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ABSTRACT

This paper proposes a microscopic travel demand simulation that employs a continuous planning
approach with an open time horizon. It uses behavioral targets and the concept of projects to
model people’s motivation to execute activities. People’s behavior originates from a planning
heuristic making on the fly decisions about upcoming activities. The planning heuristic bases
its decisions on the available activity execution options in the near planning future, its current
execution effectiveness and on a discomfort measure derived from deviations between people’s
performance and their behavioral targets. We illustrate the model through several examples and
suggest directions for future research.
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INTRODUCTION

Microscopic travel demand simulation softwares simulate virtual people (referred to as agents)
individually. For instance, Balmer (1) uses agents which choose between different daily sched-
ules. Activities of these schedules are executed and simulation results are handed back to the
planning process, allowing agents to improve their schedules based on improved estimates of
their generalized costs. This replanning step is repeated until the simulation reaches a stochastic
user equilibrium with consistent travel demand and travel cost (2). Simulating agents individu-
ally leads to a high computational complexity which often results in computational performance
and memory issues. Microscopic models typically introduce restrictive constraints to counter
such issues. For instance, Balmer limits the maximum simulation horizon of standard size
scenarios to a single day, making it difficult to investigate effects occurring over a period of
days or weeks. Another limitation is that agents must commit themselves to a specific day-plan,
making it challenging to simulate unexpected events realistically (3). As a consequence, a
different simulation approach becomes necessary that is capable to model demand continuously,
i.e. agents should be able to make decisions about upcoming activities on the fly and with an
open time horizon.

We propose a microscopic travel demand simulation that utilizes behavioral targets to
represent agents’ decision space. Targets can represent social and cultural norms and are closely
related to observed behavior like e.g. execution frequency or time spent for an activity. Since
targets use averaged values, they are well suited for modeling recurrent activities. We extend
the target based model with the concept of projects to model non-recurrent activities. Projects
influence target values during a specific time period, leading to behavioral variability. Agents
continuously track their performance and compare it to their behavioral targets using observation
windows of different durations. Deviations from the desired behavior cause discomfort which
is conveyed to a planning heuristic, making decisions about future activities agents should
execute. This enables agents to react spontaneously to unexpected events. At the same time, it
also reduces memory consumption because agents do not need to keep track of complete daily
schedules.

The remainder of this paper is structured as follows: first, we discuss the model and its
behavioral targets. We then introduce the concept of projects and describe how it influences
behavioral targets. The next section describes the planning heuristic with its key features and
how it utilizes the target based model to decide about future activities to execute. This is followed
by a behavior calibration and validation section. We conclude the paper with a perspective on
future tasks.

OTHER WORK

Arentze and Timmermans (4) introduced need-based theory and proposed a model for activity
generation (5) that assumes utilities of activities are a dynamic function of needs. Whereas
Arentze and Timmermans used needs as people’s motivation to execute activities, we see the
satisfaction of needs as one possible target in our model. Generally, we assume that people
describe their desired performance through measures which are closer to data found e.g. in
(6). Axhausen and Schönfelder (7) (8) proposed projects as a coordinated set of activities, tied
together by a common goal or outcome. Miller (9) technically applied projects to organize
complex human behavior. We see projects as a mechanism that temporally influences behavioral
targets and use it to model non-recurrent activities. We pick up Gliebe and Kim’s (10) suggestion
to use time-dependent utilities and introduce time-dependent effectiveness functions, describing
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the effectivity of activities and locations towards discomfort reduction. We presented a need-
based model in (11) that was also designed for a continuous simulation. Our new model
drops the need-based approach and introduces measures (we refer to them as targets) which
are more related to data found e.g. at the Swiss Federal Statistical Office. From this shift,
we expect a simplification of model utilization for practitioners. At the same time, it made
a complete revision of the concept necessary, resulting in a more comprehensive model and
simpler algorithms.

TARGET BASED MODEL

Agents are the central component of our model and represent virtual people. Each agent has a
motivation to execute activities and specifies its desired performance through behavioral targets.
Deviations to behavioral targets result in discomfort which induces agents to take action against
the deviation; higher deviations result in higher discomfort which in turn leads to a higher urge
to take action. Agents can reduce discomfort through the execution of activities at different
locations. We assume that agents implement activity-location pairs that provide most discomfort
reduction. This is similar to Arentze and Timmermans’ work (5), where they proposed activity
utility as a function of need reduction.

