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Abstract

With software‘s ever-increasing role in human lives, ensuring its correctness is crucial. Deductive software
verification enables formally proving that a program is functionally correct. However, verifying imperative
heap-manipulating programming languages is notoriously difficult and requires complex specifications in
powerful logics like separation logic. This complexity is a major obstacle to more widespread verification of
imperative heap-manipulating programs.

In this thesis, we present a verification approach that, for common cases, is as easy to use as the approaches
based on type systems while allowing the use of more powerful reasoning techniques for the parts of the
project that require them. Our approach exploits unique properties of Rust, a systems programming language
that aims to be a safe replacement for C and C++. For the safe fragment of the language, the Rust compiler
ensures memory safety and gives strong disjointness guarantees. We present a novel verification approach
that uses the type information from the compiler to synthesize a core proof that ensures memory safety and
captures disjointness information in a flavour of separation logic suitable for automation. Users can write
functional specifications in code annotations using a specification language based on Rust expressions; our
technique automatically integrates them into the core proof, enabling modular verification of functional
properties. We have implemented our approach for a subset of safe Rust and evaluated it on thousands
of examples. Our evaluation shows that we can generate the core proof reliably. As a result, the users are
entirely shielded from the underlying complex logic, enabling them to verify safe Rust programs at the
programming language‘s abstraction level with significantly fewer and simpler annotations than other
approaches require.

The guarantees provided by the Rust compiler come at a cost: some patterns, such as cyclic data structures,
are hard or impossible to implement in safe Rust. As an escape hatch, Rust has an unsafe subset that allows
using operations whose safety the compiler cannot guarantee, such as dereferencing C-style raw pointers. If a
programmer uses the unsafe subset, they become responsible for ensuring memory safety. The intention is
that programmers use unsafe Rust sparingly and hide it behind safe abstractions that enable building safe
clients. To understand how and why programmers use unsafe code and how best we can support them, we
conducted an empirical study investigating a large corpus of Rust projects. We found that a substantial part
of Rust projects (more than one out of five) published in the Rust package registry contain some unsafe code,
and most of it is used for calling unsafe functions and manipulating C-style raw pointers.

To support programmers writing unsafe code, we extended our verification approach with support for
verifying memory safety and functional correctness of mixed safe and unsafe Rust code where unsafe
code may call unsafe functions and manipulate raw pointers. We enable verifying unsafe code by exposing
powerful specification primitives based on separation logic. We exploit the non-aliasing guarantees provided
by Rust‘s operational semantics to keep the verification of surrounding safe code lightweight. Our extended
version of the approach retains the key property of the original one: verifying safe parts of the code remains
lightweight, with the user being shielded from the complex underlying logic with which they only need
to interact if they use unsafe code. This property enables users to use simple constructs for most code and
switch to more powerful parts of our approach when required.





Zusammenfassung

Da die Rolle von Software im menschlichen Leben immer größer wird, ist die Sicherstellung ihrer Ko-
rrektheit von entscheidender Bedeutung. Die deduktive Softwareverifikation ermöglicht den formalen
Nachweis, dass ein Programm funktional korrekt ist. Allerdings ist die Überprüfung imperative Programmier-
sprachen, die den Heap manipulieren, bekanntermaßen schwierig und erfordert komplexe Spezifikationen
in leistungsstarken Logiken wie der Separationslogik. Diese Komplexität ist ein großes Hindernis für eine
umfassendere Verifikation heapmanipulierender Programme.

