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Abstract
Many fundamental distributed computing problems require coordinated access to a shared resource.
A distributed directory is an overlay data structure on an asynchronous graph G that helps to
access a shared token t. The directory supports three basic operations: publish, to initialize the
directory, lookup, to read the contents of the token, and move, to get exclusive update access to the
token. There are known directory schemes that achieve message complexity within polylog factors
of the optimal cost with respect to the number of nodes n and the diameter D of G. Motivated by
fault-tolerant distributed computing implementations, we consider the impact of edge failures on
distributed directories. We give a distributed directory overlay data structure that can tolerate edge
failures without disrupting the directory operations. The directory can be repaired concurrently
while it processes directory operations. We analyze the impact of the faults on the amortized cost
of the three directory operations compared to the optimal cost. We show that f edges failures
increase the amortized competitive ratio of the operations by at most factor f . We also analyze the
message complexity to repair the overlay structure, in terms of the number of messages that are
sent and the maximum distance a message traverses. For an edge failure, the repair mechanism uses
messages of size O(log n) that traverse distance at most D′, the graph diameter after the fault. To
our knowledge, this is the first asymptotic analysis of a fault-tolerant distributed directory.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Shared memory algorithms; Software and its engineering → Software fault tolerance

Keywords and phrases distributed directory, sparse partition, fault tolerance, message complexity,
path dilation

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.5

Related Version Full Version: https://arxiv.org/abs/2207.09940

Funding Costas Busch is supported by grant NSF-CNS-2131538

1 Introduction

Many distributed computing applications require finding and accessing a shared token, where
the token represents some shared resource. At all times, only the token owner has exclusive
access to the token which grants the owner the ability to modify the content that the token
represents. Distributed directories enable other nodes to find the token to read its contents or
to get exclusive access. Distributed directories have applications in shared memory and sensor
networks. Distributed transactional memory systems use distributed directories to atomically
access shared memory objects and execute transactions at the network nodes [10,21]. Sensor
networks use distributed directories to track moving objects [1, 23].

We study distributed directories that facilitate access to a shared token t on an asyn-
chronous weighted graph G = (V, E, w). The directory supports three operations: (i) publish,
which initializes the directory and announces the initial owner; (ii) lookup, which allows a
node to read the contents of the t; (iii) move, which moves t to a new owner for exclusive
access. These operations may be issued and processed concurrently by the nodes in G.
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5:2 Fault-Tolerant Distributed Directories

Several directory schemes based on an overlay data structure on graph G have been
developed, for which the amortized total distance traversed by the messages in a lookup or
move operation is close to optimal, namely within some poly-log factor to the number of
nodes n and the diameter of the graph [10,19,21,22]. However, these directory protocols
are not fault tolerant. If an edge failure occurs, they are not able to maintain a directory
structure that can support publish, lookup, and move operations.

In reality, a directory is implemented on a distributed network, and it is typical to have
unreliable networks with link failures between nodes. As processing nodes need to continue to
operate correctly during or after the occurrence of failures, designing fault-tolerant distributed
algorithms is important. We provide a directory protocol that tolerates edge failures with
provable correctness and performance guarantees.

We consider the impact of f ≥ 1 edge failures. We assume that the edge failures do
not disconnect G, as otherwise, the token becomes unreachable in G making the directory
unusable. Nevertheless, edge failures may happen at arbitrary moments and concurrently.
Given the initial partition hierarchy, our protocol is fully distributed and handles the failures
without disrupting concurrent directory operations. We analyze the message complexity
of repairing the directory and provide performance bounds for the amortized cost of the
operations related to the number of failed edges f .

1.1 Contributions
We present a distributed directory that can handle edge failures without disrupting concurrent
directory operations. Our directory is inspired by the Spiral directory protocol [21]. Spiral
uses a sparse cover decomposition hierarchy of G that allows clusters at the same level to
overlap. Instead, we use a sparse partition hierarchy P of G that does not allow clusters
at the same level to overlap. As we will show, sparse partitions have improved asymptotic
performance in the directory operations, and are affected less by edge failures. We consider
two kinds of sparse partitions: weak, where the diameter of a cluster is with respect to all
nodes in G, and strong, where the diameter of a cluster is calculated within the cluster. Weak
partitions are available for more kinds of graphs than strong partitions [7, 11].

To evaluate the performance of the directory and the repair operations, we analyze their
communication cost. For the basic directory operations (publish, move, lookup) that send
messages sequentially, the communication cost is the sum of the distances traversed by the
sequential messages for each operation. For the repair mechanisms, we often send several
messages in parallel, here the communication cost consists of the total number of messages
and the maximum distance that any one of these messages traverses.

Table 1 shows the communication costs of directory operations before/after f edge failures:
Publish: A publish operation costs O(D · log n). After f ≥ 1 failures the publish
operation costs O(D′ · log n), where D is the diameter of G before the edge failures and
D′ is the diameter after the edge failures. Note here that we do not compare with the
optimal, as there is really no specific way that optimizes this step.
Lookup: For lookup, the message cost of our algorithm is an O(log3 n) approximation
of the optimal cost (compared to the shortest path to the token). This is a log n

factor improvement over Spiral [21]. With f edge failures, the approximation becomes
O(f · log3 n) for weak partitions, and O(f · log2 n + log3 n) for strong partitions.
Move: For move, the amortized cost of a sequence of move operations is an
O(log D · log2 n) approximation of the optimal. With f edge failures, the approximation
factor becomes O(f · log D′ · log2 n) for weak and O((f + log n) log D′ · log n) for strong
partitions.
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Table 1 Cost of operations for general/special graphs and weak/strong diameter partitions;
publish cost is absolute; lookup and move costs are approximation factors compared to the optimal
cost; failures are f ≥ 1; D′ is the diameter of G after the f failures; special graphs include constant
doubling dimension, constant pathwidth (weak and strong partitions) and also fixed minor-free,
chordal (weak partitions only) for which sparse partition schemes with σ, I ∈ O(1) are known [7].

Graph Partition Partition Parameters Failures Publish Lookup Move
general any (O(log n),O(log n)) none O(D · log n) O(log3 n) O(log D · log2 n)
general weak (O(log n),O(log n)) f O(D′ · log n) O(f · log3 n) O(f · log D′ · log2 n)
general strong (O(log n),O(log n)) f O(D′ · log n) O(f · log2 n + log3 n) O((f + log n) log D′ · log n)
special any (O(1),O(1)) none O(D) O(1) O(log D)
special any (O(1),O(1)) f O(D′) O(f) O(f · log D′)

Table 2 Cost of repair mechanism for general graphs and strong/weak partitions; σ is a sparse
partition parameter, generally of order O(log n); ρ is the locality parameter usually a constant; a
cluster at level i has diameter at most σρi independent of the number of failures; the hierarchy
consists of logρ D levels; D denotes the diameter of G before the edge failure, D′ denotes the diameter
of G after the edge failure; n denotes the number of nodes, m denotes the number of edges.