The core assumption of this work is that people have a motivation to execute activities and
that they have a perception of their motivation in form of a desired performance. People specify
this performance through behavioral targets and try to comply with them across observation
windows of different duration. For instance, a person would like to play 2+2

−1 hours of tennis about
twice per week but not more than six times per month. In this example, the person specifies a
target value of 2 hours of tennis, a bandwidth of +2

−1 hours, and two observation windows (per
week and per month) in which the person tries to comply with the target.

Targets with Observation Windows

This work assumes that people give recent behavior more weight and gradually forget their
past performance. The length of the observation window of a target defines the duration of
its forgetting process. The proposed model uses execution frequency and cumulative duration
as targets with observation windows. Both targets define a target value (value a person tries
to accomplish) and a bandwidth (upper and lower bound of the target value). For instance, a
modeler could specify these targets for a sport activity as follows:

• Frequency: 2×+2
−1 per week. The desired frequency is twice per week and the agent

experiences a limited discomfort in the range of [1..4] times per week. The observation
window is one week.
• Cumulative duration: 4h+2

−2 per week. The desired cumulative execution duration is 4h
per week and the agent experiences a limited discomfort in the range of [2..6] hours per
week. The observation window is one week. Internally, the simulation converts cumulative
duration targets into percentage of time targets which define the percentage of total time an
agent should spend for an activity. In our example, the target value is 2 ·4/(7 ·24) = 4.76%
with an upper bound of 2 · 6/(7 · 24) = 7.14% and a lower bound of 2 · 2/(7 · 24) = 2.38%.

Agents record their performance during simulation and compare these state values to target
values. State values are exponentially discounted over the observation windows of target values
in order to simulate the forgetting process. This is achieved by a convolution with an exponential
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FIGURE 1 Illustration of discounted state values

(a) Activity execution pattern
(b) Discounted percentage of time spent for an ac-

tivity and discounted execution frequency

kernel (see Fig. 1). Accordingly, agents weight their recent behavior more and forget their
behavioral performance beyond the observation window.

Targets without Observation Windows

The proposed model also enables the specification of targets which do not have a forgetting
process. An example is the execution duration target. It specifies how long an agent should
spend for one activity execution. For instance, a modeler could specify the execution duration
target for a sport activity as follows:

• Duration: 2h+2
−1 per execution: The targeted duration is 2 hours per execution and the

agent experiences a limited discomfort if it chooses a duration in the range of [1..4] hours.

Effectiveness Function

Similar to Gliebe and Kim’s work (10), where they used time-dependent utilities, we introduce
a time-dependent effectiveness function. This function informs agents about the effectiveness of
activities and locations towards discomfort reduction at a specific time through a value in the
range of [0..1]. The effectiveness function is a broad concept and can model different effects.
Possible examples are:

• Shop opening hours for a daily shopping activity. This function takes the value of > 0
when shops are open and zero whenever they are closed. Agents can use this information
to either determine if they can shop and for how long or how long it takes until they can
shop next time. Since effectiveness functions can be location dependent, it is also possible
to model location dependent shop opening hours. Furthermore, this effectiveness function
can also contain time dependent information about shop crowdedness. Hereby, we assume
that shopping at overcrowded shops is less efficient (smaller value) and therefore takes
longer.
• Daylight intensity for a sleep activity. This function specifies the light intensity. Agents

can use this information e.g. as an indication of sleep effectiveness. Hereby, we assume
that people sleep at night and have already adapted to their current timezone.
• Business hours for a work activity. This function can be seen as a cultural norm (cultures

may have different business hours) and a social norm (social groups, e.g. professions, may
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have different business hours). Agents can use this information e.g. as an indication of
work effectiveness. Hereby, we assume that people depend on co-workers to be able to do
their work (the degree can differ depending on the profession).
• Seasonal effects for a sport activity. This function is location dependent and combines

different effects like time of the year and weather conditions. As an example, a ski resort
can have a hight effectiveness during the winter months after a snowfall whereas the yacht
club has a hight effectiveness during the summer months with sunny weather and a good
breeze. This enables agents to follow seasonal rhythms because they choose to ski at the
ski resort during the winter and to sail at the yacht club during the summer.

