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We consider the flow of an electrically conducting fluid confined in a rotating
spherical shell. The flow is driven by a directly imposed electromagnetic body force,
created by the combination of an electric current flowing from the inner sphere
to a ring-shaped electrode around the equator of the outer sphere and a separately
imposed predominantly axial magnetic field. We begin by numerically computing the
axisymmetric basic states, which consist of a strong zonal flow. We next compute the
linear onset of non-axisymmetric instabilities, and fully three-dimensional solutions up
to ten times supercritical. We demonstrate that an experimental liquid-sodium device
50 cm in diameter could achieve and exceed these parameter values.

Key words: free shear layers, high-Hartmann-number flows, MHD and
electrohydrodynamics

1. Introduction
The Earth’s magnetic field is created by convectively driven flows in its rapidly

rotating molten-iron outer core (e.g. Jones 2011). There is therefore great interest
in studying magnetohydrodynamic flows in rotating systems not only theoretically,
but experimentally as well. Convectively driving a flow sufficiently hard to yield a
laboratory dynamo is unfortunately not possible, but a number of mechanically driven
flows have achieved dynamo action (see for example the reviews by Stefani, Gailitis &
Gerbeth 2008; Verhille et al. 2010; Lathrop & Forest 2011).

Even these dynamos require very strong forcing, so magnetohydrodynamic effects
are often introduced by an externally imposed magnetic field, rather than hoping for a
purely internally generated dynamo field. Ensuring that magnetic fields are present at
the outset not only reduces the experimental size and power requirements by an order
of magnitude, but also yields interesting magnetohydrodynamic phenomena even in
the laminar regime, where theoretical predictions and comparisons can more easily be
made. In contrast, laboratory dynamos are inevitably turbulent from the outset, making
theoretical analysis more difficult.

One imposed-field configuration that has attracted increasing attention is magnetic
spherical Couette flow (Hollerbach 1994), in which a flow is driven by differentially

† Email address for correspondence: rh@maths.leeds.ac.uk
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(a) (b)

(c)

I0

I0

FIGURE 1. (a) The basic configuration, consisting of a spherical shell designed so that
electric currents can be injected at the inner sphere and extracted at a ring-shaped electrode
around the equator of the outer sphere. Black represents insulating parts of the container,
red conducting. The red lines within the interior indicate the electrostatic current distribution
J , before the currents induced by the fluid flow are included. The blue lines denote the
associated magnetic field Bt. (b) Field-lines of the imposed field Bp, for ε = −0.2 (solid)
and ε = 0.2 (dashed). (c) The Lorentz torque J × Bp = −f (r, θ)êφ (with ε = 0 in this case).
The contour interval is 1 (non-dimensionalized as in § 2), with the grey-shading indicating
increasingly large values. The quantities shown in (b,c) are both equatorially and axially
symmetric, like J in (a).

rotating a spherical shell. Experiments have been performed with imposed axial (Sisan
et al. 2004; Kelley et al. 2007) and dipolar (Nataf et al. 2006, 2008; Brito et al. 2011)
fields. Related theoretical work includes Hollerbach (2009), Soward & Dormy (2010)
and Gissinger, Ji & Goodman (2011) and further references therein.

In this work we suggest the possibility of driving a flow electromagnetically rather
than mechanically. Specifically, suppose we not only impose magnetic fields B, but
also inject electric currents J into the fluid. The resulting Lorentz force J×B will then
directly drive a flow, without the need for any differential rotation or other mechanical
forcing. Experiments involving electromagnetically driven flows of this type have been
carried out before (e.g. Messadek & Moreau 2002; Moresco & Alboussière 2004;
Rossi, Vassilicos & Hardalupas 2006; Figueroa et al. 2009; Boisson et al. 2012;
Seilmayer et al. 2012), but not with geodynamo applications in mind. The novel aspect
of our approach here is to drive such flows in a rapidly rotating spherical shell, in
order to model aspects of the Earth’s core.

Figure 1(a) illustrates the geometry and current injection that we envisage. We start
with a spherical shell, with radius ratio ri/ro = 1/3, chosen to be comparable with
the Earth’s inner/outer core radius ratio of 0.35. The entire system is in solid-body
rotation, but there is no differential rotation of the inner and outer spheres. The shafts
suspending the inner sphere are designed such that electric currents 2I0 can be injected
into the inner sphere, which is made of a conducting material such as copper. From
this inner-sphere electrode the currents flow through the fluid (liquid sodium) to a
ring-shaped electrode that extends ±15◦ from the equator of the outer sphere. (The
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current injection along the top and bottom shafts, as well as the return flows from
the outer electrode to close the current loops are kept as symmetric as possible, to
preserve the system’s equatorial symmetry.)

Associated with this distribution of electric currents is an azimuthal magnetic field
Bt (the subscript t refers to toroidal), satisfying ∇ × Bt = µJ , where µ is the
permeability of free space and J the electric current density within the fluid. The
specific flow of current shown in figure 1(a) is the electrostatic distribution before
any fluid flows and electric currents induced thereby are included. Formally, this
electrostatic current density J is given by the solution of ∇2Bt = 0, subject to the 2I0

inhomogeneous injection/extraction boundary conditions on J , that is, Jr = 2I0/4πr2
i

on the inner boundary, Jr = 0 on the insulating parts of the outer boundary, and
Jr = 2I0/Ar on the conducting ring (where Ar denotes the ring’s surface area).

