been
released open-source, to allow others to build on its results. The author also released
or contributed to the development of several other open-source packages.
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Voxblox [10]: a fixed-resolution, voxel-based volumetric mapping library fo-
cusing on truncated and Euclidean distance fields.
https://github.com/ethz-asl/voxblox

A package to generate ground truth volumetric maps from meshes or simulated
environments, used for accuracy evaluations [3] and simulations [11].
https://github.com/ethz-asl/voxblox_ground_truth

A package to motion-undistort LiDAR pointclouds based on an odometry input.
https://github.com/ethz-asl/lidar_undistortion

Voxgraph [3]: a globally consistent volumetric mapping framework leveraging
a collection of submaps aligned through graph optimization.
https://github.com/ethz-asl/voxgraph

GLocal [1]: a framework for efficient volumetric exploration planning under
severe odometry drift.
https://github.com/ethz-asl/glocal_exploration

COHORT: a multi-agent volumetric exploration planner, presented together
with GBPlanner 2.0 [2].
https://github.com/ntnu-arl/cohort_exploration

Wavemap [7]: an efficient and accurate multi-resolution, multi-sensor 3D
occupancy mapping framework, presented in Chapter 3.
https://github.com/ethz-asl/wavemap


https://github.com/ethz-asl/voxblox
https://github.com/ethz-asl/voxblox_ground_truth
https://github.com/ethz-asl/lidar_undistortion
https://github.com/ethz-asl/voxgraph
https://github.com/ethz-asl/glocal_exploration
https://github.com/ntnu-arl/cohort_exploration
https://github.com/ethz-asl/wavemap

1.4 Contributions

* Waverider [9]: an efficient, low-latency reactive collision avoidance planner
with a wide perceptive radius, presented in Chapter 4.
https://github.com/ethz-asl/waverider

* Wavefinder: an efficient and complete search-based global planner leveraging
multi-resolution, presented in Chapter 5.
https://github.com/ethz-asl/wavefinder

1.4.3 Teaching and Student Supervision

During his doctoral studies, the author had the opportunity to be a teaching assistant
in “Autonomous Mobile Robots” (2020, 2021, 2022) and “Robot Dynamics” (2019,
2023). Furthermore, he supervised the following student projects:

Master Theses, 6-month, full-time

* Bagheri, Davide (Spring 2020): “Autonomous globally consistent exploration
using submaps collections”

Gasser, Laura (Fall 2019): “Global Path Planning in SDF Submaps”

* Camus, Amaury (Fall 2019): “Optimization-Based Torso Trajectory Planning
for Online Obstacle Avoidance”

Dall’Olio, Alberto (Fall 2019): “Adaptive Deep Stereo Network for Collision
Avoidance”

Pfreundschuh, Patrick (Spring 2020): “Dynamic Object Detection for Robust
and Accurate LIDAR SLAM”

Brits, Sonja (Spring 2020): “Semantics-Based Localization”

* Gulich, Lionel (Spring 2021): “Navigation Planning for wheeled Robots in
multi-layered Environments”

Brandemuehl, Adrian (Spring 2021): “Tightly Coupled LiDAR-Visual-Inertial
Odometry”

Phillips, Trevor (Spring 2021): “Vision-based 3D Perception for Aerial Terrain
Reconstruction”

Pasini, Gianni (Spring 2021): “Autonomous Exploration in Confined Spaces
with a Tiltable Tri-Copter”
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¢ Cheema, Mansoor (Fall 2021): “Leveraging Deep Learnt Scene Completion for
Fast Exploration Planning and Mapping”

e Marti, Dominic (Fall 2021): “Underwater Volumetric Occupancy Mapping with
Imaging Sonar”

* Anthanasiadis, loannis (Spring 2022): “Towards Spatio-temporally Consistent
Volumetric Mapping using Panoptic Submaps with Plane Constraints”

Perception and Learning for Robotics (PLR) student project, 6-months, 4 ECTS credits

* Kieffer Max and Marc Ziind (Spring 2024): “Neural Environment Encoding
with Hierarchical Map Representations”

1.5 Organization

This thesis is organized into six chapters. Chapter 2 provides a brief introduction to the
theory behind Multi-Resolution Analysis and orthogonal wavelet bases. Building on
these mathematical tools, the main contribution of this thesis, a hierarchical volumetric
framework, is presented in Chapter 3. We then investigate how hierarchical volumetric
maps can be used to increase the efficiency of two representative downstream tasks:
local planning, in Chapter 4, and global planning, in Chapter 5. Finally, Chapter 6
summarizes the main findings of this thesis and provides an outlook for possible future
research directions.
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Chapter

From Multi-Resolution Analysis to Wavelets

This chapter is intended as a primer on wavelet theory, providing additional context for
Chapter 3. We start with a short introduction to the MRA conditions, before showing
how orthogonal wavelet bases fulfill these requirements. We then discuss how wavelet
decompositions can efficiently be computed using the Fast Wavelet Transform. For
readers who are interested in learning more about sparse signal processing using
wavelets, we warmly recommend [5, 12]. Note that an intuitive explanation of the
MRA conditions in the context of volumetric mapping is provided in Section 3.3.

2.1 Multi-Resolution Analysis

Multi-resolution representations are regularly used in the context of computer vision
and robotics. For example, in Laplacian image pyramids introduced by Burt and
Adelson [13]. Mallat and Meyer [5], formalized the expected behavior of multi-
resolution representations through the MRA conditions:

V(j, k) € 2%, f@) eV e flx—2"k) eV 2.1
Vj € Z, Vit CV; (2.2)

Vj € Z, f(z) eV & f(z/2) € Vina (23)
Jim V; = j Doovj = {0} 2.4)
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2 From Multi-Resolution Analysis to Wavelets

lim V; = closure < U vj> = L*(R) (2.5)
J—>—0o0 .
J=—00
Vo admits a Riesz basis 2.6)

where the sequence of subspaces {V } ez corresponds to the map’s representations at
increasing resolution levels 27, referred to as scales, and each V; is a closed subspace
of Lebesgue space L?. Starting with condition 2.6, the most common Riesz basis used
in robotics consists of box functions arranged to span the cells of a regular grid. In this
case, the scale 27 corresponds to the cell width. Condition 2.1 ensures self-similarity
in space. Specifically, if subspace V; can represent function f(x), it can also represent
the same function shifted by integer multiple of the cell size. Condition 2.2 states
that the subspaces are nested. In other words, any function contained in subspace
V41 must also be contained in next finer subspace V;; and by extension in all finer
subspaces. Condition 2.3 ensures self-similarity in scale. If V; contains f(z), Vj+1
must be able to contain f(z) dilated by 2. Finally, conditions 2.4 and 2.5 ensure
completeness. At the coarsest scale (j — o00), Vj; only contains the zero element,
whereas refining the scale (j — —o0) eventually allows us to represent any signal in
L.

2.2 Orthogonal wavelet bases

The principal idea behind wavelets is that they represent the difference between the
consecutive resolutions of a signal’s MRA. Formally, they span a second subspace
W; which is the orthogonal complement to V;, such that V; & W; = V;_; where
@ is the vector-space direct sum operator. In words, this means that by combining
a signal’s representation V; with its wavelet details at the same resolution, W, we
obtain the signal’s representation at the next higher resolution V;_;.

An orthogonal basis for all V; can be obtained by translating and dilating a single
function ¢, referred to as the scaling function, as ¢ (z) = 2% (“”_227”“ ). The scaling
function can be found by orthogonalizing the Riesz basis of Vj as described in [5].
In similar fashion, an orthogonal basis for W; can be obtained by translating and
scaling a single wavelet function ¢ as ¥, (z) = 5 (I;#) One condition that any
wavelet function has to fulfill in order to be admissible is that its average must be zero
I fooc 1(z)dz = 0. More generally, the scaling functions and wavelet functions can be
seen as complementary low and high-pass filters that, when combined, can perfectly
reconstruct the signal from the next finer scale. Since wavelet bases form a valid

MRA, this concept can be applied recursively and the entire map can be represented
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2.2 Orthogonal wavelet bases

by stacking a single scaling function at the coarsest scale with a hierarchy of wavelet
functions at increasing scales.