PROJECTS

Apart from periodically executed activities (e.g. sleep), people can also have a motivation to
execute activities during a certain time period. The motivation and the time period is thereby
defined by a special event. An example is the plan to give a party and the necessity to buy extra
food before the party starts. In this case, it is the event of having a party that drives people to the
shop. We model such events as projects which temporally modify values of behavioral targets.

Project Structure

The task is the basic component of a project and has following properties:

• The activity it refers to (e.g. daily shopping),
• The targets it refers to and how much it modifies its values (e.g. frequency target: +1×+0

−0),
• The time window when the value modifications take place (e.g. 23/07/2011 from 9:00 am

to 4:00 pm),
• The location of the activity execution. This parameter is optional since a restriction to a

specific location might not be necessary (e.g. location: confectionery).

A combination of several tasks build a project (see Fig. 2). For instance, the tasks buy dessert
and buy extra food build the project organize party food. Projects can also have a recursive
structure and contain other projects. The project organize party food could be re-used, e.g. for
the project organize home party which also includes tasks like prepare food and clean apartment.
The project organize home party could then become a subproject of organize wedding together
with other tasks (e.g. pick up guests) and other projects (e.g. organize ceremony). This concept
provides a mechanism where tasks and projects can be re-used to build bigger and more complex
projects.

Projects and Targets

In the party example above, the agent has to spend additional time for the daily shopping activity
in order to comply with additional shopping needs. It can achieve this in three different ways:

1. The agent can combine the additional shopping effort with other daily shopping needs,
2. The agent can do an extra trip to a specific shop (e.g. to buy an extra delicious cake at a

special confectionery),
3. The agent has the freedom to implement either of the above options.

All three options temporally increase the cumulative duration target value and its upper bound
during the time window when the agent should buy additional food. This temporally increases
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FIGURE 2 Recursive structure of projects enables composition of bigger and more com-
plex projects

(a) The combination of subproject organize party food and tasks clean apartment
and prepare food builds project organize home party

the discomfort and forces the agent to spend some additional time for that activity. The first
option additionally increases the execution duration target value and its upper bound. This
avoids the induced discomfort of the extra long activity duration. The second option increases
the frequency target value and its upper bound as well as the execution duration target value
and its lower bound. This avoids the induced discomfort of the extra trip and the short activity
duration. The third option applies all changes to avoid potential discomfort of both possibilities.
While the above example temporally increases target values, it is also possible to construct
examples which lead to a decrease. An example is a short vacation which temporally decreases
the target values of the work activity.

Target Value Modification

Projects modify target values during a specific time period. These changes (difference to actual
target values) are also exponentially discounted as it is done for state values (see section Target
Based Model). This is necessary because abrupt changes would cause a sudden deviation
between target and state value. Consequently, discomfort would also instantaneously increase,
leaving agents with no time to react.

PLANNING HEURISTIC

Other approaches to agent-based microsimulations revealed disadvantages like poor performance
for large scenarios (12), high computational costs (1) or inflexibilities when agents should
spontaneously react to unexpected events (13). We consider a planning heuristic as a feasible
approach to overcome such limitations. Since a heuristic aims to approximate a good solution, it
is possible to use incompletely knowledge about the state of mind and plans of other agents. This
is helpful since we plan to simulate our agents in a distributed computation environment (14)
where global knowledge induces extremely high computational costs. A heuristic also enables
agents to react to unexpected events because they can make their decisions spontaneously. One
could argue that people seek optimal day plans. However, other authors (e.g. (15) and (16))
doubt that behavior can be explained as a utility maximization function. One goal of this ongoing
work is to demonstrate how far a decision procedure, that approximates a good solution with

TRB 2012 Annual Meeting Paper revised from original submittal.



Märki, F., Charypar, D. and Axhausen, K.W. 7

limited information, can produce real world behavior.

The next section introduces mathematical formulations the planning heuristic uses during
its decision procedure. The section thereafter demonstrates the actual decision steps and the
application of the mathematical formulations.