In dieser Arbeit stellen wir einen Verifikationsansatz vor, der für übliche Fälle genauso einfach zu verwenden
ist wie Ansätze basierend auf Typsystemen und gleichzeitig die Verwendung leistungsfähigerer Argumenta-
tionstechniken für die Teile des Projekts ermöglicht, die solche Techniken erfordern. Unser Ansatz nutzt die
einzigartigen Eigenschaften von Rust, einer Systemprogrammiersprache, die ein sicherer Ersatz für C und C++
sein soll. Für das sichere Fragment der Sprache sorgt der Rust-Compiler für Speichersicherheit und gibt starke
Nicht-Aliasing-Garantien. Wir stellen einen neuartigen Verifikationsansatz vor, der die Typinformationen des
Compilers verwendet, um einen Kernbeweis (Core Proof) zu synthetisieren, der Speichersicherheit gewährleistet
und Disjunktheitsinformationen in einer für Automatisierung geeigneten Variante der Separationslogik
erfasst. Benutzer können funktionale Spezifikationen in Annotationen im Code schreiben, indem sie eine
Spezifikationssprache verwenden, die auf Rust-Ausdrücken basiert; unsere Technik integriert sie automatisch
in den Kernbeweis und ermöglicht so eine modulare Überprüfung funktionaler Eigenschaften. Wir haben
unseren Ansatz für eine Teilmenge von sicherem Rust implementiert und den Ansatz anhand tausender
Beispiele evaluiert. Unsere Auswertung zeigt, dass wir den Kernbeweis zuverlässig erstellen können. Dadurch
sind die Benutzer vollständig von der zugrunde liegenden komplexen Logik abgeschirmt und können sichere
Rust-Programme auf der Abstraktionsebene der Programmiersprache mit deutlich weniger und einfacheren
Annotationen beweisen, als andere Ansätze erfordern.

Die vom Rust-Compiler bereitgestellten Garantien haben ihren Preis: Einige Muster, wie z. B. zyklische
Datenstrukturen, sind in sicherem Rust nur schwierig zu implementieren oder gar nicht implementierbar. Als
Ausweichlösung verfügt Rust über ein unsicheres (unsafe) Fragment der Sprache, das die Verwendung von
Operationen ermöglicht, deren Sicherheit der Compiler nicht garantieren kann,wie etwa dieDereferenzierung
von Rohzeigern im C-Stil. Wenn ein Programmierer das unsichere Fragment verwendet, dann ist er für
die Gewährleistung der Speichersicherheit verantwortlich. Die Absicht besteht darin, dass Programmierer
unsicheres Rust sparsam verwenden und es hinter sicheren Abstraktionen verstecken, die den Aufbau sicherer
Clients ermöglichen. Um zu verstehen, wie und warum Programmierer unsicheren Code verwenden und
wie wir sie am besten unterstützen können, haben wir eine empirische Studie durchgeführt, die eine große
Anzahl von Rust-Projekten untersucht. Wir haben festgestellt, dass ein erheblicher Teil der Rust-Projekte
(mehr als jedes fünfte), die in der Package Registry für Rust veröffentlicht werden, unsicheren Code enthält
und der größte Teil davon zum Aufruf unsicherer Funktionen und zur Manipulation von Rohzeigern im
C-Stil verwendet wird.

