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Summary
Genetic tests play an increasingly pivotal role in predicting disease risks, prognosis and
treatment response in the clinics. However, their interpretation is hindered by the prevalence
of variants of uncertain significance (VUS) whose phenotypic effects remain elusive.
Addressing this issue, multiplexed assays of variant effect (MAVEs) have been developed
that enable the interrogation of protein functions and the assessment of variant
pathogenicity. However, current workflows are limited in their ability to replicate variant
diversity, genomic background, expression levels and cellular context. Here, we leveraged
and combined multiple precision genome editing technologies, including cytosine and
adenine base editors along with a prime editor, to assess the pathogenicity of a broad
spectrum of variants in the genome of cells. We applied our multimodal approach to
interrogate EGFR, uncovering pathogenic genetic variants driving oncogenesis and drug
resistance. We identified known and novel hits, thus supporting the performance of the
screening approach and providing new insights into underappreciated routes to EGFR
activation and drug response. In the future, we envision that multimodal precision mutational
scanning screens can be widely employed to comprehensively characterize genetic variation
down to single nucleotide resolution across diverse genomic backgrounds, thereby
contributing to the development of personalized treatment protocols.

Résumé
Les tests génétiques occupent un rôle de premier plan dans la prédiction des prédispositions
individuelles aux maladies, de leur évolution clinique et de la réponse aux traitements.
Toutefois, leur interprétation est entravée par la prévalence de variants de signification
incertaine dont les effets phénotypiques sont actuellement inconnus. Afin de pallier cette
problématique, des tests multiplex d’évaluation de l'impact des variants ont été développés,
qui permettent d'interroger les fonctions protéiques et d'évaluer leur pathogénicité.
Cependant, les protocoles actuels sont limités dans leur capacité à reproduire la diversité,
les niveaux d'expression et les contextes génomiques et cellulaires des variants en question.
Dans cette thèse, nous avons mis à profit et combiné plusieurs technologies d'édition du
génome comme base et prime editing, afin d'évaluer la pathogénicité d'un large spectre de
variants dans le génome de cellules en culture. Nous avons appliqué cette approche
multimodale à l’étude du récepteur du facteur de croissance épidermique (EGFR), révélant
ainsi de nouveaux variants pathogènes impliqués dans l'oncogenèse et la résistance aux
traitements. Nos résultats mettent à la fois en lumière des variants connus et inconnus,
confirmant la performance de notre approche de criblage et fournissant de nouvelles
informations sur différents modes d'activation et de réponse aux traitements de l'EGFR. À
l'avenir, nous anticipons que des cribles mutationnels multimodaux de ce type pourront être
utilisés à grande échelle pour caractériser des variations génétiques de manière exhaustive
dans divers contextes génomiques, contribuant ainsi à l'élaboration de protocoles de
traitement personnalisés.
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Chapter I: Introduction
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1.1 Genetic variants in human diseases

1.1.1 Discovery of disease-associated genetic variants
Genetic variation is a fundamental factor shaping disease susceptibility, severity, prognosis
and therapeutic outcomes. So far, approximately 800 million single nucleotide variants (SNV)
and 1.2 million structural variants have been identified (1) and each human genome is
estimated to contain approximately 4 million genetic variants, including 10,000
non-synonymous SNVs (2). This diversity, along with the contribution of numerous variants
with minor phenotypic effects to complex traits, presents a significant challenge in
comprehending the role of genetic variants in human diseases.

The first efforts to link genotypes and disease phenotypes relied on forward genetics
approaches that start from a measurable phenotype and aim to identify genetic features that
are specific to affected individuals. In humans, these initially focused on rare monogenic
diseases with Mendelian inheritance patterns. In these cases, the study of family trees
allows for the identification of genetic markers that specifically co-segregate with the trait of
interest within a family due to genetic linkage (3,4). These markers initially consisted in
repetitive genomic regions which have the advantages of being found throughout the
genome and to be highly polymorphic in lengths, facilitating their probing by Polymerase
Chain Reaction (PCR) or restriction fragment length assays (5–7). As a result, genetic
markers, while potentially distinct from the genomic loci causing a particular disease, offered
a first opportunity for the development of molecular diagnostics tools. Their identification also
helped to narrow down the chromosomal localisation of causal genes, eventually leading to
their discovery as in the cases of Duchenne muscular dystrophy (8,9) and cystic fibrosis
(10–12).

Cosegregation studies using genetic markers are useful for the investigation of highly
penetrant monogenic diseases. However, they are laborious and confined to single genomic
loci, making them irrelevant in diseases that arise from a non-linear combination of variants
with small individual effects (2). These limitations were partly addressed by the publication of
the first draft of the human genome (13,14) as well the development of exome sequencing
(15,16) and array-based hybridization assays (17–19). Indeed, the rapid advancement of
these technologies facilitated the identification of structural and single nucleotide variations
in patients on a genome-wide scale, enabling the transition from linkage studies to
association studies.

1.1.2 Genome-wide association studies
The first genome-wide association study (GWAS) was published in 2015 by Klein et al. (20).
These studies typically compare genetic variant profiles between disease-affected and
control patient groups, thus enabling the discovery of mutations associated with complex
traits (21). Because GWAS do not require multiple affected individuals from the same family,
they also allow for much larger cohorts and enable the exploration of polygenic diseases for
which individual mutations have a smaller contribution to the overall phenotype (22).
Additionally, the use of whole genome sequencing (WGS) data or single-nucleotide
polymorphism (SNP) arrays enables the discovery of genetic variants in coding and
non-coding regions, irrespective of previous knowledge about their function. Consequently,
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approximately 6000 GWAS have been documented since 2005, reporting approximately
400,000 associations with 88% of these involving non-coding loci (23). These data can then
serve as a basis to investigate gene functions or to identify genetic risk markers for
diseases. For example, the first GWAS identified a SNP in the Complement Factor H (CFH)
gene that increases the risk of age-related macular degeneration by 7.4 fold in homozygous
individuals (24). In addition, GWAS data can help to rationally design treatment protocols as
demonstrated by the identification of coding and non-coding variants of the IL28B gene that
predict patient response to treatments against hepatitis C infection (25).

In spite of their popularity, a limitation of GWAS lies in their inability to infer genetic causality
for the considered phenotype or, if such causality exists, the underlying mechanism (26).
Indeed, common variants might be associated with a trait without contributing to it, simply
because they are in linkage imbalance with a biologically relevant locus. For example, the
previously mentioned study by Klein et al. initially identified a common intronic SNP
associated with macular degeneration before uncovering the causal coding variant by
resequencing patient genes (24). Another challenge pertains to the interpretation of the
results derived from these studies as GWAS are particularly efficient at capturing common
polymorphisms with small contributions to phenotype (27). For example, associations have
been found in existing drug target genes with high biological significance where individual
SNPs explain less than 1% of the phenotypic variation within the population (28). Similarly, it
was estimated that 20 SNPs identified in a GWAS contributed to only 3% of the population
variation in height, suggesting that 93,000 individual SNPs would be required to explain 80%
of this variation (29). This high sensitivity thus comes at the cost of generating datasets from
which it is difficult to extract clinically pertinent information. By contrast, rare variants that are
more likely to have a stronger phenotypic impact and provide meaningful biological
information can be missed by GWAS due to insufficient prevalence in the studied population
or the relyance on SNP arrays, warranting the integration of WGS data on a much broader
scale (27).

In conclusion, while GWAS are powerful tools to identify disease-associated genetic loci,
including previously unknown regulatory elements, the many hits they generate need to be
thoroughly characterized and validated through functional assays to be leveraged as
predictive markers or therapeutic targets in the clinics.

1.1.3 Variant databases
Genomic data obtained from large scale sequencing or genotyping studies are typically
compared to a reference genome to call variants. This reference is based on a haploid
genome assembled from WGS data aggregated across a limited number of donors and thus
fails to capture the diversity of actual human genomes (30). The standardization of clinical
genetic tests and the emergence of GWAS thus motivated the creation of human genetic
variations databases. A prominent example is the genome aggregation database (gnomAD,
previously exome aggregation consortium), which currently comprises more than 730,000
human exomes and 76,000 full genomes (1). GnomAD is meant as a reference genome
database sourced from individuals around the world that are not affected by pediatric
diseases. This extensive repository contributes not only to the understanding of genetic
history across human populations but also to the cataloging of genetic variants (31,32),
allowing for the identification of genes and non-coding regions under mutational constraint.

8



Indeed, SNVs are found on average once every 4.9 nucleotides in the gnomAD dataset and
each human genome contains approximately 100 loss-of-function (LOF) alleles (33). Genes
harboring a lower-than-expected missense and nonsense variant frequency are thus likely
subjected to significant natural selection and involved in essential biological functions
(1,34,35). Following the same reasoning, gnomAD also contributes to the clinical
interpretation of genetic variants as deleterious mutations tend to be depleted at the
population scale, indicating that common variants are less likely to be pathogenic. The
comprehensive identification of these variations across different human populations can
therefore advance more equitable diagnostics.

Adding to the gnomAD effort to provide a representative set of reference genomes, other
databases like the UK Biobank focus on combining genotypic and phenotypic data to enable
association studies (36). The database thus provides genotyping information, later
supplemented with WGS data, along with a broad array of biochemical, clinical,
socioeconomic, and lifestyle information about each participant (37). Despite their goal of
representing human genetic diversity, these initiatives face challenges related to sampling
bias, as illustrated by the presence of age, gender, health and socioeconomic background
discrepancies between UK Biobank volunteers and the general population (38).

In addition to population databases, the recent development of genetic testing in the clinics
has caused a notable increase in the volume of data obtained from patients affected by
various diseases (39). These are aggregated in databases like ClinVar which provide a
standardized reporting framework for genetic variants submitted by clinical testing and
research laboratories (40). This allows these data to be scrutinized and consolidated by
research initiatives like the BRCA Exchange which coordinates the annotations of variants in
the BRCA1 and BRCA2 genes by expert panels (41). Similarly, the Catalogue of Somatic
Mutations in Cancer (COSMIC) regroups genotyping and WGS data from diverse tumor
samples, including information on drug response and zygosity (42).

1.1.4 Challenges in variant classification
Beyond variant cataloging, ClinVar also provides information on their clinical significance
following a classification system established by the American College of Medical Genetics
(ACMG) (43). Clinical, functional and in silico prediction data thus contribute to assessing the
likelihood of pathogenicity for a variant, ultimately resulting in its classification as benign,
likely benign, uncertain significance, likely pathogenic, or pathogenic. However, determining
the relative importance of diverse data types, or the lack thereof, for the same variant can
prove challenging and as genetic testing becomes more prevalent in the clinics, the accurate
classification of variant clinical impacts is falling behind. Indeed, the fraction of variants of
uncertain significance (VUS) in ClinVar has been steadily increasing over time to currently
represent 48% of the database while 22.9% of variants with more than one report have
conflicting interpretations of pathogenicity (39,44,45) (Figure 1.1).
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Figure 1.1: Current classification of variants in ClinVar. (A) Reported clinical significance
of all variants in the ClinVar database (2 657 180 variants). (B) Proportion of ClinVar variants
with conflicting reports of pathogenicity. Category conflicts: e.g. benign vs risk factor,
clinically significant conflict: e.g. benign vs pathogenic. Variants with a synonymous conflict
(e.g. benign vs non-pathogenic) are ignored. Data obtained from ClinVar Miner (39) on
19/12/2023.

The classification of newly identified variants as VUS may arise from scarce population data,
their localisation in non-coding regions with unknown functions, or their co-occurrence with
other variants, thereby complicating the establishment of a causal link with the associated
disease (46). Additionally, different lines of evidence like residue conservation, variant
frequency, family history and functional assays can be difficult to integrate into a unique
pathogenicity score (47,48). The accumulation of VUS is particularly prevalent in
cancer-associated genes because standardized genotyping panels can include more than a
hundred genes at once (49). As a result, the number of VUS identified within a given gene
has been shown to correlate with the number of registered clinical tests encompassing it
(50).
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Adding to this challenge is the observation that pathogenic variants can have incomplete
penetrance and that their impact may largely depend on co-occurring mutations in the same
or in other genes (51). For example, LOF mutations in BRCA1 and 2 are known to drastically
increase the risk of developing breast and ovarian cancers. However, a study using data
from the UK Biobank determined that the risk for women harboring a BRCA1/2 pathogenic
variant to develop breast cancer ranged from 12.7% to 75.7% depending on their polygenic
background (52). Similarly, mutations in the tumor suppressor gene PTEN are associated
with a broad range of disease severity stemming from subtle variant effects on protein
function, a phenomenon termed genetic quasi-sufficiency (53). This spectrum of variant
penetrance and severity can thus complicate their categorization into discrete clinical
relevance categories which do not integrate important parameters like zygosity, penetrance
and polygenic background.

An additional challenge in variant classification arises from inherent biases in genomics data
used in reference databases and GWAS. Indeed, these have been largely skewed towards
individuals of European ancestry, resulting in existing polygenic scores being less predictive
in patients of other ethnic backgrounds (54). Similarly, commercial SNP arrays were shown
to be biased towards variants that are common in Europe, thus missing potentially significant
variations in other populations and in turn biasing variant reporting in ClinVar (55). Because
common variants are generally considered as less likely to be pathogenic, the absence of
population data from specific ethnicities may result in the misclassification of variants that
are common within these groups but not represented in reference databases. Encouragingly,
this knowledge gap appears to be narrowing down as more diverse genomic data are
included in gnomAD, leading to variant reclassification (56).

In conclusion, genetic testing has the potential to improve therapeutic outcomes by allowing
for precise patient profiling and targeted treatment courses (57). However, the growing
prevalence of VUS in variant databases paradoxically complicates the use of deep
sequencing data and leads to heightened uncertainty for patients and clinicians (46). Indeed,
a recent study reported that VUS affecting BRCA1/2 were found in 7.7% of breast or ovarian
cancer patients (58). This not only represents a diagnostic challenge for physicians but can
also lead to loss of therapeutic opportunities as genetic testing results affect access to
approved drugs or clinical trials (59). In parallel, VUS can also be a source of psychological
distress for patients and lead to unnecessary life-altering treatments like preventive
mastectomies in the case of BRCA1/2 germline variants (60,61). As the number of VUS
steadily increases, the development of new approaches for their comprehensive and
accurate assessment in diverse genetic backgrounds is thus urgently needed to allow for
equitable access to treatment.

1.2 Mutagenesis approaches to study genetics variants

1.2.1 Random mutagenesis
Forward or phenotype-driven genetics studies in humans require many individuals to
discover genetic variants that are rare or have small effects. Even in model organisms with
smaller genomes, naturally occurring mutations are infrequent and do not allow for the
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comprehensive assessment of gene functions. In this context, random mutagenesis
approaches have facilitated the creation of extensive mutant collections, enabling the
mapping of gene functions and interactions through mating and linkage analyses.

A first example of this approach was demonstrated by Hermann Muller, for which he
received the Nobel prize in 1946 (62). After his initial efforts to increase mutation rates in fruit
flies (Drosophila Melanogaster) with temperature proved to be inconclusive, he reported in
1924 that exposing germ cells to X-rays helped to rapidly obtain offsprings with diverse
phenotypes (63). Another example is the isolation of lambda phage mutants by UV
irradiation of lysogenic bacteria carried out by François Jacob's laboratory in the 1950s,
which helped to identify regions of the phage genome involved in lysogeny (64,65). Similar
approaches using chemical mutagenesis were later used in nematodes (Caenorhabditis
elegans) (66), zebrafish (Danio rerio) (67), and mouse (Mus Musculus) (68).

One advantage of inducing mutations through physical or chemical methods is that the
mutation rate can generally be finely adjusted to the size of the studied genomes. However,
the discovery of recessive variants in diploid genomes is impossible with these methods as
the probability of introducing the same mutation in both alleles is negligible. Random
mutagenesis screens were thus extensively used in yeasts with haploid life cycles (69) and
later in haploid mouse embryonic stem cells (mESC) (70). In this second example, cells
were exposed to a DNA-alkylating agent before being treated with the 6-thioguanine
anti-cancer drug. This resulted in the emergence of drug-resistant clones whose number
was shown to be dependent on the dose of mutagenic agent applied to the cells.
Whole-exome sequencing of resistant clones revealed an average of 40 non-synonymous
coding mutations per clone, allowing the authors to identify candidate genes mutated in
multiple clones and likely involved in drug sensitivity.

While allowing for unbiased genome scanning, the uncontrolled character of mutations
introduced in random mutagenesis screens requires the isolation and whole genome
sequencing of multiple individuals or cellular clones to identify phenotype-associated
mutations. Partially addressing this limitation was the development of insertion screens
which rely on the random integration of transposons throughout the genome to disrupt
coding regions. These transposons can be engineered to integrate reporter genes, thus
facilitating the pre-selection of clones with integration sites within coding sequences (71).

In conclusion, random mutagenesis has been instrumental in the characterisation of many
genotype-phenotype relationships and gene networks by producing organisms with diverse
phenotypes. It is however limited to phenotype-driven approaches, the identification of LOF
mutations and does not allow for the controlled targeting of candidate genes.

1.2.3 Multiplexed assays of variant effects
Recent advances in DNA sequencing (72), high-throughput DNA synthesis (73) and gene
editing allowed for the implementation of multiplexed assays of variant effects (MAVEs).
These aim to replicate genetic variations of interest in in vitro or in vivo models to assess
their phenotypic impacts in a functional assay. Unlike random mutagenesis, these assays
start from a specific coding or non-coding mutation to assess associated phenotypes, thus
constituting reverse genetics approaches.
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MAVEs generally follow a common structure (74):
1. The construction of a library of genetic variants and its delivery to a cellular system.

The variants can be introduced in an endogenous gene or genomically-integrated
synthetic reporter system by gene editing or expressed from an exogenous vector.

2. A phenotypic selection step. Examples include drug resistance, cell proliferation or
fluorescence-activated cell sorting (FACS).

3. The quantification of the genetic variant library. This usually involves the deep
sequencing of the variants themselves or of molecular barcodes associated with a
reporter.

4. The assignment of a functional score measuring the phenotypic effect of each variant
in relation to the wild-type sequence.

These approaches can thus be evaluated according to 1) their ability to faithfully reflect the
genetic context of the studied gene, 2) the biological relevance of the reporter assay which
impacts its specificity and sensitivity, 3) their throughput and redundancy which in turn
impact statistical power and cost (50,75).

Because MAVEs assess genetic variants in a controlled fashion, they can provide rich
information on genetic variant impacts on transcriptional activity (76), mRNA stability (77),
protein function (78), protein stability (79) and protein interactions (80), among others.
Importantly, clinical interpretations cannot be directly extrapolated from functional data which
should thus be reported in terms of functionally “normal” or “abnormal” variants instead of
“benign” or “pathogenic” (81). In spite of this, MAVE results from established functional
assays are considered by the American College of Medical Genetics as providing strong
evidence in the interpretation of genetic variants, alongside co-segregation and population
genetics data (43). MAVE results have thus been used in combination with clinical data to
reclassify VUS in cancer-associated genes like PTEN, TP53 and BRCA1 (44).

1.2.4 Deep mutational scanning
A prevalent approach to MAVEs consists in the construction of a variant library of the
considered genetic element in a plasmid vector. These can be obtained by pooled
oligonucleotide assembly (82) or by amplifying the wild-type sequence with an error-prone
DNA polymerase (83) or using degenerate (84) or codon-swapping primers (85).

Early studies of protein function used alanine scanning which replaces each residue in a
protein of interest with alanines to evaluate their functional relevance (86). Alanine
represents an interesting substitute because it is an abundant amino acid with a minimal
side chain that does not impact protein main-chain conformation unlike glycine or proline
residues. In a seminal study published in 1989, authors used this approach to systematically
mutate amino acids in three domains of the human growth hormone (hGH) and identified
residues involved in the binding to its receptor.

Alanine scanning was then progressively replaced by deep mutational scans (DMS) which
comprehensively assess each possible amino acid substitution in a given protein sequence
(87). The resulting library can be used in protein display assays (88) or delivered to reporter
cells by plasmid transfection or viral transduction. In this case, a cell should ideally receive a
single library element in order to limit experimental noise. In mammalian cells, this could be
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achieved by viral transduction at a low multiplicity of infection (MOI) (89) or by
recombinase-mediated insertion in a synthetic genomic landing pad (90,91).

Many protein-coding genes and applications were explored through the use of DMS.
Examples include antibody affinity optimization in mammalian cell display experiments (92)
and the investigation of membrane protein variant effect on viral fitness (93). Similar
approaches were also used to study non-coding variants in transcriptional enhancers (94) or
intronic determinants of alternative splicing (95) in massively parallel reporter assays
(MPRA). These use barcoded reporter transcripts or fluorescent proteins whose transcription
is affected by the considered genetic element to quantify their transcriptional impact.

The DMS approach presents the significant advantage of allowing for very high-throughput
screens, thus enabling the systematic assessment of every possible substitution in a protein
sequence. Indeed, the diversity and scale of a DMS experiment are theoretically only limited
by the library cloning approach and the number of cells that could be transfected or
transduced. However, these screens fail to replicate the genomic context and endogenous
expression levels of the considered gene. DMS libraries are indeed derived from protein
cDNAs lacking UTRs, splice sites and introns and expressed from synthetic constructs using
strong promoters. Furthermore, these studies often require cellular models that do not
endogenously express the considered gene and are thus generally conducted in cell lines
with low biological relevance like yeasts (96), HEK293 landing pad (97) or engineered
knock-out cell lines (89).

1.2.5 CRISPR-Cas9
A major addition to the MAVE toolbox was brought by targeted nuclease technologies like
Transcription Activator-Like Effector Nucleases (TALEN) (98) and Zinc Finger Nucleases
(ZFN) (99) which enable targeted genome editing in mammalian cells. However, both rely on
modular protein components that have to be engineered to define each target site, thereby
restricting their multiplexing capabilities. This was addressed by the harnessing of Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated nucleases in
mammalian cells (100,101).

The first of these systems to be characterized was the Cas9 enzyme from Streptococcus
Pyogenes (SpCas9) associated with a CRISPR RNA (crRNA) and a trans-activating crRNA
(tracrRNA), later fused into a single guide RNA component (sgRNA) (100). Cas9 recognizes
this sgRNA, which consists of a 20-nucleotide variable spacer followed by a constant RNA
scaffold, to assemble into a ribonucleoprotein. This complex has the ability to scan long
stretches of double-stranded DNA (dsDNA) to selectively recognize and bind a sequence
complementary to the spacer and followed by a short trinucleotide sequence termed
Protospacer Adjacent Motif (PAM) corresponding to NGG for SpCas9. Cas9/sgRNA binding
to their target leads to the formation of a DNA R-loop and the activation of the two Cas9
nuclease domains, leading to the introduction of a double strand break (DSB) in the target
DNA (102). In mammalian cells, DNA breaks generally activate error-prone DNA repair
pathways such as Non Homologous End Joining (NHEJ) (103) or Microhomology-Mediated
End Joining (MMEJ) (104), often resulting in the introduction of insertions or deletions
(indels) that can lead to frameshifts in coding sequences. In contrast to TALENs and ZFNs,
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the attractiveness of CRISPR-Cas9 systems thus lies in their versatility as they can be easily
retargeted to any genomic site with an available PAM by substituting the sgRNA component.

As a result, the ability of CRISPR-Cas9 to specifically target and cleave endogenous
genomic sites has been used extensively to study the effect of gene knock-outs at scale
(101). Indeed, the modularity of the CRISPR-Cas9 system allows for sgRNAs to be delivered
as a pool to a population of cells expressing Cas9 to introduce thousands of gene
knock-outs in parallel. The resulting heterogeneous cell population can then be subjected to
phenotypic selection before quantifying sgRNA abundances by deep sequencing and
calculating their relative enrichment or depletions between different conditions (105–107).
This approach, termed CRISPR screening, allows for diploid knock-outs and deliberate
library design unlike random mutagenesis and transposase-mediated random insertion
screens (71). It also benefits from lower off-targets compared to previous RNA interference
screens (108). As a result, CRISPR screens have been used both in vitro and in vivo to
uncover the genetic bases of many phenotypes at the genome scale like cell viability, drug
resistance (109,110), toxin resistance (111,112), enhancer activity (113), cell signaling (114),
tumor growth (115,116) and cell differentiation (117).

Although optimized CRISPR screening libraries benefit from high specificity and efficiency at
the genome scale (118), concerns have been raised about unexpected large deletions and
chromosomal rearrangements at Cas9-induced DSBs (119–121). These could be mitigated
by the use of CRISPR interference (CRISPRi) and activation (CRISPRa) screens which use
catalytically dead Cas9 (dCas9) fused to transcriptional repressors (122) or activators
(123,124) protein domains for transcriptional modulation without the introduction DNA DSB
(118,125).