Operation Partition Size of Message Number of Messages Maximum Distance Traversed
by Individual Message

Initialize Shortest Path Tree Update any O(log n) O(n) O(D)
Update Shortest Path tree (per tree) any O(log n) O(m) O(D′)
Splitting a cluster (per level i

cluster)
strong O(log n) 1 σρi

weak O(log n) 2 σρi

Informing nodes within cluster of
split (per level i cluster)

strong O(log n) O(n) σρi

weak O(log n) O(n) 2σρi

Informing neighborhood of leader
change (per cluster)

any O(log n) O(n2) ρi

Update Directory Path (per level) any O(log n) O(1) O(D′)
Updating the Special Parent
Information of level i cluster

strong O(log n) 2 σρi′

weak O(log n) 2 2σρi′

For special kinds of graphs [7], we get better bounds which are O(1) (for f failures O(f))
approximation for lookup, and O(log D) (resp. O(f · log D′)) approximation for move, while
the cost of the publish operation is simply O(D) (resp. O(D′)).

We also analyze the repair communication costs (see Table 2). To maintain the sparse
partition, we store a spanning tree within each cluster of P. If an edge fails in the spanning
tree of a cluster X, we split X into two. This requires one message in a strong and two
messages in a weak sparse partition of size O(log n), traversing a distance of at most σρi

(the cluster diameter) in a strong partition and at most 2σρi in a weak partition, where σ

and ρ are parameters defining the sparse partition hierarchy (cf. Subsection 1.2). There are
additional steps, such as informing all nodes within X of the split, requiring O(n) messages
of size O(log n) traversing similar distance. More details are given below.

1.2 Techniques
Each level of the hierarchy P is a partition of V (G) into clusters obtained from a (σ, I)-sparse
partition scheme. At level i, each cluster has a diameter of at most σρi (where ρ is a constant),
and the ρi-neighborhood of a node intersects with at most I of these. The highest level of P
consists of a single cluster, while on the lowest level, each node of G forms its own cluster.
We pick a leader in each cluster X of P. The leader of the highest level is called the “root”.

The distributed directory maintains a directory path ϕ from the root to the current
owner of the token t (see Figure 2). On each level of P, exactly one leader node belongs
to ϕ and has pointers to the directory path nodes at the level above and below, forming

SAND 2024



5:4 Fault-Tolerant Distributed Directories

a double linked list. All operations are executed through message passing. The directory
path is initialized by the first owner of t through a publish operation. A lookup or move
operation, issued by a node v, searches for ϕ by checking the level i leaders of the nodes
in the ρi-neighborhood of v, for all increasing levels i. When the operation discovers the
directory path, it follows ϕ toward the token t. A move operation changes the directory path
toward the new owner while it searches for ϕ.

To search for the directory path, node v needs to know the leaders of the nodes in its
ρi-neighborhood for 0 ≤ i ≤ h. To avoid double computation, every node pre-computes this
information. Edge failures can increase the distance between some nodes, thereby affecting
the precomputed ρi-neighborhoods. To update the preprocessed information, every node v

maintains a shortest path tree T (v). When an edge on T (v) fails we use King’s fully dynamic
algorithm for maintaining shortest path trees [13] to update it. To initialize the update of
the shortest path trees the endpoints of the failed edge inform the nodes whose shortest
path tree are affected. This requires at most O(n) messages of size O(log n) that traverse a
distance at most O(D), where D is the diameter of G before the edge failure.

To improve the performance of lookup operations, a leader node l(X) added to ϕ at
level i informs its level i′ leader li′(l(X)) for i′ = i + logρ(c′σ) for an appropriately chosen
constant c′. We call li′(l(X)) the special parent of l(X). When a lookup operation finds the
special parent of a node on the directory path, it traverses the directory path from there.

Upon an edge failure, both endpoints detect the failure immediately. In response to the
failure, we update P to maintain the directory’s performance. For each cluster X, we store a
spanning tree T (X). When an edge e on T (X) fails, we split X into X1 and X2. X1 has
the same leader as X, and X2 has a node incident to e as its leader. (If in a weak diameter
partition e is outside X, l(X2) is selected appropriately in X2.) This mechanism ensures that
the diameter of any level i cluster of P is at most 2σρi regardless of the number of failures.
The sparse partition scheme ensures that in a strong partition, at most one cluster splits per
level of P, and in a weak sparse partition, at most I clusters split. All these processes are
initialized by the two endpoints of the failed edge.

When a cluster X with a leader on the directory path splits, we update the directory path
to include the leader of the node that added l(X) to ϕ. This ensures that lookup and move
operations find ϕ at a level proportional to the distance between the token owner and the
node that issued the operation. To update the directory path, the leader nodes of l(X1) and
l(X2) need to communicate with each other and with the leader nodes on the directory path
at the level below and above X. The whole process requires O(1) messages of size O(log n),
traversing a distance of at most O(D′), where D′ is the diameter of G after the edge failure.

We update the special parent information and notify nodes in the ρi-neighborhood of
nodes in X2 about the leader change as we update P and ϕ. To update special parents for a
level i cluster X, two messages of size O(log n) are required, traversing a distance of at most
σρi′ in a strong partition and 2σρi′ in a weak partition, where i′ is the level of the special
parents. To notify the ρi-neighborhood of nodes in X2, O(n) messages of size O(log n) are
required, traversing a distance of ρi.

In unweighted graphs, a failure can at most double the diameter of G [3]. However, as
illustrated in Figure 1, the diameter increase in a weighted graph may not be bounded. To
accommodate such changes, we ensure that the number of layers in P equals logρ D′, where
D′ represents the current graph diameter. When adding layers to the partition hierarchy, we
extend the directory path accordingly.
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Figure 1 An example of a graph showing that we cannot bound the stretch in the diameter of the
graph. Assuming X > 1 the initial graph has diameter 3. If edge {u, v} fails, the diameter becomes
2 + X. Without further assumptions on X this cannot be bounded as a constant multiple of 3.

1.3 Related Work
An alternative way to implement a distributed directory is to use a spanning tree T on G.
The edges of T are directed toward the owner node of the token. If node u requests the
token, then the move request redirects the edges of the tree toward u (edge reversal). The
benefit of the tree is that it can easily handle distributed requests since concurrent move
operations are ordered when they intersect on the tree. Several protocols have been proposed
based on trees: Arrow [4, 9, 14, 20], Relay [24], Ivy [15], Arvy [12]. The approximation factor
of the operations is O(log DT ), with respect to the diameter DT of T . However, by using a
tree the performance of the lookup and move operations may be sub-optimal with respect to
G, as T may not accurately represent the distances in G. Considering the distance stretch s

of the tree the approximation becomes O(s log DT ), and s can be as large as the graph G

diameter D. Nevertheless, considering an appropriate overlay tree that preserves on average
the pairwise node distances of G [6], it is possible to get close to optimal performance on
the average case for a set of random source operation requests [8, 18]. Our approach, on the
other hand, has guaranteed performance for arbitrary sources of requests (not just random).

Another work [5] considers fault-tolerant routing and labeling schemes. These rely on
knowing the destinations of messages. In our case, the destinations are leaders which may
not be immediately known after the failures. Hence, we cannot rely on such routing schemes
directly to implement the fault-tolerant directory. Another line of research related to edge
failures maintains fault-tolerant sparse spanners of G that preserve the stretch (usually
poly-log) of the distances in G even after edge or node failures [2, 17].

