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Robust Feature Selection for BP Estimation in
Multiple Populations: Towards Cuffless

Ambulatory BP Monitoring
Ana Cisnal, Student Member, IEEE , Yanke Li, Bertram Fuchs, Mehdi Ejtehadi,

Robert Riener, Senior Member, IEEE , and Diego Paez-Granados†, Member, IEEE

Abstract— Current blood pressure (BP) estimation meth-
ods have not achieved an accurate and adaptable approach
for ambulatory diagnosis and monitoring applications of
populations at risk of cardiovascular disease, generally due
to a limited sample size. This paper introduces an algorithm
for BP estimation solely reliant on photoplethysmography
(PPG) signals and demographic features. It automatically
obtains signal features and employs the Markov Blanket
(MB) feature selection to discern informative and trans-
missible features, achieving a robust space adaptable to
the population shift. This approach was validated with the
Aurora-BP database, compromising ambulatory wearable
cuffless BP measurements for over 500 individuals. After
evaluating several machine-learning regression methods,
Gradient Boosting emerged as the most effective. Accord-
ing to the MB feature selection, temporal, frequency, and
demographic features ranked highest in importance, while
statistical ones were deemed non-significant. A compara-
tive assessment of a generic model (trained on unclassified
BP data) and specialized models (tailored to each distinct
BP population), demonstrated a consistent superiority of
our proposed MB feature space with a mean absolute error
of 10.2mmHg(0.28) for systolic BP and 6.7mmHg(0.18) for
diastolic BP on the whole dataset. Moreover, we present
a first comparison of in-clinic vs. ambulatory models, with
performance significantly lower for the latter with a drop of
2.85mmHg in systolic (p < 0.0001) and 2.82mmHg for dias-
tolic (p < 0.0001) estimation errors. This work contributes
to the resilient understanding of BP estimation algorithms
from PPG signals, providing causal features in the signal
and quantifying the disparities between ambulatory and in-
clinic measurements.
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I. INTRODUCTION

BLOOD Pressure (BP) is a widely accepted surrogate
biomarker in many health conditions that aid in iden-

tifying individuals at risk of cardiovascular disease [1], and a
direct biomarker in conditions such as hypertension. Tradition-
ally, BP measurements have been obtained in clinical settings,
offering valuable insights into cardiovascular health. However,
the increasing recognition of the dynamic nature of BP calls
for ambulatory measurements to capture changes during daily
living to further understand the cardiovascular system.

In recent works, various cuffless wearable devices using a
variety of signal modalities have been proposed for ambulatory
blood pressure (ABP) monitoring, such as electrocardiogram
(ECG), tonometry, bioimpedance, and photoplethysmography
(PPG), with the latter being the most widespread [2]. PPG is
a non-invasive, non-occlusive, optical technique for measuring
volumetric changes in the microvascular bed tissue, correlating
with BP pulse wave propagation in arteries [3]. Models based
on the pulse arrival time (PAT) [4], pulse transit time (PTT)
[5], and pulse wave velocity (PWV) [6] are most commonly
used. However, they require a PPG signal, either combined
with an ECG signal or another PPG signal from a different
peripheral site.

An alternative is developing models that rely on a single
PPG signal, in turn requiring a pulse wave analysis (PWA)
involving a morphological understanding of the PPG pulse
to extract features that can be used to estimate BP. This has
been shown through multi-linear regression [7], regression
trees [8], random forest [9], support vector machine [9] and
artificial neural network [10]–[12]. However, PPG signals
exhibit different morphologies, with Dawber’s classification
[13] delineating four PPG classes based on the diastolic phase
(Fig. 1). The precise formation and location of the dicrotic
notch (DN) remain uncertain, posing a challenge in extracting
fiducial points [14]. As a result, existing machine learning
(ML) models have predominantly focused on optimizing their
performance using a restricted set of fiducial points. This
approach heavily relies on the dataset and features, leading
to the absence of consensus regarding the optimal feature
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space for BP estimation. The presented work introduces a
PWA-based algorithm that identifies all fiducial points for
subsequent feature extraction, validated across all Dawber’s
classes to align with its intended medical application.

Fig. 1: Classification of PPG waveforms: I) a DN is evident;
II) no evident DN but the descendent line becomes horizontal;
III) no evident DN but there is a change in the angle of the
descendent line; IV) no evidence of a DN is visible.

Previous research had primarily concentrated on in-clinic
data, aiming to optimize performance for these specific
datasets, thereby overlooking generalization across diverse
populations. This is particularly critical for populations with
limited available data, such as pregnant women, neonates, and
spinal cord injury (SCI) patients, who could greatly benefit
from ABP estimations, given their specialized cardiovascular
care needs. To address this, personalized models and domain-
transferred features are crucial, with transfer learning and fea-
ture selection aiding in identifying discriminatory features and
enhancing learning quality. Moreover, since the BP waveform
is not yet fully understood, meticulous feature extraction and
selection are paramount for subsequent model development
that prioritizes interpretability. Through the proposed fea-
ture selection method, leveraging the Markov Blanket (MB),
discriminatory features pertinent to BP estimation can be
pinpointed, facilitating the creation of precise and dependable
models, even in the face of limited sample sizes. By eliminat-
ing less informative features and focusing on those crucial for
BP estimation, the MB-based feature selection method elevates
the quality of learning and enhances the interpretability of
subsequent ML models, overcoming challenges associated
with generalization across diverse populations.

The focus and main contribution of this work are three-
fold: (1) a method for PPG signal feature identification for
robust transfer among small populations based on MB; (2)
the first ambulatory arm BP estimation model from single
wrist PPG using a large dataset: Aurora-BP [15], resulting in
a boosting model achieving a mean absolute error (MAE) of
11 mmHg in nested cross-validation throughout four different
sub-populations; (3) extensive analysis of the cross-population
performance and model differences found especially for in-
patient vs. ambulatory data, which highlights the gap with
previous works, where only inpatient data was used. Finally,
we provide our method for extensive PPG wave signal analysis
as an open-access library to motivate advancements in fair
model sharing [16].