Given this imposed electric current density J and its associated magnetic field Bt,
the resulting Lorentz force J × Bt is already sufficient to drive a fluid flow U . We will
nevertheless impose an additional, predominantly axial magnetic field Bp (the subscript
p refers to poloidal). We will be interested in the limit where Bp � Bt, and the
Lorentz force J × Bt is negligible compared with J × Bp. There are several reasons
for preferring to drive the system primarily by the imposed force J × Bp rather than
J × Bt.

First, Bp � Bt is experimentally quite straightforward to achieve (we will insert
specific numbers later on), so if one is interested in forcing the system as hard as
possible, it makes sense to impose this additional field Bp. Second, the orientations of
J , Bt and Bp are such that J × Bt has only r- and θ -components, whereas J × Bp has
only a φ-component, where (r, θ, φ) are spherical coordinates. The well-known result
(e.g. Jones 2011) that in rapidly rotating systems zonal flows are far easier to excite
than meridional flows then applies, and indicates that even if J × Bp only had the
same magnitude as J × Bt, it would nevertheless drive a far stronger flow.

A third reason for preferring Bp to Bt is that, owing to the currents I0 along the
shafts, Bt near the shafts scales as s−1, where s is the cylindrical distance from the
axis. Since s = 0 would not be part of the fluid domain there is no actual singularity
involved, but it would nevertheless be preferable to design an experiment where the
precise thickness of the shafts plays less of a role than it might if Bt were the
dominant magnetic field. We will see below that Bt � Bp is satisfied even near the
shafts for all plausible experimental setups. (In the mathematical model considered
here though, where there are no shafts, and s= 0 is thus included, the neglect of Bt is
formally not justified.)

Regarding the specific form of Bp, we will take

Bp = B0[êz + ε((2z2 − s2)êz − 2szês)], (1.1)

where (z, s, φ) are cylindrical coordinates. Figure 1(b) shows the resulting field-lines
for ε = ±0.2. There are two reasons for considering not just a purely axial field
Bp = B0êz, but non-zero ε as well. First, a purely axial field is somewhat degenerate,
in the sense that it is only for a purely axial field that the Taylor–Proudman theorem,
tending to align the flow parallel to the axis of rotation, and the Ferraro iso-rotation
law, tending to align it along the field, are in complete agreement. For any other
imposed field they are at least partially in conflict, and it is of interest to see how
the system resolves this conflict. The second reason for considering non-zero ε is that
slightly curved fields would be easier to generate in an experiment, requiring only a
small number of Helmholtz coils rather than the large array of coils, in either a long
cylindrical or spherical-shell configuration (Everett & Osemeikhian 1966), that would
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be needed to obtain a purely axial field. The ε-part of Bp is then simply the next term
in a multi-pole expansion of general potential fields.

Finally, given J and Bp, figure 1(c) shows the resulting Lorentz force J × Bp =
−f (r, θ)êφ that ultimately drives the entire system. In the remainder of this paper we
will derive the governing equations, compare them with the magnetic spherical Couette
flow and geodynamo equations, and compute solutions forced up to 10 times beyond
the onset of non-axisymmetric instabilities. We demonstrate that these parameter
values could be obtained experimentally, and estimate how much more strongly the
system could be forced.

2. Equations
Since the relevant equations, and certain approximations we wish to make, have not

been presented before, we will consider them in some detail here. We begin by letting
the total magnetic field be given by

B= B0Bp + I0µ

2πro
(Bt + b), (2.1)

where Bp and Bt are the non-dimensional equivalents of the fields introduced above,
each appropriately scaled by its own amplitude. The new quantity b is the field
induced by the fluid flow U ; by scaling it in the same way as Bt we are implicitly
assuming that the induced currents j = ∇ × b are comparable to the imposed current
J =∇ × Bt.

If we further scale length by the outer-sphere radius ro, time as r2
o/ν, and U as

ν/ro, where ν is the fluid viscosity, the non-dimensional Navier–Stokes and induction
equations become

∂U
∂t
+ U ·∇U + τ êz × U =−∇p+∇2U + A[∇ × (Bt + b)] × [Bp + δ(Bt + b)], (2.2)

Pm δ
∂b
∂t
= Pm∇ × (U × [Bp + δ(Bt + b)

])+ δ∇2b. (2.3)

The parameter

A= I0B0ro

2πρν2
, (2.4)

where ρ is the fluid density, measures the strength of the imposed Lorentz force
J × Bp. The parameter

δ = I0µ

2πroB0
(2.5)

represents the ratio of Bt to Bp; following our discussion above we will therefore be
interested in the limit δ� 1. The Coriolis number

τ = 2Ωr2
o

ν
(2.6)

measures the solid-body rotation Ω of the entire system. Finally, the magnetic Prandtl
number

Pm= ν
η

(2.7)
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is the ratio of the fluid viscosity ν to magnetic diffusivity η, and is thus a material
property of the fluid. The value for liquid sodium is 7.5 × 10−6 (e.g. Brito et al.
2011). In deriving these equations we have also used the fact that Bp and Bt satisfy
∇ × Bp = 0 and ∇2Bt = 0, and are steady; all dynamic variations in B are accounted
for by the induced field b.

