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Abstract

In this thesis, we introduce Snowpandas, an implementation of the
Pandas API, that integrates the Snowflake virtual warehouse with the
popular DataFrame syntax, enabling users to take seamless advantage
of Snowflake’s scalability, performance, and durability. Workflows un-
suited to the declarative nature of SQL are thereby brought to the re-
lational database of Snowflake, using its highly efficient operators and
data schema. One such workflow ML data preprocessing, has become
crucial to ML performance, though ever-increasing data volumes de-
mand increasingly complex preprocessing pipelines that make use of
specialized systems. Snowpandas aims to take over where existing im-
plementations of the Pandas APIs can not compete with these special-
ized systems, when dealing with today’s data volumes, in applications
such as offline data preprocessing. Snowpandas’ implementation inter-
faces with Snowflake’s Snowpark API, making use of its inherent lazy
execution paradigm. Designed to the core to preserve this lazy execu-
tion scheme, Snowpandas builds SQL queries iteratively through the
Snowpark API, enabling Snowflake’s service layer to optimize the re-
sulting query holistically. We have implemented the core functionality
necessary to perform workloads that are both analytical and transfor-
mative. Snowpandas has been tested against existing implementations
of the Pandas API, on the star-schema-benchmark (SSB), as well as ML
preprocessing pipelines sourced from Kaggle. The results have been
promising, Snowpandas outperformed both Pandas and Modin, for all
workloads on larger data volumes, though Snowpandas did not achieve
competitive performance with Spark for ML preprocessing pipelines at
scale. Spark performed preprocessing workloads 1.9 times faster than
Snowpandas for high scaling factors, which Pandas and Modin failed
to perform. For low scaling factors, Snowpandas finished the prepro-
cessing pipelines on average faster than Pandas, Modin, and Spark by
a factor of 1.2, 2.8, and 3.4 respectively. However, Snowpandas scaled
considerably better than Pandas and Modin, outperforming them on
average by a factor of 17.8 for Modin and 11.8 for Pandas, on the largest
scaling factor completed by all systems. Snowpandas excelled at the
SSB, on average outperforming Pandas by a factor of 113, Modin by a
factor of 214, and Spark by a factor of 7.3.
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Chapter 1

Introduction

In recent years, the ever rising popularity of machine learning (ML) has
had a drastic impact on all applications related to data management and
analysis. ML has introduced a need for an ever increasing amount of data
that brings a variety of challenges to existing systems. For a long time, Pan-
das has been the go-to data analytics library in the Python stack. However,
Pandas struggles to fulfill its role on today’s data volumes. In the context
of ML, Pandas is widely used for offline data preprocessing. Data prepro-
cessing includes a variety of data transformations aimed at enhancing the
performance of the ML model the data is used for. Such operations include
data cleaning, feature selection, and feature engineering. This leads to per-
formance problems in ML pipelines where Pandas can not scale up to the
increasing data volumes. This can directly be attributed to Pandas’ design,
which does not support parallelism and data spilling. Thus, several com-
petitors to Pandas have been developed. These systems implement the user
familiar Pandas API, but are designed from the ground up with scaling in
mind. One such system is Modin. Modin provides a Pandas API while
using existing execution engines such as RAY [33] or DASK [39]. As such,
Modin brings parallel execution to the Pandas API and offers features such
as spilling to disk that are critical in order to scale to today’s data volumes.
Spark, the Python library of the Spark framework, also provides a Pandas
API, offering a well-proven system as an alternative to Pandas. Spark has be-
come a cornerstone of today’s data warehouse paradigm because it provides
scaling beyond a single machine, a feature Modin does not provide. While
the Pandas API allows to read data from relational databases in the form of
table reader functions, delegating execution of Pandas API transformations
to the relational database in the form of automatically built queries is not a
commonly supported feature. In this work, we aim to to just that.

We present Snowpandas, a Pandas API that uses Modin’s front end and
query translation layer, to bring execution directly to the relational database
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1. Introduction

itself. As such, Snowpandas integrates the Snowpark API as a Modin back-
end and thus provides cloud native execution to the Pandas API. Snowflake
[23] is a contemporary software-as-a-service (SaaS) provider that aims to
bring the advantages of cloud computing to customers with minimal techni-
cal overhead. The Snowflake virtual warehouse (VW) is optimized for seam-
less scaling and abstracts servers and machines away from the perspective of
the user. Contrary to traditional database systems, Snowflake separates the
execution and storage layer. Storage is provided by S3 or similar services,
while the execution unit of the VW is ephemeral. These VW’s are managed
by Snowflake without the need for configuration or tuning from the side of
the user. This makes Snowflake uniquely suited to the challenges posed by
Snowpandas, since data can be assessed holistically true to the data ware-
house paradigm. Furthermore, the Snowpark API that resembles DataFrame
like syntax for Snowflake table is at its core a wrapper for Snowflake’s native
SQL execution engine, building up SQL queries through sequential transfor-
mations on the base Snowpark DataFrame. Thus, the resulting SQL query
will be optimized by Snowflake’s state of the art query optimizer.

Our implementation of Snowpandas reuses Modin’s experimental back-end
introduced for the HDK [19] execution engine. HDK is a relational exe-
cution engine developed by Intel. Thus, Modin’s query translation layer
specific to HDK is well suited to modifications that make use of Snowpark
as the back-end. As envisioned by Modin’s developers, our implementation
replaces classes providing data manipulation and data storage with ones
that work with Snowpark. At its core is the SnowflakeDataframe class. It
implements the interface used by the Modin DFalgQueryCompiler, used to
manipulate data. Some functionality provided by the SnowflakeDataframe

include take_2d_labels_or_positional that perform selections of filtering
on the underlying Snowpark frame or bin_op that implements binary op-
erations between DataFrames. Since both HDK and Snowpark are based
on relational operations, this interface is well matched with the relational
mechanism of Snowpark. Most critically, our implementation ensures that
transformations are sequentially applied and do not materialize any interme-
diate results. This ensures that the generated queries executed on Snowflake
can be optimized holistically by Snowflake’s cloud service layer.

Several experiments were conducted to test Snowpandas on a variety of
different workloads. These experiments compared the Snowpandas’ imple-
mentation against Pandas’, Modin’s, Spark’s and handwritten SQL queries
executed through Snowsql. The data was stored on cloud resources and the
execution for Pandas, Modin and Spark took place on EC2 instances. We
conducted three major experiments:

Star-schema-benchmark (SSB) is a benchmark for relational database sys-
tems that focuses on performance for large analytic queries. This starts with
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the database schema, since the star-schema is optimized for analytic queries
by reducing the need for complex joins. The obtained results showed that
our implementation of Snowpark preserves performance compared to hand-
written SQL queries, indicating that the automatic query generation through
Snowpandas does not introduce inefficiencies. This is a very promising re-
sult, since it implies our implementation can not be improved upon under
the assumption that handwritten queries achieve optimal performance on
Snowflake. However the margin between Spark and Snowpandas decreases
with increasing scaling factor, this indicates that Spark scales better and
that we simply have not reached the data volumne at which Spark outper-
fors Snowpandas. While Snowparks generally good performance can be
attributed to SSB’s design, which is suited to relational databases, it is nev-
ertheless an important fact to establish.

Microbenchmarks were desined in order to isolate specific operations en-
countered in the SSB benchmarks and therefore serve to better understand
the SSB results. The results of the microbenchmarks were again positive. Ex-
cept for one operation, Snowpandas outperformed all other systems for the
highest scaling factor. Only the join was performed faster by Spark. How-
ever we face the same problem as with the SSB queries, that beeing that we
might have simply not reached the data volumne where Spark becomes the
best performing system.

Kaggle notebooks served as the source of real world data preprocessing
pipelines and here the picture is more clear, while Snowpandas significantly
outperformed Pandas and Modin, it only performed better than Spark on
the simplest pipeline. We say Snowpandas outperformed Pandas and Modin
by a significant margin, though Snowpandas only outperforms Pandas by
a factor of 1.2 and Modin by 2.8 on average. This however gives a limited
picture, the initial data size is minuscule at under 1MB, when stored as a
CSV file. At these scales execution overhead skews the results, since at the
moderate scaling factor of 1000, Snopandas already outperforms Pandas by
a factor of 11.8 and 17.8 for Modin. Higher scaling factors could only be
performed for Spark and Snowpandas, Spark outperforming Snowpandas
by a factor of 1.93. Further during these experiments we encountered a
specific pattern of operations that severely deteriorates Snowpandas perfor-
mance. Whether this is due to inefficiencies in our implementation or it is a
fundamental problem with Snowpark is beyond our understanding at this
point.
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Chapter 2

Technical Background

Over the years steadily increasing data volumes have had a drastic impact on
the technical frameworks used in data analytics. These challenges are not
unique to the machine learning (ML) models themselves, but concern the
complete ML pipeline. As such, frameworks have to be developed that can
handle the ever-increasing volume of data. Data preprocessing is one such
vital step in ML pipelines that has a direct and measurable impact on the
performance of the system [15]. Therefore, it proves critical that systems are
developed that are both scalable and easily deployable. State-of-the-art pre-
processing pipelines employ a complex structure, that focuses on the effec-
tive use of GPU/TPU resources [42, 25]. Alternative systems such as Cachew
are however being proposed [25], not only reducing complexity but increas-
ing performance. While existing research has already discussed the ability
of traditional relational database systems to handle nested data, by trans-
lating JSONiq queries to SQL queries that are executed on the Snowflake
database [27] and evaluated the use of relational databases in high-energy
physics applications [26]. There is little existing work that studies the trans-
lation and execution of DataFrame API systems such as Pandas on relational
databases like Snowflake.

2.1 Data Preprocessing

While data processing includes a wide spectrum of operations, in the context
of ML preprocessing, an emphasis is laid on operations that enable the ML
models to accurately make predictions, while maintaining a high degree of
generalization. These measures can take many forms, the most basic parts
of preprocessing are made up of steps that transform the raw data into a
form that can be fed to the model. More advanced methods aim to increase
the predictive strength and generalization of the model. [29].
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2. Technical Background

Imputation describes the operation of filling in missing data in the original
data set. This is because inconsistencies in the data such as missing val-
ues or illegal entries have to be either imputed or eliminated to produce a
consistent dataset.

Noise is present in any data source. These imperfections mean that the
data does not perfectly represent the statistical distribution that is assumed
to be the source of the data. This noise in the data can be treated in various
ways, the simplest being the removal of statistical outliers.

Feature selection is a performance-critical step, especially when dealing
with large amounts of data. While large amounts of data are collected, it
does not mean all of this data has to be included in the input for a model.
The data is likely to contain redundant information or data points of little
statistical influence. In the best case, this leads to unnecessarily high com-
putational load. In the worst case, it can impact the predictive strength of
the ML model. Feature selection aims to select only the relevant data points
and thereby aims to reduce these negative effects.

Instance manipulations describe the process of selection a subset of the
initial data entries. Even though a large sample size is generally preferred,
imbalances in the distribution between different instance classes can nega-
tively influence the generalization of the model. Therefore, it is common
practice to balance the dataset by eliminating, generating or selecting a bal-
anced set of instances from the original data.

Feature engineering aims to create new features by combining and trans-
forming the initial data. In doing so, features can be created that take into
account relations between data points that would otherwise have to be cap-
tured by the model. An example of feature engineering would be to include
a column that aggregates multiple data points.

2.2 DataFrame

DataFrames have become a popular data structure in data analysis and data
processing. While they are often viewed as a form of matrix or series, this
simplistic view does not take into account the unique place DataFrames
take in modern systems. While no singular definition or a clear origin of
the term DataFrame exists, many characteristics objects called DataFrame
share. These similarities transcend programming languages and systems.
Some common characteristics that are shared between different DataFrame
implementations are:
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2.3. Pandas

Data layout is a key feature of DataFrames, it generally consists of columns
and rows. In this aspect, they can be linked to matrices, however the under-
lying storage structure rarely resembles a matrix.

Typing is an often overlooked feature in languages such as Python or Scala,
where Pandas originated. However, most DataFrame frameworks are enforc-
ing strict typing of values stored in the same column, even in languages that
are not strictly typed. As such, they provide an additional safety mech-
anism, making sure columns have a homogeneous data type. However,
while columns are homogeneous in type, different columns can be of dif-
ferent types, providing an easy way to assemble complex differently typed
data in a single data structure.

Meta data can be critical when manipulating and visualizing data. In most
cases, DataFrames not only include the primary data, but additional data
that would often be discarded e.g. when creating a standard matrix. Most
commonly, such information would be column names and indices.

Abstraction is not the first feature people associate with DataFrames. How-
ever, in essence, DataFrames are an abstraction used to manipulate data. The
information that is abstracted away in this case in plentiful. But most impor-
tantly, DataFrames do not expose the underlying storage data structure to
the user. As such, the DataFrame acts as a form of encapsulation, ensuring
data integrity at storage level. Furthermore, systems like Modin [36] dis-
tribute the stored data across multiple partitions. Spark goes even further
and stores its form of a DataFrame across a cluster of several machines [41].

Functionality that is provided by DataFrames, is perhaps the most impor-
tant factor in their wide adoption. Most frameworks implement a wide array
of functions and transformations that can be performed on DataFrames. As
such, the DataFrame implementation not only provides the ability to store
data, but more importantly, to manipulate it. Furthermore, due to the func-
tions being defined by the DataFrame implementation itself, optimal use can
be made of the underlying architecture. Systems like Modin leverage this to
operate parallel on multiple DataFrame partitions with the aim to increase
performance [36].

2.3 Pandas

Pandas [32] is a DataFrame based data manipulation framework in form
of a Python library. It brings many inherent benefits of Python, such as
ease of use, rapid development and ease of portability. Pandas is the most
popular python data analytics tool and is a widely deployed cornerstone of
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2. Technical Background

the Python stack. As a DataFrame based system, it is well-suited to ML tasks,
and Pandas DataFrames are seamlessly integrated in most major Python ML
frameworks. Over the years, Python, in combination with Pandas and ML
libraries, has become somewhat of the default entry into ML applications,
evident by the popularity on ML competition websites such as Kaggle.