II. MATERIALS AND METHODS

In contrast to previous works, the proposed approach fo-
cuses on extracting a comprehensive set of features through
PWA and developing a feature selection process that prioritizes
robustness across diverse populations, rather than solely opti-
mizing estimation accuracy for a single dataset. This emphasis

on feature robustness contributes to the generalizability and
reliability of the BP estimation method. The proposed PPG-
based BP estimation method consists of five steps (Fig. 2): (1)
signal pre-processing for noise removal, signal segmentation,
and data cleaning; (2) identification of the fiducial points;
(3) extraction of signal and demographic features; (4) robust
feature selection. (5) estimation of BP using ML models.

A. Dataset

The Aurora-BP dataset [15] was chosen as the first large-
scale collection of ambulatory and cuff-less BP measurements
obtained over a 24-hour period using wearable technology,
including ECG, tonometry, PPG, and reference BP. The dataset
comprises two non-concurrent protocols: auscultatory and
oscillometric. While the auscultatory protocol solely relied
on in-clinic manual auscultation by trained observers using
an aneroid sphygmomanometer, the oscillometric protocol
employed an automated ABP monitor allowing both in-clinic
and ambulatory measurements. This study focuses on ABP
estimation using one PPG signal, utilizating data from the
oscillometric protocol, in which participants underwent an
initial clinical visit in the morning and a return visit after the
24-hour ambulatory recording. During the ambulatory phase,
the cuff-based ABP monitor was automatically triggered every
30 minutes during waking hours and every 60 minutes during
the night. The reference BP was measured using the Spacelabs
Healthcare OnTrak 90227 ABP monitor fitted to the partici-
pant’s dominant arm or according to their preference. The PPG
optical sensor was based on the MAX30101, and it was worn
on the opposite wrist. Both devices were time-synchronized
before the initial visit for simultaneous measurements. For
each pair of cuff-based BP measurements, 30-second PPG
signal segments with a frequency of 500 Hz were stored in
the database.

B. PPG Signal Pre-processing

Some time-domain features are derived from time, ampli-
tude, and area measurements extracted using PWA, which
rely on the precise identification of fiducial points. However,
their identification is challenging, leading many studies to
only consider the systolic peak (S). To compensate for this
limitation, additional parameters like PAT, PTT, and PWV are
often incorporated [17]–[20], with the inherent disadvantage
of requiring a second signal. In contrast, this paper presents
a method to automatically extract all fiducial points, leading
to a broader spectrum of features, even in the presence of
noisy ambulatory data. Identifying fiducial points within a
PPG pulse waveform involves analyzing its derivatives, which
can be severely distorted by noise. Hence, pulse segmentation,
effective noise reduction and quality analysis are imperative
for automatic and accurate detection.

Firstly, high-frequency noise removal is required, and low-
pass filtering should keep a balance between preserving the
original features and mitigating noise. Moreover, some studies
employ polynomial interpolation [21] or filtering methods
such as 25-ms moving average [22] to smoothen the signals
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Fig. 2: Schematic diagram illustrating the methodology employed in this study for the estimation of BP using PPG.

Fig. 3: PPG signal pre-processing steps: I) raw PPG signal;
II) signal after Butterworth band-pass filter with DC drift,
resulting in amplitude variation of the troughs (·); III) signal
after baseline removal; IV) pulse segmentation by detecting
peaks (∗) and troughs (+); V) remaining beat-to-beat waves
after morphology analysis; VI) template matching, with the
mean wave represented by (- -) and individual waves shown
by (-). Pulse wave morphology analysis considering: a) peak
location, b) pulse width, c) trough position, and d) trough
depth difference.

and enhance derivative computations. Nonetheless, these ap-
proaches run the risk of altering the signal characteristics. In
this work, the raw PPG signals were filtered using a 4th-order
Butterworth bandpass filter with cut-off frequencies of 0.25
and 10 Hz [23].

To extract pulse wave features, identifying individual beat-
to-beat pulse waves is essential, requiring pulse peak and
through detection (Fig. 3). However, biological characteris-
tics (tissue composition, respiration, vasomotor activity and
thermoregulation) and external factors (light and acquisition
device) can influence the signal baseline [23], making reliable
trough detection more difficult. Hence, baseline removal is
performed using an adaptive iteratively reweighted penalized
least squares (airPLS) [24]. It autonomously adjusts to remove
both linear and non-linear baselines without manual interven-
tion or prior peak identification, and demonstrates resilience
in noisy environments. It ensures accurate delineation of

pulse waveforms and enhances trough detection by mitigating
baseline-induced distortions. The method’s dynamic threshold-
ing improves detection of true peaks and troughs by evaluating
local extrema against the adaptively corrected baseline, thereby
refining beat-to-beat pulse wave feature extraction.

The extraction of the beat-to-beat waves involves the detec-
tion of the peaks and troughs using an adaptive amplitude
threshold [12]. A local maximum value was considered a
peak if the difference between this point and the adjacent
local minimum exceeded the threshold. Similarly, for a local
minimum to be considered a trough, the difference between
this point and the adjacent local maximum is needed to surpass
the threshold. The dynamic threshold was set to 70% of the
range between the median values of the identified maxima and
minima within the 30-second window, respectevely.

After identifying the pulse waves, the pulse morphology
was examined based on four parameters with heuristically
determined thresholds to ensure accurate segmentation by
discarding any unreliable wave units. The pulse width, rep-
resenting the time interval between two consecutive troughs,
was constrained to be within 0.3-2 seconds, corresponding to
an extreme pulse rate of 30-200 bpm. The maximum value,
corresponding to the systolic peak, was expected to occur in
the first half part of the segment [25]. Similarly, the trough or
minimum value should be located at the beginning or at the
end of the segment, corresponding to the onset or valley point.
Lastly, the trough depth difference between successive pulses
was limited to less than 20% of the PPG segment height [25].

