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Abstract

In this work we study the quantum nature of a hybrid light–matter system,
where we use the interactions of the matter component to introduce a siz-
able nonlinearity to photons. It is a longstanding goal to achieve interactions
that overcome the losses in the system, resulting in the photon blockade ef-
fect that leads to nonclassical signatures measurable in photon correlation
experiments. To implement such a system we combine an optical cavity with
excitons in an InGaAs quantum well where the strong light–matter coupling
leads to new hybridised eigenstates called polaritons. To further enhance the
existing interactions between these polaritons we introduce lateral confine-
ment of the optical mode and a second quantum well. This allows for the
coupling to indirect excitons, where the spatial separation of electrons and
holes introduces dipolar interactions to the system.

In order to measure correlations over a wide range of polariton composi-
tions, we use an open cavity design allowing for in situ tuning of the cav-
ity length. This design naturally results in sizable fluctuations of the cav-
ity length, directly translating to the energy of the optical resonance. We
therefore developed a measurement procedure based on postselecting pho-
ton arrival times based on their countrate, allowing us to overcome these
fluctuations and resolve the correlations of the polaritons.

The interactions between purely direct exciton–polaritons allowed for the
first observation of nonclassical polariton correlations by continuous wave
excitation, with a value g(2)(0) = 0.90(1) at an cavity content of 28 %, mark-
ing the current record for comparable systems. Correlation measurements at
lower exciton fractions show the presence of a new regime, where a small an-
tibunching persists independent of the detuning between the excitation laser
and the polariton mode. This behaviour cannot be explained by polariton–
polariton interactions. We attribute them to the presence of the biexciton
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and propose a “dissipative blockade” mechanism, where the selective cou-
pling of the biexciton to the doubly excited polariton state lowers the prob-
ability of the two-photon emission. The good agreement of the data with
our numerical simulations strongly supports this mechanism as origin of the
detuning independent antibunching. To our knowledge this would mark the
first observation of nonclassical correlations originating from a dissipative
blockade mechanism, and could potentially offer a novel approach to the
creation of single-photon states. At the same time, the polariton interaction
strengths extracted from the simulation depend much stronger on the exci-
ton content as expected from the commonly used quadratic scaling law. And
while we do not have an explanation for this behaviour, it suggests that a
microscopic theory might be necessary to capture the details in the scaling
of the interactions of these composite particles.

At the same time careful measurements of the polariton properties show
that as a result of the increased indirect exciton content, the exciton oscillator
strength is substantially reduced. This leads to a broadened linewidth and a
lower transmission which limits the available parameter space. As a result,
the expected interaction enhancement could not be observed in this system.
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Kurzfassung

In dieser Arbeit untersuchen wir die Quantennatur von hybriden Licht-
Materie Zuständen, in denen wir die Wechselwirkung des Materieanteils nut-
zen, um eine nennenswerte Nichtlinearität der Photonen zu erzeugen. Dabei
ist es ein grundlegendes Ziel, ein Regime zu erreichen in dem die Wech-
selwirkungsstärke grösser ist, als die Verlustrate im System. Dies führt zu
einer Photonenblockade, welche es uns erlaubt nicht-klassische Signaturen
in Photonkorrelationsexperimenten zu messen. Wir realisieren solch ein Sys-
tem durch Kombination eines optischen Resonators mit Exzitonen in einem
InGaAs-Quantentopf. Die starke Licht-Materie-Wechselwirkung erzeugt da-
bei neue, hybridisierte Eigenzustände, genannt Polaritonen. Um die exis-
tierenden Wechselwirkungen zwischen den Polaritonen weiter zu erhöhen,
schränken wir die laterale Ausdehnung der Photonen ein und fügen einen
zweiten Quantentopf hinzu. Dieser zweite Quantentopf erlaubt es uns in-
direkte Exzitonen zu erzeugen, welche durch die räumliche Trennung der
Elektronen und Löcher dipolare Wechselwirkungen aufweisen.

Um die Photonkorrelationen über einen grossen Bereich von Polaritonzu-
sammensetzungen messen zu können, benutzen wir einen optischen Resona-
tor mit zwei unabhängig voneinander befestigten Spiegeln, der es uns erlaubt
dessen Länge im Experiment zu variieren. Dieser Aufbau führt naturgemäss
zu Fluktuationen der Länge und damit der Photonenergie. Deshalb haben wir
eine Messprozedur entwickelt, die darauf basiert die Ankunftszeiten der Pho-
tonen in Relation zur momentanen Photonenzählrate zu selektieren. Diese
Vorgehensweise erlaubt es uns trotz der Fluktuationen zuverlässige Korrela-
tionen zu messen.

Die Wechselwirkungen zwischen direkten Polaritonen haben es uns er-
laubt, die erste Messung von nichtklassischen Korrelationen in einem Dau-
erstrich Laser Experiment durchzuführen. Der dabei gemessene Wert von
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g(2)(0) = 0.90(1) bei einem Photonenanteil von 28 % übertrifft die Ergeb-
nisse von bisherigen Experimenten in vergleichbaren Systemen. Bei niedri-
gen Exzitonanteilen beobachten wir ein komplett neues Verhalten, bei dem
schwache, nichtklassische Korrelationen unabhängig von der Verstimmung
zwischen der Energie des Lasers und des Polaritonzustandes auftreten. Dieses
Verhalten ist nicht alleinig durch Polaritonwechselwirkungen erklärbar und
wir schlagen einen dissipativen Blockademechanismus vor. Dieser basiert auf
der selektiven Kopplung zum Biexziton, das zu einer Verbreiterung des dop-
pelt angeregten Polaritonzustands führt und dadurch die Wahrscheinlichkeit
einer Zweiphotonenemission reduziert. Die gute Übereinstimmung zwischen
unseren Daten und numerischen Simulationen unterstützt diese Vermutung.
Nach unserem Wissensstand wäre das die erste Beobachtung von nichtklas-
sischen Korrelationen durch solch einen dissipativen Blockademechanismus
und könnte neue Möglichkeiten zur Erzeugung von Einzelphotonenzustän-
den eröffnen. Gleichzeitig finden wir, dass die Wechselwirkungsstärken, die
wir von den Simulationen erhalten, stärker vom Exzitonanteil abhängen, als
wir aufgrund der gängigen quadratischen Skalierung erwarten würden. Und
obwohl wir keine Erklärung für diese Abhängigkeit haben, deutet sie dar-
auf hin, dass die quadratische Formel nicht ausreicht um die Skalierung der
zusammengesetzten Teilchen zu erklären und eine mikroskopische Theorie
benötigt wird.

Die sorgfältige Messung der Polaritoneigenschaften zeigt, dass das Hin-
zufügen von indirekten Exzitonen die Oszillatorstärke stark reduziert. Die
damit verbundene Linienverbreiterung und Reduktion der Transmission li-
mitiert den verfügbaren Parameterraum beträchtlich und führt dazu, dass
wir in diesem System keine Verstärkung der Polaritonwechselwirkungen fest-
stellen konnten.
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Chapter 1Introduction

Photons have always been a key carrier of information, allowing us to observe
the world and communicate over long distances. This is owed by a large
degree to their inherent linear nature, allowing them to propagate without
self interaction and therefore maintaining their initial information content.
At the same time this also inherently limits their range of applications, as
interactions are a key ingredient in information processing. Therefore, a long
standing goal has been the achievement of interactions on the level of single
photons [1], thereby realizing systems located in the top row of Fig. 1.1.
In practice, strong photon–photon interactions would allow the creation of
optical switches or transistors [2] and would open up new possibilities in
quantum metrology [3, 4], quantum computation and quantum cryptography
[5, 6].

Photons propagating inside a medium naturally experience nonlinear be-
haviour originating from higher-order terms in their polarizability (χ(2), χ(3)).
As the second-order term vanishes in many materials due to their symmetry,
the third-order term is usually weak [7] and only the development of high-
power lasers lead to the observation of nonlinear effects such as the generation
of optical harmonics [8]. To significantly enhance the interactions, photons
can be coupled coherently to matter excitations, which are inherently non-
linear. This hybridisation of light and matter states leads to the formation
of new quasiparticles called polaritons [9], inheriting properties from both
constituents. A common technique to achieve strong light–matter coupling
is the usage of an optical cavity [10–12], allowing a photon to interact mul-
tiple times with the matter excitation during its lifetime, thereby boosting
the effective light–matter interaction strength.

One type of matter excitation with beneficial optical properties which be-
came widely used due to advances in semiconductor fabrication techniques
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Figure 1.1: Classification of physical systems by their particle number and inter-
action strength, adapted from [1]. Crossing into the top/“quantum” row requires
the interactions to be larger than the losses in the system.

are excitons [13, 14], bound electron–hole pairs in semiconductor quantum
wells (QWs). Over the past two decades, a broad range of interesting phe-
nomena have been displayed in exciton–polaritons, for example the observa-
tion of Bose–Einstein condensation [15], superfluidity [16], topological edge
states [17], dissipative phase transitions [18, 19], vortex formation [20, 21] and
dark solitons [22, 23]. While these experiments rely on the finite interactions
between polaritons, their respective strength is comparatively small and the
observed effects originate from collective phenomena that can be described
by semi-classical models, placing them on the bottom right in Fig. 1.1.

To observe the true quantum nature of exciton–polaritons, the interac-
tions have to overcome the natural loss rates in the system, allowing the
creation of strongly correlated single- and multi-particle states. For single
excitations, this manifests in the polariton blockade effect [24, 25] where the
interaction leads to an anharmonicity in the excitation manifold, creating
an effective two-level system analogous to a single atom inside a cavity [26].
The emerging single-photon Fock state is highly sought after in quantum
information, quantum cryptography [5, 6], and quantum metrology [3, 4].
While there are already numerous schemes to create single photons [27, 28],
like the already-mentioned single atom in a cavity [26], semiconductor quan-
tum dots [29–31] or parametric downconversion [32], the high demands in
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terms of low losses, distinguishability, high repetition rate, scalability, tun-
ability and integrability still leave demand for new and improved sources. In
addition to interesting single-particle phenomena, increasing the number of
excitations in the regime of strong interactions allows the study of strongly
correlated many-body phenomena. For example, the transition between su-
perfluid and Mott insulator states in two-dimensional systems [33, 34] or the
Tonks–Girardeau gas in one-dimensional systems [35], which have both been
observed in ultracold atomic gases [36–38]. The driven-dissipative nature
of exciton–polaritons would allow access to a different regime for quantum
simulators [39], which would not easily be achieved using cold atoms.

There are two main strategies towards enhancing the effective interactions
in exciton–polaritons: the introduction of an additional confinement and
coupling to a separate state with strong correlations. One approach is in-
spired by cold atoms, where Feshbach resonances are a key element in tuning
the interactions [40]. In excitonic systems the biexciton bound state is pre-
dicted to have the same effect [41]. Experiments at high polariton densities
have shown the modification from repulsive to attractive interactions due to
the coupling to the biexciton resonance [42] and recent experiments could
verify the results at low densities by photon correlation measurements [43].
A different approach relies on the formation of indirect excitons in spatially
separated QWs, which naturally have stronger interactions due to their per-
manent dipole. Electron tunneling allows for coherent coupling between the
indirect and direct exciton, combining the dipolar interactions with the large
oscillator strength. By measuring the interaction-induced blueshift [44], an
interaction enhancement by a factor of 7.4 compared to direct excitons was
observed. Another commonly used technique is the introduction of confine-
ment for polaritons by tailoring either the excitonic or the photonic mode
[45], which leads to a reduced interparticle distance and therefore increases
their scattering rate. A prominent example for exciton confinement is the
use of etching techniques to create pillar structures [46] which have shown
significant interaction-induced blueshifts but suffer from relatively short po-
lariton lifetime, partially due to the overlap of the polariton mode with the
edges of the pillar structure. A promising approach for the confinement of
photons is the combination of QWs with optical waveguides [47, 48], which
additionally opens up the possibility to build optical circuits. Experiments in
combination with dipolar excitons already showed sizable interactions and
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1. Introduction

optimisation of sample parameters could potentially provide access to the
regime of strong interactions [49, 50]. While the photon confinement in
optical waveguides is essentially limited to 1D, further confinement can be
achieved with hemispherical cavities, allowing for the creation of a 0D pho-
tonic mode [51]. Hemispherical cavities based on curved fiber surfaces have
been shown to provide excellent optical properties and in situ tunability of
the resonator length [52, 53] and in combination with QW excitons allowed
for the observation of the onset of nonclassical correlations [54, 55].

In this dissertation we combine the optical confinement of a fiber-based
hemispherical cavity with the dipolar interactions from indirect excitons in
a pair of coupled QWs. By measuring the correlations of the system [25] we
can directly observe the potential quantum nature of polaritons and learn
more about their dependence on various parameters.
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Chapter 2Exciton–polaritons

In this chapter we lay the theoretical foundation to describe
polaritons composed of light–matter quasiparticles and their
interactions. We show how we aim to increase these interac-
tions by introducing lateral confinement and a dipolar moment
through charge separation.

+ -
-

dx

ix

Figure 2.1: Conceptual illustration of direct and indirect excitons (dx/ix) coupled
to photons within a hemispherical fiber cavity.
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2. Exciton–polaritons

2.1 Excitons

Semiconductors are a class of materials with numerous attributes that make
them desirable for research and applications. Their properties originate from
the electronic band structure and they are generally defined by the location
of the Fermi energy within the band gap, meaning that in the ground state
the valence band is filled with electrons while the conduction band remains
empty [56]. As electrons can be promoted from the valence to the conduc-
tion band by external means, the properties of the semiconductor can be
controlled, which makes them a suitable building block for active devices.
In general they are classified into direct and indirect band gap semiconduc-
tors, based on the location of the band gap minimum in momentum space.
Photons do not couple directly to indirect band gap semiconductors, since
they carry only a small momentum and additional processes are necessary
to satisfy momentum conservation. In our work we are interested in the op-
tical properties and therefore use direct band gap semiconductors, namely
GaAs and InGaAs, which belong to the class of III–V semiconductors with
a zinc blende crystal structure [57] shown in Fig. 2.2 a. Their band struc-
ture around the crystal momentum k = 0 along with their total angular
momentum quantum numbers |J, Jz〉 are sketched in Fig. 2.2 b. It consists
of a single conduction band with s-type symmetry and an effective mass
m∗

e = 0.063 me, and multiple valence bands with p-type symmetry that show
a more complex structure. The so-called split-off band, separated due to
spin–orbit coupling, has the lowest energy and can be neglected for the rest
of this thesis, as the spin–orbit splitting is much larger than the light matter
coupling. The remaining heavy and light hole bands are only degenerate at
k = 0 and split off due to their different effective masses of mLH = 0.082 me
and mHH = 0.51 me respectively.

By absorbing a photon the electrons in the valence band can be excited to
the conduction band, leaving behind a vacancy in the otherwise filled valence
band [58–60]. This vacancy can also be described as a positively charged
particle with opposite spin and momentum and is commonly referred to as
a hole. To reduce their energy, electron and hole can form a bound state
due to their mutual Coulomb attraction, forming the so-called exciton. This
quasiparticle made up from a single positive and a single negative charge
can be described analogously to the Hydrogen atom, but due to the low
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2.1 Excitons
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Figure 2.2: a Face-centred cubic lattice of the zinc blende crystal structure of
GaAs. b Sketch of the GaAs band structure around k = 0, showing the single s-
type symmetry conduction band and the different p-type valence bands with their
total angular momentum quantum numbers |J, Jz〉. While the light and heavy
hole (LH, HH) are degenerate at k = 0, the split-off band (SO) is ESO = 0.34 eV
lower in energy. Therefore the lowest energy transition is between LH/HH and the
conduction band with EBG = 1.42 eV. The figure is inspired by [57] and the quoted
energies correspond to the values at room temperature.

electron mass and high dielectric constant its Bohr radius of a∗
B = 10 nm

(value in GaAs) is about two orders of magnitude larger. Another substantial
difference is the possibility for electrons and holes to recombine by emitting
a photon, leading to a finite lifetime of the quasiparticle. Due to the angular
momentum of the photon, only transitions with ∆J = ±1 are allowed and
therefore the bright exciton has a total angular momentum of Jtot = ±1.
The angular-momentum-forbidden transitions with ∆J = ±2 do not couple
to light and contribute to the so-called “dark” states of the system.