Um Programmierer beim Schreiben von unsicherem Code zu unterstützen, haben wir unseren Verifikation-
sansatz um Unterstützung für die Überprüfung der Speichersicherheit und der funktionalen Korrektheit
von Code, der sowohl aus sicherem als auch unsicherem Rust besteht, erweitert, bei dem unsicherer Code
unsichere Funktionen aufrufen und Rohzeiger manipulieren kann. Wir ermöglichen die Überprüfung
unsicheren Codes, indem wir leistungsstarke Spezifikationsprimitive basierend auf der Separationslogik zur
Verfügung stellen. Wir nutzen die Nicht-Aliasing-Garantien der operationellen Semantik von Rust, um die
Überprüfung des umgebenden sicheren Codes simpel zu halten. Unsere erweiterte Version des Ansatzes
behält die Schlüsseleigenschaft des ursprünglichen Ansatzes bei: Die Überprüfung sicherer Teile des Codes
bleibt einfach, wobei der Benutzer von der komplexen zugrunde liegenden Logik abgeschirmt wird, mit der
er nur interagieren muss, wenn er unsicheren Code verwendet. Diese Eigenschaft ermöglicht es Benutzern,
einfache Konstrukte für den größten Teil des Codes zu verwenden und bei Bedarf zu leistungsfähigeren
Teilen unseres Ansatzes zu wechseln.
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Modern human life is hard to imagine without systems controlled by
software. Therefore, it is crucial to ensure that this software is correct.
However, the methods for ensuring software correctness used by most
developers, such as code reviews, linting for problematic patterns, and
testing, help improve software correctness but cannot give any guarantees.
Therefore, we need to give programmers tools that provide formal
guarantees. For such tools to be adopted, theymust be sufficiently expressive
(support the code that programmers write in practice), be as automatic as
possible, scale to realistic systems, have a low entry bar (require minimal
training for basic use and minimal upfront investment), and allow
programmers to focus on what they care about (for example, the critical
parts of the system). Unfortunately, satisfying all these requirements is
challenging.

Deductive software verification can be used to prove that a program is func-
tionally correct. A simple way of specifying basic functional properties is
by using runtime assertions. Consider the Java method below that takes
two counters and increments one. We1 want to once and for all prove
that the assertion on line 7 checking that the value of the other counter
did not change never fails.

1 public static void resetAndTest(Counter x, Counter y)

2 {

3 int currentValue = x.getValue();

4 y.resetValue();

5

6 // Will fail if x == y

7 assert(currentValue == x.getValue());

8 }

However, proving this seemingly simple assertion is complicated because
we need to ensure that the context calling this method guarantees the
following four properties:

1. The references x and y are non-null.
2. The call to y.resetValue() does not affect the value returned by

x.getValue().
3. No other thread can mutate the value stored in x concurrently.
4. The result of x.getValue() depends only on its arguments (for

example, it internally does not use randomness).

If we tried to prove the entire program at once, we could potentially
try to automatically prove some of these properties inside a tool with-
out exposing them to the user. However, realistic software systems are
large. The key technique programmers use to keep the development
process manageable is splitting them into independent modules that
are small enough to be comprehensible and have clearly defined inter-
faces. Similarly, scaling verification to realistic systems requires using
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modular techniques. The standard way for achieving modular deductive
verification is based on contracts [1] that for each method define in a
mathematically rigorous way what a method is allowed to assume–the
method‘s preconditions–and what it promises to guarantee–the method‘s
postconditions. The contracts are usually expressed using assertions in
some logic, types, or a combination of both. For example, we can express
property 1 by using the following precondition (we use VeriFast [2]
syntax):

1 public static void resetAndTest(Counter x, Counter y)

2 //@ requires x != null && y != null

Alternatively, type annotations such as [NotNull] x proposed in [3]
could be used to indicate that the parameters are non-null. Similarly,
many verifiers support annotating methods as pure, which captures
property 4.

Properties 2 and 3 are instances of the so-called frame problem. The term
“frame problem” was first introduced in artificial intelligence research [4]
to talk about the problem of expressing information about what remains
unchanged by an event. Later, the program verification [5] community
adopted the term for expressing what is not modified by a function call.
Since concurrent programs became mainstream, we need to think about
both changes made by the current and other threads. Therefore, when
reasoning about modern programs, the question is what knowledge we
can assume to be stable.