Outline of the Paper

In Section 2, we give some necessary definitions and define our model. Section 3 presents
the basic directory scheme without failures and Section 4 describes our failure response
mechanisms and analyzes their costs. A performance analysis of the directory after f failures
is given in Section 5. In Section 6, we describe the integration of these mechanisms into
the protocol. We conclude in Section 7. Omitted proofs and the pseudocode appear in the
appendix. (The cases of concurrent edge failures and handling transient failures are discussed
in the full version of the paper.)

2 Definitions and Preliminaries

Let dG(u, v) denote the length of a shortest path between u and v in G. The r-neighborhood
of a node u, denoted NG,u(r), is the set of nodes that are within distance r to u. The
diameter of a graph is diam(G) = maxu,v∈V (G) dG(u, v). For a set X ⊆ V , let G[X] denote

SAND 2024



5:6 Fault-Tolerant Distributed Directories

the subgraph of G induced by X. There are two ways to measure the diameter of X: (i)
weak diameter, diamG(X), which considers all possible shortest paths in G that may also
use nodes outside X; (ii) strong diameter, diamG[X](X), which considers only paths in X.

A partition of G is a collection of disjoint sets of nodes whose union is V . A sparse
partition is a partition that restricts both the diameter of each cluster and the number of
clusters within a specific distance. There are weak and strong sparse partitions that differ in
whether the weak or strong diameter of a cluster is restricted.

A (r, σ, I)-weak (strong) sparse partition of G satisfies two properties:
(i) each cluster has weak (strong) diameter at most rσ, and
(ii) the r-neighborhood of each node u ∈ V intersects at most I clusters.

A (σ, I)-weak (strong) sparse partition scheme is a procedure that gives a (r, σ, I)-weak (strong)
partition for any r > 0. Jia et al. [11] give a (O(log n), O(log n))-weak sparse partition scheme
for an arbitrary metric space and general graphs. Filtser [7] gives a (O(log n), O(log n))-
strong partition scheme for general graphs based on the clustering technique by Miller et
al. [16]. There are (O(1), O(1))-partition schemes for special network topologies such as for
low doubling-dimension and fixed minor-free graphs [7, 11].

2.1 Model
We model the distributed network as a weighted graph G = (V, E, w) with positive edge
weights of at least one. The weight of an edge e = {u, v} represents the cost of sending a
message over edge e. The cost of an operation is the sum of the edge weights the request
traverses. The goal of a distributed directory is to minimize the total communication cost for
a request in the worst case. The edge weight represents solely the cost of sending a message
but does not indicate the delay or latency of an edge. In particular, for the correctness of
our protocol, no message synchronization is needed.

Each node u stores a shortest path tree T (u) with root(T (u)) = u. The shortest path
trees are built such that the shortest paths are consistent, meaning the path from u to v

stored in T (u) is identical (reversed) to the path from v to u stored in T (v).
The communication in our network is asynchronous, and messages sent along the same

edge are delivered in the order they are sent. All messages have the same size O(log n) and
are transmitted along shortest paths.

Our directory is built on a sparse partition hierarchy P of G = (V, E, w). Our directory
works for strong and weak sparse partitions, but we show that they have different performances.
We construct P using any of the aforementioned partition schemes. We use diam(X) to
denote the strong or weak diameter of cluster X, depending on the partition type. The
partition hierarchy P comprises h = ⌈logρ D⌉ levels with an exponentially increasing locality
parameter ρ at each level. At level i (0 ≤ i ≤ h), we define Pi as a (ri, σ, I)-sparse partition
of G, where ri = min{D, ρi}. We define level -1 where each node of V is a cluster by itself
(r−1 = 0). At top level h, Ph comprises of a single cluster that covers the entirety of V .

We select a leader l(X) in each cluster X of P . At P−1, each node is the leader of its own
cluster, while the leader of the single cluster in Ph is called the root. Each node u ∈ V belongs
to exactly one cluster in each level of P , denoted by Ci(u), and its leader is li(u) = l(Ci(u)).
Each node knows the leader of all the clusters to which it belongs.

To maintain the sparse partition in the presence of edge failures, we store a spanning tree
T (X) for each cluster X. In a weak sparse partition, T (X) is the shortest path tree of l(X),
while in a strong sparse partition, T (X) is a shortest path tree of G[X] with root l(X). The
choice of spanning tree ensures that for any node u in X, the path on T (X) connecting u

and l(X) is at most diam(X). We denote the subtree of T (X) rooted in u by T\u(X). Every
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Figure 2 An example of a move operation. Left: a node issues a move request, which starts
the bottom-up formation of a new directory path. Middle: the new directory path intersects the
existing directory path ϕ; the part of ϕ from the intersection until the old owner will be deleted.
Right: the token has moved to the new owner and the directory path ϕ has been revised accordingly.

node u on T (X) knows T (X). In a weak sparse partition, u also knows which nodes belong
to X. To store this information, a node in a weak sparse partition requires O(Ihn) memory,
and a node in a strong sparse partition requires O(hn) memory.

3 Directory Scheme

The directory supports three operations: publish to build the initial directory path, lookup to
read the current value of the token, and move to request ownership of the token and update
the directory path. All three operations are executed through message passing. Nodes can
issue lookup and move operations at any moment and simultaneously. Lookup operations
simply get a copy of the token from the latest token owner. Concurrent move operations from
different nodes are ordered through the directory because there can only be one token owner
node at a time. Hence, the directory acts as a distributed queue for the move requests. The
queue ordering is implicit by the way the concurrent move operations intersect each other
in the directory data structure. The directory ensures that the previous token owner will
know which node is the next token owner. In this way, the token is passed from its previous
owner to the next in the queue. There is no requirement that the requests are served in a
particular order, but every move request has to be served eventually. (The pseudocode of
the directory is displayed in Algorithm 1 in Appendix C.)

The token resides at an owner node at the lowest level. There is a virtual directory path
ϕ that points to the owner (see Figure 2). The path ϕ consists of h + 2 leader nodes, one
node at every level of P . Let ϕi denote the leader node of ϕ at level i, for −1 ≤ i ≤ h, where
ϕ−1 is the token owner and ϕh is the root. For each level i, 0 ≤ i ≤ h − 1, leader ϕi has
pointers to ϕi−1 and ϕi+1 which form a virtual doubly linked list.

The directory path is created via the publish operation. The initial owner u sends a
publish-message to its leader nodes at every level of P, namely ϕi = li(u). This operation
creates the pointers from ϕi to ϕi−1 (both ways) for 0 ≤ i ≤ h. Theorem 1 measures the
cost of a publish operation and the length of the initial directory path. In the next result,
cost(publish) is the total distance that the publish-message traverses.

▶ Theorem 1. The cost of the publish operation and the length of the initial directory is
O(D).