Additionally to the optical and electrical properties, the possibility to com-
bine different materials into heterostructures using molecular beam epitaxy
(MBE) shows the true potential of III–V semiconductors. In this process,
the bare elements get vaporized and then condense on a seed crystal, form-
ing the crystalline structure layer by layer. This allows the combination of
different elements while retaining a high purity of the sample. By growing a
thin layer of a material with a smaller band gap we can break translational
symmetry for the motion of the electrons and holes along the growth direc-
tion, effectively creating a 2D confinement called quantum well (QW). This
results in an increased electron–hole binding energy and oscillator strength

7



2. Exciton–polaritons

[61]. For a QW larger than the Bohr radius, the confinement energy for the
electrons and holes is given by:

E = ~2π2

2m∗d2 , (2.1)

with m∗ = me + mh being the total mass of the exciton and d the thickness
of the quantum well. The arising mass term splits the energies between the
heavy hole and the light hole, reducing the degeneracy of the exciton ground
state [62, 63]. Even though for III-V semiconductor QWs the thickness is
usually comparable to the Bohr radius, the mass dependence and thus the
splitting between the light and heavy hole remains.

This freedom in designing the sample structure also allows us to create
more complicated excitonic structures. Growing a second QW separated by
a thin barrier allows for the exchange of electrons and holes, leading to a
spatial separation of the charges, forming the so-called indirect excitons (ix)
[64] (Fig. 2.3 a). While on one hand the vanishing overlap between electron
and hole reduces their light–matter coupling, their inherent dipole moment
has proven to be a promising way to increase interactions in the system both
theoretically [65, 66] and experimentally [44].

To describe the exciton system we use second quantisation with bosonic
operators for the direct (x†) and indirect exciton (y†) which create excitons
from the Fermi sea. Taking into account the in-plane momentum ~k and the
two spin states (σ), the Hamiltonian of the system can be written as [65, 67]

Hex =
∫∫

d2~k

(2π)2

∑
σ

Edx(~k)x†
σ(~k)xσ(~k) + Eix(~k)y†

σ(~k)yσ(~k)

+ J

2
(
x†

σ(~k)yσ(~k) + y†
σ(~k)xσ(~k)

)
,

(2.2)

where J describes the tunnel coupling. By including the dc Stark effect
and the dipolar energy shift in an external electric field, the energies of the

8



2.1 Excitons
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Figure 2.3: a Sketch of the conduction and valence band energy along the growth
direction of the sample, showing the InGaAs QW pair embedded in the GaAs sub-
strate with the corresponding energy levels. Applying an electric field shifts the
energy levels, allowing the electrons to tunnel. b Energy shift of the direct (dx)
and indirect exciton (ix) as a function of electric field. Due to the strong tunnel
coupling, they hybridise on resonance, thereby forming an upper and lower exciton
branch.

excitons close to ~k = 0 are given by:

Edx(~k) = Edx,0 + ~2~k2

2mdx
+ αE2,

Eix(~k) = Eix,0 + ~2~k2

2mix
+ edE ,

(2.3)

where α describes the polarizability of the direct exciton, E the static out-
of-plane electric field at the location of the QW, e the electric charge and
d the dipole moment of the indirect exciton. We can use the electric field
dependence to tune the exciton energies into resonance, shown in Fig. 2.3 b,
where we plot the solution to Hex at k = 0. Due to the tunnel coupling,
the excitons hybridize close to resonance, leading to the shown anticrossing.
The new eigenstates are superpositions of the direct and indirect exciton and
inherit a fraction of both of their properties, leading to states with dipolar
nature and a finite coupling to optical photons. To prevent a staggered
arrangement of the dipoles occurring in a symmetric QW pair, an asymmetry
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2. Exciton–polaritons

in the potential depth (see Fig. 2.3 a) can be introduced which only allows
the tunneling of either electrons or holes at a given electric field.

2.2 Cavity photons

The basic idea of optical cavities is the formation of an electromagnetic
standing wave between two mirrors due to constructive interference of the
reflected photons. For the simplest case of two parallel mirrors, the construc-
tive interference is perfect if the distance L between the mirrors is equal to
a multiple of half the wavelength, leading to the mode energies

Eq = hcq

2L
, (2.4)

with q enumerating the different modes. The quality of an optical resonator
is commonly described by its finesse F , which quantifies the number of re-
flections of a photon inside the cavity until it leaks out through one of the
mirrors [68],

F = π

| ln
(√

R1R2V
)
|

= ∆Ec
γc

, (2.5)

and depends on the reflectivities R1 and R2 of the mirrors and the absorp-
tion per roundtrip V within the cavity. The finesse ultimately describes the
separation of the resonances (free spectral range ∆Ec) relative to the cavity
linewidth γc. Since the photon lifetime quantifies the loss of coherence from
the cavity resonance, it defines a strong limit on observing phenomena which
rely on the coherent exchange between states. Therefore to achieve strong
coupling, the lifetime has to be longer than the coupling timescales between
emitter and cavity and to be able to resolve the effects of interactions it has
to be at least comparable to the scattering timescales. The photon lifetime
τc and hence the linewidth are closely related to the finesse,

τc = 1
2πγc

= FL

2π~c
, (2.6)

and additionally depend on the cavity length L.
Cavities with long lifetimes can therefore be achieved by using high-
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2.2 Cavity photons
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Figure 2.4: a Electric field inside a monolithic λ/2 cavity as commonly used in
semiconductor structures calculated by the transfer matrix method (tmm). Here
with 15 GaAs/AlAs DBR layers indicated by the refractive index of the materials
as function on the growth direction shown on the left. b The transmission through
the same cavity shows the stop band where both mirrors are highly reflective and a
sharp resonance in the center.

reflectivity mirrors and by minimizing losses inside the mode volume. The
best mirrors for this purpose are so-called distributed Bragg reflector (DBR)
mirrors, where the thicknesses of two materials with different refractive
indices are chosen such that the reflections from different interfaces destruc-
tively interfere with each other. By stacking multiple pairs on top of each
other, reflectivities close to 100 % can be achieved. The reflectivity of such
a mirror can be estimated using [69]:

R =
[

n0 (n2)2N − nS (n1)2N

n0 (n2)2N + nS (n1)2N

]2

, (2.7)

where n1/n2 are the refractive indices of the two materials, nS/n0 of the
surrounding materials and N is the number of pairs. The downside of dis-
tributed Bragg reflector (DBR) mirrors is that it takes multiple layers to
reach high reflectivities, allowing the electromagnetic field to penetrate into
the mirrors, effectively increasing the cavity mode volume Vm

Vm =
∫

d3rε(~r)|E(~r)|2

max |E(~r)|2 , (2.8)
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2. Exciton–polaritons

where ε is the dielectric function. The penetration depth can be calculated
using [70]

LDBR = λ0
4

1
n1 − n2

, (2.9)

where λ0 is the design wavelength. In Fig. 2.4 we show the electric field inside
a monolithic λ/2 cavity as commonly used in semiconductor structures, here
calculated with 15 pairs of GaAs/AlAs DBR layers using the transfer matrix
method1 [72]. It nicely illustrates the penetration of the electromagnetic field
inside the mirrors.

As we described before, we aim to enhance the interactions in our sys-
tem by introducing an optical confinement via a hemispherical cavity, which
essentially increases the mode overlap between the wave functions. The
electromagnetic field inside a hemispherical cavity is described by Hermite–
Gauss functions2 where the different modes are labeled by integer numbers
q for the longitudinal and (n, m) for the transverse electromagnetic modes
(TEM). The energy of these cavity modes is given by [73]

Eq,m,n
c = hc

2L

(
2πq + (2m + 1) arccos

√
1 − L

rx

+(2n + 1) arccos
√

1 − L

ry
+ Φ(Eq,m,n)

)
,

(2.10)

where rx/ry are the radii of curvature of the spherical mirror and Φ is an
additional phase factor arising due to the penetration into the DBRs.

For the remainder of this thesis we focus on the cavity mode with the
lowest momentum n = m = 0, as they are expected to have the longest
lifetime. Similar to Eq. (2.2) we can describe the cavity photons using second
quantisation by introducing the photon annihilation (a) and creation (a†)
operators,

Hc =
∫∫

d2~k

(2π)2

∑
σ

Eq,σ
c (~k)a†

q,σ(~k)aq,σ(~k), (2.11)

1For the calculation we use the python tmm package [71].
2For a perfectly symmetrical cavity the modes would be described by Laguerre–Gauss func-
tions, but asymmetries in the spherical mirror or in the substrate will lift the degeneracy.

12



2.3 Exciton–polaritons

where the momentum dependence of Eq,σ
c is given by the Gaussian profile of

the mode and σ is the circular polarisation of the photon.

2.3 Exciton–polaritons

2.3.1 Light–matter coupling

Placing the semiconductor QW inside an optical cavity resonant with the
excitonic transition allows for excitation and decay into the same photonic
mode, thereby coherently coupling these different systems and combining
their unique properties. The corresponding coupling strength is given by
[74]

Ω =
√

4πEc
~Leff

f2D

∣∣∣∣E(zQW)
Emax

∣∣∣∣ (2.12)

and depends on the relative electric field strength at the position zQW of the
QW, the effective length Leff of the cavity taking into account the penetration
into the DBRs, and the oscillator strength f2D of the emitter describing the
transition of the electron between the valence and conduction band. Using
Eqs. (2.2) and (2.11) we can write down the Hamiltonian for the coupled
system,

H =
∫∫

d2~k

(2π)2

∑
σ

Edx(~k)x†
σ(~k)xσ(~k) + Eix(~k)y†

σ(~k)yσ(~k)

+ Eq,σ
c (~k)a†

q,σ(~k)aq,σ(~k) + Ω
(
x†

σ(~k)aq,σ(~k) + a†
q,σ(~k)xσ(~k)

)
+ J

2
(
x†

σ(~k)yσ(~k) + y†
σ(~k)xσ(~k)

)
,

(2.13)

where we assume the coupling of the cavity to the indirect exciton to be
negligible due to the small overlap between electron and hole. In the current
form the Hamiltonian is linear and can be diagonalized using a Bogoliubov
transformation [13] by introducing the three new eigenstates

pi,σ(~k) = ci
c(~k)aσ(~k) + ci

dx(~k)xσ(~k) + ci
ix(~k)yσ(~k)

i ∈ {LP, MP, UP}
(2.14)
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2. Exciton–polaritons

called the lower, middle and upper polaritons, which are superpositions of the
cavity, the direct and the indirect exciton. The new eigenenergies at ~k = 0 as
a function of the photon energy are shown in Figs. 2.5 b and 2.5 c for different
electric field strengths. For zero electric field, the direct and indirect excitons
are detuned (Fig. 2.5 a) and only the direct exciton hybridises with the cavity
photon, resulting in a single anticrossing. On the other hand, if the direct
and indirect exciton are on resonance the cavity photons couple to a mixture
of the two exciton states, resulting in two distinct anticrossings. Therefore,
by changing the cavity energy and the electric field the composition of the
polariton states can be tuned. This is quantified by the so-called Hopfield
coefficients ci

j which describe the composition of the polariton at a given
energy and momentum in terms of its constituents. In the new diagonal
form the Hamiltonian simplifies to

H =
∫∫

d2~k

(2π)2

∑
σ,i

Ei(~k)p†
i,σ(~k)pi

i,σ(~k). (2.15)
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Figure 2.5: a Exciton energies as function of the electric field and (b, c) polariton
spectra as function of the cavity energy for different electric fields. For E = 0 kV/cm
the indirect exciton has no oscillator strength and the cavity couples only to the
direct exciton, leading to one anticrossing shown in b. On the other hand at E =
20 kV/cm, the direct and indirect exciton are hybridised, leading to three polariton
states shown in c, which are a superposition of photon, direct and indirect exciton.

So far we assumed the ideal case of circularly polarised photons and exci-
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2.3 Exciton–polaritons

tons. In reality the birefringence of GaAs leads to linearly polarised cavity
modes which couple to a superposition of left and right circular polarised
excitons. Since the middle and upper polariton can potentially decay into
the lower polariton, their lifetimes are generally shorter. Therefore for the
rest of this thesis we will focus only on the lower polariton branch. Addition-
ally we will omit the momentum dependence, as we assume the excitation
to populate the entire available k-space of the lowest momentum m = n = 0
mode. To simplify the notation we will therefore introduce p† as the linearly
polarised lower polariton creation operator.

2.3.2 Driven-dissipative polaritons

As the Hamiltonian we introduced in Eq. (2.15) is Hermitian it can only
describe a closed system. For polaritons which couple to the environment
through the cavity mirrors we therefore have to extend the model to include
the decay and drive of the population. The creation of polaritons by an
external laser can be described by adding a pump field with energy EL. By
moving to a frame rotating at the frequency of the drive the Hamiltonian
becomes

H = −∆p†p + F ∗p† + Fp, (2.16)

where ∆ = EL − Ep describes the detuning between the drive and the po-
lariton and F is the excitation amplitude in the polariton basis.

To describe the dissipation of the system we use the so-called master equa-
tion in Lindblad form, a generalisation of the Schrödiger equation that in-
cludes coupling to a reservoir. By tracing out the reservoir the correlations
are lost and the system becomes non-Hermitian. The dynamics for the den-
sity matrix of the system ρ are then described by [75]

∂ρ

∂t
= Lρ, (2.17)

using the Liouvillian superoperator

L = − i

~
[H, ρ] + Γp

2
(
2pρp† − p†pρ − ρp†p

)
(2.18)

in the limit of low temperatures where incoherent photon excitation can be
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2. Exciton–polaritons

neglected. Here we have introduced the polariton linewidth Γp quantifying
the decay into the reservoir. The corresponding equation of motion for the
polariton operator is given by

∂p

∂t
= −

(Γp
2 + i∆

)
p − F + fp(t), (2.19)

where fp(t) is a operator describing the noise. Solving for the steady-state
solution of the polariton density np =

〈
p†p
〉
, results in a Lorentzian line

shape

np = |F |2(
Γp
2

)2
+ ∆2

, (2.20)

with a full width at half maximum (FWHM) of Γp.

2.3.3 Polariton lifetime

In the case of a single emitter coupled to an optical cavity, the polariton life-
time is simply given by the decay of the cavity through outcoupling or losses
and the non-radiative decay of the emitter3 scaled by their respective Hop-
field coefficients. In reality the system is more complex, as small variations in
the QW thickness lead to inhomogeneous broadening of the exciton energies
and therefore to dephasing of their coherence. The coupling of the cavity
to an inhomogeneous ensemble of emitters has been modeled and analyzed
in [76] and we show in Fig. 2.6 a the resulting transmission spectrum. Due
to the stochastic nature of the thickness fluctuations we assume a Gaussian
distribution of emitters. Assuming the width of the inhomogeneous distribu-
tion to be smaller than the light–matter coupling strength Ω > γinhom, the
model provides an approximation of the polariton linewidth by evaluating
the poles of the transmission function to first order at the energies Ex ± Ω:

Γp = 1
2
(
γc + γx + 2πρ(EL)Ω2

)
. (2.21)

3Note that the radiative decay of the emitter does not contribute, as it is part of the
light–matter coupling mechanism.
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2.4 Polariton interactions

Here, γx describes the non–radiative decay of the exciton and the function ρ
the energy distribution of the emitters which is evaluated at EL = Ex ± Ω.
For a Gaussian distribution, ρ decays faster than (EL − Ex)−2 and the last
term vanishes at the polariton resonances around EL = Ex ± Ω. In other
words, due to the strong light–matter coupling, the polariton resonance is far
detuned from the inhomogeneously broadened emitters, essentially only cou-
pling to a narrow band of excitons. This “cavity protection” is valid as long
as the polariton energy is sufficiently far detuned from the inhomogeneously
broadened exciton ensemble, and allows for polariton linewidths which are
significantly narrower than the bare cavity or exciton linewidths as shown in
Fig. 2.6 b.
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Figure 2.6: a Polariton spectrum as a function of cavity–exciton detuning for a
cavity coupled to inhomogeneously broadened emitters with Gaussian distribution
(γinhom = 0.6 meV FWHM), indicated on the left of the figure. b The linewidth
(blue) and peak transmission (orange) of the lower polariton as function of the
polariton–exciton detuning. While the linewidth initially drops with the reduced
cavity content, it immediately increases by an order of magnitude as the polariton
energy approaches the inhomogeneous exciton distribution (red).