However, due to its architecture, pandas is not suited to operate on the large
data volumnes that are defining today’s ML tasks. There are two main tech-
nical reasons for this. (1) Pandas does not provide the functionality of object
spilling. As such, all data has to be held in memory during the entirety
of the processing phase. This leads to a drastic limitation in terms of the
size of data that can be handled using the system. While these limitations
can be somewhat worked around by batching in some cases, it introduces
programming overhead for the developer. (2) Pandas is a purely sequential
framework and therefore does not take advantage of the increasing CPU
count in modern hardware. This ultimately leads to performance that is in-
sufficient to handle the large amounts of data common in contemporary ML
jobs.

2.4 Modin

The shortcomings of Pandas regarding scalability have long been known.
As a consequence, multiple projects have taken up the task of implementing
frameworks that mirror the Pandas API but do so while tackling the chal-
lenges of scalability. One such framework is Modin [36]. Modin aims to
provide the complete pandas API, and does so while making use of paral-
lelism. In order to achieve this, Modin leverages existing execution engines
to facilitate data distribution and schedules parallel executing jobs. As such,
Modin operates as a layer between the Pandas API and the underlying exe-
cution engines such as RAY [33] or DASK [39].

Modin’s implementation makes use of special classes in order to specialize
for specific query execution engines. At its core stands the QueryCompiler

class and its extending classes. This class translates the pandas API calls
invoked on the DataFrame class into executions that can be performed by
Modin. As such, Modin breaks down the broad Pandas-API into a smaller
set of basic functions that are handled by Modin’s own DataFrame class. In
some cases, the QueryCompiler class is extended to an engine specific Qu ⌋
eryCompiler in order to make use of engine specific optimization. In any
case, the QueryCompiler holds a storage format specific DataFrame. This
DataFrame is responsible for storing the data partitions and to schedule the
execution of jobs on the partitions. Figure 2.1 illustrates how the Quer ⌋
yCompiler translates the simple call mean into a tree_reduce call on the
underlying PandasOnRayDataFrame. In this case, the specific API call m ⌋
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2.5. Spark

ean is translated into a tree_reduce job with the parameter mean. This
represents the mapping by the QueryCompiler of a specific function call to
a more general set of operations that can be performed on the partitions
and where parameters define the operation that is used for the aggregation.
In the final step, the tree_reduce function on the PandasOnRayDataframe

uses its PartitionManager attribute in order to schedule and distribute the
operations, in this case, a maping accross the data partitions. Results of the
produced mapping are then aggregated and a new QueryCompiler is built
using the newly created PandasOnRayDataframe and subsequently returned.

Evidently, by the many different supported backends, Modin’s architecture
is designed from the ground up to enable execution on multiple backends.
This fact is even highlighted in Modin’s marketing material with the state-
ment ”Bring your backend” [11]. The modularity of the Modin architecture,
therefore, offers a potentially easier way of building a Pandas based API
than starting from scratch or adapting Pandas itself. Furthermore, Modin
is an active project with multiple features in development, one of which
being execution on the HDK backend. HDK is an execution engine that is
based on Relational Algebra developed by Intel. This difference is execution
paradigm is represented in the corresponding QueryCompiler class, in this
case DFAlgQueryCompiler, and could be reused for other projects aiming to
bring a relational backend to Modin.

DataFrame PandasQueryCompiler PandasOnRayDataframe

PandasDataframePartition

PandasDataframePartitionManager

mean() mean() tree_reduce()

map_partitions()

Legend

Classes

Pandas API call

function

Engine specific
Class

attribute
calls

class function
parameter

Figure 2.1: Simplified execution graph on Modin using RAY engine.

2.5 Spark

Apache Spark is a popular choice for data analytics and data processing in
the realm of big data. Although traditionally not a native Python framework,
Spark has gained popularity through the Pyspark module. Pyspark is often
chosen when the traditional Python scientific stack can not offer choices that
support the required scalability. In addition to its native DataFrame and SQL
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2. Technical Background

syntax, Pyspark offers a Pandas API.

Spark’s architecture [41] is based on the basic data structure of the resilient
distributed data(RDD), representing a set of data that might be distributed
across multiple nodes in a cluster. To achieve this, the RDD is split into
partitions which are commonly held in memory by the participating nodes.
Computation on Spark RDD is performed as a series of transformations. To
perform these transformations, Spark creates a direct acyclic graph (DAG)
representing the necessary transformations. In a DAG, nodes represent
the RDDs, and edges represent the transformations producing a new RDD.
These plans are then executed in stages, where each stage contains the parts
of the execution that can be performed sequentially on each partition. One
such transformation is map, which applies a mapping function to each row.
After a stage is executed, data has to be distributed between the different
nodes of the cluster to enable further computation, for example in the case
of aggregation. As such, a transformation like groupby will distribute key-
value pairs so that each cluster node can perform aggregation on a range
of key values. Figure 2.2 shows a visualization of a Spark execution plan
and the resulting RDDs. While Spark is designed as a cluster computation
framework, its design enables a high degree of parallelism that potentially
scales well even on just a single, powerful machine. This, along with the
aforementioned Pandas on Spark API, makes it an attractive alternative to
frameworks like Modin.

union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join 

union 

groupBy 

map 

Stage 3 

Stage 1 

Stage 2 

A: B: 

C: D: 

E: 

F: 

G: 

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Figure 2.2: Visualization of a Spark execution plan cited from [41]. A, B, C, E, F, and G represent
RDDs and their respective partitions.
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2.6 Snowflake

2.6.1 Cloud Computing

Since its rapid growth starting in the early 2000’s, cloud computing has
become one of the cornerstones of today’s IT infrastructure. While the elim-
ination of the need for hardware is often seen as the main benefit to its
end users, cloud computing has developed to be more than just hardware
for rent. As such, cloud providers have taken steps and integrated numer-
ous features into their architectures, enabling consumers to make better and
more efficient use of their IT resources.[18] These advantages are plentiful
and can differ based on the platform but some notable ones include:

Pricing is a difficult topic in relation to cloud computing. Of course, the
fact that cloud computing eliminates the need for hardware is a significant
driver of its adoption from the users’ perspective. Computer hardware is
heavy in initial capital invested and can take a potentially long time to gen-
erate profits. Furthermore, correctly assessing one’s future hardware needs
is complex and, even if dutifully executed, can fail if external factors change.
Therefore, cloud computing can not only reduce investment costs but also
decrease risk. Additionally, maintaining one’s hardware incurs indirect re-
source demands, such as spatial requirements, among others. Pursuing
cloud computing solutions frees up these resources for other opportunities.
In contrast, cloud computing operates on a pay-as-you-go structure, where
users only pay for the resources they use without any upfront investment
besides development costs. Common pricing models will charge customers
for execution time or storage space respectively. While the cost of cloud ser-
vices can sometimes be underestimated, the general consensus seems to be
that big cloud providers are competitively priced, due to market pressures
[31].

Security is paramount for today’s cloud computation customers. As global
leading tech enterprises, cloud providers are capable of providing state-of-
the-art security in their services. Consequently, cloud computing can free
up internal IT resources without degrading security standards. In addition,
most cloud providers provide tools that ensure compliance with the neces-
sary legal standards, providing further benefits.

Scalability is a challenge for which cloud computing is uniquely suited.
Cloud providers operate massive data centers. Wherever resources are plen-
tiful, a single customer can scale up his own computational and storage
needs almost indefinitely without impacting the system. As such, tasks can
be quickly scaled out if needed, without costly time penalties. In contrast, a
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cloud computing system can just as quickly be scaled down if demand dries
up. This once again proves as a major selling point, especially for emerging
businesses that value flexibility[13].

Integration of a new system is a resource-intensive task for any customer.
However, today’s cloud providers offer an entire ecosystem of different ser-
vices designed to work in conjunction with one another. As a result, the
development of intensive tasks can be omitted if one can take advantage of
the interconnected systems that are already in place.

Reliability is a major selling point of cloud computing services over tra-
ditional on-premise solutions. In the case of data storage, many providers
enable easy backup systems. Furthermore, the inherent horizontal capabil-
ities of cloud architecture enable fast recovery from node failure through
redundancy. Many tools exist that enable proactive monitoring and recov-
ery procedures can be implemented. Additionally, cloud providers maintain
multiple sites, and applications can be spread across them. In the rare case
of a site experiencing reduced availability, services can be kept alive through
other sites[13].

2.6.2 Snowflake: Cloud-Native Data Warehousing

Introduced to the public in 2015, Snowflake is a modern take on the tradi-
tional data warehouse, combining a wide array of services in a single cloud
computing system. Unlike traditional data warehouse solutions, Snowflake
has been designed from the ground up with the capabilities of cloud com-
puting in mind. It maximizes the characteristics of elasticity and ease of use,
both often associated with cloud computing. To do so, Snowflake does not
operate its own data centers, instead, it is deployed across the infrastruc-
ture of the major cloud providers. In certain cases, like storage, this can be
helpful with integration, as Snowflake can be given direct access to existing
cloud storage locations.

Snowflake is designed as a Software-as-a-Service (SaaS) product. SaaS is
a software distribution model that, above all, else prioritizes the reduction
of maintenance and monitoring on the side of the user. In the SaaS model,
services are provided over the internet and users only interact with the soft-
ware directly. This means the customer does not have to operate any servers
himself. Furthermore, there is no need for installation, configuration, and
tuning of the Software to one’s systems. The software is hosted on servers
by the SaaS provider. In the case of Snowflake, this would be one of the
three big cloud providers: Amazon Web Services (AWS), Microsoft Azure
(Azure), or Google Cloud Platform (GCP).
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Snowflake Architecture

Snowflakes employs a three-layer architecture, in that it divides its opera-
tions into a cloud, storage, and compute layer. These layers operate inde-
pendently, which leads to a separation, allowing individual resources to
be scaled up without the need to scale the other layers equally. In this,
Snowflake does away with the traditional data warehouse architecture un-
der the shared-nothing model. In the shared-nothing model, each processor
node possesses its own disk and has unique ownership over the data stored
on it. While this reduces contention between processor nodes, it also leads
to linear scaling between compute and storage resources, even when one
of the two resources is already adequately scaled for the task at hand. Not
only that, but different workloads require different resources for optimal ex-
ecution. In a shared-nothing architecture, where nodes are typically homo-
geneous in design and hardware they operate on, this leads to the dilemma
where every node must be capable of executing all kinds of tasks. As a result,
compromises in node design have to be made to accommodate this variety
of tasks. In contrast, Snowflake’s separated layer architecture enables the
dynamic creation of processing nodes without having to scale other layers
equally [23].

Storage on Snowflake follows a different approach compared to traditional
database systems. When Snowflake is operated on AWS infrastructure, it
uses Amazon S3 (Simple Storage Service) as storage mechanism. On other
providers, it uses S3 equivalent technologies. S3 follows the concept of ob-
ject storage, where objects are uniquely associated with a key and can be
retrieved using this key. The basic unit of storage is the bucket. Buckets
are unique in name and serve as a prefix for the standard directory nam-
ing scheme that defines keys. A bucket can hold an infinite number of
objects, while single objects can be up to 5 terabytes in size. Therefore, S3
provides unlimited scaling to the Snowflake warehouse. Interaction with
S3 happens through a REST API, implementing the standard operations in
the form of GET, PUT and DELETE. In this architecture, Snowflake takes seam-
less advantage of S3’s features, such as the high availability and security.
However, while S3 is simple and easily scalable, its design also comes with
several downsides that need to be mitigated. Crucially, interaction with
S3 over HTTPS in form of the REST API increases latency when accessing
storage compared to a local disk. Snowflake employs mechanisms in the Vir-
tual Warehouse layer, such as caching, to reduce these effects. Furthermore,
Snowflake makes use of a proprietary storage format to get around S3’s lim-
iting file manipulation features. Files can not be edited or appended to in S3,
the only operation providing any granularity is the GET request that enables
retrieval of parts of files. Therefore, Snowflake’s storage format partitions
the data into large, immutable, horizontally partitioned [14] files and groups
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values in such a way that they can be retrieved in small packets through the
information stored in the file’s header. S3 is also used by Virtual Warehouses
to store temporary results from large queries. In doing so, out-of-memory
and out-of-disk errors can be avoided. This enables arbitrarily large queries.

Virtual Warehouses (VW) are an abstraction used in Snowflake that encap-
sulates a cluster of EC2 instances. Individual worker nodes that make up
a VW are not exposed to the user. This abstraction is a key feature and
selling point of Snowflake. Users do not have to think in terms of a cluster
of machines but simply interact with a VW of a user-specified size. Users
therefore specify the size of their VW by choosing out of a small set of pre-
defined VW sizes, without needing to know the exact number of machines
involved.

Virtual Warehouses are purely computational units that can be created, paused,
and deleted without changing the state of the database. Individual VWs do
not share worker nodes and do not affect each other besides possible con-
tention on the underlying S3 storage. This fact enables each VW to integrate
the totality of data stored in the database, which is a critical part of the data
warehouse paradigm. As a result, users can issue queries to multiple VWs
running in parallel without concerns about different computations interfer-
ing with each other.

Snowflake calls their implementation of the Virtual Warehouse an elastic VW
and the elasticity is a major selling point of the system. One use case men-
tioned by the Snowflake team is the fact that this elasticity can drastically
improve performance while incurring the same cost. This is because cloud
providers charge users for execution time, whether it is incurred sequentially
or in parallel. A large query that takes four hours on two machines can po-
tentially be executed in two hours by four machines if the task parallelizes
well. In both cases, the total execution time charged is the same, but the
execution on four machines performs twice as fast in the user’s perspective.

In its elasticity, Snowflake makes the most of horizontal scaling to leverage
performance for its users. However, ultimately, cloud providers charge by
machine execution time. As such, the cost-effectiveness of a system like
Snowflake is directly linked to the performance of its query execution en-
gine. Snowflake uses its own proprietary SQL execution engine, aiming
to provide the best price/performance of any SaaS database provider. Just
like in storage, the SQL execution engine also uses a columnar data format
to make the best use of CPU caches and single-instruction-multible-data
(SMID) instructions [14]. Further, the SQL execution engine uses vectoriza-
tion which not only enables multi-value operations but also increases cache
performance. Lastly, the execution engine operates on a push-based materi-
alization system wherein worker nodes push down results to downstream
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nodes rather than waiting for those nodes to request results.