Interestingly, while the predominant focus of CRISPR screens utilizing wild-type Cas9 has
been on gene knock-outs, the technology was also leveraged as a random mutagenesis
tool. A 2018 study thus reported the identification of drug target genes by using Cas9 to
generate in-frame gain-of-function mutations leading to drug resistance in cancer cells (126).
However, this approach is largely limited by the availability of PAM sequences and the
restricted spectrum of in-frame mutations introduced by NHEJ and MMEJ at a specific DSB.
Notably, the study only targets essential genes where out-of-frame mutations would lead to
cell death, which constitutes an intrinsic enrichment mechanism for in-frame mutations.

1.2.6 Homology directed repair
In addition to random indels, Cas9-induced DSBs can also be leveraged to introduce precise
DNA mutations through homology directed repair (HDR) (101). This can be done by
providing cells with a single or double stranded DNA donor homologous to the target site
and containing the desired edit. After introduction of a DSB, the donor is used by the cellular
DNA repair machinery as a template to precisely repair the break and can thus seamlessly
introduce any type of short mutation.

In a screening context, a single stranded donor library is transfected in cells along with a
matched sgRNA to introduce mutations in proximity to the target site. This approach has
been used for the high-throughput screening of DDX3X and BRCA1 gene variants in HAP1
cells (127,128). This human cell line was derived from partly haploid chronic myeloid

15



leukemia cells which were then further engineered into the fully haploid eHAP line (129).
These represent an attractive model for genomic screening as targeting a single allele
reduces the heterogeneity of the edited cell population while potentially capturing
phenotypes from both dominant and recessive alleles. In the two previously mentioned
studies, this allowed for the efficient identification of LOF mutations leading to apoptosis as
no allelic compensation was possible. For the same reason, sgRNA-expressing plasmids
and repair donors were delivered by transfection instead of viral transduction as a single edit
can be installed in the cellular genome regardless of the number of HDR donors present in
the cell.

Unlike DMS studies, HDR screens have the advantage of introducing mutations directly in
the genome of cells, thus preserving endogenous regulations and expression levels.
However, unlike NHEJ which is active throughout the cell cycle, HDR is restricted to the S
and G2 phases, thus limiting its use to mitotic cells (130). Furthermore, HDR suffers from a
high rate of unwanted indels at the Cas9 cut site because of the engagement of other repair
pathways such as NHEJ or MMEJ (131,132). This drastically increases the background
noise of a screen and the number of cells that need to be edited to capture enough
successful edits. Consequently, various methodologies have been devised to enhance the
efficiency and accuracy of HDR through the inhibition of the NHEJ pathway, cell
synchronization, chemical modification of the donor, fusion of repair factors or tethering of
the donor DNA to Cas9 (133–137). However, none of these have been applied in a
screening context so far.

An additional limitation of HDR screens is the requirement to match each donor to an sgRNA
delivered separately. This prevents the use of this approach to cover full mammalian genes
as an HDR donor library can generally only edit about 200 nucleotides around a single cut
site. Similarly, the edits cannot be quantified through a synthetic proxy like genomically
integrated sgRNAs in CRISPR knock-out screens. Successful edits thus need to be
quantified by deep sequencing of each target site, which has the advantage of discerning
precise and unwanted edits but limits the scale of these screens to single exons.

Although few HDR screens have been reported, a study by Findlay et al. (2018) has allowed
the reevaluation of BRCA1 variants found in cancer patients (138). Functional scores
obtained in the screen were combined with MPRA data from another study, which allowed
for the retrospective reclassification of three VUS found in Korean patients into likely
pathogenic variants. This holds significance as BRCA1 status is a biological marker
predicting the response of cancer patients to poly (ADP-ribose) polymerase (PARP) inhibitor
therapies. In spite of their technical limitations, this thus demonstrates the usefulness of
Cas9-based HDR screens to help guide therapeutic decisions.

1.2.7 Base editing
The primary limitation of HDR is the need to deliver two distinct components to encode an
edit. This was addressed by the development of base editors that rely on a Cas9D10A mutant,
termed nickase Cas9 (nCas9), fused to a deaminase domain to introduce base transitions
(139,140) or transversions (141–143). The binding of nCas9 to its target leads to the
formation of an R-loop, allowing the deaminase to access nucleotides within the non-target
strand. In the case of adenine base editors (ABE), this leads to the conversion of adenines

16



to inosines while cytosine base editors (CBE) catalyze the conversion of cytosines to
uridines. As a result of its impaired RuvC nuclease domain, nCas9 exclusively generates
single-stranded breaks in the guide-complementary strand which biases DNA repair
pathways like mismatch repair (MMR) towards the unedited strand. Inosine and uridine are
then respectively interpreted as thymine and guanine during DNA repair or replication,
allowing for the permanent introduction of C•G to T•A or A•T to G•C edits in both DNA
strands.

Base editing has been utilized in a screening context and was shown to accurately identify
pathogenic variants in BRCA1, BRCA2 and DNMT3A (144–147). Very recently, a study also
demonstrated its use beyond gene-centric applications by screening thousands of
cancer-associated genes for cysteins that could constitute drug targets (148). A major
improvement of base editors compared to HDR is the absence of DSB which not only limits
the introduction of unwanted indels but also mitigates their cellular toxicity compared to that
of wild-type Cas9 (149,150). This is particularly relevant in cells with wild-type TP53 such as
pluripotent stem cells (151,152) and has recently allowed for the large-scale screening of
variants affecting hematopoiesis in primary hematopoietic stem cells (153). Notably, this
study also leveraged single-cell RNA sequencing (scRNA-seq) to simultaneously measure
cell phenotype and infer introduced edits from the genome-integrated sgRNA.

A significant limitation of these screens pertains to the fact that each base editor only
introduces a single type of base conversion, thereby restricting the range of variants
assessed in a screen. In addition, each enzyme introduces mutations within an intrinsic
editing window of varying sizes, making it challenging to predict the ratios of desired and
bystander edits within this window (154,155). This may lead to a disconnect between
phenotype and the genotype inferred by sgRNA library sequencing which complicates
screen interpretation and validation. Lastly, early versions of ABEs and CBEs have been
shown to introduce widespread Cas9-independent base editing in cellular RNAs (156–158).
Although these have been mitigated through protein engineering in newer base editors, the
biological impact of these off-target effects is currently unknown.

In spite of their limitations, base editors represent powerful tools for variant screening, owing
to their high efficiency and scalability as compared to previous gene editing methods. Base
editing enzymes that introduce each type of base substitution are now available, constituting
a rich toolbox for gene-targeted or genome-wide studies. Interestingly, the ability of base
editors to introduce DNA edits without a nucleotide-based donor template recently inspired
the development of TALE-based protein-only base editors. These can be targeted to
mitochondria to edit mtDNA in cells, thus potentially paving the way to mitochondrial variant
screening in the future (159–161).

1.2.8 Prime editing
Prime editing constitutes the latest addition to the CRISPR toolbox. It uses a Cas9H840A

nickase fused to the engineered retro-transcriptase of the Moloney murine leukemia virus
(M-MLV) paired with a prime editing guide RNA (pegRNA)(162). This pegRNA is composed
of a Cas9 sgRNA with a 3’ extension containing a primer binding site (PBS) complementary
to the non-target DNA strand, as well as a retrotranscriptase template (RTT) harboring the
intended mutation (Figure 1.2). After Cas9 nicking of the non-target strand, the PBS anneals
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to the nicked non-target strand, functioning as a primer for the retrotranscriptase domain. As
a result, the RTT is reverse transcribed into a DNA flap carrying the intended edit. Following
flap equilibration, the mismatch between the edited and unedited strands is resolved by the
cellular DNA repair machinery, resulting in the permanent integration of the edit in the cell
genome. This installment of prime editing, termed PE2, was improved by adding a nicking
guide RNA (ngRNA) targeting the non-edited strand to stimulate its replacement after flap
equilibration (162). This version, termed PE3, benefits from drastically improved efficiency at
the cost of higher levels of unwanted indels attributable to the conversion of the double nicks
to DSBs.

Figure 1.2: Schematic of the prime editing complex at the target site. RTT: reverse
transcriptase template, PBS: primer binding site, pegRNA: prime editing guide RNA, PAM:
protospacer adjacent motif, MMLV-RT: moloney murine leukemia virus retrotranscriptase.

Since the inception of prime editing, the pegRNA has represented an important focus point
for optimization. Indeed, prime editing efficiency has been found to be affected by both the
lengths and nucleotide compositions of the PBS and RTT (162). Although pooled
self-targeting experiments have allowed for the identification of ground rules for pegRNA
design, the optimal PBS and RTT compositions appear to be largely target-specific (163).
Current pegRNA design tools thus rely on machine learning and in vitro assay datasets to
predict the best pegRNA architecture (163–167). Independently from PBS and RTT lengths,
pegRNA stability has also been shown to be a limiting factor for prime editing. An
engineering pegRNA (epegRNA) design was thus developed that adds a pseudoknot RNA
structure to its 3’ end to protect the extension from exonuclease degradation and improve
editing efficiency (168).

Further improvements to the prime editing workflow were achieved by manipulating cellular
factors. For instance, the inhibition of the MMR pathway has been shown to prevent excision
of the edit from the nicked strand (169). This can be achieved by expressing a dominant
negative variant of the MLH1 protein or by directly knocking out the MLH1 gene, thereby
converting PE2 to PE4 and PE3 to PE5 (170). Interestingly, this only confers an advantage
for substitutions and insertion of sequences up to 13 nucleotides, with larger insertions
presumably engaging other DNA repair pathways (165). For the same reason, it was
empirically shown that including supplementary synonymous mutations in the RTT of
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pegRNAs increased the overall prime editing efficiency (171). Other cellular factors were
recently shown to inhibit the introduction of long insertions like the cellular 3’ flap nucleases
TREX1 and TREX2 (165). Lastly, the prime editing enzyme itself was further engineered to
result in newer versions exhibiting improved expression, localization and decreased size
(170,172,173).

Although the technology is still in its infancy, it was already used to precisely model and
correct patient-derived mutations in organoids (174) and to efficiently generate mouse
models (175–177). Beyond the installment of substitutions and short indels, prime editing
has also inspired new approaches that use paired pegRNAs or the introduction of integrase
recognition sites to introduce large insertions, deletions or chromosomal rearrangements
(178–182).

Similarly to base editing and nuclease-based CRISPR screens, prime editing theoretically
allows for the inference of edit distribution in a pool of cells from the quantification of
genomically-integrated pegRNAs. However, it also presents the important advantage of
introducing any type of short mutation without DSB or the need for a separate donor
component, thus constituting an attractive in vitro screening tool. To date, the only published
prime editing screen uses engineered HEK293T cells to study genetic variants in haploidized
genomic loci (183). Because of the low efficiency of PE2, the authors opted for the more
imprecise PE3 approach and pre-screened high-efficiency pegRNAs targeting 16 loci along
the NPC1 gene. They then constructed and delivered 16 distinct pegRNA libraries and
sequenced each target site individually to quantify pre- and post-selection variant
distributions. Although this represents a successful proof-of-concept, this approach is
drastically limited by the need to haploidize the gene of interest, pre-screen functional
pegRNAs and conduct one separate screen per gene locus to distinguish intended edits
from PE3-induced indels.

In this study, we thus aim to overcome these limitations to study genetic variants in full
genes without locus haploidization. As a proof-of-concept, we chose to explore mutations of
the epithelial growth factor receptor (EGFR) gene which represent an important therapeutic
target in cancer.

1.3 Epithelial Growth Factor Receptor (EGFR)

1.3.1 EGFR activation and signaling
EGFR is a receptor tyrosine kinase (RTK) belonging to the   ErbB family and a known
proto-oncogene frequently mutated in different cancer types. It is composed of four
extracellular domains (I-IV), a transmembrane domain, an intracellular tyrosine kinase
domain and a C-terminal tail responsible for signal transduction. Its main ligand, the
epithelial growth factor (EGF), was first discovered by Stanley Cohen in 1962 as an
unknown factor in murine submaxillary gland extracts that he found to promote early tooth
eruption and eyelid opening in newborn mice (184). The unknown protein was isolated in
1965 and shown to promote proliferation and keratinization of epidermal cells in culture
(185). It then took until 1982 to finally isolate its receptor, EGFR, from cellular membrane
vesicles (186).
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In its inactive form, EGFR exists as an autoinhibited monomer (Figure 1.3). Receptor
activation is caused by the binding of one of its seven ligands, such as EGF, amphiregulin
(AREG) or the transforming growth factor alpha (TGF-α), to extracellular domains I and III
(187). Upon binding, the receptor adopts an extended conformation and can form
homodimers which interact through a dimerization arm in domain II and the transmembrane
domains. This dimerization leads to an asymmetrical interaction between both tyrosine
kinase domains, one serving as an allosteric activator for the other (188,189). More
specifically, the kinase domain activity is regulated by an αC helix located in its N-terminal
lobe (N-lobe). In the inactive kinase domain, this helix is maintained in an outward
conformation by the activation loop located in the C-terminal lobe (C-lobe) (190). Upon
receptor dimerization, the C-lobe of the “donor” kinase domain interacts with the N-lobe of
the “receiver” domain. This interaction disrupts the autoinhibited conformation and allows the
αC helix of the receiver to rotate in an active inwards conformation which allows for the
formation of the critical Lys745-Glu762 salt bridge within the ATP-binding cleft (190,191).
Interestingly, this asymmetric activation mechanism allows for further multimerization of the
receptor, each domain thus serving as both an activator and a receiver (192). Furthermore,
activated EGFR can also form heterodimers with other ErbB family members which possess
different ligand specificities or lack ligands altogether and act as signal amplifiers, such as
ErbB2 (or HER2) (192,193).

Figure 1.3: Activation of EGFR in response to EGF binding. The inactive receptor is
present at the cell surface as an autoinhibited (“tethered”) monomer. EGF binding results in
a conformational change allowing the dimerization of the receptor through the interaction of
extracellular domains II and transmembrane domains. The C-lobe of the “donor” domain
interacts with the N-lobe of the “receiver”, resulting in the rotation of the regulatory αC helix
in its inward conformation and the allosteric activation of the kinase domain.
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After its activation, the tyrosine kinase domain phosphorylates multiple tyrosine residues of
the C-terminal tail. This in turn leads to the phosphorylation of the Tyr869 residue by the Src
tyrosine-protein kinase which stabilizes the αC-helix in its active conformation (194,195).
Phosphorylated residues of the C-terminal tail are recognised by a wide variety of adaptor
proteins containing Src homology 2 (SH2) ot phosphotyrosine binding (PTB) domains. This
results in the activation of various signaling cascades, including the RAS-RAF-MEK-MAPK,
PI3k-AKT-mTOR and STAT pathways which ultimately promote cell proliferation, migration
and apoptosis escape (196–199) (Figure 1.4).

After receptor activation, multiple negative feedback mechanisms can be activated to
prevent excessive signaling. First, protein tyrosine phosphatases such as PTPRJ modulate
EGFR signaling by dephosphorylating C-terminal phosphotyrosines (200). Additionally,
LRIG1, ERRFI1 and SOCS4/5 are EGFR inhibitors which are transcriptionally induced
following its activation and directly bind the receptor and other members of the ErbB family,
promoting their ubiquitination and degradation (201). Lastly, the phosphorylation of the
Tyr1060 residue in the C-terminal tail recruits the Cbl E3 ubiquitin ligase, which leads to
receptor ubiquitination, internalization and degradation (202).

Figure 1.4: Simplified representation of EGFR downstream signaling pathways. Ligand
binding activates the tyrosine kinase domain and leads to autophosphorylation of the C-terminal
tail. Multiple adapter proteins recognize C-terminal phosphotyrosines and activate downstream
signaling pathways such as RAS-RAF-MEK-MAPK (red), PI3k-AKT-mTOR (yellow), STAT
(blue) and PLC/PKC (green). Proteins involved in negative feedback loops are shown in
pink.

1.3.2 EGFR in cancer
Because of its role in promoting cell proliferation and survival, EGFR somatic mutations can
lead to its constitutive activation and oncogenesis (196). The first link between EGFR and
cancer was made with the discovery of the strong homology between EGFR and the v-erb-B
transforming protein of the avian erythroblastosis virus (AEV) in 1984 (203). EGFR was later
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found to be highly expressed in cancer cells (204,205) and its overexpression was shown to
result in the EGF-dependent transformation of mouse embryonic fibroblasts (206). Since
then, EGFR dysregulation was found to be involved in the emergence of different cancer
types, including head and neck squamous cell carcinoma (HNSCC) as well as lung,
colorectal, breast, pancreatic and brain cancers.

One frequent mode of EGFR dysregulation is its overexpression or copy number
amplification which leads to increased receptor concentration at the plasma membrane and
promotes ligand-independent dimerization (207). While this phenomenon is frequently
observed in many cancer types, EGFR gain-of-function (GOF) mutations are diverse and
appear to be cancer type-specific (Figure 1.5). Notably, these mutations are rare in
colorectal and HNSCC but are frequently observed in breast cancer, lung and brain cancers
(208–210).

Figure 1.5: Distribution of clinical reports for EGFR variants in the COSMIC database.
Report counts are represented for all cancer types. Protein domains are shown in
transparent colors and variant impacts on the EGFR amino sequence are annotated. Total
variants: 2128, total reports: 32147.

In addition to its activity at the plasma membrane, EGFR has also been shown to be
internalized and translocated to the nucleus in cancer cells. EGFR nuclear activity is poorly
characterized but it is known to bind the promoter of CCND1 and acts as a transcriptional
activator, resulting in Cyclin D1 upregulation and cell cycle progression (211). Consequently,
nuclear EGFR localization has been associated with poor prognosis in HNSCC and breast
cancer (212,213).

1.3.2.1 Non-small cell lung cancer
Lung cancer is the most prevalent cause of cancer-related death, accounting for 20% of
cancer mortality. These are categorized into small cell lung cancers (SCLC) and non-small
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cell lung cancers (NSCLC), the latter representing 85% of all cases (214,215). Among
NSCLC, the prevalence of mutated EGFR is approximately 12% worldwide and reaches
49% in Asia (216). These tumors most commonly harbor gain-of-function (GOF) mutations in
the EGFR tyrosine kinase domain (217).

Leu858Arg is the most prevalent EGFR mutation in NSCLC (218). The Leu858 residue is
located in the activation loop of the C-lobe where it contributes to maintaining the αC helix of
the receiver interface in its outward position (190). Its substitution with an arginine was
shown to stabilize an intrinsically disordered region surrounding the αC helix, locking it into
its active conformation and promoting ligand-independent dimerisation. Because the mutant
domain favorably serves as a “receiver” for dimerization, it was termed a “super acceptor”
(195,219) and displays a 50-fold enhancement in catalytic activity compared to wild-type
(WT) EGFR (190).

Another common mutation type is exon 19 deletions, collectively accounting for 40 to 59% of
EGFR mutations in NSCLC (220). More than 100 of these variants have been identified
within or adjacent to the β3-αC loop of the kinase domain although Δ746-750 accounts for
75% of cases (221,222). Protein structure modeling has shown that these deletions trapped
the regulatory αC helix into its active conformation by shortening the β3-αC loop preceding it,
thus promoting dimerization and making Δ746-750 a “super acceptor” (222). However, unlike
Leu858Arg, Δ746-750 can serve as both a donor and receiver and has been shown to
remain constitutively active upon dimerization disruption by a monoclonal antibody,
suggesting differences in their respective modes of activation (223).

1.3.2.2 Glioblastoma multiforme
EGFR mutations or expression alterations are found in 57% of glioblastoma multiforme
(GBM) patients (224). These most commonly consist in copy number amplification or large
rearrangements like the EGFRvIII variant (EGFRΔExon2-7) which truncates extracellular
domains I and II (197,225). This variant shows limited constitutive phosphorylation which
leads to decreased recognition by the Cbl E3 ubiquitin ligase and impaired internalization
and recycling, thus increasing its localization at the plasma membrane (226,227). Other
in-frame deletion variants are found at low frequency in GBM that impact the extracellular
domain (EGFRvI, EGFRvII) or the C-terminal tail (EGFRvIV, EGFRvV) (197). Interestingly,
vIV and vV are still able to bind ligands and are thought to lack internalization and
degradation signals. GBM patients also frequently harbor GOF mutations in the extracellular
domains such as Ala265Val/Asp/Thr, Pro545Leu or Arg84Lys which are thought to impair the
autoinhibited conformation of the extracellular domain (197).

1.3.3 Treatment options in EGFR-associated cancers
EGFR-driven cancer cells rely on constitutive mitogenic signaling to escape apoptosis and
proliferate. This strong imbalance between pro- and anti-apoptotic cellular signals is thought
to explain the significant susceptibility of these cells to EGFR inhibition. This process,
referred to as oncogene addiction, makes EGFR an ideal therapeutic target in these cancer
types (228).
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1.3.3.1 Monoclonal antibodies
The first EGFR-targeted molecules developed to counteract oncogenic signaling were
monoclonal antibodies (mAb). The potential of murine anti-EGFR mAb to prevent
autophosphorylation by competing with EGF binding in the extracellular domains was first
demonstrated in vitro in 1983 (229). The next year, three mAb clones isolated from mouse
hybridomas were shown to inhibit human-derived tumor growth in nude mice (230). The
leading clone, mAB-225 (IgG1) was then shown to induce receptor internalization without
EGFR autophosphorylation, thus reducing its cell surface concentration (231). Building on
these successes, Cetuximab, a chimeric humanized version of mAb-225, was the first to be
clinically approved as part of a chemotherapy protocol for the treatment of colorectal cancer
in 2004 (232–234). It binds the monomeric inactive receptor and traps it into its autoinhibited
conformation, thus preventing both EGF binding and dimerization (235).

Cetuximab is currently approved for the treatment of HNSCC and colorectal cancers, which
generally overexpress WT EGFR (236,237). This treatment also recently showed promising
results to treat tumors expressing the dimerization-dependent Leu858Arg variant (238).
Panitumumab and Necitumumab, other EGFR-targeting mAb, were later approved by the
US food and drug administration (USFDA) for the treatment of metastatic colorectal cancer
and NSCLC, respectively (239,240).

1.3.3.2 Tyrosine kinase inhibitors
In parallel, tyrosine kinase inhibitors (TKIs) were developed as a class of small molecules
that inhibit the kinase activity of RTK and prevent their autophosphorylation. The first
EGFR-targeted TKI, named CAQ and developed in 1994, relied on a quinazoline structure to
function as an ATP analog that competitively inhibits the EGFR tyrosine kinase activity (241).
This inspired the development of multiple similar molecules which are now clinically
approved by the USFDA, 11 of which targeting EGFR (242,243).

Among these, Gefitinib (244) and Erlotinib (245) became the first ones to be clinically
approved for the treatment of metastatic NSCLC in 2003 and 2004, respectively (246).
Interestingly, it was only a year after its approval that Gefitinib was shown to selectively
inhibit hyperactive EGFR harboring GOF mutations such as Leu858Arg and Δ746-750
(247,248). This selectivity likely explains the better potency of Gefitinib against this class of
mutations compared to Cetuximab (249). Similarly, a phase III clinical trial showed that
Gefitinib was superior to a chemotherapy protocol as a first line of treatment in
adenocarcinoma patients harboring EGFR mutations (250). Namely, the objective response
rate to Gefitinib was 71.2% for patients harboring EGFR mutations against 1.1% for WT
EGFR. Comparative clinical studies later showed no difference in response rate between
Erlotinib and Gefitinib in EGFR-mutated NSCLC (251). Lapatinib, another first-generation
TKI, was granted approval by the USFDA in 2007 and Icotinib was approved by the Chinese
National Medical Products Administration (SFDA) in 2011. Although first-generation TKI
molecules initially show positive results as cancer therapies, they rapidly give rise to the
selection of drug-resistant clones, more than half of which being attributed to the Thr790Met
secondary mutation (252,253).

Second-generation TKIs such as Afatinib, Neratinib and Dacomitinib target the same ATP
binding pocket as their predecessors but function as irreversible inhibitors forming a covalent
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bond with the Cys797 residue (254). Afatinib, which also inhibits HER2 and HER4, was the
first one to obtain approval from the FDA in 2013. Two phase III clinical trials in NSCLC
patients compared survival in patients treated with Afatinib and chemotherapy and showed
that the drug significantly improved survival in patients with exon 19 deletions but not
Leu858Arg (255). In spite of Afatinib exhibiting a lower IC50 than first-generation TKIs
against Thr790Met, it resulted in disappointing clinical outcomes against this variant. This is
likely a result of the reduced selectivity of this category of TKIs for mutated EGFR as
opposed to wild-type, causing substantial side effects and limiting the dose that could be
used in patients (256).

Consequently, irreversible third-generation TKIs like Osimertinib and Olmutinib were
specifically developed to counteract Thr790Met (257,258). Osimertinib was granted
accelerated approval in 2015 for the treatment of metastatic Thr790Met-positive NSCLC
patients. A phase III clinical trial then demonstrated longer progression-free survival with
Osimertinib compared to Gefitinib in untreated patients, leading to its approval as a first line
treatment in 2018 (259). Osimertinib benefits from a high potency against mutated EGFR,
including Thr790Met, and a much better specificity profile compared to Afatinib. However,
like previous molecules, its use ultimately results in the emergence of drug resistance (260).

