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Energy expenditure estimation
during activities of daily living in
middle-aged and older adults
using an accelerometer
integrated into a hearing aid
Jan Stutz1, Philipp A. Eichenberger1, Nina Stumpf2,
Samuel E. J. Knobel2, Nicholas C. Herbert2, Isabel Hirzel1,
Sacha Huber1, Chiara Oetiker1, Emily Urry2, Olivier Lambercy3 and
Christina M. Spengler1,4*
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Switzerland, 2Research & Development, Sonova AG, Stäfa, Switzerland, 3Rehabilitation Engineering
Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland,
4Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland

Background: Accelerometers were traditionally worn on the hip to estimate
energy expenditure (EE) during physical activity but are increasingly replaced by
products worn on the wrist to enhance wear compliance, despite potential
compromises in EE estimation accuracy. In the older population, where the
prevalence of hearing loss is higher, a new, integrated option may arise. Thus,
this study aimed to investigate the accuracy and precision of EE estimates using
an accelerometer integrated into a hearing aid and compare its performance
with sensors simultaneously worn on the wrist and hip.
Methods: Sixty middle-aged to older adults (average age 64.0 ± 8.0 years, 48%
female) participated. They performed a 20-min resting energy expenditure
measurement (after overnight fast) followed by a standardized breakfast and 13
different activities of daily living, 12 of them were individually selected from a
set of 35 activities, ranging from sedentary and low intensity to more dynamic
and physically demanding activities. Using indirect calorimetry as a reference for
the metabolic equivalent of task (MET), we compared the EE estimations made
using a hearing aid integrated device (Audéo) against those of a research device
worn on the hip (ZurichMove) and consumer devices positioned on the wrist
(Garmin and Fitbit). Class-estimated and class-known models were used to
evaluate the accuracy and precision of EE estimates via Bland-Altman analyses.
Results: The findings reveal a mean bias and 95% limit of agreement for Audéo
(class-estimated model) of −0.23 ± 3.33 METs, indicating a slight advantage over
wrist-worn consumer devices (Garmin: −0.64± 3.53 METs and Fitbit: −0.67±
3.40 METs). Class-know models reveal a comparable performance between
Audéo (−0.21 ± 2.51 METs) and ZurichMove (−0.13 ± 2.49 METs). Sub-analyses
show substantial variability in accuracy for different activities and good accuracy
when activities are averaged over a typical day’s usage of 10 h (+61 ± 302 kcal).
Discussion: This study shows the potential of hearing aid-integrated
accelerometers in accurately estimating EE across a wide range of activities in
the target demographic, while also highlighting the necessity for ongoing
optimization efforts considering precision limitations observed across both
consumer and research devices.
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1 Introduction

Engaging in regular physical activity (PA)—defined as any

bodily movement produced by skeletal muscles that results in

energy expenditure (EE) (1)—is associated with a lower risk for

numerous chronic diseases and premature death (2). Meeting PA

guidelines is sufficient to elicit health benefits, in particular in

previously sedentary people. These benefits appear to increase in

a dose-dependent manner (2). However, about one-quarter of the

Swiss population does not meet the requirements of at least

150 min of moderate-intensity PA or 75 min of high-intensity

PA per week. This proportion increases to about one-third in

individuals aged 75 years or older (3). In light of strong evidence

linking PA to healthy aging (4), the precise monitoring and

promotion of PA among middle-aged and older adults emerge as

critical strategies for personalized prevention and enhancing

public health.

The use of wearable devices, which measure acceleration in

either a uni- or triaxial plane, represents a promising method for

such monitoring. They are easy to use, unobtrusive, and have

already been shown to estimate activity and/or EE with

reasonably good accuracy in healthy adult populations (5, 6) as

well as in patients with chronic disease (7–10). In addition, in a

recent systematic review and meta-analysis, activity trackers have

been shown as effective in promoting an increase in PA and

reducing sedentary time in older adults (11). While this

underscores the potential of these devices to estimate EE and

promote PA in the middle-aged and older population, there is

still an ongoing debate regarding the most appropriate

sensor location.

Originally, accelerometers were worn on the hip, but they are

now increasingly worn on the wrist. For example, the National

Health and Nutrition Examination Survey initially relied on

sensors worn on the hip to capture PA and sedentary behavior

(12) and later switched to wrist-worn accelerometers (13). The

main arguments typically raised in favor of wrist placement are

continuous wearability, enabling sleep monitoring, and improved

wear compliance (14). This was demonstrated by Huberty et al.

(15), who reported that 24 h monitoring over seven consecutive

days in middle-aged women is significantly more effective with

wrist-worn sensors, achieving seven valid days of data for 95% of

participants, compared to just 62% with hip-worn sensors.

However, wrist-worn accelerometers generally provide less

accurate EE estimates than hip-worn sensors (16–18). This

supports the consensus that sensors positioned closer to the

body’s center of mass are more precise than those located more

distally, such as on the arm or wrist. Although wrist sensors can

accurately estimate EE during locomotion activities (19),

disparities might emerge during activities with restricted arm

movement (e.g., walking with a stroller) or during activities of

daily living (ADL) involving a lot of arm movement (e.g., playing

cards). Given that time spent in ADL increases with age (20),

this disparity may become more pronounced in older

populations. Indeed, Guediri et al. (21) found a greater

discrepancy in EE estimates between hip and wrist-worn sensors
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in older compared to younger subjects under free-living

conditions. This highlights the need for novel approaches to

accurately capture EE in middle-aged and older populations,

addressing the limitations of current methods, including the

lower accuracy of wrist-worn sensors and the lower compliance

associated with hip-worn sensors.

A promising strategy might involve the use of an accelerometer

within a device that users already wear for extended periods

throughout the day and that is situated sufficiently close to the

body’s center of mass to reflect the wearer’s movements. Hearing

aids might present such a viable option. With an average usage

of 10 h per day (22), these devices are commonly worn by an

increasing portion of the middle-aged and older population, a

group particularly vulnerable to hearing loss. For instance,

among US adults aged between 45 and 64, about 3% of men and

2% of women use hearing aids. For those aged 65 and older, the

rate rises to 14% (23). This proportion would increase even

further if more adults affected by hearing loss would use hearing

aids. In a nationally representative sample of older US adults,

65% of adults aged 71 years and older had at least a mild

hearing loss, but only 29% of them used hearing aids (24). In

addition, hearing loss is associated with less PA in adults aged

60–69 years (25). Thus, monitoring and promoting PA within

this population can yield significant health benefits.