Note that the Riesz basis consisting of box filters arranged to span the cells of a regular
grid, mentioned previously, is already orthogonal. In fact, the unit box filter can be
used as a scaling function

0 otherwise

¢($):{1 0<z<1 o

and doing so directly leads to the Haar basis [5]. The corresponding Haar wavelet
function can be derived by finding ¢’s orthogonal complement while enforcing the
MRA conditions and is given by
-1 0<z<1/2
Plr) =41 1/2<z<1 (2.8)
0 otherwise

Orthogonal wavelet bases of R can be extended to separable orthogonal bases b for
R"™ by combining the scaling and wavelet functions along each dimension as

b= {H ¢($k)0k1/)($k)lok} 2.9)
k=1

= Voe{0,1}n
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2 From Multi-Resolution Analysis to Wavelets

2.3 The Fast Wavelet Transform

The discrete wavelet transform for a function f and wavelet v is defined as the
projection of f onto the set of all integer scalings and translations of the wavelet
function {wj K} j,kez. Each wavelet coefficient d;, is thus computed as

din= > fla)y <“‘2j2”“> 2.10)

where the summation could be replaced by an integral if the domain of f is real-valued
instead of discrete. Note that this transform is linear and, for orthogonal wavelets,
orthogonal.

The coefficients d;; can efficiently be computed using the Fast Wavelet Trans-
form (FWT) algorithm [5], which exploits the hierarchical MRA structure to remove
redundant operations. The FWT is initialized by projecting f onto the scaling func-
tions at the finest scale aox = .= f(x)¢ (x — k) or with a good approximation
thereof. At each iteration, these coefficients are then filtered and downsampled to
obtain the wavelet and scaling coefficients at the next coarser scale. These iterations
are typically repeated until only 1 scaling coefficient is left, or a desired number of
levels is reached. For wavelets with finite spatial support and functions f sampled at N
points, the FWT computes the full wavelet decomposition in O(N) time. Extending
the FWT to only (de)compress regions-of-interest or single cells is straightforward
and very efficient if the spatial support of the chosen wavelet is small, as is the case
for the Haar wavelet.
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Chapter

Hierarchical volumetric mapping

Volumetric maps are widely used in robotics due to their desirable properties in ap-
plications such as path planning, exploration, and manipulation. Constant advances
in mapping technologies are needed to keep up with the improvements in sensor
technology, generating increasingly vast amounts of precise measurements. Handling
this data in a computationally and memory-efficient manner is paramount to repre-
senting the environment at the desired scales and resolutions. In this chapter, we
express the desirable properties of a volumetric mapping framework through the lens
of multi-resolution analysis. This shows that wavelets are a natural foundation for
hierarchical and multi-resolution volumetric mapping. Based on this insight we design
an efficient mapping system that uses wavelet decomposition. The efficiency of the
system enables the use of uncertainty-aware sensor models, improving the quality
of the maps. Experiments on both synthetic and real-world data provide mapping
accuracy and runtime performance comparisons with state-of-the-art methods on both
RGB-D and 3D LiDAR data. The framework is open-sourced’ to allow the robotics
community at large to explore this approach.

The work described in this chapter is presented in the following publication:

* Reijgwart, V., Cadena, C., Siegwart, R., & Ott, L. (2023). Efficient volumet-
ric mapping of multi-scale environments using wavelet-based compression.
Proceedings of Robotics: Science and Systems

1https ://github.com/ethz-asl/wavemap
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3 Hierarchical volumetric mapping

3.1 Introduction

As robots move from tightly controlled spaces into our everyday lives, there is a
growing need for them to autonomously navigate and work in increasingly large, un-
structured, and unknown environments. For reliable deployments and robust operation
over extended periods of time, robots need to build and maintain their representation
of the world using only onboard sensing and computing. Doing this in a timely manner
on compute restricted devices using sensors producing large amounts of data is a
continual challenge in robotics.

Dense geometric environment representations are widely used to facilitate tasks
ranging from navigation to inspection and manipulation, while also serving as building
blocks for other representations. Robotics is a particularly challenging field for such
representations, due to the demands placed on systems with limited computational
resources. For example, building a map of an unknown environment while localizing
in it with Simultaneous Localization And Mapping (SLAM) requires the ability to
update the map incrementally at interactive rates. To support high-level tasks such as
exploration and navigation the representation must also differentiate between unknown
space and observed (free or occupied) space. Finally, the map must be able to model
arbitrary geometry with sufficient accuracy to guarantee safety when unexpected
environmental structures or objects are encountered.

Volumetric map representations can be updated incrementally and explicitly represent
unknown space. Furthermore, if a sufficiently high resolution is chosen, they can
also represent object surfaces and unknown space boundaries of arbitrary topology.
Beyond robotics, volumetric representations are commonly used in 3D reconstruction,
reality capture, and augmented reality applications. However, a major drawback of
volumetric representations is that their memory usage in naive implementations grows
linearly with the observed volume and cubically with the chosen resolution. Several
research efforts propose to use multi-resolution representations, often based on trees,
and demonstrate significant improvements. In this chapter, we extend these efforts
by approaching the problem from a formal signal processing and data compression
perspective. Specifically, we propose to use wavelet compression to obtain a hier-
archical volumetric representation. Using Haar wavelets we achieve state of the art
lossless compression performance, while also allowing simple yet efficient updates
and queries. This is achieved by compressing the occupancy information using a
Haar wavelet decomposition and storing the individual decomposition components in
a hierarchical data structure. The wavelet transform’s linearity makes it possible to
perform measurement updates directly in the map’s compressed representation. Fur-
thermore, when performing map updates we know that all resolution levels of the map
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3.1 Introduction

Figure 3.1: A reconstruction created by our proposed hierarchical volumetric mapping
framework, wavemap, highlighting its ability to accurately capture fine objects while
also efficiently compressing free space as shown by the adaptive resolution along the
transparent slice.

are always up to date and in a valid state due to the Haar basis’ orthogonality property.
This obviates the need to perform maintenance operations or manual compression
passes that are typically seen in other multi-resolution mapping frameworks.

Another trade-off made by many existing volumetric mapping methods is the reliance
on simplified measurement models to achieve real-time update rates. A common
approach is to use discrete occupancy updates, that systematically inflate obstacles
and do not allow for surfaces to be reconstructed with sub-voxel accuracy. Mea-
surement models based on Truncated Signed Distance Fields (TSDFs) overcome the
latter limitation but use a projective distance heuristic. Such approaches have a hard
time reconstructing thin objects such as branches, cables, or fences. Furthermore,
the implied assumption of infinitely thin rays, underlying these observation models,
leads to aliasing artifacts in regions where the ray density is low compared to the
voxel resolution. In addition to negatively affecting the reconstruction quality, the
resulting high entropy regions are hard to compress. Besides alleviating the challenges
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3 Hierarchical volumetric mapping

mentioned above, modeling soft beams provides an opportunity to incorporate an-
gular uncertainties from sensor calibration and pose estimation into the volumetric
reconstruction process. Thanks to the computational benefits of the Haar wavelet
representation we can adopt a continuous occupancy measurement model, accounting
for angular and range uncertainty, inspired by the work of [14].

In order to process data at sensor rate we introduce a specialized measurement inte-
gration algorithm that exploits a hierarchical measurement update approach with the
information provided by the map itself. The proposed algorithm speeds up measure-
ment integration while guaranteeing that the results are identical to a naive integrator
applying the same measurement updates at the highest resolution throughout the field
of view.

In summary, the main contribution of this chapter is a volumetric mapping system that
uses:

* A wavelet-based hierarchical representation, that is guaranteed to keep the
hierarchy consistent at all times;

* A continuous occupancy measurement model accounting for range and angular
uncertainties;

* A highly-efficient coarse-to-fine measurement integrator that adapts to the
observed structure;

The proposed framework is extensively evaluated on synthetic and real-world datasets
with comparisons to several state-of-the-art methods. The results demonstrate that
our approach is memory efficient yet produces high-quality maps, all while being
computationally efficient. The entire framework is open-sourced to enable the robotics
community to build on these results.