Figure 2.3: Schema of Snowflakes architecture cited from [5]

Cloud Services in Snowflake encompass auxiliary operations not connected
to the data. As such, the cloud service layer is in many ways the brain of the
Snowflake system. It not only provides the interface through which users
interact with Snowflake, but it also manages the underlying systems. Au-
thentication and access control are perhaps the most basic of functions that
the cloud service layer fulfills. On the other end of the spectrum, Snowflake
handles query optimization in the cloud service layer.

Snowflake’s query optimization algorithm is based on a cascading approach
[24]. In this method, a logical plan of the query is first created and then
optimized using predefined rules. A logical plan in this context relates to
a plan expressed in relational algebra and the aforementioned rules trans-
form relational operation into a series of different relational operators that
will produce an equivalent query. One commonly used rule for query opti-
mization is called ”predicate pushdown”. The rule pushes down predicates
to the earliest possible point in the query execution; if semantically possible,
as early as data ingestion. The upside of this is that table sizes are reduced
early in the execution. This in turn reduces the time required for all sub-
sequent queries that, as a result, have to operate on less data. Figure 2.4
illustrates the application of the predicate pushdown rule on a logical execu-
tion plan. Many more rules of this type exist, such as decomposition rules,
projection pushdown, or splitting rules, to name just a few. In recent years,
research has started to develop machine learning as a means of optimizing
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besides simple rules [30]. However, in the cascading approach, it has to be
noted that the optimizer does not take into account the data or its structure
during the optimization of the logical plan.

  

Figure 2.4: Application of the predicate-pushdown rule on a logical execution plan.

While the first step in cascading query optimization has only taken into
consideration the logical plan based on the relational algebra representation
of the query, the second step considers all available information, including
statistics defining the data, to search the space of equivalent queries to find
the best solution. To this end, physical plans are constructed. These physical
plans are different from the logical plan in that relational operations are
replaced by actual data operations implemented by the execution engine.
The same relational operation can potentially be implemented in different
ways, each performing best in a specific situation. To identify the best plan
among all possible solutions, a metric to rank different plans against each
other has to be deployed. A cost model is deployed that associates a cost
with each operation in a physical plan. To achieve this, statistics about the
data have to be taken into account. Snowflake maintains the necessary data
to produce the cost model for data creation and updates. Furthermore, the
data schema can influence the cost as well. Especially column types can
affect the performance of different operators [22].
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The query compilation time includes not only the optimizer but also query
parsing. While this process might take up a small fraction of the total exe-
cution time for large queries, for small queries it can become a major driver
of query execution time and has to be monitored to achieve optimal perfor-
mance.

Lastly, the cloud service layer takes care of concurrency control. As a data
warehouse, Snowflake optimizes for read-intensive tasks rather than trans-
actional operations. Therefore, Snowflake employs snapshot isolation as its
concurrency paradigm [21].

Snowflake API

As discussed in the previous section, Snowflake is at its heart a relational
database that is optimized for large-scale data analytics tasks. Addition-
ally, it was shown that query execution in Snowflake is done by an engine
based on relational algebra. It should come as no surprise that the main way
of writing queries for Snowflake is by using SQL. Snowflake’s SQL dialect
is based on ANSI SQL standard and includes several Snowflake-specific
additions, such as functionality to manage VW states. To illustrate SQL
syntax used by Snowflake, we can examine a query from the star-schema-
benchmark [34] in Snowflake compatible SQL syntax in listing 2.1.

SELECT sum(lo_revenue), d_year, p_brand1

FROM lineorder, date, part, supplier

WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

AND p_brand1 BETWEEN 'MFGR#2221' AND 'MFGR#2228'
AND s_region = 'ASIA'
GROUP BY d_year, p_brand1

ORDER BY d_year, p_brand1;

Listing 2.1: SQL code of the SSB query 2.2

Additionally to SQL support, Snowflake also provides a DataFrame API
called Snowpark. Snowpark is available for Java, Python, and Scala, and
aims to mimic today’s data analytics workflows based on the DataFrame
abstraction. In essence, the Snowpark API is a SQL wrapper that builds
queries iteratively as functions are applied on the DataFrame. Once a func-
tion is called that necessitates data materialization on the side of the user,
the query representing the DataFrame’s state is then executed and the result
is returned. This means, that operations on DataFrames are lazily executed.
This is a big advantage because at the point the execution is triggered, the
query optimizer can holistically optimize the query. For example, the afore-
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mentioned SQL query can be rewritten in Snowpark syntax in the following
as shown in the listing 2.2.
# Creating Snowpark DataFrames

lineorder = session.table("lineorder")

date = session.table("date")

part = session.table("part")

supplier = session.table("supplier")

# Applying DataFrame style transformation

result = lineorder.join(date, lineorder["lo_orderdate"] \

== date["d_datekey"]

result = result.join(part, lineorder["lo_partkey"] \

== part["p_partkey"])

result = result.(supplier, lineorder["lo_suppkey"] \

== supplier["s_suppkey"])

result = result.filter((part["p_brand1"] \

.between('MFGR#2221', 'MFGR#2228')) & \

(supplier["s_region"] == lit('ASIA')))
result = result.group_by(date["d_year"], part["p_brand1"])

result = result.agg(sum_("lo_revenue").alias("total_revenue"))

result = result.order_by(col("d_year"), col("p_brand1"))

Listing 2.2: SSB query 2.2 implemented in Pandas API syntax.
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Chapter 3

Pandas Workflows

3.1 Overview

Pandas is capable of executing a variety of different workloads, from sim-
ple exploratory data analysis (EDA) workflows to complex preprocessing
pipelines. The techniques of data preprocessing and its impact on machine
learning models have been outlined in earlier sections 2.1. In this section,
we want to hone in on the specific techniques that are used by Python de-
velopers using Pandas and how they are present in practice. To this end,
we have curated a collection of Jupyter notebooks. This collection was then
analyzed with the goal of better understanding how Pandas are used in ML
tasks. Additionally, we outlined a traditional relational database workload
presented by the star-schema-benchmark (SSB) that focuses on complex an-
alytical queries to test relational database systems in terms of performance.

3.1.1 Star-Schema-Benchmark

SSB is a commonly used benchmark in the performance analysis of relational
database systems [34]. It consists of a total of 13 queries that are executed
on data that is stored in a star-schema on the relational database. While
these types of queries are not commonly implemented through Pandas, it
makes sense to examine how Pandas can be used for these non-traditional
workloads. SSB is a modification of the ADL benchmark that has not only
been used to compare different relational database systems but lends itself
as a benchmark for different languages and implementations [37].

3.1.2 ML Preprocessing

Pandas is a commonly used data preprocessing tool of the Python stack.
Together with a variety of ML frameworks, it offers a great amount of func-
tionality while being easy to use. As such, it has become the default tool
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employed in the ML teaching and competition environment. However, Pan-
das does not translate well to real-world applications, where, in the context
of ML preprocessing, scale is the major factor of concern. Large-scale ML
preprocessing is currently mostly performed on specialized systems using
clusters of machines, in order to achieve the high throughput necessary in
today’s applications [16]. Pandas do not integrate well into such systems,
not only because of their lackluster performance but because the execution
model introduces a high amount of data movement. Especially in the case
of online preprocessing, one can take advantage of relational databases com-
bined storage and computation capability to bring the operations directly
to the data stored in a cloud-native system. Combining the popular Pandas
API with a SaaS database system such as Snowflake could bring Snowflake’s
benefits of durability, scalability, and performance as a relational database
to new workloads such as ML preprocessing.

3.2 Data Preprocessing on Pandas

Data preprocessing takes many forms. Here, we outline some of the Pandas
syntax and semantics that can be used to achieve this.

Data ingestion in Pandas is performed through various reader functions.
Pandas DataFrames can be built directly from virtually all popular data
storage formats. Additionally, Pandas DataFrames can also be built from
Python primitives and many other modules that implement conversion from
their own data structures to Pandas DataFrames. Some examples include
Dask, Modin, or Koalas [3, 36, 6]. Furthermore, modules exist that enable
Pandas to read directly from object stores. One such module is s3fs. It
enables Pandas to read directly from AWS S3 using the unique object ID:

#Reading directly from S3 into pandas dataframe

df = pandas.read_csv("s3//example-bucket/prefix/data.csv")

This is especially useful in today’s environment where data size is constantly
increasing and local storage is at a premium. In reverse, writing to S3 is of
course also possible, eliminating the need for local storage.

Data transformations as discussed in 2.1, include a variety of tasks. Here,
we will outline how Pandas is used in conjunction with common tools in the
Python ML stack.

After the data has been ingested into pandas, the preprocessing phase be-
gins. Data can be cleaned using a variety of functions. For example, the
following script will fill in missing values in the Prize column with the me ⌋
an, drop duplicate rows, and cast the values in the Age column to Integer:
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df['Prize'].fillna(df['Prize'].mean())
df.drop_duplicates(inplace=True)

df['Age'] = df["Age"].astype('int')

Typically, computation will continue with feature engineering. To this end,
the pandas API provides many functions. In this example, we first create
a new column add up to columns, and then split a string into multiple
components.

df['Sum'] = df['Income'] + df['Gifts']
df[['First Name', 'Last Name']] = df['Name'].str

.split(' ', expand=True)

Machine learning relies on models, and once the data is preprocessed,
these models are defined in ML frameworks such as SKLEARN. Models
in most popular Python ML frameworks can work directly with Pandas
DataFrames, eliminating the need for conversion.

3.3 Kaggle Competitions

Machine learning competitions have become a major factor in practical edu-
cation for machine learning. Not only do universities include them in their
courses, but there is a wide variety of competitions available to the general
public. These competitions are used by trained professionals to push the
envelope of ML capabilities, but also by individuals who want to train their
ML skill set. One of the most well-known competitions of this kind had
been the Netflix prize [17]. Announced in 2006, Netflix offered a prize of
1 million US dollars for anyone who could achieve a 10% improvement in
accuracy over their recommendation algorithm. The prize was claimed in
2009, marking the competition as a success. Since then, ML competitions
have surged in popularity, leading to the creation of several websites that
host competitions. One such website is Kaggle. Competitions can generally
be created by anyone, though the most popular ones are often organized by
Kaggle itself or by companies that offer a cash prize.

Submissions are typically done using notebooks written in either R or Python
[2]. These notebooks can be made publicly available and a large base of users
does so. As such, Kaggle offers an extensive collection of Jupyter notebooks
implementing various ML tasks.

The most popular competition on Kaggle has long been ”Titanic - Machine
Learning from Disaster” with over 15000 teams [12]. In this competition,
the goal is to predict the survival of passengers on a vessel based on an
assortment of data.
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3.3.1 Notebook Collection

Notebooks on Kaggle take many forms. Not all of them contain code rele-
vant to the insights we want to gain. To increase the percentage of notebooks
that include workflows of interest, we limited ourselves to notebooks that
are associated to feature engineering using Kaggle’s search function. We im-
plemented a web scraper in Python using the selenium browser automation
tool [9]. The web scraper operates in two steps. During step one, the scraper
traverses the results starting from the search landing page and iterates over
the pages. In doing so, it collects links to submissions that contain Jupyter
noteboooks. In the second step, we start multiple parallel tasks that down-
load the notebooks from the collected links. Through this process, a total of
2708 notebooks were collected.

3.4 Workflow Analysis

3.4.1 Preprocessing

Jupyter notebooks in the format .ipynb do not lend themselves well to anal-
ysis. Therefore, we translate the notebooks into Python scripts. This is done
using jupyter nbconvert command. For a part of the notebooks, the con-
version fails. This leaves us with a total of 2222 notebooks for analysis.

The Python module Abstract Syntax Tree (AST) can be used to create syn-
tax trees for Python programs. These trees contain information about the
structure of the parsed program. We are primarily interested in the nodes
containing function calls as these nodes contain the name of the called func-
tion and its parameters. This allows us to detect function invocations that
could be Pandas calls. It has to be noted that for Python as an untyped
language, it is not possible to know the object type the function is called on.
This would require complete execution of the code due to Pandas’ dynamic
typing system. This is beyond the capability of the AST module. This means,
that in any case where other imported modules contain functions with the
same name as a Pandas function, we can not differentiate which module the
call has to be associated with. The Pandas functions we consider are those
exposed by Pandas, as well as those that can be performed on DataFrames.

With our analysis, we aim to answer two questions:

1. What are the most used Pandas functions?

2. How are function calls distributed over Pandas’ complete available
API?
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3.4.2 Results

3.1 shows the distribution of the 25 most used Pandas functions. The three
most used functions, read_csv, head and to_csv, are functions related to
data loading, storage and inspection.
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Figure 3.1: Number of inclusions of functions in notebooks the collected notebooks. If a function
is used multiple times in a single notebook, we count this as a single inclusion.

Other than these three, all functions that made the list are DataFrame trans-
formations. We can observe some patterns here. Many of the functions can
be categorized into groups. DataFrame.min, DataFrame.max and DataFram ⌋
e.sum fall into the category of aggregation. A further category consists of sta-
tistical functions such as DataFrame.std, DataFrame.corr, DataFrame.mean.
Another category consists of functions that combine DataFrames. These are
DataFrame.concat, DataFrame.join and DataFrame.merge. Lastly, DataF ⌋
rame.apply and DataFrame.map serve the same functionality, although the
DataFrame.map function is depreciated.

In figure 3.2, we illustrate the distribution of all calls associated with the
Pandas API. It follows roughly an exponential distribution. Of the total
154884 calls associated with the Pandas API, 136832, or 88.344 percent are
made up of 25 percent of all functions.