2.4 Polariton interactions

One of the major strengths of polaritons is the combination of attributes
from two substantially different particles, which allows us to engineer pho-
tonic states which inherit the interactions from the excitons. Due to their
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2. Exciton–polaritons

charged constituents, excitons exhibit Coulomb interactions, which for low
kinetic energies (|k| < 1/aB), where the scattering event does not resolve the
excitonic substructure, can be described as a contact potential [77]. Due to
its symmetry the scattering process conserves the spin of the exciton and we
can distinguish between same-spin (triplet) and opposite-spin (singlet) in-
teractions. While in general the singlet interactions are negligible, they can
couple to the biexciton bound state which acts as a Feshbach resonance and
significantly increases the singlet interaction strength [41, 42]. But since we
expect the triplet interactions to be dominant in our system, we will limit our
description to them for the rest of this work. For the rest of the description
we will focus on the triplet interactions, as we expect them to be dominant
in our system.

In the polariton basis we can write the corresponding interaction Hamil-
tonian

Hint = gpp
2 p†p†pp, (2.22)

where gpp = Upp/A is the polariton interaction strength per area A and
the factor of 2 in the denominator accounts for the admixture of left and
right circularly polarized excitons. The effective interaction strength for
polaritons is calculated by evaluating the expectation values of 〈Φi|Hint|Φj〉
for interactions between direct excitons, indirect excitons and between direct
and indirect excitons [65]. Using the Born approximation, the polariton
interaction strength is simply the sum of the three interaction processes
scaled by their respective Hopfield coefficients,

Upp = |cdx|4Udxdx + |cix|4Uixix + |cdx|2|cix|2Udxix, (2.23)

with the following expressions for the different interaction strengths:

Udxdx ' 6εxa∗2
B ,

Uixix ' εxa2
B

(
6 + 3.5 d

aB

)
,

Udxix ' εxa2
B

1
1
6 + 1.2 d

aB

,

(2.24)

with the exciton binding energy εx, the Bohr radius a∗
B and the separation
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2.4 Polariton interactions

between the QWs d. For GaAs we find εx = 10 meV and a∗
B = 10 nm result-

ing in an exciton interaction strength Udxdx ≈ 6 µeVµm2, while for realistic
parameters of the QW separation d/aB ≈ 1 and therefore Uixix ≈ 1.6 Udxdx
and Udxix ≈ 0.12 Udxdx.

Measuring the polariton interaction strength has already been attempted
in multiple experiments, which are summarized in Fig. 2.7 inspired by [78].
The spread of values over orders of magnitudes highlights the difficulty of
obtaining consistent results. Most of the reported values relied on measuring
the blueshift ∆E = gppn2

p of a polariton condensate [46, 78–81], where the
main difficulty lies in separating the energy shift obtained from polariton–
polariton interactions from interactions with the exciton reservoir created
by the strong drive or from a blueshift originating from strong confinement.
Other experiments measured the interaction strength from the wave veloc-
ity c =

√
~gggnp/m of excitations in a polariton fluid [16] or by observing

the exact shape of propagating solitons in polaritons [82]. The last set of
experiments [54, 55] measure non-classical correlations originating from the
polariton interactions which we will discuss more in the next section.

Recent theoretical work [83] describing the interactions between indirect
exciton–polaritons in 1D found a much stronger dependence of the polariton
interactions on the detuning between exciton and polariton than described
by the Hopfield argument in Eq. (2.23). They find that due to the ultra-light
mass inherited from the photonic content, the energy cost of two polaritons
avoiding their spatial overlap is high and the resulting increased polariton
interaction energy can exceed the one between bare excitons. While the
theory was developed for 1D indirect exciton–polaritons, it could be expected
that the argument also holds for 2D and direct excitons and that therefor
Eq. (2.23) might not describe the system accurately.

2.4.1 Polariton blockade
Since the polariton interaction strength is orders of magnitudes smaller than
the light–matter coupling Upp � Ω, the polariton basis p remains a good
description of the system. The Hamiltonian Hint can therefore be treated as
a perturbation of the polariton spectrum and results in an energy shift

∆E = gpp
2 (np − 1)2 (2.25)
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Figure 2.7: Overview of different experimentally obtained values for the polariton
interaction strength normalized by the number of QWs found in the literature. It
shows a spread of the observed values over orders of magnitudes, highlighting the
difficulty of obtaining an accurate number for the interaction strength. The black
line corresponds to Eq. (2.23) with |cix|2 = 0 and Uxx ' 6 µeVµm2. The figure is
adapted from [78] and the experiments are described in [16, 46, 54, 55, 78–82].
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gpp

0

p

2p

Figure 2.8: Illustration of the polariton blockade. If the polariton interaction is
larger than the linewidth, the second state of the polariton manifold |2〉 experiences a
blueshift gpp/2. Therefore photons which are resonant with the |0〉 → |1〉 transition
do not carry enough energy to excite the |2〉 state.

proportional to the number of polaritons in the system. As a result, the
originally harmonic polariton excitation ladder becomes anharmonic as the
states with np > 1 experience a blueshift, as illustrated in Fig. 2.8. In the
ideal case of a blueshift larger than the linewidth, the system enters the
blockade regime [25] where, analogous to a 2-level system, the absorption
of a first photon blocks subsequent excitations as the only available state
is already occupied. The photons emitted from this transition are therefore
perfect single-photon Fock states, which are an essential building block for
quantum information and cryptography protocols [5, 6].

In reality we expect the interaction strength to be smaller, but still com-
parable to the linewidth. In this scenario, we can still observe a reduced
blockade if we excite the polariton slightly red detuned from the resonance.
Depending on the blueshift and the actual laser detuning, the polariton man-
ifold gets truncated at a maximal occupation number thereby leading to a
superposition of Fock states. This new state is not an eigenstate of the Fock
basis and therefore shows finite number fluctuations, but since the mani-
fold is truncated the fluctuations are reduced and the new state still shows
sub-Poissonian statistics. If one additionally suppresses the excitation of the
higher occupation numbers in the Poissonian distribution by using a weak
drive, the output of such a system can be a good approximation for a single-
photon state, even if it is not in the strongly interacting regime.
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Figure 2.9: a Photon number distribution and b second-order correlation function
for a Fock, coherent and thermal state each with a photon number expectation
value of 2. For a coherent state the photons are uncorrelated and follow Poissonian
statistics with a constant value of g(2)(τ) = 1. Photons from a thermal source are
strongly correlated, leading to super-Poissonian statistics and a bunching peak. On
the other hand, a Fock state has no number fluctuations, leading to sub-Poissonian
statistics and a characteristic antibunching dip. The time axis is normalized by the
time scale δ, which depends on the nature of the physical process.

2.4.2 Second-order correlations

The single-particle nature of photons can be distinguished from coherent or
thermal light by its statistical distribution. Depending on the nature of fluc-
tuations in a system the occupation probability P (n) changes, as shown in
Fig. 2.9 a. For a coherent state the fluctuations are entirely uncorrelated
and therefore follow a Poissonian probability distribution with a variance〈
∆n2〉 = 〈n〉. For a thermal state the fluctuations are strongly correlated,

for example by stimulated emission, and the distribution decays exponen-
tially with a larger variance (super-Poissonian statistics)

〈
∆n2〉 = 〈n〉2 +〈n〉.

On the other hand, a Fock state has a single-valued occupation probability
P (n) = δ(n), there are no fluctuations (sub-Poissonian statistics) and the
variance is therefore

〈
∆n2〉 = 0.

This statistical property is quantified by the second-order (or intensity)
correlation function which in the notation of second quantisation is given by
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Figure 2.10: Numerical solution to Eq. (2.17) and Eq. (3.1) for a weak drive and
gpp/Γp = 0.1. It shows the expected Lorentzian line shape of np and a “S” shape
for g(2)(0). While for negative detunings the photon energy is insufficient to excite
the |2〉 state, resulting in antibunching, for positive detunings it becomes resonant
leading to a bunching signature.

[84]

g(2)(t, τ) =

〈
a†(t)a†(τ)a(τ)a(t)

〉
〈a†(t)a(t)〉 〈a†(τ)a(τ)〉 . (2.26)

It describes the probability of observing a photon at time τ = t + ∆t condi-
tioned on the observation of a photon at time t. Since for our purposes the
time at which the first photon was detected is irrelevant, we will omit t and
write g(2)(τ) for the rest of this thesis. In Fig. 2.9 b we show g(2)(τ) for the
cases of a Fock, coherent and thermal state. For coherent light it is equally
probable to detect photons at any time and therefore g(2)(τ) = 1, for thermal
light there is a higher probability to observe multiple photons at the same
time leading to a bunching peak and a Fock state has a reduced probability
of observing multiple photons at the same time, leading to an antibunching
dip. This observation is a benchmark for quantum states, as it can be shown
that for classical states g(2)(0) ≥ 1 and g(2)(0) ≥ g(2)(τ).

By numerically solving the master equation Eq. (2.17) (for more details on
the simulations see A) and then calculating Eq. (2.26) we obtain the polariton
density and g(2)(0) as function of the laser detuning, as shown in Fig. 2.10 for
a weak drive and gpp/Γp = 0.1. Fig. 2.10 b shows a “S” shaped dependence
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of g(2)(0) on the laser detuning which can be intuitively understood using
the blockade picture in Fig. 2.8. For negative detunings the photons have
insufficient energy to excite the |2〉 polariton state leading to antibunching,
while for positive detunings the photons are resonant, resulting in bunching.
In the limit of low densities and weak interactions, the minimum of g(2)(0)
as a function of detuning follows [25, 85]

min
(
g(2)(0)

)
= 1 − Upp

AΓp
. (2.27)

This simple expression sets the benchmark for observing strong correlations
in a polariton system, where the interaction strength per area has to over-
come the width of the polaritons, which is already illustrated by the blockade
picture shown in Fig. 2.8.
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Chapter 3Experimental methods

In this chapter we introduce the experimental foundations nec-
essary to measure correlations of exciton–polaritons. First
we describe the gated semiconductor QW structure and the
hemispherical fiber cavity allowing us the excitation of con-
fined exciton–polaritons and the control over their composite
nature. Then we describe the experimental setup, including
cryogenics, optical excitation and detection. And finally we
spectroscopically characterize the polaritons that are created
in our system to be able to understand and control their prop-
erties.

3.1 Sample and fiber cavity
The formation of polaritons with their hybrid exciton–photon nature requires
two major ingredients, a semiconductor matrix which can host optical exci-
tations, e.g. excitons, and an optical cavity that provides a long-lived photon
field. In our experiment, the excitons are excited in a III–V semiconductor
QW which is grown on top of a flat mirror structure forming one of the
cavity mirrors as illustrated in Fig. 3.1. The second mirror is fabricated on
the curved facet of an optical fiber. The resulting cavity mode features a
reduced lateral size leading to a spatial confinement of the generated polari-
tons thereby enhancing the polariton–polariton interaction strength. The
design of such an open microcavity allows for a change of cavity length over

25
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Figure 3.1: Sketch of the hemispherical cavity formed by the curved fiber surface
and the DBR in the GaAs substrate hosting the InGaAs QW pair. Photons can be
injected and extracted into the mode via the fiber or a collimating lens.

a wide range and offers full control of the detuning between the optical reso-
nance and the exciton energy. Mounting the sample over a hole allows us to
not only inject and extract photons directly through the fiber containing the
cavity mirror, but also through free space via the polished back side of the
sample. This makes it possible to measure the reflection or the transmission
from both sides, with transmission being the more favorable configuration,
as it allows to only observe photons originating from the cavity.

3.1.1 Sample
To get to the regime where the interactions are comparable to the loss rates
in the system, we require a sample with high quality photonic and excitonic
properties. Therefore the uniformity of the QW and the substrate DBR,
which influence the linewidth of the exciton and of the cavity mode, are
crucial. To achieve this high quality, the samples were grown using MBE by
Dr. Stefan Fält at the “Advanced Semiconductor Quantum Materials” group
led by Prof. Werner Wegscheider at ETH Zürich. At the heart of the sample,
shown in Fig. 3.2 a, lies the InGaAs QW pair, hosting the excitons. It is
made up of a thin (4.5 nm) and a thick (10 nm) layer of InGaAs with an
estimated indium content of about 6 %, separated by a 12 nm tunnel barrier
made from GaAs which is placed at an antinode of the intracavity field.
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The asymmetry in the thicknesses leads to an offset in the electron and hole
energies between both QWs. Consequently the electron levels in both QWs
can be brought into resonance by applying an electric field, while the holes
remain detuned. Therefore only the negative charges can tunnel between
the QWs, leading to the desired dipolar character of the indirect excitons.
To apply an electric field and tune the energy of the charged particles, an
electron-doped layer (Si doping with a nominal density of 4 · 1018 cm−3) and
an hole-doped layer (C doping with a nominal density of 1 · 1018 cm−3) are
grown surrounding the QW pair, thereby forming a p–i–n structure. They
are placed in respective nodes of the cavity field to reduce their overlap with
the optical modes thereby reducing their effective absorbance. To prevent
the charges from tunneling between these different layers, additional AlGaAs
layers are grown between the doped layers and the QW pair, whic acts as a
tunnel barrier due to the larger band gap.

The second part of the sample is one of the two DBR mirrors forming the
optical cavity. In our samples the DBR is designed for a centre wavelength
of 850 nm formed by 24 layers of GaAs and 25 layers of AlAs, with refractive
indices of nGaAs = 3.55 and nAlAs = 2.94. To estimate the reflectivity of
the mirror we use Eq. (2.7) resulting in R = 99.992 %. To increase the
reflectivity, one would ideally increase the number of pairs. However, since
there is a lattice mismatch between GaAs and AlAs, growing more layers
can lead to an accumulation of tension within the structure which is released
by forming line defects. The chosen number of DBR layers is a compromise
between reflectivity and sample quality.

The full structure is grown on a wafer from which a suitable piece of about
5 mm × 5 mm is selected and cleaved. To make contacts to the doped layers
of the sample we deposit gold pads on each side as shown in Fig. 3.2 b on the
right. Since the n-doped layer (Fig. 3.2 a) is below the p-doped one, we use
photolithography and wet etching to remove the p-layer and then deposit the
gold pad in the trench. The gold pads are then connected via wire bonding
to leads on the sample holder which allow for an electrical connection. Due
to the macroscopic structure of the etched contacts, we later simplified the
procedure by replacing the photolithography step by a manually removing
the photoresist with aceton. Then the contacts can be soldered directly by
hand using indium and an annealing step for the n-doped layer and indium
with 4 % zinc for the p-doped layer.
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Figure 3.2: Schematic of the sample structure. On the bottom are 25/24 layers
of AlAs/GaAs forming the DBR of one of the cavity mirrors. Grown on top is the
asymmetric InGaAs QW pair surrounded by the p- and n-doped layers. The contact
to the p-doped layer is fabricated directly on the GaAs surface, while for the contact
to the n-doped layer the substrate has been etched away until the p-doped layer is
removed.