By contrast to Cetuximab, first- and third-generation TKIs are more frequently used in the
treatment of NSCLC harboring canonical GOF mutations as they benefit from a high
selectivity against these compared to the unmutated receptor (261).

1.4 EGFR and drug resistance
Cellular resistance to anticancer drugs is considered as innate when no response to
treatment is observed or when it lasts less than 3 months (262). In the case of TKIs, drug
response is generally observed in patients harboring sensitive EGFR mutations but acquired
resistances rapidly emerge, invariably leading to disease progression after 1 to 2 years
(250,258,259,263).

1.4.1 EGFR-independent resistance
TKI resistance can be acquired through EGFR-independent mechanisms which generally
impact the efficacy of all EGFR-targeted drugs. In NSCLC treated with first- or third-
generation TKIs, EGFR signaling inhibition is frequently bypassed by the amplification of
other RTKs (253,260). Two prominent examples are MET or HER2 which activate the
downstream MAPK, PI3K and STAT pathways. The AURA3 phase III clinical trial indeed
reported MET and HER2 amplification in 18% and 5% of Thr790Met-positive patients who
relapsed after Osimertinib-treatment, respectively (264).

Gene amplification can also affect signaling proteins acting downstream from EGFR like
PIK3CA, which encodes the catalytic subunit of the phosphatidylinositol 3-kinase (PI3K) and
was found to be amplified in 4% of relapsed patients. Less frequent is the acquisition of GOF
mutations in proto-oncogenes like NRAS, KRAS and BRAF which are involved in EGFR
signal transduction. Lastly, the amplification of cyclin or cyclin-dependent kinase genes like
CCDN1/2, CCNE1, CDK6 and CDKN2A was found in 15% of patients taking part in the
AURA3 trial. Consequently, many clinical trials are currently on-going that combine
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anti-EGFR TKIs with other small molecule inhibitors and mAb to tackle these resistances
(260).

Histological changes constitute another poorly understood resistance mechanism. Notably, a
histological assessment of 37 NSCLC patients with acquired resistance to first-generation
TKIs showed that 14% saw their tumors transform into SCLC (265). This transition is known
to lead to EGFR downregulation which makes cells insensitive to TKIs (266). Similarly,
epithelial-to-mesenchymal transition (EMT) is associated with increased cell migration and
the upregulation of AXL, a RTK whose downstream pathways intersect with those activated
by EGFR, thus bypassing its inhibition (267).

1.4.2 Canonical EGFR mutations
Contrary to “off-target” resistance mechanisms affecting other genes, acquired EGFR
mutations are generally drug-specific. In the case of first-generation TKIs, the best response
rate is achieved against exon 19 deletions like Δ746-750, followed by Leu858Arg (268).
Thr790Met is by far the most prominent acquired resistant mutation in this class of drugs and
is found in 60% of patients following treatment (253) (Figure 1.6). This variant impacts the
“gatekeeper” residue located within the ATP binding pocket and is thought to prevent drug
binding by steric hindrance while increasing the affinity to ATP (252,269). While commonly
found as a secondary mutation, the ability of Thr790Met to act as an activating mutation on
its own is debated although it was shown to confer a growth advantage to epithelial cells in
vitro and to lead to oncogenesis in inducible mouse models (270,271). Extracellular primary
mutations found in GBM like Ala289Asp/Val and Gly598Val are also resistant to Erlotinib and
Gefitinib but appear to be more sensitive to Afatinib (272,273). Similarly, EGFRvIII is
insensitive to first-generation TKIs and Cetuximab (274–276), possibly due to inefficient
blood-brain barrier penetration, while Osimertinib recently showed promising results against
this variant (277).

When considering second- and third- generation TKIs, acquired resistance results primarily
from mutations affecting Cys797 which is the covalent binding site of the drug. Indeed,
Cys797Ser/Gly mutations are reported by different studies in 18 to 25% of patients relapsing
after Osimertinib treatment (264,278). Since this molecule is frequently used as a second
line of treatment after Thr790Met acquisition, Cys797Ser currently represents a therapeutic
dead end for anti-EGFR drugs, thereby motivating the development of a fourth generation of
TKIs (279). Interestingly, Cys797Ser remains sensitive to first-generation TKIs when present
alone or in trans from the Thr790Met allele (260). Other tertiary resistant mutations observed
in patients and mouse models after Osimertinib treatment include Leu792Phe/His,
Gly796Ser and Leu718Gln (264,280).
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Figure 1.6: Example of drug sensitivity progression in EGFR-mutated NSCLC. Tumor
cells transformed by a canonical EGFR-activating mutation can be treated with a
first-generation TKI like Gefitinib. While treatment initially leads to stable disease or tumor
regression, resistant clones (e.g. harboring Thr790Met) are rapidly selected which leads to
cancer relapse. Third-generation TKIs like Osimertinib selectively inhibit EGFR Thr790Met
but eventually also lead to selection of resistant clones harboring Cys797Ser.

In the case of Cetuximab, impairment of receptor internalization and increased nuclear
translocation have been shown to be two potential resistance mechanisms (281,282).
Cetuximab is used to treat colorectal cancers in which EGFR mutations are rare.
Consequently, a study analyzing colorectal tumors from patients treated with Cetuximab
reveals a majority of “off-target” alterations leading to resistance (283). However, two
extracellular missense mutations, Gly465Arg and Gly465Glu were identified that were
predicted to impact mAb binding. A similar study also identified Ser492Arg in the same
domain which was later found in 16% of Cetuximab-treated patients in a phase III clinical
study (284,285). In spite of the very low diversity of mutations observed in patients, an in
vitro study reported that most exon 19 deletions, exon 20 insertions and G719Ala/Cys
substitutions found in NSCLC conferred strong resistance to Cetuximab, making this drug
unsuitable to treat these cancers (273).

1.4.3 Exon 20 insertions
In-frame exon 20 insertions are found as primary mutations in NSCLC where they represent
4 to 10% of all EGFR variants (286,287). They are a diverse group located within the αC-β4
loop following the αC helix and are thought to displace it to favor its active conformation
(288). As a result, the oncogenic character of these mutations appears to be dependent on
their position, length and amino acid composition. Indeed, in vitro experiments showed that
N771_P772insN was constitutively active but not N771_P772insH (288).

Exon 20 insertions generally respond poorly to TKI treatment. In particular, most of these
variants have been shown to be resistant to first-generation TKIs (286) with the exception of
A763_Y764insFQEA which is located directly within the αC helix and is highly sensitive to
Gefitinib (289). Similarly, Osimertinib shows mixed results with the two most frequent of
these mutations, D770_N771insSVD and V769_D770insASV, showing sensitivity levels
similar to WT EGFR in vitro (289). By contrast, another in vitro study reported that six exon
20 insertions were resistant to first-, second- and third-generation TKIs, proposing that
structural changes prevented drug binding by steric hindrance (290). Additionally, two
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Osimertinib phase II clinical trials reported negative outcomes in patients with exon 20
insertion with objective response rates of 0% and 25% (291). These discrepancies
demonstrate the risk of considering these different mutations together and the need to
stratify patients based on more stringent criteria.

Different treatments have been proposed that selectively target exon 20 insertions.
Poziotinib, a second-generation TKI, showed an average potency increase of 100-fold
compared to Osimertinib against six resistant insertions in vitro (290). In the same study, the
authors reported that the drug yielded a 64% remission rate in patients with exon 20
mutations. A phase II clinical trial specifically targeting these patients later reported an
objective response rate of 32% although 72% of patients experienced adverse events
requiring dose reduction, consistent with the significant side effects observed in other
second-generation TKIs (292). Interestingly, patients with an insertion near the αC helix
(residues 767-772) responded more positively than those with distal mutations (residues
773+), a feature that was confirmed in vitro.

More recently, focus was put on mutation-selective third-generation TKIs with better
tolerance profiles. Namely, Mobocertinib, a molecule highly similar to Osimertinib and
developed against Thr790Met, yielded objective response rates of 25–28% in phase I/II
studies targeting these patients (293). This led the USFDA to grant the drug accelerated
approval for the treatment of exon 20 insertion-positive NSCLC in 2021. Lastly, multiple
clinical trials are currently evaluating Sunvozertinib which has shown promising potency and
selectivity against exon 20 mutations (294). Its measured objective response rate in phase II
was 60.8% in patients who previously underwent disease progression after platinum-based
chemotherapy, prompting its conditional approval in China in August 2023 (295).

1.4.4 Rare mutations
In addition to canonical EGFR mutations, rare variants are found as primary mutations in
11% of patients and are generally poorly characterized (286,296). This represents a
therapeutic challenge as patients harboring these mutations have been shown to generally
suffer from worse clinical outcomes.

Among these, Gly719X mutations (most commonly Gly719Ala/Cys/Ser) represent
approximately 3% of primary mutations in NSCLC and are associated with mixed response
to TKIs. Although clinical studies stratifying these variants separately are sparse, Gly709Cys
appears to respond positively to TKI treatment (220). By contrast, Gly709Ala was shown to
be 29 and 49 times less sensitive to first- and third-generation TKIs compared to exon 19
deletions, respectively (297). This result was confirmed clinically as patients harboring this
variant responded poorly to Gefitinib and Erlotinib but showed lower resistance to Afatinib
and Neratinib (220,297).

Ser768Ile and Leu861Gln each represent approximately 1% of EGFR mutations in NSCLC
(298). Leu861 is located in the activation loop of the kinase domain where it belongs to the
same cluster of hydrophobic residues as Leu858 and contributes to stabilizing the inactive
conformation. Leu861Gln was shown to have decreased sensitivity to Gefitinib and Erlotinib
in vitro but remained sensitive to Osimertinib and Afatinib (273,299). By contrast, Ser768Ile
is located in the αC helix and more commonly found associated with other activating
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variants, making it difficult to establish its drug sensitivity in the clinics (300). However, it has
shown poor sensitivity to Gefitinib, Erlotinib and Osimertinib in vitro (273,299).

In addition to these, many more very rare EGFR variants have been found as primary or
acquired mutations in patients. Indeed, among the more than 2100 EGFR variants in the
ClinVar database, 50% are classified as VUS (301). In this context, therapeutic decisions are
further complicated by the fact that newly developed TKIs are generally only clinically tested
against canonical EGFR mutations (302). Patients harboring uncommon EGFR variants are
indeed often excluded from clinical trials (303) although they have been shown to represent
11% of NSCLC patients (296) and to generally suffer from poorer clinical outcomes (286).
Given the diversity of these variants and their diverse effects on drug response, there is a
strong need for the development of high-throughput assays to elucidate the treatment
options for these patients.

1.4.5 Current high-throughput assays for the study of EGFR variant
Over 200 human NSCLC cell lines harboring various driver variants are available (304).
While generally well characterized and readily usable in dose-response assays, these often
carry mutations in multiple oncogenes and do not represent the full spectrum of rare EGFR
variants found in patients. Consequently, a common approach to assess the transforming
ability and drug resistance profile of EGFR variants is their overexpression in murine cell
lines.

For example, NIH/3T3 are embryonic mouse fibroblasts that can undergo oncogenic
transformation when transfected with human EGFR mutants, thereby acquiring a growth
advantage and the ability to form colonies on soft agar (305). Similarly, Ba/F3 is a murine
pro-B cell line which gains interleukin-3-independent growth upon EGFR expression and
activation (306). In both cases, cell proliferation is dependent on EGFR signaling, allowing
for the assessment of receptor activation and inhibitor sensitivity in growth assays. These
cell lines are thus frequently used to predict the efficacy of different drugs on new EGFR
variants discovered in patients (307). For example, Robichaux et al. evaluated the selectivity
of different TKIs on 76 Ba/F3 cell lines expressing uncommon patient-derived variants in an
arrayed format (286). Their study established precise dose-response curves for each variant
and drug combinations before extending their approach to 16 compound mutations.

Other studies report the assessment of variants in a pooled format instead of arrayed
assays. For example, Ba/F3 cells were used in random mutagenesis experiments to study
secondary drug-resistant variants (308). The authors first established stable cell lines
expressing human EGFR activating variants alone or associated with Thr790Met. These
lines were then exposed to a mutagenic agent before drug treatment and sequencing of
resistant clones. Although it has the advantage of allowing the rapid screening of secondary
mutations in different EGFR alleles, this approach identified a limited number of variants
including prevalent Osimertinib-resistant mutations like Cys747Ser and Leu718Gln.

In order to maintain a greater control over the investigated mutation, contemporary variant
screens generally employ lentiviral delivery of cDNA variants to concurrently evaluate tens of
variants. For example, Chakroborty et al. used pooled delivery of 7216 EGFR variants
obtained by error-prone PCR in Ba/F3 cells to identify Leu858Arg, Thr790Met and the novel
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Ala702Val variant as activating mutations (309). While simultaneously assessing thousands
of variants, this approach also identified many false positive hits which were likely passenger
mutations present in the same library element as a functionally active variant.

In an approach proposed by Kohsaka et al., the authors used barcoded EGFR variants
delivered individually to NIH/3T3 or Ba/F3 cells which were then pooled in competition
assays (273). The growth phenotype of 101 EGFR variants was thus assessed under drug
treatments or growth factor (FBS or IL-3) deprivation to establish precise activation and drug
resistance profiles for each variant. Although establishing EGFR mutant-expressing cell lines
in an arrayed format is work-intensive, this approach allowed the assessment of variant
combinations in cis and trans, which is not possible with other methods.
In addition, the authors demonstrated the viability of their approach in vivo by injecting their
NIH/3T3 libraries as xenografts in nude mice before evaluating the prevalence of each
variant in tumor compositions. This in vivo approach was later used in another study to
evaluate drug combination regimens, thus better replicating treatment conditions
implemented in patients (310). Similarly, a recent study used the in utero electroporation and
transposon-mediated integration of a barcoded EGFR variants library in the mouse genome
to infer the transforming potential of 36 variants found in GBM (311).

Lastly, while previously cited studies use mouse cell lines, a recent deep mutational
scanning screen was conducted in human NSCLC-derived PC-9 cells (312). Namely, EGFR
variant libraries containing thousands of substitutions, insertions or deletions in exons 18–21
of EGFR were delivered in lentiviral vectors containing sgRNAs designed to knock out the
endogenous EGFR gene. Targeting a limited number of exons allowed for the direct
sequencing of the mutagenised sites after cell treatment with 5 different TKIs and the
establishment of comprehensive relative enrichment maps.

In conclusion, high throughput cellular assays have proved their usefulness to rapidly assess
the oncogenicity of EGFR variants at scale. However, most of these are performed in mouse
cell lines although it is currently unknown if human EGFR can form functional heterodimers
with murine receptors. This is significant because EGFR variants can have distinct impacts
on the formation of homodimers or heterodimers with other members of the ErbB family.
While a recent study applied this approach to human PC-9 cells, it still relies on exogenous
variant expression and thus fails to replicate EGFR endogenous expression levels. This too
is of particular importance because EGFR overexpression is a drug resistance mechanism in
itself and altering receptor stoichiometry at the plasma membrane can lead to constitutive
activation. It is thus essential to establish new high-throughput variant screening assays that
closely replicate human cellular contexts and expression levels.

1.5 Conclusion and thesis aims
Cancer poses an important health burden and stands as one the primary causes of mortality
worldwide. In this context, EGFR is a prominent oncogene commonly impacted by a diverse
spectrum of dysregulations and gain-of-function mutations. This motivated the development
of TKIs, a class of small molecules that compete with ATP to bind the EGFR kinase domain
and inhibit its signaling. Although initially successful in controlling disease progression, these
inhibitors invariably lead to the emergence of drug resistance. Although multiple
drug-resistant mutations have been identified, 50% of EGFR variants listed in the ClinVar
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database are still classified as VUS, posing an important therapeutic challenge. It is thus
essential to establish efficient methods to rapidly assess EGFR variant pathogenicity and
drug sensitivity at scale.

Over the past decade, the assessment of EGFR variants has primarily relied on the
overexpression of mutant cDNAs in mouse cell lines. This approach is easily applicable but
fails to replicate the endogenous expression levels, genomic context and cellular interaction
partners of EGFR. In parallel, base and prime editing have emerged as new high-throughput
screening tools capable of precisely introducing thousands of genetic variants in the genome
of cells. While base editors have proved their usefulness in gene-centric and genome-wide
variant screens, the ground principles of prime editing screens in diploid cells are yet to be
established.

The main objective of this thesis is to leverage the emerging base and prime editing
technologies and establish complementary precision genome editing screens to evaluate the
clinical significance of thousands of EGFR variants in the genome of human cells.
Combining both approaches allowed us to explore a broad spectrum of mutations through 1)
the unbiased scanning of the EGFR coding sequence with tiling base editing libraries, 2) the
targeted introduction of all patient-derived variants listed in the ClinVar or COSMIC
databases and amenable to prime editing.

First, I aimed to establish robust and versatile cellular assays to introduce and evaluate
EGFR variants in vitro. This allowed the screening of thousands of variants in different cell
lines with distinct biologically-relevant genetic backgrounds using precision genome editing
technologies. These screens provided important information on both primary and secondary
EGFR mutations and their role in drug resistance and receptor regulation mechanisms.
These results not only illuminated important aspects of EGFR biology but also provided
reliable drug sensitivity data, which could assist in the diagnostics and treatment of cancer
patients harboring VUS.

Finally, I aimed to establish an experimental framework for the use of prime editing as a
screening tool in diploid genomes. This included establishing library and assay design rules
that could be easily extended to other genes, cellular models or phenotypes. Notably, the
knowledge gained in the process helped us to identify strengths and limitations of the prime
editing workflow and to formulate recommendations for the rational design of multimodal
precision genome editing screens. With the growing prevalence and specialization of genetic
tests, resulting in a growing number of VUS, this study could serve as a reference for future
research endeavors seeking to address the current bottleneck of variant classification.
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2.1 Cell lines and cell culture

2.1.1 Cell culture and maintenance
H1299 cells were obtained from ATCC (#CRL-5803) and PC-9 cells from Merck
(#90071810-1VL). Both cell lines were cultured in RPMI medium (ATCC modification,
ThermoFisher #A1049101) supplemented with 10% FBS. Cells were routinely cultured in
absence of antibiotics except for screening experiments where the culture medium was
supplemented with 1% penicillin-streptomycin (ThermoFisher #15140122).
MCF10A cells were obtained from Cell Lines Service (#305026) and cultured in complete
Mammary Epithelial Cell Growth Medium (MEGM Bullet kit, Lonza CC-3150) supplemented
with 100ng/mL cholera toxin (Merck #C8052). For EGF deprivation experiments, the same
medium was used, omitting the hEGF provided with the Bullet Kit. Culture medium was
replaced every 4 days.
HEK293T cells were obtained from Merck (#12022001) and cultured in Dulbecco's Modified
Eagle Medium (DMEM) (Merck, #D0822) supplemented with 10% FBS.

All cell lines were cultured at 37 °C in 5.0% CO2 and passaged around 70% confluence
using TryplE (ThermoFisher #12604013). In the case of MCF10A cells, detached cells were
resuspended in 10mL phosphate-buffered saline, collected in a 15mL falcon tube and spun
down at 500g. The supernatant was then aspirated to eliminate residual TryplE and cells
were resuspended in fresh medium before seeding.
All screening experiments were conducted in 300 cm2 cell culture flasks (TPP, #90301).

2.1.2 Cell freezing and storage
For cell freezing, cells were detached using TryplE (ThermoFisher #12604013),
resuspended in 10mL phosphate-buffered saline and spun down at 500g. Cell pellets were
resuspended at a concentration of 107 cells per milliliter in the following freezing solutions:

- For H1299 and PC-9 cells: RPMI medium supplemented with 20% FBS and 10%
DMSO.

- For MCF10A cells: complete medium supplemented with 7.5% DMSO.
Resuspended cells were then transferred to cryotubes and placed in an isopropanol
chamber at -80°C for 48 hours before transferring the tubes to liquid nitrogen.

2.2 Base editing screens

2.2.1 Lentiviral vectors
For BE3.9Max and ABE8e experiments, individual spacers and libraries were cloned into the
pRDA_256 (Addgene, #158581) and pRDA_426 (Addgene, #179097) plasmids,
respectively.

2.2.2 Base editing library design
ChopChop (313) was used to design all possible SpCas9 spacers targeting within and 30
nucleotides around EGFR exons and UTRs (1496 unique sgRNAs) as well as 200 unique
sgRNAs targeting EGFR introns. sgRNAs containing BsmBI restriction sites or polyT(>4)
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were filtered out and an additional G was appended to the 5’ end of spacers starting with
another nucleotide.
Additionally, 206 spacers (10% of the final library size) with no target site in the human
genome were picked at random from the Brunello library (118). Lastly, 103 sgRNAs targeting
splice sites of essential genes were obtained from Hanna et al., 2021 (145) and added to the
final library. Finally, primer-binding sites and BsmBI restriction sites (in bold) for Golden Gate
cloning were added to the 5’ and 3’ ends of each spacer:
5’ - AGGCACTTGCTCGTACGACG(CGTCTC)ACACC - 3’
5’ - GTTTC(GAGACG)TTAAGGTGCCGGGCCCACAT - 3’

Base editing outcomes were predicted for each EGFR-targeting sgRNA using the base
editor design tool script from Hanna et al., 2021 (145).

2.2.3 Base editing library cloning
The final oligo library was ordered from Twist Bioscience and amplified in 5 replicates of the
following reaction:
25 μL Kapa Taq ReadyMix (Merck #TAQKB), 6 μL Primer mix (2.5 μM each), 1 μL Oligo pool
(1 ng/uL) and 17 μL H2O. PCR cycling conditions: 3 min at 95°C, [20 s at 98°C, 15 s at
60°C, 30 s at 72°C] for 20 cycles followed by a final extension 1 min at 72°C.

All PCR replicates were then pooled and desalted with a Qiagen PCR purification kit
(Qiagen, #28104). The obtained double stranded library inserts were then cloned into the
ABE8e and BE3.9Max lentiviral backbones using Golden Gate Assembly:
50 fmol amplified library, 50 fmol plasmid backbone, 1 μL ThermoFisher Tango buffer
(ThermoFisher, #BY5), 1 μL DTT (10 mM), 1 μL ATP (10 mM), 1 μL T7 DNA ligase, 1 μL
BsmBI (Esp3I, ThermoFisher #ER0451). Thermocycler conditions: [5 min at 37°C, 5 min at
20°C] for 25 cycles followed by 1h at 37°C and 10 min at 65°C.

Golden Gate assembly products were then desalted and concentrated using isopropanol
purification as described in Joung et al., 2017 (105). 100 ng from each purified product was
electroporated in each of 3 shots of Endura electrocompetent E. Coli (Lucigen, #60242)
following the manufacturer’s protocol. Transformed E.Coli cells were then grown overnight in
500mL of Terrific Broth supplemented with 100 mg/L Ampicillin before final plasmid library
extraction using the Qiagen Plasmid Maxiprep kit (Qiagen, #12162).

2.2.4 Screening and drug selection
PC-9 or MCF10A cells were infected in duplicates while aiming for a coverage of 500
infected cells per library element and a MOI of 0.3. Infected cells were selected with 3 μg/mL
Puromycin from day 2 to day 4. Cells were then split in the different treatment arms on day
11 and final harvest was performed on day 19 while maintaining a minimal cell coverage of
500x. Cell pellets were frozen at -80°C before processing.

Each drug was used at a concentration corresponding to the IC50 described in the literature
or measured by cell counting after 4 days of selection. Namely, PC-9 cells were treated with
0.05μM Gefitinib or 0.02μM Osimertinib. MCF10A cells were treated with 0.13μM Gefitinib or
0.3μM Osimertinib.
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2.2.5 Validation plasmid cloning
Individual sgRNA spacers were ordered as complementary single stranded oligonucleotide
pairs with 5’ sticky ends from Integrated DNA Technologies. Individual oligonucleotides were
resuspended in NEB buffer II (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, pH
7.9) to a concentration of 100 μM. Complementary oligonucleotides were then mixed in
equimolar proportions, heated up to 95°C for 2 minutes and left to cool down at room
temperature.

Annealed oligonucleotides were then cloned in base editing lentiviral vectors using Golden
Gate cloning by preparing the following reaction mixes: 50 fmol oligonucleotide duplex, 50
fmol plasmid backbone, 1 μL ThermoFisher Tango buffer (ThermoFisher, #BY5), 1 μL DTT
(10 mM), 1 μL ATP (10 mM), 1 μL T7 DNA ligase, 1 μL BsmBI (Esp3I, ThermoFisher
#ER0451). Thermocycler conditions: [5 min at 37°C, 5 min at 20°C] for 10 cycles followed by
1h at 37°C and 10 min at 65°C.

5 μL of each Golden Gate reaction was transformed into Stbl3 chemically competent E. Coli
cells (Invitrogen, #C737303) by heat shock. Transformed cells were then spread on agarose
plates supplemented with Ampicillin and incubated overnight at 37°C. Colonies were picked
on the next day and sent for Sanger sequencing of plasmid inserts.