Mathematical Formulations

Discomfort

Discomfort levels identify the urgency an agent experiences to take action against them. The
discomfort an agent receives from an activity at time t is defined as

D(t) =

n∑
k=1

( f k
target(t) − f k

state(t))
2 ·

{
wk

1 if fstate(t)k ≤ ftarget(t)k

wk
2 otherwise (1)

wk
1 =

1
( f k

state(t) − f k
lower−bandwidth(t))2

(2)

wk
2 =

1
( f k

state(t) − f k
upper−bandwidth(t))2

(3)

the sum of the squared difference of the target value ftarget(t) and state values fstate(t) of all
targets n normalized by the squared difference of the state value and the lower bandwidth wk

1 if
fstate(t)k ≤ ftarget(t)k or by the squared difference of the state value and the upper bandwidth wk

2
otherwise.

Discomfort Reduction

The discomfort reduction an agent receives for executing an activity at a specific location is
defined as

DR(tes, tee) = D(tes) − D(tee) (4)

the difference of the discomfort D(tes) at execution start tes and the expected discomfort
D(tee) at execution end tee. This work assumes that agents prefer activity-location pairs that yield
higher discomfort reduction.
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Execution Effectiveness

The execution effectiveness an agent receives for an activity at a location is defined as

e f f (tes, tee) =

tee∫
tes

fe f f ect(t) dt

tee − tes
(5)

the integral of the effectiveness function fe f f ect(t) between execution start tes and execution
end tee normalized by the activity duration tee − tes. This parameter introduces a preference for
efficient time windows and e.g. helps to prevent agents from executing activities during time
windows where the agent cannot or can only partially execute the activity (e.g. because the shop
closes).

Look-Ahead Measure

Atkinson (17) and Ioannou et al. (18) highlight the importance of information about future
execution options for scheduling problems with time window constraints. Effectiveness functions
provide information about future execution options. For instance, shop opening hours inform
agents about either if they can shop and for how long or how long it takes until they can shop next
time. Agents can use such information to plan ahead and e.g. postpone execution of activities
because time windows of other activities are going to close soon.

The aim of the proposed look-ahead measure is to provide agents with an awareness of
decreasing execution options of activities. A simple approach for the shop opening example
would be to measure the percentage of total time available for a potential activity execution in
the near future (e.g. within the next four days). This approach has the disadvantage that it does
not distinguish between execution options which open soon and options which open further in
the future. Applying higher weights to execution options that open sooner avoids this problem.
We do this through a convolution of the effectiveness function with an exponential kernel (see
Fig. 3), similar to the convolution of state values (see Fig. 1). The look-ahead measure an agent
receives for executing an activity at time t is defined as

LA(t) =

 1 + w1 · (1 −
h∫

0
( fe f f ect(t + x) · kernel(x)) dx) if fe f f ect(t) > u

1 otherwise
(6)

1 plus the multiplication of w1 with the difference of 1 minus the integral of the effectiveness
function fe f f ect(t) multiplied by kernel(x) between 0 and the look ahead horizon h if the effec-
tiveness function fe f f ect(t) yields a higher value than a predefined threshold u (e.g. 0 for closed
shops) or 1 otherwise. Since we use LA(t) as a factor in the final heuristic, we designed it in
such a way that it yields a value in the range of [1..w1] (1 if execution is not possible and a value
approaching w1 for decreasing execution options).
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FIGURE 3 Illustration of look-ahead measure for shop opening hours with short and
long weekends.

(a) Look-ahead measure with a kernel of 2 days. The higher the measure the closer the end of the current
shop opening window. The measure is higher before weekends indicating less shopping options in the
near future.

(b) Look-ahead measure with a kernel of 7 days. This kernel can differentiate between short and long
weekends (measure is higher before long weekend). Choosing the right kernel length is important and we
propose a duration of approximately 2 to 3 times the average interval between two activity executions (e.g.
3 · 2 days = 6 days for daily shopping).