In mainstream programming languages such as Java, the frame problem
is made challenging by the use of a global heap and unrestricted mutable
aliasing. For instance, in our example above, the assertion would fail
if the caller provided the same argument as both x and y. A naïve
way to prevent this case would be adding a precondition that x != y.
However, this precondition would not be sufficient if the Counter objects
had an internally shared state. While it is unlikely to be the case for a
simple counter, internal sharing is not uncommon for more complex data
structures such as trees. Therefore, to prevent y.resetValue() affecting
x.getValue() we need to ensure that the memory region modified by
y.resetValue() is disjoint from the region read by x.getValue(). Since we
aim for modular verification, we want to respect information hiding and
avoid exposing to the clients the concrete memory locations accessed
by the implementation. In the last two decades, researchers created
many methodologies for tracking disjointness that enabled tackling the
frame problem in heap-manipulating programs. However, the developed
methodologies require their users to choose between expressive power
and goals related to ease-of-use (low entry bar and ability to focus).
Importantly, there is no methodology that enables its users to start a
verification project with an easy-to-use technique and switch to a more
powerful one for the parts of the project that require it. In this thesis, we
aim to create such a methodology exploiting the special features of Rust,
a new systems programming language. Compared to other mainstream
programming languages, Rust makes two important contributions. First,
it divides code into safe and unsafe subsets, with the safe subset being
more commonly used. Second, for the safe subset, the Rust compiler
automatically provides strong disjointness guarantees. In this thesis, we
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explore how these Rust features can help us to make verification more
approachable.

The remainder of this chapter is structured as follows. In the following
section, we discuss the state of the art in deductive verification of con-
current heap-manipulating programs and how well it satisfies the four
requirements mentioned in the first paragraph: expressivity, automation,
low entry bar, and ability to focus. We discuss only modular techniques
because they can be scaled to realistic systems. In Section 1.2, we describe
our key observation that enables us to bridge expressive and easy-to-
use methodologies. Section 1.3 gives an overview of the thesis and its
contributions. Section 1.4 lists the publications in which parts of this
thesis were published, and Section 1.5 lists the contributions that were
developed collaboratively.

1.1 State of the Art

In 1967, Robert W. Floyd published a method for adding assertions to
flowcharts that enabled formally proving that a program satisfies its
specification [6]. Based on Floyd’s ideas, Tony Hoare developed a program
logic for proving that a code fragment adheres to its contract [7]. The key
principles of the Hoare‘s approach we still use for verifying software
today. Hoare replaced flowcharts with a logical system that we currently
call Hoare triples. A Hoare triple is an assertion of the form t%u� t&u

where % is an assertion expressing the precondition, & is an assertion
expressing the postcondition, and � is code. The Hoare triple expresses
that if � is executed in a state that satisfies % and terminates, the end
state satisfies&. Logics that use Hoare triples are nowadays called Hoare
logics. The rules of the original logic could be used to prove by hand the
correctness of simple examples like the following max function:

1 public static int max(int x, int y)

2 //@ requires true

3 //@ ensures x <= result && y <= result;

4 //@ ensures (x == result || y == result);

5 {

6 return (x <= y ? y : x);

7 }

The precondition requires true expresses that the method will always
succeed. The postcondition written in ensures clauses expresses that if
the method terminates2, the result will not be smaller than any of the
inputs and be equal to one of the inputs.

In the last two decades, there have beenmany advancements in automatic
theorem provers such as SMT (satisfiability modulo theory) solvers. Modern
SMT solvers (for example, Z3 [8] and CVC5 [9]) can automatically prove
complexfirst-order logic formulas. This power enables buildingdeductive
verifiers based on (a variant of) the Hoare logic such as VeriFast [2] that
can automatically prove the contract of the max function without any
additional help from the user. However, to scale verification beyond
such simple examples, we need techniques that address the challenges
mentioned earlier.
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In the remainder of this section, we will review the techniques for ap-
proaching the frame problem in concurrent heap-manipulating programs
and the tools that implement these techniques. Presenting all research on
deductive verification of concurrent heap-manipulating programs would
take a book. Therefore, in this section, we focus only on the most relevant
results for this thesis‘s goal: enabling building tools that programmers
could use to verify their code.