The remaining beat-to-beat waves were normalized to zero
mean and unit variance. The noise of the remaining PPG waves
was further investigated using template-matching, which as-
sesses pulse waveform similarities within a signal segment
[26]. Regardless of the actual waveform morphology, this
approach identifies irregularities caused by artifacts, as a clean
segment exhibits similar pulse morphologies. The template is
formed by averaging PPG waves in a segment, and correlation
measurements are used to evaluate signal regularity (and
quality). In this work, template-matching is applied to 30-
second PPG segments. If a wave’s Euclidean distance from
the template surpassed a device-specific noise threshold, it was
deemed unreliable and discarded. Finally, a segment is totally
discared if the number of valid waves is less than 5.

C. Fiducial Point Identification
The fiducial points were identified for each pulse wave using

derivative analysis (Fig. 4a). Typically, a change of sign of the
first derivative identifies the exact point for class I waveforms
(Fig. 1), but for PPG without an evident DN, the first derivative
is always negative. On the other hand, the peak of the second
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(a) Fiducial point identification. (b) BW-based features.

Fig. 4: (a) Identification of the fiducial points based on the analysis of PPG, dPPG (first derivative or velocity of PPG), and
ddPPG (second derivative or acceleration of PPG) signals. (b) BW-based features: systolic branch width (SBWx) and diastolic
branch width (DBWx).

derivative of a class I wave provides a good but not perfect
approximation of the DN [21], [27], or as the location where a
change of sign in the first derivative from negative to positive
occurs [22]. Likewise, the point D is not always noticeable.
In such cases, it can be difficult to identify it, and different
methods combining the first, second, and/or third derivatives
have been proposed in the literature to do so [28], [29].

This work presents an algorithm 1 for PPG ambulatory data
(including class IV), where the onset (O) and valley (V) points
were set to the onset and end of the wave. The point S was
detected as the largest peak of the pulse, and it was used to
split the wave into a systolic phase and a diastolic phase. The
maximum derivative (MD) point corresponds to the maximum
peak of the first derivative in the systolic phase. The diastolic
peak (D) was identified as the local maxima occurring within
the diastolic phase, within a time interval of 80 ms to 0.6
times the duration of the diastolic phase. Then, the inflexion
point (IP) was identified as the local maximum of the first
derivative before D, and DN as the local minimum before
IP. In some cases, there were no local maxima and only an
inflection point existed. Hence, D corresponded to IP, and it
was detected as the absolute maximum of the first derivative
in the region of search, while DN was the local maximum in
the second derivative. Several local maxima can be identified
in the region of search, especially in low-quality signals. In
these cases, IP was identified as the maximum peak of the first
derivative, D was the local maximum right after IP, and DN
was the local minimum before IP. Point a was the maximum
second derivative and point b denotes the strongest negative
acceleration in the falling edge [30].

D. Feature Generation
The features of each validated pulse wave were extracted,

and subsequently, the average value of each feature within the
30-second segment was computed to serve as input for the
models. The generated features can be divided into four main
groups: time domain (TF), frequency-based (FF), statistical
(SF), and demographic features (DF). A Python package that
encompasses the pre-processing and feature extraction stages

Algorithm 1 Algorithm for fiducial point identification.
Input: wave
Output: O, V, S,MD,D, IP,DN, a, b

1: d wave = first derivative(wave)
2: dd wave = second derivative(wave)
3: O = wave[first point]
4: V = wave[last point]
5: S = maximum peak(wave)
6: systolic phase = wave[from O to S]
7: diastolic phase = wave[from S to V ]
8: MD = maximum peak(wave in systolic phase)
9: search zone =[diastolic phase from 80 ms to 0.6×

duration(diastolic phase)]
10: n = number of local maxima(wave in search zone)
11: if n = 0 then
12: D = maximum peak(d wave in search zone)
13: IP = D
14: DN = maximum peak(dd wave right before IP )
15: else if n = 1 then
16: D = maximum peak(wave in search zone)
17: IP = local maximum(d wave right before D)
18: DN = local minimum(wave right before IP )
19: else
20: IP = maximum peak(d wave in search zone)
21: D = local maximum(wave right after IP )
22: DN = local minimum(wave right before IP )
23: end if
24: a = maximum peak(dd wave in systolic phase)
25: b = minimum peak(d wave in systolic phase)
26: return O, V, S,MD,D, IP,DN, a, b

was made readily accessible [16] with this publication. The
package accepts a raw signal and produces a feature vector
that represents the observed time interval. The package allows
users to adjust various parameters, including window and
step size, as well as additional tuning options to optimize
denoising and feature extraction according to specific task
requirements. Across multiple windowing steps, a feature table
is constructed, which can subsequentially be used for feature
selection. Details of each feature can be found in the online
VitalPy library [16].

1) Time-domain Features (TF): The proposed time-domain
features can be divided into six subcategories regarding inten-
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sity, time, area, slope, branch width, and others.
Intensity-based and time-based features include the absolute

and normalized value (time or amplitude) of one fiducial point
or between two points. Intensity-based features also include
the intensity of the first and second derivatives of the PPG
fiducial points. The slope and the area under the curve between
the two points were also calculated. Additionally, the intensity
ratio, time ratio, and area ratio were included. These four types
of characteristics were calculated for all possible fiducial point
combinations.

Features that only depend on the branch width (BW) at
a given percentage of the pulse height have been commonly
used due to their simplicity [8], [9], [11], [12], [17]. A total
of 28 BW-based features were extracted (Fig. 4b), including
the systolic branch width (SBWx), the diastolic branch width
(DBWx), the branch width (DWx = SBWx+DBWx), and the
branch width ratio (BWRx=DBWx/SBWx) at x% of the pulse
height (x = 10, 25, 33, 50, 66, 75, 90).