3.4.3 Discussion

The results are promising in two ways. (1) We have seen that several func-
tions among the top 25 functions used can be categorized into groups that
perform similar operations. This helps us in two ways. Firstly, functions that
share the same operation structure can likely be implemented together. That
means the architecture to execute one can be reused for other functions in
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Figure 3.2: Distribution of all Pandas-associated calls, where each function call is counted by itself.
A single notebook can therefore contribute multiple calls of the same function.

the group. This is the case for aggregations. Secondly, not all functions need
implementing since some aliases exist. (2) The distribution of all Pandas
calls over the Pandas API indicates that a disproportionately high amount
of Pandas use cases can be achieved with only a small subset of Pandas
functions. This is promising for any system aiming to provide an alternative
Pandas API since it indicates that one does not have to implement the whole
API to provide a system that can perform most real-world Pandas tasks.
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Chapter 4

Implementation

4.1 Overview

In this work, we set out to implement a Pandas API based on Snowpark. In
doing so, we intend to create a system that can leverage the seamless scaling
of the Snowflake virtual warehouse architecture, in a simple-to-use Python
environment. To achieve this we extend an existing Pandas API in such a
way that it defers execution to Snowpark where possible. This approach
follows the paradigm of scaling out, rather than the traditional approach
of using specialized hardware commonly used in today’s large-scale prepro-
cessing pipelines. This shift in approach has shown to be promising already
[16] and scaling out via the Snowflake VW follows a similar idea. Differ-
ent existing projects could be used as the base for such an implementation.
Most notably, Pandas and Modin, as they are well developed due to their
popularity and are easily modifiable due to their open-source nature. We
analyzed the different architectures of Pandas and Modin in search of paral-
lels between Snowpark’s API functionality and the frameworks interface. As
a result, we decided to base our implementation on the Modin framework.
Modin, as mentioned in 2.4, is purpose-built to enable modifications that
allow the use of an alternative execution engine. We decided to take exactly
this approach. The Snowpandas code base is publicly available as a Github
repository forked from Modin at 1.

In section 2.6.2, we discussed how the Snowpark API is essentially a wrap-
per that iteratively builds SQL queries. As such, Snowpark DataFrames are
lazily executed, which enables the query optimizer to operate on the query
holistically. Our implementation is designed to preserve this lazy execution
wherever possible. To achieve this, we use a tree data structure that tracks
transformations on Snowpark DataFrames. The information stored in this
fashion is then used in scenarios where the Pandas API uses DataFrames

1https://github.com/YvesRobinK/modin.git
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as arguments in transformations of DataFrames. This is necessary because
Snowpark does not support the kind of column and row-based assignments
of a traditional DataFrame. Further tracking and replaying executions in
places where Pandas would assign a Series to a DataFrame’s column avoids
the need for joins. This is because as a SQL-based framework, Snowpark
has to join tables before columns can be used in the same expression.

Our implementation is based mainly on three classes that interact with one
another. The SnowparkDataframe is the main class, implementing the state
of the DataFrame. It is mainly responsible for tracking the state and does not
directly manipulate the underlying snowpark.DataFrame. Transformations
on the snowpark.DataFrame are performed by the Frame class, as each Sn ⌋
owflakeDataframe has a Frame attribute and the snowpark.DataFrame is an
attribute of this Frame. As such, the SnowflakeDataframe controls transfor-
mation by calling functions on the Frame class with the appropriate parame-
ters. A Frame will return a new Frame with the transformed snowpark.Dat ⌋
aFrame as its attribute. Subsequently, a new SnowflakeDataframe is created
with this new Frame. Additionally, the new SnowparkDataframe is assigned
a transformation specific Node that represents the last transformation per-
formed on the DataFrame. One such specific Node would be the AggNode.
AggNode represents an aggregation and as such will include the parameters
needed to perform the aggregation. Most notably, this would be the agg_d ⌋
ict that is used as a parameter in the snowflake.snowpark.DataFrame.agg

function.

While the Modin framework lends itself well to modifications, there are
some features of the implementation that do not translate well to the con-
cepts of the snowpark.DataFrame. One such concept is Modin’s use of
indexing. Classes like _LocationIndexerBase are implemented on the as-
sumption that the underlying storage supports index-based operations. In
such cases, we have to use one of two mechanisms in order to proceed. In
the first case, (1) we implemented dummy functions in order to skip over
checks or transformations that might be produced in such a way. These
functions return arbitrary values and thus steer the execution path in the
way. Where this approach is not suitable, we had to resort to option two. (2)
We make use of Python’s capability of introspection in order to skip parts of
implementations that can not reasonably be replicated.

4.2 Snowpandas

In this thesis, we set out to design and implement a system that implements
the Pandas API using Snowpark as its backend. We named the resulting
implementation Snowpandas. Based on Modin, we similarly aim to cre-
ate a system that is as close to a drop-in replacement for Pandas as possi-
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ble. Besides some additional syntax, this holds true for our implementation.
Once all necessary dependencies are installed within the Conda environ-
ment, Snowpandas can be used without any additional resources.

4.2.1 Syntax

The standard Pandas API does not provide the functionality needed to de-
fine connection parameters and the desired Snowflake configuration. There-
fore, users specify their credentials and the desired configuration via en-
vironment variables. These are implemented as part of Modin’s config

utilities and can be set in the following way.

#Snowpandas configuration

import modin.pandas as pd

import modin.config as cfg

snowflake_credentials = {

"account": "<snowflake-ID>",

"user": "<username>",

"password": "<password>",

}

cfg.SnowFlakeConnectionParameters.put(snowflake_credentials)

cfg.SnowFlakeDatabaseName.put(<database-name>)

cfg.SnowFlakeWarehouseName.put(<warehouse-name>)

We elected to implement non-Pandas native syntax for the initial DataFrame
creation, because we deemed it unreasonable to use an existing IO method
to return an object that does not follow the official documentation. Thus,
we implemented the from_sf_table function, that creates a DataFrame ob-
ject based on the Snowpark API. This leads to a simple one-line syntax not
unlike the usual read_csv or read_parquet functions:

#Creating a Snowpandas DataFrame

lineorder = pd.from_sf_table(tablename="SSB_SF1.LINEORDER")

date = pd.from_sf_table(tablename="SSB_SF1.LINEORDER")

This function returns a DataFrame object that implements the standard Pan-
das API. Figure 4.1 illustrates the architecture of the created DataFrame.
From this point on, no special syntax is used, as Modin will seamlessly trig-
ger materialization by calling to_pandas where necessary. Once to_pandas

is called, a Modin DataFrame is created from the Pandas DataFrame pro-
duced by Snowflake. This allows computation to continue using the Modin
implementation without any extra steps.
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4.2.2 Architecture

A DataFrame created by from_sf_table follows the basic structure of a any
Modin DataFrame. Figure 4.1 illustrates this initial structure of a Modin
DataFrame and Snowpandas specific classes are highlighted in yellow. There
are three main classes that are Snowpandas specific, these are SnowflakeDa ⌋
taframe, Frame and Node. The SnowflakeDataframe class is the central point
around which our implementation is constructed. It also acts as the singular
interface with the Modin implementation and implements the API that is
used by Modin’s translation layer. This also includes the various attributes
that are accessed by the DFAlgQueryCompilter. Some of the fields that are
implemented by the SnowlakeDataframe include columns, index and dtyp ⌋
es. On the other hand, we have the attributes related to the Snowpark API,
namely sf_session, Frame and Node which are all critical in the interaction
with Snowpark, even though the latter are not directly Snowpark objects.

DataFrame DFAlgQueryCompiler SnowflakeDataframe

Frame ConstructionNode

Snowpark.DataFrame

Legend

Classes

attribute

Legend

Classes

attribute

Snowpandas Classes

Figure 4.1: Basic architecture of a DataFrame after construction.

SnowflakeDataframe

The SnowflakeDataframe implements a lazily executed DataFrame, while
eagerly applying transformations to a snowpark.DataFrame representing the
underlying data. The interface used by the ‘DFAlgQueryCompiler‘ is imple-
mented here. Through it, Modin’s translation layer manipulates the data.
Thus, the SnowflakeDataframe serves as the center point of the Snowflake-
based backend for Modin. A further functionality implemented by the Sn ⌋
owflakeDataframe is managing the DataFrame’s metadata such as dtypes,
columns and index.
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Frame

The Frame class acts as a wrapper for the snowpark.DataFrame that repre-
sents the data stored in the virtual warehouse. This makes the Frame class
essentially a second layer of translation, it maps functions and parameters
from Pandas API like syntax to the Snowpark API. Here, we show the im-
plementation of filter operations of the form:

df = df.filter.loc[df["Age"] > 18]

To perform this operation, we make use of the op_tree attributes of the
DataFrame passed as an argument. In this case, the class of the passed Node

determines the execution within the filter function. Specifically, we differ-
entiate between whether the DataFrame was last transformed by a compari-
son or a logical operation. The differentiation leads to the differing function
calls on the snowflake.DataFrame. In the case of a comparison, we simply
apply the same predicate to the snowpandas.DataFrame. If the parameter
DataFrame was created by a logical operation between two DataFrames, we
need to fetch the information about both predicates. These predicates are
then applied in the filter function in a singular expression defined by the
logical operator. Use of the Snowflake API from a syntactic point of view
differs from case to case. The first case is handled by using the standard
function definition, in the second case we resort to dynamic code generation
to maximize ease of implementation and code reuse. The exact implementa-
tion can be seen in listing 4.1. As such, we construct a command_string that
we dynamically evaluate at runtime.
OPERATORS = {

"<=": "<=",

">=": ">=",

"=": "==",

"<": "<",

">": ">"

}

LOGICAL_OPERATORS={

"or": "|",

"and": "&"

}

def filter(self,

comp_Node: Node = None

):

"""

Performs filtering on a snowpark.DataFrame

Parameters

----------
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comp_Node : Node | op_tree defining the filtering

Returns

-------

Frame | Transforemed DataFrame

"""

if isinstance(comp_Node, ComparisonNode):

new_frame = self._frame /

.filter(f'"{comp_Node.comp_column}" '
f"{comp_Node.operator} "

f"'{comp_Node.value}'"
)

elif isinstance(comp_Node, LogicalNode):

left_comp = comp_Node.prev

right_comp = comp_Node.right_comp

command_string = (f"self._frame. \

filter((col(\"{left_comp.comp_column}\")"

f" {OPERATORS[left_comp.operator]} "

f"'{left_comp.value}') "

f"{LOGICAL_OPERATORS[comp_Node"

f".logical_operator]} "

f"(col(\"{right_comp.comp_column}\")"

f" {OPERATORS[right_comp.operator]}"

f"'{right_comp.value}'))")
new_frame = eval(command_string)

return Frame(new_frame)

Listing 4.1: Implementation of the filter function of the Frame class.

Node

Nodes are the basic unit used to create the tree data structure that makes up
the field SnowflakeDataframe.op_tree. This tree logs the transformations
that are applied to a DataFrame throughout its existence. As discussed in the
previous section 4.2.2, this information is used to perform transformations
on the DataFrame the function is called on. This is necessary because, in the
Pandas API, arguments to functions like filter are generally of class Series

and, as such, we do not have direct access to the original values if we were
not storing them. Further, this allows us to eliminate the need to perform
joins as we will see later on. To this end, the Node classes generally store at
least the parameters required to perform the corresponding snowpark.Dat ⌋
aFrame function.
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JoinNode

name:str

other:Node

name:str

...

own colnames:[str]

other colnames:[str]

colnames:[str]

prev:Node

frame:snowpark.DataFrame

For all Node objects, this includes the attributes name:str of the node, the
corresponding frame:Frame and the parent prev:Node. In the specific case
of the JoinNode illustrated here, the operation specific attributes are the
other:Node the join is performed with, as well as own_colnames:[str], o ⌋
ther_colnames:[str] and the new colnames:[str].

4.2.3 Translation

Figure 4.2 is a UML representing the execution of a single Pandas API call.
Invoked on the DataFrame class, the initial call gets immediately deferred
to the _stat_function. There Modin validates the function arguments
and passes the execution on to its DFAlgQueryCompiler. At this point, we
have passed through Modin’s API layer and entered the translation layer
implemented by the DFAlgQueryCompiler. DFalgQueryCompuler is an HDK-
specific class that we reuse for our implementation because HDK is also a
relational engine, operating in a similar paradigm to Snowflake, as we will
see. The mean call on the DFalgQueryCompiler serves only to implement
the interface with with the API layer and the call is passed on to _agg. In
doing so, it passes on the name of the aggregation function (here ”mean”)
as an argument. This is a critical step as it reduces the initial broad space
of aggregation functions into a single method. As a result, we only have
to implement a single function for aggregation in the SnowflakeDataframe.
This function agg gets called by the DFAlgQueryCompiler, and the name of
the aggregation function is again passed as a parameter. At this stage, we
have entered the Snowpandas-specific part of the implementation.