Proof. To build the directory path, node u contacts each of its leader nodes. Therefore,
cost(publish) ≤

∑h
i=0 σρi = σρh+1−1

ρ−1 . Since the nodes on the directory path u’s leaders, the
distance between consecutive nodes is at most d(ϕi, ϕi+1) = d(li(u), li+1(u)) ≤ d(li(u), u) +
d(u, li+1(u)) ≤ σ(ρi + ρi+1). Summing over the entire directory path gives length(ϕ) ≤∑h−1

i=−1 σ(ρi + ρi+1) ≤ σ(ρ+1)(ρh+1−1)
(ρ−1)ρ = O(ρσh). ◀
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5:8 Fault-Tolerant Distributed Directories

To locate the token, the issuer of a lookup or move operation first searches for the
directory path (Figure 2). Once a leader node of the directory path is found, the token owner
is reached by following ϕ. To search for the directory path, a node sends messages to leader
nodes near itself at increasing levels of P : Let Pi(v) be the set of clusters in Pi that intersect
NG,v(ρi), where |Pi(v)| ≤ I. Node v checks whether any of the leaders in Pi(v) equals ϕi for
0 ≤ i ≤ h. The search stops at the lowest level where a directory path leader is found (at
the root in the worst case). The next Lemma bounds the cost of searching level i for ϕ.

▶ Lemma 2. The sum of all distances that messages travel during the search of the directory
path at level i in a lookup or move operation issued by node u is O(ρiσI).

Proof. Node u contacts every leader in Pi(u). By definition, |Pi(u)| ≤ I. Further, if X

is in Pi(u), then there exists a node x in X with d(u, x) ≤ ρi. Therefore, d(u, l(X)) ≤
d(u, x) + d(x, l(X)) ≤ ρi + σρi. Summing over all clusters in Pi(u) gives the result. ◀

A move operation by node v modifies the directory path to denote the new ownership at
v. The new directory path is formed in a bottom-up way while v searches for the existing
directory path (Figure 2). Node v first adds l−1(v) to the directory path. Let ϕj , j ≥ 0, be
the first node of ϕ that v discovers. For levels 0 ≤ i < j, node v searches Pi(v) and adds
li(v) to the directory path when it does not find ϕi. At level j node v finds ϕj , which will
remain then in the directory path but its pointer changes to ϕ′

j−1. The move operation then
follows the old directory path toward ϕ−1. While going down the move operation deletes the
leaders from the old directory path, that is, ϕj−1 · · · ϕ−1 are removed from ϕ. Hence, the
new directory path is ϕh · · · ϕjϕ′

j−1 · · · ϕ′
−1.

Concurrent move operations create multiple partial directory paths. However, only the
latest directory path includes the root node. To ensure a unique complete directory path
(without splits or gaps) from the root to the owner, the upward phase of a move is atomic.
Contacting ϕi about the directory path triggers an immediate update of its downward pointer
to ϕ′

i−1, directing subsequent operations to the new path. As sub-paths merge, the distance
between consecutive nodes on the directory path can increase, as shown by the next lemma.

▶ Lemma 3. The distance between two consecutive nodes ϕi and ϕi+1 on the directory path
for −1 ≤ i < h is at most d(ϕi, ϕi+1) ≤ σ(ρi + ρi+1) + ρi+1,.

Proof. Consider two consecutive directory path nodes ϕi and ϕi+1. There were either added
by the same node v, in which case d(ϕi, ϕi+1) ≤ d(ϕi, v) + d(v, ϕi+1) ≤ σ(ρi + ρi+1), or some
node v added ϕi to ϕ and then found ϕi+1 during its search of level i + 1. In this case,
there must be a node w in v’s ρi+1-neighborhood that belongs to ϕi+1’s cluster. Hence,
d(ϕi, ϕi+1) ≤ d(ϕi, v) + d(v, w) + d(w, ϕi+1) ≤ σ(ρi + ρi+1) + ρi+1. ◀

The continuous modifications of the directory path imply that not all leaders on the
directory path contain the current token owner w in their cluster. To ensure that a lookup
operation issued by node u discovers the directory path at a level proportional to its distance
to w, we use the concept of a special parent (as in Spiral [21]). Every leader node li(x) that is
added to ϕ informs leader node li′(x), where i′ = i + logρ(c′σ), for an appropriately constant
c′. We call li′(x) the special parent of li(x) with respect to level i. When node u searches for
the directory path, it asks the leader nodes if they are part of the directory path, or if they
are the special parent of a node on the directory path. If it finds a special parent, it takes
the link to the node on the directory path and continues the search from there. Like the
directory path itself, special parent information is updated during a move operation. If a
move removes a node from the directory path while a lookup follows a link from a special
parent to that node, the lookup goes back to level i′ and continues the search from there.
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Using Lemmas 2 and 3, we obtain the following results for the lookup and move costs
when there are no failures. (The proofs of these two results appear in the full version of the
paper; here we focus on the fault analysis aspects.)

▶ Lemma 4. A lookup operation finds the token with a cost that is a O(σ2ρI) factor from
optimal.

Consider a sequence of move requests S = s1, . . . , sq, that execute in a sequential manner,
so that si starts only after si−1 completes, where i > 0.

▶ Lemma 5. The total cost of the move operations in S is a O(hρσ(σ + I)) factor from
optimal.

4 Responding to Edge Failures

In case of edge failures, our clustering may no longer satisfy the properties of a sparse
partition, and some of the shortest path trees that nodes store may become disconnected. To
guarantee the correctness and performance of our algorithm, we update our data structures
accordingly. To accomplish this, we modify the operations described in Section 3 as follows:
1. Each node on ϕ remembers the node that added it to ϕ.
2. When w contacts l(X) in a lookup or move operation to find the directory path, it

includes a list of the nodes from w’s ρi-neighborhood that it believes are part of X.
3. Node w contacts a level i leader node l(X) only if d(w, l(X)) ≤ ρi + 2σρi.

Whenever an edge e fails, our update mechanisms recompute all shortest path trees that
contained edge e, split every cluster whose spanning tree contained edge e, and update the
directory path accordingly. We discuss each of them below.

4.1 Updating Shortest Path Trees
Each node in our protocol stores a shortest path tree, which we update when an edge
e = {u, v} on the tree fails. We use King’s fully dynamic algorithm to maintain the shortest
path trees in the presence of edge failure [13]. Updating a single tree takes O(md) time,
where m is the number of edges in G \ {e}, and d is the maximum distance of a node to the
root of the tree. To use King’s centralized algorithm in a distributed system, we let the root
node compute the updated shortest path tree. This causes an additional cost because we
need to inform the root node of the available edges. Namely, we need to inform the root of
at most O(m) edges with a maximum distance of D′ from the root.

The updating of the shortest path trees is initialized by the endpoints of the failed edge
e = {u, v}, which can detect the failure immediately. The consistency assumption we placed
on the shortest path trees implies that u and v know if any tree needs to be updated.

▶ Observation 6. If edge e = {u, v} is part of the shortest path tree of a node w, then edge
e is also part of the shortest path tree of u and v.

To initialize the updates, nodes u and v send a broadcast along the remaining parts T (u)
and T (v). The next lemma bounds the cost of this operation.