Up to this point these equations are exact. We now use δ � 1 and Pm� 1 to
approximate them as

∂U
∂t
+ U ·∇U + τ êz × U =−∇p+∇2U + A

[
∇ × (Bt + b)

]× Bp, (2.8)

0= Pm∇ × (U × Bp)+ δ∇2b, (2.9)

analogous to the Rm� 1 approximation made in many numerical studies of magnetic
spherical Couette flow (e.g. Hollerbach 2009). Physically, these simplified equations
correspond to stating that: (a) the magnetic field is essentially just Bp, and does not
change, (b) the electric currents consist of both the externally imposed J =∇ × Bt and
the induced j = ∇ × b, and (c) b is induced by the action of U on Bp, and adjusts
effectively instantaneously.

It is convenient to further rescale U and b according to

U = A

τ
Û, b= Pm

δ

A

τ
b̂. (2.10)

Recalling also that (∇×Bt)×Bp =−f (r, θ)êφ is the known forcing term that ultimately
drives everything, the final result is

E
∂Û
∂t
+ EÂ Û ·∇Û + êz × Û =−∇p̂+ E∇2Û +Λ(∇ × b̂)× Bp − f (r, θ)êφ, (2.11)

0=∇ × (Û × Bp)+∇2b̂. (2.12)

The three non-dimensional parameters are now the Ekman and Elsasser numbers

E = τ−1 = ν

2Ωr2
o

, Λ= Pm

δ

A

τ
= B2

0

2Ωµρη
, (2.13)

and the forcing parameter

Â= A

τ
= I0B0

4πρνΩro
. (2.14)

The definition of Â as A/τ is of course to a certain extent arbitrary; one could equally
well have defined it as A/τ 2, in which case the corresponding factor in (2.11) would
have been just Â rather than EÂ. There are two reasons why the choice Â = A/τ is
particularly convenient. First, it matches the rescalings (2.10). Second, as we will see
in § 4, the critical values Âc for the onset of non-axisymmetric instabilities then exhibit
relatively little variation with E.

To summarize, the flow Û evolves in time according to (2.11), and at each instant in
time the induced field b̂ is determined by (2.12). The boundary conditions associated
with (2.11) are no-slip at both boundaries. For the boundary conditions associated with
(2.12), we take the inner sphere to be perfectly conducting, meaning that the system
has total freedom to rearrange precisely how the injected current enters the fluid. The
outer sphere is here taken to be insulating, meaning that the system has no freedom to
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rearrange how the current is extracted at the ring-shaped electrode. In reality of course
this electrode cannot be insulating, and the system will inevitably have at least some
freedom to rearrange precisely where on the electrode the current is extracted. (That is,
the boundary conditions on Bt and b̂ are formally inconsistent.)

Both the inner and outer boundary conditions are therefore only a plausible
approximation of the true conditions, which would inevitably depend on the precise
details of how the inner and outer electrodes are manufactured. Varying the
conductivity of the inner boundary is easily implemented, with sample calculations
indicating that as long as it is greater than that of the fluid, the results are
qualitatively like the perfectly conducting results presented here. (For comparison,
the conductivity of copper is ∼4 times that of liquid sodium.) Implementing more
accurate approximations of the outer boundary conditions would be more difficult,
and would probably also depend even more sensitively on the specific construction
details. However, as long as the latitudinal extent of this equatorial ring is reasonably
small, there simply is no space for much rearrangement anyway, so assuming no
rearrangement is likely to be a good approximation. (One would not want to make
this ring so narrow though that its total surface area was smaller than that of the
inner sphere, as otherwise the current densities would become artificially large near the
ring.)

These equations (2.11) and (2.12) and associated boundary conditions were
solved using the numerical code described by Hollerbach (2000), in which the
angular structure is expanded in spherical harmonics, and the radial structure in
Chebyshev polynomials. The time stepping of (2.11) is implemented by a second-
order Runge–Kutta scheme, modified to treat the diffusive terms implicitly. The
highest resolutions used were (r, θ) = (200, 300) for the two-dimensional calculations
in §§ 3 and 4, and (r, θ, φ) = (80, 150, 60) for the three-dimensional calculations
in § 5.

Comparing these equations with those of magnetic spherical Couette flow, we note
that they are very similar, the only real difference being that here the system is driven
by the imposed torque −f (r, θ)êφ rather than by an imposed differential rotation
between the inner and outer spheres. However, electromagnetically driven flows allow
greater flexibility, in terms of what body forces to impose, whereas in Couette flows
one can only vary the amplitude of the differential rotation, there being no further
flexibility in terms of the spatial structure of the forcing.