The morphology of PPG signals is intricately linked to
various physiological factors, including arterial tone, periph-
eral resistance, and blood viscosity [3]. Previous research has
identified specific metrics strongly correlated with BP, which
have subsequently been employed as features in ML models
[17], [21], [31], [32]. Reflection index (RI), also known as
augmentation index (AI), measures the pulse reflection, which
is related to the arterial tone and it is calculated as the
intensity’s ratio between the intensity of the S and IP. Inflection
point area (IPA) is defined as the ratio of the area between O,
MS, S, IP, V and was proved to be an indicator of peripheral
resistance. Crest time (CT) is the time difference between O
and S, which is related to the PWV. PPGK, also known as PPG
characteristic value or K value, is related to blood viscosity and
total peripheral resistance. Normalized pulse volume (mNpV)
is also related to the total peripheral resistance, and it is the
ratio of the peak-to-peak amplitude divided by its DC value.
Large Artery Stiffness Index (LASI) is an indicator of the
stiffness of the arteries and is inversely related to the time
interval between S and IP . While the aforementioned features
were initially included in the analysis as intensity, time, or
area-related features, the additional features of PPGK, mNpV,
and LASI were also incorporated into the analysis.

Finally, 17 more generic temporal features were computed
based on [33]: autocorrelation, centroid, entropy calculated
both using the Kernel Density Estimation (KDE) and the
Gaussian function, number of minimum and maximum peaks,
mean and median of differences, mean and median of absolute
differences, the sum of the absolute differences between con-
secutive points, travelled distance, number of zero crossings of
the first, second and third derivative and total energy as well
as absolute energy.

2) Frequency-based Features (FF): Using the Fast Fourier
Transform (FFT), the frequency and magnitude for the first,
second, and third harmonics were extracted. Relative power
[34] and its quantification at the first, second, and third
harmonics were also included. Other 19 frequency-based
features were based on [33]: spectral distance, fundamental
frequency, maximum power spectrum density, maximum and
median frequencies, spectral centroid, spectral decrease, spec-

tral kurtosis, spectral skewness, spectral spread, spectral slope,
spectral variation, spectral roll-off, spectral roll-on, number of
maximum spectral peaks, human range energy ratio, power
spectrum density bandwidth, and spectral and wavelet en-
tropies. These features were derived from the beat-to-beat PPG
pulse waveforms and PPG segments, which were constructed
exclusively using validated PPG pulses (i.e., removing invalid
pulses from the original 30-second segment during the signal
processing).

3) Statistical Features (SF): Previous studies used statistical
features for BP estimation [9], [12], [19], [35]. In this work,
for each pulse waveform, 14 statistical features were extracted:
SKewness (SK), Kurtosis, Mean Absolute Value (MAV), me-
dian, Mean Absolute Deviation (MAD), Median Absolute De-
viation, Root-Mean-Square (RMS), Standard Deviation (SD),
Shape Factor (SF), Impulse Factor (IF), Crest Factor (CF),
variance, InteRQuartile range (IRQ) and perfusion.

4) Demographic Features (DF): Five demographic features
were employed: age, weight, body mass index (BMI), rest
systolic BP (SBP), and rest diastolic BP (DBP).

E. MB Feature Selection

Features that are used to train ML models have a high
influence on their performance. Irrelevant or partially relevant
features can negatively impact model performance. Appropri-
ate feature selection can reduce overfitting, improve robust-
ness, and shorten training time. The objective was to analyse
the best transferability across sub-populations. Therefore, a
wrapped selection was conducted over the entire dataset to
provide subsequently a population feature analysis and per-
formance comparison. As a first step in this process to reduce
the computational cost, the minimum redundancy maximum
relevance (mRMR) method was employed. It is a filter-based
feature selection approach that reduces the feature set by
selecting features highly relevant to the target variable while
minimizing redundancy among them. By prioritizing relevant
features and penalizing redundancy, mRMR ensures the selec-
tion of a diverse and complementary subset, improving model
performance and interpretability [36].

Subsequently, the Predictive Permutation Feature Selection
(PPFS) [37], a wrapped feature selection method using the MB
derived from a graphical model, was applied. PPFS statistically
determines the sufficient set of features for estimation across
different subgroups. While this approach may potentially
introduce bias to subsequent models, it helps identify the
most robust feature space for potential transfer to ambulatory
settings in future studies involving smaller populations.

MB Discovery refers to finding the set of variables that
are sufficient for estimating the target variable based on a
graphical model and d-separation. Under the assumption of
causal sufficiency [38], MB consists of the parents, children,
and spouses of the target node in the directed acyclic graph
(Fig. 5b). This papers applies the concept of graphical models,
where nodes and edges represent variables and their statistical
relations. This framework enables a deeper understanding of
complex systems due to its compact statistical relations and
clear structural representation. Fig. 5a shows a graphical model



6 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, MAY 2024 (ACCEPTED VERSION). © IEEE ALL RIGHTS RESERVED.

(a) An example graphical model
with 10 nodes.

(b) The MB (blue nodes) of the
target variable X6.
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(c) The MB (blue nodes) of the target variable SBP. The undirected
edges represent the plausible associations between nodes without
specific claims of causal relations since in this paper the direct MB
discovery is used without doing global causal discovery.

Fig. 5: Illustration of (a) graphical models; (b) Markov blanket
(MB); (c) the potential application of using MB for SBP
estimation.

with 10 variables and its factorized distribution is derived as:

P (X) =

10∏
i=1

p(Xi|Xpa(i)) (1)

where Xpa(i) stands for the vector that includes all parental
nodes of Xi in the graph. The factorization encodes sparsity in
the structure via conditional independence that can be further
utilized for feature selection and robust inference.

According to d-separation [38], all nodes outside the MB
will be conditionally independent of the target node given the
MB such that those variables apart from the MB and the target
would be redundant in estimating the target variable. The MB,
shown in Fig. 5c, identifies sparse structures and essential
features for SBP estimation from generated PPG feature space.
Predictive models trained on these selected features are aim to
enhance robustness against spurious correlations and covariate
shifts in the generated feature space across diverse populations
[39]. This paper focuses on approaches that can handle mixed-
type features without distribution assumptions using non-
parametric methods, leading to the adoption of the PPFS [37].