▶ Lemma 7. To initialize the update of the shortest path tree, O(n) messages of size O(log n)
are required, that travel a maximum message distance of D, where D is the diameter of G

before the failure of e.
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4.2 Reclustering
When an edge e fails, we split every cluster X whose spanning tree contains e into two. For
the reclustering, we distinguish between the root level and clusters below the root level.
For clusters below level h, we define the two new clusters as X1 = X \ (X ∩ T\v(X)) and
X2 = X ∩ T\v(X). The leader node of X1 is the same as that of X, and for X2, either
v becomes the new leader (if using strong sparse partition) or the closest node to v in X

(if using weak sparse partition). The spanning tree for X1 is T (X) \ T\v(X) and for X2 is
T\v(X) rerooted at l(X2). The following lemma bounds the diameter and the number of the
generated clusters.

▶ Lemma 8. Let X be a cluster at level i, −1 ≤ i < h, and suppose at most f edges fail.
Then X splits into at most f + 1 clusters. Each new cluster Xj, generated from X, has
diameter at most diam(Xj) ≤ 2σρj.

Similar to the update of the shortest path tree, the splitting of the clusters is initiated
when the endpoints of the failed edge detect the failure. Recall that u and v both know
which clusters have e in their spanning tree. For every cluster X that needs to split the
path on T (X) from l(X) to one of the endpoints of e, say u, the part between u and l(X)
remains unaffected by the failure of e. Therefore, u can inform l(X) of the failure by sending
a message along T (X). If node v is not in X (i.e. weak diameter sparse partition), it chooses
a node w closest to it on T (X) from X ∩ T\v(X) to become the new leader node and sends a
message to w to inform it of the reclustering and its new leadership role.

▶ Lemma 9. Splitting a level i cluster requires one message in a strong and up to two messages
in a weak sparse partition. These have size log n and traverse a distance of at most σρi.

When l(X1) is informed about the failure and l(X2) knows whether it is part of the
directory tree (see Section 4.3), both broadcast the update to all nodes in their respective
cluster so that these can update their knowledge of T (X) and the leader for the nodes in X2.

▶ Lemma 10. To inform all nodes in X1 and X2 of the cluster change we need to send O(n)
messages, each of which has size O(log n). In a strong partition, the maximum distance a
message traverses is σρi and in a weak sparse partition, the maximum distance is 2σρi.

When the nodes in X2 are informed of the cluster change, they forward this information
to their ρi-neighborhood, so they can update their preprocessing information.

▶ Lemma 11. To inform the ρi-neighborhood of the nodes in X2 about the new leader requires
O(n2) messages of size O(log n). The maximum distance traversed by any message is ρi.

Initially, P consists of logρ D layers, where D = diam(G). To maintain this relationship
between the number of layers and the diameter, we add layers to P as the diameter increases.

Consider the single cluster X at level h. Before the edge failure, we have d(r, u) ≤ σρh

on T (X) for all nodes u ∈ V . Hence, if the failed edge e does not lie on T (X), then the
diameter of G is at most 2σρh. In this case, we do not modify the root level.

If edge e lies on T (X), then r’s updated shortest path tree tells us if we need to increase
the number of layers. Let V1 and V2 be the partition of the vertices of G defined by the
connected components of T (X) \ {e}, and assume w.l.o.g. that r ∈ V1. By Lemma 8,
diam(G[V1]) ≤ 2σρh and diam(G[V2]) ≤ 2σρh. Let v be the node in X2 closest to r before
the edge failure. If after the edge failure, the distance from r to v is d(x, r) > σρh+1 − 2σρh,
then we increase the number of layers to h′, where h′ = minz∈Z{σρz > d(x, r)} for all x ∈ V .
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We split the level h the same way that we split lower level clusters whose spanning tree
contains edge e. Levels h + 1, . . . , h′ − 1 are simply copies of level h, and the directory path
goes through the copy of the cluster that is part of the directory path at level h.

When the single cluster at level h splits, both leader nodes of the two generated clusters
inform the nodes in their clusters about the additional layers. This information can be
included in the usual message l(X1) and l(X2) sent to the nodes in their clusters when a
failure occurs. This message will cause the directory path nodes at levels h − (i + logρ(c′σ)) +
1, . . . , h′ − i + logρ(c′σ) to send a message to their special parent, so that this information is
also extended to the additional layers. Level h′ is a single cluster that contains the entire
graph. The leader node is r and the spanning tree is T (r).

4.3 Updating the Directory Path and Special Parents
We need to ensure that the directory path and special parent information are maintained
during cluster splitting. When a cluster X splits, we check if l(X) is on the directory path.
If it is not, then neither l(X1) nor l(X2) will be. If it is, then l(X) can determine whether
l(X1) or l(X2) becomes part of the directory path by checking if the node that added l(X) to
ϕ remains in X1. Once l(X) knows about l(X2)’s role, it informs v (using T (l(X))). If v is
not l(X2), then it forwards this message to l(X2). If l(X2) is to become part of the directory
path, then the message contains the ids of ϕi−1, ϕi+1, and the id of the node that added
l(X) to the directory path. With this, l(X2) sets its pointers to ϕi+1 and ϕi−1 and informs
them to update their pointers too. When they receive l(X2)’s message ϕi−1 and ϕi+1 send
a message to l(X) to remove its outdated directory path pointers. If l(X2) is not on the
directory path, then l(X)’s messages simply informs l(X2) that it is not part of ϕ.
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X1
X2

φi+1
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Figure 3 The steps of updating the directory path at level i: 1) Node ϕi sends a message to ϕi−1

and ϕi+1 to inform them about the update. 2) Node ϕi informs ϕ′
i to join the directory path. If we

are using a weak sparse partition, node v acts as an intermediate in the message transfer. 3) ϕ′
i sets

pointers to ϕi−1 and ϕi+1 and sends them a message so they update their pointers too. 4) ϕi−1 and
ϕi+1 change their pointer to ϕ′

i and send a message to ϕi to remove its pointers. 5) ϕi removes its
pointers to ϕi+1 and ϕi−1.

For simplicity, we prevent consecutive nodes on the directory path to update concurrently
(when the modification is due to an edge failure). Therefore, if ϕi = l(X) needs to be replaced
by l(X2), then ϕi will first contact ϕi−1 and ϕi+1 to inform them of the update, before
messaging l(X2). Neither of them will be able to initialize an update on their level until the
update at level i is complete. In case two subsequent nodes attempt to initialize an update of
the directory path simultaneously, then the node with the lower id will be allowed to update
first. The process of updating the directory path is displayed in Figure 3. In the next lemma,
we bound the cost of updating the directory path.

▶ Lemma 12. To update the directory path we send O(1) messages of size O(log n) which
travel a distance at most O(D′) where D′ = diam(G \ {e}).
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At the same time that we modify the directory path, we also update the special parent
information of l(X1) and l(X2). When l(X1) and l(X2) update ϕ, they also send a message
to their special parent instructing them to update their pointers accordingly.

▶ Lemma 13. To update the special parent information we send two messages of constant
size that traverse a distance of at most σρi in a strong sparse partition and at most 2σρi′ in
a weak sparse partition, where i′ = i + logρ(c′σ).