Previous studies evaluating accelerometers worn around the ear

(26–28) have shown promise in estimating EE but were limited to

younger adults and a narrow range of activities, and none

incorporated the accelerometer directly into a hearing aid.

Addressing this gap and given the rising trend of wearables with

health sensors (29), the current study aimed to explore whether a

similar approach can effectively predict EE in a broader spectrum

of ADL for middle-aged and older adults, specifically through an

accelerometer integrated into a hearing aid. Thus, this research

focused on adults aged 45–64 years, and those 65 years and

older, comparing the accuracy of this new sensor placement with

a research device worn at the hip and wrist, as well as wrist-

worn consumer devices. We followed the features of phase I in

the framework of Keadle et al. (30) and also included activities

pertinent to an older population. We hypothesized that the EE

prediction accuracy arising from a sensor worn at the ear

would be comparable to a hip-worn sensor, yet better than wrist-

worn devices.
2 Materials and methods

2.1 Participants

Sixty middle-aged and older adults (64.0 ± 8.0 years, BMI

24.4 ± 2.8 kg · m−2, 48% females) participated in this study

(Table 1). Participants were recruited through word-of-mouth,

advertisements on the university campus, and in local retirement

homes. All 60 participants recruited also completed the study.

To qualify for inclusion, subjects were required to be 45 years

or older, in good health, and not taking any medication (except for
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1400535
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 1 Participant characteristics.

Middle-aged
(N = 30)

Older
(N = 30)

p-value

Age [years] 57.2 ± 4.9 70.8 ± 3.6 <0.001

Sex (M/F) 13/17 18/12 0.196

Height [cm] 172 ± 8 171 ± 8 0.733

Weight [kg] 71.7 ± 11.8 72.8 ± 12.7 0.748

BMI [kg⋅m−2] 24.1 ± 2.5 24.7 ± 3.1 0.463

IPAQ [MET⋅min−1⋅week−1] 2,955 ± 1,876 2,520 ± 1,751 0.357

Resting _VO2 [ml⋅min−1⋅kg−1] 3.23 ± 0.58 3.08 ± 0.61 0.326

Fat mass [kg] 20.0 ± 6.3 21.2 ± 6.5 0.485

Lean mass [kg] 49.3 ± 8.9 49.1 ± 9.2 0.469

BMD [T-score] 0.30 ± 1.1 −0.34 ± 1.1 0.038

Systolic BP [mmHg] 119 ± 11 130 ± 14 <0.001

Diastolic BP [mmHg] 82 ± 11 80 ± 7 0.206

PWV [m⋅s−1] 7.8 ± 2.0 9.8 ± 2.5 <0.001

Handiness (R/L) 26/4 27/3 1.000

Shown are means ± SD. BMI, body mass index; BMD, bone mineral density, BP,

blood pressure, PWV, pulse wave velocity; IPAQ, international physical activity

questionnaire—short form; MET, metabolic equivalent of task; p-value, two-

sided independent t-test for numerical variables, Pearson Chi-Square for Age,

and Fischer’s exact test for handiness.
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some allowable health conditions and medications for participants

aged 65 years and above—refer to exclusion criteria). Additional

requirements included a BMI greater than 18.5 kg · m−2, the

ability to perform all activities outlined in the study protocol,

normal hearing or at max. mild hearing loss, and willingness to

comply with the study’s procedural guidelines (i.e., to refrain

from intense exercise 48 h before testing; to abstain from any

exercise 24 h before testing; to ensure a minimum of 7 h of sleep

on the two nights before testing; to avoid alcohol on the evening

before testing, as well as on the day of testing; to not consume

any caffeinated food or beverages before testing on the day of the

experimental visit; and to arrive fasted after at least 10 h without

food intake for visit 2).

Subjects were excluded if they had a history of heart,

cardiovascular, metabolic, or neurological disease (incl. seizures

and cognitive impairment), a biomechanical dysfunction affecting

the ability to perform all activities, ear canal pathologies,

moderate or severe hearing loss, an existing implanted medical

device that may interfere with data collection, skin allergies or

sensitivity to materials or devices used in the experiments, and—

specifically for the participants aged 65 years and above—

medication influencing heart rate or EE and neurological,

orthopedic, rheumatologic, or metabolic disorders influencing

upper or lower limb function.

We aimed to recruit 30 adults aged between 45 and 64 years

and 30 participants aged 65 years or older, with each group

containing a BMI distribution encompassing normal weight,

overweight, and obese categories and males and females in

equal numbers (≥40% for each sex). The study was approved

by the local ethics committee of ETH Zurich (EK 2022-N-44).

Every participant gave written informed consent in accordance

with the Declaration of Helsinki before participating in

the experiment.
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2.2 Protocol

2.2.1 Overview
The study involved two separate visits to the Exercise

Physiology Lab at ETH Zurich. The first visit, lasting

approximately 2 h, aimed to verify the inclusion and exclusion

criteria, and to familiarize the participants with the measuring

devices and study procedures. The second visit, lasting between

6 and 8 h, constituted the experimental phase of the study and

occurred no sooner than 48 h after the initial visit. Data

collection took place between September 2022 and August 2023.
2.2.2 Visit 1
2.2.2.1 Informed consent and questionnaires
Upon arrival at the laboratory, study details were explained to the

participants, followed by the collection of their informed consent.