Name Base editor sgRNA sequence

Thr790Ala,Gln791Arg ABE8e caccGATCACGCAGCTCATGCCCTTgttt

Met766Thr ABE8e caccGTGGCCATCACGTAGGCTTCCgttt

His773Arg ABE8e caccGCCCCACGTGTGCCGCCTGCTgttt

Val845Ala ABE8e caccGTGTTTTCACCAGTACGTTCCgttt

Ile853Val,Thr854Ala ABE8e caccGCAAGATCACAGATTTTGGGCgttt

Thr790Met,Gln791Ter BE3.9Max caccGATCACGCAGCTCATGCCCTTgttt

Gly719Gly/SerS720Phe BE3.9Max caccGGGCTCCGGTGCGTTCGGCAgttt

Exon25+1,Leu1038Leu BE3.9Max caccGTTCATACCAGAGAGCTCAGGgttt

Table 2.1: sgRNAs used for base editing screen validation. Cloning overhangs of the
oligonucleotide duplexes are shown in lowercase.

2.2.6 Deep sequencing validation experiments
For validation experiments, all-in-one base editing vectors were individually delivered to
cells. Lentivirus production was conducted by co-transfecting the following plasmids into
HEK293T cells seeded on the previous day in a 24-well plate:

- 211.4 µg of psPAX2
- 165.9 µg of pMD2
- 422.7 µg of base editing vector
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Serum-free OptiMEM medium (Gibco, #31985062) was added to this plasmid mix to a final
volume of 250 µL. In a separate tube, 10 µL of Lipofectamine 2000 (Invitrogen, #11668027)
was added to 240 µL of OptiMEM. Both solutions were then mixed together, incubated for 10
minutes at room temperature and added dropwise to each well of the 24-well plate.
Viral supernatants were harvested after 48h and cell debris were eliminated using a 0.45 μm
filter. Target cells were transduced by adding 250μL of clarified viral supernatant to each well
of a 24-well plate and selected with puromycin between from days 2 to 4 after infection. Drug
treatments or EGF deprivation started on day 6 after infection and cells were harvested on
day 13.

2.2.7 Cell viability assays
For cell viability experiments, cells were seeded in 96-well plates (Greiner #655077) four
days after infection, treatments were applied on day 5 and viability measurements were
performed on day 10 using the CellTiter-Glo® 2.0 Cell Viability Assay kit (Promega #G9241).
Luminescence was measured following the manufacturer’s protocol on a Tecan SPARK
reader.

2.3 Prime editing screen

2.3.1 Prime editing vector cloning
For prime editing, a pLentiGuide vector (Addgene, #117986) was modified by replacing the
existing BsmBI sites and the sequence in between by the following stuffer, thus reintroducing
the BsmBI recognition sites (in bold) and changing the corresponding overhangs
(lowercase): caccGGAGACGCTATCACCCCGTCTCTtttt.
Additionally, the mCherry CDS was replaced by a dominant negative MLH1Δ754-756 variant in
order to inhibit MMR in target cells and increase prime editing efficiency. All pegRNAs were
cloned in the resulting pLentiGuide_Puro-T2A-MLH1Δ754-756 vector.
The prime editor enzyme was delivered to cells via a modified pLenti-PE2-BSD vector
(Addgene #161514) in which the blasticidin resistance gene was replaced with a Green
Fluorescent Protein (GFP).

2.3.2 Establishment of stable cell lines
For prime editing experiments, clonal cell lines stably integrating the prime editor construct
and GFP were derived using lentiviral delivery and FACS isolation of clones with strong
fluorescent signal. Before each screening experiment, cells with high GFP expression were
resorted to limit construct silencing in the cell population.

2.3.3 Prime editing library design
All EGFR mutations smaller or equal to 3 nucleotides were downloaded from the ClinVar and
COSMIC databases (1100 variants in total, database accessed on July 29th, 2021). Each
variant was attributed a maximum of 5 SpCas9 spacers designed with ChopChopV2 with a
maximum variant to cut site distance of 10 nucleotides.
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For each spacer-variant pair, a total of 9 mutagenic pegRNAs were designed with each
combination of 10, 12 or 14 nucleotides RTT and 11, 13 or 15 nucleotides PBS. Lastly, for
each mutagenic pegRNA, a non-mutagenic equivalent was designed that re-introduces the
wild type target sequence to account for potential pegRNA-mediated non-desired edits.
pegRNAs containing BsmBI restriction sites or polyT(5) were filtered out, yielding a final
library size of 19400 unique pegRNAs.

For each library element, the pegRNA backbone was replaced with a pair of BsmBI sites
separated with a random stuffer whose length was designed to normalize the final
oligonucleotide length to 215 nucleotides regardless of pegRNA extension design. The
tevopreQ sequence was appended to the 3’ end of each pegRNA extension followed by a
polIII termination signal and a unique 11-nucleotides DNA barcode generated with the
DNABarcodes Bioconductor package with a minimal Hamming distance of 2 (314).
Lastly, final oligonucleotides were designed by adding the following 5’ and 5’ Gibson cloning
overhangs:
5’-TATATATCTTGTGGAAAGGACGAAACACCG[Barcoded_epegRNA]]TTTTCGAGTACTA
GGATCCATTAGGCG-3’

2.3.4 Prime editing library cloning
The final oligo library was ordered from Twist Bioscience and amplified in 65 replicates of the
following reaction:
Kapa Taq ReadyMix (Merck #TAQKB) 25 μL, 6 μL Primer mix (2.5 μM each), 1 μL Oligo pool
(1 ng/uL) and 17 μL H2O. PCR cycling conditions: 3 min at 95°C, [20 s at 98°C, 15 s at
61°C, 30 s at 72°C] for 8 cycles followed by a final extension 1 min at 72°C.

Library cloning was then performed in two steps. First, all PCR replicates were pooled and
desalted with a Qiagen PCR purification kit (Qiagen, #28104). The obtained double stranded
library inserts were then cloned into the pre-digested pLentiGuide_Puro-T2A-MLH1Δ754-756

vector by Gibson assembly using the NEBuilder® HiFi DNA Assembly Master Mix (New
England Biolabs, #E2621). Gibson assembly products were then desalted and concentrated
using isopropanol purification as described in Joung et al., 2017 (105). 100 ng from each
purified product was electroporated in each of 5 shots of Endura electrocompetent E. Coli
cells (Lucigen, #60242) following the manufacturer’s protocol. Transformed E.Coli cells were
then grown overnight in 500 mL of Terrific Broth supplemented with 100 mg/L Ampicillin. The
plasmid library was purified using the Qiagen Plasmid Maxiprep kit (Qiagen, #12162).

The sgRNA scaffold was then inserted in the previously cloned plasmid library using Golden
Gate assembly:
50 fmol library plasmid, 50 fmol sgRNA scaffold oligo duplex, 1 μL ThermoFisher Tango
buffer (ThermoFisher, #BY5), 1 μL DTT (10 mM), 1 μL ATP (10 mM), 1 μL T7 DNA ligase, 1
μL BsmBI (Esp3I, ThermoFisher #ER0451). Thermocycler conditions: [5 min at 37°C, 5 min
at 20°C] for 25 cycles followed by 1h at 37°C and 10 min at 65°C. The final plasmid library
was then purified, desalted and amplified following the previously described protocol.
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2.3.5 EGFR activation screen
MCF10A cells were infected in duplicates while aiming for a coverage of 500 infected cells
per library element and a MOI of 0.3. Infected cells were selected with 3 μg/mL Puromycin
from day 2 to day 4. EGF deprivation started on day 14 with a cell coverage of 1000x and
the final harvest was performed on day 22. Cell pellets were frozen at -80 degrees before
processing.

2.3.6 Validation pegRNA cloning
Individual pegRNAs used for prime editing efficiency assessment were ordered as
double-stranded gBlocks (Integrated DNA technologies) with the following overhangs:
5’-TATATATCTTGTGGAAAGGACGAAACACCG[epegRNA]TATATATCTTGTGGAAAGGAC
GAAACACCG-3’
Each pegRNA was cloned in the pLentiGuide_Puro-T2A-MLH1Δ754-756 vector by Gibson
cloning. Briefly, 25 ng of plasmid backbone pre-digested with BsmBI (ThermoFisher,
#ER0451) was mixed with a 3-fold molar excess of gBlock (Integrated DNA Technology)
insert and 5μL of Gibson Master Mix (New England Biolabs, #E2611S) in a final reaction
volume of 10 μL. The samples were then incubated 15 min at 50°C and transformed into
Stbl3 chemically competent E. Coli cells (Invitrogen, #C737303). After heat shock
transformation, E. Coli cells were spread on agarose plates supplemented with Ampicillin
and incubated overnight at 37°C. Colonies were picked on the next day and sent for Sanger
sequencing of plasmid inserts.

Name Sequence

HEK3 CTT insertion
(Addgene #132778)

GGCCCAGACTGAGCACGTGAGTTTTAGAGCTAGAAATAGCAAGTT
AAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGGACCGAG
TCGGTCCTCTGCCATCAAAGCGTGCTCAGTCTG

EGFR Thr790Met

GTAGTCCAGGAGGCAGCCGAAGTTTTAGAGCTAGAAATAGCAAGT
TAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGGACCGAG
TCGGTCCGCTCATCATGCAGCTCATGCCCTTCGGCTGCCTCCTGG
CGCGGTTCTATCTAGTTACGCGTTAAACCAACTAGAA

Table 2.2: epegRNAs used in prime editing validation experiments. The sgRNA scaffold
is shown in bold.

2.4 Lentiviral library production
For each sgRNA library, HEK293T cells (Merck, #12022001) seeded in fifteen (base editing)
or thirty (prime editing) 15-cm dishes were transfected by preparing the following mixture for
each dish: 5548 ng psPAX2 plasmid, 4356 ng pMD2 plasmid, 11087 ng library plasmid, 169
μL PEImax (1g/L), 400 μL NaCl (1.5M), H2O to 2000 μL.
The transfection mixes were vortexed for 10s, incubated at room temperature for 10 minutes
and added dropwise to the cells.
Transfected cells were incubated for 48h at 37°C before viral supernatants were harvested,
pooled and clarified 5 min at 1000g. Lentiviral solutions were then overlaid on top of a 3mL
20% sucrose cushion and centrifuged in a SW32Ti swing-bucket rotor (90 min at 25,000 rcf,
4°C). Lentiviral pellets were then resuspended in 1mL DMEM + 2% FBS and frozen at
-80°C.
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2.5 Lentiviral library titration
Lentiviral libraries titers were determined by serial dilution and cell counting of infected
MCF10A or PC-9 cells (depending on the experiment). First, 10,000 cells were seeded in
each well of a 24-well plate. Right after seeding, one aliquot of concentrated viral solution
was thawed from -80°C stocks and serial 10-fold dilutions were performed up to 1:10,000.
50μL of each viral dilution was then used to infect previously seeded cells in 6 replicates.
After 48h, 3 of the 6 infected replicates of each viral dilution were selected with 3 μg/mL
puromycin while the 3 others had their medium replaced with antibiotics-free medium.

Cell numbers in each well were determined 4 days after infection by aspirating the medium
from each well and washing cells with 500μL phosphate-buffered saline. Cells were then
detached and resuspended in 200μL of TryplE (ThermoFisher #12604013) before counting
with a Cellometer Auto T4 Bright Field Cell Counter (Nexcelom). The initial viral titer in each
well was determined using the following formula:

𝑉𝑖𝑟𝑎𝑙 𝑡𝑖𝑡𝑒𝑟 (𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑢𝑛𝑖𝑡𝑠/µ𝐿) = ( 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)
𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑛𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) × 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟) ÷ 𝑣𝑖𝑟𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

The final viral titer was then averaged over the wells with a cell survival fraction between 10
and 90% after accounting for dilution factors.

2.6 Genomic DNA isolation and sequencing
Genomic DNA isolation was performed using the Blood & Cell Culture DNA Midi Kit (Qiagen
#13343) according to the manufacturer’s protocol.

Illumina library preparation was performed in two steps. First, 4 μg of genomic DNA were
used in each 50 μL PCR1 reaction with primers amplifying the sgRNA library and containing
universal Illumina adapters. Forward primers were ordered from Integrated DNA
technologies to include three different stagger lengths and were pooled in equal amounts.
The final PCR mixes had the following composition:
Kapa Taq ReadyMix (Merck #TAQKB) 25 μL, 6 μL Primer mix (2.5 μM each), 4 μg genomic
DNA and H2O to 50 μL. PCR cycling conditions: 3 min at 95°C, [20 s at 98°C, 15 s at 60°C,
30 s at 72°C] for 18 cycles followed by a final extension 30 s at 72°C.
PCR1 products from the same sample were then pooled together. In the case of prime
editing screens, PCR1 amplicons were size-selected using a 1.3x Ampure bead ratio and
eluted in a volume of H2O equal to the initial PCR product volume.
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Name Sequence
Library
element

0477_epeg_library_seq_Fwd ACACTCTTTCCCTACACGACGCTCTTCCGAT
CT(N)TGGCGGTAATACGGTTATCC

epegRNA
barcode

0435_epeg_library_seq_Rev GTGACTGGAGTTCAGACGTGTGCTCTTCCG
ATCNGTTACGCGTTAAACCAACTAGAA

epegRNA
barcode

0344_Library_Seq1_Fwd ACACTCTTTCCCTACACGACGCTCTTCCGAT
CT(N)CGGCCGCCTAATGGATC

Full-length
epegRNA

0350_Library_Seq_Rev GTGACTGGAGTTCAGACGTGTGCTCTTCCG
ATCNNTATATATCTTGTGGAAAGGACGAAACA

Full-length
epegRNA

0442_Library_BE_Fwd ACACTCTTTCCCTACACGACGCTCTTCCGAT
CT(N)TATATATCTTGTGGAAAGGACGAAACA

Base
editing
sgRNA

0445_Library_BE_Rev GTGACTGGAGTTCAGACGTGTGCTCTTCCG
ATCNCCAATTCCCACTCCTTTCAAGAC

Base
editing
sgRNA

Table 2.3: PCR1 primers used for library deep sequencing. N nucleotides between
parentheses represent staggers of variable lengths (one to three) used to increase
sequencing pool diversity on the flow cell.

For each sample, a single PCR2 reaction was then performed to add P5 and P7 Illumina
adapters as well as demultiplexing barcodes. The reaction mix was as follows: Kapa Taq
ReadyMix (Merck #TAQKB) 10 μL, 2.5 μL Primer mix (4 μM each), 1 μL PCR1 product and
6.5 μL H2O. PCR cycling conditions: 3 min at 95°C, [20 s at 98°C, 15 s at 61°C, 30 s at
72°C] for 8 cycles followed by a final extension 30 s at 72°C.

Name Sequence

P5 adapter AATGATACGGCGACCACCGAGATCTACACNNNNNNNNACACTCTTTCCCTA
CACGACGCTCTTCCGATCT

P7 adapter CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATC

Table 2.4: Universal PCR2 primers used for library deep sequencing. N nucleotides in
bold represent demultiplexing barcodes.

Barcoded PCR2 products were then pooled, desalted and 700 ng of DNA was loaded in
each lane of a 2% Agarose EGel (InVitrogen, #A42135). DNA bands were extracted using
the Qiagen PCR purification kit (Qiagen, #28104). Samples were then pooled sequenced on
an Illumina NextSeq 500 sequencer (SR150 HighOutput) with 5% PhiX.

2.7 Deep sequencing for validation experiments
For screen validation with target site amplicon sequencing, genomic DNA was extracted by
resuspending cell pellets in QuickExtract buffer (Lucigen, #QE09050) at a final concentration
of 1600 cells/μL and incubating them 5 min at 65°C, 5 min at 68°C and 10 min at 98°C.

The target genomic region was then amplified by preparing the following PCR1 mixes:
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Kapa Taq ReadyMix (Merck #TAQKB) 25 μL, 6 μL Primer mix (2.5 μM each), 10 μL genomic
DNA (16,000 cells) and H2O to 50 μL. PCR cycling conditions: 3 min at 95°C, [20 s at 98°C,
15 s at 60°C, 30 s at 72°C] for 25 cycles followed by a final extension 30 s at 72°C.
Ampure bead purification of PCR1 products was performed at a 1:1 ratio and size-selected
amplicons were eluted in a volume of water equal to the initial PCR product volume. These
purified amplicons were then used as templates in a PCR2 reaction to add P5 and P7
Illumina adapters and demultiplexing barcodes:
Kapa Taq ReadyMix (Merck #TAQKB) 10 μL, 2.5 μL Primer mix (4 μM each), 1 μL
size-selected PCR1 product and 6.5 μL H2O. PCR cycling conditions: 3 min at 95°C, [20 s at
98°C, 15 s at 61°C, 30 s at 72°C] for 6 cycles followed by a final extension 30 s at 72°C.
All samples were then pooled together and sequenced on a Illumina NextSeq 500
sequencer (SR150 HighOutput) with 5% PhiX.

Name Sequence Experiment

0449_EGFR_Ex21_NGS_Fwd
ACACTCTTTCCCTACACGA
CGCTCTTCCGATCT(N)AAT
GCTGGCTGACCTAAAGC

Val845Ala[ABE8],
Ile853Val/Thr854Ala[ABE8e]

0456_EGFR_Ex21_NGS_Rev
GTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCNCC
AGCCATAAGTCCTCGACG

Val845Ala[ABE8],
Ile853Val/Thr854Ala[ABE8e]

0447_EGFR_Ex20_NGS_Fwd
ACACTCTTTCCCTACACGA
CGCTCTTCCGATCT(N)GA
CATAGTCCAGGAGGCAGC

Met766Thr[ABE8e],
His773Arg[ABE8e],
Thr790Met,Gln791Ter[BE3.9Max],
Thr790Ala,Gln791Arg[ABE8e]

0455_EGFR_Ex20_NGS_Rev
GTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCNTTC
ACCTGGAAGGGGTCCAT

Met766Thr[ABE8e],
His773Arg[ABE8e],
Thr790Met,Gln791Ter[BE3.9Max],
Thr790Ala,Gln791Arg[ABE8e]

0421_EGFR_Ex18_NGS_Fwd

ACACTCTTTCCCTACACGA
CGCTCTTCCGATCT(N)CT
CCCCACCAGACCATGAGA
G

Gly719Gly,Ser720Phe[BE3.9Max]

0424_EGFR_Ex18_NGS_Rev

GTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCNCC
AGCTTGTGGAGCCTCTTA
C

Gly719Gly,Ser720Phe[BE3.9Max]

0453_EGFR_Ex25_NGS_Fwd
ACACTCTTTCCCTACACGA
CGCTCTTCCGATCT(N)GT
GGATGCCGACGAGTACC

Exon25+1,Leu1038Leu[BE3.9Max]

0458_EGFR_Ex25_NGS_Rev

GTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCNCC
ATGTGAGTTTCACTAGATG
GT

Exon25+1,Leu1038Leu[BE3.9Max]

Table 2.5: Primers used for target amplicon sequencing in base editing validation
experiments. N nucleotides between parentheses represent staggers of variable lengths
(one to three) used to increase sequencing pool diversity on the flow cell.
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Name Sequence Experiment

0429_EGFR_T790_NGS_Fwd ACACTCTTTCCCTACACGACGCTCTTCC
GATCT(N)CCCGTATCTCCCTTCCCTGA EGFR Thr790Met

0431_EGFR_T790_NGS_Rev GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCNGTCTTCACCTGGAAGGGGTC EGFR Thr790Met

0290_HEK3_NGS_Fwd_1 ACACTCTTTCCCTACACGACGCTCTTCC
GATCT(N)CTGGCCTGGGTCAATCCTTG HEK3 CTT insertion

0287_HEK3_NGS_Rev_1
GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCNNCCCAGCCAAACTTGTCAAC
C

HEK3 CTT insertion

0461_HBEGF_ex5_NGS_Fwd ACACTCTTTCCCTACACGACGCTCTTCC
GATCT(N)AGCGATTTTCCACTGGGAGG

Diphteria
toxin enrichment
(HBEGF Glu141His)

0464_HBEGF_ex5_NGS_Rev
GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCNNGGGATCGTGGTCAGGGATT
G

Diphteria
toxin enrichment
(HBEGF Glu141His)

Table 2.6: Primers used in prime editing deep sequencing validation and enrichment
experiments. N nucleotides between parentheses represent staggers of variable lengths
(one to three) used to increase sequencing pool diversity on the flow cell.

2.8 Deep sequencing data analysis

2.8.1 Softwares and computational packages
Software or package name Version

MAGeCK 0.5.9.2
CRISPResso 2.0.42 (Python 2.7)
PyMOL 2.5.5
R 4.3.1 (2023-06-16)
ggplot2 3.4.4
tidyverse 2.0.0
GGally 2.1.2
Python 3.6.13
Numpy 1.19.2
Biopython 1.81
Trimmomatic 0.39
DNABarcodes (Bioconductor) 1.32.0
Table 2.7: Softwares and computational packages used for data analysis and
visualization.
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2.8.2 Deep sequencing data preprocessing
All sequencing reads were demultiplexed and their quality was assessed using MultiQC
(315). All reads were then trimmed and filtered using Trimmomatic (316) with the following
parameters: ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36.
Experimental samples with less than 2000 attributed reads were excluded from further
analyses.

2.8.3 Base and prime editing screen data analysis
sgRNA or epegRNA barcode count tables were obtained using a custom Python script
(available at https://github.com/plattlab/). Briefly, sgRNA or barcode sequences were
extracted from Illumina sequencing reads by searching for adapter sequences directly
preceding and following them:

Adapter sequences used for sgRNA quantification (base editing screens):
5’ GGACGAAACACC[sgRNA]GTTTGAGAGCTA 3’
Adapter sequences used for epegRNA quantification (prime editing screens):
5’ CGAAAACGTT[barcode]TGACTCGTAT 3’

One mismatch was allowed in each adapter sequence but only perfect sgRNA or barcode
matches were considered. Log fold changes and FDR values were then calculated with
MAGeCK (317) using default settings after normalizing read counts to non-targeting guides
or pegRNAs. sgRNAs or barcodes with an average normalized read count lower than 50
reads in any treatment arm were ignored.

2.8.4 Validation sequencing data analysis
Sequencing data were analyzed with CRISPResso2 (318) using base editing quantification.
For prime editing experiments, the HDR quantification mode was used by providing
expected edited products. The following parameters were used:
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Base editing

All sgRNAs

--base_editor_output
--quantification_window_size 5
--quantification_window_center -16
--trim_sequences
--trimmomatic_options_string MINLEN:140

Thr790Ala,Gln791Arg[ABE8e] --guide_seq ATCACGCAGCTCATGCCCTT
--conversion_nuc_from T --conversion_nuc_to C

Met766Thr[ABE8e] --guide_seq TGGCCATCACGTAGGCTTCC
--conversion_nuc_from A --conversion_nuc_to G

His773Arg[ABE8e] --guide_seq CCCCACGTGTGCCGCCTGCT
--conversion_nuc_from T --conversion_nuc_to C

Val845Ala[ABE8e] --guide_seq TGTTTTCACCAGTACGTTCC
--conversion_nuc_from A --conversion_nuc_to G

Ile853Val,Thr854Ala[ABE8e] --guide_seq CAAGATCACAGATTTTGGGC
--conversion_nuc_from T --conversion_nuc_to C

Thr790Met,Gln791Ter[BE3.9Max] --guide_seq ATCACGCAGCTCATGCCCTT
--conversion_nuc_from G --conversion_nuc_to A

Gly719Gly/SerS720Phe[BE3.9Max] --guide_seq GGGCTCCGGTGCGTTCGGCA
--conversion_nuc_from G --conversion_nuc_to A

Exon25+1,Leu1038Leu[BE3.9Max] --guide_seq TTCATACCAGAGAGCTCAGG
--conversion_nuc_from G --conversion_nuc_to A

Table 2.8: CRISPResso2 parameters used for base editing product quantification.