In SnowflakeDataframe.agg parameters are parsed in order to invoke the
correct Frame function with the corresponding parameters. Initially we
make a case distinction between axis=0 and axis=1. In the case of ax ⌋
is=0 we need to perform column-wise aggregation and to do so we first
need to extract the names of the columns that are of numeric type. This
is because, in the Pandas API, columns of non-numeric type are dropped
when performing aggregation with a function that takes only numeric val-
ues. On the other hand, Snowpark will produce an error if we attempt to

31



4. Implementation

DFAlgQueryCompiler

SnowflakeDataframe

Frame

ConstructionNode

DataFrame

mean _stat_operation mean _agg

agg

Snowpark.DataFrame

agg

agg

Legend

Classes

Pandas API call

function

Snowpandas
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attribute
calls
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parameter

Figure 4.2: Execution of the Pandas API mean function with a SnowflakeDataframe.

perform aggregation on columns that are non-numeric. Therefore we have
to specifically compute the numeric columns at this point. We do so by us-
ing snowpark.DataFrame.schema, Snowpark manages the metadata such as
column types locally, and therefore this can be done without breaking the
paradigm of lazy execution. Once we have selected the numeric columns
of the DataFrame we create a dict that will serve as the argument to the
Snowpark API call. The implementation of Frame.agg is very simple, un-
like other Frame functions a single Snowpark API call will suffice. As such
the total implementation consists of a single line:

return Frame(self._frame.agg(agg_dict))

Once Frame returns a new Frame object that encapsulates the manipulated
snowpark.DataFrame, a new SnowflakeDataframe is constructed. Most no-
table in the construction of this new SnowflakeDataframe is the new Node

object, representing the transformations performed in order to produce the
corresponding snowpark.DataFrame. In the case of agg, we construct an ⌋
AggNode which stores the information needed to perform the aggregation,
namely the agg_dict, and construct a tree by providing the Snowflake ⌋
Dataframe’s own Node as an argument. This field becomes necessary in
operations that perform column assignments.
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4.2.4 Column Assignments

The Pandas API is in many ways built around the mechanism of column
assignments. This mechanism though is not simply replicated in a rela-
tional database, because in order to combine two tables in a database, a join
is needed. Consequently, much of the Pandas API syntax does not have
a direct equivalent in the Snowpark API. The following are some Pandas
DataFrame manipulations used during ML preprocessing that illustrate this
form of operation:

#Preprocessing with Pandas

self.train[["Deck", "Num", "Side"]] = self.train['Cabin'] \

.str.split('/', expand=True)

self.train["SumSpends"] = self.train[col_to_sum].sum(axis=1)

self.train['Total_Billed'] = self.train['RoomService'] \

+ self.train['FoodCourt']

All of these functions make use of column assignments. This is no problem
for a system that eagerly executes expressions. The Pandas implementation
can simply materialize the expression result and replace the current column
data. However, in Snowpark, this is not possible. The Snowpark implemen-
tation, based on SQL-like operators, would achieve the same by doing the
following in order to implement the binary + operation:

#Snowpark binary operation between independent DataFrame

res_df = df1.join(df2, df1["id"] == df2["id"]))

res_df = res_df.with_column("Total_Billed"), \

(col("RoomService") + col("FoodCourt")))

However, this implementation introduces two main issues that are prob-
lematic in terms of performance. (1) Just like in normal SQL, Snowpark
DataFrames have to be joined in order to perform operations between two
columns of different DataFrames. Joins are among the most resource-intensive
operations. Avoiding them whenever possible is crucial for maintaining ef-
ficiency. (2) In order to perform a join between two DataFrames, we need a
unique column that can be used as the value to perform the join on. This col-
umn needs to be the same in both DataFrames, leaving us with two options
to implement it. One approach is to keep a unique column of the DataFrame
throughout all operations. However, this requires the user to specify the col-
umn explicitly at some point, as nothing prevents the unique column from
being dropped or not selected in an operation. While feasible, this increases
the DataFrame size, which could lead to performance penalties. Another
way is to dynamically create a column that matches in both DataFrames.
This approach, however, leads to computation that has to be performed at
runtime. This would again lead to a decrease in performance.
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Faced with this problem, we had to design an implementation that achieves
the same semantics without storing intermediate results in separate DataFrames.
As such, we devised a system that tracks the transformations performed on
the DataFrame or series and enables us to replay these operations on the
DataFrame that is subject to the column assignment. We illustrate this pro-
cess based on the following Pandas API code snipped:

#Python API column assignment of binary operation result

df['Total_Billed'] = df['RoomService'] + df['FoodCourt']

This would be the right side of the assignment statement.

#Pandas API binary operation

df['RoomService'] + df['FoodCourt']

The binary operation of the Pandas API will produce a Series object, as
can be seen in Figure 4.3. Just as in the case of the mean function, discussed
earlier in this section. The operation is handed down through the layers
and a single function of the SnowflakeDataframe implements the different
binary operations based on the op parameter passed. The critical point,
however, is not the manipulation of the snowpark.DataFrame inside the Fr ⌋
ame, but the information stored in the resulting SnowparkDataframe objects
op_tree field. In this case, this will be a BinaryOpNode, the state of which at
this point of execution is as follows:

BinaryOpNode

RenameNode

SelectionNode

ConstructionNode

RenameNode

SelectionNode

ConstructionNode

With the completion of the expression evaluation, _setitem is called on the
original DataFrame, with the parameters key and value. The parameter key
is of type string, specifying the column to which we are assigning the value
and the value parameter being of type Series as produced by a binary oper-
ation between two Series. The execution is passed through the upper layers
much the same way as described before, and finally arrives in SnoflakeDat ⌋
aframes as a call to setitem. The setitem function parses the arguments in
order to defer to the correct Frame manipulation. In our example, since the
key is not already in the columns of the SnowflakeDataframe, the column
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Figure 4.3: Execution of the Pandas API + operator with a DataFrame of class SnowflakeData ⌋
Frame.

name is added to the DataFrame’s columns. The resulting call will include
the new_column parameter to create the column in the Snowpark DataFrame.
A further distinction is made based on the type of the value. In the exam-
ple case, the type is DFAlgQueryCompiler, as the upper layers have stripped
away the API layer class Series. This results in the execution path leading
to the call:

#Create a new Frame with transformed data

new_frame = self._frame.assign(

new_column=key,

op_tree=value._modin_frame.op_tree

)

Notice that the snowpark.DataFrame of the original value is not within
the transitive closure of the Frame on which the assign function is called.
All the information needed to perform the transformation on the original
DataFrame is present within the BinaryOpNode, and we do not need the
actual snowpark.DataFrame. As a result, within the assign function, we
can perform the equivalent binary operation and assignment on the original
DataFrame without having to perform a join.

#Simulating column assignment
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left_col = op_tree.left.prev.colnames[0] # fetch column name from

#selectionNode of the left side argument to the binary operation

right_col = op_tree.right.prev.colnames[0] # fetch column name from

#selectionNode of the right side argument to the binary operation

new_frame = self._frame.with_column(new_colname, \

(self._frame[left_col] + self._frame[right_col]))

4.2.5 Interface and Deference

As mentioned in 2.4, Modin was chosen as the base framework for our im-
plementation because it is purpose-built to enable operating with different
backends. In practice, this means only a few classes need to be adapted to
bring a different backend to Modin. In our case, these classes are the Snow ⌋
flakeDataframe and its auxiliary classes Frame and Node. Therefore, by im-
plementing the interface with the DFAlgQueryCompiler and implementing
fields such as dtypes, we provide a large amount of functionality that the
upper layers interact with. However, some functionalities are unsuitable for
our implementation that relies on Snowpark’s lazy execution scheme. The
most notable functionality of this kind used by Modin is indexing. Since in
the local paradigm that Modin expects, it is unproblematic to select data via
a mask or slicing. However, Snowpark does not support such operations,
and creating indexes based on the data itself would force materialization, at
least in part.

We employed two strategies to skip or defer execution in the upper layers
where it was not possible to implement the necessary functionality in the
interface implemented by SnowflakeDataframe. Firstly, in any case where
the upper layer tries to access an attribute of the SnowflakeDataframe that
we can not reasonably implement. Most often, this is because we do not
have the necessary information due to the lazy execution scheme and can
therefore not return a meaningful value. Secondly, in some cases, the imple-
mentation of the functionality would introduce a disproportional amount
of engineering effort and, as such, we can not implement this part of the
interface. In such cases, we resorted to one of two methods to continue.
(1) Whenever we encountered such an issue, we first attempted to create
a dummy function that returns a value designed to direct the execution in
the upper layer as intended. These dummy functions come in two flavors.
Firstly, some dummy functions return a hard-coded value; an example of
this is the _has_unsupported_data which simply returns False. In other
cases, we return unrelated fields that are then passed back down in a place
that is of benefit to our implementation. (2) In cases where we could not rea-
sonably implement a dummy function or attribute, we resorted to modifying
the upper layers to skip over parts of execution that are not implemented by
SnowpandasDataframe. These modifications largely rely on introspection,
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checking the type of the QueryCompilers _modin_frame field. In most cases,
this takes the form of including an isinstance evaluation within a condi-
tional statement to force the execution to either enter or bypass a particular
block of code.

4.2.6 Types

A critical feature of Pandas and other systems implementing the Pandas
API is the typing system. As described in section 2.2, for example, the
feature column-level type safety is an important characteristic of modern
DataFrames. For our implementation, this introduces a problem since Snowflake,
and in extension Snowpark, do not support the same typing system. Fur-
thermore, the Python implementation of Snowpark uses its typing system,
which differs from Snowflake’s. This is especially critical since the API layer
and translation layer of Modin require typing information to correctly trans-
late API calls to engine-level execution. Fortunately, the Snowpark data
types are stored as part of the schema on the local representation of the sn ⌋
owpark.DataFrame and are managed by Snowpark implementation as trans-
formations are performed. This allows us to retrieve the types of columns
stored in the snowpark.DataFrame in isolation of the data. Therefore, we
can simply retrieve the types upon creation of a SnowflakeDataframe from
its snowpark.DataFrame. However, as mentioned, these types are part of
Snowflake’s proprietary typing system [4] and must first be mapped to their
corresponding numpy.dtype. Table 4.2 shows some of the relevant map-
pings.

Category Snowflake Data Type Numpy Dtypes
String Types StringType numpy.dtype(’O’)
Numerical Types DecimalType numpy.dtype(’float64’)

IntegerType numpy.dtype(’int64’)
LongType numpy.dtype(’int64’)

Logical Types BooleanType numpy.dtype(’bool’)

Table 4.2: Mappings applied to Snowflake Data Types

The only case where a mapping from Numpy Dtypes to Snowflake Data
Types is needed is in the implementation of the astype function. This func-
tion effectively casts the relevant column to the Dtype specified in the Pan-
das API. We handle this directly in the Frame.astype function, where the
relevant columns of the snowpark.DataFrame are cast to the specified type.
Since the schema of the resulting snowpark.DataFrame is used to initialize
the dtypes field of the resulting SnowflakeDataframe, it will automatically
be constructed with the dtypes.
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4.2.7 Fillnan Problem

During the implementation of the fillna function of the Pandas API, we
encountered early execution in a way we had not observed before. To un-
derstand why we encountered this problem, we must first understand the
relevant Pandas syntax.

#Filling missing values in columns of numeric types

for col in numeric_columns.columns:

mean = df[col].mean()

df[col] = df[col].fillna(value=mean)

In Pandas syntax, we iterate over the columns that need filling and compute
the value used as a parameter in the fillna call from the series object rep-
resenting the corresponding column. Replicating this execution scheme in
Snowpark, however, will lead to early execution. This is because the na ⌋
.fill function on snowpark.DataFrames does not support the passing of
a lazily executed object such as a snowflake.DataFrame. As such, an im-
plementation making use of the already existing agg functionality will not
work.

#Naive Snowpark implementation

mean = self._frame.select(colname).agg({colname: "mean"}))

new_frame = self._frame.na.fill(mean)

This implementation will eagerly evaluate the expression of mean to pass the
resulting scalar value to the snowpark.DataFrame.na.fill function. As a
result, the query representing the DataFrame computation on Snowflake is
split into multiple sub-queries that are executed sequentially. This is prob-
lematic for performance, firstly, because it means that the query optimizer
can no longer optimize the query holistically. Secondly, due to the sequen-
tial nature of these operations, we are reducing parallelism, while potentially
increasing overhead.

We conceived of an optimization to work around this problem. However,
we had to take a shortcut by creating a new Pandas syntax, due to the
considerable engineering effort necessary to implement our optimization
for the already existing syntax. We did so by adding an option for the met ⌋
hod parameter in the Pandas API fillna function. These two new options
are "snow_mean" and "snow_mode", representing the operation of filling the
missing values with the column mean or mode respectively. As a result, the
new syntax does not make use of the df.agg function, thus not triggering
early execution. Now we are back in the same paradigm as described in
section 4.2.4, where we dealt with the translation of column assignments.
While we can generally copy the mechanism used for column assignments,
we still need a way to avoid using the df.agg function to compute the scalar
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value needed. This can be achieved without much difficulty by using SQL
expressions. The Snowpark API provides a select_expr function, and we
can include the column function that represents the scalar value as an SQL
expression. Unlike the agg function, the SQL expression provided in this
way is directly inserted into the SQL statement representing the snowpa ⌋
rk.DataFrames state. In practice, the Snowpark API call achieving this is
relatively simple:

#Lazy fill nan, with mean

new_frame = self._frame.selectExpr("*",

f"COALESCE({assign_col}, \

AVG({assign_col}) OVER()) \

AS {assign_col}")
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Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Workloads

To analyze our implementation in relation to differing workloads, we con-
ducted experiments on two different datasets and three workload types to
our experiments. The first component aims to test our systems’ performance
on workloads that are traditionally well-suited to relational databases. The
second component is made up of microbenchmarks that enable a better un-
derstanding of the performance of specific operators. The third workload re-
produces real-world ML preprocessing tasks that are based on ML pipelines
sampled from Kaggle.

Star-Schema-Benchmark

The star-schema-benchmark (SSB) [35] is a popular benchmark, which tests
the performance of database systems in executing SQL queries. The name
star schema describes a specific way in which the relational schema of the
data is constructed. In a star schema, a large central table (fact table) serves
as the only connection between tables. This divides the schema into fact
and dimension tables. Figure illustrates the organization of the SSB schema.
Note that dimension tables are magnitudes smaller in size than the fact
table. This type of schema is often used where highly analytical workloads
are expected and aims to optimize for query execution [40]. It does so by
reducing complex joins by simplifying the relation between the fact table
and dimension tables. The scale factor increases the row count per table.
The number of rows increases linearly with the scale factor for all tables
except the PARTS table, where the row count increases logarithmically. As
can be seen in 5.1.1, the row count for scaling factor 1 is 30’000 rows for
CUSTOMER, 2’000 rows for SUPPLIER, 6’000’000 rows for LINEORDER, 200’000
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rows for PART and 7 years worth of dates for the DATE table.
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Figure 2. Star Schema Benchmark (SSB) Schema
See Appendix A for Definitions of Columns shown here and discussed below!

Figure 5.1: The SSB schema as cited from the paper [35].

Additionally to defining a data schema, SSB also defines a set of queries.
These queries are grouped into four flights, containing three or four queries
each. These four groups aim to test for a variety of common query pat-
terns to enable users to assess their database’s performance according to the
tasks they expect to perform. While different groups aim to perform similar
structural operations, the queries inside a group are designed to distinguish
themselves in specificity. In total, 13 queries are making up the benchmark.
Figure shows the SQL code for query 3.1 of the star-schema-benchmark.
These queries are then evaluated on four different scaling factors 1, 10 , 100
and 1000.