Demographic information, dietary habits, and lifestyle details

were then assessed through three distinct questionnaires: A

health screening questionnaire to assess cardiovascular and

respiratory system health/risk, the International Physical Activity

Questionnaire—Short Form (31), and a Daily Questionnaire to

monitor participants’ intake of caffeine, food, and medication, as

well as their sleeping patterns and sporting activities over the

past 2 days. Participants were then introduced to the study’s

equipment and procedures. This involved fitting them with the

sensors and the facemask that is part of the portable

ergospirometric system. Finally, the maximum achievable walking

speeds (on both a flat surface and with a 10% incline) and

running speeds (on a flat surface) on a treadmill were established

for each participant.
2.2.3 Visit 2
Figure 1 illustrates an overview of visit 2. All activities,

numbered 01–36 (refer to Table 2), were video recorded using a

smartphone and subsequently downloaded onto a hard disk. To

ensure optimal data quality, participants were instructed to

refrain from speaking during all activities.
2.2.3.1 Daily questionnaire, anthropometrics, and sensor
mounting
Upon arrival at the laboratory, the participants’ adherence to the

study protocol was confirmed through the daily questionnaire.

Then, measurements of weight, height, and body composition

were taken as detailed in Section 2.3.3. The acceleration sensors

were then positioned on the participants as detailed in Figure 2

and Section 2.3.1, ensuring they were securely fastened to avoid

any displacement during the activities. Special care was taken to

fit the facemask airtight on the face before starting the

ergospirometric device. To ensure comfort of the participants,

they were asked about their comfort in each break, and—in case

of need—a respective strap was loosened during the break or the

face mask (ergospirometric device) was removed and/or slight

adjustments were made to the strapping, making sure not to

change the position of any sensor.
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FIGURE 1

Overview of the experimental visit (visit 2). See text for details. EE, energy expenditure measurement.
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2.2.3.2 Resting energy expenditure, blood pressure, and
pulse wave velocity
After completing the preparatory phase, the measurement of

resting energy expenditure (REE) was conducted for 20 min

(activity 01, see Table 2). During this time, participants were

positioned supine on a stretcher. They were instructed to remain

still and quiet. After the REE measurement, still lying supine on

the stretcher, blood pressure was measured on the left upper

arm, as detailed in Section 2.3.4. Immediately after this, pulse

wave velocity was assessed, following the procedure described

in Section 2.3.5.

2.2.3.3 Breakfast and resting period
Participants then proceeded to a table where a standardized

breakfast was provided. Subjects weighing less than 90 kg

received a meal comprising 70 g of bread, 10 g of butter, 28 g of

marmalade, 250 ml of orange juice, and water ad libitum,

totaling 450 kcal. For those weighing 90 kg or more, the breakfast

composition was identical, except for an increased bread portion

of 105 g, totaling 550 kcal. All subjects were instructed to

consume the entire meal at their preferred pace. After breakfast,

participants rested for 30 min to minimize the impact of diet-

induced thermogenesis on subsequent activities.

2.2.3.4 Physical activities
Next, each participant engaged in 13 different activities, 12 of them

chosen from a pool of 35 activities (Table 2); the 13th activity was

performed by everyone as the final task (activity 36). During all

activities, energy expenditure (ergospirometric device) and

acceleration signals were continuously recorded (see Section 2.3).

Activities were categorized into six categories: sedentary & lying,

low-intensity activities, activities with varying intensity or not

involving physical movement, indoor locomotion-related

activities, outdoor activities, and activities requiring aids. For data

processing and analyses, the activities were classified as detailed

in Section 2.4.4. To ensure a balanced distribution, activities were
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pseudo-randomly allocated to participants. Each activity had a

duration of 8 min, with two exceptions: cycling on the

ergometer, which was performed for 6 min, and stair climbing

and descending, taking approximately 1.5 min, varying with the

participant’s chosen walking speed. Before each activity, there

was a 2 min sitting period on a chair. In between activities, a

standardized break of at least 4 min was provided. After the last

activity, all devices were removed, and data was downloaded

locally on a computer.
2.3 Measurement devices

2.3.1 Activity monitors
Acceleration in the three-dimensional plane was measured using

a commercially available hearing aid (Figure 2) with integrated

3-axial accelerometers (Audéo Fit, Sonova AG, Stäfa, Switzerland,

size 30.6 × 12.3 × 8.1 mm, weight 2.3 g, sampling frequency

200 Hz), two commercially available activity trackers (Fitbit Charge

5, Fitbit Inc., San Francisco, USA and Garmin Instinct Solar 2S,

Garmin Ltd., Olathe, Kansas, USA), and a ten-axis inertial

measurement unit used in research (ZurichMove, Rehabilitation

Engineering Lab, Zurich, Switzerland, size 46 mm× 35 mm×

13 mm, weight 18 g, measurement range ± 16 g, resolution

1/2,048 g, sampling frequency 50 Hz). The sensors were positioned

at the wrists, right hip, and left ear, as illustrated in Figure 2.

Garmin and Fitbit were attached to the wrist of the dominant

arm, while ZurichMove sensors were placed on the hip and both

wrists. The hip sensor was fixed via an elastic band with a silicon

inlay around the body on hip level, placed directly on the skin.

This way, the sensor located on the level of the iliac crest on the

lateral edge.

Successful data transmission during the test was ensured either

by visual inspection of the real-time data feed (ergospirometric

device, Audéo, Garmin, Fitbit) or by visually checking the status

indicator on ZurichMove. Audéo data was transferred and stored
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TABLE 2 Overview of physical activities.

Category Nr. Subgroup Activity Duration
[min]

Activity description N

Resting 01 A Lie_bed_REE_20 20 Lying in bed on the back (on a pillow, before breakfast,
fasted, 20 min)

60

36 T Sit_chair_post 8 Sitting on a chair after last activity 59

Sedentary and lying 02 B Watch_TV 8 Watching TV (while sitting on a couch) 15

03 B Read_book 8 Reading a book (sitting on a chair) 15

04 B Crossword 8 Doing crossword puzzles 15

05 B Play_iPad 8 Playing on an iPad (Angry Birds) 15

06 C Write_paper 8 Writing on a piece of paper (copying from a paper
document)

20

07 C Play_cards 8 Playing cards (Uno) 20

08 C Write_PC 8 Computer work (typing from a paper document) 20

Low intensity activities of daily living 09 D Wash_dish 8 Dishwashing, 20 s washing plate, 20 s drying plate, repeat
12 times