3.1.2 Fiber

The second mirror was fabricated on a partially curved fiber surface forming
a hemispherical cavity together with the semiconductor mirror. The curved
mirror leads to a lateral confinement of the optical mode where the area is
smallest at the surface of the flat mirror. As the QW is placed close to the
DBR inside the sample, the mode area is still close to its minimum, allowing
us to excite polaritons in an area as small as possible by optical confinement.

The curved fiber surface was fabricated by laser ablation with a highly
focused CO2 laser, which resulted in the evaporation and partial melting
of the glass, leaving behind a curved depression with low roughness on the
surface of the fiber tip [53]. The surface is then coated with 18/17 pairs
of a Ta2O5/SiO2 DBR to form the mirror with an expected reflectivity of
R = 99.999 96 %. Due to the higher refractive index contrast between these
two materials (nTa2O2 = 2.09, nSiO2 = 1.47) the resulting reflectivity is
significantly higher than for the GaAs/AlAs DBR. The resulting asymmetry
of reflectance leads to 98 % of the intracavity field leaking out through the
semiconductor mirror, making it more efficient to detect photons from this
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side of the cavity. The shape and position of the dimple was characterized
using an interferometric measurement to ensure a clean shape and good
overlap of the dimple with the fiber core. The specific fiber used in this
thesis is the same as in the works [19] and [54] with a radius of curvature of
13.9 µm near the centre of the dimple. The most important number for this
work is the area of the optical mode, as it determines the polariton–polariton
interaction energy. It was measured by using a knife edge technique and
for the fiber in this setup the beam diameter was measured to be 2.18 µm.
A more in-depth description of the fabrication and characterisation can be
found in [86].

3.2 Setup

3.2.1 Cryogenics

While it is possible to observe excitons at room temperature, the thermal
fluctuations (≈ 26 meV) are larger than the coupling between excitons and
photons. Additionally the excitons are substantially broadened due to the ki-
netic energy of the electrons and the high occupation of phonons. Therefore,
to resolve the exciton–polariton spectrum and to achieve low linewidths, we
cool the sample to about 4 K using a liquid helium bath cryostat which is
sketched in Fig. 3.3. We use a 100 l liquid helium Dewar (CRYOFAB CMSH
100l, 6.35 cm neck diameter) capable of holding an insert containing the cryo-
genic cavity setup together with the sample. The sample itself is suspended
over a hole in a titanium holder to gain optical access from free space. The
holder is then mounted upside down on piezoelectric x/y-positioners, while
the fiber, fixed on a holder mounted on a z-positioner and protruding by a
few millimeters, is facing the sample from the bottom. The positioners can
be used in two modes, a stepping motion which is used to cover distances
of several millimeters and a linear motion with sub-micrometer resolution
achieved by applying a static voltage to the piezoelectric element. The x/y-
positioners (attocube ANPx101/RES/LT) allow us to explore different re-
gions on the sample which is necessary, as imperfections in the doping layers
of the sample lead to a drop in voltage away from the contact and also to
be able to avoid deposits on the sample surface. The z-positioner (attocube
ANPx101/RES/LT) on the other hand allows for tuning of the cavity length
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Figure 3.3: a Cryogenic measurement setup and b image of the sample mounted
upside down above the fiber. On the left the He dewar used as a cryostat is sketched.
The sample and the fiber are mounted inside a box (see close-up) which is suspended
on rods inside a tube filled with 25 mbar He exchange gas. To adjust the cavity
length, the fiber is mounted on a z-positioner, while the sample is mounted on x/y-
positioners. A lens with focus on the sample together with a window on top of
the tube and a fiber coupling setup with a camera for imaging allows for free space
optical access to the sample. Electrical and fiber feedthroughs located on top of the
tube allow to interact with the system when it is cooled down.

and thus bringing the cavity in resonance with the exciton. These elements
are mounted together on a titanium chuck which itself is inside a tube sub-
merged in liquid helium. To provide thermal contact between the sample
and the walls of the tube, the air is evacuated and replaced with 25 mbar of
helium serving as an exchange gas.

The insert is equipped with a number of vacuum feedthroughs for the
transmission of optical and electrical signals. Furthermore, a free space op-
tical access via a window on top of the insert is available, which together
with a lens (Thorlabs A397tm-b) focused on the sample, allows to send and
receive light from the other side. Hence, the setup allows for measurements
not only in reflection but also in transmission. The electrical connections are
used to control and read out the positioners and to apply a voltage generated
by a source measure unit (Keithley 2400 source meter) to the p–i–n junction
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on the sample.

3.2.2 Optical setup

The last key ingredient to perform the experiment is the optical setup, here
divided into excitation, coupling to the cavity and detection. The setup is
built in a way that all the different components for excitation and detec-
tion are fiber-coupled and can be easily exchanged. The main light source

PID

VOA

PID

VOA

wavemeter
PD

PD
polarisation
control

CW laser

broadband
light source

Pol.

λ/4

λ/2

to fiber
cavity

var. ND

Pol.BP

Figure 3.4: Setup for the excitation light sources. Both sources are power-stabilized
by a VOA which is controlled by a proportional–integral–derivative controller (PID).
For the polarisation control of the continuous wave (CW) laser a polarizer (Pol.)
and a half- and quarter-wave plate are placed in the free space path, while for the
broadband light source a polarizer and a fiber paddle are used. As the CW laser
is used as energy reference for the experiment, a fraction of the light is sent to a
wavemeter to obtain a precise readout of the wavelength. For the broadband light
source we use an additional bandpass filter (BP) to absorb light outside of the stop
band of the cavity mirrors.

is a CW diode laser (New Focus Velocity TLB-6316) which is tunable be-
tween 838 nm to 853 nm with a linewidth below 300 kHz. For alignment
and quick characterizations a broadband light source (Thorlabs SLD8305-
A10) centered around 830 nm is connected to the setup. Both light sources
are fiber-coupled, polarization-controlled and power-stabilized before getting
combined in a fiber beam splitter connected to the experiment, see Fig. 3.4.
For the polarisation control of the CW laser, the light is first coupled to free
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space where the polarisation is defined using a polarizer and then adjusted
with a quarter- and a half-wave plate. To have some additional power con-
trol, a beam block and a wheel with variable neutral-density (ND) filter is
installed before the light is coupled back into a fiber. For the broadband light
source the setup is similar, with the difference that the wave plates are re-
placed with fiber polarization controllers after the light is re-coupled into the
fiber. Additionally there is a removable bandpass filter (Thorlabs FB850-40)
to block light outside of the stop band of the DBR mirrors. For the power
stabilisation, a PID controller (Stanford Research Systems SIM960) is using
the signal from a photo diode to control the attenuation of a variable optical
attenuator (VOA) (Thorlabs V800A). To get the signal for the photo diode
a part of the light is split off with a fiber beam splitter. As the CW laser
is used to excite the polaritons and determine their energies, its wavelength
sets the energy reference for the whole experiment. To have a precise readout
of the wavelength, a fiber beam splitter is sending a portion of the light to a
wavemeter (High Finesse WSU-30/661) which interferometrically determines
the wavelength with an accuracy below 30 MHz.

As mentioned above, the cryogenic setup allows for two ways to couple
light into the optical cavity. While on one side we can directly send light
through the fiber with the cavity mirror, we also have free space optical
access through the top window on the insert. To direct light through the
window and the lens to the sample, a small cage system is mounted on top of
the insert with a fiber coupler and an alignment system with the necessary
degrees of freedom. It also contains a camera with which we are able to
image the sample, inspect the shape of the cavity modes and to help with
the alignment.

To analyse the optical signal from the sample we use three different detec-
tor setups: a correlation setup, detectors to measure transmitted intensity
and a spectrometer together with a nitrogen-cooled camera. To resolve cor-
relations of single photons on timescales on the order of 40 ps given by the
polariton lifetime, we need single-photon detectors with a low timing un-
certainty (jitter). Currently the detectors with the lowest timing resolution
are superconducting nanowire single-photon detector (SSPD) (in our exper-
iment detectors from Single Quantum, low jitter variant). This detector
technology is based on superconducting nanowires cooled to 1.8 K with a
closed-cycle cryostat (pulse tube refrigerator). A current close to the critical
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Figure 3.5: Characterisation of the superconducting nanowire single-photon detec-
tors (SSPDs). a Autocorrelation of a 1 ps long laser pulse. The detected pulse width
is prolonged by timing uncertainty of the detector and the correlation electronics
and is extracted by a Gaussian fit (orange line) σtot = 14 ps. Substracting the jitter
of the electronics allows for an estimate of the average detector timing uncertainty
of σdet = 4.9 ps. b, c Detector efficiency (eff.) and corresponding background counts
(b.c.) as function of the driving current. The background is dominated by photons
from the lab and the dark counts only appear shortly before the breakdown current,
as can be seen for example on detector 2 at about 20.5 µA. The optimal working
point is on the onset of the efficiency plateau.

current of the superconductor is flowing through the wires, such that if a
photon is absorbed by the nanowire it becomes normally conducting thereby
creating a voltage pulse. Since the wires have to recover superconductivity
after detecting a photon, they have a dead time of several nanoseconds. To
nonetheless detect two successive photons within this dead time, we use a
Hanbury Brown and Twiss (HBT) setup, where we split the optical signal
and send it to two detectors as shown in Fig. 3.6 a. The pulses from the
detectors are then read out and analysed with time-correlated single photon
counting (TCSPC) electronics (PicoQuant HydraHarp 400), which can either
measure the time difference between pulses arriving on different channels or
directly record the arrival times of the pulses in the form of time tags. Under
optimal conditions, the efficiency of the detectors was measured to be 85 %
while the background counts stemming from room light are on the order of
twenty counts per second, see Fig. 3.5 b and Fig. 3.5 c. The actual dark
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counts are smaller than the background light and only appear close the the
critical current, as can be seen in Fig. 3.5 for detector 2 at about 20.5 µA. To
estimate the timing jitter of the correlation system we measure the autocor-
relation of a 1 ps long laser pulse shown in Fig. 3.5 a. The width of the signal
is a sum of the different elements σ2

tot = σ2
elect + 2σ2

det + 2σ2
pulse namely from

the correlation electronics, detector jitter and the duration of the laser pulse.
Fitting a Gaussian curve to the signal allows us to extract the total jitter
of σtot = 14 ps and knowing the optical pulse length we can estimate the
total jitter of the detection system to be σsys = 13.9 ps. By using the timing
uncertainty provided by the manufacturer of the correlation electronics we
can also estimate the average jitter per detector to beσdet = 4.9 ps.

In a last characterisation step we also want to make sure that we do not
detect correlated noise on the time scales of the expected polariton lifetime.
To characterize this we send strongly attenuated light from the CW laser to
the detectors and measure the correlations, shown in Fig. 3.6 b. In the blue
trace are visible oscillations around τ = 0, suggesting crosstalk between the
two channels. This noise is centred around the zero time delay τ = 0 defined
by the correlation electronics. As we are interested in two photons arriving
simultaneously on the beam splitter, we can separate the real zero time
delay between photons from the electronic zero time delay in the detection
by adding 5 m of additional optical fiber in one of the arms after the beam
splitter. As a result, the pulses corresponding to two photons which arrive
on the beam splitter at the same time arrive on the correlation electronics
shifted by 23 ns. The corresponding correlations are shown in Fig. 3.6 b in
orange which we inspect closer in Fig. 3.6 c where we show the standard
deviation calculated for bins of 100 coincidences. While below 10 ns there
are still some remaining oscillations leading to enhanced fluctuations, the
standard deviation approaches quickly the value associated with the shot
noise.

The second detector setup is a pair of Si based avalanche photodiodes
(APDs) (EXCELITAS SPCM-AQRH-14 and EXCELITAS SPCM-AQRH-
16) which are a different type of single-photon detectors with much larger
jitter (350 ps) than the SSPDs. Due to their simpler construction and connec-
tion to the setup they are more convenient to measure the photon countrate.
Since the APDs saturate and behave sub-linearly at countrates above approx-
imately 2 MHz, it is practical to split the signal and send it to two detectors,
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Figure 3.6: a HBT setup with detectors and correlation electronics. The light
coming from the sample is split with a fiber beam splitter and then sent to the
two detectors. The arrival times of the electrical pulses from the two detectors are
analysed with TCSPC correlation electronics. A length of 5 m of additional fiber in
one arm separates the electronic zero time delay by 23 ns from the optical one, which
is defined by two photons arriving at the beam splitter. b Correlations of a CW
laser with and without delay line. Adding the delay line moves the oscillations seen
in the first 10 ns of the blue trace to negative delays such that they are not visible
in the orange trace. c Standard deviation of bins of 100 coincidences measured with
delay line shown in b. While there are still some remaining oscillations, standard
deviation quickly approaches the shot noise limit after about 10 ns.

effectively doubling the linear regime. This provides enough dynamic range
for operation with usual input powers of a few µW.

The last detection setup is a spectrometer. It contains two rotatable grat-
ings as dispersive elements, one with 300 and one with 1500 grooves per
millimeter (Acton Spectra Pro 2750) and a liquid-nitrogen-cooled charge-
coupled device (CCD) camera (Roper Scientific 7375-0001). In principle the
spectrometer together with the broadband light source provides an easy tool
to measure a spectrum over a large wavelength range in a short time. In
practice this is limited by two factors. First, by the resolution (120 µeV and
40 µeV), which is larger than the linewidths observed in this sample. Second,
by the power of the broadband light source which is distributed over a large
wavelength range, therefore measuring narrow modes with low transmission
requires long integration times to achieve a sufficient signal-to-noise ratio.
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3.3 Spectroscopic characterization

The physics of polaritons is governed by the interplay of their light and mat-
ter constituents and their relative contribution described by the Hopfield
coefficients. Due to the p–i–n structure described in Section 3.1.1 and the
fiber mirror mounted on a positioner these contributions are freely tunable
as we can change the relative energies between the cavity photon, the direct
and the indirect exciton. To measure nonclassical correlations, the polari-
ton interactions have to be on a comparable energy scale as the polariton
linewidth. In the following sections we will spectroscopically characterize the
polaritons and their components to be able to map the Hopfield coefficients
to a given gate voltage and cavity length and to understand the dependences
of the linewidth.

3.3.1 Exciton

To measure the properties of the excitons themselves and to understand their
behaviour as function of the applied gate voltage, we mount the sample in
the setup as shown in Fig. 3.3, but facing towards the window of the insert
to access the sample without the cavity. This allows us to measure the
spectrum as a function of the applied gate voltage by exciting the excitons
with the broadband light source and detecting the reflected light with the
spectrometer. In this measurement the absorption of the excitons leads to a
dip in the reflection spectrum.

As a first check to see that the p–i–n structure is working as intended, we
can record the I–V characteristics as shown in Fig. 3.7 a. The behaviour is
close to what we expect from a semiconductor at cryogenic temperatures. For
negative and small voltages, there are no charges that can flow through the
sample and only when we start to push the Fermi level into the conduction
band, mobile electrons become available. The deviation from the ideal diode
behaviour between 1 V and 2 V is attributed to defects in the sample, leading
to parasitic conductance channels and to a finite resistance within the doped
layers. As the I–V characteristics is a bulk measurement, this finite current
might not necessarily flow through the spot we measure optically where it
could affect the polariton properties.