3.2 Related work
3.2.1 Map model

Two approaches are commonly used to represent maps in robotics [15], sparse feature-
based maps and dense maps. The first category uses sparse sets of distinctive features
[16, 17] and excels at representing large environments but struggles to model the
connectivity of surfaces and distinguish between free and unknown space. This
makes it ideal for large scale mapping and localization tasks, but limits its use for
manipulation, motion planning, and exploration tasks. The second paradigm uses a

22



3.2 Related work

large number of geometric elements, such as as points [18, 19], surfels [20-24], or
meshes [25] to model observed obstacles. Voxels, discretizing the space into squares
or cubes of fixed size, are another common geometric primitive used to model both
occupancy [4, 26] and signed distance information [27-30].

3.2.2 Measurement model

Approximations of the sensor’s physical operation have been widely explored. Early
approaches modeled uncertainties of the sensors explicitly [26]. Other approaches
aim to achieve specific map properties, such as sharp map boundaries [14]. However,
when building 3D maps using precise sensors the computational cost incurred by these
sensor models motivated the development of simpler ray-based models. These models
treat observations as thin rays tracing through the world [4, 29]. Machine-learning
based methods exploit more complex relationships, such as inverse rendering [31, 32]
or beam-to-beam interactions [33].

3.2.3 Map storage

The most common way to store volumetric maps is to discretize the space using a
voxelgrid, i.e. a regular grid with fixed size voxels. In the beginning grids with a
single fixed resolution [26, 28] were used, but over time spatial data structures, such
as hashed voxel blocks [34], trees [4], or hybrids thereof [35] were adopted. These
structures fit the observed volume more tightly, can grow dynamically, and improve
runtime. To model expansive maps with varying levels of detail, multi-resolution maps
[4, 36-39] are widely used due to being memory efficient and capable of adapting to
the needed resolution. Many multi-resolution representations are also hierarchical,
allowing users to query the map at varying resolutions [4, 38]. Taking a signal
processing perspective on compact map storage leads to the use of wavelet transforms
[40], which are inherently multi-resolution and hierarchical, or the discrete cosine
transform [41]. Recent learning-based methods, such as NERF [31] or occupancy
prediction networks [42, 43], take a different approach and learn the coefficients of a
neural network that predicts map information at arbitrary coordinates.

3.2.4 Map updates

The manner in which maps are updated with new observations is crucial for the
efficiency and map quality. Early volumetric frameworks evaluated the measurement
model for all voxels in the observed volume [26, 28]. This was improved by tracing
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3 Hierarchical volumetric mapping

rays from the sensor’s center to each measured point and updating the voxels that are
intersected by the ray [4, 29]. Advances in sensor technology, enabling high resolution
maps spurred further efficiency improvements, such as ray-tracers that bundle [29]
or sub-sample [39, 44] similar rays, or rate limit voxel updates [44]. While efficient,
these integrators can produce “holes” in the map depending on the sensor’s ray
density. This motivates the use of projective integrators which avoid this problem
by interpolating the depth image [14, 27]. Other approaches to avoid resolution-
related issues include multi-resolution integrators, ray-tracing [39] or projective [37],
which reduce the update resolution with distance, as well as methods analyzing the
measurement update regularity [38, 45]. While efficient, hierarchical volumetric maps
require maintenance to keep the information in the different levels coherent. Octomap
[4] employs a fine-to-coarse scheme, integrating measurements at the finest resolution
and synchronizing coarser levels in a maintenance pass. Supereight [37, 38] performs
multi-resolution updates and synchronizes the remaining levels using an upward and
downward propagation scheme.

In contrast to others, our volumetric ray-tracing method uses a wavelet decomposition-
based representation which implicitly synchronizes all hierarchy levels at once. Addi-
tionally, unlike most ray-tracing methods we use a continuous sensor model, taking
angular uncertainty into account, to improve map accuracy.

3.3 Multi-Resolution Analysis and Wavelets

Multi-resolution representations have been the subject of intensive study by communi-
ties ranging from computer vision [13] to physics and mathematics [5, 12]. Mallat
and Meyer formalized the expected properties of multi-resolution representations as
the MRA conditions [5]. The full MRA conditions are summarized in Section 2.1. In
informal terms, they state that increasing the resolution should only add detail and
eventually make it possible to represent any signal. Two further requirements are
self-similarity in space and in scale. In a mapping context, these imply that the map
should behave the same regardless of our frame of reference and choice of units.

A corollary of the fact that increasing the resolution only adds information is that,
in areas that are stored at multiple resolutions, the lower resolutions do not carry
any unique information and storing them explicitly is redundant. This motivates
the use of wavelet decompositions, which allow us to work with maps that form
valid MRAs while only storing and processing the differences between the resolution
levels. A given wavelet decomposition is characterized by its chosen scaling function
and complementary wavelet function. In this work, we focus on the Haar wavelet
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3.4 Method

and scaling function, which form an orthogonal basis. A summary of orthogonal
wavelet bases is provided in Section 2.2. This orthogonality is particularly beneficial
because it guarantees that any given volumetric map is characterized by a unique
combination of wavelet coefficients. Thus, there are no redundant coefficients that can
go out of sync and manually have to be updated after integrating new measurements.
Another interesting property of Haar wavelets is that the basis resulting from its scaling
functions correspond to box functions arranged to span the cells of a regular grid.
Therefore, Haar decompositions can represent anything a regular grid map can, while
bringing significant benefits in terms of compression and implicitly maintaining the
hierarchy’s consistency.

3.4 Method

In the following, we describe the components of our approach. We first explain how the
map’s occupancy posterior can be efficiently updated in its compressed state, thanks to
the properties of the wavelet transform. Next, we derive our continuous sensor model,
which captures range and angular uncertainties associated with the measurements.
After that, we derive an error bound which enables early stopping during the coarse-to-
fine observation integration process. Further performance improvements are obtained
by skipping updates that do not change the state of the map. Finally, we illustrate how
all these pieces fit together with an algorithmic overview.

3.4.1 Measurement integration

In the following we will explain how the use of wavelets enables efficient measure-
ment integration. As each new beam endpoint measurement z arrives, the map’s
Bayesian occupancy posterior p(mx|z1:¢), estimated at each point x in the map m,
can incrementally be updated using

Ep(mxlzlzt) = Lp(mx‘zlzt—l) + Es(mx|zt), (31)

where s(mx|z¢) is the sensor’s inverse measurement model and the log-odds formula-
tion, £, = log f”p, is used to make the update linear. As the wavelet transform W is
also linear, the update equation for all cells in the map becomes:

W (Ly(m|z11)) = W (Lp(m|z1:e-1)) + W (Ls(m|ze)) - (3.2)

Therefore, once the compressed measurement update W (L(m|z;)) is computed,
the map can be updated directly in wavelet space. This is avoids the costly process,
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3 Hierarchical volumetric mapping

employed by other methods, of decompressing the map’s observed area, applying the
update, and compressing the map again. Computing W (Ls(m|z:)) is efficient thanks
to the FWT (Section 2.3), which is typically initialized by computing the orthogonal
projection of the original signal onto the scaling functions at a pre-determined finest
resolution.

Since the wavelet transform itself is lossless, the reconstruction error is fully deter-
mined by how well the initial FWT projection approximates the original update. Most
applications use a constant finest resolution, but this is not mandatory. Given that
inverse sensor models tend to be smooth throughout most of the observed volume, only
raising the resolution close to surfaces would improve efficiency and the maximum
achievable detail.

3.4.2 Measurement models

In order to derive multi-resolution sampling and integration approaches, it is important
that the chosen inverse measurement model s(mx|z:) is well-defined at all points
x in the observed volume. We propose to extend the continuous occupancy model
introduced in [14] by modeling the angular uncertainty of each measured beam, in
addition to range uncertainty. We model the probability of occupancy s(mx|z) at
a point x for a single beam z by correlating the probability of occupancy given the
beam’s true endpoint 5(mx|z) with the distribution of the true endpoint position given
a noisy observation o(z|z), i.e.:

s(mx|z) = /E(mx|i)o(2|z)di7 3.3)
s
where x, Z, and z are expressed in sensor coordinate space S, and the beam start point
is at its origin. Extending [14] to include angular uncertainty, we define 5(mx|z) as
§(mx|2z) = 5(mx|zr, Zo)
0 zr <2z A |zg— 20| <70

zrgxrgzr‘i’Tr A ‘.’11'9729|§T9 (34)
otherwise

= =

where 7 is an assumed surface thickness parameter in sensor coordinates, see Fig.
3.2a for a visualization. The subscript 7 refers to the axis perpendicular to the sensor’s
image plane, whereas 6 refers to the offset along the image plane’.