45

10 D Prep_food 8 Food preparation (fruit salad) 15

11 E Clean_vacuum 8 Vacuum cleaning, 3 × 3 m square, 1 min per half square 33

12 E Clean_mop 8 Sweeping (mop) floor 27

13 F Dust_surface 8 Dusting surfaces (on different heights, vertical and
horizontal)

15

14 F Hang_laundry 8 Hanging up laundry, 2 min per line. Laundry is removed
by investigator

45

Activities with changing intensity or without
physical displacement

15 G Squats 8 Doing squats 12

16 G Gardening 8 Gardening (transplant plants, fetch plants, fetch water, and
water)

34

17 G Stretch_yoga 8 Stretching/back exercises/gentle yoga 14

18 H Cycle_ergo 6 Bicycle ergometer (3 stages: 1 W · kg−1, 1.25 W · kg−1,
1.5 W · kg−1 each for 2 min)

60

Indoor activities related to locomotion 19 K Walk_tm_flat_50 8 Walking on the treadmill without inclination at 50% of
max. walking speed

24

20 K Walk_tm_flat_75 8 Walking on the treadmill without inclination at 75% of
max. walking speed

24

21 L Walk_tm_inc10_50 8 Walking on the treadmill with inclination of 10% at 50% of
max. walking speed

26

22 L Walk_tm_inc10_75 8 Walking on the treadmill with inclination of 10% at 75% of
max. walking speed

22

23 M Run_tm_flat_50 8 Running on the treadmill without inclination at 50% of
max. running speed

23

24 M Run_tm_flat_75 8 Running on the treadmill without inclination at 75% of
max. running speed

25

Outdoor activities 25 N Walk_cob 8 Walking on cobble stone at preferred speed 11

26 N Run_road 8 Running on a track at preferred speed 1

27 O Walk_up 8 Walking uphill at preferred speed 12

28 P Walk_down 8 Walking downhill at preferred speed 12

29 Q Climb_stairs indiv. Climbing stairs (6 floors, two times, rest in between) 44

30 Q Descend_stairs indiv. Descending stairs (6 floors, two times, rest in between) 48

31 R Cycle_road 8 Cycling on a paved road at self-selected speed 7

32 R Cycle_cob 8 Cycling on cobble stone 7

Activities with aids 33 S Walk_stick 8 Walking with walking stick back and forth at preferred
speed

21

34 S Walk_stroller 8 Walking with stroller back and forth at preferred speed 19

35 S Wheel_chair 8 Self-driving in a wheelchair back and forth at preferred
speed

20

Activities were performed sequentially from A to T, with Sit_chair_post (Nr. 36) being the exception (performed at the end of the experimental visit). Participants performed

one activity per subgroup letter (e.g., letter K: either Walk_tm_flat_50 or Walk_tm_flat_75). N, number of times an activity was performed.
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in real-time to a smartphone app during the activities. Garmin and

Fitbit both recorded on the device and data was transferred to a

smartphone app at the end of all experimental recordings of the

day. ZurichMove recorded on the sensor itself and the data

was transferred to a laptop via a docking station at the end

of all experimental recordings of the day. Data from the
Frontiers in Digital Health 05
ergospirometric device was transferred in real-time to a laptop

with a dedicated software.

2.3.2 Indirect calorimetry
A portable, battery-operated, ergospirometric device (Oxycon

Mobile, Vyair Medical, Höchberg, Germany [53 participants] or
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FIGURE 2

Overview of measurement devices and their location on the body.
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Metamax 3B, Cortex, Leipzig, Germany [7 participants]) served as

a basis for the calculation of reference EE. It recorded, on a breath-

by-breath basis, parameters related to ventilation and gas exchange

(O2 uptake, _VO2; CO2 output, _VCO2), transmitting the data

telemetrically to a computer. For technical reasons, the Oxycon-

system needed to be replaced shortly before the end of the 1-year

duration of data acquisition period (percentage of participants

using the Metamax-system was similar between the calibration

and validation groups, see Section 2.4.3). Each system was

mounted on a harness worn on the back. Before each test, a

calibration was carried out according to the manufacturer’s

instructions, which consisted of (1) recording of the ambient

conditions, (2) calibration of the flow sensor using a 3-liter

calibration syringe and (3) calibration of the O2 and CO2 sensors

using a gas cylinder with known gas concentrations (5% CO2,

16% O2).

2.3.3 Body composition measurements
Height and weight measurements were taken using a

stadiometer and an Omron BF511 digital scale (Omron, Kyoto,

Japan). Segmental fat and lean body mass proportions, relative

to the total body mass, were determined using a calibrated

Lunar iDXA densitometer (GE Healthcare, Madison, WI, USA).

The data were analyzed following the manufacturer’s

guidelines, with automatic processing conducted by the device’s

proprietary software.

2.3.4 Blood pressure
Systolic and diastolic blood pressure was measured on the left

upper arm using a cuff and an automated blood pressure monitor

(Metronik BL-6, Metronik, Aue, Germany). Before the

measurement, subjects were lying comfortably for at least 20 min

(see REE measurement, Section 2.2.3). At least 3 valid

measurements were taken with a 1 min break in between the
Frontiers in Digital Health 06
measurements. The average of 3 valid measurements was taken

as the final value.

2.3.5 Pulse wave velocity
Pulse wave velocity was measured using two piezoelectric

pressure sensors (placed manually on the carotid and femoral

artery via palpation) sampling at 1kHz and attached to an

acquisition unit (Complior, Alam Medical, Saint Quentin

Fallavier, France). Before the measurement, subjects were

lying comfortably for at least 20 min (see REE measurement,

Section 2.2.3). At least 3 valid measurements were taken. The

average of 3 valid measurements was taken as the final value.
2.4 Data processing and analysis

2.4.1 Data preprocessing
All raw data were preprocessed using MATLAB R2023a (The

MathWorks Inc., Natick, Massachusetts, USA). The primary

objective of this preprocessing was to systematically reorganize

the data for each participant, categorizing it by activities. Prior to

each testing session, clocks of all devices were synchronized.

Timestamps from the Audéo hearing aid served as the reference

for timing of the activities, and the data from all other devices

were adjusted to align with this time.