We can extract most of the information about the excitons from the reflec-
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tion spectrum in dependence of the gate voltage shown in Fig. 3.7 b, where
the dip corresponding to the excitons resonance. The two dominant features
are the two ground state excitons from the thick and thin QWs which shift
quadratically with gate voltage due to the dc Stark effect. Around 1.4 V
and 1.8 V they hybridise with the corresponding indirect excitons, which by
themselves do not couple to the photons and are only visible when they in-
herit oscillator strength from the direct exciton. Since in this configuration
only the electrons tunnel between the QWs, the indirect excitons have an
opposite dipole moment which can be seen from the corresponding slopes.
Above 2 V we see a blurring of the lower exciton line, which we attribute
to the presence of charges also seen in the I–V characteristic in Fig. 3.7 a.
Figure 3.7 b also shows a number of higher-lying excitonic states which fea-
ture additional anticrossings. Since they are far detuned from the region of
interest for this project they are not further studied.

For the remainder of this work we will only focus on the lowest-lying
excitonic state, shown in the close-up in Fig. 3.7 c zooming into the anti-
crossing originating from the tunnel coupling between the two QWs. The
sharp feature persisting into the anticrossing is probably a remnant from the
higher-lying exciton hybridizing with the indirect exciton. Theoretical cal-
culations on the exciton spectrum of coupled QWs done in [87] show similar
features in their predictions for asymmetric QWs. Since this measurement
is probing an area of several µm2, and the QWs are not perfectly uniform in
thickness, we probe excitons with an inhomogeneous distribution of energies.
The resulting line shape is therefore following a Gaussian distribution from
which we can extract the energy, area and width of the exciton resonances.
Using a coupled oscillator model we can then fit the extracted energies and
get the tunnel coupling constant J = 2.4 meV. In Fig. 3.7 d we show the
area, which is a measure for the oscillator strength, and the linewidth (full
width at halve maximum) of the lowest energy resonance. At 2 V the exci-
ton is purely direct with a linewidth of 636 µeV. Reducing the gate voltage
increases the indirect exciton content, leading to a drop in linewidth to a
minimal value of about 424 µeV. At the same time the oscillator strength
drops as well, which can be seen in the vanishing area at lower gate voltages.
Above 2 V we see an additional broadening and drop in area as a result of the
increased current flowing through the device. Based on this we can judge the
parameter range accessible in the experiment to be between 2 V, where the
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exciton is predominantly direct, and about 1.4 V, which limits the indirect
exciton content to about |cix|2 ≈ 0.7.

3.3.2 Cavity

Our open, hemispherical cavity design allows us to tune the mode energy in
situ while still achieving small mode volumes. On the downside the system is
more susceptible to vibrations compared to a cavity grown in one substrate
(also known as monolithic microcavity). In this section we will describe how
the actual cavity is formed in the experiment and look at its fundamental
properties such as the linewidth, polarisation and mechanical stability. To
measure the properties of the cavity and later the polaritons, the sample is
mounted upside down as shown in Fig. 3.3 with the fiber approaching from
the bottom. The measurements are then performed by injecting light through
the fiber and detecting the transmission at the free space port. While cooling
down and warming up the system, the fiber is retracted from the sample to
protect both itself and the sample from getting damaged. Therefore, after
each cool down the two mirrors have to be brought in proximity to each other
to form the cavity. In practice we bring both parts into direct contact as
this stabilizes the cavity and reduces the vibrations. The approach is done
in two stages, a fast one using the stepping feature of the positioners, until
the mirrors are close to touching, followed by a slow and more controlled
one using the DC setting of the positioners, until the desired cavity length is
reached. To know when the mirrors are almost in contact, we use the read-
out of the positioners and approach the sample at room temperature while
observing the fiber with a microscope. With this we can prevent damage to
sample and fiber when closing the cavity. For the slow approach we send the
CW laser at around 850 nm, far detuned from the exciton resonance, into the
fiber and observe the transmission on the camera. When we slowly bring the
fiber closer, the different longitudinal and transversal cavity modes shown
in Fig. 3.9 can be observed on the camera. As the fiber and the sample
surface are not perfectly parallel, there are usually three differed behaviours
visible, which can also be seen in Fig. 3.8 where the transmission spectrum
is recorded while the fiber is retracted from the sample. First, visible on the
right side of the figure, the fiber and sample are not in contact and the dif-
ferent modes appear in short succession when moving the fiber. In a second
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Figure 3.7: Characterisation of the QW excitons at 4 K as function of the gate
voltage. a I–V characteristics of the sample. It closely resembles the behaviour of
an ideal diode, however, defects in the sample allow for a current flow already at
lower voltages than expected. b Extended exciton reflection spectrum. The excitons
from the two QWs shift quadratically with voltage due to the Stark effect. Each of
them hybridizes with an indirect exciton which depends linearly on the voltage due
to their dipolar nature. c Close-up of the lower anticrossing, together with a fit to
the coupled oscillator model. d Linewidth (full width at halve maximum) and area
of the lower exciton branch. Both become smaller as the indirect exciton character
increases.
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Figure 3.8: Transmission of the broadband light source recorded with the spec-
trometer as the cavity length is increased in small steps. For the shortest cavity
length shown here, the slope of the cavity mode becomes almost flat. Here the
contact between fiber and substrate is the highest. As the cavity becomes longer,
the slope gradually increases as the longitudinal mode number increases by 4. At
around step nr.3̃40 the behaviour changes drastically. From here on the fiber and
the sample are no longer in contact, and the modes follow in short succession when
stepping further away.

stage, one edge of the fiber is touching the substrate and the rate at which
modes become resonant with the laser gets slower. And finally the change
in cavity length becomes very small or vanishes completely when we try to
step closer. At this point we move the cavity back to the next longitudinal
mode. We understand this behaviour as only the edge of the fiber touching
the sample and if then the positioners try to move the fiber closer it starts to
bend slightly and thus reduces the cavity length. The resulting angle change
can also be seen on the camera, where the position of the cavity mode moves
by several micrometres over the course of the approach. Due to this way of
closing the cavity, the exact cavity length is not known, and might differ for
each approach. We estimate the length to be on the order of 5 µm to 10 µm,
taking into account the depth of the dimple and the penetration into the
DBR mirrors.

While the tunability and the lateral confinement of the dimpled fiber mir-
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Figure 3.9: The modes of a slightly asymmetric hemispherical cavity are described
by Hermit–Gauss polynomials. Using a camera and a resonant laser we can distin-
guish the different transverse modes and select the purely Gaussian TM00 to couple
to the exciton.

ror are big advantages over a mirror integrated in the sample structure, it
comes with a major drawback in terms of stability. Figure 3.10 a shows a
noise spectrum measured by recording the transmission of the CW laser on
the flank of the resonance, normalizing the countrate by its average and
then Fourier transforming the signal. It shows a distribution of acoustic
resonances situated almost entirely below 100 Hz. They originate from all
possible vibrations in the surroundings, like ventilation, pumps or even from
people speaking in the same room. These vibrations are transferred to the
fiber and the sample and lead to fluctuations in the cavity length and there-
fore its energy. To shield the system from vibrations transferred through
the floor or through the air, we place the cryostat on a vibration isolation
stage (Thorlabs PTT600600) and put it inside a wooden box clad in sound-
absorbing foam. Another measure is to decouple the pressure in the cryostat
from the helium recovery system connecting all the experiments on the same
floor of the building. This is done by inserting a back pressure regulator
(Equilibar LF Series), which regulates the outgoing helium flow to main-
tain a stable pressure of around 50 mbar which is well above the pressure in
the recovery line of around 10 mbar to 20 mbar. Finally, working at cavity
lengths where the fiber exerts some pressure on the sample, see description
above, greatly stabilizes the cavity.
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Figure 3.10: a Cavity noise spectrum obtained by Fourier transforming a normal-
ized transmission time trace measured by exciting the cavity on the flank of the
resonance. It shows that the dominant frequency components are situated below
100 Hz. b Fitting a Lorentzian (orange) or a Voigt profile (green) to the cavity
transmission shows that both functions match equally well. If we assume the vibra-
tions to follow a Gaussian distribution, their standard deviation is therefore smaller
then the Lorentzian linewidth.

Using these precautions, the vibrations do not alter the line shape of the
cavity significantly and it is still well described by a Lorentzian. As shown
in Fig. 3.10 b, fitting the transmission with a Lorentzian and Voigt profile
matches the data equally well, meaning that if we assume the underlying
noise to have a Gaussian distribution, its standard deviation is significantly
smaller than the Lorentzian linewidth, which is therefore sufficient to de-
scribe the mode profile. The linewidth of the bare cavity varies between
25 µeV and 30 µeV and depends on the position on the sample which could
originate in the exact arrangement of the fiber with respect to the substrate
or local variations in the sample quality. The amplitude of the Lorentzian
corresponds to the overall transmission through the cavity, which together
with the linewidth allows us to calculate the photon density inside the cavity
mode. For this we also need to know the efficiency of the fiber coupling
which varies for each cool down and has to be measured repeatedly. To do
this we use about 1 mW input power to be able to detect the light exiting the
insert from the free space port with a power meter and the measured fiber
coupling efficiency is usually around 10 %. At the same time we can also
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Figure 3.11: a The polarisation eigenstates of the cavity are split by about 250 µeV,
while the cavity linewidth is 25 µeV in this measurement. Adjusting the input po-
larisation to match one mode completely suppresses the other one as shown b.

extract the transmission through the cavity, which is only on the order of
2 · 10−5. The majority of these losses stem from the transmission inside the
cavity fiber (e.g. splicing losses, damage due to bending) and measuring the
transmission of a laser outside of the stop band from the input to the fiber
mirror shows only about 8 % transmission. An additional source of losses
is the geometric mode missmatch between the guided and the cavity mode
(about 50 %) as well as the asymmetry of the mirrors (2 %). Other likely
candidates explaining the losses are harder to quantify, and we expect the
angle between the cavity and the fiber, a potential offset of the fiber core
to the dimple and absorption in the DBRs, the doping layers or the GaAs
growth substrate to play a role.

While in principle the solution for the hemispherical optical cavity would
result in circularly polarized Laguerre–Gauss modes, a birefringence in the
GaAs substrate breaks the translational symmetry, resulting in linearly po-
larized Hermite–Gauss modes. By measuring the transmission of circu-
larly polarized light we can measure the resulting polarisation splitting (see
Fig. 3.11 a) of 250 µeV, which is significantly larger than the linewidth. While
the splitting is reduced for polaritons according to their photonic fraction, for
the parameter range in our experiments the splitting will remain larger than
the linewidth and we can treat them as two separate states. By adjusting
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the input polarisation using the polarisation optics described in Section 3.2.2,
we can select one of the modes while completely suppressing the other, as is
shown in Fig. 3.11 b.

3.3.3 Polariton

By tuning the cavity energy close to the exciton resonance the system enters
the strong coupling regime and forms polaritons. In Fig. 3.12 we show the
transmission spectrum for three different gate voltages as we sweep the dc
voltage of the positioners to change the cavity length. In addition to the
prominent longitudinal mode, we observe various transversal modes which
also couple to the exciton. As they belong to sets of modes with different
longitudinal mode numbers, they have different slopes, and since the excita-
tion and collection uses single mode fibers, their overlap is reduced and they
are much fainter in the spectrum. As we showed in Fig. 3.7, the exciton is
entirely direct at 2 V and there is no contribution of the indirect exciton,
so we only see one anticrossing at the energy of the direct exciton. As we
lower the gate voltage, the excitons hybridize and form two new eigenstates,
both with a sizable oscillator strength, which shows up as two anticrossings
in the spectrum. As we lower the energy of the indirect exciton further,
the lower-energy hybridized exciton loses oscillator strength and the corre-
sponding anticrossing gets smaller and shifts to lower energies. Fitting the
peak energies to the corresponding coupled oscillator model (result shown
as red dashed lines), we can extract the cavity-exciton coupling constant
Ω = 1.001(3) meV and the tunneling constant J = 1.355(9) meV. Using
these parameters we can extract the Hopfield coefficients for the polariton
branches shown for the lower polariton in Fig. 3.13. It shows how we can
tune the polariton composition by changing the cavity length and the gate
voltage.

In Fig. 3.14 a the linewidth and the area of the lower polariton resonance
without indirect exciton contribution is shown as function of the cavity
length. The linewidth initially decreases from the value of the bare cav-
ity down to about 15 µeV. This is a consequence of the exciton linewidth
being dominated by inhomogeneous broadening as shown in Fig. 3.7, while
the non-radiative decay of the exciton is orders of magnitudes smaller. Due
to the strong coupling, the polariton is far detuned from the tails of the
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Figure 3.12: Polariton transmission spectrum as function of cavity length for dif-
ferent gate voltages. It shows the energy of the cavity mode scaling almost linearly
with its length and the hybridisation with the excitonic states. Going from left to
right the indirect exciton is tuned past the direct exciton mode from being tuned
to higher energies at 2 V, to being on resonance at 1.45 V to finally being slightly
below the resonance at 1.3 V. The red dashed lines correspond to a fit to the model
described in Eq. (2.15) and show good agreement with the transmission data.

inhomogeneous distribution, and only the non-radiative decay of the exci-
ton contributes to the polariton linewidth [76]. We model the behaviour
of the linewidth, see blue line in Fig. 3.14 a, using γinhom = 320 µeV and
γnon-rad = 5 µeV and get a good agreement with the data. As we tune
the polariton closer to the exciton it starts to overlap with the tails of the
inhomogeneous distribution and as a consequence the linewidth drastically
increases. This is at the same time accompanied by a very abrupt decrease
of the area and thus the oscillator strength of the lower polariton. This
protection from the inhomogeneous exciton broadening allows us to measure
narrow polariton linewidths, but it also introduces a limit on how much in-
direct nature we can impose before the line broadening and loss of oscillator
strength becomes sizable.

3.4 Correlation measurement

To understand interaction-induced quantum correlations in exciton–
polaritons, we measure the second-order correlation function introduced
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Figure 3.13: Hopfield coefficients as a function of the cavity length extracted from
the fits shown in Fig. 3.12. At a gate voltage of 2 V (a) the indirect exciton content
|cix|2 is zero and changing the cavity length tunes the lower polariton between being
cavity like to being exciton like. At lower gate voltages (b and c) the direct- and
indirect exciton are hybridised and the polariton is a mixture of all three compo-
nents.

in Eq. (2.26) for different sets of parameters defining the polariton
properties. To first order we expect the correlations to depend on the
excitation power, the relative detuning between the laser and the polariton
∆/Γp = (Ep − EL) Γp, the polariton–polariton interaction strength (Upp)
and the linewidth (Γp). While we can directly control the first two
parameters in the experiment, the last two are defined by the polariton
composition, controlled experimentally by the gate voltage and the cavity
length.

Having this free tunability of the cavity length is made possible by the
open cavity design but it also makes the cavity susceptible for mechanical
instabilities. The sensitivity of the measurement to energy fluctuations is
best seen in the detuning dependence of the correlations shown in Fig. 2.10
which shows that even energy shifts of a fraction of the linewidth substan-
tially alter the magnitude of the correlations. Overcoming these instabilities
is one of the main experimental challenges in this work. They extend over a
wide range of timescales, as illustrated in Fig. 3.15 on the left, and are gov-
erned on one end by slow drifts, such as creeping of the piezos, and on the
other end by acoustic vibrations as shown in the noise spectrum in Fig. 3.10,
that lead to fluctuations of the cavity length on timescales on the order of
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Figure 3.14: a Linewidth and area of the direct exciton–polariton (2 V) as function
of its energy (bottom axis) and the corresponding cavity content (top axis). As
the strong coupling protects the polariton from the inhomogeneously broadened
exciton distribution, the linewidth initially decreases. Only when the polariton
energy gets close to the tails of the inhomogeneous exciton distribution, its linewidth
increases abruptly accompanied by a drop in oscillator strength, indicated by the
area (orange triangles). The theoretical model discussed in Section 2.3.3 (blue line)
with γinhom = 320 µeV and γnon-rad = 5 µeV shows good agreement with the data. b
Transmission spectrum of a polariton mode with the corresponding Lorentzian fit.
The linewidth is about 15 µeV, corresponding to the minimum shown in a.

tens of milliseconds. Simultaneously the integration time of the experiment
is dictated by the signal-to-noise of the coincidences. The number of coinci-
dences is thereby given by C = ñ2

photontint∆τ , where ñphoton is the incoming
photon rate which in this experiment is on the order of a few megahertz, ∆τ
is the bin size of the coincidence histogram which has to be shorter than the
polariton lifetime and therefore is on the order of tens of picoseconds, and
tint is the integration time. For a standard experimental setting the resulting
coincidence rate is on the order of one to ten coincidences per second and due
to the fluctuations not all coincidences can be accounted for in a given his-
togram. Therefore the required integration times to overcome the shot noise
span from a few hours up to a day, depending on the overall transmission
and the size of the correlation feature.