For pinhole camera projection models, 7 corresponds to the depth coordinate and 6 to the reprojection error.
For spherical projection models, e.g. certain LIDARS, r refers to the range coordinate and 6 to the relative
angle.
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3.4 Method

Our model assumes that the noise on the measurement beam endpoint position is
normally distributed in sensor coordinates, as

o(z|z) ~ N(z,%), (3.5)

where ¥ is the measurement noise covariance matrix. If 3 is diagonal and Z has a
uniform prior, the r and § components are independent and eq. 3.5 can be simplified
as follows:

0(z|z) = o(zr|zr)o(20|20) = N (2,0 )N (29, 00). (3.6)

We approximate the normal distributions with quadratic B-splines, as in [14], such
that o(z|z) ~ q(%=2), where

o

H5B+1)? —3<t<-1
13-t -1<t<l1

=<8 . 3.7
q(t) 1o 1<t<3 (3.7
0 otherwise

The distribution of the true beam endpoint position given a noisy measurement (Fig.

3.2b) then becomes:
0(Z|z):q<zr_zr>q<zg_zg>. (3.8)
or o1’}

As motivated in [14], we match the surface thicknesses to half the width of their
respective B-splines, i.e. 7. = 30, and 79 = 30¢. This ensures that the measurement
model is continuous and that £,(mx|z1.:) converges to 0 if x lies on an object’s
surface.

After substituting 3.4 and 3.8 into 3.3, the full inverse measurement model (Fig. 3.2¢)
becomes:

stmste) = [ [ stz zatw)aw)dzo da.

1 Q-3 1
=o+ <Q(v) - 5) (Qu+3)-Qw-3), (9
where Q(t) refers to the cumulative distribution of ¢(¢), i.e. the cubic B-splines

resulting from Q(t) = fioo q(u)du, and v = =2, @ = %.
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(a) (b) (© (d)

Figure 3.2: Figure illustrating our proposed models for a) the occupancy given the
true beam endpoint 5(mx|z) (eq. 3.4), b) the position of the true endpoint given a
noisy measurement o(z|z) (eq. 3.8), ¢) the complete inverse measurement model
s(mx|z) (eq. 3.9), and d) the local maxima used to derive the worst-case error bounds.
Values of 0.0, 0.5 and 1.0 are shown in white, grey and black, respectively. The true
beam endpoint is indicated in red. Uncertainties are exaggerated for illustration.

For depth cameras, the depth uncertainty is often set as o-(z) = mxf, where k.
depends on the sensor setup and post-processing algorithms. For laser-based sensors,
the range error is usually assumed to not vary with range, thus o, = k, where &, is
indicated on the sensor’s datasheet.

Note that the shape of our proposed model resembles the original occupancy mea-
surement model proposed by Elfes [26] for 2D sonars, which also considered angular
uncertainty. The key difference is that Elfes’ model reaches its peak, or maximum
occupancy update, at the measured endpoint. As motivated by Loop et al. [14], this
modeling decision inflates obstacles, resulting in biased occupancy maps. In contrast,
our model extends [14], which peaks slightly behind the surface, and preserves its
property that s(mx|z) is exactly 0.5 when z, = 2z, i.e. at the endpoint, such that
L,(mx|z1:+) converges to 0 if x lies on an object’s surface. In addition to reducing
biases, this property simplifies surface reconstruction, as the surface then directly
corresponds to the map’s 0-level iso-surface, which is straightforward to extract.

3.4.3 Worst-case update error bounds

From the MRA theory (Section 3.3) we know that at some point, integrating informa-
tion at finer levels of the hierarchy no longer improves the representation. Therefore,
to fully exploit the coarse-to-fine measurement integration scheme of our method, we
need to know at what level of the hierarchy we can stop integrating data. This requires
determining, for each point x, the resolution beyond which no further improvements
are possible, which we achieve by deriving a conservative approximation error bound.
As this work focuses on the use of Haar wavelets, we can exploit a property unique to
them, namely that neighbors at the same resolution do not overlap. This results in the
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leaves of our multi-resolution Haar decomposition perfectly partitioning the original
space into non-overlapping cubes of varying sizes. Since Haar scaling functions are
constant over their support, the worst-case error eqmax Within each space partition, or
voxel, V is given by:

emx (Ls(m,2z),V) = max |Ls(mys,2) — Ls(mx,2)]|, (3.10)

where x’ is the chosen sample point, which we set to be the partition’s center.

Since emax has to be evaluated millions of times per second in practice, we simplify the
computation by only considering three cases based on the state of the space partition,
defined as follows:

update_type(V, z¢) =

FullyUnobserved ~ Vx € V : L(mx|z:) =0
PossiblyOccupied 3Ix € V: Ls(mx|z:) >0 (3.11)
FreeOrUnobserved otherwise

Looking at Eq. 3.9 we can see that the gradient of s(mx|z) is zero in FullyUnobserved
areas and reaches local maxima where 9 = z¢ & 309 or x, = 2, as illustrated in
Fig. 3.2d. Using the fact that

0s(mx|z) 3 0s(mx|z) _ 3
Ozo " 1609’ o, " 80, (3.12)

Tyr=2zp

rg=z29+309

and assuming the worst-case orientations for a cube-shaped partition V), i.e. its
diagonal projected into sensor coordinates r and 6 aligns with either gradient, we
obtain the following bounds for the approximation error for the three cases:

0 FullyUnobserved
€max (V) = < max (iZZ;’ ) 3;,7) PossiblyOccupied (3.13)
31\6}2: FreeOrUnobserved

where V), is the maximum distance a sample can have to V’s center, namely half of
V’s diagonal. Note that V},, decays quickly as the distance to the sensor increases.
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3.4.4 Saturated region skipping

To preserve the ability to quickly adapt the map when dynamic parts of the environment
change, we impose upper and lower bounds on the occupancy posterior L (mx|z1:¢),
as proposed by Yguel et al. [46]. As observed by Hornung et al. [4], this clamping
policy also significantly improves compression performance by encouraging the
majority of the map’s posterior to converge to constant values. Namely to the lower
bound in areas that are consistently observed as being free, and to the upper bound
in areas that are consistently observed as being occupied. We propose to exploit this
saturating behavior further to reduce the computational cost of map updates. Applying
negative occupancy (free-space) updates in areas where the posterior has already
reached the lower bound has no effect, as the updates are canceled out by the clamping
operation. Similarly, the posterior is not affected by skipping positive occupancy
updates in areas that already converged to the upper bound. Skipping saturated regions
leads to a particularly high speedup if it can be done in a coarse-to-fine manner, but
doing so is only safe if the map’s lower resolutions are always up to date. Both
properties are met by our representation and integration scheme. An algorithm that
interleaves saturated region skipping, adaptive sampling, and thresholding will be
discussed in the next section.

3.4.5 Algorithm and data structure

As described previously, Haar scaling functions do not overlap with their neighbors
at the same resolution and perfectly partition the space. The support of the scaling
functions in a multi-resolution Haar decomposition is, therefore, identical to the
hierarchical partitioning scheme of octrees. We can thus store the wavelet coefficients
in any optimized octree data structure that allows data to be attached to both inner and
leaf nodes, such as supereight [36] or OpenVDB [47].

Leveraging the idea that increasing the resolution in MRAs only adds information, our
proposed adaptive multi-resolution update algorithm determines the appropriate update
resolution for all points in the observed volume in a coarse-to-fine manner (Section
3.4.3). The algorithm is initialized at the octree’s root and recursively evaluates its
children, as illustrated in Algorithm 1. Each recursive call starts by checking which of
the three possible update cases, eq. 3.11, applies to the current node’s partition V. If no
parts of the partition have been observed by the current measurement z., or if saturated
region skipping applies, no updates are needed. Otherwise, we continue by checking
if the approximation error at the partition’s current resolution is acceptable. If this
is the case, we evaluate the inverse measurement model s(my/|z:) at the partition’s
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center and integrate the update into the map. If none of the previous criteria were met,
a higher resolution is needed and the recursive function is called for each of the octree
node’s sub-divisions (octants). In practice, we also compress the measurement update
using the wavelet transform and need to traverse the map’s data structure. Both of
these operations can efficiently be interleaved with the recursive adaptive sampling
procedure. Note that although the presented algorithm is recursive, great flexibility
exists for its implementation. For example, since each Haar scaling function only
overlaps with its parent and children, all partitions at a given resolution and their
descendants can be updated in parallel.