Heuristic Function

The final heuristic value is defined as

HF(tts, tes, tee) = DR(tes, tee) · LA(tee) · e f f (tes, tee) ·
tee − tes

tee − tts
(7)

the multiplication of the discomfort reduction DR(tes, tee) between execution start tes and
execution end tee with the look-ahead measure LA(tee) at execution end multiplied by the
execution effectiveness e f f (tes, tee) and the execution time quota (the time between execution
start and execution end tee − tes normalized by the time between travel start and execution
end tee − tts). Including DR(tes, tee) ensures that agents prefer activities with higher discomfort
reduction. Using the look-ahead measure LA(tes) guarantees a preference for activities with
fewer execution options in the future. Including execution effectiveness e f f (tes, tee) ensures that
activities and locations which have a higher effectiveness get a higher heuristic value and are
therefore preferred by agents. In combination with the execution time quota, this also provides
for a simplistic location choice procedure. The execution time quota also prevents agents from
changing locations too frequently, leading to a pattern where agents tend to execute more than
one activity at a location (e.g. at home).

TRB 2012 Annual Meeting Paper revised from original submittal.



Märki, F., Charypar, D. and Axhausen, K.W. 10

Decision Procedure

The planning heuristic uses a two-step decision procedure to determine the activity-location
pair an agent should execute next. In a first step, it identifies promising activity-location pair
candidates. Here, the planning heuristic makes best guesses for values which are expensive
to compute. In a second step, the planning heuristic computes optimal values of promising
candidates and decides to implement the most promising activity-location pair.

First Step

In the first step, the planning heuristic makes the following assumptions to determine promising
activity-location pair candidates:

• It uses the free speed travel time to compute travel durations between locations. Computing
the exact travel time is expensive because it depends on the current time and could include
different computer nodes (we plan to run the simulation on a distributed computation
environment (14)). We reduce deviations between exact travel time and free speed travel
time through a multiplication with a factor. The current version of the simulation uses a
constant factor (e.g. 1.2) but we consider a learning process for later versions where agents
adapt the factor based on their past experience (e.g. by time-of-day, type-of-location etc.).
• It uses the execution duration target value (see section Targets without Observation

Windows) as the planned duration. Determining the optimal duration requires a numerical
optimization which is computationally expensive.

The planning heuristic computes the discomfort reduction density HF(tts, tes, tee) for all
activity-location pairs using the above mentioned assumptions.

Second Step

In the second step, the planning heuristic uses real travel durations and computes optimal activity
durations (using the discomfort reduction density function HF(tts, tes, tee)) for the 30% most
promising activity-location pair candidates of the first step. The optimization of the activity
duration is done numerically using Brent’s method from Press et al. (19).

Since the optimization is computationally expensive, the heuristic tries to reduce the range
of valid activity durations before it starts the optimization. The lower and upper bound of
the execution duration target provide the initial range. Effectiveness functions (see section
Effectiveness Function) can further narrow valid upper duration bounds.

duration − boundupper =

{
fe f f ect(y)−1 if fe f f ect(y)−1 < duration − boundupper

duration − boundupper otherwise
(8)

The upper duration bound is updated with the time fe f f ect(y)−1 when the effectiveness function
drops below a predefined value y (e.g. to 0 because shops close), if this time is earlier than the
current upper duration bound.

Finally, the planning heuristic searches the optimal activity duration within the lower and
upper duration bound and implements the activity-location pair that yields the highest heuristic
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value.

BEHAVIORAL VALIDATION

This section illustrates the possibilities of adjusting agents’ behavior to provide an overview of
the calibration mechanism and to show how one can create an agent with a desired behavior
pattern.

The person we want to simulate works full-time and lives alone. We assign 12 unconstrained
activities to the agent and run the simulation over a period of 10 consecutive weeks with 100
identical copies of the agent. Table 1 provides an overview of these activities, their targets and
the deviation of an initial simulation run from the target values. We attune agents’ target values
and configure almost a full capacity utilization, leaving time for an activity we will add later.
The table illustrates that the frequency target and the execution duration target have the highest
deviations. Since we left some time for an additional activity, agents tend to spend more time for
their activities (reflected by the percentage of time target). Target values of activities with extra
long and extra short execution durations experience higher deviations (e.g. sleep and eat). When
we disable the execution time quota in the heuristic (see section Heuristic Function), agents can
almost meet their target values. This could be a hint that deviations are a result of inflexibilities,
preventing agents from freely choosing their activities.