2.4.2 Processing
The reference EE was calculated from _VO2 and _VCO2 values

according to Weir (32) using the in-built formula of the

metabolic device (Oxycon Mobile) and applied to both systems:

EE (kcal � day�1) ¼ 1:59� _VCO2 þ 5:68� _VO2 � 2:17� UN

with UN = 15 g · day−1. Outlier removal for ventilation and gas-

exchange variables involved a two-step process: conservative

removal of non-physiological values and deletion of values

that deviated more than two standard deviations from the local

30 s mean.

In order to estimate EE from acceleration data, the calculation

of “acceleration counts” (or simply “counts”) was required

(see Section 2.4.4). These counts were obtained using a simplified

version of the method developed by Actigraph (33). In order to

capture signal components related to slow and fast movements

(e.g., slow walking and running) while removing high-frequency

noise (e.g., vibrations), the x, y, and z acceleration data for the

entirety of the signal were bandpass filtered [lower cutoff

frequency = 1 Hz, upper cutoff frequency = 12.5 Hz, based on

(34)], the squared magnitude was computed as x2 + y2 + z2, and

1 min epochs were approximated by applying a first order low

pass filter with 1 min time constant.

Ventilation and gas-exchange variables, and accelerometer

counts were averaged over the last 4 min for all activities except

climbing stairs, descending stairs, and the three stages of cycling

on the ergometer, for which the last 20 s were used. This was

done to ensure that participants reached a steady-state V̇O2. The
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reference metabolic equivalent of task (MET) for each participant

and activity was calculated by dividing V̇O2 with resting V̇O2

derived from activity 01 (REE). For Fitbit and Garmin, METs

were calculated by dividing EE (in kcal) by the subject’s weight

(in kg) and the duration of the activity (in h), assuming 1 MET

= 1 kcal · kg−1 · h−1 (35). METs from Audéo and ZurichMove

sensors were derived as described below (Section 2.4.4 EE

estimation).
2.4.3 Calibration and validation groups
Subjects were quasi-randomly split into a calibration and

validation group using an inbuilt randomization function in

MATLAB. Conditions were set to allocate 44 subjects to the

calibration group (73%; 22 middle-aged and 22 older) and 16 to

the validation group (27%; 8 middle-aged and 8 older). The

calibration group served to develop the EE estimation models,

while the validation group was used to run statistical analyses.
2.4.4 EE estimation
To account for real-world constraints (embedded device with

limited computational power, energy storage, and memory), a

low-complexity approach was used for the model

implementation. The EE per activity p was estimated by linearly

mapping (36) the acceleration counts to MET as:

METp ¼ ak � countsp þ qk

where the slope ak and intercept qk per activity class were

determined via linear regression from the counts and reference

MET (from ergospirometric device) of all participants in the

calibration group. The performed activities were mapped to

activity classes based on their expected similarities in their

accelerometer signals and MET ranges. Activity classes were

either estimated based on the accelerometer signal (class-

estimated approach) or manually assigned to one of the

following classes: LaySit, Sedentary, ADL, Stationary, WalkFlat,

WalkUp, WalkDown, Run, or Aid (class-known approach). The

class-estimated approach was used to determine the performance

of the Audéo EE estimation model and to compare it to the

internal EE estimates from Fitbit and Garmin. The class-known

approach was used to compare Audéo with ZurichMove sensors.

The EE for participant i during activity p was finally obtained as:

EEi,p (kcal) ¼ METp � BMRi

where BMRi is the participant’s basal metabolic rate, according to

the Müller equation (37):

BMR (kcal � d�1) ¼ (0:047� weightþ 1:009� sex� 0:01452

� ageþ 3:21)� 239

with sex = 0 for females and 1 for males, weight in kg, age in years,

and 239 being the conversion factor fromMJ to kcal. The selection of
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the formula was based on its satisfactory performance in estimating

BMR within our study sample (mean absolute bias = 13.3%).

In order to contextualize accuracy, rather than presenting it

solely in terms of MET errors, an estimation of the EE over a

standardized whole day of hearing aid use (10 h) (22) was

calculated. First, based on reference METs, activities were

classified into the four intensity levels “very light”, “light”,

“moderate”, and “vigorous” according to the intensity criteria

described by Garber et al. (38) for older adults aged ≥65 years.

Note that the levels “vigorous” and “near maximal to maximal”

were combined in order to be compatible with the estimates used

for the proportion of time spent in different activity classes.

Daily kcal counts for individual participants were then calculated

for, and summed over, the four different intensity classes

according to the Formula:

EEi (kcal � 10 h�1)i ¼
X4

k¼1

METi,k � BMRi � Pk � 0:416

Where EEi represents the estimated total kcal participant i burned

over 10 h, METi,k the median estimated MET of all activities

within intensity class k for participant i, BMRi the estimated

BMR of participant i, 0.416 the proportion of 10 h relative to

24 h, and Pk the proportion of hearing aid use time that older

adults spend in intensity level k. These proportions were

approximated as: 73% very low, 17% low, 9% moderate and 1%

vigorous intensity based on data of 18,000 Sonova hearing aid

users. These approximations appear broadly consistent with other

literature (25).

2.4.5 Statistical analysis
The performance of the EE estimation models in the validation

group was analyzed using Bland-Altman plots (39) comparing

estimated and reference METs and calculating mean bias, 95%

limits of agreement (LoA), and mean absolute errors (MAE).

Analyses were performed for all activities except eating breakfast

and postprandial resting measurements. The class-estimated

model was used to quantify the Audéo performance and to

compare it to Fitbit and Garmin. The class-known model was

used to compare Audéo with ZurichMove sensors. Two-sided

independent t-tests were used to test whether mean biases

differed significantly from zero.

Bland-Altman analyses were also performed separately for

separate activities, intensity classes, and age groups in the

validation group. For the total daily EE, a Bland-Altman analysis

was performed over the whole dataset. To assess whether Audéo

was able to accurately detect a within-subject change in intensity,

the change in MET between flat walking (activities 19 and 20)

and flat running (activities 23 and 24) was compared with the

reference method using regression analysis.