3.5 Experiments

We evaluate our approach on three different datasets, featuring depth cameras and
LiDARs, in indoor as well as outdoor environments. Comparisons are presented to
three state-of-the-art volumetric mapping frameworks: octomap [4], voxblox [29],
and supereight2 [38]. Octomap and supereight2 are both used in multi-resolution
occupancy mapping-mode. Voxblox only supports TSDFs mapping and is configured
to use its default ‘fast’ integration method. In terms of implementation details, all
approaches are evaluated using their publicly available reference implementations>*>
and wrapped with the same code to process the training data.

For each dataset, we split the original data into training and test sets by reserving
every 20th observation for testing and use the remaining frames for mapping. Test
points are generated by sampling points along all rays in each test observation, with
points along the beam being in free space and the endpoint being occupied. To obtain
insights into the behavior of the different methods in various scenarios we compute
the distance of each free-space test point to the closest surface point. This allows us to
evaluate the performance in different range bands, including: i) small negative values
assessing the ability to capture thin objects, ii) distances close to zero to evaluate the
surface reconstruction quality, and iii) larger distances to obstacles to detect possible
biases or approximation errors. This approach also avoids diluting a small number of
challenging situations with a large number of easy-to-classify free space observations.

For each experiment, we report the overall Area under the ROC Curve (AUC) as a
general indicator of classification performance. By integrating the Receiver Operating
Characteristic (ROC) curve, the AUC quantifies how well each classifier discriminates

*https://github.com/OctoMap/octomap_mapping
4https ://bitbucket.org/smartroboticslab/supereight2
Shttps://github.com/ethz-asl/voxblox
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3 Hierarchical volumetric mapping

Algorithm 1: Wavemap recursive update

Input: Current measurement z:,
Previous map posterior p(m | Z1:¢—1),
Lower log-odds threshold Liin,
Approximation error threshold €nresh,
Maximum resolution resSmax,
Octree’s root partition Voot
Output: Updated map posterior p(m | z1:¢)
1 Function RecursiveAdaptiveUpdate (V,z:) is
// Use Eq.3.11 to skip partitions

2 update_type + UpdateType(V,z:)

3 if update_type = FullyUnobserved then
4 | return

5 end

6 if (update_type = FreeOrUnobserved
7 and Ly(my | z1:6-1) < Lnin) then

8 | return

9 end

// Use Eq.3.13 to terminate early
10 €max (V) < ApproximationError(V,z:)

1 if (Vries = 1€Smax O €max(V) < €nres) then
12 Lo(my | 21:4) + Lp(my | 21:4-1)

13 +Ls(my | z¢)

14 return

15 end

// Otherwise, increase resolution
16 for Venia € V do

17 ‘ RecursiveAdaptiveUpdate(Venid, Zt)
18 end

19 end

// Initialize map and start recursion
» p(m | 21.0)  p(m | 214-1)
21 RecursiveAdaptiveUpdate(Vioot, Zt)
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Table 3.1: Area Under the ROC Curve results for both datasets. Higher is better. The
corresponding resource usages are in table 3.2.

super- ours ours
Dataset Res octomap eight? voxblox (rays) (beams)
Panoptic  Scm 0.95 0.93 0.99 0.99 0.99
Flat 2cm 0.99 0.95 1.00 1.00 1.00

Newer 20cm 0.82 0.87 0.92 091 091
College 5cm 0.90 0.89 0.97 0.94 0.97

free and occupied space regardless of the classification threshold. We also report the
classification accuracy for the individual range bands. Note that different accuracies
can be obtained based on the chosen classification threshold. For this study, we set
the thresholds for each framework on each dataset to the value that maximizes the
difference between the True Positive Rate (TPR) and the False Positive Rate (FPR),
weighed equally.

3.5.1 Accuracy evaluations
Panoptic mapping dataset

The first set of experiments is conducted using “Run 1" of the panoptic mapping
dataset [48], which features depth camera recordings of a simulated studio apartment
including realistic household objects. Octomap and voxblox do not support depth
images directly, and hence the dataset’s images were first converted to pointclouds
using the pinhole projection model used by both supereight2 and our method. The
camera poses were obtained from the ground truth.

From the AUC values shown in Table 3.1 we can see that, when using larger cell
sizes, only our proposed method can compete with voxblox. Being TSDF-based,
voxblox can more accurately reconstruct smooth surfaces which account for large
parts of the environment, giving it a distinct advantage. The remaining two methods
have worse overall performance. When moving to a higher resolution the difference
shrinks and all methods perform comparably. Looking at the results shown in Figure
3.3 we can clearly see where octomap and supereight2 accumulate their errors in the
5 cm resolution case. Octomap struggles to properly localize the surface boundary,
while supereight2 is overly pessimistic, labeling cells far from the surface as occupied.
Finally, one can see the trade-off between our method, using a beam-based model,
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Panoptic Flat 5cm Panoptic Flat 2cm
1.00 1 b
0.95 1 b
>
§ 0.90 1 b
3 == ours (beams)
< ours (rays)
0.85 1 b voxblox
—— octomap
0.801 | —— supereight2
thin obj.  surface free space thin obj.  surface free space
005 00l 015 1.20 005 00l 015 1.20
Signed distance to surface [m] Signed distance to surface [m]

Figure 3.3: Accuracy in function of the distance to the surface on the Panoptic
mapping dataset at different resolutions. Higher is better.

and voxblox, using a TSDF model. Voxblox has better at the surface reconstruction
performance while our approach is better at reconstructing thin objects. This difference
can also be seen in Figure 3.4 where the chair is missing its legs in the voxblox
reconstruction. Looking at the 2 cm resolution case, all methods but supereight2
perform almost identically. Supereight?2 still produces pessimistic results, which likely
stem from the approximations used to achieve its impressive speed.

Newer College dataset

The second set of experiments uses the Cloister sequence from Collection 2 in the
Newer College dataset [49]. This sequence was chosen because it captures geometry
with a wide range of scales including wide-open outdoor spaces, indoor spaces with
arches and sculptures, and vegetation. Odometry estimates and undistorted point
clouds were obtained using FastL.IO2 [50] processing the Ouster OS0-128 IMU and
point cloud data. The motion-compensated point clouds were used for all frameworks
except supereight2, which operates using dense range images and does not yet support
motion-undistortion.

Looking at the AUC numbers in Table 3.1 we immediately see that this real-world

34



3.5 Experiments

octomap supereight2 voxblox ours (beams)

Figure 3.4: Qualitative reconstruction comparisons featuring detailed geometry on
scenes of the Panoptic mapping (top) and Newer College (bottom) datasets, both at
Scm resolution.

LiDAR dataset is more challenging than the previous synthetic one. When using a
coarse 20 cm resolution octomap performs the worst, with voxblox and our method
achieving the best results, and supereight2 landing in the middle. Moving to a higher
resolution of 5 cm octomap and supereight2 end up performing similar while voxblox
slightly outperforms our approach. However, the detailed results shown in Figure 3.5
reveal interesting insights. At 20 cm resolution octomap struggles to produce accurate
surfaces. We also see that our approach and supereight2 have similar performance
when it comes to reconstructing the surface but our approach performs slightly better
when classifying free space in the vicinity of obstacles. Voxblox again performs the
best in surface reconstruction and free space classification, but suffers in the thin
object reconstruction domain. Moving to a finer 5 cm resolution the change is similar
to that observed in the Panoptic dataset. The accuracy of every method improves and
they move closer together, with supereight2 failing to accurately predict free space
close to surfaces. The differences between the other three methods are characterized
by octomap not reconstructing thin objects accurately while both voxblox and ours
(beams) perform equally well.