SELECT c_nation, s_nation, d_year,

SUM(lo_revenue) AS revenue

FROM customer, lineorder, supplier, date

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_orderdate = d_datekey

AND c_region = 'ASIA'
AND s_region = 'ASIA'
AND d_year >= 1992

AND d_year <= 1997

GROUP BY c_nation, s_nation, d_year

ORDER BY d_year ASC, revenue DESC;

Figure 5.2: SQL code for the SSB query 3.1
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Microbenchmarks

To better understand the performance of the different frameworks during
the SSB queries, we conceived a series of microbenchmarks. These mi-
crobenchmarks break down the SSB queries into their specific operations.
These operations being selection, filter, sort, groupby, binaryOper ⌋
ation and Join. This resulted in the following code for the selection.
The experiment setup was essentially the same as with the SSB experiment.
However, the execution for the scaling factor 1000 was omitted. This is be-
cause the microbenchmarks are less selective and therefore, the resulting
DataFrames for scaling factor 1000 would have been more than 1 TB for
some of the benchmarks. The resulting network overhead would lead to
unreasonably long execution times.

--SQL syntax

SELECT lo_commitdate, lo_discount, lo_orderpriority FROM lineorder;

#Pandas syntax

df = df[["LO_COMMITDATE", "LO_DISCOUNT", "LO_ORDERPRIORITY"]];

and the Join benchmark respectively:

--SQL syntax

SELECT * as FROM date, customer,

supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey;

#Pandas syntax

df = lineorder.set_index('LO_ORDERDATE') \

.join(date.set_index('D_DATEKEY'))
df = df.set_index('LO_CUSTKEY') \

.join(customer.set_index('C_CUSTKEY'))
df = df.set_index('LO_PARTKEY') \

.join(part.set_index('P_PARTKEY'))
df = df.set_index('LO_SUPPKEY') \

.join(supplier.set_index('S_SUPPKEY'))

ML Preprocessing Pipelines

To test our implementation on ML preprocessing pipelines that resemble
real-world applications, we looked to Kaggle. As discussed in section 3.3,
Kaggle is an ML competition platform. One of the competitions hosted on
Kaggle is named ”Spaceship Titanic” [10]. This competition is the spiritual
successor to the most popular competition in Kaggles’ history by the name
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of ”Titanic - Machine Learning from Disaster” [12]. In the ”Titanic - Machine
Learning from Disaster” competition, the goal is to predict the survival of
passengers based on the provided data. To the same effect, in ”Spaceship
Titanic”, the goal is to predict if a passenger reaches his destination. In both
cases, a binary variable [0,1] has to be predicted. The task falls into the
field of supervised learning. This means we have example data for which
we know the ground truth. From this, we have to train a model that can
predict the outcome for samples where the ground truth is not known. As
such, two datasets are provided to competitors. The train.csv file contains
the training data and the test.csv contains the data upon which predictions
have to be made. The data consist of 13 columns that are PassengerID, Ho ⌋
mePlanet, CryoSleep, Cabin, Destination, Age, VIP, RoomService, FoodCo ⌋
urt, ShoppingMall, Spa, VRDeck and Name. The train.csv file additionally
contains the field Transported, representing the ground truth.

We searched the publicly available submissions of Jupyter notebooks to the
”Spaceship Titanic” competition for notebooks that would be suitable for our
experiment. As discussed in section 3.2, these notebooks are often divided
into distinct phases. For our experiments, we are solely interested in the
preprocessing phase. However, in some cases, this preprocessing phase is
interwoven with other frameworks that make a clear separation impossible.
For example, in instances where models such as SKlearns SimpleImput ⌋
er are used early on in the preprocessing pipeline, their inclusion would
force the materialization of the data. Such an operation contrasts with the
paradigm of lazy execution, which is performance-critical for our system. To
address this, we only included notebooks in our experiment that start with
Pandas-based preprocessing and end the portion of the pipeline included in
the experiment, once such an invocation would force materialization. While
this may seem like an advantage for Snowpandas, in reality, in a real-world
scenario, the developer could compensate for this by refactoring the code to
be more favorable to Snowpandas. Although we could also take this route,
doing so might introduce a bias from our side into the experiment. Thus, we
only selected notebooks with a clear separation between the preprocessing
phase and other parts of the pipeline.

Snowflake Virtual Warehouse Sizes

Early on in section 2.6.2 we alluded to the fact that selecting a bigger Snowflake
VW size can increase performance in terms of execution time, while poten-
tially incurring the same cost if execution time decreases in inverse propor-
tion to the prize. We wanted to test this hypothesis by executing the largest
scaling factor of the ML preprocessing experiment on four different ware-
house sizes. We chose the small, medium, large and xlarge warehouse sizes.
The costs of the warehouses of our choice are 2, 4, 8, and 16 credits per hour
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respectively. We note that for the hypothesis to hold, execution time would
need to halve every time a VW size is increased by one step, since the price
doubles for each step.

Additionally to the prizing hypothesis, this experiment can provide some in-
sight into how well the queries are parallelized and how much the execution
resources increase depending on the chosen warehouse size.

5.1.2 Cloud Setup

EC2 Instance

We executed all experiments on AWS cloud infrastructure. An AWS EC2
[1] instance builds the basis of all our experiments. The EC2 virtual ma-
chines were of type m5d.12xlarge. These machines possess 48 CPU cores
(Intel Xeon Platinum 8175), 192GB of RAM, 32 GB of integrated storage,
and two 900GB NVMe SSDs. At a cost of around 4 USD per hour, these
general-purpose machines are situated towards the upper end of the avail-
able machine size. However, the cost of these machines has been selected to
be roughly equal to those incurred by our selected Snowflake VW size. As
such, both services are roughly equally priced per hour of run time.

We created a virtual Python environment with Anaconda, which included
all the necessary dependencies. Additionally, the EC2 instance was config-
ured with Snowsql and the AWS CLI. All of our services are located in the
AWS eu-central-1 region. It is important to collocate them in the same
region to reduce latency and increase the data transfer speed. The NVMes
are mounted to a single directory /data using mdmda. This directory is not
permanent and is only used for object spilling by the Modin and Spark en-
gines.

Snowflake

We conducted all of our experiments on Snowflake VWs of size SMALL. Ini-
tially, the data is stored in a public S3 bucket. The files are of the table (.tbl)
or column-separate-values (.csv) file formats. To make this data available
to Snowflake to create Snowflake native tables, we first needed to integrate
Snowflake with S3. This is achieved by creating an AWS role that can be
assumed by the Snowflake integration stage. This integration is created on
the Snowflake side and will later serve as the access point for S3 buckets.
It defines the buckets that can be accessed through the integration. Ama-
zon’s access control scheme is based on policies that are linked to roles. We
defined a policy that grants access to the required buckets and assigned it
to the AWS role linked with Snowflake. The linkage is done by providing
AWS with the ID and access keys of the S3 integration from Snowflake. Once
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this process is complete, we can directly load S3 data from our bucket into
Snowflake.

The table creation process was done via Snowsql commands. The process
not only loaded the data from the files but also defined the database schema.
The original files did not include header and type information, it was there-
fore critical that we defined those in this step. Further, we created the nec-
essary warehouses needed. All of this was done using a bash script that
pipes parameters into a SQL template. This created a temporary SQL com-
mand that can be executed through Snowsql. This automated the process
for different scaling factors. The process works the same for both SSB and
”Spaceship Titanic” data, only the SQL template has to be changed to repre-
sent the differing data schema.

As described in 4.2.1, the connection parameters for Snowflake are provided
to Snowpandas through extended Pandas syntax. This was done using a
Python dict object that specifies account ID, username and password. To
ensure runs happened in isolation, for all executions on Snowflake both data
caching and result caching were disabled.

Amazon Simple Storage (S3)

The data used by Pandas, Modin, and Spark was also stored in the cloud.
We used S3 to do so. The original data was read from its source by a Python
script that scales the data according to the scaling factor provided as a pa-
rameter. To make file handling easier, the LINEORDER data is partitioned into
smaller files. For the higher scaling factors of the SSB, data chunks of 10
million lines were read and saved to the S3 bucket as a single file under
the prefix /SF1/lineorder/. Such a file is about 1 GB in size. Addition-
ally to the .csv file format, we also stored the data in parquet .parquet.
Contrary to the CSV file format, Parquet is a file format developed by the
Apache Foundation [8] that is optimized for big data applications. It imple-
ments columnar data storage which has become a key feature of today’s big
data applications. Another key feature is its support of schemas, seamlessly
storing metadata such as typing and column names. Parquet files are not
only considerably smaller than CSV files but can also be processed more
efficiently due to the optimizations described. In our case, it means that a
partition of 10 million rows of the LINEORDER table is just 316 MB in size.
For our application, this means that it decreases network overhead and the
time necessary to read the files. We performed the SSB benchmark on both
data formats. However, for the other experiments, we limited ourselves to
parquet.
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5.1.3 Engine Configurations

Both Modin and Spark, but especially Modin, claim to provide well-performing
out-of-the-box solutions. Our experience has been considerably different.
Testing has been plagued with crashes and errors of different varieties. The
fact that this happened even on our well-spaced testing machine is some-
what surprising. It took us a considerable amount of time to configure the
setting and fine-tuning of the systems so that consistent testing could be
undertaken.

Modin

The first problem encountered when scaling Modin to bigger datasets was
out-of-memory (OOM) errors. These occur in the underlying execution en-
gine, in our case RAY. The RAY memory monitor will kill tasks that use more
than a specified percentage of their resources. And it will retry the task after
a back-off time. Turning off the memory monitor as described by the RAY
docs [7] did not resolve the problem, but led to complete crashes compared
to just performance degradation. Why these problems occur can not be con-
clusively answered. Especially since we used object spilling to /data, which
should have been more than big enough to hold all the data. The counter-
intuitive solution to this problem has been to initiate RAY with more cores
than the machine has virtual CPUs. As such, we arrived at a configuration
where we initiate RAY separately before starting Modin-related operations
and specifying the number of cores as 48. This is exactly the opposite ap-
proach from what we tried early on, by reducing the number of cores used
by RAY, under the rationale that each core could be assigned more memory.
We tried this both implicitly and explicitly, meaning we specified the exact
amount of memory per worker or we reduced the ncpu count specified in
the RAY initialization. Both did not prove to resolve the problem. So we
resorted to the above-described solution.

Another problem we encountered was the inability to shut down RAY man-
ually between different experiments. The RAY engine possesses a shutdown

function purpose-built for testing, which should allow us to clean the state
of RAY. However, we did not succeed in using this functionality in combi-
nation with Modin. This is because Modin seems to keep references to the
shutdown RAY processes. This could not be solved by reimporting the mod-
ule or other means. After fruitless troubleshooting of this issue, we had to
resort to running the experiments through Bash scripts so that the entire
Python interpreter would be reset between experiments.
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Spark

While Spark proved to be much easier to configure in terms of performance,
it seems to be much better at adjusting to the local machine’s resources. Prob-
lems regarding the Java runtime were plentiful. These problems were of two
kinds. (1) After the simple installation through pip install pyspark, the
environment variables would not be set correctly. To solve this, we used the
Findspark module. Findspark is a Python module that is imported before
Spark is initialized, and it will make sure Pyspark will be supplied with the
correct paths to the necessary resources. (2) The second problem originated
from the fact that we are storing our data remotely on S3. Our initial in-
stallation did not include the correct binaries needed for Spark to interact
with S3. As such, we had to initialize the Spark session with additional con-
figuration parameters that specify the inclusion of the needed Hadoop-aws
libraries as can be seen in figure 5.1. In term of resource configuration, we
started spark with 180GB of --driver-memory, 6GB of --executor-memory,
48 --executor-cores and set the correct spill location spark.local.dir.

While Pyspark provides a Pandas API, this API does not support reading
from S3. Because of this, we first have to read the data from S3 using stan-
dard Spark syntax. After the data is loaded correctly, we can then use the
pandas_api function on the resulting RDDs. This will return DataFrame
objects that implement the normal Pandas API. As such, we initialized Pys-
park with the code in listing 5.1.

#Pandas syntax

import findspark

findspark.init()

import pyspark.pandas as pd

from pyspark import SparkConf

from pyspark.sql import SparkSession

os.environ['PYSPARK_SUBMIT_ARGS'] = \

'--driver-memory 180g \

--executor-memory 6g \

--executor-cores 48 \

--conf spark.local.dir=/data \

pyspark-shell'

conf = SparkConf() \

.setAppName("Connect AWS") \

.setMaster("local[*]")

conf.set("spark.jars.packages", \
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"org.apache.hadoop:hadoop-aws:3.3.2")

spark = SparkSession \

.builder \

.config(conf=conf) \

.getOrCreate()

spark._jsc.hadoopConfiguration() \

.set("fs.s3a.access.key", \

"<aws-access-key>")

spark._jsc.hadoopConfiguration() \

.set("fs.s3a.secret.key", \

"<aws-secret-key>")

Listing 5.1: Initialization and configuration of Pyspark.

5.2 Results

5.2.1 Star-Schema-Benchmark

5.2.2 Procedure

We measured the performance of the SSB on five different systems: Pandas,
Modin, Pyspark, SQL, and our own Pandas API with the Snowpark back-
end. We will call our implementation in this section Snowpandas. Pandas
serves as the baseline against which all other implementations will be com-
pared. Modin is a direct competitor to Pandas and will show what a modern
implementation, purpose-built to scale the Pandas API to greater data vol-
umes, can achieve. Spark has long been a cornerstone of data warehousing.
Therefore, it is a very mature system and shows what a system, that is lo-
cally executed, can achieve. We also measure the performance when the
original handwritten SSB queries are directly executed with Snowsql. This
will serve as the baseline to compare our Snowpandas implementation. So
that we can deduce how much overhead our implementation introduces dur-
ing query execution. The smaller the delta between the handwritten queries
and Snowpandas, the better, as it indicates minimal inefficiencies. We are
interested in two forms of inefficiency that could be introduced by the Snow-
pandas implementation. (1) Query compilation time will tell us whether the
SQL queries constructed via Snowpark can efficiently be parsed and opti-
mized by Snowflake. This is because queries constructed by the Snowpark
API are visibly more complex in terms of their structure. Such queries of-
ten consist of several levels of nested expressions. It has to be shown that
this does not impact query compilation time on Snowflake. Secondly (2) we
need to analyze whether the query execution time on Snowflake increases
when queries are generated by Snowpandas. It is possible that the query
optimizer, discussed in 2.6.2, can not perform as well on these more com-
plex nested queries, resulting in increased query execution time. This is
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especially important for bigger scaling factors since data volume increases
exponentially.