In the reminder of this section, we are going to incorporate grocery shopping into the list of
activities and adapt its configuration to validate the behavior produced by the decision heuristic.

• In a first simulation, we restrict the execution window (opening hour) from Monday to
Saturday, 9:00 am to 6:30 pm. We also define that the agent shops every second day,
spends 1.0 hours per shopping trip and and specify an observation window of one week.
This results in an frequency target value of 3.5 times per week, a cumulative duration
target value of 3.5 hours per week and an execution duration target of 1.0 hour. Fig. 4(a)
illustrates that agents perform the activity during the predefined execution windows.
Furthermore, they realize that shops will be closed during the night through the look-
ahead capability of the planning heuristic. Accordingly, the shopping pattern has a peak in
the evenings. In average, about 46% of the agents (thin blue curve and right y-axis) shop
per day. The difference to the configured 50% (since agents should shop every second
day) results from the restriction of the opening hour during the night and on Sunday. More
than the average number of agents refill their food stock on Saturday, also a result of the
look-ahead capability that makes agents aware of closed shops during Sunday. Because
the food stock lasts about two days, many agents need to refill their stock on Monday.
• In a second simulation, we reuse the configuration from the first simulation and use a

project to introduce additional shopping needs on Wednesday. Thereby, we leave it open
to the agent to do an additional shopping trip or to combine the additional shopping
needs with other shopping duties. This results in an increase of the cumulative duration
target value and an extension of the frequency and execution duration target bandwidth
for Wednesday (also see section Projects and Targets). The increase of the cumulative
duration target reaches its peak at lunchtime. Fig. 4(b) shows a prominent pattern change
on Wednesday with further effects on Thursday and Friday. Wednesday’s peak is slightly
after lunchtime, showing that agents need some time to react to the additional need.
• In a third simulation, we reuse the configuration from the first simulation and introduce a

second grocery shop. This shop is identical to the first shop with the exception of Saturday
afternoon when we define it to be less effective (e.g. to simulate that it is overcrowded on
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TABLE 1 Activities, target values and deviations of an initial simulation run. All targets
have an observation window of one week.

Activity Frequency % of Time (time of a
week spent)

Execution Duration

sleep 7 × per week
Sim. deviation: +18%

32.5% of a week
Sim. deviation: +2%

7.8h per execution
Sim. deviation: −4%

work morning 5 × per week
Sim. deviation: +6%

14.0% of a week
Sim. deviation: +1%

4.7h per execution
Sim. deviation: −4%

work afternoon 5 × per week
Sim. deviation: +6%

14.0% of a week
Sim. deviation: +1%

4.7h per execution
Sim. deviation: −4%

eat 21 × per week
Sim. deviation: −6%

6.6% of a week
Sim. deviation: −2%

0.5h per execution
Sim. deviation: +4%

slack time 7 × per week
Sim. deviation: +6%

4.6% of a week
Sim. deviation: +1%

1.6h per execution
Sim. deviation: −6%

personal care 7 × per week
Sim. deviation: +4%

4.4% of a week
Sim. deviation: +1%

1.1h per execution
Sim. deviation: −4%

daily
housekeeping

7 × per week
Sim. deviation: +4%

4.4% of a week
Sim. deviation: +1%

1.1h per execution
Sim. deviation: −4%

social contact 2 × per week
Sim. deviation: +8%

2.4% of a week
Sim. deviation: +1%

2.0h per execution
Sim. deviation: −8%

physical exercise 2 × per week
Sim. deviation: +8%

2.4% of a week
Sim. deviation: +1%

2.0h per execution
Sim. deviation: −8%

leisure green 1 × per week
Sim. deviation: +12%

2.4% of a week
Sim. deviation: 0%

4.0h per execution
Sim. deviation: −12%

leisure active 1 × per week
Sim. deviation: +12%

1.8% of a week
Sim. deviation: 0%

3.0h per execution
Sim. deviation: −12%

gardening 1 × per week
Sim. deviation: +12%

1.2% of a week
Sim. deviation: 0%

2.0h per execution
Sim. deviation: −10%

Saturday afternoon). Fig. 4(c) and Fig. 4(d) illustrate that agents react and prefer the more
efficient shop on Saturday afternoon (with the exception of the evening rush, when some
agents also choose the less efficient shop).