Sensor model ablation

To verity the benefit of the more costly uncertainty aware sensor model proposed in
Section 3.4.2, we conduct an ablation comparing our proposed sensor model, ours
(beams), with one that disregards angular uncertainty, ours (rays). As the Panoptic
Flat dataset contains no noise on observation or pose there is, as to be expected, no
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Figure 3.5: Accuracy in function of the distance to the surface on the Newer College
dataset at different resolutions. Higher is better.

difference between the two models. On the Newer College dataset, however, there
are visible differences. In the coarse setting the proposed uncertainty-aware model
improves the ability to reconstruct thin objects. Moving to the higher resolution case
both the ability to reconstruct surfaces and thin objects are significantly improved by
our proposed model.

These accuracy evaluations showed several things. The proposed method ours (beams)
compares favorably to the other three methods. Despite the natural advantage voxblox
has in surface reconstruction tasks, being a TSDF-based method, our approach per-
forms on par while having superior performance in thin object reconstruction. The
uncertainty-aware sensor model also improves the quality of the map close to surfaces
and when dealing with thin surfaces, allowing the reconstruction of objects that other
methods can’t capture when using the same cell size.

3.5.2 Efficiency evaluations

We evaluate the memory usage as well as the runtime of our method in comparison
to the three baseline methods. Memory usage is reported as the amount of RAM
used by the method as well as the memory used by the map data structure. While
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our framework can be implemented using various data structures, we used octomap’s
octree implementation to keep the comparison as fair as possible. The runtime is
reported as the elapsed wall time and the cumulative CPU time across all threads,
allowing a fair comparison between single-threaded and multi-threaded methods. All
frameworks have their visualizations disabled and all experiments are performed on
the same desktop computer with an Intel 199-9900K CPU.

From the numbers shown in Table 3.2 we can see that supereight2 ranks first in terms
of wall time on the depth camera dataset, and second best for LIDAR. However,
the memory usage of its maps is relatively large owing to the fact that it estimates
occupancy using weighted averaging instead of log-odds updates (requiring 2 floats per
cell instead of 1) and focuses its implementation primarily on speed. Voxblox, as to be
expected from a TSDF-based method, has the largest map sizes at higher resolutions
but is computationally efficient. Octomap produces large maps, in comparison to
our method, and is the slowest of all compared methods by an order of magnitude.
Octomap’s significant slowdown at high resolutions is caused by the fine-to-coarse
model employed by their integrator which needs to touch every single cell. Our
proposed method obtains maps that are significantly smaller than those of octomap
despite using the same underlying data structure.

The runtime of our method, when looking at the CPU time, is equal or better than
that of supereight2. However, as supereight2’s implementation uses multiple threads
the real-world performance of it is still better. The difference in runtime and memory
usage between our method and octomap clearly shows the benefits of using wavelets
to represent the map as it enables good compression and allows the use of an efficient
coarse-to-fine integrator capable of skipping unnecessary work.

Comparing the memory and runtime of ours (rays) and ours (beams) we can see that
the price for the improved quality is larger maps by about 30% to 70% depending on
the resolution and an increase in runtime of around 50%. These increases stem from
the fact that the uncertainty-aware model needs to update more voxels and that the
map contains more fine details and voxels with partial occupancy values. Overall, our
proposed method shows good general performance in both memory usage and runtime,
with clear avenues for improvements. The wall time could be reduced significantly
using multi-threading, which is easily achievable due to the independence of the voxel
updates. Moreover, we believe the memory used to store the map itself could be
reduced further by using a more efficient data structure such as the one proposed by
OpenVDB [47]. These extensions will be added to the open-source code.
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Table 3.2: Computational resource usage at different resolutions. Lower is better.

Memory (MB) Time (s)

Dataset Res Framework RAM Maponly CPU time Walltime
octomap 162.35 6.50 130.32 129.00

Sem supereight2 158.23 46.09 27.79 4.76

voxblox 229.96 36.90 58.58 10.68

Panop. ours (rays) 135.69 4.17 5.58 6.78
Flat ours (beams)  130.04 5.65 6.94 7.20
octomap 6202.39 50.94 773.16 763.39

em supereight2 448.38 285.07 50.83 9.32

voxblox 663.53 348.15 244.69 24.61

ours (rays) 343.26 39.09 33.00 34.80

ours (beams)  294.58 67.81 57.56 57.51

octomap 203.25 20.78 688.71 709.99

20em supereight2 249.03 107.79 411.67 67.14

voxblox 261.02 66.32 228.12 48.07

Newer ours (rays) 180.86 6.94 87.39 88.78
Coll. ours (beams)  138.92 8.82 107.67 113.26
octomap 14404.76 981.02 36252.70 35790.60

Sem supereight2 ~ 2926.42  2333.93 2853.12 404.19

voxblox 3718.85  2362.58 1788.90 162.36
ours (rays) 1192.95 241.84 1656.26 1671.58
ours (beams) 1065.21 402.18 2085.05  2083.61

3.5.3 Multi-sensor multi-resolution mapping

One key advantage of our framework is its natural ability to integrate multiple sensors
with different settings. In this experiment, we show qualitative results of our mapping
framework running in multi-sensor mode on the DARPA SubT Finals dataset [51].
In Figure 3.6, we show the output of our framework simultaneously integrating two
Robosense Bpearl dome-LiDAR sensors and one Velodyne VLP-16 LiDAR. The
Bpearls were angled to scan the ground around the robot, while the VLP-16 was
mounted horizontally to provide long-range observations. As the sensors provide
information for different purposes, we integrate them with different resolutions into the
map. The VLP-16, responsible for long-range mapping and exploration, is integrated
up to a maximum range of 30 m and a maximum resolution of 16 cm. At the same
time, the Bpearls, responsible for local terrain mapping to enable navigation of a
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Figure 3.6: Example of our framework performing multi-sensor, multi-resolution
volumetric mapping on the DARPA SubT Finals dataset, combining data from 2
ground-facing LiDARs at 2cm resolution (left) and 1 horizontal LiDAR at 16cm
resolution up to a range of 30m (center) into a single map (right).

quadruped, are integrated up to a resolution of 2 cm and range of 2.5m. This results
in a unified map that supports foot placement, local trajectory and global exploration
planning without wasting resources on high-resolution map reconstruction in areas
where it is not needed. While shown here for multiple LiDAR sensors, the same
approach has also been used for mobile manipulation setups using a 3D LiDAR for
navigation and RGB-D cameras for scene reconstruction, resulting in a map that
supports navigation as well as fine-grained manipulation.

Note that existing frameworks, such as UFOMap [39] and supereight2 [38], could also
be extended to support multi-sensor, multi-resolution mapping. The key difference
is that they cannot do this efficiently since the resolution levels in their maps require
explicit synchronization. The associated overhead is often reduced by performing
the synchronization in a lazy fashion. However, this optimization is ineffective when
regions of the map are concurrently updated at multiple resolutions, which requires
continuous synchronization. Our framework does not suffer from this limitation
because wavelet decompositions synchronize their resolution levels implicitly. A
further advantage of wavelet encoding is that when a region is updated at a lower
resolution, the region’s high-resolution cells remain consistent without requiring any
additional processing. In other words, the computational complexity of our framework
purely scales with the update resolution, regardless of each region’s effective maximum
resolution. In practice, this makes it possible to seamlessly and efficiently fuse long-
range, lower-resolution sensors such as LiDARs with local, high-resolution sensors
such as depth cameras.
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3.6 Conclusion

In this chapter, we introduced wavemap, a hierarchical volumetric mapping framework
inspired by multi-resolution analysis. The MRA theory guarantees that using wavelet
decomposition, we can safely and very efficiently integrate new observations in a
coarse-to-fine manner. The resulting gains in computational efficiency, together with
early stopping criteria for the integrator, allow us to use more complex sensor models
such as the proposed angular uncertainty-aware model. In experiments on synthetic
RGB-D and real-world 3D LiDAR data, we demonstrate that our proposed method
achieves high-quality results while being efficient in terms of memory and compute
requirements. We also demonstrate how our method can incorporate observations
from multiple sensors into a single map with per-sensor resolution. This allows the
use of a single map representation for tasks that would have required several dedicated
maps in the past. Finally, we open source the implementation of our approach to
facilitate future research.
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Chapter

Multi-resolution collision avoidance

Fast and reliable obstacle avoidance is an important task for mobile robots. In this
chapter, we propose an efficient reactive system that provides high-quality obstacle
avoidance while running at hundreds of hertz with minimal resource usage. Our
approach combines wavemap, a hierarchical volumetric map representation, with a
novel hierarchical and parallelizable obstacle avoidance algorithm formulated through
Riemannian Motion Policies (RMP). Leveraging multi-resolution obstacle avoidance
policies, the proposed navigation system facilitates precise, low-latency (36ms), and
extremely efficient obstacle avoidance with a very large perceptive radius (30m). We
perform extensive statistical evaluations on indoor and outdoor maps, verifying that the
proposed system compares favorably to fixed-resolution RMP variants and CHOMP.
Finally, the RMP formulation allows the seamless fusion of obstacle avoidance with
additional objectives, such as goal-seeking, to obtain a fully-fledged navigation system
that is versatile and robust. We deploy the system on a Micro Aerial Vehicle and show
how it navigates through an indoor obstacle course. Our complete implementation,
called waverider, is made available as open-source'.