Finally, comparing with the geodynamo equations, some similarities are that here,
too, we will be able to reach the rapidly rotating regime E� 1 (although inevitably
still not as small as in the Earth’s core), and also the strongly magnetic regime
Λ > 1. The main difference is that here the only nonlinear term is U · ∇U in the
Navier–Stokes equation, which is very small in the Earth’s core. In contrast, two
important nonlinearities in the Earth’s core are the total Lorentz force (∇ × B) × B
in the Navier–Stokes equation, and the total ∇ × (U × B) in the induction equation,
which are both present only in linearized form in our system here. (Or if one does
not make the small-δ approximation, these nonlinearities are present, but invariably
of lesser importance.) Another important factor in the Earth’s core is the buoyancy
force that ultimately drives the entire geodynamo, whereas in isothermal systems such
as considered here buoyancy forces play no role. These differences in the relative
importance of the various terms are unfortunately inevitable in laboratory experiments
(and are present in spherical Couette flow as well).
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(a) (b) (c)

(d) (e) ( f )

FIGURE 2. Contours of the angular velocity ω̂ = Ûφ/s, with a contour interval of 100, and
the grey-shading indicating increasingly large negative values. Â = 0 and E = 10−5; and
(a–c) Λ= 1, (d–f ) Λ= 3. From left to right ε = 0, −0.2 and 0.2.

3. Axisymmetric basic states
We begin by illustrating the axisymmetric basic states that arise in the case of

infinitesimally weak forcing, corresponding to setting Â = 0 in (2.11). Figure 2 shows
the angular velocity ω̂ = Ûφ/s, which is exactly as one might expect; the torque
−f (r, θ)êφ induces a strong zonal flow also in the −êφ-direction. The second feature to
note is how this zonal flow is concentrated almost entirely outside the tangent cylinder,
resulting in a shear layer similar to the classical Stewartson (1966) layer. Comparing
results at Λ = 1 and 3, and ε = 0 and ±0.2, we can also see the competing effects of
the Taylor–Proudman and Ferraro theorems alluded to earlier: at Λ= 1 all three values
of ε still yield contours that are primarily aligned with the rotation axis, whereas at
Λ = 3 the greater influence of the magnetic field causes the contours to align more
with the field-lines of Bp.

The dotted line in figure 2(d) indicates the line z = 0.5. Figure 3 shows profiles of
the angular velocity ω̂ along this line, for the purely axial ε = 0 field, E = 10−5–10−7,
and Λ= 0.1, 1 and 3. Also shown is the asymptotic formula (Proudman 1956)

ω̂g =−
√

2E−1/2 (1− s2)
1/4

s

∫ √1−s2

0
f (r, θ) dz (3.1)

that comes from balancing the z-integrated torque at a given s against the viscous drag
in the Ekman boundary layer. We see that for Λ = 0.1 the agreement is excellent.
(Verifying this formula was the main reason for including the otherwise not so
interesting Λ = 0.1 case, which corresponds to a very weak field Bp, and hence
essentially non-magnetic dynamics.) For Λ= 1 and 3 the profiles of ω̂ are qualitatively
similar, but somewhat suppressed. In terms of the torque balance (3.1), this can be
understood by the transition from an initially non-magnetic Ekman layer to a thinner

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
7:

27
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
19

5

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.195


Electromagnetically driven zonal flows in a rapidly rotating spherical shell 435

s s s

–3

–2

–1

0

–10

–5

0

–30

–20

–10

0

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

(a) (b) (c)

FIGURE 3. Profiles of angular velocity ω̂/1000 as a function of cylindrical radius s along the
line z = 0.5. Â = 0 and ε = 0; and (a) E = 10−5, (b) 10−6, (c) 10−7. The grey dotted lines
show the geostrophic flow formula (3.1), dash-dotted corresponds to Λ = 0.1, solid to Λ = 1,
and dashed to Λ= 3.

s

–1.2

–0.8

–0.4

0

–1.2

–0.8

–0.4

0
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–0.8
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0
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s
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0.2 0.4 0.6 0.8

(a) (b) (c)

FIGURE 4. The same ω̂ profiles as in figure 3, but now plotted as ω̂E1/2/λ, where the
proportionality constant λ is 9 for Λ = 0.1 (a), 6 for Λ = 1 (b), and 4 for Λ = 3 (c). Dashed
lines denote E = 10−5, dash-dotted E = 10−6, and solid E = 10−7. The broad similarity of all
nine scaled profiles (at least in the region outside the tangent cylinder at s= 1/3) indicates the
universal scaling ω̂ ∼ λE−1/2 (and for Λ� 1 there would most likely even be a simple scaling
between λ and Λ).

Ekman–Hartmann layer: among the factors included on the right-hand side of (3.1) is
the thickness of the boundary layer, so a thinner layer yields a reduced geostrophic
flow.

Figure 4 shows the same profiles as in figure 3, but rearranged to bring out
the asymptotic scalings more clearly, and emphasize the underlying similarities. For
Λ = O(1) we see that |ω̂|max scales roughly as 5E−1/2, or 5ÂE−1/2 for the original
unscaled ω. Remembering also how we initially non-dimensionalized U , we obtain
Ro ∼ 10ÂE1/2 for the so-called Rossby number, measuring the ratio of the differential
rotation ω to the solid-body rotation Ω . If the forcing is sufficiently strong such that
Â > E−1/2/10 – which we will see below is experimentally achievable, e.g. Â > 100
at E = 10−6– the Rossby number could thus become O(1). This contrasts with the
Earth’s core, where Ro� 1. (These results in figures 3 and 4 were all obtained in the
infinitesimal-forcing limit Â= 0, but finite-Â results are very similar, at least up to the
onset of non-axisymmetric instabilities, demonstrating the usefulness of the rescaling
(2.10), and the validity of this estimate for Ro.)