Two-sided independent t-tests, Pearson Chi-Square and

Fischer’s exact test were used to compare demographic and

anthropometric data between the two age groups and between

the calibration and validation groups. All analyses were

performed using MATLAB R2023a. Significance was set as p < 0.05.
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3 Results

3.1 Participant characteristics

Thirty middle-aged participants of median [range] age 59

[46–64] years (57% females) and 30 older participants

[71 (65–78) years; 40% females] completed the study (see

Table 1). On average, older participants had lower bone

mineral density and higher systolic blood pressure and pulse

wave velocity compared to middle-aged participants. There

were no significant differences between the calibration

and validation groups for the variables tested (see

Supplementary Table S1).
3.2 Energy cost of physical activities

Figure 3 shows the reference EE, as measured by the

ergospirometric device, in METs for all activities. The median

METs for most activities fell within the expected range (i.e.,

light intensity), except for some household activities, such as

vacuum cleaning, cleaning with a mop, dust wiping, and

hanging laundry, which were categorized into the moderate

intensity category.
FIGURE 3

Metabolic equivalent of task (MET) by activity measured by the reference m
each activity. Refer to Table 2 for a description of the activities. The dot
intensity (1.5 ≤MET < 3.0), moderate intensity (3.0≤MET < 6.0), and vigoro
50/75, 50%/75% of max. walking or running speed; inc10, 10% inclination.
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3.3 EE estimation

Mean bias for the Audéo class-estimated model was −0.23
METs (see Figure 4), differing significantly from zero (p = 0.031).

Lower and upper LoA were −3.56 and 3.10 METs, respectively.

MAE amounted to 1.19 METs.

The performance metrics for Audéo (class-estimated) vs. Fitbit

vs. Garmin are shown in Table 3 and Figure 5. Note that for this

comparison, two participants had to be excluded from the analysis

as their Fitbit data could not be downloaded. To facilitate the

comparison to the 6 min data from Fitbit and Garmin, the three

stages of activity 18 (Cycle_ergo) were averaged into a single value.

Performance metrics for Audéo vs. ZurichMove (both class-

known) are shown in Table 4. Note that with the approach used

in this study, it was not possible to build an EE estimation

model for the wrist sensors because of the missing linear

relationship between counts and METs in the wrist data for the

majority of the activity classes.
3.4 Sub-analyses

3.4.1 Activities and intensities
Figure 6 shows the mean bias and LoA of the Audéo EE

estimation for the different activity classes mentioned in
ethod. Shown are individual means (dots) and group medians (lines) for
ted lines show the thresholds for sedentary behavior (MET < 1.5), light
us-intensity physical activity (MET≥ 6.0). ADL, activities of daily living;
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FIGURE 4

Bland-Altman plot for Audéo (class-estimated). The solid red line shows the mean bias, while the dotted lines indicate the upper and lower 95% limits
of agreement. Colored dots show different activity classes. ADL, activities of daily living; MET, metabolic equivalent of task.

TABLE 3 Performance metrics for Audéo (class-estimated), Fitbit, and
Garmin.

Mean bias
[MET]

p-
value

Lower LoA
[MET]

Upper LoA
[MET]

MAE
[MET]

Audéo 0.02 0.879 −3.02 3.06 1.07

Fitbit −0.64 <0.001 −4.17 2.90 1.29

Garmin −0.67 <0.001 −4.07 2.74 1.32

MET, metabolic equivalent of task; LoA, limit of agreement; MAE, mean absolute

error, p-value, two-sided independent t-test (mean bias different from zero).

Stutz et al. 10.3389/fdgth.2024.1400535
Section 2.4.4. Mean bias was lowest for resting and sedentary

activities and largest for activities performed on an incline

(e.g., climbing and descending stairs or walking uphill). Mean

bias and LoA increased with increasing intensity (see Table 5).

For a detailed view discerning each single activity, refer to the

online Supplementary Figure S1.

3.4.2 Average error over a day
The total daily caloric estimation during wake-time (10 h)

using reference EE values was 1,139 kcal. Mean bias for Audéo

was +61 kcal (see Figure 7), with lower and upper LoA being

−241 kcal and +363 kcal. MAE amounted to 131 kcal. Accuracy

and precision for Fitbit (mean bias −111 kcal and lower and

upper LoA −435 and +213 kcal, respectively) were comparable to

Audéo. Compared to Audéo and Fitbit, Garmin showed similar

accuracy but lower precision (mean bias 136 kcal and lower and

upper LoA −716 and +989 kcal, respectively).
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3.4.3 Age subgroups
The EE estimation model performed slightly better in the older

subgroup compared to the younger subgroup, as indicated by a

lower mean bias (−0.13 METs in older vs. −0.33 METs in

middle-aged participants), narrower LoA (−3.27 to +3.01 METs

vs. −3.84 to +3.18 METs), and lower MAE (1.18 METs vs. 1.20

METs, p = 0.896).

3.4.4 Within-subject change in intensity
The within-subject changes in METs from walking flat to

running flat for Audéo and the reference were positively

correlated (R = 0.566, p < 0.001) (see Figure 8). The mean change

in METs for Audéo amounted to 2.63 METs, as opposed to the

reference which had a mean change of 3.99 METs. Mean bias of

change was −1.36 METs, with lower and upper LoA being −4.42
and 1.69 METs. MAE of change was 1.65 METs.
4 Discussion

This study aimed to predict EE in middle-aged and older

participants in a broad spectrum of ADL (including activities

with aids) using an accelerometer integrated into a hearing aid

and comparing it at the same time to other research and

consumer devices located on the wrist and hip. Bland-Altman

analyses show good overall accuracy (low mean bias; Audéo vs.

Reference: 0.23 METs) but low precision (wide LoAs; Audéo vs.

Reference: ± 3.33 METs). Performance was slightly superior to
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1400535
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 5

Bland-Altman plots for Audéo (class-estimated), Fitbit and Garmin. The solid red line shows the mean bias, while the dotted lines indicate the upper
and lower 95% limits of agreement. Colored dots show different activity classes. ADL, activities of daily living; MET, metabolic equivalent of task.