The work described in this chapter is presented in the following publication:
* V. Reijgwart*, M. Pantic*, R. Siegwart, L. Ott, “Waverider: Leveraging Hierar-

chical, Multi-Resolution Maps for Efficient and Reactive Obstacle Avoidance,”
ICRA 2024

1https ://github.com/ethz-asl/waverider
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4 Multi-resolution collision avoidance

4.1 Introduction

Reactive, precise, and reliable obstacle avoidance is vital for mobile robots to safely
and efficiently navigate through changing or partially unknown environments. Since
obstacle avoidance is an always-on process, it must use minimal computational re-
sources and seamlessly integrate with the robot’s other tasks. Existing approaches
range from simple reactive methods using 1D distance sensors to optimization-based
systems requiring complete 3D maps and vary in complexity, reaction time, and
obstacle resolution.

While collision avoidance systems that operate directly on raw sensor data may exhibit
exceptionally low latency, they can only guarantee safety with respect to consistently
observed obstacles within the Field of View (e.g. [52]). One way to introduce memory
without losing generality is to use volumetric maps. They can model obstacles of
arbitrary shape and explicitly distinguish free and unobserved space. Volumetric
maps are well suited to ensure safety even in unknown environments. However, fixed-
resolution volumetric mapping frameworks tend to suffer from excessive memory
overheads and latency. These can be overcome by using hierarchical volumetric
representations such as octomap [4], UFOMap [39], supereight [36], or wavemap [7].
While several works investigated the use of hierarchical maps for global path planning,
most collision avoidance systems still process all obstacles at the highest resolution.
Yet, intuitively, one would expect that distant obstacles could be considered at a lower
resolution than nearby ones without significantly affecting the robot’s behavior.

We use RMPs [53] to formulate a navigation algorithm that is inherently multi-scale
and hierarchical. RMPs are purely reactive in nature, and as such, can be formulated
extremely efficiently and executed with low latency at controller frequency. Other
sampling- or optimization-based methods often need pre- and post-processing steps
such as the generation of an ESDF or trajectory smoothing. Conversely, RMPs are for-
mulated as second-order dynamical systems and directly output accelerations, which
typically leads to gradual changes and smooth paths. RMPs have some similarities to
the well-known potential fields [54], but are a much more expressive framework due
to the inclusion of the Riemannian metric that modulates each policy’s strength and
directionality.

In this chapter, we develop a reactive and safe obstacle avoidance method using
RMPs [53] that is tailored to hierarchical volumetric map representations. We nu-
merically analyze the effects of obstacle resolution on the policy’s approximation
error as a function of the distance between the robot and the policy. Based on this
analysis, we derive a function that computes the ideal resolution for querying the
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Figure 4.1: Example trajectories comparing our multi-resolution collision avoidance
method (red) to equivalent RMP-based formulations that consider all obstacles at
the highest resolution within a radius of 1m ( ) and 3m (blue). The fixed-
resolution RMP trajectories are jerkier and more prone to get stuck (top-left). CHOMP
( ) yields smooth, albeit overly cautious trajectories and occasionally cuts through
obstacles (top-right, bottom-left).

43



4 Multi-resolution collision avoidance

map at a given distance from the robot — allowing us to balance computational effort
and accuracy. Using this function, we develop an algorithm that efficiently generates
multi-resolution avoidance policies from a hierarchical map.

The contributions of this chapter are:
* An efficient hierarchical obstacle policy generation algorithm;

* Numerical analysis of the approximation error induced by hierarchical naviga-
tion policies;

The correctness of the numerical analysis is statistically validated through a large
number of experiments in simulation. Extensive comparisons with baselines and
CHOMP [8] demonstrate the favorable runtime and efficiency of our method. Finally,
we demonstrate real-world applicability by deploying our system onboard an MAV
running at 200 Hz.

4.2 Related Work

A core decision in any obstacle avoidance system is the environment representation.
State-of-the-art systems combine a volumetric map such as a truncated signed distance
field [10, 55] or an octree-based occupancy map [4, 7, 36, 39] with either a search-
based method such as A*[56], a sampling-based approach such as RRT [57], or an
optimizer such as CHOMP [8, 58]. All of these methods are comparably slow, as the
mapping-planning cycle has multiple performance bottlenecks, and the sampling or
optimization steps often rely on post-processed maps. Recently, end-to-end learning-
based methods were shown to be effective for collision avoidance [59]. However,
their data-driven nature still comes with a lack of generalizability across different
environments, sensors, and robot dynamics.

Reactive approaches that operate directly on volumetric maps or even raw LiDAR
data exist [60], but these methods have considerable memory and computing require-
ments due to their dense data representation. Although hierarchical volumetric maps
have received considerable attention from the planning community, most works fo-
cused on global planning [38, 61, 62]. Multi-resolution anytime planners [63] have
been proposed that bridge the gap to local planning. However, their global context
makes achieving the update rates required for low-latency reactive collision avoidance
challenging in 3D. Funk et al. [64] propose a full planning pipeline that leverages
multi-resolution for efficient orientation-aware planning in environments with very
narrow openings. However, their evaluations are performed on pre-computed static
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Figure 4.2: Block diagram of the proposed navigation system. External components
are highlighted in yellow, tightly integrated components in blue, and new components
introduced in this chapter in green.

maps without perception in the loop, which makes it difficult to judge the system’s
latency in a reactive collision avoidance setting. Closest to our work is the hierarchical
collision avoidance system presented by Goel et al. [65] that adapts the map resolution
based on the motion primitives considered by the planner. The method is used in a
teleoperation setting and shows promising results in simulated and real environments.
However, a significant part of the system’s efficiency results from using a bespoke,
purely local map representation whose resolution is set by the planner, which is harder
to reuse for additional tasks, including global planning. In comparison, our system
achieves comparable efficiency levels using generic hierarchical occupancy maps.
This is explained by the efficiency of RMPs, and the fact that our method does not
rely on expensive ESDFs. One final benefit of our proposed architecture, compared to
both [64, 65], is its high degree of modularity. Formulating obstacle avoidance as a
motion policy makes it easy to combine with other policies representing additional
objectives such as goal-seeking, visual servoing, or aerial manipulation.

4.3 Method

In the following sections, we describe our approach to efficiently extract multi-
resolution obstacle avoidance policies from hierarchical maps and how they integrate
with high-level task policies. Figure 4.2 shows the main parts of the system, consisting
of: 1) a volumetric, hierarchical map representation (Section 4.3.1), 2) an algorithm
for obstacle extraction (Section 4.3.2), 3) an RMP-based reactive navigation system
(Section 4.3.4). For each obstacle cell extracted in 2) an individual obstacle avoidance
policy is generated (Section 4.3.3), and combined with all other policies through the
RMP framework.
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4 Multi-resolution collision avoidance

4.3.1 Hierarchical map

The proposed method is compatible with any hierarchical occupancy mapping frame-
work, e.g. [4, 36, 39]. We chose to use wavemap [7], as it simultaneously achieves
state-of-the-art accuracy, memory, and computational efficiency. In a similar fashion to
other methods, wavemap leverages octrees to achieve this efficiency. However, instead
of storing absolute occupancy values, each node stores Haar wavelet coefficients. Us-
ing wavelets achieves significant compression and, more importantly, guarantees that
all resolution levels are implicitly synchronized and always up to date. An efficient
coarse-to-fine measurement integration algorithm allows wavemap to integrate depth
measurements with low latency, even on computationally constrained platforms.