Figures 3 and 4 show results only for the purely axial field ε = 0. Figure 5 shows
the corresponding results for ε = ±0.1 and ±0.2. An increasingly large s-component
in Bp, of either sign, is seen to suppress ω̂, so much so that |ω̂|max no longer scales as
E−1/2 as before. Our previous result for Ro is thus somewhat of an over-estimate for
these non-zero-ε cases.
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s
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0.2 0.4 0.6 0.8
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0.2 0.4 0.6 0.8

(a) (b) (c)

FIGURE 5. As in figure 3, profiles of angular velocity ω̂/1000 as a function of s along the
line z = 0.5. Â = 0 and Λ = 1; and (a) E = 10−5, (b) 10−6, (c) 10−7. Solid lines denote
ε = 0.1, dashed lines ε =−0.1, dash-dotted ε = 0.2, and dotted ε =−0.2.

(a) (b) (c)

(d) (e) ( f )

FIGURE 6. Streamlines of the meridional circulation, with white indicating clockwise
circulation, grey counter-clockwise, and a contour interval of 0.2. As in figure 2, Â = 0
and E = 10−5; and (a–c) Λ= 1, (d–f ) Λ= 3, and from left to right ε = 0, −0.2 and 0.2.

Figures 2–5 have all focused on the basic zonal flow, which is indeed the dominant
aspect of the solutions. There is also a weak meridional circulation, shown in figure 6.
Unlike ω̂, this circulation does not increase with decreasing E, and thus becomes
less and less important compared with the zonal flow. (In § 5 we will see that in
the sufficiently supercritical regime the solutions do exhibit considerably stronger
non-zonal flow components.)

Finally, figure 7 shows how the initial electrostatic current distribution from
figure 1(a) is altered by the addition of the induced current j = ∇ × b. The net
flow is still from the inner sphere to the outer equatorial electrode, as it must be, but
some surprisingly complicated patterns emerge, including flows through a very thin
Hartmann boundary layer, as well as circulation cells that are closed entirely within
the fluid. One other point to note is how the current injection on the inner sphere has
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(a) (b) (c)

(d) (e) ( f )

FIGURE 7. (a–c) Streamlines of the total electric current distribution. The blue and green
contours merely single out certain circulation cells separate from the main current from
the inner sphere to the outer equatorial electrode. In (d–f ) the region between the dashed
red lines and the outer boundary in (a–c) has been stretched in r by a factor of 10 to
properly show the circulation through the outer Hartmann–Ekman boundary layer. Â = 0,
E = 10−5, Λ = 1, and from left to right ε = 0, −0.2 and 0.2, corresponding to figures 2(a–c)
and 6(a–c).

rearranged itself so that essentially all of it enters the fluid at the equator of the inner
sphere, rather than uniformly distributed as in figure 1(a).

This feature also explains why the angular velocity ω̂ is essentially zero inside
the tangent cylinder; there is simply no Lorentz torque driving anything there. One
could of course design the inner-sphere electrode to also cover only a portion of the
inner sphere, say a small polar cap, thereby forcing electric currents to flow inside
the tangent cylinder as well. The result would still be a shear layer on the tangent
cylinder: inside the tangent cylinder the formula (3.1) would include a viscous-drag
contribution from an inner boundary layer as well, meaning that even a relatively
uniform torque would still result in a non-uniform angular velocity (looking similar
to the Λ = 0.1 solutions in figures 3 and 4). The results in this section are therefore
broadly representative of what could be achieved with an axisymmetric current flow
from an inner electrode to a ring-shaped outer one, independent of the precise details
of these electrodes.

4. Onset of instabilities
We next computed the forcing that results in the onset of instabilities. As shown in

table 1, the critical values Âc for the linear onset of non-axisymmetric instabilities are
O(1–10), and vary relatively little with E (and not even monotonically for ε = ±0.2).
Recalling our earlier estimate Ro ∼ 10ÂE1/2, the corresponding Rossby numbers are
thus 0.1–0.01. That is, the onset occurs for (moderately) small Ro. Up to onset the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
7:

27
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
19

5

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.195


438 R. Hollerbach, X. Wei, J. Noir and A. Jackson

E = 10−5 E = 10−6 E = 10−7 E = 10−5 E = 10−6 E = 10−7

ε = 0 3.4 (5) 1.8 (10) 1.2 (19) −4.5 (6) −3.0 (11) −2.1 (22)
ε = 0.1 3.7 (5) 2.5 (10) 2.5 (21) −4.9 (6) −3.7 (12) −3.3 (26)
ε =−0.1 4.0 (5) 2.8 (10) 2.8 (20) −4.9 (6) −3.6 (12) −3.2 (27)
ε = 0.2 4.9 (5) 4.3 (11) 5.3 (23) −6.3 (6) −5.5 (13) −5.7 (27)
ε =−0.2 5.5 (5) 4.9 (10) 5.6 (23) −6.1 (6) −5.1 (13) −5.0 (28)

TABLE 1. Critical positive and negative Â values for the onset of non-axisymmetric
instabilities, having φ-dependence exp(imφ), for E and ε as shown, and Λ= 1 in all cases.
The numbers in parentheses indicate the azimuthal wavenumber m of the most unstable
modes, which are equatorially symmetric in all cases. A few calculations were also carried
out for Λ as large as 4, and yielded much the same critical wavenumbers, but with Âc

around 2–3 times larger.

basic states are also virtually unchanged from the results presented in figures 2 and 7,
for example, thereby validating the use of the previous estimate for Ro.

