ETH zürich

An automated surrogate modelling approach for the uncertainty quantification of dynamical systems

Conference Poster

Author(s): Schär, Styfen (D; Marelli, Stefano (D; Sudret, Bruno (D)

Publication date: 2024-04-05

Permanent link: https://doi.org/10.3929/ethz-b-000678094

Rights / license: In Copyright - Non-Commercial Use Permitted

Funding acknowledgement:

101006689 - HIghly advanced Probabilistic design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND (EC)

ETHZürich

An automated surrogate modelling approach for the uncertainty quantification of dynamical systems

S. Schär, S. Marelli and B. Sudret ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, styfen.schaer@ibk.baug.ethz.ch

Problem Statement

The challenge: Build a surrogate \mathcal{M} that emulates the response of a complex time-dependent system \mathcal{M} over extended time periods:

 $y(t) = \mathcal{M}(\boldsymbol{x}(\mathcal{T} \leq t)) \approx \mathcal{M}(\boldsymbol{x}(\mathcal{T} \leq t))$

• Discretized time axis $\mathcal{T} = \{0, \delta t, 2\delta t, \dots, (N-1)\delta t\}$

4 Case study

Complex onshore wind turbine simulator with control systems

• High-dimensional turbulent wind input: $\boldsymbol{v}: \mathcal{T} \to \mathbb{R}^{3 \times \nu_y \times \nu_z}$

• Quantity of interest: Flapwise blade root bending moment $M^{\text{Bld}}: \mathcal{T} \to \mathbb{R}$

Computational model

- System response $y : \mathcal{T} \to \mathbb{R}$
- Possibly high-dimensional exogenous excitation $m{x}:\mathcal{T}
 ightarrow\mathbb{R}^M$

Our approach: Automated incremental construction of an exogenous input manifold suitable for the construction of autoregressive surrogates

2 Autoregressive Modelling

Nonlinear AutoRegressive with eXogenous input (NARX) models take advantage of the temporal coherence of the output and exogenous inputs:

$$\boldsymbol{y}(t) = \tilde{\mathcal{M}}(\boldsymbol{\varphi}(t), \mathbf{c})$$

$$\boldsymbol{\varphi}(t) = \{ y(t - \ell_1^y), \dots, y(t - \ell_{n_y}^y), \\ x_1(t - \ell_1^{x_1}), \dots, x_1(t - \ell_{n_{x_1}}^{x_1}), \dots, \\ x_{M_x}(t - \ell_1^{x_{M_x}}), \dots, x_{M_x}(t - \ell_{n_{x_M_x}}^{x_{M_x}}) \}$$
 • Model parameters \boldsymbol{c}
• $\ell_i^y \in \{\delta t, \dots, (N - 1)\delta t\}$
• $\ell_i^{x_j} \in \{0, \delta t, \dots, (N - 1)\delta t\}$

3 Manifold NARX

Exogenous input manifold

$\tilde{\mathcal{M}}: \boldsymbol{\zeta}(\mathcal{T} \leq t) \to y(t)$

Turbine NREL 5-MW Onshore Туре Controller ROSCO OpenFAST Simulator

• Spatial compression of v into spectral coefficients ξ

5 Results

Sequence of selected features

• Black: Depend only on exogenous input • Red: Constructed using ARX model

- Manifold ζ enables simpler mapping to y
- Incorporates prior knowledge about the system \mathcal{M}

• Consists of auxiliary quantities z_i

Auxiliary quantities

$$\begin{aligned} \boldsymbol{z}_1(t) &= \mathcal{F}_1(\boldsymbol{x}(\mathcal{T} \leq t), \boldsymbol{z}_1(\mathcal{T} < t)) \\ \boldsymbol{z}_2(t) &= \mathcal{F}_2(\boldsymbol{x}(\mathcal{T} \leq t), \boldsymbol{z}_1(\mathcal{T} \leq t), \boldsymbol{z}_2(\mathcal{T} < t)) \\ & \\ \boldsymbol{z}_i(t) &= \mathcal{F}_i(\boldsymbol{x}(\mathcal{T} \leq t), \boldsymbol{z}_1(\mathcal{T} \leq t), \dots, \boldsymbol{z}_{i-1}(\mathcal{T} \leq t), \boldsymbol{z}_i(\mathcal{T} < t)) \end{aligned}$$