To deal with these experimental challenges we combine different methods
into our measurement procedure, which is illustrated in Fig. 3.15. The figure
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Figure 3.15: Diagram illustrating the measurement and data analysis process. On
the left we indicate the relevant timescales on which each element operates, together
with the relevant physical processes.
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3.4 Correlation measurement

shows the order of the different processes within the measurement sequence
(black arrows) and on which timescales these processes act, together with the
relevant physical processes indicated on the left. The whole measurement
with a given set of cavity length, gate voltage and input power is therefore
defining the longest timescale and it can take several hours to acquire enough
signal to overcome the noise. To account for slow drifts which, after long
integration times could potentially affect the polariton energy and linewidth,
we perform shorter sub-measurements, which are repeated multiple times. In
each repetition we first characterize the line shape of the mode to calculate
the relative detuning ∆/Γp of the laser and at the end of the iteration we
sweep the gate voltage between −2 V to 2 V to flush out charges which might
accumulate after prolonged exposure of the sample. Within each repetition
we implemented two separate methods which account for faster drifts and/or
slower fluctuations of the cavity length. The first one is a slow modulation
of the laser which we describe in more detail in Section 3.4.3 and allows us
to track the changes in the detuning between the cavity and laser energy.
The second alternative is an active feedback on the piezo controlling the
cavity length, which we describe in Section 3.4.2. A final method which we
us in combination with either of the previous ones, is postselection of the
data. For this purpose we cut the sequence of time stamps obtained from
the TCSPC electronics into shorter chunks and by calculating the countrate
for each chunk we can sort the corresponding histogram according to the
countrate. This allows us to resolve correlations at a speed limited only by
the countrate of the transmitted photons, which ultimately defines the rate
of information we can get from the system.

In principle it would be possible to beat this limit by using a separate
cavity mode to gain information about the cavity length. If this mode is
sufficiently far detuned, it will not couple to the excitons and can therefore
be driven at a higher power. We tested this approach by using the next lower-
energy longitudinal cavity mode, located about 70 meV below the exciton, to
track fluctuations of the cavity length. Since the transmission through the
cavity is lower at the edge of the stop band, higher powers are necessary to
substantially increase the countrate. It turned out that pumping the second
cavity mode with powers of only 100 µW already results in broadening of the
polariton, which makes it unfeasible for our purposes.
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3.4.1 Postselection

By directly recording the time stamps of photon arrival events we not only
gain access to the histogram of coincidences, we can also track the photon
countrate transmitted through the cavity. Therefore we can cut the stream
of arrival times into individual chunks and calculate the coincidence his-
togram and the average countrate for each chunk. This is then used to assign
the corresponding histogram to a relative detuning, illustrated in Fig. 3.16,
which can be calculated using the parameters from the Lorentzian line shape
|∆|/Γp = 0.5

√
A/ñphoton − 1, where A is the amplitude of the Lorentzian. It

is crucial to note that we cannot distinguish between positive and negative
detunings using this formula and we need to combine this postselection pro-
cess with the laser modulation or the active feedback that we will describe in
the next sections. Over the duration of a measurement we record a distribu-
tion of countrates as shown in the example in Fig. 3.16 b, and after assigning
them to a detuning we can sum together the corresponding g(2) histograms.
In practice we cannot load chunks of timestamps after equal integration
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Figure 3.16: a Lorentzian line shape of the polariton and time trace of the coun-
trate of each measurement chunks when exciting with a laser at ∆ = −0.5 Γp (red
line). b Histogram describing the number of measurement chunks occurring at a
given countrate. Using the parameters obtained from the fit (orange curve) we can
assign each of these chunks to a relative detuning |∆|/Γp, shown by horizontal lines
for 0.1, 0.3, 0.5 and 0.7.

times, so we fix the chunk size to 211 = 2048 timestamps. This is a compro-
mise of beating the shot noise when calculating the countrate (

√
2048 = 45)
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3.4 Correlation measurement

and achieving a timing resolution below the vibrational timescales. A quick
estimate shows that with countrates between a few hundred kHz and a few
MHz we will achieve a timing resolution of one to ten milliseconds, which is
slightly shorter then the 10 ms expected from the vibration spectrum shown
in Fig. 3.10 a.

3.4.2 Stabilisation

A first method that we use in combination with the postselection scheme
to counteract drifts and slow fluctuations of the cavity length is an active
feedback controlling the cavity length, illustrated in Fig. 3.17. By using the
signal from the detector as an input for a PID controller, we can generate
a response proportional to the displacement of the cavity and send it to the
positioner to correct for the displacement. As the PID requires an dc signal
for the regulation, the pulses from the detectors are first amplified and then
converted to an dc signal via a counter, which counts the number of pulses
in a given integration time and then creates a proportional dc voltage.1

The response times of these devices are very fast and the speed of the
regulation is most likely limited by the positioners moving the fiber. The
corresponding timescale is hard to assess and depends on the positioners
and on the particular way of contact between the fiber and the substrate.
By an abrupt change of the cavity length and the resulting recovery of the
countrate we can estimate the response time of the PID system, which is
on the order of tens of milliseconds. While this is too slow to completely
counteract the vibrations in the system, it can suppress some of the slower
components and compensate for absolute drifts of the cavity length. There-
fore by choosing a large enough detuning between the excitation laser and
the polariton (around ∆/Γp = 0.5), the stabilisation ensures that the sign of
the detuning remains constant over a measurement and in combination with
the postselection scheme described above, allows us to measure correlations

1In a first iteration we used a National Instruments USB-7855R field-programmable gate
array (FPGA), which is directly programmable using LabView, to simultaneously imple-
ment the counter and the PID. Due to technical problems we had to switch in a second
iteration to a redpitaya STEMlab125-14 FPGA programmed by Yu Liu in a research
project at the “Quantum Optics” group led by Prof. Tilman Esslinger at ETH and a
Stanford Research Systems SIM960 PID.
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Figure 3.17: Schematic of the stabilisation setup. The photons transmitted
through the cavity are detected on the SSPDs which create a voltage pulse for
every photon. These pulses are split off, amplified and then converted to a dc signal
which serves as an input for a PID controller. The response is then added to the
voltage of the positioners to counteract the displacement of the cavity.

at a well-defined laser detuning. One limitation of this method is that the
PID needs a finite slope of the resonance to create a feedback and therefore
measurements on resonance are not possible.

3.4.3 Laser modulation

Our second method used in combination with the postselection scheme is a
slow modulation of the laser wavelength over the polariton resonance. By
analysing the transmission over time we can determine the sign of each data
chunk. Fig. 3.18 shows the Lorentzian line shape of the polariton and the
modulated transmission of the first 2 min of a measurement as a result of
the laser modulation shown below. The initial points (gray), where the laser
wavelength is tuned to the starting point, are discarded and starting from the
first maximum we can distinguish between positive (blue) and negative (red)
detuning and assign ∆/Γp as described in Section 3.4.1 to each data chunk.
In practice, the wavelength modulation is done in a range of −0.5 Γp to 0.5 Γp
and back in 40 discrete steps each lasting 1 s.

This way of measuring correlations allows us to directly probe the different
detunings in one measurement, including on the resonance. This is not pos-
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Figure 3.18: a Polariton mode together with the average countrate for each mea-
surement chunk b modulated by sweeping the laser between −0.5 Γp to 0.5 Γp (c).
By counting the maxima of the transmission we can assign each measurement chunk
to positive or negative laser detunings ∆.

sible using the active stabilisation, as the PID requires a slope to calculate
a proportional feedback.

3.4.4 Data analysis

To obtain g(2)(τ) from the transmitted photons, we measure the waiting time
distribution between photon arrival times using two SSPDs in a HBT-type
configuration and TCSPC electronics. Since the detectors have to recover
the superconducting state after each photon absorption event, they are blind
to successive photons for a short period of time on the order of tens of
nanoseconds. As we expect the polariton correlations to occur within this
dead time, we can restrict ourselves to measure cross-correlations between
the photon arrivals at the two detectors.

As in principle the statistical properties of the transmitted photons can be
altered by external fluctuations on all timescales, for example the oscillations
from the electronics discussed in Section 3.2.2. The proper normalisation of
the coincidences is difficult and potentially one would have to measure on
very long timescales to obtain the true steady state value for normalisation.
But since we are only interested in short timescales on the order of the po-
lariton lifetime, we can treat the data beyond 1 ns as background. Fig. 3.19 a

53



3. Experimental methods

shows the raw histogram with a clear bunching background on timescales of
19 ns. The gray area shows a window of 1 ns which is removed to fit the
background using an exponentially decaying function (orange line). With
the result from the background fit we can then normalize the coincidences
and fit them as shown in Fig. 3.19 b. To extract the value of g(2)(0) from the
data we use a heuristic model represented by a two-sided exponential decay
convoluted with a Gaussian function describing the jitter from the detection
setup described in Section 3.2.2 (σsys = 13.9 ps),

g(2)(τ) =
(

1 −
(
1 − g(2)(0)

)
e− |τ−τ0|

δ

)
∗ G (σ = σsys) , (3.1)

where τ0 is the zero time delay of the detection setup, δ is the associated time
scale proportional to the polariton lifetime and G is the normalized Gaussian
distribution. Even though this model is not derived from Eq. (2.26) and the
polariton Hamiltonian, it allows us to extract the value of g(2)(0) and its
uncertainty considering the noise in the data and the jitter of the detection
setup. If there is no bunching or antibunching feature in the correlations,
the fit tends to minimize the residuals by matching a small antibunching
or bunching peak to points in the noise. Since these values have no phys-
ical meaning, we set g(2)(0) = 1 with an uncertainty corresponding to the
standard deviation of g(2)(τ).

The dip shown in Fig. 3.19 was measured with a polariton without indirect
exciton content and |cc|2 = 0.45 while exciting at a relative laser detuning
∆/Γp = −0.5 using the stabilisation and postselection scheme described
above.
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Figure 3.19: a Unnormalized second-order correlation function. The short
timescales (gray area) are removed from the histogram of photon arrival time dif-
ferences to fit an exponential decay (orange line) to the data. This is then used to
obtain the normalized g(2) shown in b. By fitting Eq. (3.1) to the data we obtain
the depth and with of the dip, in this example: g(2)(0) = 0.953(5) and δ = 51(8) ps.
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Chapter 4Polariton correlations

The observation of sub-Poissonian statistics is a benchmark for
quantum correlations in a system. By measuring the second-
order correlation function of exciton–polaritons we observe
clear signatures of non-classical physics. For direct exciton–
polaritons with a high exciton content we observe a clear 10 %
antibunching dip originating from the interaction-induced an-
harmonicity of the polariton manifold, while measurements at
lower exciton contents show a small, detuning–independent an-
tibunching which cannot be explained by interactions. We at-
tribute this to a “dissipative blockade” mechanism, induced by
the selective coupling to the biexciton. We observe no enhance-
ment of the interaction strength for indirect excitons, due to
the simultaneous reduction of the oscillator strength resulting
n a broadened linewidth and reduced transmission.

4.1 Direct exciton–polaritons

4.1.1 Power dependence

From theoretical calculations [25] we expect the correlations of the polaritons
to become weaker as we cross a certain density threshold with increasing
excitation power. At the same time we are interested in measuring at high
countrates to reduce the overall measurement time. In this section we will
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4. Polariton correlations

explore the dependence of g(2) on the input power to find optimal conditions
for extended correlation measurements.

To measure the power dependence we excite polaritons with |cc|2 = 0.45
and no indirect exciton content with a detuning from the excitation laser of
∆/Γp = −0.5 and measure correlations using the stabilisation and postse-
lection scheme described in Section 3.4. The power values refer to the power
measured at the fiber connection of the cryogenic insert Fig. 3.3. The num-
ber of photons actually coupling into the cavity are orders of magnitudes
smaller due to losses in the fiber (splicing, bending, etc.) and the mismatch
between the guided and the cavity mode. We stabilize the power using a PID
controller as described in Section 3.2.2 and measure in the range of 0.2 µW
to 10 µW.
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Figure 4.1: Measured g(2) at three increasing input powers for a polariton with
no indirect exciton content and |cc|2 = 0.45 excited at a relative laser detuning
∆/Γp = −0.5. The antibunching dip becomes smaller and narrower with increased
power and c shows the onset of oscillations as small bunching features. The results
of the fits (orange curves) for these and additional power levels are shown in Fig. 4.2.

In Fig. 4.1 we show the measured g(2) data together with the best fit for
three different powers. It shows the reduction in magnitude and timescale of
the antibunching, and for the highest powers we can distinguish additional
bunching on either side of the dip. We attribute this bunching to the onset
of oscillations proportional to timescales given by the laser detuning ∆ (we
will come back to this observation in the next section when discussing the
detuning dependence of g(2)). As for lower powers this feature remains below
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the noise. The fit results for all powers, together with the corresponding
linewidth and polariton density obtained from transmission measurements
are shown in Fig. 4.2. We calculate the density from the photon countrate
using ñdet = np|cc|2ηκ/τp, where ñdet is the detected countrate, η an estimate
of the collection and detection efficiency1, τp the cavity lifetime assuming that
the transmission through the mirrors is the dominant loss mechanism and
κ = 0.98 describes the imbalance of the mirrors. The transmission data in
Figs. 4.2 a and 4.2 b shows the expected increase of the polariton density with
power, which is accompanied by a significant line broadening. At the same
time the correlation fit results in Figs. 4.2 c and 4.2 d show the reduction in
magnitude and timescale of the antibunching dip.

While power broadening could be a potential explanation for these obser-
vations, at these low densities the effect is negligible. It is more likely that
the power dependent line broadening and loss of correlations originate from
dephasing processes [60, 88] or from heating of the DBRs or the GaAs sub-
strate. We should also keep in mind that the overall transmission is only on
the order of 10−5, and a significant number of photons could reach the DBRs
or the substrate without contributing to the polariton population. To asses
which effect plays a role, we model the influence of dephasing and heating
in our system using a numerical model (see Appendix A) and compare it to
the measurement.

We can describe the loss of coherence due to dephasing by adding
an additional collapse operator

√
0.5 Γdeph p†p to the model. Further

we assume the dephasing to be negligible at the lowest power and set
Γp = Γmeas(200 nW) = 14.2 µeV, such that the measured, power-dependent
linewidth is given by Γmeas(P ) = Γp + Γdeph(P ). By fixing the detuning
∆ = −0.5 Γmeas we can simultaneously fit np and g(2)(0), where the only
free parameters are the polariton interaction strength and a proportionality
factor between the input power and the effective polariton driving strength.
The best fit is shown in Figs. 4.2 a and 4.2 c (orange line), for better
visibility we interpolate the linewidth to plot a solid curve. It shows that the
effect of dephasing on correlations is much stronger then what we observe in
our data.

1η includes the fiber coupling efficiency measured at each cool down, the transmission
through the optical fibers and the quantum efficiency of the SSPDs (Fig. 3.5).
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4. Polariton correlations

To estimate the effect of line broadening due to absorption of photons in
the DBRs or the GaAs substrate, we can use Eq. (2.27) assuming a power
dependent linewidth

g(2)(P ) = 1 − Upp/(AΓp(P )). (4.1)

We can calculate the interaction strength using the lowest power Upp =
AΓp(P0)(1 − g(2)(P0)) with P0 = 200 nW and get a good agreement with the
data (Fig. 4.2 c dashed green line). We can also fit np and g(2)(0) to our
numerical model fixing Γp = Γmeas, which agrees well with the data (solid
green line in Figs. 4.2 a and 4.2 c). From the fit we can also extract the
polariton–polariton interaction strength Upp = 0.61(3) µeVµm2 for the given
Hopfield coefficients.