4.3.2 Obstacle cell extraction

As will be substantiated in Section 4.4, reducing the resolution of obstacles as the
distance to the robot increases does not introduce significant approximation errors. By
representing obstacles at the appropriate resolution, it is therefore possible to efficiently
consider fine nearby obstacles and the broader spatial context simultaneously. In this
section, we present a hierarchical algorithm that efficiently gathers multi-resolution
obstacles by traversing the map in a coarse-to-fine manner. The algorithm (Algorithm
2) starts at the lowest resolution level (root node) of the map and recursively visits
each node’s higher-resolution children. The algorithm stops expanding a node when
that node either has no children or its distance d to the robot exceeds dmaz (). We
use dmaz(N) = 323 _0.25 where A corresponds to the node’s height in the octree?.
Once such a terminal node is found, an obstacle cell is created if the node or any of
its children is occupied. Figure 4.4 visualizes dma= () and the resulting maximum
distance up to which obstacles are included.

4.3.3 Collision avoidance policy generation

For each obstacle cell returned by the previously described algorithm, an individual
obstacle-avoidance policy P [53] is created. In the following, we give a short summary
of the most important aspects of motion planning using RMP, however for more details
and complete formulas of helper functions we refer to the original text [53]. A policy
P consists of an acceleration function ¥ = f(x,%) € R? and a Riemannian metric
A(x,%) € R3*3 where x € R refers to the robot’s current position. The function
f drives the robot according to the policy, while the Riemannian metric A defines a

%A height of 0 corresponds to the highest resolution/smallest voxel size.
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Algorithm 2: Hierarchical obstacle extractor

Input: Hierarchical occupancy map M,
Robot position p
Output: Set of multi-resolution obstacles O
1 Function RecursiveExtractor (V,p) is
d+ ||Vcemer - p||2
if dmae (Va) < d then
if IsOcc (V) or HasOccChild (V) then
| O.insert(V)
end
return
end
if not HasOccChild (V) then
| return
end
for Veia € V do
RecursiveExtractor(Veid, P)
end

LIRS 7 N

e e
B W N = o

end

// Initialize and start recursion
16 Vit < GetOctreeRoot (M)

17 O + RecursiveExtractor(Vio, P)

—
wn

Figure 4.3: Comparison of an environment represented using fixed-resolution (left)
and hierarchical obstacle cells (right). Our approach uses hierarchical cells, whose
resolution (light brown to dark green) is high close to the robot (red) and decreases
with distance.
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4 Multi-resolution collision avoidance

(possibly directional or isotropic) weight of the policy in comparison to other policies.
Following [53], multiple policies {Po, . .., P} can be summed into an equivalent
policy Pc using

:
Pe= (£, Ac) = <<Z Ai) ZAifi7 ZA1> . 4.1)

We use the obstacle avoidance repulsor from [53] as a policy template for each found
obstacle cell. It is formulated as a combinationof a pure repulsor f.p, a velocity-
dependent damper fq:mp, and a metric (weight) that becomes 0 if the robot’s velocity
does not point towards the obstacle. The repulsor is defined as

d
f’”el’ (X7 r, d) = Trep exp <_ ) r, (42)
Urep
where d is the distance to the obstacle, r is the unit vector pointing from the obstacle to
the robot, and 7,-¢p, and v, are tuning parameters to set the repulsor strength (7,¢p)
and scaling (vrep). Similarly, the damper is defined as

. d .
faamp (X, 1, d) = Udamp/ (Ud + e) -Pops (X, 1), 4.3)
amp

again with 74qmp as a strength parameter and vqqmp as a scaling parameter. € is a
sufficiently small constant to ensure numerical stability. Poss (X, r) projects the robot
velocity onto the direction vector pointing from the obstacle to the robot and captures
how much the robot moves towards the obstacle. Finally, the full obstacle avoidance
policy is defined as the tuple Pops = (fobs, Aobs):

fors (X, X, T, d) = frep (X, 1, d) — faamp (%X, T, d) 4.4)
Aobs (X, 5(7 r, d) = Wy (d7) - (fobs) S (fobs)T . (45)

s (+) is a soft-normalization function. Please refer to [53] for the detailed formula-
tions of P.s (eq. 68) and s (eq. 24). w, scales the policy response based on a
distance parameter r, which influences the policy’s maximum active range according
to wy (d) = r%dz - %d + 1. For each of the thousands of found obstacle cells such
a policy is created. All cells at the same scale level A are then summed according
to Eq. (4.1), and all resulting combined policies of all scales are then again summed
using Eq. (4.1). The scale level A is used to set the RMP’s parameters as follows:
Udamp = 0.45, Urep = 0.75, and r = 1.5\. Modulating vgamp, Urep, and 7,
allows setting the sphere of influence of policies, and for example determines the
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Figure 4.4: Left: Perceptive radius defined by dma= () as used in the obstacle filter
(red). Limited, fixed-resolution comparison variants used in 4.5.1 are marked with
a blue resp. green cross. Right: Worst-case counts of voxels to visit. Even with
small perceptive radii, the fixed-resolution variants need to potentially iterate over
significantly more voxels to provide the same quality of obstacle avoidance (log scale).

traversability of narrow corridors. By using the tuning proposed above, coarse obsta-
cles naturally have a larger sphere of influence. The distance and size of the obstacle
cell are used to scale the policy’s Riemannian metric, which can be interpreted as a
multi-dimensional weight and modulates the policy’s strength and activation radius.
The Riemannian metric ensures that the relative direction to the obstacle cell is taken
into account such that there is only a repulsion component if the robot’s velocity points
towards this obstacle. In Figure 4.3, examples of obstacle cells are shown for both
uniform and hierarchical cell generation.

4.3.4 Navigation system integration

We use the simple goal-attractor policy described in [53] to combine the previously
described summation of obstacle avoidance policies with goal-seeking behavior. The
goal-attractor policy is defined as:

fo(x,%) = a8 (Xa — X) — faX

, 4.6
A, (x,%x) =17° *6)
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4 Multi-resolution collision avoidance

Figure 4.5: Example of obstacles that can be either modeled by a single, large policy
(Pr) or multiple small, high-resolution policies (Pf). The distance d represents the
distance from the robot to the center of the obstacle block.

where o, o > 0 are tuning parameters, and X, is the desired goal location. In
each iteration, all policies are evaluated, summed up, and the resulting acceleration
executed on the robot. For simulation experiments, the policies are run as fast as
possible, whereas during field tests the policies are evaluated at the robot’s control
frequency (200 Hz). Note that it is straightforward to replace or combine the goal-
seeking policy with other policies addressing tasks such as visual servoing, terrain
following, manipulation, or assisted manual control, as has been shown e.g. in [66].

4.4 Hierarchical Policy Approximation Error

Naturally, one wonders what the impact of incorporating distant obstacles at a reduced
resolution is. In this section, we study the influence of replacing a sum of obstacle
avoidance policies with a single policy at the center of such a block. In the obstacle cell
extraction algorithm, the octree is traversed to a deeper or shallower level depending
on the distance to the robot. This implies that at larger distances, fewer policies at
slightly different locations contribute to the overall navigation result instead of a sum
of many individual policies. In the following, we show what relative changes in policy
outputs and quality these abstractions entail, using the toy example in Figure 4.5 for
the analysis.

We conduct a numerical analysis to simulate the relative changes between the single
simplified policy Pr and the granular, high-resolution set of policies > P} in both
policy strength and directionality for three scenarios: 1) the toy example in Figure 4.5
(labeled “Fig” in Figure 4.6), 2) a random sampling of 16 occupied voxels, respectively
their resulting policies (“R16"), and 3) a completely occupied block resulting in 64
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policies (“All”). The same 4 x 4 x 4 block with 10 cm voxels is used in all scenarios