1.1.1 Ownership Types

Probably the earliest approach for taming aliasing in verification is
Universe Types [10], a verification approach based on an ownership type
system [11]. Ownership type systems impose a hierarchical structure
on the object graph. For example, in the Universe Type system, all
nodes of a linked list would have the linked list class instance as an
owner and each other as peers. In Universe Types, the ownership is
tracked by the type system. Later, Dynamic Ownership [12] switched
to tracking ownership in ghost state3, which made it slightly more
expressive. Ownership combined with an encapsulation discipline such
as owner-as-modifier [13, 14] that requires that an object can be modified
only via its owner enables efficient reasoning about framing [15] because
object graphs owned by different owners are guaranteed to be disjoint.
This property enabled building the SMT-based verifier Spec# [16] for
a superset of C#. For instance, in a version of our example encoded in
Spec#, a precondition x != y implies not only that references x and y are
different but also that they point to disjoint object graphs.

1 public static void ResetAndTest(Counter! x, Counter! y)

2 requires x != y;

3 modifies y.*;

4 {

5 int currentValue = x.GetValue();

6 y.ResetValue();

7

8 // Guaranteed to succeed.

9 assert(currentValue == x.GetValue());

10 }

An important advantage of Spec# was that its specification language
was boolean expressions with minimal extensions such as quantifiers,
lowering the learning curve for new users. However, simpler verification
alone was not a strong enough argument for programmers to adopt
programming patterns that adhere to the ownership discipline. Primarily
because Universe Types and Spec# supported only static ownership. For
example, if we wanted to verify a memory allocator, we would need to
reason about allocation that transfers ownership of a memory block from
the allocator to the client and deallocation that returns the ownership.
Pressure to support code that does not adhere to the static ownership
discipline led to the development of more flexible techniques at the cost
of simplicity. For example, ownership transfer [12] required ensuring a
complex condition that the original owner has no references left to the
transferred group of objects.
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Another advantage of Spec# and ownership types in general is that they
naturally accommodate reasoning based on object invariants. Aliasing
makes it hard to soundly reason about object invariants because the
object on which an invariant depends could be modified from a context
that is not aware of the existence of the invariant. This problem can be
addressed by requiring that invariants depend only on owned objects
and that all modifications happen through the owner (for example, by
using owner-as-modifier discipline). A slightly more flexible version
of this approach was implemented in Spec#. A different design was
used by VCC [17], a verifier for concurrent C, that used an invariant
methodology powerful enough to build ownership reasoning on top.
The key contribution of the VCC approach was the admissibility check
that ensured that if some invariant � depends on object > with invariant
�> , then any operation preserving �> must also preserve �. This design,
for example, enabled VCC invariants to depend on volatile memory
that could be modified by multiple threads. Ownership in VCC was
encoded by adding a ghost owner field to each object, which means
that the ownership could be specified in specifications and changed
during execution. These properties enabled VCC to support complex
patterns, such as a spin lock that owns some resource (for example,
a memory block) while it is locked and transfers that resource to the
thread that unlocks it. However, this expressive power came at a cost: the
specification language used by VCC is significantly more complicated
than the one used by Spec#; it has more constructs that are specific to the
VCC methodology and that require expert knowledge to use correctly.
From this perspective, VCC is arguably comparable to permission logics
discussed in the following section.

1.1.2 Permission Logics

Slightly after ownership types, approaches based on program logics that
track ownership in some way started to appear. In this subsection, we
cover the three most important ones that were used for building auto-
mated verifiers: separation logic [18] and implicit dynamic frames [19].