Based on the simulations and our estimate of the polariton number being
well below one, we conclude that the reduction of antibunching with increased
power originates from line broadening through photon absorption that results
in heating of the mirrors or the substrate. Therefore the appropriate input
power for correlation measurement can be chosen by observing the linewidth
of the polaritons and remaining below the threshold of line broadening.

4.1.2 Detuning dependence

In this section we use the laser modulation and postselection procedures
described in Sections 3.4.1 and 3.4.3 to measure how polariton correlations
depend on the relative laser detuning ∆/Γp for polaritons with different
direct exciton contents. All measurements were done at a gate voltage of
2 V, where the indirect exciton is far detuned and at powers below the onset
of line broadening described in Section 4.1.1. An overview of the data as
function of the cavity content and three different laser detunings is presented
in Fig. 4.3. We observe four regimes separated by vertical lines in the plot,
where the correlations behave substantially different.

For cavity contents above |cc|2 = 0.65 the exciton content is too low to
contribute to sizable polariton–polariton interactions and we observe the clas-
sical coherence inherited from the laser. On the other end, for the largest
measurable exciton content, we observe the “S” shape, shown in Fig. 4.4 a,
expected from the polariton Hamiltonian in Section 2.4.2. The interactions
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Figure 4.2: Power dependence of the polariton density (a), linewidth (b), g(2)(0)
(c) and antibunching time scale (d). As already shown in Fig. 4.1, the dip becomes
smaller and narrower with increased power. This reduction in g(2)(0) originates from
the increase in Γp. A simultaneous fit of np and g(2)(0) with a model assuming line
broadening due to dephasing (orange curve) or an increase of the intrinsic linewidth
(green curve) shows that the latter agrees well with the data. We attribute the line
broadening to heating, for example of the cavity mirrors, and a resulting decrease
in cavity lifetime.
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Figure 4.3: g(2)(0) as a function of the cavity content for three different laser
detunings ∆/Γp. We can distinguish four regimes showing a different type of be-
haviour. At the highest cavity content the polariton–polariton interactions are to
weak and we observe no correlations within the measurement uncertainty. Between
|cc|2 = 0.45 and |cc|2 = 0.55 we observe a detuning-independent antibunching of
about 0.97 which crosses over in an intermediate regime before showing the ex-
pected “S” shape at |cc|2 = 0.28 with bunching on the blue side, coherent statistics
on resonance and antibunching on the red side.

mediated by the exciton are strong enough to shift the |2p〉 polariton state,
introducing an anharmonicity to the polariton manifold. Therefore when
exciting the polariton on the red side, the laser energy is detuned from the
transition to the |2p〉 polariton state and we observe sub-Poissonian statistics
with an antibunching dip g(2)(0) =0.90(1) shown in Fig. 4.4 c. By exciting
the polariton on the blue side, the laser energy is close to the resonance of
the two-polariton transition and we observe super-Poissonian statistics with a
bunching peak of about g(2)(0) =1.10(1) shown in Fig. 4.4 e. The two effects
cancel if we excite exactly on resonance and g(2)(τ) = 1 as shown in Fig. 4.4 d.
We can fit the numerical model described in Appendix A to the data and ex-
tract the polariton–polariton interaction strength Upp = 6.0(3) µeVµm2. The
time scales associated with the correlations are plotted in Fig. 4.4 b, where
they show a maximum close to ∆/Γp = 0 and then decay on both sides. Since
the correlations describe the excitation of a second polariton conditioned on
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4.1 Direct exciton–polaritons

the presence of a first one, we expect the timescales to be proportional to the
occupation probability of the single-polariton state. The transient solution
to the equation of motion Eq. (2.19) results in 〈n1(t)〉 ∝ exp (−(Γp + i2∆)t)
with two relevant timescales. Therefore for finite detunings, the population
oscillates proportional to ∆ which can then be observed as a shortening of
the timescales in g(2). This is also the origin of the bunching feature on either
side of the antibunching dip we observed in Fig. 4.1 c, showing the onset of
oscillations in g(2).
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Figure 4.4: a Detuning dependence of g(2)(0) at |cc|2 = 0.28, b the corresponding
timescales δ and c to e time-dependent correlations g(2)(τ) marked by vertical lines
in a. We clearly observe a “S”-shaped curve expected for weakly interacting polari-
tons (Upp < Γp) and the best fit to the numerical model yields Upp = 6.0(3) µeVµm2.
The correlation timescales δ decrease as function of the detuning as the coupling
within the polariton manifold becomes faster. While c and e show a peak/dip with
the corresponding best fit, there is no feature in d to fit, so the corresponding value
and errorbar in a are the mean and standard deviation of g(2)(τ).
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4. Polariton correlations

If we reduce the cavity content to |cc|2 = 0.46 the dependence of g(2)(0)
with ∆/Γp changes significantly. The data in Fig. 4.5 shows that instead of
the expected “S”-shaped curve, we observe an antibunching dip independent
of the laser detuning. This behaviour is also replicated by measurements at
|cc|2 = 0.51 and |cc|2 = 0.56 as shown in Fig. 4.3. This detuning-independent
antibunching is not captured by the basic polariton Hamiltonian (Eq. (2.15))
and suggests a sizable coupling to an additional state. Based on the extended
range of this feature and the fact that we see no alteration in the polariton
linewidth, we expect it to be broad and relatively weakly coupled to the
polariton. We will explore the coupling to the biexciton resonance as a
possible explanation in Section 4.1.3.

Between |cc|2 = 0.33 and |cc|2 = 0.41 we observe an intermediate regime,
shown in Fig. 4.6. For the negative laser detuning in Fig. 4.6 c, we see
the expected antibunching dip which gets smaller closer to resonance. The
dip then stays constant and persists on top of a bunching peak observed
for positive detunings, shown in Fig. 4.6 e. By separating the timescales
we can fit both features independently, leading to the two values shown in
Figs. 4.6 a and 4.6 b for positive detunings. This behaviour suggests a combi-
nation of the “S” shape we observe at |cc|2 = 0.28 and the flat antibunching
around |cc|2 = 0.5. Since both contributions lead to a dip for negative de-
tunings, we cannot distinguish them as their timescales are too similar. As
we approach the resonance the contribution of the polariton interactions get
smaller and only the correlations from the detuning-independent feature re-
main. For positive detunings they again increase, leading to bunching, while
the detuning-independent feature remains as a dip on top. The timescales
of the correlations shown in Fig. 4.4 b show a different behaviour than we
observed before and have a maximum shifted to negative laser detunings,
which then again decays on both sides.

4.1.3 Biexciton coupling

To explain our observation of a small, laser-detuning-independent antibunch-
ing over an extended range of polariton energies, we have to introduce the
coupling to an additional state. We expect this state to be spectrally broad
and couple only weakly to the polariton, as we do not observe it in the po-
lariton spectrum. While we can assume the presence of localized defects in

64



4.1 Direct exciton–polaritons

0.50 0.25 0.00 0.25 0.50
/ p

0.96

0.98

1.00

1.02

1.04

g(2
) (0

)

a

0.50 0.25 0.00 0.25 0.50
/ p

0

50

100

 (p
s)

b

1 0 1
 (ns)

0.96

0.98

1.00

1.02

1.04

g(2
) (

)

c

1 0 1
 (ns)

d

1 0 1
 (ns)

e

Figure 4.5: a Detuning dependence of g(2)(0) at |cc|2 = 0.46, b the corresponding
timescales δ and c to e the measured g(2)(τ) marked by vertical lines in a. The
symmetric behaviour around ∆ = 0 is not captured by the basic polariton Hamil-
tonian (Eq. (2.15)) and suggests the coupling to another feature in the system with
strong correlations. In Section 4.1.3 we explore the biexciton as a possible origin of
this behaviour.
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Figure 4.6: a Detuning dependence of g(2)(0) at |cc|2 = 0.34, b the corresponding
timescales δ and c to e the measured g(2)(τ) marked by vertical lines in a. We
observe an intermediate behaviour compared to Figs. 4.4 and 4.5. While we see the
expected behaviour on the red side (c), the dip does not vanish when approaching
∆/Γp = 0 (d) and even remains on the blue side (e) on top of a bunching peak.
To quantify both features, we separate the timescales of the dip and the peak and
fit both separately, leading to the values shown in a and b. Comparing b with
Fig. 4.4 b, we can see that the maximum of the blockade timescale is shifted by
about −0.25 Γp.
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Figure 4.7: Illustration of the dissipative blockade mechanism. The biexciton
|bx〉 couples to the two polariton state |2p〉, therefore leading to a substantial line
broadening and a reduced overlap to the single excited polariton state |p〉.

the sample, they are unlikely candidates as they are expected to be energet-
ically narrower then what we observe in the correlation measurements and
if they couple strong enough to substantially modify the correlations they
simultaneously lead to a modification of the polariton spectrum.

A more likely scenario is that we observe the influence of the biexciton,
a bound state formed between two excitons. The coupling to the polariton
and the resulting changes of the interactions were already theoretically de-
scribed [41] and experimentally observed [42, 43]. In these experiments the
presence of the bound biexciton state leads to a Feshbach resonance for the
polariton scattering process which leads to a sign-change of the interactions
as the polariton energy is tuned over the biexciton resonance. As there is no
sign change in our observations, we propose a dissipative mechanism which
has been theoretically explored in [89], based on the broad linewidth of the
biexciton and the exclusive coupling to the doubly excited polariton state
|2p〉. This leads to a selective line broadening of |2p〉 compared to |p〉 which
reduces their overlap and thus the excitation probability of the doubly ex-
cited state. This “dissipative blockade” mechanism is independent of the
detuning between the laser and the polariton and as the densities in our
systems are low, the biexciton coupling is too weak to lead to modifications
of the polariton spectrum.

To model the effects of the biexciton coupling and the resulting modifica-
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Figure 4.8: Simulated correlations (orange) including the coupling to the biexci-
ton for three different cavity contents and the corresponding data. The calculated
values describe the detuning-independent antibunching well (b), while only leading
to slight deviations at high (c) and low (a) cavity content, where the correlations
are dominated by the coherence of the laser or the polariton interactions.

tion of the correlations, we add

Hbx = Ebxb†b + gbx
(
b†pp + bp†p†

)
(4.2)

to the polariton Hamiltonian and calculate g(2) using numerical simulations
(for more details on the simulations see Appendix A). In the above expres-
sion, b is the biexciton annihilation operator and gbx the corresponding cou-
pling strength. The energy of the biexciton is thereby determined by the
biexciton binding energy, Ebx = 2Edx − εbx. Since we mainly aim for a proof
of concept and the biexciton parameters are not exactly known, we orient
ourselves along the parameters in [42, 43] and adjust them to match the result
of the model to the data. In more detail this means that we first set the po-
lariton interactions to zero and adjust the biexciton parameters to reproduce
the detuning-independent antibunching around |cc|2 = 0.5 and only weakly
affect the correlations at |cc|2 = 0.28 and |cc|2 = 0.65. Then we set Upp to
match the result of the simulations with the data. We find a good agree-
ment with the data for the parameters shown in Table 4.1 and the polariton
interaction strengths shown in Fig. 4.9 b, where the value at |cc|2 = 0.28 is
slightly lower then what we extracted from the fit without biexciton shown in
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4.1 Direct exciton–polaritons

This work Takemura 2014 [42] Scarpelli 2024 [43]
εbx 2.6 meV 3 meV 2.2 meV
γbx 0.9 meV 1.1 meV 0.34 meV
gbx 8 µeV 360 µeV/

√
np 70 µeV

Table 4.1: Values for the biexciton binding energy εbx, linewidth γbx and coupling
strength gbx used in this work and in the literature. The different coupling strengths
originate most likely from the differed polariton densities in the three experiments.

Fig. 4.4 a. In Fig. 4.8 we show the detuning-dependent correlations for three
different cavity contents together with the simulations using the parameters
described above. They agree well with the laser-detuning-independent anti-
bunching (Fig. 4.8 b) while for large cavity content the coherence of the laser
(Fig. 4.8 c) and for small cavity content the correlations induced by polari-
ton interactions (Fig. 4.8 a) remain only sightly perturbed. The overall |cc|2
dependence in Fig. 4.9, shows a good agreement between the data and the
simulation results.2 The orange color gradient and the blue line show the
extend of the biexciton.

While the interaction strengths at lower cavity content |cc|2 < 0.4 lay well
within the range of values found in literature (Fig. 4.10), the decrease of the
interaction strength with increased cavity content (Fig. 4.9 b) happens faster
then we would expect from a simple Hopfield coefficient argument, where
Upp = |cdx|4Uxx. Recent theoretical work [83] describes the interactions be-
tween dipolar polaritons in a 1D channel using a microscopic model. They
find that the polariton interaction strength is greatly enhanced compared to
results from perturbative theories, originating from the fact that the polari-
ton mass is orders of magnitudes lower than the exciton mass. This strongly
modifies the interaction strength as a function of cavity–exciton detuning, re-
sulting in a relatively sharp maximum around zero detuning compared to the
continuous change described by the quadratic formula in Eq. (2.23). While
this model does not describe the 2D direct exciton–polaritons in our sys-
tem and we do not observe a maximum in the polariton interaction strength
around |cc|2 = 0.5, it strongly suggests that the argument based on Hopfield

2As we only know values for Upp and Γp at the measured cavity contents, the simulation
results are interpolated for better visibility.
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coefficients alone is not sufficient to describe polariton interactions and the
role of strong light–matter coupling has to be regarded.

Although we cannot explain the dependence of Upp, the good agreement
between the simulation and the data using reasonable parameters for the
biexciton coupling provides strong evidence that we observe a dissipative
blockade mechanism, where selective coupling to a lossy state induces quan-
tum correlations.
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Figure 4.9: a Cavity content dependence as in Fig. 4.3, with solid lines showing
simulation results. The width of the biexciton is indicated by the color gradient and
the distribution above. The simulation reproduces the data reasonably well and
mostly deviates for the resonant measurements around |cc|2 = 0.34. b Values of the
polariton interaction strength chosen for the theoretical calculations to match the
experimental data. While the values lay within a reasonable range, the dependence
is steeper than we would expect from Upp = |cdx|4Uxx.
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Figure 4.10: Polariton–polariton interaction strengths in different experiments over
the past 15 years, compared with our values (red stars). The black dashed line
indicates the values of Upp = |cdx|4Uxx/2 where Uxx = 6 µeVµm2 is calculated
using the Born approximation. Comparable to the values found by Estr. (2019)
and Birch. (2011) our values below |cc|2 = 0.4 lay about a factor of 2.5 above the
theoretical line. [16, 46, 54, 55, 78–82]
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4.2 Indirect exciton–polaritons

In the previous section we showed observations of nonclassical correlations in-
duced by polariton interactions down to g(2)(0) = 0.9. Our next step towards
strongly correlated systems is the introduction of a finite permanent dipole
through the indirect exciton content to enhance the polariton interactions.

As it turns out, the reduction in oscillator strength of the hybridised ex-
citon due to the small overlap between the electron and hole wave function
of the indirect exciton leads to larger line broadening and lower transmis-
sion than initially anticipated. In Fig. 4.11 we show the changes in both
values normalized to the direct polariton as a function of the indirect ex-
citon ratio rix = |cix|2/

(
|cdx|2 + |cix|2

)
. The trend agrees with calculations

assuming a cavity mode coupled to the inhomogeneously broadened lower
exciton branch, whose light–matter coupling depends on the indirect exciton
ratio, Ωeff = (1 − rix)Ω. It shows that the reduction in light–matter coupling
weakens the “cavity protection” described in Section 2.3.3. This results in
a reduction of the transmission already for small indirect exciton ratios and
then for higher rations to a significant broadening.