In all cases, we are interested in the time between the query start and the
time when the result is available. This leads to a key distinction between
local executions and executions on Snowflake. Since in the case of local
execution, data must first be downloaded. In this case, we measure the
download time and the execution time for the query. In the case of execu-
tion on Snowflake, the data is directly accessed by Snowflake. Thus, we do
not have to account for download time. However, as mentioned before, for
Snowflake executions, we measure both the execution time and the query
compilation time. While one might argue that this paradigm favors exe-
cutions on Snowflake, such as the handwritten queries and Snowpandas,
we argue that in the context of offline preprocessing and the fact that we
are already storing the data in cloud services, bringing the data locally for
Snowflake execution would be impractical. In such a scenario, it is reason-
able to assume that the resulting data would be stored either by Snowflake
directly or on AWS S3. Therefore, this way of measuring can be seen as
disadvantageous to Snowflake executions, since we do not include data up-
load times that would not apply to Snowflake executions. Lastly, for local
executions, we include experiments executed with .csv and .parquet files.
Not only because it influences the download time, but also because systems
might be able to benefit from Parquets optimized data format.

5.2.3 Results

Figure 5.5 shows the results of SSB for scaling factor 10. The performance of
the handwritten SQL and Snowpandas is roughly equal for all queries, for
both the query execution time and the query compilation time. This shows
that the implementation of Snowpandas does not introduce a decrease in
performance compared to the handwritten queries. Furthermore, the per-
formance of both Snowflake executions is almost a magnitude faster than
the next best-performing system in the form of Pyspark. Pyspark outper-
forms Pandas and Modin by a magnitude. Most surprisingly, Modin’s per-
formance has been consistently the worst among all systems tested. This
is surprising as Modin’s parallelism should be able to make use of the ma-
chine’s resources to speed up the execution, just as Pyspark does. The fact
that Modin is even outperformed by Pandas indicates that its parallel execu-
tion introduces overhead that can not be compensated for by parallelism.

Scaling factor 1000 visible Figure in 5.6 shows that Modin and Pandas did
not scale to the largest scaling factor. Neither system managed to perform
any queries under the 1100-second runtime cutoff for the scaling factor 100.
Pandas, unsurprisingly, failed not only due to exceeding the cutoff time but
also due to a lack of memory in some queries. For scaling factor 100, the Pan-
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das DataFrame is about 153GB in size. Although this is theoretically small
enough to fit into memory, crashes occurred. Modin, on the other hand,
has the functionality of object spilling and does not encounter any memory
issues from scaling factor 100. However, it has to be noted that even the ef-
fective total of 1.78TB of NVMe storage would not have sufficed for Modin
to execute the scaling factor of 1000 queries. We observed that Modin spills
more than 1.5TB to disk for some queries, including large joins at scaling fac-
tor 100. Additional figures completing the experiment measurements can be
found in section A.1.2.

Lastly, a noticeable difference in download time can be observed between
Parquet and CSV executions. This is as expected due to the smaller file
size. Additionally, a clear trend can be observed in execution times between
queries that read from Parquet or CSV files. The Parquet execution consis-
tently outperforms the execution reading from CSV files even when exclud-
ing download time.
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Figure 5.3: Query runtime depending on scaling factor for SSB query 2.1
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Figure 5.4: Query runtime depending on scaling factor for SSB query 4.1
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Figure 5.5: This figure shows the query runtimes, download time, and compilation time for all
systems for scaling factor 10 of the SSB.
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Figure 5.6: This figure shows the query runtimes, download time, and compilation time for all
systems for scaling factor 1000 of the SSB.

5.2.4 Microbenchmarks

5.2.5 Procedure

The microbenchmarks were evaluated for Pandas, Modin, Spark, and Snow-
pandas. Since the SSB tests have shown a performance increase when Par-
quet is used as the file format, we decided to only evaluate the microbench-
marks with Parquet. With the microbenchmark, we aim to isolate function-
specific performance, which is why we did not include download time in
our analysis, but exclusively focused on execution time.

5.2.6 Results

Figure illustrates the performance of all tested systems when performing a
filter. Snowpandas outperforms all other systems for all scaling factors,
with Pandas, Modin and Spark having a multiple of Snowpandas’ execution
time. Besides scaling factor 1, this trend holds for all operations except
one: for the join operation, shown in figure 5.8. Spark outperformed all
other systems by a large margin for this single operation. The join was
only performed for scaling factor 1 and 10 since execution times had been
unreasonably high. Figure 5.9 shows the results of the groupby experiment,
Snowpandas once again being the best performing system.

Modin performed significantly better in the microbenchmarks compared to
the SSB, mostly outperforming Pandas. This is much more in line with

52



5.2. Results

the performance expected of Modin and seems to indicate that Modin is
sensitive to query complexity.
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Figure 5.7: Performance of the filter micro benchmark.
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Figure 5.8: Performance of the join micro benchmark.
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Figure 5.9: Performance of the groupby micro benchmark.

5.2.7 ML Preprocessing Pipelines

Procedure

As mentioned before, this experiment focused on real-world workloads in
the form of Jupyter notebooks collected from Kaggle. From these original
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notebooks, we separate the preprocessing logic and test it much in the same
way as the micro benchmarks. In this case, we also elected to exclude down-
load times, which will generally benefit any local executions, for the reasons
mentioned in section 5.2.2. This isolated the data manipulation part of the
execution.

The data used in the ”Spaceship Titanic” competition consists of two CSV
files. The training dataset consists of 8693 rows, with 14 columns each. The
testing dataset consists of 4277 rows, with 13 columns. This data was then
scaled by the scaling factors 10, 100, 1000, 10000, and 100000. The data
stored in CSV files for the biggest scaling factor was 77GB in size and 6GB
for Parquet. These values are not representative however, since Parquet
compressed the data heavily, a Pandas DataFrame constructed from these
files is about 350GB in size. Once again, we used S3 to store the files. This
experiment was only conducted using Parquet files, due to our earlier results
showing that using Parquet increases performance. For Snowpandas, the
data was staged into tables just the same way as in 5.2.2.

The first notebook we tested is based on a fork of a popular introduction
notebook [38] as such we will refer to it as ”Fork” here. This resulted in the
code displayed by listing 5.2. The extracted preprocessing pipelines from the
Endeavor and CatBoost notebook can be found in the appendix, in listing
A.2 and listing A.1 respectively.
#Drop superficial columns

self.train.drop('Name', axis=1, inplace=True)

self.test.drop('Name', axis=1, inplace=True)

#Replace boolean

self.train = self.train['Transported'] \

.replace("False", 0, inplace=True)

self.test = self.test['Transported'] \

.replace("True", 0, inplace=True)

#Split Cabin into distinct values

self.train[["Deck", "Num", "Side"]] = self.train['Cabin'] \

.str.split('/', expand=True)

self.test[["Deck", "Num", "Side"]] = self.test['Cabin'] \

.str.split('/', expand=True)

#Define expenses columns

expenses = ['RoomService', 'FoodCourt', 'ShoppingMall', \

'Spa', 'VRDeck']

#Aggregate expenses

self.train["SumSpends"] = self.train[expenses].sum(axis=1)
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self.test["SumSpends"] = self.test[expenses].sum(axis=1)

Listing 5.2: Extracted preprocessing logic from the Fork notebook.

We selected two additional Jupyter notebooks to test, these have been se-
lected in a way that they build upon the first one. The second notebook we
tested can be found on Kaggle by the name of ”Spaceship Titanic Higher
Score Endeavor” [20], here we will call it ”Endeavor”. The most notable
functionality added by this notebook is the use of fillna function. Often
competition notebooks will make use of some form of Imputer class to fill
in missing values, though we deemed it critical to test our implementation
to perform this task as well. In this specific case this takes the form of the
following code:

#Fill in numeric columns

for col in numeric_tmp.columns:

print(col)

df[col] = df[col].fillna(value = df[col].mean())

#Fill in categorical columns

for col in categ_tmp.columns:

print(col)

df[col] = df[col].fillna(value = df[col].mode()[0])

The third and last notebook of the name ”Titanic spaceship feature selec-
tion catboost” [28], here referred to as ”CatBoost”. Aside from the need
of the astype function, this notebook is largely a permutation of the first
two notebooks. This is unavoidable because the preprocessing pipeline of
Jupyter notebooks within the same competition turned out to largely make
use of the same transformations. Especially in terms of feature engineering,
notebooks within the same competition follow similar approaches.

5.2.8 Results

Figure 5.10 shows the performance of Pandas, Modin, Spark, and Snowpan-
das in executing the preprocessing pipeline extracted from the Fork note-
book. This is also the only notebook that we managed to execute with
Modin, for all others its execution time surpassed the time cutoff set at 30
minutes. It has to be noted that Modin defaults to standard Pandas dur-
ing the execution of all 3 notebooks since Modin on the RAY engine does
not support the str.split function, which is prominently used in all note-
books. Pandas similarly failed to perform the execution for scaling factors
10000 and 100000 due to surpassing the maximum execution time or due to
out-of-memory errors.

As we can see in Table 5.1 Snowpandas execution time for the Fork note-
book is, starting from scaling factor 1000 is at most half of all other engines.
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Execution Time Mean [s]
Engine Modin Pandas Spark Snowpandas
Scaling Factor

1 0.786 0.030 5.494 0.564
10 1.005 0.187 5.472 0.939
100 3.383 1.911 10.195 4.062
1000 21.134 18.694 17.638 5.917
10000 229.797 - 62.481 31.221
100000 1607.300 - 506.860 220.654

Table 5.1: Measured execution times for the Fork preprocessing pipeline.

This significant performance advantage does however not hold for the other
two notebooks. In Figure 5.11 the performance for the CatBoost pipeline
is plotted. We can see that starting from scaling factor 1000 Spark starts to
outperform Snowpandas. Sparks poor performance for the lower scaling
factors does not come as a surprise. The overhead of creating the Spark en-
vironment as well as the overhead related to the distribution of data across
multiple nodes is something we have observed in all experiments. This
makes Spark especially suited for large data volumes where this overhead
becomes proportionally less important. From the numeric data in table 5.2
we can deduce that the performance is more or less reversed when com-
pared to the Fork pipeline. Spark now being the engine that performs the
task in half the time of Snowpandas.

Execution Time Mean [s]
Engine Modin Pandas Spark Snowpandas
Scaling Factor

1 0.627 0.092 2.901 0.755
10 3.737 0.426 2.894 1.357
100 29.329 5.566 5.673 5.914
1000 100.078 56.719 7.856 10.531
10000 - - 23.768 42.264
100000 - - 165.458 338.006

Table 5.2: Measured execution times for the CatBoost preprocessing pipeline.

The Endeavor notebook introduced a new function of the Pandas API in the
form of fillna, this introduced a problem we had not encountered so far.
As discussed in section 4.2.7 we faced a problem with early materialization,
while our new approach managed to prevent this, the query profile did show
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that our new implementation does not alleviate the problem. Instead of
the early materialization, Snowflake computed the necessary values column
aggregations sequentially. This chain of WindowFunctions made up a total
of 76.4 percent of the total execution time for the largest scaling factor. As
displayed in table 5.3, for the total execution time of 1145.824s this is a total
of 875.409s. As such the calculation of the values within the SQL COALESCE

clause alone, exceeds Sparks execution time.

Execution Time Mean [s]
Engine Modin Pandas Spark Snowpandas
Scaling Factor

1 1.652 0.110 8.251 1.282
10 3.113 0.540 8.581 1.938
100 18.895 6.755 12.198 12.902
1000 101.832 70.447 15.353 21.401
10000 - - 39.301 111.296
100000 - - 284.883 1145.824

Table 5.3: Measured execution times for the Endeavor preprocessing pipeline.
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Figure 5.10: Performance of the ”Fork” preprocessing pipeline.

5.2.9 Snowflake Virtual Warehouse Sizes

Results

Figure 5.13 illustrates the performance results for different VW sizes over
three runs per configuration. Initially, the execution time when increasing
the VW size decreases significantly. Not only is the decrease significant, but
it closely matches the increase in price and, as such, the results support the
idea that increasing VM size can be a net equal decision in terms of costs.
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Figure 5.11: Performance of the ”CatBoost” preprocessing pipeline.

1 10 100 1000 10000 100000
SSB Scale Factor

1.0

10.0

100.0

1000.0

Qu
er

y 
Ru

nt
im

e 
[s

]

Modin
Pandas
Spark
Snowpandas

Figure 5.12: Performance of the ”Endeavor” preprocessing pipeline.

However, when evaluating the execution times shown in table 5.4, more
closely, we can see that this trend does not hold indefinitely. While the step
from a small VW to a medium VW decreases the execution time by a factor
of 1.99, the step from a large VW to an xlarge VW only leads to a decrease
by a factor of 1.56. The decrease in the effectiveness of increasing the VW
size becomes even more severe when looking at the Fork pipeline, where
the step from large to xlarge VM only leads to a decrease by a factor of 1.33.
This is not surprising, however, since the constant parallelization overhead
impacts the overall runtime for faster executions.

Overall, the results of this experiment strongly suggest that the computa-
tional power of VWs increases proportionally to the price. However, this is
not positive for Snowflake. Because one would suspect a bulk discount by
choosing the bigger product.
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Execution Time Mean [s]
Mode Catboost Endeavor Fork
Scale

Small 342.053015 1146.948731 220.909072
Medium 176.446166 576.312729 115.390882
Large 94.154802 296.262303 59.539095
Xlarge 65.842719 189.944288 44.688998

Table 5.4: Measured execution times of the preprocessing pipelines for different VW sizes.
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Figure 5.13: Query runtimes for the preprocessing pipelines on VWs of different sizes.
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Chapter 6

Conclusions and Future Work

In this thesis, we aimed to perform ML preprocessing on a relational database.
To achieve this, we designed Snowpandas, a system that is based on Modin
and implements the popular ML preprocessing API of Pandas. In doing
so, Snowpandas implements the Snowpark API as an execution backend for
Modin, utilizing Snowpark’s inherent lazy execution. We meticulously en-
sured that lazy execution is preserved as long as possible to make optimal
use of Snowflake’s query optimizer.