We further note in table 1 that there is relatively little difference between positive
and negative Â, in terms of either the value Âc itself or the associated azimuthal
wavenumbers. This is perhaps not surprising, given that instabilities of magnetic
Stewartson–Shercliff layers (Wei & Hollerbach 2008) also exhibit less ±Ro asymmetry
than those of non-magnetic Stewartson layers (Hollerbach 2003).

5. Three-dimensional solutions
Fully three-dimensional solutions in the supercritical regime are computationally

far more demanding than axisymmetric and linear-onset calculations, and were only
feasible for E = 10−5. Positive and negative Â, and different ε, yielded qualitatively
similar behaviour. We therefore concentrate on the Â > 0, ε = 0 case, and increase Â
as far as possible beyond the linear-onset value Âc = 3.4.

As indicated in table 1, at onset the solution has azimuthal wavenumber m = 5. By
the time Â= 2Âc, a secondary bifurcation has occurred, whereby the solution switches
to an m = 4 (and multiples thereof) periodicity in φ. By 3Âc a further bifurcation
has occurred, whereby the solution acquires a (very slight) periodic time-dependence
superimposed on the previous steady drift in φ. Similar bifurcations, both the down-
shift in m as well as the Hopf bifurcation to a non-trivial time-dependence, have also
been observed in magnetic spherical Couette flow (Hollerbach 2009).

Increasing Â still further, by 5Âc the m = 4 azimuthal periodicity has been lost, and
the solution contains energy in all wavenumbers. Unlike the 2 and 3 times supercritical
solutions, which remained equatorially symmetric, by 5Âc the equatorial symmetry has
also been lost. Whether the azimuthal and equatorial symmetries are broken in one
or two bifurcations is not known; one can construct scenarios consistent with either
option. Any hysteresis associated with reducing Â again was also not investigated in
detail. One aspect that was checked though was that if Â is reduced below Âc, the
solutions inevitably revert back to the original axisymmetric basic states.

The 5Âc solution also has no simple time-dependence, but fluctuates irregularly.
Since it has no further spatial or temporal symmetries to break, it is not surprising
that no additional bifurcations occur if Â is increased further to 10Âc. Figure 8 shows
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m m
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10–4

10–6
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10–6
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(a) (b)

(c) (d)

FIGURE 8. Power spectra for (a) 2, (b) 3, (c) 5 and (d) 10 times the critical value Âc = 3.4
corresponding to E = 10−5, Λ = 1 and ε = 0, showing the fraction of the total kinetic energy
contained in the non-axisymmetric modes exp(imφ), for m = 1–60. The axisymmetric mode
contains ∼99 % of the energy, and is not shown. The spectra in (a,b) for 2 and 3 times
supercritical include only multiples of m = 4. The spectra in (b–d) for 3, 5 and 10 times
supercritical show both the time-averaged values (larger dots) and the maxima and minima
(smaller dots), indicating that the energy in any given m can fluctuate by a factor of up to ∼3.

power spectra for 2, 3, 5 and 10 times Âc. For 5 and 10 times supercritical the maxima
and minima were computed over a time interval of 20 rotations of the system, starting
from solutions already equilibrated to a statistically steady state.

For comparison, spinning the basic zonal flow up from rest was found to require
∼E−1/2/5 rotations. The factor of E−1/2 is the same as in the classical problem where
the entire container is spun up from rest (e.g. Duck & Foster 2001), but occurs for
a slightly different reason. In the classical problem, it arises from the increasingly
inefficient (as E is reduced) role of Ekman pumping in transferring angular momentum
into the fluid interior. In contrast, here angular momentum is transferred directly into
the interior by the imposed torque −f (r, θ)êφ . However, the zonal flow that is being
spun up itself scales as E−1/2 (figure 4), so that a much longer time is also required.
Once the zonal flow was spun up there was no evidence of any dynamics occurring on
time scales significantly longer than the rotational time scale.

Figures 9 and 10 show snapshots of the detailed spatial structure of the 10Âc

flow. In figure 9 we see a significant broadening of the previous shear layer, as
well as an increased z-dependence of the zonal flow, with the peak occurring in the
equatorial region. We note furthermore how substantially the equatorial symmetry has
been broken (in both figures), with only the basic zonal flow still dominated by its
equatorially symmetric component. The differences between the two hemispheres also
give a good indication of the typical variation in time; the basic zonal flow is always
present, with irregular non-axisymmetric fluctuations about it. It is of interest finally
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(a) (b) (c)

FIGURE 9. Three meridional sections of the 10Âc flow, each separated by 120◦. The contours
show Ûφ , with blue negative, pink positive, and contour interval 100 (|Ûφ|max = 714). The
arrows denote the flow (Ûs, Ûz) in the plane, with a maximum value of 145.