5 Analysis of Algorithm

We examine our protocol’s performance with up to f faults. Edge failures may stretch the
directory path, leading to delayed updates of special parent information. Consequently,
operations that occur during or immediately after a failure may experience additional costs,
referred to as transient operations. Once the directory path is rebuilt by a publish or move
operation and the special parent information is updated, operations are considered normal
operations. Here we analyze the cost of normal operations. (We discuss transient operations
in the full version of the paper.)

We first bound the length of the directory path after failures.

▶ Lemma 14. Suppose that since the last edge failure, the directory path has been rebuilt up
to level i. Then the length of the directory path up to level i is at most O(σρi).

Before we analyze the cost of lookup and move operations, we bound the number of
clusters affected by an edge failure.

▶ Lemma 15. A failure of edge e = {u, v} splits at most h clusters in a strong, and Ih

clusters in a weak sparse partition.

In addition, if an edge failure occurs, we may add extra layers to the directory to
accommodate the increased diameter. As explained in Section 4.2, the number of added
layers is proportional to the diameter increase.

We now analyze the cost of lookup and move operations when up to f failures occur.

▶ Theorem 16. Suppose we are using a strong sparse partition and that f edge failures have
occurred. After updating our data structures, a lookup operation finds the token with cost
that is O(σ2(I + f)ρ) factor from optimal.

Proof. Suppose node u issues a lookup request while the current owner is node v, where
u ̸= v, and ρi−1 ≤ dG(u, v) ≤ ρi. This implies the optimal cost is at least dG(u, v) ≥ ρi−1.

Let w be the directory path node at level i. By Lemma 14, the segment of ϕ from v to
w is at most c1σρi for some constant c1. Hence, dG(v, w) ≤ c1σρi. Therefore, dG(u, w) ≤
dG(u, v) + dG(v, w) ≤ c2σρi, for some constant c2 ≥ 1 + c1.

Let sw be the special parent of w, which is the leader of the cluster that includes w at level
i′ = i+logρ(c′σ), for a constant c′ ≥ c2. Since ρi′ = c′σρi, node sw is in the ρi′ -neighborhood
of u. Therefore, the lookup operation is guaranteed to discover sw at level i′.

We sum the cost of the search up to level i′. On each level, node u contacts at most I + f

leaders by Lemma 15. When node u contacts a cluster leader node l(X) at level i, then there
must be a node x in X such that d(u, x) ≤ ρi. Hence, the distance between u and l(X) is at
most d(u, l(X)) ≤ ρi + 2σρi ≤ cσρi for some c ≥ 1 + 2σ. Therefore,

cost upward phase ≤
i′∑

j=0
(I + f)cσρj = O(σ2(I + f)ρi).

The cost of the downward phase is given by Lemma 14. Thus, for strong sparse partitions,
the total cost of a lookup is O(σ2(I + f)ρi) which is O(σ2(I + f)ρ) factor from optimal. ◀
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▶ Theorem 17. Suppose we are using a weak sparse partition and that f edge failures have
occurred. After updating our data structures, a lookup operation finds the token with cost
that is O(σ2fIρ) factor from optimal.

Proof. The proof is identical to Theorem 16, except that after f edge failures Pi(u) ≤ fI,
according to Lemma 15. Thus, the lookup operation visits up to fI clusters on each level. ◀

▶ Theorem 18. Consider a sequence S of move requests S = s1, . . . , sq that are all issued
after the f th edge failure and which are executed sequentially. The total cost of the move
operations in S is a O(h′σρ((I + f) + σ) factor from optimal in a strong sparse partition
(for sufficiently large S).

Proof. Let Si = si1 , si2 , . . . , siz , 0 ≤ i ≤ h′, be the sub-sequence of S that reach level i in
their upward phase, where h′ is the highest level of P after the f failures. And let uij

be the
issuer of sij . Define si0 to be the last move operation prior to S that reached level i. If no
such operation exists, si0 is the initial publish operation.

Operation sij
forms a new directory path pij

that links the leaders of uij
up to level i − 1.

At level i, pij
links to ϕi, which is the level i leader of a node in uij

’s ρi-neighborhood.
We show that d(uij−1 , uij

) > ρi−1, for j > 0. Between sij−1 and sij
no operation modified

ϕi−1. Since sij reaches level i, it does not discover ϕi−1 = pij−1 at level i − 1. This implies
that uij−1 is not in the ρi−1−neighborhood of ui,j .

Let C∗(Si) denote the optimal cost of the operations in Si and C∗ be the optimal cost
of all operations. Since the distance between any two consecutive nodes in Si is more than
ρi−1, we have that C∗(Si) > |Si|ρi−1, which implies that

C∗(S) ≥ max
0≤i≤h′

C∗(Si) ≥
∑h′

i=0 C∗(Si)
h′ + 1 >

∑h′

i=0 |Si|ρi−1

h′ + 1 . (1)

The cost of searching for the directory path up to level i is, the same for a move and a
lookup operation. Hence, cost(Si upward phase) ≤ |Si|cσ2(I + f)ρi for some constant c.

For the downward phase, we need to be more careful because si1 could be a transient
operation for 0 ≤ i ≤ h′, that encounters two consecutive nodes ϕk and ϕk−1 with distance
up to d(ϕk, ϕk−1) = D′, where D′ is the diameter of G after the f edge failures. However, for
each sub-sequence Si, where 0 ≤ i ≤ h′, only si1 can be a transient operation as subsequent
operations will traverse the updated directory path. For normal move operations, we can
bound the downward phase by the length of the upward phase. Hence, we have

C(S) ≤ h′D′ + 2
h′∑

i=0
|Si|cσ2(I + f)ρi. (2)

From Equations 1 and 2, we get the competitive ratio for the move operations in S. For a
strong sparse partition we have

C(S)
C∗(S) ≤

(h′ + 1)(h′D′ + 2
∑h′

i=1 |Si|cσ2(I + f)ρi)∑h′

i=0 |Si|ρi−1
= O(h′σρ((I + f) + σ)),

where we assume the second term to be the dominating one, which holds for a sufficiently
large set of move operations S (namely, |S| = Ω(h′2D′)). ◀

▶ Theorem 19. The total cost of the move operations in S is a O(h′σρ(fI + σ)) factor from
optimal in a weak sparse partition (for sufficiently large S).

Proof. The proof is identical to Theorem 18, except that to search a single layer for the
directory path, node u needs to contact |Pk(uij

)| ≤ fI clusters in a weak sparse partition. ◀
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6 Adding Fault Tolerance to the Directory

In this Section, we explain how to integrate the fault-tolerance mechanisms into our directory.
Here, we consider failures of one edge at a time. (Concurrent edge failures are discussed in
the full version of the paper.) We first explain why we modified the directory operations as
described at the beginning of Section 4: The first modification lets us determine if we need
to update the directory path due to an edge failure. The second and third modifications
ensure correctness and performance during the upward phase of a lookup or move operation.