- Transform \mathcal{F}_i can be an ARX model
- Auxiliary quantities can depend on each other
- Examples are control system outputs, moving averages, integrals or derivates

Automatic recursive selection of auxiliary quantities

```
Function SelectFeatures(\tilde{x}, z, y)
        oldsymbol{\zeta} \leftarrow \{\}, \, 	ilde{oldsymbol{y}} \leftarrow oldsymbol{y}
                                                                                                                                                \rho \leftarrow \{\}
        while \tilde{x} \neq \{\} or z \neq \{\} do

ho \leftarrow \texttt{Correlate} \left( \{ 	ilde{m{x}}, m{z} \}, \, 	ilde{m{y}} 
ight)
                 if \max(|\rho|) < \theta then
                                                                                                                                                 return \rho
                         break
                  \boldsymbol{\zeta}_i \leftarrow \arg \max(|\rho|)
                 if \boldsymbol{\zeta}_i \in \widetilde{\boldsymbol{x}} then
                         \boldsymbol{\zeta} \leftarrow \{\boldsymbol{\zeta}, \boldsymbol{\zeta}_i\}
                        \widetilde{m{x}} \leftarrow \widetilde{m{x}} ackslash m{\zeta}_i
                 else if \boldsymbol{\zeta}_i \in \boldsymbol{z} then
                         oldsymbol{\zeta}' \leftarrow 	ext{SelectFeatures} \left( \{ 	ilde{oldsymbol{x}}, oldsymbol{\zeta} \}, oldsymbol{z} ackslash oldsymbol{\zeta}_i, oldsymbol{\zeta}_i 
ight)
                         	ilde{m{x}} \leftarrow \{ 	ilde{m{x}}, m{z} \cap m{\zeta}' \}
                         oldsymbol{z} \leftarrow oldsymbol{z} \setminus oldsymbol{z} \cap oldsymbol{\zeta}'
                        \boldsymbol{\zeta} \leftarrow \{\boldsymbol{\zeta}, \boldsymbol{\zeta}_i\}
                     \mid oldsymbol{z} \leftarrow oldsymbol{z} ackslash oldsymbol{\zeta}_i
                	ilde{oldsymbol{y}} \leftarrow oldsymbol{y} - 	ilde{\mathcal{M}}(oldsymbol{\zeta})
        return \zeta
```

```
Function Correlate(x, y)
     for oldsymbol{x}_i \leftarrow oldsymbol{x}_1, \dots, oldsymbol{x}_M do
          \rho \leftarrow \{\rho, \texttt{KendallTau}(\boldsymbol{x}_i, \boldsymbol{y})\}
```


- (Left) Example traces: Simulated blade moment and the emulated ones using the manual and automatic mNARX surrogates
- (Right) CDF from 300 10-minute simulations and the corresponding emulated data using the manual and automatic mNARX surrogates

Discussion and Outlook 6

Discussion

• Multistep approach allows accurate emulation of complex dynamical systems • Relevant features can be automatically selected using a measure of association • Automatic selection reduces manual effort to construct an mNARX surrogate

• \tilde{x} : available features

• z: yet unavailable features • \hat{y} : residuals

• ρ : measure of association • θ : critical correlation value • \mathcal{M} : proxy surrogate

Outlook

• Investigate the effect of the stopping criteria and measures of association • Investigate the importance of the proxy surrogate to the final solution

References

[1] Schär, S., Marelli, S., Sudret, B. (2024). Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX). Mechanical Systems and Signal Processing, 208, 110956. https://doi.org/10.1016/j.ymssp.2023.110956

[2] Dimitrov, N., Marelli, S., and S. Schär (2022). Novel surrogate modelling approaches for wind turbine reliability assessment. H2020 Project HIPERWIND. Deliverable D4.1.

DBAUG

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006689