Prime editing

HBEGF
Glu141His

--amplicon_seq
AGCGATTTTCCACTGGGAGGCTCAGCCCATGACACCTCTCTCCATGGTAA
CCCGGGTGGCAGCTAGTTCAAGACAGAACAAGAAGGAGATGGAGTTAGT
GCTTTGGCCTCTCTTGGCAATGGCCCACCTGCATAAGCCAAACCCCATTC
CTCATACCCTCAGCCTGTCAATCCCTGACCACGATCCC
--guide_seq ACCCGGGTTACCATGGAGAG
--expected_hdr_amplicon_seq
AGCGATTTTCCACTGGGAGGCTCAGCCCATGACACCTGTGTCCATGGTAA
CCCGGGTGGCAGCTAGTTCAAGACAGAACAAGAAGGAGATGGAGTTAGT
GCTTTGGCCTCTCTTGGCAATGGCCCACCTGCATAAGCCAAACCCCATTC
CTCATACCCTCAGCCTGTCAATCCCTGACCACGATCCC

EGFR
Thr790Met

--amplicon_seq
CCCGTATCTCCCTTCCCTGATTACCTTTGCGATCTGCACACACCAGTTGAG
CAGGTACTGGGAGCCAATATTGTCTTTGTGTTCCCGGACATAGTCCAGGA
GGCAGCCGAAGGGCATGAGCTGCGTGATGAGCTGCACGGTGGAGGTGA
G
--guide_seq ATAGTCCAGGAGGCAGCCGA
--expected_hdr_amplicon_seq
CCCGTATCTCCCTTCCCTGATTACCTTTGCGATCTGCACACACCAGTTGAG
CAGGTACTGGGAGCCAATATTGTCTTTGTGTTCCCGGACATAGTCCAGGA
GGCAGCCGAAGGGCATGAGCTGCATGATGAGCTGCACGGTGGAGGTGA
G

Table 2.9: CRISPResso2 parameters used for prime editing product quantification.
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2.9 Toxin-based prime editing enrichment experiments

2.9.1 Dual pegRNA vector cloning
To obtain a lentiviral vector expressing both a pegRNA of interest and a pegRNA introducing
a toxin-resistant variant in the HBEGF gene, the pLentiGuide_Puro-T2A-MLH1Δ754-756 vector
was first digested with the XbaI restriction enzyme (Thermo Scientific, #ER0681). This
linearized vector was then used as a backbone for the Gibson cloning of a double-stranded
gBlock fragment (Integrated DNA technologies) containing a mouse U6 (mU6) promoter and
either of the following pegRNA or epegRNA:

HBEGF Glu141His
(pegRNA)

GACCCGGGTTACCATGGAGAGGTTTTAGAGCTAGAAATAGCAAGTT
AAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGGACCGAGTC
GGTCCATGACACCTGTGTCCATGGTAACCCG

HBEGF Glu141His
(epegRNA)

GACCCGGGTTACCATGGAGAGGTTTTAGAGCTAGAAATAGCAAGTT
AAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGGACCGAGTC
GGTCCATGACACCTGTGTCCATGGTAACCCGCGCGGTTCTATCTAGT
TACGCGTTAAACCAACTAGAA

Table 2.10: epegRNAs used in toxin-based prime editing enrichment experiments. The
sgRNA scaffold is shown in bold.

The resulting vector contained the HBEGF-targeting pegRNA under the control of a mU6
promoter and a dual BsmBI cloning site following the human U6 promoter, allowing the
cloning of pegRNAs of interest.

2.9.2 Toxin-based enrichment of prime edited cells
For toxin-based prime editing enrichment experiments, cells were infected with the
dual-pegRNA constructs and selected with 3 μg/mL puromycin between days 2 and 4. On
day 9 after transduction, cells were treated with 20 ng/mL diphtheria toxin (Merck, #D0564)
until final cell harvest on day 15.
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Chapter III: Base editing scanning screens
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3.1 Contributions
I designed, conducted and analyzed all the experiments presented in this chapter. I also
wrote all computational pipelines used for library design and screen analysis. External
packages and code used for data analysis are referenced in the method section.

The Genomics Facility Basel (Christian Beisel, Mirjam Feldkamp, Erika Gröflin-Schürch,
Ina Nissen-Naidanow, Elodie Vogel Burcklen) quantified, pooled and loaded all deep
sequencing libraries.

Dr. Alessio Strano, Dr. Georgios Kalamakis and Prof. Dr. Randall J. Platt proofread this
chapter.

Prof. Dr. Randall J. Platt proposed the initial project idea, provided fundings and
contributed intellectually throughout the progress of this project with supervision and
guidance.

3.2 Introduction
Assessing the pathogenicity of EGFR variants in high-throughput requires experimental
models enabling the linkage of genotype to phenotype. EGFR variants are generally
overexpressed in murine cell lines like Ba/F3 and NIH/3T3 which present the advantage of
acquiring measurable growth phenotypes in response to EGFR signaling. However, these
cell lines do not recapitulate the cellular context of human cancer, thus potentially missing
important interactions and regulation mechanisms. In addition, exogenous delivery of EGFR
does not accurately replicate its physiological expression level and genomic context.

In this chapter, we set out to use base editing to assess EGFR variant pathogenicity in the
genome of human cells while preserving endogenous expression levels. To this end, a first
step is the identification of human cell lines that endogenously express wild-type EGFR and
whose proliferation is dependent on its signaling. The cell lines under consideration should
not harbor mutations in other oncogenes that confer intrinsic resistance to TKIs, nor should
they exhibit significant EGFR copy number amplification, a common occurrence in cancer
cell lines (319). Indeed, the ideal cellular model should have as few copies of EGFR as
possible to allow for reproducible genomic engineering of EGFR variants and quantitative
measurement of their associated phenotype.

Various cell lines derived from cancer, particularly NSCLC, are commercially available. An
example is NCl-H1299 which is derived from a lung carcinoma and harbors WT EGFR.
EGFRLeu858Arg overexpression in this cell line was shown to confer a growth advantage in
colony formation assays (320) and increased EGFR tyrosine phosphorylation (321).
However, these exhibit a significant tolerance to TKIs regardless of the expressed EGFR
variant, suggesting the existence of an EGFR-independent resistance mechanism. Another
example is the NCl-H2073 line which harbors WT EGFR and was shown to be sensitive to
different TKIs as measured by relative proliferation rates (289). The introduction of EGFR
exon 20 insertions in the genome of these cells was shown to confer them a growth
advantage under serum deprivation. However, they show very slow growth, thus
complicating their expansion for large-scale experiments (322).
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MCF10A is a spontaneously immortalized epithelial cell line isolated from a benign
mammary tumor. These cells represent an attractive model because they express wild type
EGFR and rely on its signaling for growth. Indeed, MCF10A cells overexpressing
hyperactive EGFR variants have been shown to proliferate in the absence of EGF
supplementation while cells expressing WT EGFR remain quiescent (323). Additionally,
MCF10A are intrinsically sensitive to multiple TKIs and can be further sensitized or acquire
resistance through the expression of EGFR mutations like Leu858Arg or Thr790Met,
respectively (324). Lastly, unlike many cancer cell lines, MCF10A cells are near-diploid and
show no copy number amplification of EGFR, making them an ideal model for gene editing
(325).

Many base editors have been developed with different nucleotide specificities and editing
windows (154). For our base editing scanning experiment, we decided to evaluate a cytosine
base editor (CBE) and an adenine base editor (ABE), which represent the most established
categories of base editors to date. ABE8e is the most recent enzyme in the ABE family,
displaying higher overall efficiency and uniform editing across its editing window in
comparison to earlier iterations (326). Similarly, BE4max has been optimized for increased
nuclear localization and activity (327). However, the similar BE3.9Max, which contains a
single uracil DNA glycosylase inhibitor domain instead of two, has been shown to outperform
BE4max at capturing essential genes in a screening context (145).

In this chapter, we thus set out to perform ABE8e and BE3.9max scanning screens using an
sgRNA library tiling the full EGFR coding region. We envisioned that introducing EGFR
activating mutations in the genome of MCF10A cells could make edited cells
EGF-independent. Consequently, these cells would outcompete unedited cells when
deprived of EGF, thereby enabling the connection of genotype to phenotype in a pooled
screen. This approach then enabled the assessment of the relative sensitivities of the
considered variants to clinically approved TKIs and identified drug-resistant mutations.
Lastly, we transposed our screen to a NSCLC cell line harboring an hyperactive EGFR
variant and identified cell line-specific drug-resistant variants.

3.3 Pathogenic EGFR variant modeling in MCF10A cells
First, we evaluated base editing efficiency in MCF10A cells by lentiviral delivery of
BE3.9max or ABE8e along with an sgRNA predicted to mutate the “gatekeeper” residue
Thr790. Illumina sequencing of the target exon revealed efficient editing at the target site
with 97% or 95% of reads containing at least one base change 6 days after infection for
BE3.9max or ABE8e, respectively (Figure 3.1). Although the total fraction of edited alleles
remained stable over time, the relative proportions of editing products varied between day 6
and day 13 with alleles containing 2 or 3 edits being enriched as opposed to single edits.
This is likely explained by sequential base editing of less preferred collateral bases through
time as the preferred base conversion has already been installed on most alleles. This
potentially complicates the accurate prediction of variant effects, but on the other hand also
serves to broaden the mutational spectrum that can be assessed in a single experiment. We
thus next set out to leverage CBE and ABE base editors to explore the EGFR variant
landscape in MCF10A cells.
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Figure 3.1: Validation of ABE8e and BE3.9Max editing efficiencies in MCF10A cells.
Editing efficiencies and read distributions from base editing experiments in MCF10A. An
sgRNA targeting Thr790 was delivered with BE3.9Max (n =3) or ABE8e (n =2), target
sequencing was performed on day 6 and day 13 after lentiviral infection. Edited nucleotides
and amino acids are shown in red, black boxes show unedited sequences.

After confirming the ability of BE3.9Max to install the Thr790Met amino acid substitution in
EGFR, we set out to determine whether this mutation confers TKI resistance to cells. We
thus repeated the CBE experiment in MCF10A cells, this time subjecting the cells to Gefitinib
treatment for 7 days before deep sequencing. By comparing read proportions between the
treated and untreated arms, we observed significant enrichment of reads containing
Thr790Met under drug treatment. By contrast, wild-type alleles were significantly depleted,
confirming that unedited cells grow slower in presence of Gefitinib.
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Figure 3.2: The introduction of Thr790Met by base editing confers TKI resistance to
MCF10A cells. MCF10A cells were infected in triplicates with a lentiviral vector expressing
BE3.9Max and an sgRNA predicted to introduce the Thr790Met amino acid substitution.
Relative proportions of the top four deep sequencing reads at the target site are shown for
non-treated controls and cells treated with Gefitinib for 7 days. Edited nucleotides and amino
acids are shown in red, black boxes show WT EGFR sequences and p-values are shown for
two-sided unpaired t-tests with Holm correction.

We thus confirmed the ability of ABE8e and BE3.9Max to efficiently introduce mutations in
the genome of MCF10A cells as well as to elicit measurable phenotypes in this cell line with
regard to TKI drug resistance.

3.4 Identification of EGFR loss of function variants
To assess the pathogenicity of a spectrum of EGFR mutations, we designed a base editing
variant scanning library composed of 1496 unique sgRNAs targeting all EGFR exons (Figure
3.3A). We also included 200 sgRNAs targeting an EGFR intronic region and 206
non-targeting sgRNAs as negative controls, as well as 103 sgRNAs targeting splice sites of
essential genes as positive editing controls. In order to explore a broad range of genetic
variants accessible via base editing, we cloned this library under the control of a U6
promoter in two different lentiviral backbones expressing either ABE8e or BE3.9max. The
two resulting all-in-one base editing libraries were quantified by Illumina sequencing and
showed no drop-outs as well as a narrow sgRNA distribution with skew ratios of 1.6
(Supplementary Figure S3.1, Supplementary Figure S3.2).
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Figure 3.3: Base editing scanning screens design. (A) Schematic of the base editing
mutational scanning approach applied to EGFR. (B) Overview of the base editing constructs
and workflow to identify activating EGFR mutations. All-in-one base editing libraries were
delivered to MCF10A cells in duplicate. Cells were split into non-treated and EGF-deprived
treatment arms on day 11 and final harvest was performed on day 19.

We then delivered both libraries to MCF10A cells via lentiviral infection (Figure 3.3B). Each
infection was performed in duplicate at a multiplicity of infection (MOI) of 0.3 with an average
coverage of 500 cells per sgRNA. After puromycin selection of transduced cells and EGF
deprivation, genomic DNA was extracted and sgRNA libraries were prepared and
sequenced while ensuring appropriate coverage and depth. The sgRNA counts were
quantified from sequencing data using a custom script and normalized to non-targeting
sgRNAs with MAGeCK (317). We then confirmed library coverage and replicate correlation
at every time point (Supplementary Figure S3.1, Supplementary Figure S3.2), overall
indicating a robust dataset warranting further analysis.

We started our analysis by comparing the relative abundances of sgRNAs between the
plasmid library and late (day 19) timepoint in the non-treated arm, which should reveal
sgRNAs that impact MCF10A viability. As expected, we observed no change in the
non-targeting negative control sgRNAs but a strong depletion of gene editing positive control
sgRNAs targeting splice sites of essential genes with both base editors (Figure 3.4). ABE8e
and BE3.9Max screens distinguished between essential splice site controls and other
sgRNAs with area under the curve (AUC)s of 0.9 and 0.94, respectively (Supplementary
Figure S3.3) confirming the ability of our pooled library to efficiently introduce edits and elicit
measurable phenotypes.
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Figure 3.4: Impact of individual sgRNAs on cell viability for the base editing EGFR
activation screen in MCF10A cells. Log fold changes of individual sgRNAs between
plasmid and day 19 (non-treated) for each sgRNA target category and predicted mutation
type.

Encouragingly, multiple sgRNAs predicted to introduce splice site, nonsense, and missense
mutations in EGFR were significantly depleted at day 19 with both base editors. Loss of
function (LOF) genetic variants are indeed expected to impact the viability of MCF10A cells,
which rely on EGFR signaling for growth. Together, these data confirm efficient base editing
of endogenous loci in MCF10A cells and our capacity to robustly detect LOF variants in
EGFR.

3.5 Identification of oncogenic EGFR variants
Towards identifying pathogenic EGFR variants that lead to constitutive EGFR signaling in
MCF10A cells, we compared sgRNA library distributions in non-treated and EGF-deprived
cells. This analysis revealed a spectrum of enriched and depleted EGFR variants, largely
localized to specific functional protein domains (Figure 3.5).
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Figure 3.5: Loss-of-function EGFR variants act as confounders in EGF-independent
growth screens. Scatterplot showing the log fold changes (LFC) of individual sgRNAs along
the EGFR protein between non-treated and EGF-deprived cells. Log-fold changes between
the plasmid library and non-treated cells on day 19 are shown in color gradients.
Background colors represent EGFR domains.

Among the set of sgRNAs enriched in the EGF-deprived condition, we observed some of the
sgRNAs previously identified to impact cell viability. Examples include variants predicted to
lead to protein truncation through splice site mutations like Exon9(+2)[ABE8e] or
Exon14(+2)[ABE8e], as well as Ile853Thr[ABE8e] which has been shown to abolish EGFR
kinase activity and autophosphorylation in response to EGF stimulation (328). In addition, we
observed that sgRNAs targeting essential splice sites appear enriched under EGF
deprivation and that this enrichment seems to correlate with their impact on cell viability
(Supplementary Figure S3.4). Taken together, these findings suggest that cells with
decreased viability are outgrown more rapidly by healthy cells in non-treated samples, thus
making them appear enriched in EGF-deprived samples.

To focus our analysis on activating mutations in EGFR and avoid biasing our results towards
confounding LOF variants impacting MCF10A viability, we chose to only look at variants
preserving cell viability in the presence of EGF. Namely, all sgRNAs with a log fold change
(LFC) inferior to -0.6 when comparing plasmid and late timepoints were excluded in order to
leave out >99% of essential splice site controls (Figure 3.6, Supplementary Figure S3.4).
This approach identified 19 hits that, while spanning the protein, mostly localized to the
tyrosine kinase domain, which is responsible for EGFR autophosphorylation and contains
the residues most commonly mutated in NSCLC. Of the 19 hits, 10 were found in ClinVar
and labeled as either pathogenic (2) or VUS (8). A further 2 were found in COSMIC and 7
were not listed in either database (Table 3.1).
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Figure 3.6: Base editing scanning screens identify EGFR activating mutations in
MCF10A cells. Diagram showing combined ABE8e and BE3.9Max screen hits along the
EGFR protein. Hits are defined as sgRNAs with LFC > -0.6 between plasmid and day 19 and
LFC > 0.3 between non-treated and EGF-deprived cells. Colors represent the classification
of the predicted amino acid changes, the COSMIC category is only shown if the mutation is
not listed in ClinVar.

Our screen identified well known pathogenic variants like Thr790Met and Pro596Ser which
are both reported as pathogenic in ClinVar. Surprisingly, the majority of other hits introduce
mutations that were previously observed in tumor samples but are currently not considered
as pathogenic. For example, Ser720Phe is absent from ClinVar but was previously observed
in NSCLC patients (329,330) and is adjacent to Gly719 which is a commonly mutated
residue in the kinase domain (296). Several additional hits not considered as pathogenic
such as Val765Ile[BE3.9Max] and Val769Ile,Ser768Asn[BE3.9Max] affect the αC helix and
the αC-β4 loop which are a key regulatory structures for the activation of this domain.
Notably, Ser768 and Val769 are conserved residues within the Erbb family which
respectively interact with residues of the juxta-membrane region and C-lobe to stabilize the
active conformation of the αC helix (331,332). In addition, Ser768 phosphorylation by
CAMK2 inhibits EGFR activity and multiple substitutions of this residue like Ser768Ile are
known to activate the receptor and confer drug resistance (332,333).
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Interestingly, the co-occurence of certain screen hits provides insights into the role of
autoregulation and phosphorylation in EGFR activation. For example, Asp587 and Lys609
are known to form a salt bridge further stabilized by a loop containing Pro596. This
interaction is known to contribute to the auto-inhibitory conformation of the inactive receptor
(334), suggesting that its disruption may favor EGFR constitutive activation and constitute a
mechanism of transformation. As another example, Ile715Val,Lys716Gly[ABE8e] impacts the
Lys716 ubiquitination site (340,341) and Tyr727Cys,Lys728Glu[ABE8] contains a
phosphorylation site (337), suggesting a role of these post-translational modifications in
EGFR regulation and stability.

Our most surprising result was a cluster of hits found in the C-terminal tail. Among them, we
found two Exon 25 splice donor mutations predicted to lead to the C-terminal truncation of
the receptor after Exon 25 (EGFRΔEx26-28). Although the autophosphorylation of this
domain is essential for signal transduction of WT EGFR stimulated with EGF, it appears not
to be required for the downstream signaling of mutant EGFR canonically associated with
oncogenesis (348). On the other hand, different truncated EGFR variants have been
identified in glioblastoma (343,344), but not NSCLC, and have been reported to be
associated with increased receptor activation due to the loss of an auto-inhibitory region of
the C-terminal tail (345,349). Another study showed the activating potential of
EGFRΔEx26-28 in NIH-3T3 cells which is thought to be due to the role of the C-terminal tail
in receptor internalization and degradation (345).

In order to validate that C-terminal truncations lead to EGFR activation, we delivered one of
the Exon 25 truncating sgRNAs into MCF10A cells and let selected cells grow in the
absence of EGF for 5 days before measuring their viability (Figure 3.7A). We observed that
infected cells edited to express EGFRΔEx26-28 displayed significantly higher
EGF-independent growth compared to uninfected cells, validating the base editing screen
result. To further confirm that the EGFR splice site mutation was driving the observed
EGF-independent growth, we then sequenced the exon 25 target site of infected cells and
compared read distributions between EGFR-deprived and non-treated samples (Figure
3.7B). In the treated arm, we observed a significant depletion of reads with a wild-type splice
site while the two alleles with mutated splice sites appeared enriched.
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Figure 3.7: EGFR activation screen hits validation. (A) Viability comparison between
non-infected cells and cells infected with a sgRNA introducing the
Leu1038Leu,Exon25+1[BE3.9Max] mutation as measured by the CellTiter Glo 2.0 assay
after 5 days of EGF deprivation. Relative luminescence intensities are compared to
non-treated cells seeded at the same time and shown with unpaired t-test p-value (n= 3). (B)
Deep sequencing data for Leu1038Leu,Exon25+1[BE3.9Max] hit validation. Relative
proportions of the top four deep sequencing reads at the target site are shown for
non-treated controls and EGF-deprived cells after 7 days of selection (n= 3). Edited
nucleotides and amino acids are highlighted, black boxes show WT EGFR sequences and
p-values are shown for two-sided unpaired t-tests with Holm correction.

Taken together, these results demonstrate the ability of base editing mutational scanning to
identify known and unknown EGFR activating variants. Notably, in spite of the limited
mutational spectrum introduced by each base editor, our screens identified key domains,
residues and post-translational modifications likely involved in receptor regulation and
stability. Additionally, using plasmid libraries as a reference, we successfully identified EGFR
LOF variants that confound the measured phenotype, thus highlighting the importance to
systematically evaluate variant fitness when assessing relative cell proliferation in a pooled
manner. In conclusion, base editing scanning screens in the MCF10A cell line offer new
opportunities to interrogate multiple aspects of EGFR biology, including structural variants,
and broaden the spectrum of likely pathogenic mutations.
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3.6 Drug-resistant variant discovery in MCF10A cells
Encouraged by these results, we then set out to expand our screening approach to evaluate
the sensitivity of EGFR variants to clinically-approved TKIs in the MCF10A cell line. We thus
repeated both base editing screens in the same conditions but replaced the EGF depletion
arm with either Gefitinib or Osimertinib treatments, which are first- and third-generation TKIs,
respectively (Figure 3.8). Both compounds compete with ATP for binding to the tyrosine
kinase active site but employ distinct inhibition mechanisms (244,257). We thus set out to
apply our base editing mutational scanning approach to dissect drug-specific resistance
profiles.

Figure 3.8:   Base editing scanning screen for TKI drug resistance. Overview of the base
editing constructs and workflow to identify EGFR variants resistant or sensitive to
clinically-approved TKIs Gefitinib or Osimertinib. All-in-one base editing libraries were
delivered to MCF10A cells in duplicate. Cells were split into three treatment arms on day 11:
non-treated, 0.13μM Gefitinib or 0.3μM Osimertinib. Final harvest was performed on day 19.

We delivered the BE3.9Max and ABE8e EGFR variant scanning libraries to MCF10A cells at
MOIs of 0.3 and selected for infected cells with puromycin. We then applied Osimertinib or
Gefitinib treatment for 8 days before sgRNA library preparation and sequencing. Library
quantification was performed as previously and we confirmed high replicate correlation
(Supplementary Figure 3.5, Supplementary Figure 3.6).
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Figure 3.9: Base editing scanning screens identify EGFR variants resistant to first-
and third-generation tyrosine kinase inhibitors. (A) Scatterplot showing the log fold
changes (LFC) of individual sgRNAs between non-treated and drug-treated cells. Log-fold
changes between the plasmid library and non-treated cells on day 19 are shown in color
gradients. Background colors represent EGFR domains. (B) Diagram showing combined
ABE8e and BE3.9Max screen hits along the EGFR tyrosine kinase and C-terminal domains
for cells treated with Gefitinib or Osimertinib. Hits are defined as sgRNAs with LFC > -1.5
between plasmid and day 19 and LFC > 0.75 between non-treated and TKI-treated cells.
Notable post-translational modifications and intramolecular interactions are shown.
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We started our analysis by comparing sgRNA enrichment between treated and non-treated
samples while accounting for variant fitness (Figure 3.9A, Supplementary Figure S3.7).
Encouragingly, we observed that with both drug treatments a majority of significantly
enriched hits were located in the tyrosine kinase domain and included well known
drug-resistant variants. For example, Thr790Met is known as the most prevalent
Gefitinib-resistant variant and we observed a strong enrichment of the
Thr790Met,Gln791Ter[BE3.9Max] sgRNA under Gefitinib treatment. Importantly, this same
variant is not enriched under Osimertinib treatment, which is expected as this molecule was
specifically developed to counter its emergence. Unexpectedly, Osimertinib selection led to
the enrichment of different predicted variants at the same position, namely
Thr790Ala,Gln791Arg[ABE8e]. We thus set out to validate this result in a follow-up
experiment and measured the viability of MCF10A cells infected with individual sgRNA and
base editor pairs followed by TKI treatment for 5 days (Figure 3.10). As predicted by the
screen, cells infected with Thr790Ala,Gln791Arg[ABE8e] showed higher resistance to
Osimertinib than to Gefitinib while Thr790Met,Gln791Ter[BE3.9Max] showed the opposite
resistance profile. This confirms both the specificity and sensitivity of our base editing variant
screening approach and highlights the need to understand drug resistance at single base
resolution.

Figure 3.10: TKI response validation of drug resistance screen hits in MCF10A cells.
Relative viabilities of edited and unedited MCF10A cells after (A) Gefitinib or (B) Osimertinib
treatment as measured by the CellTiter Glo assay. Cells were infected in triplicates and
treated for 5 days with 0, 0.15, 0.3, 0.6, 1.2 or 2.4 μM of the respective drug before viability
measurements. Shaded areas represent the standard error.
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Under Gefitinib selection, all enriched screen hits were located in the tyrosine kinase domain
and more specifically around the ATP binding pocket which constitutes the binding site of
both drugs (Figure 3.9B, Table 3.2). In addition to the Thr790 gatekeeper residue, we
identified previously unknown resistant mutations found to affect Val726, Met766 and
Thr854, which are all in direct contact with the receptor-bound molecule (Figure 3.11A). We
can thus speculate that mutating these residues can directly affect the binding affinity of
Gefitinib. Importantly, Thr854Ala is classified as VUS although it has been observed as an
acquired resistant mutation in NSCLC patients treated with first-generation TKIs (350).
Similarly, Val726Met is not listed in either database while Met766Thr has been shown to be
resistant to Gefitinib in vitro but is not listed in ClinVar (351). To validate this hit, we delivered
a lentiviral construct containing the Met766Thr[ABE8e] sgRNA to MCF10A cells and treated
them with Gefitinib for 7 days, similarly to the screening protocol. Illumina sequencing of the
target exon revealed a significant enrichment of reads containing the Met766Thr edit under
Gefitinib treatment while wild-type alleles were depleted, thus confirming the resistance
phenotype (Figure 3.11B).