TABLE 4 Performance metrics for Audéo and ZurichMove (both class-
known).

Mean
bias
[MET]

p-
value

Lower
LoA
[MET]

Upper
LoA
[MET]

MAE
[MET]

Audéo −0.21 0.008 −2.72 2.30 0.89

ZurichMove Hip −0.13 0.101 −2.62 2.36 0.88

MET, metabolic equivalent of task; LoA, limit of agreement; MAE, mean absolute

error; p-value, two-sided independent t-test (mean bias different from zero).
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wrist-worn consumer accelerometers and equivalent to a research

accelerometer placed on the hip when the same modeling

approach was used.
4.1 EE estimation

Across all activities, the Audéo prediction model (class-

estimated) demonstrated a minor underestimation of 0.23 METs,

along with a wide LoA of ± 3.33 METs. These findings align with

other studies that used ear-level accelerometers to predict EE. For

example, Atallah et al. (26) used an ear-worn inertia sensor

during 11 ADLs (lying, standing, computer work, vacuuming,

stairs, walking, running, cycling, and rowing) in 25 healthy

young subjects. This resulted in an overall mean bias of 0.04

METs and a LoA of ± 3.65 METs. Similarly, Bouarfa et al. (27)

developed an EE prediction model using 25 young subjects

involving 10 ADLs (same as in Atallah et al., but without
Frontiers in Digital Health 10
rowing). They reported a mean absolute deviation below 1.2

METs, i.e., identical to the MAE found in this study.

Good accuracy and low precision are typically also observed in

other studies that use research or consumer devices to predict EE.

For example, Crouter et al. (40) investigated the performance of the

Actigraph and Actical devices (both worn on the waist), and the

AMP-331 monitor (worn on the ankle) during 18 different

leisure and sporting activities (e.g., lying, computer work,

vacuuming, walking, running, stairs, basketball) to predict MET

in 48 younger to middle-aged adults. The Bland-Altman plots

show mean biases of about −0.5, −1.0, and −2.5 METs for

Actigraph, Actical, and AMP-331, respectively, and LoAs of

about ± 3.5, ± 3.0, and ± 4.0 METs. This data also aligns with our

finding that sensors located closer to the body’s center of mass

(including the ear), tend to outperform devices positioned on the

limbs when the goal is to predict EE in a wide range of ADL.

Literature supports this observation, indicating that wrist-worn

accelerometers generally yield less accurate EE estimates

compared to those worn on the hip (16–18). In theory, this

difference could be attributable to different device grades, as

research devices are typically being worn on the hip or chest,

while consumer devices are worn on the wrist. For example,

Chowdhury et al. (41), comparing consumer monitors (Microsoft

Band, Apple Watch, and Fitbit Charge HR) with a research

device (Actiheart) during 9 ADL in 30 young subjects, concluded

that consumer devices are not yet at the level of the best research

devices: Mean bias and 95% LoA values for consumer monitors

amounted to −0.55 ± 3.65 METs while for Actiheart they were
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FIGURE 6

Mean bias and limits of agreement (LoA) by activity class for Audéo. ADL, activities of daily living; MET, metabolic equivalent of task; N, number of
subjects (validation group).

TABLE 5 Performance metrics by intensity level for the Audéo class-
estimated model.

Mean bias
[MET]

Lower LoA
[MET]

Upper LoA
[MET]

MAE
[MET]

Sedentary and
light intensity

0.21 −1.13 156 0.46

Moderate
intensity

0.62 −1.92 3.15 0.97

Vigorous intensity −1.99 −5.65 1.68 1.39

MET, metabolic equivalent of task; LoA, limit of agreement; MAE, mean absolute

error.
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0.51 ± 2.11 METs, respectively. However, this finding is more likely

confounded by the sensor location: while the Actiheart was worn

on the chest, all other sensors were worn on the wrist. Indeed,

when consumer and research devices are worn at the same

location, differences tend to disappear. For example, a meta-

analysis investigating the accuracy of wrist-worn devices found

no significant overall differences between research and consumer

devices in estimating EE (6). This finding is consistent with the

notion that the latest generation of consumer devices

incorporates similar technology to that of established research

devices (41). Our findings thus contribute to the existing body of

literature by demonstrating that an accelerometer integrated into

a hearing aid performs comparably to a research device placed

on the hip, despite exhibiting a broad LoA—a characteristic

consistent with other studies in the field.
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Our observation that the Audéo model marginally surpasses

Fitbit and Garmin in performance should be interpreted with

caution. We developed and validated our model with the

assumption that 1 MET = V̇O2 measured individually at rest.

Reanalyzing the data using 1 MET = 3.5 ml · min−1 · kg−1, mean

biases for Fitbit and Garmin change from about −0.6 METs to

about −0.1 METs. Precision also improves but remains slightly

inferior to Audéo. More importantly, the calibration and validation

groups are very similar in this study. This represents a possible

disadvantage as Fitbit and Garmin were likely calibrated in a

population that is not as comparable to the one used in this study.

For example, EE estimation in an older population is compromised

when a model is trained on younger subjects and improves

substantially when the model is trained on older participants

(unpublished data). This study shows that the EE estimation is

slightly better in the older subgroup and that training the model

on the older subgroup leads to better performance when evaluated

in the older subgroup than when the model is trained on the

middle-aged subgroup (data not shown). Due to age-related

physiological and functional changes, e.g., changes in speed of

movement, gait mechanics, and body composition (42–44),

algorithms validated in younger adults may not accurately apply to

older age groups (18). Whether Audéo outperforms Garmin and

Fitbit (or other consumer sensors) in an independent sample in a

laboratory setting or under free-living conditions, needs to be

tested according to existing validation frameworks [e.g., (30)].
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FIGURE 7

Daily caloric estimation: comparison between Audéo and reference. Empty circles show individual data, filled circles show mean values. Energy
expenditure was summed over activities of very low intensity (vLow), low intensity (Low), moderate intensity (Mod), and vigorous intensity (Vig). EE,
energy expenditure.
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4.2 Precision of EE estimates