(a) (b)

FIGURE 10. Sections of the 10Âc flow at the levels (a) z= 0.5 and (b) z=−0.5. The colours
show Ûz, with blue negative, pink positive, and interval 20 (|Ûz|max = 107). The arrows denote
the flow (Ûs, Ûφ) in the plane, but with the axisymmetric part of Ûφ (the basic zonal flow)
removed to focus on the non-axisymmetric structures. The maximum value of this part of the
flow is 104 (compared with a maximum value of ∼700 for the axisymmetric part of Ûφ , as in
the sections in figure 9). The black circles indicate the location of the tangent cylinder.
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s s
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0.2 0.4 0.6 0.8 0.35 0.40 0.45 0.50

FIGURE 11. Profiles of the axisymmetric angular velocity ω̂ as a function of s along the lines
(a) z = 0.5 and (b) z = 0. Black denotes Â = 0, green Âc, blue 2Âc, red 3Âc, cyan 5Âc, and
magenta 10Âc. The two magenta curves in (b) correspond to two different instants in time; all
other curves fluctuate by even smaller amounts (or not at all).

to compare the typical magnitude of the zonal flow, ∼700, with that of all the other
flow components, ∼100. The directly forced zonal flow thus still dominates, but the
secondary non-axisymmetric structures are not negligible either.

Finally, returning to the entire sequence from Â = 0 to 10Âc, figure 11 quantifies
the effect that the increasingly strong three-dimensionality has on the original
axisymmetric shear layer. Comparing first the angular velocity profiles at Â= 0 and Âc,
we note that they are almost identical. This demonstrates again the usefulness of the
rescaling (2.10), and indicates that, up to the onset of instability at least, the unscaled
flow U is exactly proportional to Â. In the supercritical regime we see the gradual
broadening of the shear layer previously observed in figure 9. Note also how the peak
amplitude in ω̂ decreases monotonically at z = 0.5, but at z = 0 it increases up to 5Âc,
and only decreases again (and shifts noticeably outward) for 10Âc. This reflects the
increased z-dependence of the zonal flow seen in figure 9.

6. Discussion
Having computed these numerical results, we return to the question of whether

they could be realized in a liquid-metal (sodium) laboratory experiment, and if so,
how much further into the supercritical regime an experiment could be driven. A
superconducting magnet with a field strength up to 1 T is currently being built. The
spherical device within this magnetic field will have ro = 25 cm, and is intended to
rotate up to perhaps 150 revolutions per second.

For comparison, the previous magnetic spherical Couette flow experiments in
America (Sisan et al. 2004; Kelley et al. 2007) and France (Nataf et al. 2006, 2008;
Brito et al. 2011) were comparably sized, but rotated less rapidly. Sisan et al. have
ri = 5 cm, ro = 15 cm, the inner sphere rotating at up to 50 rev s−1, and the outer
sphere stationary. Kelley et al. have ri = 10 cm, ro = 30 cm and the two spheres
rotating independently at up to 45 rev s−1 for the inner and 35 rev s−1 for the outer.
Nataf et al. have ri = 7.4 cm, ro = 21 cm, with both spheres rotating independently at
up to 30 rev s−1. The imposed magnetic field strengths were also somewhat smaller,
with an axial field up to 0.2 T for Sisan et al., an axial field up to 0.04 T for Kelley

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
7:

27
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
19

5

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.195


442 R. Hollerbach, X. Wei, J. Noir and A. Jackson

E 10−5 10−6 10−7 10−5 10−6 10−7 10−6 10−7 10−8 10−6 10−7 10−8

Λ 1 1 1 1 1 1 3 3 3 6 6 6
Â 3.4 1.8 1.2 34 18 12 100 100 100 300 300 300
Ω/2π (Hz) 0.08 0.8 8.3 0.08 0.8 8.3 0.8 8.3 83 0.8 8.3 83
B0 (T) 0.01 0.03 0.10 0.01 0.03 0.10 0.06 0.18 0.56 0.08 0.25 0.80
I0 (A) 0.33 0.55 1.2 3.3 5.5 12 18 55 180 37 120 370
Ro 0.1 0.02 0.004 1 0.2 0.04 1 0.3 0.1 3 1 0.3
Rm 0.003 0.003 0.01 0.03 0.03 0.1 0.2 0.7 2 0.7 2 7

P (W) 10−6 10−5 10−4 10−4 10−3 10−2 0.02 0.6 20 0.2 6 200

TABLE 2. Each column corresponds to a potential experimental realization, based on a
device of size ro = 25 cm. The first three columns correspond to linear onset values from
table 1, and the next three to 10 times supercritical. The final six columns illustrate
somewhat more extreme parameter values, but which should still be experimentally
accessible. The values in italics in these columns are intended to emphasize that these
estimates become increasingly unreliable at such strongly supercritical forcing.

et al., and a dipolar field varying between 0.345 and 0.008 T throughout the shell in
the French experiment. The ro, Ω and B0 values intended here are thus ambitious, but
still achievable.