Similarly to EGFR activation, our Gefitinib resistance screens also identified hits located in
the αC-helix like Tyr764His[ABE8e] and Val765Ala[ABE8e] which are not listed in variant
databases although both residues are frequently affected by exon 20 insertions. Likewise,
Val769Ile,Ser768Asn[BE3.9Max] was previously found to lead to EGFR activation by
affecting residues involved in αC-helix stabilization and rotation. These results thus confirm
the critical role of the αC helix positioning in both EGFR activation and sensitivity to TKIs.
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Figure 3.11: MCF10A Gefitinib resistance screens hits and validation. (A) 3D structures
of the EGFR tyrosine kinase domain in complex with Gefitinib (PDB #2ITY) as visualized in
PyMol. The carbon backbones of amino acids impacted by screen hits are shown in green
and that of the Gefitinib molecule in gray. The relative positions of screen hits around the
ATP-binding pocket are shown on the right. (B) Drug resistance screen validation in
MCF10A cells. Cells were infected with a lentiviral construct expressing the
Met766Thr[ABE8e] sgRNA (n= 3). After six days, cells were split into an untreated control
and a Gefitinib-treated arm and incubated for 7 days before final harvest. The percentages
of reads corresponding to the three most represented alleles are shown for non-treated and
drug-treated cells. Edited nucleotides and amino acids are highlighted, black boxes show
WT EGFR sequences and p-values are shown for two-sided unpaired t-tests with Holm
correction.
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Similarly to Gefitinib, the top three hits for Osimertinib affect residues found in the ATP
binding pocket of the tyrosine kinase domain (Figure 3.9B, Figure 3.12A, Table 3.3). For
example, Val845Ala[ABE8e] interacts with the Phe795 and Gly796 residues adjacent to
Cys797 which is the Osimertinib covalent binding site, hinting at a resistance mechanism
involving this residue. Although this mutation is not listed in ClinVar, the similar Val845Leu
variant has conflicting reports of pathogenicity in the database. We thus set out to confirm
this phenotype by individual sgRNA delivery and target exon sequencing after drug
treatment. This revealed the enrichment of the Val845Ala edit and a strong depletion of
wild-type alleles under Osimertinib selection, thus validating the resistance phenotype
conferred by this variant (Figure 3.12B).

The remaining hits are found throughout the tyrosine kinase and C-terminal domains,
highlighting distinct EGFR regulation mechanisms. For example, enriched sgRNAs are found
to affect Lys852 and Gln791 which interact with each other in the Osimertinib-bound receptor
to form a hydrogen-bond network with residues Asp1012 and Asp1014 of the C-terminal
domain. Neither of these variations are listed in ClinVar although perturbing this network by
replacing Gln791 with a hydrophobic residue has been predicted to destabilize Osimertinib
binding (353). Interestingly, in the inactive conformation, Lys852 is also known to directly
interact with another hit, Glu1005, which is part of a C-terminal “electrostatic hook” that
inhibits the kinase domain activity. Mutating Glu1005 and Asp1006 has been shown to
increase the activity of unstimulated EGFR in vitro, thus potentially promoting the observed
resistance phenotype (188).

Lastly, our screen identified individual residues involved in important post-translational
modification sites. Notably, Cys781Tyr[BE3.9Max] impacts a palmitoylation site involved in
EGFR localisation at the plasma membrane (359) while Tyr1069Cys,Ser1070Gly[ABE8e]
affects the Tyr1069 residue whose phosphorylation recruits the c-Cbl E3 ubiquitin ligase,
leading to EGFR internalization and degradation (202,360). These discoveries are
particularly significant as these modifications and their modulation can constitute novel drug
targets.

Taken together, the base editing variant scanning results highlight key intra-molecular
interactions between EGFR residues involved in enzymatic activity regulation, resulting in
new and intricate insights into drug-dependent resistance mechanisms. Interestingly, while
top resistant mutations for both drugs are found in the ATP-binding pocket,
Osimertinib-resistant hits are also found in the C-terminal domain, hinting at both shared and
divergent resistance mechanisms between the drugs. These insights, substantiated by
clinical validation, may in the future help clinical decision making.
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Figure 3.12: MCF10A Osimertinib resistance screens hits and validation. (A) 3D
structures of the EGFR tyrosine kinase domain in complex with Osimertinib (PDB #6JXT) as
visualized in PyMol. Hits are shown in green and the Osimertinib molecules in gray. The
relative positions of screen hits around the ATP-binding pocket are shown on the right. (B)
Drug resistance screen validation in MCF10A cells. Cells were infected with the
Val845Ala[ABE8e] sgRNA (n= 3) and treated with Osimertinib. The percentages of reads
corresponding to the four most represented alleles are shown for non-treated and
drug-treated cells. Edited nucleotides and amino acids are highlighted, black boxes show
WT EGFR sequences and p-values are shown for two-sided unpaired t-tests with Holm
correction.
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3.7 Variant scanning can guide drug prioritization
In addition to drug-resistant variants, our screening data also identified variants that are
significantly depleted under drug selection and likely increase drug sensitivity. When
comparing the log fold changes of each sgRNA-base editor pair under Gefitinib and
Osimertinib selection, we thus observed that variant sensitivities vary between both drugs
with some mutations leading to opposite effects (Figure 3.13). For example,
Val845Ala[ABE8e] appeared strongly resistant to Osimertinib but sensitive to Gefitinib. On
the other hand, other variants like Val726Ala[ABE8e], Val769Ala[ABE8e] and
Met766Thr[ABE8e] appeared to confer different levels of resistance to Gefitinib but to be
sensitive to Osimertinib. All of these variants are located within the ATP binding pocket,
which suggests that their differential drug sensitivities resulted from specific direct
interactions with each molecule.

Figure 3.13: Base editing scanning screens identifies EGFR variants with different
sensitivities to Gefitinib and Osimertinib. Scatterplots comparing the log fold changes of
sgRNAs in cells treated with either drug for each base editor. Non-targeting and essential
splice site controls are not shown as well as sgRNAs with log fold changes < -1.5 between
plasmid and day 19.

We also identified variants that appeared to be resistant to both drugs, such as
Lys852Gly[ABE8e], which is currently not listed in ClinVar or COSMIC. Lys852 is known to
interact with Gln791 and residues of the C-terminal tail and to contribute to EGFR
auto-inhibition. This thus suggests that common resistance mechanisms can emerge from
the disruption of auto-inhibition mechanisms, warranting further investigations of this residue.
Taken together, these results provide new insights into EGFR variant-dependent drug
sensitivities, which may in the future help guide therapeutic decisions for clinicians faced
with EGFR variants for which clinical data are currently absent.
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3.8 Drug sensitivity profiles vary between primary and
secondary EGFR mutations
In cancer patients, TKIs are used to counteract the activity of hyperactive EGFR mutants,
such as the common Leu858Arg substitution or Exon 19 deletion before drug resistance
emerges (286). We thus set out to apply our base editing variant scanning pipeline to
evaluate the impact of secondary EGFR mutations on drug sensitivity in the NSCLC-derived
PC-9 cell line. These cells are sensitive to TKIs and harbor EGFR ΔGlu746-Ala750 which is
the most prevalent EGFR deletion in lung cancer (330). Additionally, the introduction of the
Thr790Met variant in PC-9 cells with base editing has previously been shown to lead to a
strong Gefitinib resistance phenotype (367). We thus performed a base editing scanning
screen using the same EGFR-targeted sgRNA library and experimental and computational
workflows as demonstrated for MCF10A cells.

We started our analysis by comparing sgRNA counts between plasmid and day 19
conditions and confirming high replicate correlation, no shift in the negative control sgRNA
population, and the depletion of positive control sgRNAs targeting essential splice sites
(Supplementary Figure S3.8, Supplementary Figure S3.9, Supplementary Figure S3.10). As
was the case in MCF10A cells, in EGFR-mutant PC-9 cells we also identified a spectrum of
EGFR secondary mutations imparting fitness effects. While many of the fitness-altering
mutations were shared between MCF10A and PC-9 cells, we identified unique subsets for
each cell line (Figure 3.14). Interestingly, tyrosine kinase variants appear to have a stronger
impact on viability in EGFR mutant PC-9 compared to EGFR wild-type MCF10A cells. We
speculate that this could be due to a diminished tolerance of the mutant receptor to further
mutations or to oncogene addiction in PC-9 cells, making them more sensitive to variations
in EGFR activity.

Figure 3.14: EGFR-targeting sgRNAs have different impacts on cell viability in
MCF10A and PC-9 cells. Comparisons of log fold changes between plasmid and day 19
samples in MCF10A and PC-9 cells. sgRNAs targeting essential splice sites and
non-targeting controls are not shown.
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Next, we set out to characterize the impact of EGFR secondary mutations on TKI drug
resistance (Figure 3.15, Supplementary Figure S3.11). Similarly to MCF10A cells, we
observed that the most enriched Gefitinib-resistant hits are located in the tyrosine kinase
domain while top Osimertinib hits span both the tyrosine kinase and the C-terminal domains.

Figure 3.15: Base editing mutational scanning screens identify drug-resistant EGFR
variants in PC-9 cells. Scatterplot showing the log fold changes of individual sgRNAs along
the EGFR protein between non-treated and drug-treated cells for each base editor and drug
treatment. Log-fold changes between the plasmid library and non-treated cells on day 19 are
shown in color gradients. Background colors represent EGFR domains.

We thus continued our analysis by comparing shared hits between both cell lines. While this
revealed a broad-range of shared and distinct variants spanning EGFR, we noticed that the
most commonly impacted positions appeared to be the same regardless of the initial EGFR
genotype (Figure 3.16). For example, in both cell lines, Thr790Met,Gln791Ter[BE3.9Max],
Ile853Val,Thr854Ala[ABE8e], and His773Arg[ABE8e] are enriched under Gefitinib treatment
while Thr790Ala,Gln791Arg[ABE8e] and Val845Ala[ABE8e] are enriched with Osimertinib.
To confirm a selection of these insights, we delivered the Ile853Val,Thr854Ala[ABE8e] or
His773Arg[ABE8e] sgRNAs to PC-9 cells and treated infected cells with Gefitinib or
Osimertinib for 7 days. Illumina sequencing of the targeted region revealed that with both
sgRNAs, reads corresponding to the unedited alleles were strongly depleted under drug
treatment, thus confirming efficient growth inhibition of unedited cells relatively to edited
ones (Figure 3.17).
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By contrast, we observed an enrichment of reads containing the His773Arg edit with both
drugs although this enrichment was not statistically significant in the case of Gefitinib.
Furthermore, in Ile853Val,Thr854Ala[ABE8e] samples, reads containing the Thr854Ala edit
but not Ile853Val alone appeared enriched under Gefitinib selection, confirming that
Thr854Ala is the driver of the observed resistance phenotype. On the contrary, both
Ile853Val and Thr854Ala edits appeared to be required for Osimertinib resistance,
warranting further mechanistic investigations.

Figure 3.16: Base editing mutational scanning screens identifies EGFR variants with
differential drug sensitivities. Scatterplots comparing the log fold changes of sgRNAs in
MCF10A (EGFR WT) and PC-9 (EGFR ΔGlu746-Ala750) cell lines treated with Gefitinib or
Osimertinib. sgRNAs with LFC < -1.5 between plasmid and day 19 in PC-9 cells are shown
in gray. Non-targeting and essential splice site controls are not shown.
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Finally, we compared sgRNAs that were differentially enriched across the two cell lines. For
example, Thr790Ala,Gln791Arg[ABE8e] and Gly719Gly,Ser720Phe[BE3.9max] appeared to
only confer Gefitinib resistance in PC-9 cells but not in MCF10A, suggesting the existence of
different tyrosine kinase conformations and ligand interactions in the two cell lines. In a
follow-up experiment, we delivered the Gly719Gly,Ser720Phe[BE3.9max] sgRNA to PC-9
cells and identified a diverse array of complex products including non-canonical C-to-G edits
(Figure 3.17). Among these, only Ser720Phe appeared potentially enriched under drug
selection. However, the observed difference between treatment arms was insufficient to
conclude on a statistically significant effect. This result thus warrants further investigation,
possibly with longer selection times or gene editing approaches generating less complex
products, to evaluate Ser720Phe resistance to Gefitinib and Osimertinib in this cellular
context.

Surprisingly, with both drugs and both base editors, we noticed the enrichment of sgRNAs
predicted to impact the Exon 25 splice donor and leading to the EGFRΔEx26-28 truncation.
Interestingly, this truncation was found to drive EGFR activation in our MCF10A screen.
However, it appears to confer drug resistance only in PC-9 cells, hinting at a resistance
mechanism requiring previous receptor hyperactivation or a specific receptor conformation
resulting from the ΔGlu746-Ala750 deletion. Single gRNA follow-up experiments confirmed a
significant enrichment of edited alleles with mutated splice donor site under both drug
treatments (Figure 3.17). Taken together, these data confirm that the secondary truncation of
a constitutively active EGFR variant such as EGFRΔ746-750 is able to maintain its
downstream signaling and might constitute a mechanism of resistance to TKIs.

Together, these results highlight the importance of evaluating drug resistance variants in
relevant genomic contexts, including pre-existing EGFR mutations, and confirm the
relevance of direct sequencing to validate base editor screen hits.
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Figure 3.17: Deep sequencing data for individual sgRNA validation in PC-9 cells. PC-9
cells were infected with the indicated sgRNAs and treated with Gefitinib (n= 3) or Osimertinib
(n= 3, for Gly719Gly,Ser720Phe[BE3.9Max] n= 2). The percentages of reads corresponding
to the four most represented alleles at each target site are shown for non-treated and
drug-treated cells. Edited nucleotides and amino acids are highlighted, black boxes show
WT EGFR sequences and p-values are shown for two-sided unpaired t-tests with Holm
correction.
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3.9 Conclusion
In this chapter, we performed complementary base editing scanning screens in the EGFR
gene using cytosine and adenine base editors. We first applied our approach in MCF10A
cells harboring WT EGFR and uncovered known and unknown variants leading to
EGF-independent growth. Encouragingly, many of our screen hits were located in the
tyrosine kinase domain, as frequently observed in NSCLC. However, we also identified
activating variants in the extracellular domain which are more typical of GBM, confirming the
validity of MCF10A to study EGFR variants in their globality. Although most of our hits are
currently not listed in ClinVar or classified as VUS, our data uncovered key protein residues
and structures involved in receptor regulation, indicating that these may be bona fide
oncogenic mutations. Using plasmid library distribution data as a reference, we also
identified EGFR LOF mutations that appeared artificially enriched in activation and drug
resistance screens. While we speculate that these variants lead to decreased cell viability by
suppressing EGFR signaling, further experiments are needed to determine whether they
lead to cell death or quiescence in our different cell lines. Interestingly, some of these
mutations appeared to be cell line-specific, highlighting the importance of preserving
endogenous expression levels and taking variant fitness into account in screens using cell
proliferation as a read-out.

We then expanded our approach to screen for variant responses to clinically-approved TKIs
in cell lines harbording WT EGFR or the Δ746-750 activating mutations. This uncovered a
spectrum of novel variants leading to distinct drug resistance profiles and hinting at divergent
mechanisms of resistance to first- and third-generation TKIs beyond drug-binding pocket
interactions. Interestingly, the log fold changes observed with ABE8e and BE3.9Max
appeared to consistently follow distinct distributions with ABE8e showing higher variance
across sgRNAs. Since the initial distributions of both libraries are very similar, this could be
explained by differences in editing efficiency, toxicity and mutational spectrum, thus limiting
the direct comparison of screen results between the two enzymes. Furthermore, the
prevalence of sgRNAs introducing multiple edits with diverse phenotypic effects in our
screen prevents the direct correlation of sgRNA enrichment and drug resistance levels. In
their current installment, base editing screens should thus be considered as non-quantitative
discovery tools whose hits should be thoroughly validated by direct target sequencing.

Next, we observed that some variants led to distinct drug sensitivities when introduced in WT
EGFR or cells harboring a pre-existing activating mutation. This highlights the importance of
assessing EGFR variants in different genetic backgrounds to account for the complexity of
primary and secondary mutations found in tumors. Importantly, the direct comparison of
screening results across cell lines could be confounded by various levels of gene copy
number amplifications in cancer lines like PC-9. Furthermore, our validation data in PC-9
cells show the presence of non-canonical edits which were previously shown to be
particularly prevalent in this cell line, thus representing an additional caveat to the
comparison of log fold changes across cell lines (368). In this context, diploid MCF10A cells
likely represent an ideal model for the pre-engineering of different primary mutations like
Leu858Arg in their genome before screening for secondary resistant variants.
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In conclusion, base editing scanning screens provided new insights into EGFR activation
and resistance to clinically approved TKIs that may help clinical decision making in the
future. Our results underscore the need to study EGFR variants in different genomic
contexts which is facilitated by the delivery of all-in-one exon-tiling libraries like the ones
used in this chapter. Currently, the sensitivity of base editing screens is limited by their
restriction to single substitution types and the introduction of bystanders edits. However, the
development of base editors with different mutational profiles and of PAM-relaxed Cas9
enzymes will likely allow for increased variant redundancy and the more comprehensive
discovery and characterisation of EGFR pathogenic variants in human cells.
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3.10 Supplementary figures

Supplementary Figure S3.1: sgRNA library distributions and sample correlations for
the ABE8e EGFR activation screen in MCF10A cells. Normalized reads counts and
Pearson correlation coefficients are shown for all samples
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Supplementary Figure S3.2: sgRNA library distributions and sample correlations for
the BE3.9Max EGFR activation screen in MCF10A cells. Normalized reads counts and
Pearson correlation coefficients are shown for all samples
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Supplementary Figure S3.3: Impact of individual sgRNAs on cell viability for the base
editing EGFR activation screen in MCF10A cells. Receiver operating characteristic (ROC)
curves for each target category or predicted mutation type. Area under the curve (AUC) for
essential splice site sgRNAs are shown in red.
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Supplementary Figure S3.4: Comparison of sgRNA impacts on viability and
EGF-independent growth in the base editing EGFR activation screen in MCF10A cells.
Scatterplot comparing the individual sgRNA log fold changes (LFC) between plasmid and
day 19 and between non-treated and EGF-deprived samples. Negative-log false discovery
rates for EGFR activating sgRNAs are shown. Dashed squares represent the hit inclusion
criteria: LFC (plasmid vs day 19) > -0.6 and LFC (non-treated vs EGFR deprived) > 0.3.
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Supplementary Figure S3.5: sgRNA library distributions and sample correlations for
the ABE8e drug resistance screens in MCF10A cells. Normalized reads counts and
Pearson correlation coefficients are shown for all samples.
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Supplementary Figure S3.6: sgRNA library distributions and sample correlations for
the BE3.9Max drug resistance screens in MCF10A cells. Normalized reads counts and
Pearson correlation coefficients are shown for all samples
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Supplementary Figure S3.7: Comparison of sgRNA impacts on viability and drug
resistance in the base editing drug resistance screens in MCF10A cells. Scatterplot
comparing the individual sgRNA log fold changes (LFC) between plasmid and day 19 and
between non-treated and TKI-treated samples. Negative-log false discovery rates for drug
resistance sgRNAs are shown. Dashed squares represent the hit inclusion criteria: LFC
(plasmid vs day 19) > -1.5 and LFC (non-treated vs TKI-treated) > 0.75.
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Supplementary Figure S3.8: sgRNA library distributions and sample correlations for
the ABE8e drug resistance screens in PC-9 cells. Normalized reads counts and Pearson
correlation coefficients are shown for all samples.
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Supplementary Figure S3.9: sgRNA library distributions and sample correlations for
the BE3.9Max drug resistance screens in PC-9 cells. Normalized reads counts and
Pearson correlation coefficients are shown for all samples.
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Supplementary Figure S3.10: Impact of individual sgRNAs on cell viability for the base
editing EGFR activation screen in PC-9 cells. Log fold changes of individual sgRNAs
between plasmid and day 19 (non-treated) for each sgRNA target category or predicted
mutation type.
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Supplementary Figure S3.11: Comparison of sgRNA impacts on viability and drug
resistance in the base editing drug resistance screens in PC-9 cells. Scatterplot
comparing the individual sgRNA log fold changes (LFC) between plasmid and day 19 and
between non-treated and TKI-treated samples. Negative-log false discovery rates for drug
resistance sgRNAs are shown. Dashed squares represent the hit inclusion criteria: LFC
(plasmid vs day 19) > -1.5 and LFC (non-treated vs TKI-treated) > 0.75.
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Chapter IV: Patient-derived variant screen with
prime editing

86



4.1 Contributions
I designed, conducted and analyzed all the experiments presented in this chapter. I also
wrote all computational pipelines used for library design and screen analysis. External
packages and code used for data analysis are referenced in the method section.

The Genomics Facility Basel (Christian Beisel, Mirjam Feldkamp, Erika Gröflin-Schürch,
Ina Nissen-Naidanow, Elodie Vogel Burcklen) quantified, pooled and loaded all deep
sequencing libraries.

Kyriaki Karava provided help with lentivirus concentration and cell harvesting for the prime
editing screen presented in Figure 4.5. She also conducted the prime editing experiments in
MCF10A cells presented in Figure 4.2 (D-E).

Dr. Rick Farouni provided advice for the statistical analysis and graphical representation of
library distribution data (Figure 4.4).

Dr. Alessio Strano, Dr. Georgios Kalamakis and Prof. Dr. Randall J. Platt proofread this
chapter.

Prof. Dr. Randall J. Platt proposed the initial project idea, provided fundings and
contributed intellectually throughout the progress of this project with supervision and
guidance.

4.2 Introduction
Base editing screens enable the sensitive identification of phenotype-associated variants at
accessible nucleotides but remain limited in the spectrum of mutations they can introduce.
Specifically, ABE8e and BE3.9Max coupled with wild type SpCas9 can mutate only about
53% of all EGFR codons and 67% of codons involved in ClinVar entries (Figure 4.1). While
this limitation is partly due to PAM availability, which can be circumvented through alternative
Cas enzymes (369), most mutations simply cannot be introduced due to the impossibility of
base editing chemistry to convert between all codons. For example, the commonly mutated
Leu858 residue was not identified in our base editing screens because its codon can only be
targeted by BE3.9Max where it is predicted to introduce a synonymous mutation.

In this context, the prime editing technology could facilitate the exploration of a more
clinically relevant mutational space. Indeed, prime editing guide RNAs rely on 3’ extensions
serving as reverse transcriptase templates to introduce any type of substitution or short
indels in proximity to their nicking site (162). This not only drastically increases the diversity
of mutations that could be introduced in a single screen but also expands the number of
targetable sites as prime editing can introduce edits beyond a strictly defined editing window.
In addition, prime editing approaches relying on a single pegRNA generally introduce low
levels of unintended edits, thus overcoming the major confounding effect of bystander edits
in base editing experiments.
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Figure 4.1: Comparison of EGFR codons accessible by ABE8e and BE3.9Max. Venn
diagram showing the number of EGFR codons that can be mutated by ABE8e and
BE3.9Max, including synonymous mutations. All possible sgRNAs with an NGG PAM
targeting EGFR exons were considered and editing outcomes were predicted using the base
editor design tool from Hanna et al., 2021 (145).

In spite of its relatively recent inception, multiple parameters influencing prime editing
efficiency have been identified. First, the versatility of the approach is based on the PBS and
RTT components of the pegRNA which respectively allow the priming of reverse
transcription and encode the intended edit. Consequently, prime editing efficiency is
influenced by the nucleotide compositions and melting temperatures of these elements,
alongside the targeting efficiency of the spacer. Although general design rules and prediction
algorithms have been devised to facilitate pegRNA design, optimal PBS and RTT lengths
should be determined for each target to maximize editing efficiency (370). In a screening
context, this could be conveniently achieved by including multiple pegRNAs with varying
architectures for each variant.