The broad LoA observed in this study for Audéo (and other

sensors) can be attributed to the underestimation and

overestimation of EE for distinct activities. Specifically, EE

associated with ascending activities (e.g., climbing stairs, walking

uphill) and stationary activities (e.g., cycling on an ergometer,

squatting) was commonly underestimated; whereas EE for

descending activities was overestimated, as illustrated in Figure 6

and Supplementary Figure S1. This phenomenon is likely

attributable to the disparity between accelerometer counts and

actual EE for certain activities—namely, those involving low

accelerations with high EE (e.g., cycling) and those with high

accelerations but low intensity (e.g., descending stairs). The

variability in accuracy for single activities has also been

demonstrated in reviews on the topic (6, 45) and is a known

limitation when using accelerometers to predict EE. When

comparing different Actigraph equations, Crouter et al. (40), for

example, concluded that no single equation is valid for the EE

estimation of all activities and that equations work best only in the

activity subgroup they were developed. In this study, mean bias

and LoA increased with activity intensity, a trend likely attributable

to the nature of intense activities—predominantly ascending and

stationary—which are associated with the largest errors.

In the model employed in this study, we operated under the

assumption of a linear relationship between counts and METs
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within the different activity classes. Although the adoption of

this two-step approach—initial classification followed by

application of a class-specific model—is acknowledged to

enhance estimation performance (46), it is not without its

challenges. For example, for some activity classes, there were no

or only weak correlations between counts and METs, rendering

EE prediction challenging. Similarly, in a meta-analysis on the

validity of the Actigraph device (worn either on the hip or wrist)

for measuring EE in healthy adults, Wu et al. (45) found no

correlation between activity counts and EE for some activities,

e.g., during cycling, standing, walking at a moderate speed, and

fast running (47). Because of the missing linear relationship

between counts and METs in the wrist data within most of the

activity classes in this study, we refrained from developing an

EE-estimation model for ZurichMove sensors on the wrist. It is

important to note that our methodology was specifically tailored

to enhance the EE prediction for a sensor integrated into a

hearing aid with limited memory and computational power,

suggesting that different strategies might have been effective for

wrist-worn sensors or devices with more computational power.
4.3 EE estimation over a day

Despite this variability in accuracy for single activities, the

errors might cancel out under the assumption that a wide range
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FIGURE 8

Within-subject correlation between the change in metabolic equivalent of task (MET) for Audéo and reference between walking and running. The
dashed black line shows the identity line, while the dashed red line is the regression line.

Stutz et al. 10.3389/fdgth.2024.1400535
of activities are performed over a day. Indeed, the calculated mean

bias for Audéo for a 10 h wear time amounted to an

overestimation of 61 kcal (∼5% of 10h-EE). Similarly, Härtel

et al. (48), investigating the kmsMove sensor (worn on the hip)

during rehabilitation activities over 7 h in 7 middle-aged adults,

found an average underestimation of 14 kcal. Berntsen et al.

(49), using Actigraph (worn on the hip), ActiReg (chest and

thigh), and ikcal (chest) monitors during free-living lifestyle and

working activities over 2 h in 20 younger and middle-aged

adults, found mean biases ranging from −34 to −111 kcal.
Despite good overall accuracy, drawing inferences for individual

subjects remains challenging, as evidenced by our data (LoA

302 kcal) and Härtel’s and Bernsten’s findings (LoA ranging

from 261 to 397 kcal). Nonetheless, it can be argued that the

level of accuracy and precision shown by Audéo, and other

devices is acceptable in the context of health interventions. For

example, in order to achieve weight loss, energy intake should

be reduced by about 500–1,000 kcal a day (50). This change is

higher than the reported LoA of this study, hinting at the

potential for detecting such changes. Furthermore, the observed

significant within-subject correlation between an increase in

intensity from walking to running, as measured by both the

ergospirometric device and the Audéo sensor, underscores the

device’s ability to detect MET changes. However, this detection

is relative rather than absolute, as indicated by the regression
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line’s deviation from the identity line. This deviation from the

identity line is the result of an overestimation of METs during

level walking activities.
4.4 Future directions

Our findings from a sensor located at ear-level open the door

for other application fields in this age range, e.g., IMU

integration in in-ear headphones worn during sporting activities

(29). Accuracy and precision for the Audéo sensor, and in

general for accelerometers aiming to predict EE in a variety of

activities (including ADLs, sporting activities), can be improved

by the incorporation of heart rate (HR) data, as evidenced by

O’Driscoll et al.’s (6) meta-analysis. This is particularly relevant

for activities exhibiting a disparity between accelerometer counts

and actual EE. It would be interesting to explore whether an ear-

worn device that can detect HR via photoplethysmography can

provide better performance. In addition, incorporating an

altimeter has the potential to improve accuracy given that the

largest errors in this study were found for ascending and

descending activities. This is supported by Duncan et al. (51)

who found that using barometers and global positioning systems

improved EE estimation accuracy during field-based activities,

compared to accelerometry alone, by 11%.
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4.5 Limitations

This study was performed in a laboratory setting, following the

framework proposed by Keadle and colleagues (30). However, it is

known that the accuracy of models validated under laboratory

conditions decreases when applied in free-living conditions (21).

Also, the modeling approach adopted in this study did not

enable the development of an EE estimation model for the

ZurichMove sensors positioned on the wrists, thereby precluding

a comparative analysis of their performance with the Audéo sensor.
4.6 Conclusion

This study demonstrates that an accelerometer integrated into a

hearing aid (Audéo) can accurately estimate EE across a broad

range of ADL in a middle-aged to older population. However,

the precision of these estimates is limited, making personal-level

inferences challenging, though still offering valuable insights on a

population level. Moreover, the Audéo sensor’s performance in

EE prediction, using the same modeling approach, matched that

of a research device worn on the hip and slightly outperformed

two wrist-worn consumer monitors. This indicates that an

accelerometer integrated into a hearing aid can serve as an

equivalent alternative for monitoring physical activity. This opens

the door to unobtrusive evaluation of energy expenditure during

daily life in older individuals that are already using hearing aids,

and eventually to implementation of personalized interventions

promoting healthier aging.
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