The final parameter to consider is the forcing Â. The difficulty lies in estimating
how large the currents I0 could reasonably be taken to be. The closest comparable
experiment here is probably that of Seilmayer et al. (2012), who ran a current of up to
8 kA through a 10 cm diameter column of liquid metal (GaInSn rather than sodium)
and studied the resulting Tayler instabilities. We see that very large currents can thus
be generated and injected into quite modest-sized volumes of liquid metal. Seilmayer
et al. also found that even at such extreme currents ohmic heating of the fluid was not
excessive, and still allowed run-times of ∼20 min before the device warmed up too
much and had to be switched off. However, one complication which they did not have
to contend with is that here the spherical shell is supposed to be rapidly rotating. The
current must therefore either be transferred into the rotating reference frame, or else
the entire current-generating apparatus must be included in the rotating frame. Which
option would be better is not entirely clear, but it is intended to achieve currents of
several hundred amperes.

Table 2 contains some specific numbers, using the liquid sodium values ρ =
930 kg m−3, ν = 6.5× 10−7 m2 s−1, η = 8.7× 10−2 m2 s−1 and µ= 4π× 10−7 H m−1

(e.g. Brito et al. 2011). The first three rows indicate the desired non-dimensional input
parameters E, Λ and Â. The next three rows translate these to the corresponding
dimensional quantities Ω/2π (that is, converted from rad s−1 to rev s−1), B0 and
I0. We recall that the dimensional and non-dimensional parameters are related by
E = ν/2Ωr2

o, Λ = B2
0/2Ωµρη and Â = I0B0/4πρνΩro, as in (2.13) and (2.14). The

next two rows show estimates for the non-dimensional output parameters Ro and
Rm. Ro has previously been estimated as Ro ∼ 10ÂE1/2; Rm is estimated below as
Rm ∼ PmÂE−1/2/3. The final row shows the estimate (6.3) below for the required
power input.

Having demonstrated that even a moderate-sized experiment could be pushed into
the strongly supercritical parameter regime Â� 1, it is of interest also to return to
the original equations, and consider at what point the approximations we made in
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deriving (2.11) and (2.12) begin to break down. First, the assumption that δ � 1 is
easily translated into PmÂ�Λ, and is thus fulfilled for all plausible parameter values.
(Even allowing for the fact that Bt near the shaft would be amplified by a factor of
ro/rs, where rs is the radius of the shaft, inserting reasonable values for rs still yields
Bt � Bp.) Furthermore, the induced currents are comparable to the injected currents
(figure 7), but not substantially larger, so b� Bp is also satisfied.

Next, the neglect of any time-dependence in the induction equation is equivalent
to stating that the magnetic Reynolds number Rm = Udimri/η, where Udim is a typical
dimensional flow speed, must be small. Recalling our earlier estimate Û ∼ E−1/2, and
tracing back how Û scales relative to Udim, we obtain Rm ∼ PmÂE−1/2/3. Inserting
Pm = 7.5 × 10−6, Â = 300 and E = 10−8 yields Rm ∼ 7, as indicated also in table 2.
At the smallest achievable Ekman numbers, and strongest forcings, Rm can therefore
exceed O(1), thereby introducing additional dynamics into the problem. For all the
solutions numerically computed here though, Rm is indeed small, validating the use of
the reduced equations.

Finally, it is of interest to consider the energetics associated with this system, and
thereby estimate the power requirements. Taking the dot product of (2.11) with Û ,
(2.12) with Λb̂, adding the two, and integrating over the volume, one obtains the
associated energy equation

∂

∂t

1
2

E
∫
|Û |2 dV =−

∫
Ûφ f (r, θ) dV −

∫ (
E|∇ × Û |2+Λ|∇ × b̂ |2) dV. (6.1)

Recalling that Ûφ is negative, the term −∫ Ûφ f (r, θ) dV represents the power input, via
the work done by the imposed torque −f (r, θ)êφ . In a statistically steady state this
power input is balanced by the viscous and ohmic dissipation, the two negative-definite
terms on the right-hand side of (6.1).

Tracing back how the various quantities were non-dimensionalized, the dimensional
power input becomes

Pdim = I0B0ν

2π
Â
∫
|Ûφ|f dV. (6.2)

Using the numerical results to estimate |Ûφ| ∼ E−1/2 (as before), and
∫

f dV ∼ 2, one
obtains

Pdim ∼ I0B0ν

π
ÂE−1/2 = 2ν3ρ

ro
Â2E−3/2. (6.3)

As indicated by the last row in table 2, values range from less than one mW to several
hundred W at the strongest forcings. That such modest power inputs can nevertheless
drive such strong zonal flows demonstrates once again how easily such flows can
be maintained once they have been spun up. We caution though that when they are
applied so far beyond the linear onset regime, all these formulae for Ro, Rm and P
are at best very rough order-of-magnitude estimates. Definitive values can only emerge
from an actual experiment.

7. Conclusion
In this work we have presented a system related to magnetic spherical Couette flow

which is driven electromagnetically rather than mechanically, and have demonstrated
that an experiment comparable in size to existing Couette flow setups can be driven
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strongly enough to yield interesting dynamics, most likely all the way to fully
developed turbulence. We suggest furthermore that electromagnetically driven flows
of this type offer considerable flexibility in terms of what body forces to impose, far
beyond what is possible in Couette flow experiments. To mention just one additional
possibility, if the outer electrode were split into multiple segments in the azimuthal
direction, so that a non-axisymmetric current pattern could also be imposed, the
non-axisymmetric tangent-cylinder shear layers identified by Livermore & Hollerbach
(2012) could perhaps be generated. The next step will be the final design of an actual
experiment, incorporating as many such options as possible.
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