When node w searches for the directory path its preprocessing information determines
which nodes it contacts. If the leader of a node in w’s ρi-neighborhood changes due to a
cluster split, then w might contact the wrong leader if it does not get informed of the update
in time. By including a list of all nodes that w believes to be part of the cluster when
contacting a leader about ϕ, the leader can inform w if a node is no longer part of the cluster.
In this case, w knows that it needs to wait for a cluster update to contact all leaders.

The distance to a leader l(X) of a node x in w’s ρi-neighborhood is at most d(w, l(X)) ≤
d(w, x) + d(x, l(X)) ≤ ρi + 2σρi (by Lemma 8). If the distance between w and the node
whom it believes to be x’s level i leader is larger, then a cluster split must have occurred.
Therefore, instead of paying a too high cost, w waits for a cluster update info by node x.

We discuss the cases of edge failures on the shortest path tree and during move operations.
(The case of publish and lookup operations are covered in Appendix B.)

6.1 Edge Failure on the Shortest Path Tree
When an edge on T (w) fails, w updates T (w) immediately upon being informed of the failure,
regardless of whether w was in the middle of a directory operation. All directory operations
rely on T (w): publish uses it to contact the leaders of w at the lowest cost possible, move
and lookup further use on it to determine whose leaders to contact at each level.

If w is notified of the failure while performing an operation, it stops the operation, updates
T (w), and then resumes the operation. For a publish operation, w simply continues. For
lookup and move operations, node w takes into account the updated shortest path tree:
Suppose the edge failure increases the distance from x to w from d to d′, where ρj−1 < d ≤ ρj

and ρk−1 < d′ ≤ ρk, while w searches level i for the directory path. If j > i and k > j, then
the first time w contacts x’s leader node is at level k (unless w contacts x’s leader due to a
different node in the cluster). If j ≤ i and k > i, then w does not contact Ci(x), unless it
already did so before being informed about the edge failure, or because there is a different
node in w’s ρi-neighborhood that belongs to cluster Ci(x). The first time it contacts x’s
leader node is at level k. If j ≤ i and k ≤ i, then w will contact cluster Ci(x) during its level
i search and at each subsequent level until it finds the directory path. The downward phase
of a lookup or move operation is not affected by the edge failure on T (w).

6.2 Edge Failure during Move Operation
While Searching for the Directory Path

The search phase of a move issued by w can only be affected by the edge failure if w needs
to contact the leader of a cluster that splits due to the edge failure. Suppose that the level i

leader of a node x in w’s ρi-neighborhood changes due to a split of a cluster X.
There are two cases to consider depending on whether w is informed about the change

before or after contacting l(X). If w is informed before, then there is no issue. Otherwise,
two sub-cases arise. If l(X) is already aware of the failure, it informs w that it is not x’s
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leader, causing w to wait for the cluster update message from x. If not, l(X) responds to
w’s message as though x was still part of the cluster, and w does not need to contact x’s
new level i cluster since the information received from l(X) is valid for w’s new cluster.

The new directory path built during the search is unaffected by the failure of edge e.

While Following the Directory Path Downward

Assume the edge failure occurs while w’s move follows the directory path down. If the
downward phase of the move operation does not encounter any clusters that split, an update
at level i completes before the move reaches level i, or if the directory path remains unchanged,
then the failure does not affect this phase.

Suppose that the split of cluster X results in a modification to the directory path at level
i, and l(X) realizes the need for the modification before the move operation reaches ϕi+1.
Two cases arise: If l(X) has already initialized the modification at level i, ϕi sends a message
to ϕi+1 to inform it of the update. In this case, ϕi+1 does not forward the move message
until the modification is complete. If cluster X is waiting for a modification of the directory
path at a level above or below i, the move operation either halts before reaching level i if
the modification occurs above i. Or, if the modification occurs below i, the move operation
traverses the old pointers up to the modified level and removes them, preventing l(X) from
initializing a directory path modification.

7 Conclusions

We presented a fault-tolerant directory scheme based on sparse partitions that tolerates
edge failures. We showed that the performance of the directory is linearly affected by the
number of failures f . We showed how to adjust the clusters due to failures to transform the
σ and I parameters, such that σ simply doubles while I is affected by either a f factor (weak
diameter clusters), or f additive term (strong diameter clusters).

There are a few open questions that remain to be studied. One is to handle partitions of
G due to failures. The connected component that contains the token can still function and
respond to operation requests. A related problem is examining the impact of node failures.
If G has bounded-degree d a node failure corresponds to at most d edge failures, then the
techniques we developed could be adapted to analyze node failures.

Another line of research related to preserving distances is building fault-tolerant sparse
spanners. A sparse spanner of G is a subgraph H such that the pairwise distances on G are
stretched by a small factor on H. There exist fault-tolerant sparse spanners that maintain
the stretch of the distances even after edge or node failures [2, 17]. Inspired by this, a future
research direction is to design failure-oblivious sparse partitions with appropriate multiple
pre-selected leaders in each cluster. Such leaders would be able to handle the failures without
the need for cluster restructuring.
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A Omitted Proofs

▶ Observation 6. If edge e = {u, v} is part of the shortest path tree of a node w, then edge
e is also part of the shortest path tree of u and v.

Proof. If this was not the case, then the shortest paths from w to u and v stored in T (w)
cannot be consistent with the shortest paths from v and u to w stored in T (v) and T (u). ◀

▶ Lemma 7. To initialize the update of the shortest path tree, O(n) messages of size O(log n)
are required, that travel a maximum message distance of D, where D is the diameter of G

before the failure of e.

Proof. Broadcasting the id of the failed edge allows any node to detect if it needs to update
its shortest path tree. The remainders of T (u) and T (v) contain at most n nodes and the
maximum distance from any node to the root is at most D. ◀

▶ Lemma 8. Let X be a cluster at level i, −1 ≤ i < h, and suppose at most f edges fail.
Then X splits into at most f + 1 clusters. Each new cluster Xj, generated from X, has
diameter at most diam(Xj) ≤ 2σρj.

Proof. The connected components of T (X) \ F , where F is the set of failed edges, form the
final clusters. Since T (X) ∩ F ⊆ F , we remove at most f edges from T (X), which means
T (X) \ F has at most f + 1 connected components.

Let Xj be a cluster generated through the splitting of the initial cluster X. By construction,
the maximal distance of any node on T (X) to l(X) is at most σρj (with respect to T (X)).
Let uj be the node in Xj that was closest to l(X) on T (X) and a and b be any two nodes in
Xj . Then d(a, b) ≤ d(a, uj) + d(uj , b) ≤ 2σρj , because uj must have been on the path from
a, respectively b to l(X) on T (X). ◀
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▶ Lemma 9. Splitting a level i cluster requires one message in a strong and up to two messages
in a weak sparse partition. These have size log n and traverse a distance of at most σρi.

Proof. In any partition, node u sends a message to l(X) to inform it about the failure. As
l(X) knows T (X) it suffices to send u’s id. If in a weak sparse partition node v is not in X2,
it selects a node w closest to it in X2 to become l(X2). To inform w of its new leadership role,
v sends a message with e’s id along T (X) to w, so w can update its knowledge on T (X). ◀

▶ Lemma 10. To inform all nodes in X1 and X2 of the cluster change we need to send O(n)
messages, each of which has size O(log n). In a strong partition, the maximum distance a
message traverses is σρi and in a weak sparse partition, the maximum distance is 2σρi.