Similarly to previous gene editing technologies, prime editing products are recognized and
processed by the cellular DNA repair machinery. Namely, it has been shown that newly
introduced edits can be excised by the MMR pathway, leading to MMR-deficient cell lines
like HEK293 to be more amenable to prime editing. This inspired PE4, an approach relying
on the expression of a dominant-negative MLH1 protein to inhibit the MMR pathway, thus
increasing the final edited fraction by an average of 7.7-fold (170). In addition, engineered
pegRNAs containing a 3’ pseudoknot motif have been shown to be protected from cellular
nucleases, leading to enhanced editing (168).
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In spite of these improvements, prime editing efficiencies remain highly variable across
targets. For this reason, the only published prime editing screen uses PE3, which leverages
an additional nicking guide RNA (ngRNA) to increase editing efficiency at the target but
introduces a significant fraction of unwanted indels (183). While the authors circumvented
this problem by quantifying edits by direct target site sequencing, this requires the design of
separate pegRNA libraries for each protein exon. Furthermore, a high prevalence of
unwanted indels can limit the sensitivity of enrichment screens. For example, while
introducing indels in the EGFR coding sequence would most likely lead to growth arrest,
in-frame insertions or deletions in exons 19 and 20 are known to impact EGFR activation
and drug resistance which could bias screening read-outs. Consequently, the less
error-prone PE2/PE4 technologies represent more reliable tools to infer variant effects by
pegRNA library quantification.

In this chapter we thus set out to introduce hundreds of patient-derived mutations from the
ClinVar and COSMIC databases in cells to assess their impact on EGFR activation and drug
resistance. To do so, we designed and cloned a barcoded pegRNA library including
redundant mutagenic pegRNAs and non-mutagenic controls combining multiple PBS and
RTT lengths. Quantifying barcode distributions in treated and non-treated cell populations
allowed us to measure variant impact on EGFR activity, as well as to evaluate the effect of
different pegRNA architectures on prime editing efficiency. Lastly, we evaluated several
optimization approaches to increase prime editing efficiency.

4.3 Pathogenic variant modeling in PC-9 and MCF10A cells
We first set out to evaluate prime editing efficiency in MCF10A and PC-9 cells. To do so, we
infected each cell line with a lentiviral construct expressing the PE2 enzyme and GFP driven
by an EF1α promoter, and isolated positive clones by FACS (Figure 4.2A). For pegRNA
delivery, we designed a lentiviral vector expressing a puromycin resistance gene and a
dominant negative MLH1 variant (MLH1Δ754-756) which has been shown to drastically improve
prime editing in MMR-proficient cells (170). Although endogenous MHL1 knock-out has been
used in other studies, we reasoned that inhibiting MMR during pegRNA delivery would be
more time-efficient and increase the generalisability of our approach in other cell lines.

We first delivered a published epegRNA introducing a CTT insertion at the HEK3 genomic
locus in PE2-expressing PC-9 cells (162). To confirm the stability of our prime editor line, we
performed the same experiment in parallel in cells derived from the same clone but frozen
right after clonal expansion (passage 2) or kept in culture for 10 passages. Transduced cells
were selected with puromycin two days after infection and harvested at day 8 and day 12 for
target sequencing and edit quantification (Figure 4.2B). First, we noticed that the initial prime
editing efficiency was relatively low with an average of 4.2% of sequencing reads containing
the intended edit at day 8. However, this fraction reached 6.7% by day 12, representing a
58% increase in 4 days, suggesting that prime edits accumulate slowly in this cell line.
Additionally, we observed at both timepoints a decrease of approximately 20% in prime
editing efficiency between cells at passages 2 and 10, suggesting that the
genome-integrated construct was progressively silenced during passaging.
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Because of the relatively slow kinetics of prime editing in PC-9 cells, we next sought to
determine whether the phenotypic selection used in our screens could impact edit
accumulation. We thus repeated the same experiment but treated cells with Gefitinib on day
4 (Figure 4.2C). After 4 days of drug treatment, we observed no difference in editing
efficiency between treated and non-treated cells. However, after 8 days of selection, we
noticed a significant difference in edited fractions, with Gefitinib-treated cells reaching a
plateau at 5% of edited alleles. Since the HEK3 edit is not expected to have any biological
impact on EGFR signaling, this result suggests that prime editing is likely impacted by the
inhibition of cell proliferation under drug selection.

We next set out to leverage prime editing to introduce a variant associated with drug
resistance and delivered an epegRNA introducing the EGFR Thr790Met substitution to
PE-expressing PC-9 and MCF10A cells (Figure 4.2D-E). Infected cells were treated with
Gefitinib for 8 days after 4 (PC-9) or 16 (MCF10A) days of editing, respectively. In both
cases, TKI treatment resulted in strong enrichment of the edit, reaching up to 12.9% in PC-9
and 37.6% in MCF10A cells.
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Figure 4.2: Evaluation of PE4 in MCF10A and PC-9 cells. (A) Lentiviral vectors used for
pegRNA and prime editor delivery. MLH1dn: MLH1 dominant negative variant, NLS: nuclear
localization signal, LTR: long terminal repeat. (B-C) Deep sequencing quantification of a CTT
insertion introduced at the HEK3 genomic locus in PC-9_PE2-2A-GFP cells (n= 3) at (B)
passage 2 and passage 10 after stable prime editor cell line isolation or (C) after Gefitinib
treatment. (D-E) Deep sequencing quantification of the EGFR Thr790Met edit with and
without Gefitinib treatment in (D) PC-9 (n= 3) and (E) MCF10A (n= 2) cells. Days after
infection at the time of cell harvest are shown, drug treatment lasted 4 and 8 days in PC-9
cells and 8 days in MCF10A cells. p-values are shown for two-sided unpaired t-tests.
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Although initial prime editing efficiencies are relatively low in PC-9 and MCF10A cells, these
results demonstrate the high enrichment of drug-resistant edits in both cell lines. Importantly,
edits accumulate slowly in PC-9 cells and this accumulation appears inhibited by TKI
treatment. These results suggest that prime editing efficiency could be maximized by leaving
as ample time as possible for cells to accumulate edits before initiating drug selection.
Additionally, the genomically-integrated PE construct appears to be progressively silenced in
cells, leading to decreasing editing efficiencies over time. To mitigate editor silencing, stable
cell lines constitutively expressing the prime editor were routinely sorted for high expressors
before each of the following experiments.

4.4 pegRNA library design
In order to screen a variety of mutations found in patients, we designed a pegRNA library
introducing all possible EGFR variants smaller than 4 nucleotides and listed in ClinVar or
that have at least 4 reports in the COSMIC database (Figure 4.3A). Of the 1100 EGFR
variants found, 866 (~79%) could be introduced by pegRNAs with a maximum distance of 10
nucleotides between the edit and nicking site (Supplementary Figure S4.1A). Although prime
editing can install edits beyond this distance, the optimal RTT length is generally thought to
be around 12 nucleotides (163). We thus chose to restrict the size of our editing window in
order to maintain the same RTT lengths throughout our library. The remaining 234 variants
could not be targeted because no spacer was available in close proximity or because the
corresponding pegRNAs contained polyT or BsmBI restriction sites that would preclude their
expression or cloning, respectively.

For each accessible variant, a maximum of 5 Cas9 spacers were selected and used to
design barcoded epegRNAs with 9 combinations of PBS and RTT lengths corresponding to
the optimal range determined in self-targeting assays (Supplementary Figure S4.1B) (163).
This redundancy was included to understand how these parameters impact prime editing
efficiency and maximize our chances of successful editing. Next, for each mutagenic
pegRNA in the library, we designed a matched non-mutagenic pegRNA with the same
extension length but introducing the wild-type sequence. These are meant to control for
unwanted mutations resulting from DNA nicking or sgRNA scaffold integration at the target
site. Lastly, 1000 scrambled pegRNAs were designed with the same extension length
distribution as the rest of the library to serve as non-targeting controls for library count
normalization.

The resulting barcoded pegRNA library was cloned in two steps (Figure 4.3B, see the
Material and Method section). Briefly, an oligonucleotide pool was ordered that replaces the
sgRNA scaffold with random stuffers of variable lengths to normalize oligo length across the
library. This pool was amplified and cloned into the lentiviral vector expressing a puromycin
resistance marker and dominant negative MLH1 mutant via Gibson assembly. The sgRNA
scaffold was then added to the final construct through Golden Gate cloning.
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Figure 4.3: Design and cloning of a pooled pegRNA library. (A) Schematic of the prime
editing mutational screening approach. EGFR variants shorter than 4 nucleotides and in
ClinVar or reported at least 4 times in COSMIC were used to design a pegRNA library. For
each variant, mutagenic pegRNAs were designed with all combinations of three
primer-binding sites (PBS) and three retro-transcriptase template (RTT) lengths. For each
mutagenic pegRNA, a non-mutagenic control was added to the library which introduces the
EGFR WT sequence. Lentiviral pegRNA library and prime editor delivery vectors are shown.
(B) pegRNA library cloning steps.

To quantify our pegRNA plasmid library, we amplified the insert with two different sets of
primers either spanning the pegRNA barcode or the whole pegRNA (Figure 4.4A).
Surprisingly, we observed that the counts obtained with the two primer sets followed different
distributions. Notably, we observed that pegRNAs with longer PBS were under-represented
when amplifying the full pegRNA instead of the barcode only (Figure 4.4B). Because the
barcode-only amplicons are composed of fixed-length sequences with uniform GC contents,
thus limiting PCR and sequencing error biases, we considered them as the “true” library
element counts. However, when considering only the barcode counts, we once again
observed a negative correlation between PBS length and pegRNA representation, while RTT
length appeared to have a minimal impact (Figure 4.4C-D). By contrast, non-targeting
pegRNAs with scrambled spacer and extensions sequences appeared over-represented in
our library. We thus hypothesize that longer PBS negatively impact pegRNA cloning because
of their complementary with the spacer, resulting in the formation of secondary structures
during the oligo library amplification or cloning. Similarly, this bias is likely exacerbated when
amplifying the full pegRNA for deep sequencing, suggesting that barcode sequencing is
preferable for this type of library.

We decided to move forward with our library nonetheless as the global bias was minimal
(skew ratio =6.9). However, this should be considered when designing larger pegRNA
libraries, especially when including a broad range of PBS lengths.

93



Figure 4.4: Barcoded pegRNA library quantification. (A) Library barcode count
distributions obtained with primer sets amplifying the barcode only (red) or the full pegRNA
(blue). (B) Density plot showing the ratio of normalized counts obtained with both primers set
and stratified by PBS lengths. (C-D) Scatterplots showing individual barcode counts per
million in the final pegRNA library according to the (C) RTT and (D) PBS lengths of the
corresponding pegRNAs. Generalized linear model (poisson regression) coefficients: PBS
length = -0.2155608, (p-value < 2e-16), RTT length = 0.0089518, (p-value < 2e-16),
intercept = 9.0445693 (p-value < 2e-16) on 20561 degrees of freedom.
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4.5 Screening of patient-derived mutations in MCF10A cells
We next set out to introduce patient-derived mutations in MCF10A cells and assess their
EGFR activation potential. We thus delivered the pegRNA library to PE-expressing MCF10A
cells and let them accumulate edits for 14 days before EGF depletion. Cells harvesting was
performed after 8 days of selection and followed by pegRNA barcode sequencing. A cellular
coverage of at least 1000x was maintained throughout the workflow. After confirming high
replicate correlations (Supplementary Figure S4.2), we compared pegRNA counts between
the non-treated and EGF-deprived arms of the screen (Figure 4.5A, Supplementary Figure
S4.3). As expected, we observed no change in the distributions of non-targeting pegRNAs or
non-mutagenic pegRNAs, suggesting that no measurable growth effect could be attributed to
prime editing byproducts or indels.

Figure 4.5: Prime editing screen of patient-derived variants identify EGFR activating
mutations in MCF10A cells. (A) Violin plots showing the log-fold changes of individual
pegRNAs between non-treated and EGF-deprived cells stratified by clinical significance
category. Solid horizontal lines represent populations medians and dashed lines represent
0.25 and 0.75 quantiles. (B) Log-fold changes of individual pegRNAs between non-treated
and EGF-deprived cells along the EGFR protein.
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When considering pegRNAs individually, our screen revealed an enrichment of pegRNAs
introducing the known pathogenic variants Ala289Val, Ala289Asp, Thr263Pro and
Arg108Gly which are commonly found in glioblastoma (Figure 4.5B) (347,371). Additionally,
we identified Thr363Ile, a variant present in COSMIC and found in glioma patients but
absent from ClinVar. For all of these hits, individual pegRNAs of different extension lengths
introducing the same edit were significantly enriched together, suggesting that these did not
arise through technical noise.

Figure 4.6: Relative enrichments of pegRNAs introducing the top 6 screen hits. All
pegRNAs introducing each of the top 6 screening hits are shown stratified by spacer
sequence. PBS and RTT lengths are represented by color and shape, respectively

While identifying pathogenic mutations, our screen misses the majority of known EGFR
activating variants, in particular those in the tyrosine kinase domain. This is likely due to the
low prime editing efficiency in MCF10A cells. Indeed, when considering the top 6 hits in our
screen, we observed an important variability in enrichment between the corresponding
pegRNAs (Figure 4.6). Notably, for a given edit, significant enrichment is generally observed
for pegRNAs using the same Cas9 spacer while others produce no measurable phenotype.
Furthermore, 3 of the 6 enriched variants are introduced by the same spacer, indicating that
the corresponding pegRNAs enable prime editing regardless of the introduced mutation.
Although PBS and RTT lengths also appear to have an impact on enrichment in some
cases, the number of hits in our screen is too small to establish generalized pegRNA design
rules. Taken together, this suggests that spacer sequence is a critical parameter for prime
editing efficiency and that optimized PBS and RTT lengths, while impacting the final editing
rate, are not sufficient to rescue an inactive pegRNA.
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Taken together, these results demonstrate that prime editing screens represent a promising
avenue to expand genetic diversity in variant screens and reveal pathogenic mutations
undiscoverable by base editing. However, in its current installment prime editing suffers from
low efficiency, thus limiting the sensitivity of such a screen. While PBS and RTT lengths
appear to impact editing, our data suggest that spacer sequence is the most critical
parameter in pegRNA design. Consequently, increasing spacer redundancy should be a
priority when designing a pegRNA library. This could be done by allowing for a wider editing
window between the edit and the nick or by using prime editors with relaxed PAM sequences
to allow for more spacers to be targeted. If library size is a limiting factor, this approach can
be combined with scoring algorithms to prioritize high-performance spacers.

4.6 Diphtheria toxin-based enrichment of prime edited cells
Multiple approaches have been devised to increase prime editing efficiency, including
optimized enzymes and manipulation of cellular factors. Another approach is the enrichment
of cells with successfully edited alleles. This is generally done by targeting a synthetic
reporter alongside the intended target that is then used for the enrichment of
editing-competent cells. In the case of prime editing, this was done by restoring a splice site
in a GFP synthetic gene (372) or by removing a frameshift in a synthetic linker between two
fluorescent proteins (373). These approaches have the advantage of yielding a
gain-of-function phenotype that allows for easy enrichment of edited cells by FACS.
However, in a screening context this would require the sorting of millions of cells in order to
preserve library coverage. We thus took inspiration from a toxin-based enrichment system
initially developed for base editing (374). Instead of restoring the activity of a reporter, this
system disrupts the expression of the Heparin-binding EGF-like growth factor encoded by
the endogenous HEBGF gene. This broadly-expressed membrane-anchored protein serves
as a receptor to the diphtheria toxin, meaning that its disruption renders edited cells resistant
to the toxin and allows for their simple enrichment by supplementing cell culture media with
the toxin.

First, we designed a pegRNA introducing the HBEGFGlu141His substitution, which has been
shown to prevent toxin binding (375). In order to test toxin-based enrichment of independent
edits, we inserted the HBEGFGlu141His pegRNA or epegRNA under the control of a mouse U6
promoter in our lentiviral vector expressing the EGFRThr790Met epegRNA (Figure 4.7A). Both
the pegRNA and epegRNA resulted in substantial HBEGF editing in PC-9 cells with 24.7%
and 34.2% of alleles containing the intended edit, respectively (Figure 4.7B). Encouragingly,
after 6 days of diphtheria toxin selection, the edited fraction was about 98% in both cases,
confirming the selection of resistant cells carrying homozygous edits. We then quantified the
EGFRThr790Met edit in selected and non-selected cells and saw an average increase of
1.38-fold when using the HBEGF-targeting pegRNA and 1.86-fold with the epegRNA (Figure
4.7C). Interestingly, the initial EGFRThr790Met fraction was slightly lower with the HBEGFGlu141His

epegRNA vector, possibly due to its increased stability leading to a greater competition
between both epegRNAs to bind the prime editor.
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Figure 4.7: Toxin-based enrichment of prime editing products in PC-9 cells. (A) Dual
pegRNA lentiviral vector for the PE4-mediated introduction of HBEGFGlu141His and
EGFRThr790Met edits. The HBEGF mutation is installed by a pegRNA or an epegRNA while
EGFRThr790Met is introduced by an epegRNA. Deep sequencing quantification of (B)
HBEGFGlu141His and (C) EGFRThr790Met edits in PC-9 cells infected with the toxin-based
enrichment construct (n= 3) and selected with 20 ng/mL diphtheria toxin between day 9 and
day 15 after transduction. p-values are shown for unpaired two-sided t-tests.

In this part, we thus confirmed the feasibility of toxin-based enrichment of prime editing
products. While more practical than FACS, this approach yielded lower enrichments than the
2- to 8-fold reported with fluorophore-based methods (372). This is likely due to the fact that
cells must harbor a homozygous HBEGF mutation to acquire toxin resistance while a single
edited reporter copy is enough to yield a measurable fluorescent signal. A fraction of cells
with the intended edit but only a single copy of HBEGFGlu141His is thus probably lost during
toxin selection. Additionally, in our experiment, the HBEGF editing efficiency was much
higher than that measured at the EGFR locus, suggesting that a significant number of
toxin-resistant cells did not acquire the EGFRThr790Met edit. We thus speculate that the
enrichment ratio could be improved by modulating the efficiency of the HBEGFGlu141His

pegRNA to make it more similar to that of the intended edit. This could be done by changing
the pegRNA itself or performing toxin selection earlier after infection. However, targeting
HBEGF using a pegRNA instead of an epegRNA did not improve the final edited
EGFRThr790Met fraction in our experiment. In spite of these promising results, more
experiments are thus required to optimize the toxin-based enrichment conditions.

98



4.7 Other optimization avenues
Various efforts have been made to enhance prime editor expression and nuclear localization
(170,173). In order to determine if prime editor expression is a limiting factor in vitro, we
infected PC-9 cells with increasing concentrations of PE2-expressing lentivirus. After
antibiotics selection, transduced cells were infected with another lentiviral vector expressing
the HEK3CTTins epegRNA and cultured for 9 days before harvesting. Target sequencing and
allele quantification revealed that the final edited fraction correlates with the PE lentiviral
concentration (Figure 4.8A). Notably, cells infected at an MOI of 2 exhibited an average 45%
increase in editing efficiency in comparison to cells infected at an MOI of 0.5, suggesting that
prime editor expression is a limiting factor in our experimental setup.

Interestingly, we repeated the same experiment in the H1299 lung cancer cell line and
measured a significantly higher overall editing efficiency (Figure 4.8B). Indeed, while the
effect of lentiviral MOI appeared to have a smaller impact, the highest measured edited
fraction was 56.7% in this cell line against 14.6% in PC-9 cells. H1299 cells are proficient in
MMR, suggesting that other endogenous cellular factors determine prime editing efficiency in
the two cell lines (376).

Figure 4.8: Prime editor expression limits PE4 efficiency in PC-9 and H1299 cells.
Deep sequencing quantification of HEK CTT insertion in (A) PC-9 and (B) H1299 cells
infected with different concentrations of a lentiviral vector expressing the PE2-2A-Blasticidin
S deaminase construct.

In conclusion, prime editor expression and cell line selection are two potential avenues to
increase screening sensitivity. While identifying cell lines that are both proficient in prime
editing and produce biologically-relevant phenotypes is challenging, the identification of new
endogenous factors impacting editing efficiency may allow for the engineering of optimized
cell lines in the future. Additionally, prime editor overexpression through lentiviral delivery is
limited by the cellular toxicity of high viral MOIs. In this context, recombinase-based delivery
of multiple prime editor copies expressed from inducible promoters might increase their final
expression while limiting gene silencing.
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4.8 Conclusion
In this chapter, we designed and cloned a lentiviral pegRNA library to introduce hundreds of
EGFR mutations observed in patients with PE4. We then delivered this library to MCF10A
cells to identify mutations conferring EGF-independent growth and identified known
extracellular mutations found in GBM as well as Thr363Ile, which was observed in patients
but is currently not listed in ClinVar. This demonstrates for the first time the utility of prime
editing screens without the need for locus haploidization with a library spanning a whole
gene instead of hand-picked exons.

While quantifying our library, we uncovered a bias in pegRNA cloning and amplification likely
resulting from the complementarity of the PBS and the spacer components. Such bias has
not been reported in the literature and demonstrates the importance of quantifying pegRNA
elements from a barcode amplified independently instead of amplifying the whole pegRNA
sequence. Similarly, the impact of PBS lengths on library skewness should be considered
during library design and could potentially be mitigated by reducing the number of PCR
cycles or optimizing amplification conditions to minimize intramolecular interactions.

Despite identifying positive hits, our screen missed the majority of known EGFR pathogenic
variants. This is likely due to the low prime editing efficiency in our cell line which should be
confirmed by individual pegRNA validation in the kinase domain. While we observed
significantly higher editing levels in other cell lines like H1299, finding cells with minimal
chromosomal aberrations that produce measurable phenotypes in response to EGFR
signaling remains challenging. Increasing the sensitivity of our screen thus requires
improving prime editing efficiency in MCF10A cells which could be done by introducing a
complete MLH1 gene knockout in these cells instead of the dominant-negative protein and
by providing more time for cells to accumulate edits before EGF deprivation. Our data also
demonstrate that prime editor expression is a limiting factor in our cell lines. However, viral
delivery at high MOI is associated with important cell toxicity. Preferable approaches thus
include improving prime editor delivery via plasmid electroporation or transposition and using
enzymes with optimized nuclear localization like PEmax (170).

Contrary to base editing screens, prime editing libraries allow for built-in redundancy by
introducing the same variant with pegRNAs using different spacer sequences and different
RTT and PBS lengths. This not only increases the credibility of screening hits as multiple
pegRNAs are enriched together, but also the likelihood of efficiently introducing a given
variant. Furthermore, we observed in our screen that enriched pegRNAs generally rely on
the same spacer, suggesting that spacer redundancy is a key parameter in PE4-based
screens. Broadening the editing window beyond 10 nucleotides could thus allow for more
spacers to be included in our library, thereby decreasing our false negative rate.

Lastly, we demonstrated toxin-based enrichment as a potential avenue to improve prime
editing efficiency and screening sensitivity in the future. Although it only yielded a modest
increase in the final edited fraction, this approach can be enhanced by finely tuning the
editing efficiency at the HBEGF locus to maximize co-enrichment. Contrary to FACS-based
enrichment, this method presents the advantage of being highly scalable and readily
applicable in many cell types including primary cells (374). However, the biological impact of

100



toxin-resistant HBEGF variants should be comprehensively characterized before it could be
implemented in a screening workflow.

In conclusion, prime editing screens represent a promising tool to characterize pathogenic
mutations undiscoverable by base editing, including insertions and deletions, in their
genomic context. Additionally, prime editing allows for the design of pegRNA libraries from
patient-derived variants, thus representing a complementary approach to unbiased variant
scanning and paving the way to personalized genetic screens. While currently limited by low
editing efficiency, we envision that future iterations of the prime editing technology will enable
its broad use in in vitro models including patient-derived primary cells.
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4.9 Supplementary figures

Supplementary Figure S4.1: pegRNA library characteristics. (A) Number of EGFR
variants from COSMIC and Clinvar considered for library design (blue, n= 1100) and present
in the final library (red, n= 828) according to their clinical significance. (B) Distribution of the
number of unique spacers introducing a considered variant in the final pegRNA library.
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Supplementary Figure S4.2: epegRNA library distributions and sample correlations
for the prime editing EGFR activation screen in MCF10A cells. Normalized barcode
counts and Pearson correlation coefficients are shown for all samples.
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Supplementary Figure S4.3: Prime editing activation screen leads to the enrichment of
EGFR variants conferring EGF-independent growth. Volcano plot showing the log fold
change enrichment and negative log false discovery rate of individual pegRNAs between
non-treated and EGF-deprived cells. Colors represent the clinical significance of the
corresponding variants.
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Chapter V: Discussion
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5.1 Biological insights into EGFR variants
As genetic testing becomes increasingly prevalent in disease diagnosis and characterization,
the prevalence of variants of uncertain significance hinders their interpretation and the
adoption of personalized treatment protocols. In the case of lung and brain cancers, multiple
tyrosine kinase inhibitors are approved for the treatment of tumors with mutated EGFR.
However, their efficacy against uncommon EGFR variants remains largely unknown, leading
to loss of therapeutic opportunities in patients. Due to the diverse nature of these variants,
recruiting an adequate number of patients in clinical trials is challenging. Consequently,
functional assays have emerged as a cost-effective solution for their characterization.
However, existing multiplexed assays evaluating EGFR variant pathogenicity have relied on
exogenous gene delivery in mouse cell lines, thereby failing to accurately replicate
biologically-relevant cellular contexts, including EGFR expression levels and interaction
partners. In this thesis, we developed complementary multiplexed assays of variant effects
using cytosine base editors, adenine base editors, and prime editing technology. We tested
our approach by introducing thousands of mutations in EGFR in multiple cell lines in
response to EGF deprivation or treatment with the clinically-approved TKIs Gefitinib or
Osimertinib. Unlike conventional CRISPR screens, these precision editing screens increase
our ability to link genotype to phenotype at single nucleotide resolution while preserving
endogenous genomic contexts.