Performance Analysis

The performance of the proposed simulation is important because we plan to use it for the
simulation of very large scenarios. This is the reason why we design our algorithms for a
distributed environment. At the same time, it is also important to use algorithms that scale well
on the computation nodes. We use the configuration of the first simulation to do an empirical
performance analysis of our code. This analysis shows that the code scales in O(n) where n is
the number of simulated agents (see Fig. 5). This is a satisfying result because it shows that the
simulation time grows linear by the number of agents simulated by a computation node.

OUTLOOK

The next step is to validate the proposed model on real data. We plan to use two existing
six-week continuous travel diaries ((20), (21) and (22)) to configure our model. We will focus
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FIGURE 4 Illustration of the influence of calibration mechanisms to the behavior of
agents. Please note that y-axes have different scales.

(a) Activity execution is restricted to Monday to Saturday, 9:00 am to 6:30 pm.

(b) A project introduces additional shopping needs on Wednesday.

(c) Add a second shop that is less efficient on Saturday afternoon (pattern of the more efficient shop)

(d) Add a second shop that is less efficient on Saturday afternoon (pattern of the less efficient shop)
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FIGURE 5 Performance analysis of the first simulation scenario (see above)

(a) Mean computing time on a 2.53GHz Notebook. Agents
handle 12 activities with a simulation horizon of one week.)

on specific agent types (e.g. working male, housewife, student) and extract time dependent
target values from their diaries. Time dependent in the sense that e.g. the execution duration
target for a home activity has different target values for weekdays and Sundays. This can model
situations when people spend more time at home during Sundays compared to weekdays. The
frequency and cumulative duration target extraction will use different observation windows.
A long term window (e.g. three weeks for a work activity) extracts long term target values.
During the simulation, such targets ensure that agents reproduce long term goals (e.g. about 42
hours of work per month). A short term window (e.g. three days for a work activity) extracts
short term target values. During the simulation, such targets ensure that agents reproduce short
term fluctuations (e.g. that people have different work habits on Mondays and Fridays and do
not work on Saturdays and Sundays). The simulation results will be validated using intra-day
behavior measures (numbers, duration and start time of activity types per weekday), inter-day
behavior measures (average time intervals and transition probabilities between activity types)
and Joh’s (23) multidimensional affinity-measurement function.

We also need to validate the location choice procedure of our model. The current approach
which combines location effectiveness and travel time might not be able to reproduce real
location choice distributions. Horni’s (24) findings provide helpful insights for this task.

The introduction of shared targets will provide the possibility to model household activities.
Since we plan to simulate our agents in a distributed computation environment (14), it is
computationally expensive for agents to communicate and negotiate about the responsibility
for the discomfort reduction of shared targets. Therefore, we will make sure that agents meet
in cyclic intervals (at the same location and therefore also at the same computation node) and
negotiate a reallocation of their shared targets based on a workload measure (e.g. the time
needed to reduce an agent’s discomfort multiplied by an agent specific time value). Targets
that are assigned to an agent becomes its responsibility. This is a simple and powerful solution
because it neither requires a special treatment of shared targets during the decision process nor
communication between involved agents.

CONCLUSION

This paper proposes a microscopic travel demand simulation that can continuously simulate
agent’s behavior. The continuous nature of the simulation will enable an investigation of traffic
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effects that occur between days and between weeks. Behavioral targets are central for the
proposed model. These targets are closely related to statistical data provided by various sources
(e.g. Swiss Federal Statistical Office (6)), simplifying model utilization for practitioners. We
illustrate different targets and their parameters. Some targets have observation windows, enabling
performance tracking over different time horizons. Time-dependent effectiveness functions
model various effects like shop opening hours or social and cultural norms. We propose using
projects to model non-recurrent activities. Projects are limited to a specific time period during
which they influence target values. Agents keep track of their performance and compare it
to behavioral targets. Deviations cause discomfort which is conveyed to a planning heuristic,
making on the fly decisions about upcoming activities agents should execute. This enables
agents to react spontaneously on unexpected events. We conclude by validating agents’ behavior
using different case examples.
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