F. ML Models and Evaluation Metrics
Based on previous studies some of the best-performing

ML models have been implemented to estimate BP from the
selected features: Ridge Regression (RR), Gradient Boosting
(GB), Decision Tree (DT), K-Neighbors (KNN), Linear Sup-
port Vector Regressor (L-SVR) and AdaBoost. Also, different
scalers on each feature space were used: MinMaxScaler, Quan-
tileTransformer, Normalizer, StandarScaler and RobustScaler.

To ensure robust and generalizable performance evaluation,
a nested cross-validation (CV) was employed. This approach

surpasses the conventional train/test split by mitigating over-
fitting and bias inherent in relying on a single static split.
It iterates through various test datasets within an outer loop,
resulting in a more realistic assessment of model performance
across diverse data subsets. Furthermore, to address the chal-
lenge of accurately estimating classification performance for
each test fold, an inner (nested) CV loop iterates over different
validation datasets within each outer loop iteration, optimizing
the model’s hyperparameters based on the validation data’s
classification performance. This two-layered process ensures
the model’s true generalizability on unseen test data in the
outer loop, guarding against overfitting to a specific training
set [40]. In this study, a 10-fold inner CV, optimized hyperpa-
rameters for each test fold of the outer leave-one-participant-
out CV, ensuring each participant served as unseen test data
exactly once. The overall estimation error was given by the
average of the individual model scores of every participant.

The assessment followed metrics and visualizations rec-
ommended by the IEEE Std 1708-2014 standard [41], as
well as ANSI/AAMI SP 10-1987 standard [42]. The IEEE
standard recommends the use of scatter plots, such as the
Bland-Altman plot, and BP change histograms to visualize
the differences between the reference measurements and the
measurements to be validated. It also introduces the MAE and
mean absolute percentage error (MAPE) as an alternatives to
the mean ± standard deviation proposed by the ANSI/AAMI
and the cumulative percentage errors suggested by the British
Hypertension Society (BHS) protocol [43].

The IEEE standard also introduces a new grading system
based on the MAE accuracy level, which can be compared
with the grading system proposed by the ANSI/AAMI (pass
if MAE is less than 5 ± 8 mmHg, fail otherwise) and the
BHS evaluation system. It assigns grade A for MAE less
than 5 mmHg, grade B for MAE in the range of 5-6 mmHg,
grade C for MAE between 6-7 mmHg, and grade D (fail)
for MAE greater than 7 mmHg. Accordingly, in this paper,
the performance charts include lines at 5, 6, and 7 mmHg to
delineate these grades.

Since the BP data was collected from different populations,
the primary interest lies in finding how large the distance
between each pair of populations can be. There exist extensive
works inspecting distribution distances, e.g. KL-divergence
and H-divergence, and recommendations on how to utilize
these metrics for further applications. In this work, the mea-
surement of the distance between two empirical distributions
is accomplished using the Wasserstein distance metric [44].
The p-Wasserstein distance between probability measures µ
and ν on Rd, given with a hyperparameter p, is defined as

Wp(µ, ν) = inf
X∼µ,Y∼ν

(E||X − Y ||p)
1
p , p ≥ 1. (2)

The distance metric from the optimal transport perspective
is the minimum effort it would take to move mass points from
one distribution to the other. This can be approximated using
a numeric method called Sinkhorn iterations [45]. For a better
focus of the paper, details of this algorithm are omitted.
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III. RESULTS

The performance of different ML algorithms for BP esti-
mation with MB-selected features was initially compared to
identify the most accurate for subsequent evaluations. Consid-
ering training and testing BP estimation models on specific
sub-populations can help improve accuracy and reliability, the
cross-population stability of the selected feature space was
evaluated by training and testing several models specialized for
different groups and a generic model for all data. Additionally,
the performance of the BP estimation algorithm is evaluated
for ambulatory and in-clinic data separately.

A. Generated Dataset
From the initial cohort of 548 participants, in-clinic BP in

a resting position (specifically sitting with the arm down) was
available for only 534 participants, serving as the reference
BP. Each participant contributed a mean (SD) of 55.70 (4.11)
measurements, with 14.15 (0.68) and 41.55 (4.07) measure-
ments conducted during in-clinic and ambulatory settings.
After signal pre-processing, the cohort was reduced to 523
participants. The signal retention rate, calculated as the ratio of
the duration of valid pulses to the segment duration, was 35.22
(35.00)% with rates of 32.54 (34.63)% and 41.25 (35.06)%
for in-clinic and ambulatory data. The post-processing ratio,
representing the available measurements after pre-processing
compared to before, was 56.97 (7.22)% (Fig. 6)1.

Fig. 6: Measurements before and after signal pre-processing,
retention rate and post-processing ratio by time of day.

Assessing the algorithm’s performance requires a broad dis-
tribution of BP data relative to the resting position. According
to the IEEE standard [41], BP values at the calibration point
should vary by at least 10 mmHg for DBP and 15 mmHg for
SBP. Fig. 7 shows the distribution of BP changes. The mean
of DBP and SBP at rest position are 86.21 (10.88) and 131.15
(15.53) mmHg, respectively, with delta DBP and SBP of 40.72
(11.87) and 54.03 (16.25) mmHg, respectively.
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Fig. 7: BP distribution in the dataset per measurement from
the individual resting point (mmHg).

1Further details regarding these metrics are available in [16]

Fig. 8: Number of selected features, along with their mean
and cumulative importance, segregated into the three main
categories: time (TF), frequency (FF), and demographic (DF)
features. The time domain is subdivided into intensity (I), time
(T), area (A), slope (SLP), branch width (BW), and others
(OT), illustrating their cumulative importance and quantity.

B. Feature Selection and Machine Learning Models

The feature selection process resulted in a subset of 68 and
76 features for SBP and DBP estimation, with 38 features
in common2. Among the selected features, no SFs were
included, but four DFs were deemed significant for both DBP
and SBP estimation, ranking among the top 11 features in
terms of importance. While DF features have the highest
mean importance, their lower count (n=4) results in TF and
FF features with lower mean importance, contributing more
significantly to the overall cumulative importance (Fig. 8). An
evaluation of the feature selection process robustness through
MB compared to recursive feature elimination is detailed in
the appendix I.