This substantially lowers the range of parameters we can explore in the
experiment and sets an upper limit to the indirect exciton ratio of the polari-
tons. We can estimate the interaction enhancement due to the dipolar nature
by rewriting Eq. (2.23) and normalizing it by the bare exciton interaction
and the cavity content,

Ũpp = Upp
Udxdx(1 − |cc|2)2 = (1 − rix)2 + Uixix

Udxdx
r2

ix, (4.3)

where we neglect the contribution of Udxix as it is expected to be an order
of magnitude smaller then the other two terms. In Fig. 4.12 we show the
corresponding curves for Uixix = 1.5 Udxdx as theoretically predicted in [65]
and Uixix = 7.4 Udxdx as extracted from measurements in [44]. It becomes
clear that a minimal indirect exciton ratio is necessary to overcome the initial
reduction of the interaction strength due to the reduced direct exciton nature.
Even using the more optimistic value, an indirect exciton ratio of more than
30 % is necessary to observe an enhancement. At this indirect exciton ratio
we already see a significant drop in transmission (Fig. 4.11 b) by about 50 %.
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Figure 4.11: Relative change of the linewidth and transmission as function of the
indirect exciton ratio at a constant cavity content |cc|2 = 0.4. The trend agrees
with calculations assuming a cavity mode coupled to an inhomogeneously broad-
ened lower exciton, with reduced light–matter coupling proportional to the indirect
exciton ratio, Ωeff = (1 − rix)Ω. This suggests that the loss of oscillator strength
makes the polariton more susceptible to the inhomogeneous broadening of the emit-
ter.
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Figure 4.12: Enhancement of the normalized polariton interaction strength Ũpp as
a function of the indirect exciton ratio. Using values from theoretical predictions
Uixix = 1.5 Udxdx [65], and the findings from [44] Uixix = 7.4 Udxdx, leads to different
scalings but suggests that at a sizable indirect exciton ratio is necessary to enhance
the interactions substantially.

73



4. Polariton correlations

0.0 0.2 0.4 0.6 0.8
IX ratio

0.85

0.90

0.95

1.00

1.05

1.10

1.15

g(2
) (0

) |cc|2
0.4
0.5
0.6
0.7
0.8

Figure 4.13: Summary of correlation measurements with different cavity contents
as a function of the indirect exciton ratio. While we see nonclassical correlations
in multiple measurements below 30 % indirect exciton ratio, above that the narrow
band in parameter space with low linewidth and sufficient transmission makes mea-
surements difficult and we were unable to observe antibunching.

In Fig. 4.13 we show a representative overview of measurements done with
finite indirect exciton ratios. For small ratios we do not expect an enhance-
ment of the interactions but the transmission and linewidth are still favorable
to perform measurements, resulting in multiple data points with nonclassi-
cal correlations. For higher ratios where we expect an enhancement of the
interactions, the low transmission only allowed for measurements with high
cavity content and therefore no sizable antibunching was observed. The ori-
gin of the strong bunching features observed at high indirect exciton ratios
in Fig. 4.13 is not clear, and we cannot say if it is due to some spurious
correlations from the sample or if it originates from the indirect exciton.

In order to compensate for the reduction in oscillator strength at finite
indirect exciton ratios, we designed and fabricated a second sample with
three sets of QW pairs, each located at an antinode of the cavity. While this
lowers the polariton interaction strength by a factor of three, our estimates
suggested that the normal mode splitting which is increased by a factor of√

3 allows for a larger indirect exciton fraction before the inhomogeneous
broadening becomes to detrimental. This could potentially compensate for
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Figure 4.14: Energy shift of the polariton resonance as a function of the density
for different indirect exciton ratios at |cc|2 = 0.7. The redshift visible at low in-
direct exciton contents makes the quantitative analysis of the data difficult. But
qualitatively it clearly shows an increasing blueshift with rix > 20 %, underlining
the presence of interactions that increase with the indirect exciton ratio.

the weaker interaction strength. Characterisations of the polariton spec-
trum of the second sample showed the expected larger coupling strength of
Ω = 1.9 meV and the narrow polariton linewidths down to Γp = 11 µeV in-
deed show the reduced coupling to the inhomogeneous exciton distribution.
Through the low linewidth and potentially higher exciton content we can
estimate that, despite the reduced interaction strength, antibunching dips of
5 % to 10 % can be expected even for direct exciton–polaritons. Regardless
of these favorable conditions, we did not observe nonclassical correlations in
this sample.

To ensure the presence of interactions, we spectroscopically probed the
energy shift of the polariton resonance as function of the input power shown
in Fig. 4.14. We could observe a sizable blueshift ∆E ≈ gppn2

p of the mode
consistent with the repulsive polariton interactions. This blueshift is su-
perimposed by a redshift of the mode which on one hand depends on the
density of polaritons, but also directly on the input power. This suggests
photon absorption in the system with two different contributions, one from
photons inside the cavity mode and one of photons that do not couple to the
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mode and therefore do not contribute to the polariton density. This twofold
dependence hampers the calibration of the redshift and we could not extract
quantitative information from these measurements. In Fig. 4.14 we show the
energy shift as function of the polariton density for |cc|2 = 0.7 and differ-
ent indirect exciton ratios. While below 30 % indirect exciton fraction, we
only observe the aforementioned redshift, above we clearly see an increasing
blueshift. Our data therefore qualitatively agrees with the findings in [44]. In
these measurements we therefore observe nonlinear behaviour for a range of
parameters, indicating that there has to be a to us unknown effect interfering
with the correlations in this system.
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Chapter 5Summary and outlook

In this work we demonstrated the occurrence of nonclassical correlations in
exciton–polaritons originating from the interactions inherited by their ex-
citonic fraction. This was made possible by using a postselection scheme
to overcome the fluctuations induced by the open cavity design which is
necessary to have free tunability of the cavity energy. By comparing the
correlations and polariton line shape at various indirect exciton contents,
we could show that in our sample the gain in interactions due to the dipo-
lar nature is not strong enough to overcome the loss in oscillator strength.
The linewidth and transmission are affected by the proximity to the inhomo-
geneous exciton distribution, effectively limiting the observable parameter
space to low indirect exciton contents, where the dipolar enhancement is not
yet sizable. Therefore, to utilize the potential behind dipolar interactions,
the quality of the sample has to be improved by either reducing the inhomo-
geneity of the excitons or by increasing the light–matter coupling. While we
did not expect a substantial net gain in interaction strength by combining
multiple QW pairs due to the delocalisation of the polaritons over the mul-
tiple QW pairs, the larger normal mode splitting could have allowed us to
investigate the change of the interaction strength due to the indirect exciton.
For unknown reasons we could not observe nonclassical correlations in the
experiment, despite the sizable interaction induced blueshift.

On the other hand our measurements with purely direct exciton–polaritons
showed the first observation of nonclassical correlations in polaritons using
continuous wave excitation with a value g(2)(0) = 0.90(1) at |cc|2 = 0.3.
We attribute this enhancement compared to previous measurements [54,
55] to the improved sample quality and the presence of the gate structure
which reduces the amount of charge accumulation that potentially broadens
the cavity linewidth. At lower exciton fractions we found a laser-detuning-
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5. Summary and outlook

independent antibunching for several parameter settings, which cannot be
explained by polariton interactions alone. As both processes lead to substan-
tially different signatures in g(2) we can still extract a value for the polariton
interaction strength Upp = 5.2 µeVµm2 providing an alternative data point
to the polariton interaction strength found in other experiments, which to
first order is independent of the polariton density.

We attribute the laser-detuning-independent correlations to the selective
coupling of the biexciton to the doubly excited polariton state. The short life-
time of the biexciton leads to a reduced excitation probability of the doubly
excited state and hence a reduced probability for emitting two simultaneous
photons. Our numerical simulations match well with the data, suggesting the
first observation of this dissipative blockade effect and allow us to extract the
polariton interaction strength for different cavity contents. It thereby shows
a stronger dependency on the cavity content than what we would expect from
the quadratic Hopfield type argument, suggesting that a microscopic theory
might be necessary to capture the details of the scaling. As the effect of the
biexciton on the polariton interactions has so far only been observed as a Fes-
hbach resonance [42, 43], further experiments investigating the dependence
of the dissipative blockade on the biexciton coupling and linewidth should
shed more light on this effect and could show its potential, for example as a
source of single photons.

The correlations measured on this device are stronger than in previous
observations and in principle only a reduction of the linewidth or area by a
factor of 5 would be necessary to reach the strongly interacting regime where
gpp > Γp. The improvement by a factor of 5 could be possible by refining
sample quality and design, but reaching it poses a technical challenge, for
example as the effect of fluctuations would be more substantial for narrower
linewidths.

One way of increasing the quality of the cavity is by surface passivation,
which already showed a substantial increase in the cavity Q factor in [90].
Removing the natural GaAs oxide layer on the surface and protecting it with
Al2O3 prevents the build-up of an electric field between the p-doped layer
and the surface, which leads to absorption of the electromagnetic field inside
the cavity.

The MBE growth of the bottom AlAs/GaAs DBR poses another limita-
tion for this device structure. The growth of multiple layers with different
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lattice constants introduces strain in the structure which eventually relaxes
by disrupting the crystal lattice. In the current device the number of DBR
layers is chosen as a compromise between the resulting inhomogeneity and
the reflectivity of the mirror. Therefore, epitaxial liftoff [91, 92] to transfer
the semiconductor QW onto a dielectric Ta2O5/SiO2 DBR mirror could be
used to replace the bottom semiconductor DBR. While this technique could
potentially lead to new issues due to the introduction of new surfaces, it
would allow for a narrower cavity linewidth and reduce the inhomogeneous
broadening of the exciton.

In order to reduce the mode area, a different approach would be to electro-
statically confine the excitons, which has recently been shown in transition
metal dichalcogenides [93]. While this is not feasible for direct excitons in
InGaAs due to the weak tunability via the dc Stark effect and the lower
exciton binding energy found in transition metal dichalcogenide monolayers,
the dipolar nature of the indirect exciton could provide enough leverage to
introduce electrostatic confinement. To define the confined regions, the top
gate would have to be patterned, for example by directly etching away the
p-doped layer or by replacing it with a conductive material like indium tin
oxide which can be structured using lithographic techniques. To determine
the optimal area of the confinement one would have to consider the gain of
gpp compared to the reduction in oscillator strength. Additionally, by fab-
ricating the regions smaller than the length scales of the inhomogeneity in
the sample, one could also reduce the width of the inhomogeneous distribu-
tion of the excitons. The technical limit for such a structure is most likely
the conductance through narrow channels which limits the patterning of the
p-doped layer to roughly 100 nm, which would mean more than an order of
magnitude reduction of the area.
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Appendix ANumerical simulations

To describe the polaritons in our system, we include the coupling to the
biexciton state into the Hamiltonian in second quantized form,

H = − ∆p†p + gpp
2 p†p†pp + F ∗p† + Fp

− ∆bxb†b + gbx
(
b†pp + bp†p†

)
,

(A.1)

together with the master equation

∂ρ

∂t
= Lρ (A.2)

and the corresponding Liouvillian

L = − i

~
[H, ρ] + Γp

2
(
2pρp† − p†pρ − ρp†p

)
+ γbx

2
(
2bρb† − b†bρ − ρb†b

)
.

(A.3)

To solve these equations numerically we use QuTip [94, 95], an open-source
toolbox for python designed to simulate dynamical quantum systems.

By defining the dimension Np ⊗ Nbx
1 of the Hilbert space, the toolbox

allows us the write the Hamiltonian A.1 in second quantization while inter-
nally calculating the corresponding matrix representation. In a second step
a build-in steady-state solver calculates the corresponding Liouvillian using
the corresponding collapse operators

√
0.5 Γp p and

√
0.5 γbx b, and solves for

1Except for the power-dependent simulations in Section 4.1.1, we are interested in low
polariton densities. Therefore the dimension of the Hilbert space is set to Np = Nbx = 5
to reduce computation time.
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A. Numerical simulations

the steady-state density matrix ρss satisfying Lρss = 0 using factorisation.
To then calculate the second-order correlation function

g(2)(τ) =

〈
p†(0)p†(τ)p(τ)p(0)

〉
n2

p
, (A.4)

where np is the polariton number, the toolbox offers a master equation solver
which integrates Eq. (A.2) for given times τ and then calculates the correla-
tions. We can assume the polaritons to be in the steady state, therefore the
initial state for the integration is ρss and since we are interested in g(2)(τ = 0)
we only integrate over short timescales to reduce the computation time. In
the last step we normalize the correlations by n2

p obtained by calculating the
expectation value 〈np〉 = Tr

{
ρssp

†p
}

.

82



AppendixBGrowth structure

The samples in this thesis were grown with MBE by Dr. Stefan Fält at
the Advanced Semiconductor Quantum Materials group led by Prof. Werner
Wegscheider at ETH Zürich. The layer structures of the two samples used
in this thesis are shown in Tables B.1 and B.2. The structure is designed
for optimal optical properties, therefore the doped layers are placed in nodes
of the cavity mode to minimize absorption and the QW pair in an antinode
to maximise the light–matter coupling. To minimize the amount of current
flowing through the structure when applying a static electric field between
the doped layers we introduce AlGaAs/GaAs superlattices which act as tun-
nel barriers due to their higher band gap. In the sample with three QW
pairs additional tunnel blocking layers were introduced between the pairs
to prevent charge transfer between them. In this structure the dopants are
introduced in AlGaAs next to thin GaAs layers, into which the excess elec-
trons and holes tunnel. This allows us to place the shallow defects related to
the incorporation of the dopants in the higher band gap material with the
intention to reduce the absorption. A corresponding reduction of the cavity
linewidth compared to the previous sample could not be observed. The ad-
ditional AlGaAs shown in Table B.2 is introduced to smoothen the growth
of the structure.
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B. Growth structure

Layer Thickness (nm) Material Repetitions
Spacer 40 GaAs
p-doping 40 GaAs
Spacer 99.7 GaAs
Tunnel block 3 AlGaAs
Spacer 1 GaAs
Tunnel block 40 AlGaAs
Spacer 6.4 GaAs
QW 10 InGaAs
QW separation 11.8 GaAs
QW 4.6 InGaAs
Spacer 105.7 GaAs
Tunnel block 7 AlGaAs ×10Tunnel block 3 GaAs
Spacer 23.2 GaAs
n-doping 30 GaAs
Spacer 44.9 GaAs
DBR 72.2 AlAs ×34DBR 59.6 GaAs
Buffer GaAs

Table B.1: Growth design of the single QW pair sample used for most of this thesis.
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Layer Thickness (nm) Material Repetition
Spacer 52.5 GaAs/AlGaAs
p-doping 17.8 GaAs/AlGaAs
Tunnel block 6.6 AlGaAs ×10Tunnel block 2.8 GaAs
Spacer 19.1 GaAs/AlGaAs
Spacer 30 GaAs/AlGaAs

×3

Tunnel block 14.2 AlGaAs
Spacer 6.6 GaAs
QW 10.4 InGaAs
QW separation 12.2 GaAs
QW 4.7 InGaAs
Spacer 6.6 GaAs
Tunnel block 14.2 AlGaAs
Spacer 23.2 GaAs/AlGaAs
Spacer 1.4 GaAs
Tunnel block 6.6 AlGaAs ×24Tunnel block 2.8 GaAs
Spacer 7.7 AlGaAs
n-doping 17.8 GaAs/AlGaAs
Spacer 52.7 GaAs/AlGaAs
DBR 72.2 AlAs ×34Buffer GaAs

Table B.2: Growth design of the tripel QW pair sample.
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