While preventing early execution is simple in most cases, the Pandas API’s
core functionality of column assignments presents a unique challenge. To
address this, we developed a system whereby executions on DataFrames are
tracked and stored in a purpose-built data structure. Upon column assign-
ments, this allowed us to reapply the necessary operations on the given col-
umn within the original DataFrame. By doing so, we avoided performance-
sensitive operations such as joins.

In a series of experiments, we first established that Snowpandas does not in-
troduce inefficiency in the Snowflake query compilation and execution layer
compared to handwritten SQL queries. Additionally, we showed that for
traditional relational database workloads, Snowpandas outperforms compet-
ing Pandas APIs such as Pandas, Modin, and Spark for the scaling factors
tested. Pandas, Modin, and Spark perform significantly worse, the query
runtime being higher on average by a factor of 214 for Modin, 123 for Pan-
das, and 7.3 for Spark. However, as data volume increases, the margin be-
tween Spark and Snowpandas narrows. This trend indicates that for larger
data volumes, Spark could potentially outperform Snowpandas. By execut-
ing a series of microbenchmarks, we further showed that this is also the
case for most of the individual operators used in the SSB experiment, again
under the caveat that the scaling factors tested might not have reached the
scale where Spark would gain the upper hand. However, our experiments
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testing Snowpandas on real-world ML preprocessing pipelines conclusively
showed that Spark outperforms our Snowpandas implementation even at
moderate data volumes. Compared to the more traditional Pandas APIs in
the form of Pandas itself and Modin, Snowpandas showed significant per-
formance improvements. We say Snowpandas outperformed Pandas and
Modin by a significant margin, although Snowpandas only outperformed
Pandas by a factor of 1.2 and Modin by 2.8 on average. This however gives a
limited picture, the initial data size is minuscule at under 1MB when stored
as a CSV file. At these scales execution overhead skews the results, since
at the moderate scaling factor of 1000, Snowpandas already outperforms
Pandas by a factor of 11.8 and 17.8 for Modin. Higher scaling factors could
only be performed for Spark and Snowpandas, with Spark outperforming
Snowpandas by a factor of 1.93. As such when combined with the ease of
use that Snowpandas provides via the Snowflake VW, Snowpandas presents
an attractive solution for intermediate data volumes. It offers a balance of
performance and usability, allowing users to avoid the server/cluster man-
agement burdens inherent to a Spark solution.

Additional functions will undoubtedly be necessary if Snowpandas is to
be tested on more workloads. The Pandas API is vast, and while we have
focused on the most common functions, we have only touched a small subset
of Pandas’ total functionality.

Optimizations might still be possible, especially in cases where Snowflake’s
execution is not yet fully understood. The Snowpandas API offers many dif-
ferent ways to achieve the same semantics, while the query optimizer is ef-
fectively a black box, there are still many ways in which our implementation
can be improved. One notable area of improvement is the aforementioned
problem from section 4.2.7. Developing an effective solution to this problem
would significantly enhance Snowpark’s performance.

Testing Further testing is needed to clearly understand the workloads for
which Snowpandas delivers competitive performance and those where it
can not stand up to traditional data warehouse systems such as Spark. Un-
derstanding Snowpandas’ sensitivity to differences in workload could be
crucial in identifying a niche where a Snowpandas-like system would excel.
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Appendix A

Appendix

A.1 Experiments

A.1.1 Notebook Code

The extraction and translation of the preprocessing pipeline from the En-
deavor notebook resulted in the code displayed in listing A.2. The code for
the Catboost notebook can be found in listing A.1.
if self.engine == "spark":

from pyspark.sql.functions import split

self.train = self.train.to_spark() \

.withColumn('Cabin1_', split(self \

.train.to_spark()['Cabin'], '/')[0]) \

.pandas_api()

self.train = self.train.to_spark() \

.withColumn('Cabin2_', split(self \

.train.to_spark()['Cabin'], '/')[1]) \

.pandas_api()

self.train = self.train.to_spark() \

.withColumn('Cabin3_', split(self \

.train.to_spark()['Cabin'], '/')[2]) \

.pandas_api()

self.train = self.train.to_spark() \

.withColumn('Pid1_', split(self \

.train.to_spark()['PassengerId'] \

, '_')[0]).pandas_api()
self.train = self.train.to_spark() \

.withColumn('Pid2_', split(self \

.train.to_spark()['PassengerId'] \

, '_')[1]).pandas_api()
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self.train[["Pid1_", 'Pid2_']] = self \

.train[["Pid1_", 'Pid2_']].astype('int')

self.train = self.train.to_spark() \

.withColumn('Fname_',split(self.train \

.to_spark()['Name'], ' ')[0]).pandas_api()
self.train = self.train.to_spark() \

.withColumn('Lname_',split(self.train \

.to_spark()['Name'], ' ')[1]).pandas_api()

self.train = self.train.to_spark() \

.withColumn('Fname_',split(self.train \

.to_spark()['Name'], ' ')[0]).pandas_api()
self.train = self.train.to_spark() \

.withColumn('Lname_',split(self.train \

.to_spark()['Name'], ' ')[1]).pandas_api()

else:

self.train[["Cabin1_", 'Cabin2_', 'Cabin3_']] = \

self.train['Cabin'].str.split('/', expand=True)

self.train[["Pid1_", 'Pid2_']] = self.train['PassengerId'] \

.str.split('_', expand=True)

self.train[["Pid1_", 'Pid2_']] = self.train[["Pid1_", 'Pid2_']] \

.astype('int')
self.train[["Fname_", 'Lname_']] = self.train['Name'] \

.str.split(' ', expand=True)

self.train['sum_exp_'] = self.train['RoomService'] \

+ self.train['FoodCourt']
self.train['sum_exp_'] = self.train['sum_exp_'] \

+ self.train['ShoppingMall']
self.train['sum_exp_'] = self.train['sum_exp_'] \

+ self.train['Spa']
self.train['sum_exp_'] = self.train['sum_exp_'] \

+ self.train['VRDeck']

self.train['sum_exp_'] = self.train['sum_exp_'] \

/ self.train['Pid2_']
#self.test['sum_exp_'] = self.test['sum_exp_'] \

/ self.test['Pid2_']

#Original call

self.train.loc[self.train['Age'] <= 5, ['Age_cat_']] = 'Toddler/Baby'
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self.train.loc[((self.train['Age'] > 5) & \

(self.train['Age'] <= 12)), ['Age_cat_']] = 'Child'
self.train.loc[((self.train['Age'] > 12) & \

(self.train['Age'] <= 18)), ['Age_cat_']] = 'Teen'
self.train.loc[((self.train['Age'] > 18) & \

(self.train['Age'] <= 50)), ['Age_cat_']] = 'Adult'
self.train.loc[((self.train['Age'] > 50) & \

(self.train['Age'] <= 150)), ['Age_cat_']] = 'Elderly'

#Trigger execution for all engines

if self.engine == "snowpandas":

batches = self.train._query_compiler._modin_frame \

._frame._frame.to_pandas_batches()

result = next(batches)

else:

result = self.train

print(result.head())

Listing A.1: Extracted preprocessing logic from the Catboost notebook.

# Some feature engineering

def fill_nans_by_age(df, age_limit=13):

df.loc[df['Age'] < age_limit, \

['RoomService', 'FoodCourt', 'ShoppingMall', \

'Spa', 'VRDeck']] = 0

return df

def fill_nans_by_cryo(df):

df.loc[df['CryoSleep'] == True, ['RoomService', \

'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']] = 0

return df

def age_groups(df, age_limit = 13):

df['AgeGroup'] = 1.0

df.loc[df['Age'] < age_limit, ['AgeGroup']] = 0.0

return df

def fill_missing(df):

'''
Fill NaNs values or with mean or most commond value...

'''

numerics = ['int16', 'int32', 'int64', 'float16', \
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'float32', 'float64']

numeric_tmp = df.select_dtypes(include = numerics)

categ_tmp = df.select_dtypes(exclude = numerics)

for col in numeric_tmp.columns:

if self.engine == "snowpandas":

df[col] = df[col].fillna(method="snow_mean")

else:

m = df[col].mean()

df[col] = df[col].fillna(value=m)

for col in categ_tmp.columns:

if self.engine == "snowpandas":

df[col] = df[col].fillna(method="snow_mode")

else:

mode = df[col].mode()[0]

if self.engine == "spark" and \

(mode == False or mode == True):

df[col] = df[col].astype(bool)

mode = bool(mode)

df[col] = df[col].fillna(value=mode)

else:

df[col] = df[col].fillna(value=mode)

return df

def total_billed(df):

'''
Calculates total amount billed in the trip to the passenger...

Args:

Returns:

'''
df['Total_Billed'] = df['RoomService'] + df['FoodCourt']
df['Total_Billed'] = df['Total_Billed'] + df['ShoppingMall']
df['Total_Billed'] = df['Total_Billed'] + df['Spa']
df['Total_Billed'] = df['Total_Billed'] + df['VRDeck']
return df

def cabin_separation(df):

'''
Split the Cabin name into Deck, Number and Side

'''
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df[["CabinDeck", "CabinNum", "CabinSide"]] = \

df['Cabin'].str.split('/', expand=True)

df.drop(columns = ['Cabin'], inplace = True)

return df

def name_ext(df):

'''
Split the Name of the passenger into First and Family...

'''
df[["FirstName", "FamilyName"]] = df['Name'] \

.str.split(' ', expand=True)

df.drop(columns = ['Name'], inplace = True)

return df

def extract_group(df):

df[['TravelGroup', 'ID']] = df['PassengerId'] \

.str.split('_', expand = True)

df.drop(columns=['PassengerId'], inplace= True)

return df

if self.engine == "spark":

self.train = fill_nans_by_age(self.train)

self.train = fill_nans_by_cryo(self.train)

self.train = age_groups(self.train)

self.train = fill_missing(self.train)

self.train = total_billed(self.train)

self.train = self.train.to_spark() \

.withColumn('CabinDeck',split(self.train \

.to_spark()['Cabin'], '/')[0]).pandas_api()
self.train = self.train.to_spark() \

.withColumn('CabinNum',split(self.train \

.to_spark()['Cabin'], '/')[1]).pandas_api()
self.train = self.train.to_spark() \

.withColumn('CabinSide',split(self.train \

.to_spark()['Cabin'], '/')[2]).pandas_api()
self.train = self.train.drop('Cabin', axis=1)

self.train = self.train.to_spark() \

.withColumn('FirstName',split(self.train \

.to_spark()['Name'], ' ')[0]).pandas_api()
self.train = self.train.to_spark() \

.withColumn('FamilyName',split(self.train \
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.to_spark()['Name'], ' ')[1]).pandas_api()
self.train = self.train.drop('Name', axis=1)

self.train = self.train.to_spark() \

.withColumn('TravelGroup',split(self.train\

.to_spark()['PassengerId'], '_')[0]).pandas_api()
self.train = self.train.to_spark()\

.withColumn('ID',split(self.train \

.to_spark()['PassengerId'], '_')[1]).pandas_api()
self.train = self.train.drop('PassengerId', axis=1)

else:

self.train = fill_nans_by_age(self.train)

self.train = fill_nans_by_cryo(self.train)

self.train = age_groups(self.train)

self.train = fill_missing(self.train)

self.train = total_billed(self.train)

self.train = cabin_separation(self.train)

self.train = name_ext(self.train)

self.train = extract_group(self.train)

# trigger execution for all engines

if self.engine == "snowpandas":

batches = self.train._query_compiler \

._modin_frame._frame._frame \

.to_pandas_batches()

result = next(batches)

else:

result = self.train

Listing A.2: Extracted preprocessing logic from the Endeavor notebook.

A.1.2 SSB Results

A.12 and A.13 show the results of the SSB experiment for scaling factor 1
and 100 respectively. They follow the same pattern as the results for scaling
factor 10 and 1000 presented in 5.2.3. Lineplots for SSB queries 1.1, 1.2, 1.3,
2.2, 2.3, 3.1, 3.2, 3.3, 3.4, 4.2 and 4.3 can be found in A.1, A.2, A.3, A.4, A.5,
A.6, A.7, A.8, A.9, A.10 and A.11 respectively.

A.1.3 Microbenchmark Results

We conducted further microbenchmarks not yet displayed. Figure A.14
shows the performance of the sort microbenchmark, figure A.15 the perfor-
mance of bin_op and figure A.16 the performance of selection microbench-
mark.
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Figure A.1: Query runtime depending on scaling factor for SSB query 1.1
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Figure A.2: Query runtime depending on scaling factor for SSB query 1.2
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Figure A.3: Query runtime depending on scaling factor for SSB query 1.3
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Figure A.4: Query runtime depending on scaling factor for SSB query 2.2
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Figure A.5: Query runtime depending on scaling factor for SSB query 2.3
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Figure A.6: Query runtime depending on scaling factor for SSB query 3.1
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Figure A.7: Query runtime depending on scaling factor for SSB query 3.2
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Figure A.8: Query runtime depending on scaling factor for SSB query 3.3
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Figure A.9: Query runtime depending on scaling factor for SSB query 3.4
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Figure A.10: Query runtime depending on scaling factor for SSB query 4.2
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Figure A.11: Query runtime depending on scaling factor for SSB query 4.3
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Figure A.12: This figure shows the query runtimes, download time, and compilation time for all
systems for scaling factor 1 of the SSB.
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Figure A.13: This figure shows the query runtimes, download time, and compilation time for all
systems for scaling factor 100 of the SSB.
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A.1. Experiments
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Figure A.14: Performance of the sort microbenchmark.
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Figure A.15: Performance of the bin_op microbenchmark.
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Figure A.16: Performance of the selection microbenchmark.
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