Following the feature selection process, two datasets were
created. The systolic BP dataset consists of 68 features and a
reference BP value, and the DBP dataset comprises 76 features
and a reference BP value. Various scalers were tested, and the
MinMaxScaler yielded the highest accuracy. Table I presents
the results for BP estimation using each algorithm while apply-
ing the MinMaxScaler. Among the algorithms, GB achieved
the highest accuracy with its hierarchical structure, comprising
an ensemble of decision trees, each sequentially constructed
to rectify predecessor errors. Through a hyperparameter tuning
process, the optimal configuration was determined, featuring a
learning rate of 0.01, Huber loss function, maximum tree depth
of 8, minimum samples per leaf of 1, minimum samples for
a split of 2, 500 estimators, and a subsample ratio of 0.5.

TABLE I: Performance of ML algorithms for estimation.

SBP DBPML Model MD (SD) MAE MAPE MD (SD) MAE MAPE
RR -0.24 (14.14) 10.79 8.72 0.00 (9.48) 7.21 9.79
GB 0.18 (13.82) 10.29 8.44 -0.22 (8.71) 6.74 9.39
AdaBoost -0.17 (13.97) 10.57 8.51 0.14 (9.22) 6.96 9.42
DT 0.45 (15.54) 11.68 8.72 -0.14 (10.44) 7.87 10.65
KNN 0.88 (15.35) 11.75 8.72 0.13 (9.85) 7.52 10.17
LSVR 0.22 (14.28) 10.81 8.72 -0.35 (9.69) 7.32 10.02

The GB model exhibited a MAE of 10.29 and 6.74 mmHg
and a MD (SD) of 0.18 (13.82) and -0.22 (8.71) for SBP and
DBP (Fig. 9a). Morevoer, Fig. 9b presents the evolution of

2The selected features ranked by their importance are available in [16].
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(a) Bland-Altman plot for SPB and DBP estimation.

(b) Temporal evolution of MAE for SBP and DBP estimation.

Fig. 9: GB model performance for BP estimation. (a) Bland-
Altman plot showing the MD and SD of the reference and
estimated BP. The ANSI/AAMI SP 10 requires to have
MD±SD less 5±8 mmHg. (b) MAE across day and night
hours, indicating the start of the measurements. Lines represent
the average MAE, and the shaded area depicts the SD.

the MAE for SBP and DBP estimation throughout day hours.
Note that the initial clinical visit commenced at a mean time of
11:30:35±01:40:11 (range: 09:07:47 to 15:24:23). Subsequent
analyses exclusively report the performance of the GB model.

C. Results for Sub-populations

Participants were categorized into four BP categories fol-
lowing ACC/AHA guidelines [46], based on their resting SBP
and DBP (Fig. 10a): normal, elevated, hypertension stage 1
(HTN S1), and hypertension stage 2 (HTN S2). To assess
the distributional disparity of features among BP categories,
the normalized Wasserstein distance matrix were estimated.
Contrary to the inter-group distance observed in the original
feature space (Fig. 10b), the feature space chosen by PPFS for
SBP (Fig. 10c) and DBP (Fig. 10d) estimation exhibits a more
pronounced discrepancy across categories. These features,
with better discrimination, hold promise for training robust
generic models against feature shift over BP categories.

One generic model was developed using the information
coming from all the participants, while various specialized
models were trained and tested with each sub-population based
on the BP category. The MAE of the generic model along with
the MAE of the specialized models are presented in Table II.
The MAE of the generic model is subdivided according to
each subgroup, and the MAE of all four individual models
is combined. Additionally, the number and percentage of
available measurements for each sub-population, including the
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(c) Distance matrix of SBP fea-
ture space selected by PPFS

Normal Elevated HTN S1 HTN S2

No
rm

al
El

ev
at

ed
HT

N 
S1

HT
N 

S2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Distance matrix of DBP
feature space selected by PPFS

Fig. 10: (a) Distribution of participants’ BP profile. (b)
Normalized distance matrix for the full feature space (after
standardization) across different sub-populations by BP pro-
file, normalized to the number of dimensions. (c) Normalized
distance matrix of selected SBP feature space by PPFS. (d)
Normalized distance matrix of selected DBP feature space by
PPFS.

mean and SD for each participant is also provided in Table II.
The generic model had a lower MAE and SD when com-

pared to the combined BP estimation accuracy of the group-
specific models. Additionally, the p-value at the level of
0.0001 from a paired t-test showed that there were significant
differences between the generic and individualized models for
all four BP subgroups; while the specialized models provided
better results for the normal and elevated subgroups, the results
were worse for HTN S1 and S2 subgroups.

Additionally, the results showed that the MAE of the
generic model remains relatively consistent MAE across all
sub-populations in contrast to specialized models (Fig. 11).
Specifically, the ANOVA revealed that the dependent variable
(BP profile) had no significant impact on the results of the
generic model for estimating both SBP (p − level > 0.1, F
value = 0.77) and DBP (p − level > 0.1, F value = 1.76).
Conversely, the BP profile exerted a significant influence on
the outcomes of their corresponding individual models for SBP
(p − level < 0.0001, F value = 585.57) and DBP estimation
(p− level < 0.0001, F value = 1188.12).

D. Ambulatory vs In-clinic Data

To evaluate the impact of data type on BP estimation, the
database was separated into two subsets: in-clinic and ambu-
latory. For each subset, a GB model was trained and tested
separately after the feature selection. For SBP estimation, 61
and 49 features were selected for ambulatory and in-clinic
datasets; for DBP estimation, counts were 62 and 46. The
MAE (SD) of SBP and DBP are 8.49 (0.25) mmHg and 5.03
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TABLE II: Performance, expressed as MD (SD), MAE (MD) and MAPE, of the generic model and specialized models based
on BP category.