One advantage of our screening approach is its ability to preserve endogenous expression
levels which allows the precise assessment variant fitness. Indeed, mutant library
overexpression poses the risk of promoting EGFR dimerization at the plasma membrane or
saturating receptor internalization mechanisms, thus confounding activity measurements. In
base editing screens, relative variant fitness can be easily extrapolated by taking sgRNA
distributions at an early timepoint or in the plasmid library as a reference. By doing so, we
showed that LOF EGFR variants can appear as false positives in phenotypic selection
assays and bias screen results. Furthermore, our data show varying sensitivities of PC-9
cells to mutations compared to MCF10A, underscoring the importance of systematically
considering variant fitness in this type of screen. Importantly, we chose to exclude variants
leading to loss of cell viability from our screen hits. However, it should be noted that EGFR
downregulation or LOF can be a transient mechanism of drug tolerance enabling the cells to
regain viability through the accumulation of other oncogenic mutations or activation of
alternative pathways (377,378).

When applied to EGFR activating mutations, our screens identified GOF variants in the
tyrosine kinase domain, which are typical of NSCLC, as well as in the relatively understudied
extracellular and C-terminal domains, more prevalently mutated in glioblastoma (GBM). This
not only validates the relevance of MCF10A cells for variant screening across different
cancer types, but also unveils a range of EGFR hyperactivation mechanisms. Namely, in
addition to known and unknown mutations affecting the αC helix of the kinase domain, base
editing scanning screens identified phosphorylation and ubiquitination sites involved in
receptor downregulation. In the extracellular domains, multiple hits affected residues that
interact in the tethered conformation of the inactive receptor, suggesting that these mutations
could promote extracellular domain dimerisation. More surprisingly, we identified and
validated splice site variants truncating the C-terminal tail after exon 25. Although this
truncation was previously shown to lead to oncogenic transformation in vitro (345), we then

106



demonstrated its resistance to both Osimertinib and Gefitinib when associated with an exon
19 deletion, warranting further characterization of its activation mechanism. Interestingly,
gene fusions linking exon 25 to SEPT14 were reported in glioblastoma and NSCLC patients
and shown to activate EGFR signaling, possibly through the same mechanism (379,380).
Moreover, another study showed that this fusion combined with an EGFR exon 19 deletion
was resistant to Gefitinib and Osimertinib (380).

Applied to drug resistance, base editing scanning screens revealed diverse mechanisms of
resistance to Gefitinib and Osimertinib. Indeed, Gefitinib-resistant mutations were almost
exclusively found in close proximity to the drug-binding site within the tyrosine kinase domain
while Osimertinib-resistant variants occurred both in the tyrosine kinase and the C-terminal
domains. Interestingly, multiple of the Osimertinib screen hits were found to be involved in
autoinhibitory protein structures or recognition sites for other cellular factors, which could
constitute targets for combined therapies. The existence of these divergent resistance
mechanisms between first- and third-generation TKIs is currently unexplained. Indeed,
mutations in the ATP binding pocket can be easily attributed to drug-specific interactions.
However, it is unclear why general regulation mechanisms such as the mutations of Tyr1069,
a ubiquitin-ligase recognition site, are found to confer resistance to Osimertinib but not
Gefitinib. One possible explanation is the difference in inhibition mechanism of both drugs.
Gefitinib is a reversible inhibitor, suggesting that mutations that increase affinity towards ATP
could reverse drug binding. By contrast, a variant increasing the EGFR concentration at the
cell surface might provide a greater advantage to cells in presence of an irreversible inhibitor
like Osimertinib. An alternative explanation is that the distinct hits identified with both TKIs
stem from a difference in screening sensitivity. Indeed, the Gefitinib resistance conferred by
Thr790Met is, to our knowledge, the strongest acquired resistance to any TKI. Since this
variant is by far the most enriched in each of our Gefitinib screens, we can speculate that its
prevalence in our final library counts might obscure less enriched hits with more subtle
resistance phenotypes.

Another important finding of our screens is the differences in drug-resistant variants between
cell lines harboring wild-type EGFR and the Δ746-750 deletion. This difference likely results
from different conformational constraints of the αC helix and ATP binding cleft in PC-9 cells,
leading to altered intramolecular interactions within the kinase domain. A similar mechanism
was previously demonstrated with the Gly724Ser variant which confers Osimertinib
resistance when associated with exon 19 deletion but not Leu858Arg (381). However, in our
case we compare a wild-type receptor with one that is not only structurally different but also
constitutively active in cells showing oncogene addiction, which could play a role in the
observed drug resistance differences. Additionally, PC-9 cells show EGFR gene copy
number amplification, thus likely modifying the fraction of edited present in individual cells
compared to diploid MCF10A (382). It would thus be interesting to investigate these variants
in combination with pre-engineered Leu858Arg in MCF10A cells to determine whether they
lead to resistance in any hyperactive receptor or solely in conjunction with a specific
mutation. In summary, these results illustrate the need to consistently document acquired
drug-resistant mutations alongside the associated primary mutation in patients and for EGFR
variant screens to systematically evaluate compound mutations rather than isolated variants
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5.2 Limitations of our screens
While the main limitation of our prime editing screen lies in low editing efficiencies, base
editing scanning screens are mostly limited by the introduction of bystander edits and the
lack of control on the introduced mutations. This drastically complicates the prediction of
editing products and their proportions at the target site and the inference of
genotype-phenotype relationships. For example, the Thr790Met,Gln791Ter[BE3.9Max]
sgRNA used in our screens is predicted to introduce two variants with opposite phenotypic
effects, namely drug resistance and receptor LOF. For this reason, the log fold changes
measured in base editing screens cannot be directly extrapolated as relative resistance
levels and thorough validation is required to classify variants on a resistance continuum.
Similarly, it is currently impossible to determine the false negative rate in our screens as the
exact spectrum of mutations effectively introduced in cells is unknown.

Target sequencing at different timepoints demonstrated that bystander edits abundance and
proportions can be altered by precisely timing base editing experiments. For example, using
inducible base editors could help to limit the retargeting of mutated sites and favor single
edits. However, an ideal editing timeframe likely cannot be extrapolated across different
targets, thus limiting the use of this approach in pooled experiments. To solve this issue,
sensor libraries have been developed that leverage lentiviral constructs containing an
sgRNA and its cognate target site (368). These allow for the pooled quantification of editing
products introduced by each sgRNA and the prediction of their genomic impact in relevant
cellular conditions, including non-canonical edits. Conveniently, such libraries can be directly
used for screening as they can edit both the endogenous and the reporter targets in the
same cell. The resulting datasets can then be used to normalize screen results or to design
optimized follow-up libraries with known mutational profiles (383).

In addition, the implementation of sensor libraries could allow for the normalization and
integration of screening results obtained with different gene editing technologies. Indeed,
current differences in editing efficiencies and phenotype amplitudes between our screens
prevent the direct comparison of log fold changes across base editors. In future installments
of base editing screens, we also anticipate that all-in-one lentiviral constructs expressing
different base editors can be pooled together by conveniently adding an editor-specific
molecular barcode adjacent to the sgRNA to allow for read deconvolution. This will enable a
single screening experiment to leverage multiple base editors, thereby increasing variant
diversity while reducing reagent costs and lab work.

Another limitation of base editors pertains to their biased editing spectrum which limits the
number of robust controls that can be used for variant classification. Indeed, the
recommendations formulated by the American College of Medical Genetics for the
interpretation of genetic variants through functional assays require that these include a set of
multiple known benign and pathogenic variants to serve as references for the quantification
of functional effects (81). While synonymous variants could reasonably be used as
references for benign variants, our screens lack a number of pathogenic references. For
example, while our Osimertinib screens identified multiple enriched variants, very few
resistant mutations are known for this drug and none were introduced by our libraries. This
limitation could be partly solved by expanding the spectrum of introduced variants with base
editors showing a broader targeting capabilities. Indeed, multiple engineered Cas9 variants
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like SpRY-Cas9 (369) or Cas9-NG (384) show relaxed PAM requirements and a base editor
using the latter was recently shown to identify Cys797, which could not be targeted in our
screen, as an essential residue in EGFR (148).

Beyond gene editing constraints, a major limitation of our cellular models is that EGF is only
one of the seven known ligands of EGFR. One theory to explain the difference in EGFR
mutations found in GBM and NSCLC is that oncogenic extracellular mutations found in GBM
favor low affinity ligands like epiregulin or amphiregulin (385). Consequently, our screens
might miss ligand-specific variants as low affinity ligands are not present in our cell culture
media. Likewise, some of our hits might behave differently in different tissues and tumors
with various ligand availability. Expanding our screening approach to different tissue-relevant
conditions or xenograft tumor models might thus provide unprecedented insights in the
cancer-specific EGFR variant landscapes.

Lastly, drug resistance screen hits are contingent on the applied drug treatment, meaning
that variants conferring insufficient drug resistance to yield measurable enrichment at the
considered TKI concentrations cannot be captured. In this study, all drug treatments were
conducted using the drugs IC50, which are likely significantly different from the in vivo
bioavailability of these molecules. It is thus possible that variants showing resistance in our
screen would be completely eliminated at TKI concentration used in patients. However,
variants conferring partial drug tolerance remain clinically relevant, as they can enable cells
to acquire other drug resistant phenotypes. Tumor xenograft represents an interesting tool to
tackle this question as oncogenically transformed MCF10A cells can form tumors in mice,
allowing the direct in vivo transposition of our activation and drug resistance screens.

5.3 Future directions for EGFR variant screens
An important open question in EGFR variant biology is the contribution of other ErbB
receptors to oncogenic signaling. Indeed, while it is known that canonical oncogenic variants
like Leu858Arg behave as “super acceptors” for homodimerization, their impact on
heterodimerization with other receptors remains elusive. This contribution can be easily
assessed by transposing our screens into MCF10A lines with inducible or knocked out ErbB
receptors and comparing screening outcomes between induced and uninduced cells (386).
In a complementary approach, interesting hits can be introduced in cells that are then
subjected to genome-wide knock-out screens to identify genes involved in variant-associated
phenotypes.

Similarly, different EGFR activating mutations result in distinct conformational constraints on
the kinase domain, favoring specific homodimerization conformations. As observed in our
PC-9 drug resistance screens, it is important to replicate EGFR variant screens in cell lines
with different mutational backgrounds to evaluate the impact of compound mutations on drug
resistance. MCF10A cells likely represent an ideal model for this application as different
primary mutations can be introduced in their genome and easily enriched through EGF
depletion to produce homozygous lines. In this context, base editing scanning screens
present the advantage of relying on compact all-in-one libraries that can be readily deployed
into multiple of these pre-engineered cell lines to screen for secondary mutations.
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In addition to compound mutations in cis, previous studies have shown differences in drug
resistance profiles for variant combinations in trans (273). For example, Thr790Met and
Cys797Ser alleles respectively respond to second- and first-generation TKIs when found in
trans but their combination in cis renders the cell insensitive to both drugs (387). Additionally,
oncogenic EGFR variants have different multimerization requirements (388) with some
acting almost exclusively as dimerization acceptors, thus requiring the co-expression of WT
EGFR to produce a phenotype (219,222). In spite of this, mutant zigosity is often overlooked
in functional assays and is not systematically reported in variant databases. Besides the
co-delivery of synthetic genes, methods to genomically introduce heterozygous mutations by
modulating HDR efficiency have been developed (389). However, like other HDR
approaches, these are not applicable at the scale of a gene. In the case of a base editing
scanning screen, this could be achieved by designing a library of mismatched sgRNA to
reduce their editing efficiency, thus increasing the likelihood of obtaining heterozygous edits.
However, this strategy would probably necessitate thorough optimizations and compromise
editing efficiency and diversity. Another potential approach is the genomic introduction of a
recoded copy of the gene with alternative codons. In this scenario, only the endogenous
alleles could be edited during the screen, allowing the assessment of variants in a
pseudo-heterozygous context.

Lastly, while precision genome editing screens expand the spectrum of genetic variations
that could be studied at scale, our screens rely on a simple proliferation read-out that misses
on mechanistic nuances of the measured phenotype. For example, in vitro experiments have
shown that Thr790Met can either be rapidly selected from preexisting variants or slowly
emerge from drug-tolerant cell populations (378). These different paths to resistance have
implications for other facets of cellular adaptation which subsequently influence the ultimate
drug tolerance profile of tumor cells. Future EGFR variant screens will thus benefit from
assessing variant signaling via phosphoproteomics and transcriptomics at the single cell
level, enabling a more comprehensive understanding of cell phenotypes.

5.4 Potential optimization avenues for prime editing screens
Low editing efficiency represents the primary bottleneck for prime editing screens.
Consequently, a first step towards increasing screening sensitivity is the adoption of the
PEmax enzyme which was optimized for high nuclease activity and nuclear localization
(170). Additionally, our results illustrate that increasing prime editor expression represents a
significant advantage. This could potentially be achieved by replacing lentiviral transduction
with plasmid transfection or adenoviral delivery depending on the considered cell line (390).
Interestingly, a recent study demonstrated that the nuclease and reverse transcriptase
domains did not need to be fused to enable prime editing, suggesting that the expression of
both components could be optimized independently (391). Additionally, since the beginning
of this project, different preprints have been released that use prime editing in a pooled
screening context and proposed different methods to enhance its efficiency. These include
the direct knock-out of MLH1 (392), the introduction of additional silent mutations in the RTT
to bypass MMR (393) and the use of an optimized sgRNA scaffold (394).
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Interestingly, one of these reports uses the PE3 approach by co-delivering pegRNA and
nicking sgRNA pairs (394). In this study, the authors controlled for unwanted edits by
designing two separate libraries introducing alternative and reference alleles, respectively,
and calculating log fold change ratios between the two. These reference pegRNAs, similar to
our non-mutagenic controls, could thus be incorporated in a single PE3 library and allow the
identification of phenotypes induced by unwanted edits. However, implementing this
approach would require prior confirmation that mutagenic and non-mutagenic pegRNAs
targeting the same locus indeed introduce the same spectrum and frequency of unwanted
indels. Additionally, imprecise editing in PE3 screens targeting coding regions would likely
lead to significant loss of information. Indeed, in the case of EGFR, we can speculate that a
pegRNA/nicking sgRNA pair introducing an in-frame indel in exons 19 or 20 would lead to a
strong phenotype and render all edits introduced by the same pair effectively
undiscoverable.

The prime editing screens reported to this day tend to favor long screen durations to
increase both edit accumulation and strong phenotypic selection. In a recent preprint, Gould
et al. thus conducted a screen targeting TP53 for a total of 34 days (395). In another
manuscript by Chardon et al., the authors screened for TKI-resistant EGFR variants using
PE4 but applied drug selection for 19 days to increase hit enrichment (392). While it is
unlikely that spontaneous drug resistance would emerge in this timeframe, we have shown
that drug treatment inhibits the accumulation of edits. In this context, it might thus be
preferable to increase the editing time before drug treatment than increasing selection time.

Additionally, recent studies suggest that the slow accumulation of prime editing products is a
consequence of dNTP availability, constituting a bottleneck to reverse transcription
(396,397). Notably, cellular dNTP concentration is dependent on cell cycle progression,
potentially explaining decreased prime editing efficiencies reported in serum-deprived cells
that remain in G1 phase (390). This impact of the cell cycle could also partially account for
the significant efficiency differences observed between different cell lines and suggests that
rapidly proliferating cells could constitute better models for prime editing screens.
Interestingly, the inhibition of the SAMHD1 deoxynucleotide triphosphohydrolase has been
shown to increase intracellular dNTP concentrations and to increase prime editing efficiency
in cells (396,397). However, the perturbation of nucleotide metabolism might constitute an
important confounding factor in cellular assays and would require thorough cell line
characterisation before being employed in a screen using cell growth as a read-out.

Beyond the optimization of prime editing efficiency, our study also illustrates the critical role
of pegRNA redundancy, through the use of multiple spacers, in ensuring the successful
introduction of variants. This could be maximized by increasing the size of the considered
editing window or by using a PAM-flexible prime editor accessing more spacers at the cost of
lower editing efficiencies (398). Another elegant approach was recently proposed by Gould
and colleagues that uses sensor libraries similar to those previously used in base editing
screens (395). These self-targeting constructs allow for the assessment of individual
pegRNAs during the screen and the exclusion of weak editors from the final screen analysis.
Alternatively, they can be used in pre-screening experiments to design compact and
optimized pegRNA libraries, thus allowing for higher cell coverage and sensitivity in the final
screen.
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Lastly, we demonstrated the feasibility of toxin-based prime edit enrichment by using a
dual-pegRNA vector targeting the endogenous HBEGF gene. This method, unlike
FACS-based methods, presents the advantage of allowing for the selection of edited cells
regardless of the experiment scale. Furthermore, diphtheria toxin-based enrichment does
not require any adjustment in library or experiment design compared to a classical screen
and yielded a modest but significant increase in global editing efficiency in PC-9 cells.
However, it is important to note that secreted HB-EGF is a known ligand of EGFR and other
ErbB receptors (399). Although toxin-selected cells should be homogeneously homozygous
for HBEGFGlu141His, the impact of this variant on HB-EGF-mediated signaling should be
evaluated before implementing this enrichment scheme in a screening context.

In conclusion, very little is currently known regarding the exact mechanism of prime editing.
While the modulation of cellular factors has shown significant benefits in increasing editing
efficiency, approaches that preserve cellular pathways integrity are preferable to allow for
more relevant cellular models. It is thus likely that future prime editing screening approaches
will rely on enhanced pegRNA designs as well as optimized nuclease and reverse
transcriptase domains that will drastically improve the prime editing pipeline.

5.5 Future applications of precision genome editing screens
MAVEs have been predominantly used to study variants constituting disease risk factors or
that predict drug response as these results can directly be leveraged in the clinics. To this
end, the Pharmacogenomics Knowledge base (PharmGKB) aggregates curated information
and guidelines regarding the use of genetic tests to inform drug treatments (400). The
database currently contains annotations on 471 drugs and lists 35 “genes with substantial
evidence to support their importance in pharmacogenomics” and 9 “genes which are
important in tumor pharmacogenomics”, thus representing an important resource for screen
target prioritization. Similarly, genes with approved genetic tests and an important number of
VUS or conflicting reports can be prioritized as they could benefit the most from precise
variant interpretations (50). A predominant example aside from EGFR is BRCA1/2 status,
which informs treatment with PARP inhibitors in breast and ovarian cancers (401).

In addition to increasing the scale and accuracy of MAVEs, precision genome editing
screens have the potential to expand their scope to applications that are incompatible with
gene overexpression. Namely, a recent study reported a potentially deleterious impact of
synonymous variants introduced in yeast via homologous recombination. While later
criticized by other groups, this resurgence of interest in non-synonymous variations
underscores the need for screening tools capable of studying these variants within their
genomic context (402–404). Moreover, the controlled introduction of variants at genomic loci
is particularly relevant for genes like PTEN that produce diverse phenotypes resulting from
complex interactions between protein abundance and functions (405). Future iterations of
these screens including single cell read-outs and controlled zygosity could thus help to
elucidate the elusive functional differences between PTEN variants leading to autism
spectrum disorder and tumor syndromes (406).

In this context, scRNA-seq tools have been developed to simultaneously profile cell
transcriptomes and infer genetic perturbations at the single cell level. This has been done
indirectly by capturing sgRNAs in experiments combining CROP-seq and base editors (407)
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or by delivering variant cDNA libraries harboring 3’ barcodes that could be sequenced at the
mRNA level (408). However, recent approaches also allow for the direct targeted
identification of genomic variants from cell transcriptomes. For example, a modified
scRNA-seq workflow enabling the amplification of a site of interest from the cDNA pool after
RNA capture and cell barcoding was used to determine the mutational profiles of individual
patient-derived cancer cells (409). While this approach is directly applicable to single exons
proximal to the transcript 3’ end, it does not allow for the screening of variants in a full-length
transcript. This was solved by TISCC-seq, a method combining base editing, long read
sequencing of target gene transcripts and short read transcriptome profiling (410). In the
case of base editing, this has the advantage of stratifying cells based on actual variants
instead of predicted edits profiles. Transposed to prime editing, these approaches could also
help to identify and filter out unedited cells from downstreams analyses. Importantly, these
technologies are currently limited to variants in transcribed regions and could be confounded
by mutations leading to decreased transcriptional activity or RNA degradation. However,
they hold the potential to distinguish between homozygous and heterozygous variants,
thereby helping towards the identification of allelic dominance, compensation and buffering
mechanisms (411).

To this day, MAVEs have generally ignored sequence insertions, deletions and inversions
because of the difficulty to precisely introduce chromosomal rearrangements at the genomic
level or to generate diverse libraries of these variants. Recent prime editing technologies like
twinPE leverage matched pegRNA pairs to generate accurate large chromosomal
rearrangements, thus unlocking a broad new spectrum of genetic variations that could be
introduced in vitro (180). Similarly, the recently discovered CRISPR-associated transposases
can introduce large payloads at specific genomic target sites (412,413). While still extremely
inefficient in mammalian cells, these hold the potential to study largely unexplored copy
number variations or replace full exons at once in a multiplexed way (414).

Aside from the large-scale exploration of genetic variants, precision genome editing screens
also have direct applications in the clinics. For example, they could allow for the in vitro
replication of an array of variants found in a patient by non-invasive tumor profiling to
evaluate their relative competition under drug selection and better model heterogeneous
tumors (415). In the context of EGFR, a patient-specific primary mutation can be introduced
in MCF10A cells before screening for secondary mutations with an unbiased base editing
scanning library or a targeted prime editing library introducing common variants. The
sensitivity of the resulting compound mutations to a panel of drugs could then be assessed
to establish personalized treatment courses anticipating the emergence of resistance.

Similarly, the relatively low toxicity of precision genome editing tools enables their direct
application in patient-derived primary cells or induced pluripotent stem cells, facilitating the
evaluation of risk alleles influenced by the polygenic background of the patient. Lastly, the
interaction between specific mutations and cellular polygenic backgrounds could be
assessed in a reversed approach using an isogenic cell line harboring a pathogenic variant
of interest. Prime editing screens could then be used to screen for a broad range of
polymorphisms present in population databases like gnomAD to identify common variations
that modify pathogenic mutation phenotypes.
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5.6 Concluding remarks and outlook
In this thesis, my goal was to establish an experimental framework for multimodal precision
genetic screens and demonstrate how prime and base editing could be combined to assess
genetic variants at scale while preserving their genomic context and expression levels. We
introduced thousands of mutations in the EGFR gene of human cancer and non-cancer cells
using two base editors and one prime editor and quantified the effect of the introduced
variants on EGFR activation and drug resistance by library sequencing. By doing so, we
uncovered diverse and cell-specific mechanisms of EGFR activation and regulation. These
insights contribute to the existing knowledge on EGFR biology and call for future studies to
characterize variant-specific signaling pathways and protein interaction partners.

These results highlight the distinct advantages and limitations of each technology. Namely,
although base editors introduce a limited spectrum of amino acid substitutions, their high
editing efficiency makes them ideal tools to identify important residues in applications where
precision is not a limiting factor such as the mapping of drug binding sites. In turn, prime
editing is more adapted to study patient-derived variants which are diverse in nature. Prime
and base editing thus currently represent complementary tools for the exploration of protein
function and disease mechanisms. In the future, we anticipate that the rapid improvements
to prime editing efficiency will allow for saturating mutagenesis of full genes, making it the
gold standard for comprehensive genetic variant screens. In the meantime, targeted exon
mutagenesis coupled with direct sequencing and reporter libraries could serve as powerful
tools for targeted mutagenesis studies.

Because of their distinct strengths and weaknesses, base and prime editing screen results
currently cannot be directly integrated and compared. However, base editing screen results
can potentially be used to narrow-down critical protein residues and design targeted
pegRNA screens to further explore interesting hits using direct target sequencing.
Furthermore, the recent publication of the AlphaMissense model trained on datasets
including amino acid sequence, predicted protein structures and population genetics data
suggests that multimodal functional assays can in the future be used by machine learning
algorithms to better predict genetic variant significance (416).

Importantly, although both technologies are known to introduce DNA DSB at low frequency
in cells, their relatively low toxicity compared to nuclease-based gene editing makes them
ideal tools to study genetic variants in human primary cells. We thus anticipate that precision
gene editing screens can be directly deployed to diverse cell types and genetic backgrounds
to provide unprecedented insights into genotype-phenotype relationships. Lastly, as gene
editing tools and cellular models become more accurate, we anticipate that precision variant
screens data could become an essential component of personalized medicine to allow for
accurate diagnostics and drug response prediction in the clinics.
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