Proof. Node l(X1) broadcasts the id of u and l(X2) broadcasts its own id and the id of v.
This suffices to inform each node of its leader and to update T (X). As |X1 ∪ X2| = O(n),
we send at most O(n) messages. Our mechanisms ensure that in a strong sparse partition, a
node’s distance to its leader is at most the distance it had to l(X) before the failure, which is
σρi. In a weak sparse partition, the new diameter is at most 2σρi, according to Lemma 8. ◀

▶ Lemma 11. To inform the ρi-neighborhood of the nodes in X2 about the new leader requires
O(n2) messages of size O(log n). The maximum distance traversed by any message is ρi.

Proof. In our algorithm, each node in X2 sends the id of the new leader to every node in
its ρi-neighborhood using its shortest path tree. In the worst case, |X2| = O(n), and the
ρi-neighborhood of every node in X2 has size O(n). ◀

▶ Lemma 12. To update the directory path we send O(1) messages of size O(log n) which
travel a distance at most O(D′) where D′ = diam(G \ {e}).

Proof. One message is sent from l(X1) to v and forwarded to l(X2) to inform l(X2) whether
it is part of the directory path. The distance from l(X) to v is at most D′ and the distance
between v and l(X2) can be bounded by the diameter of X2, that is d(l(X2), v) ≤ 2σρi.

When l(X2) is part of the directory path, then l(X) contacts ϕi+1 and ϕi−1 about the
upcoming update. When l(X2) receives l(X1)’s message, it also sends a message to ϕi+1 and
ϕi−1. When they receive this message, they again a message to l(X). None of these messages
need to travel further than D′, because all messages are sent along shortest path trees. ◀

▶ Lemma 13. To update the special parent information we send two messages of constant
size that traverse a distance of at most σρi in a strong sparse partition and at most 2σρi′ in
a weak sparse partition, where i′ = i + logρ(c′σ).

Proof. Nodes l(X1) and l(X2) both send a message to their respective special parent. Both
l(X) and li′(l(X)) are in Ci′(l(X)) and both l(X2) and li′(l(X2)) are in Ci′(l(X2)), thus
these messages can be sent along the spanning trees of Ci′(l(X)) and Ci′(l(X2)). In a strong
sparse partition, the initial spanning tress of the clusters guarantee that the distance from
any node to the leader along the spanning tree is at most σρi′ . This property is maintained
even if clusters split. In a weak sparse partition, Lemma 8 tells us that the diameter of the
spanning tree of any cluster is at most 2σρi. ◀

▶ Lemma 14. Suppose that since the last edge failure, the directory path has been rebuilt up
to level i. Then the length of the directory path up to level i is at most O(σρi).
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Proof. Suppose the last time ϕ was modified at level i was by node u and the last time ϕ

was modified at level i + 1 was by node w. Then the modification at level i must have been
due to a move operation issued by u which found the directory path level i + 1. We thus
know that d(ϕi, ϕi+1) ≤ d(ϕi, u) + d(u, w) + d(w, ϕi+1). Because u found ϕ at level i + 1, we
have d(u, w) ≤ ρi+1. After the repair of the data structure, the diameter of a cluster X at
level i is at most diam(X) ≤ 2σρi. Thus, we obtain

length(ϕ1, . . . , ϕi) =
i−1∑

j=−1
d(ϕj , ϕj+1) ≤

i−1∑
j=−1

2σ(ρi + ρi+1) + ρi+1 = O(σρi). ◀

▶ Lemma 15. A failure of edge e = {u, v} splits at most h clusters in a strong, and Ih

clusters in a weak sparse partition.

Proof. A cluster X splits if T (X) contains e. In a strong sparse partition T (X) contains
only nodes from X. As a node belongs to only one cluster, this implies that in a strong
sparse partition at most cluster per level splits. In weak sparse partition, T (X) may contain
nodes not in X, but a node’s ρi-neighborhood intersects at most I clusters of Pi. Since a
cluster whose spanning tree contains e also contains u and v, at most I clusters on a level
need to be reclustering due to e failing. ◀

B Adding Fault Tolerance to the Directory (Cont.)

B.1 Edge Failure during Publish Operation

Suppose w issues a publish operation and an edge failure occurs before the publish operation
reaches level h. The publish operation is only affected if at some level i the leader of w

changes. If w is informed of the change before adding l(X) to the directory path, then w

will add its new level i leader to the directory path. If the directory path has already been
built to level i, then our failure mechanisms will update the directory path.

B.2 Edge Failure during Lookup Operation

While Searching for the Directory Path

The search for the directory path of the lookup operation is similar to that of the move
operation, but the lookup operation also uses the information provided by special parents
and it does not modify the directory path. We thus only discuss the impact of an edge failure
on the special parent information: When w’s lookup finds a special parent l(X) of a node
l(X ′) on the directory path the lookup follows the link from l(X) to l(X ′). If cluster X ′

splits and the directory path updates before the lookup reaches l(X ′), then w’s lookup will
go back to X and continue its search for the directory path there.

While Following the Directory Path Downward

The downward phase of a lookup is not affected by modifications to the directory path.
Suppose that the directory path gets modified at level i due to the edge failure. If the
directory path is updated before the lookup operation reaches level i, then the lookup follows
the updated path. Otherwise, the lookup operation follows the pointers from ϕi+1 to ϕi,
from ϕi to ϕi−1 as these are still intact.
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C Pseudocode of Basic Directory Algorithm

Algorithm 1 Directory Operations Issued by Node v.

Graph G has partition hierarchy P with topmost level h = ⌈logρ D⌉, for constant ρ > 1;
Directory path ϕ = ϕ−1, ϕ0, . . . , ϕh points toward the current owner of token t;

// Publish Operation
for level i from 0 to h do

ϕi ← li(v); // ϕi is set to be the leader of v at level i

Add bidirectional links between ϕi and ϕi−1;

// Lookup Operation
i← 0; // start level of upward phase
while none of the leaders of clusters in Pi(v) know about ϕ do

i++; // upward phase to discover ϕ

If a special parent pointer toward ϕi′ (i′ < i) was discovered at level i, then adjust i← i′;
// downward phase toward token
for level k ← i down to 0 do

Follow the downward pointer of ϕk;
Return value of token t from owner node ϕ−1;

// Move Operation
ϕ−1 ← v; // start forming new ϕ toward v

i← 0; // upward phase discovers previous ϕ

while none of the leaders of clusters in Pi(v) are ϕi do
ϕi ← li(v); // form new path ϕ

Add bidirectional links between ϕi and ϕi−1;
Inform special parent li′ at level i′ = i + logρ(c′σ) about ϕi;
i + +;

old← level i− 1 node pointed downwards by ϕi;
Add bidirectional links between ϕi and li−1(v); // adjust topmost node
Delete upward link of old and information at special parent of old;
// downward phase deletes old ϕ

while level of old is not −1 do
w ← node pointed by downward link of old;
Delete links between w and old and information at special parent of w;
old← w;

Transfer token t from old to v; // v is new owner