SBP DBPAvailable measurements Individual Generic Individual Generic
Total Percentage Mean (SD) MD (SD) MAE (SD) MAPE MD (SD) MAE (SD) MAPE MD (SD) MAE (SD) MAPE MD (SD) MAE (SD) MAPE

(%) (mmHg) (mmHg) (%) (mmHg) (mmHg) (%) (mmHg) (mmHg) (%) (mmHg) (mmHg) (%)
Normal 2057 16.4% 23.38 (11.55) 0.40 (12.98) 9.82 (0.29) 8.89 0.10 (13.59)2 10.27 (0.29)2 8.352 -0.20 (7.80) 5.91 (0.34) 8.99 -0.20 (8.82)2 6.71 (0.22)2 9.232

Elevated 3082 24.6% 24.66 (11.45) 0.17 (12.54) 9.63 (0.41) 7.92 0.13 (13.65)2 10.32 (0.24)2 8.372 -0.01 (8.50) 6.58 (0.19) 9.03 -0.23 (8.91)2 6.76 (0.14)2 9.312

HTN S1 4359 34.8% 23.19 (11.42) 0.04 (3.95) 10.58 (0.50) 8.49 0.16 (13.63)2 10.27 (0.32)2 8.332 0.00 (9.12) 7.01 (0.29) 9.57 -0.22 (8.86)2 6.73 (0.18)2 9.252

HTN S2 3012 24.1% 24.69 (12.22) -1.38 (15.57) 11.77 (0.47) 8.95 0.12 (13.65)2 10.31 (0.24)2 8.342 -1.36 (10.39) 7.95 (0.19) 10.46 -0.24 (8.88)2 6.74(0.17)2 9.282

All 12510 100% 23.92 (11.36) -0.20(13.83)1 10.50 (0.91)1 8.531 0.13 (13.63) 10.29 (0.28) 8.35 -0.35 (9.05)1 6.94 (0.72)1 9.551 -0.22 (8.87) 6.74 (0.18) 9.27
1 Indicates combined results from individual models. 2 Indicates split results from the generic model by BP group.

Fig. 11: Performance evaluation of the generic model and
specialized models for BP estimation across different BP
categories: normal, elevated, HTN S1, and HTN S2. ∗ denotes
significant difference by a paired t-test at the level p < 0.0001.

Fig. 12: Performance of the BP estimation algorithm using
in-clinic, ambulatory, and all measurements. ∗ denotes a
significant difference by a paired t-test at the level p < 0.0001.

(0.25) mmHg for in-clinic measurements, and 11.35 (0.44)
mmHg and 7.85 (0.25) mmHg for ambulatory. The MD (SD)
values for SBP and DBP are 0.63 (11.73) and 0.01 (6.58) in
in-clinic, and -0.33 (14.54) and -0.22 (10.10) in ambulatory
measurements. The MAPE for SBP and DBP is 6.34% and
5.03% in in-clinic, and 9.54% and 11.15% in ambulatory
measurements. Statistically significant differences were found
between ambulatory and in-clinic data in terms of MAE for
both SBP (p− level < 0.0001, F-value = 32764.76) and DBP

(p− level < 0.0001, F-value 65675.36) estimation (Fig. 12).

IV. DISCUSSION

A. Feature Selection

Prior studies focused on selecting the optimal features for
BP estimation, yet many of them proposed a limited range of
features. For instance, [10], [17], [47] proposed feature sets
confined to TF, with 24, 42 and 65 features. These restricted
set overlooked valuable information encoded in other feature
domains. Similarly, [12] proposed 74 features encompassing
TF, SF and DF features, while disregarding FF. Likewise,
[19] proposed 34 features in the TF, FF and SF domains,
omitting DF. In contrast, this work offers a comprehensive
set of features belonging to four main categories (TF, FF, ST,
and DF), ensuring a robust feature selection process through
the MB with causal and effect nodes included.

Feature selection results revealed that over half of the
chosen features belong to the TF category, including all six
subcategories. This aligns with prior studies [9], [12], which
underscored the significance of TF in BP estimation. The
results also indicated the importance of DF features, in line
with other works [12], [48], although BMI was excluded.
FF were identified as well, including the wavelet entropy for
both SBP and DBP estimation. This contradicts the results
of [19], which ranked approximate entropy in the top 15,
but no wavelet domain features were considered influential.
Lastly, SF features were found to offer less informative value
compared to other feature types, consistent with previous
works [9], [12], but not with [19], which identified SK and
SD among the 15 top features.

B. Domain Transfer

The study conducted by Miao et al. [49] underscored
substantial variation in feature importance across individuals,
highlighting the subject-specific nature of feature selection
and the need for individualized approaches in accurate BP
estimation. In this line, the work in [8] introduced a two-step
algorithm classifying BP into categories and applying specific
algorithms for each. The two-step algorithm outperformed the
generic approach with statistically significant differences in
SBP/DBP estimation. Additionally, the BP profile significantly
influenced the DBP/SBP estimation accuracy using either
model. Similarly, [50] reported significantly higher estimation
errors in HTN subjects than in normotensive individuals.

However, in practical applications, subject-specific feature
selection may not be feasible due to the need for extensive
individual data for model pre-training. This work proposes
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adopting an MB-based feature selection method to obtain
a reliable and consistent feature set across individuals, en-
abling robust BP estimation without requiring subject-specific
customization. As shown in Fig. 10b-10d, compared with
the normalized distance matrix of full feature space, the
normalized distances of selected feature spaces for SBP/DBP
estimation appear more salient. PPFS identifies the set of
features that are more informative and differentiated across
sub-populations, enabling the consequent generic modeling
to capture those individualized distinctions. These findings
reflect that the generic model exhibited significantly superior
estimation accuracy compared to the overall accuracy of
the specialized models for both SBP and DBP (Table II).
Moreover, the BP profile did not have a significant impact on
the accuracy of DBP/SBP estimation when using the generic
model (Fig. 11). Additionally, the feature space selected by
MB had better transferability in terms of estimation accuracy
and robustness. Indeed, the outcomes (Fig. 13) demonstrated
the superiority of the PPFS method based on the MB criteria
over the RFE, indicating a more effective generalization of the
approach. This has significant implications for BP estimation
in small populations, such as pregnant women, neonates and
SCI individuals, where data to train large learning models may
be insufficient.

C. Ambulatory vs In-clinic data
Performance validation for ambulatory measurements

showed that the estimation deviated more from the reference
BP compared to in-clinic ones (Fig. 12). Ambulatory data,
both for SBP and DBP, did not satisfy the requirements of
either the IEEE 1708 and the ANSI/AAMI standards, while
in-clinic data met the standards for DBP. Nonetheless, in-clinic
data, while falling short of meeting the standards for SBP
estimation, exhibited a closer proximity to the benchmark than
the ambulatory data. This discrepancy underscores the impact
of the data source (ambulatory vs. in-clinic) on meeting BP
standards. Previous research has pointed out the inadequacy
of those methods to follow the dynamic changes in BP
elicited by the cardiovascular autonomic nervous activities
[50]. Nevertheless, it is important to remark that in-clinic data
included not only resting measurements (supine, sitting arm
down/lap/up) but also dynamic BP changes induced by various
cardiac activities (walking, cooling down, and running).

It can be therefore concluded that BP estimation accuracy
from in-clinic data is superior to the 24-hour ambulatory
recordings due to the latter’s increased susceptibility to noise.
PPG signals are highly influenced by both biological charac-
teristics (respiration, vasomotor activity, thermoregulation) and
by external factors, such as motion or light [3]. However, the
potential of ABP estimation based on PPG signals lies in its
capacity to continuously monitor dynamic BP changes, pro-
viding valuable insights into cardiovascular health biomarkers.
Moreover, its non-invasive and wearable design ensure high
patient acceptability, promoting widespread use.

D. Comparative analysis
The generic model lacks below the IEEE 1708 or

ANSI/AAMI/ISO standards for SBP estimation in 24-h data.

However, for DBP estimation, it demonstrated compliance
with the IEEE standard but fell short of meeting the
ANSI/AAMI criteria. This work is the first of its kind using
both ambulatory and inpatient data and aiming to identify
relevant transnational features for robust estimation of BP
across populations. Therefore, comparing it to previous work
proves challenging due to the disparities in the sample size
[51], data and target population. As observed, the dataset’s
characteristics have a profound impact on BP estimation
performance. This influence is well-documented across various
studies [5], [9], [11], where the same BP estimation algorithm
applied to different datasets has yielded notable variations in
accuracy. These variations can be attributed to a multitude
of factors, including distinctions in population characteristics,
data acquisition protocols, signal quality, and noise levels.

To date the only work using the Aurora-BP dataset is
[15]. Their BP estimation algorithm based on PPG achieved a
SBP and DBP estimation accuracy of 0.42 (8.98) and 0.54
(5.95) mmHg, respectively. In contrast, this work showed
lower accuracy with values of 0.48 (13.93) and -0.22 (8.71)
mmHg for SBP and DBP estimation. Nonetheless, while their
study only used an average of 19.3 (10.1) measurements for
a total of 227 participants, without providing specific details
regarding the resulting BP distribution, this study incorporated
data from 523 participants, with a mean of 23.92 (11.36)
measurements per participant and provided the BP distribu-
tion (Fig. 10). These discrepancies highlight the influence of
data processing and cleaning techniques on outcomes. Three
additional features (acceleration, sine, and cosine of the time
of day) were included in [15], but omitted in this study to
rely only on a single signal modality. Consequently, the model
exhibits increased error during nighttime hours (Fig. 9b), as
it does not account for night BP dipping during sleep. The
imbalanced data, with more measurements available during
the day than at night (Fig. 6), coupled with the use of rest
SBP and DBP as input features, likely contribute to the higher
MAE observed during nighttime hours. Unlike prior work,
the time of day was deliberately omitted as a feature in the
model to avoid bias from uniform sleep pattern assumptions
and prevent introducing a correlated but non-causal factor to
BP estimation.

V. CONCLUSION

A comprehensive BP estimation method from PPG signals
has been validated with ambulatory measurements across
diverse populations, presenting a stable algorithm for PPG
feature extraction and robust feature selection. The proposed
method, available in the public library [16], incorporates signal
pre-processing to ensure accurate pulse segmentation and
quality analysis before employing the fiducial point identifi-
cation algorithm for subsequent feature extraction. Leveraging
the extracted features, the MB method proved to effectively
determine features for robust transfer among populations. We
believe these findings provide a more realistic representation
of a BP estimation algorithm in ambulatory diagnosis and
monitoring applications for populations at risk of cardiovas-
cular diseases, which often face data limitations. Significant
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Fig. 13: Performance comparison between PPFS and RFE
method in the task of domain generalization: both feature
selection methods were tested using a cross-population vali-
dation strategy where the estimation results are obtained using
the selected feature space with ML model finetuning.

deviations in model performance between in-clinic and am-
bulatory data highlight the need for more reliable models and
data for ABP estimation. Subsequent research should prioritize
consistent data collection and developing robust algorithms
capable of handling suboptimal conditions in PPG signals
across diverse populations.
Data Availability
The Aurora-BP dataset [15] is utilized under a data transfer
agreement signed between Microsoft and ETH Zurich.
Code Availability
The code for preprocessing and feature extraction generated during
this study is available under the GPLv3 License on GitHub [16].

APPENDIX I
FEATURE SELECTION ROBUSTNESS

The robustness of the MB-based feature selection method
(PFFS) was evaluated and compared with the baseline of
recursive feature elimination (RFE), an algorithm commonly
used in ML to identify the most relevant features for a given
variable [52]. It is an iterative process that aims to determine
the optimal subset of features by eliminating less essential or
redundant features based on a ranking such as feature
importance or model-specific coefficients. To this end, the
GB model was trained on the normal, elevated and HTN S1
populations, and tested on the HTN S2 population. The
model developed using the PPFS method exhibited superior
generalization compared to the model relying on the RFE
selection method, as evidenced by the results for both SBP
and DBP estimation (Fig. 13).
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