Separation logic [18, 20] is a Hoare logic whose assertions track not only
functional properties but also ownership of resources, such as memory.
The key property of the separation logic is that if Hoare triple t%u� t&u
holds, then code � for its safe execution relies only on resources that
are owned by %. As a result, � is guaranteed not to touch any resources
not owned by % and, therefore, knowledge about them can be framed.
The key features that separation logic introduces are points-to assertion
; ÞÑ E and separating conjunction � ˚ �. A points-to assertion ; ÞÑ E

expresses that the current activation record owns the location with
address ; and that the location has value E. The proof rules of separation
logic ensure that only the owner of a location has permission to access it.
The separating conjunction � ˚ � expresses not only that both � and �
hold (like the regular conjunction ^) but also that the locations owned
by � and � are disjoint. The property that knowledge about locations
not used for verifying � can be preserved is formally captured by the
frame rule. The frame rule expresses that if triple t%u� t&u holds, then
the triple t% ˚ 'u� t& ˚ 'uwhere the state is extended with frame '
is also guaranteed to hold. Our example in VeriFast [2], a verifier for
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Java based on separation logic, would look as follows (&*& is VeriFast
syntax for the separating conjunction, ?variable is an existentially bound
variable, _ is a wildcard indicating that we do not care about the value,
Counter is a predicate that abstracts over an assertion).

1 public static void resetAndTest(Counter x, Counter y)

2 //@ requires Counter(x, ?value_x) &*& Counter(y, ?value_y)

3 //@ ensures Counter(x, _) &*& Counter(y, _)

4 {

5 int currentValue = x.getValue();

6 y.resetValue();

7 assert(currentValue == x.getValue());

8 }

Separation logic provides three key advantages compared to Universe
Types and Spec#. First, since a separation logic assertion precisely captures
ownership, ownership transfer becomes straightforward: even if the
original owner still has a pointer to a memory location, they are not
allowed to use it. Second, separation logic supports framing of non-
hierarchical structures such as double-linked lists and arrays, which
ownership types cannot because the elements of these containers typically
have the same owner. Framing in separation logic can be achieved by
using, for example, an iterated separating conjunction [21] to express that
a set of assertions are mutually separated. Third, in addition to the
separating conjunction, which is a dual of conjunction, separation logic
also introduced a dual of implication called separating implication � ´̊ �,
better known as magic wand. A magic wand � ´̊ � expresses that by
giving up both � and the wand, we can obtain �. Magic wands proved
to be instrumental for verifying complicated iterative code; for example,
[22] showed how magic wands can be used to verify iterators.

After the first work on separation logic was published, researchers de-
veloped many extensions, especially to support verifying concurrent
programs. One key extension was fractional [23] and counting [24] per-
missions that enable multiple concurrent readers to access the same
memory location safely. With fractional permissions, the points-to assertion
; ÞÑ E is generalized to a fractional variant ; ?

ÞÑ E where ? is a positive
value smaller-equal to 1.0. ? “ 1.0 is full permission and allows mutat-
ing the memory location. Any non-zero permission allows reading the
memory location. The points-to assertions can be split and recombined,
maintaining the invariant that the sum of all permissions to the same
location is equal to 1.0. This invariant ensures that each location can
be either read by multiple readers or written by a single writer, guar-
anteeing the absence of data races. Fractional permissions naturally fit
into modelling structured parallelism where each thread needs to be
given read access. Counting permissions also allow multiple readers or a
single writer. However, instead of allowing to split permission amounts,
they allow taking an unbounded number of read permissions from a
source permission. If no permissions are taken away from the source, the
source can be used for write access. Counting permissions is a natural
fit for modelling data guarded by read-write locks. Later work showed
how fractional permissions could be used without specifying concrete
fractions to verify a common pattern of providing read permission to a
recursive function [25] and how counting permissions could be encoded
as fractional ones [26].
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Building automated verifiers for separation logic and its variants is an
ongoing effort that has produced many tools such as Smallfoot [27],
jStar [28], VeriFast [2], and GRASShopper [29], which provide varying
degrees of automation. These tools focus on supporting the core fea-
tures of separation logic, such as points-to assertions and separating
conjunction. However, recent developments show how also the more
advanced features such as iterated separated conjunction [30] and magic
wand [31–33] and even checking a complex separation logic proof [34]
can be automated in an SMT-based verifier.

Separation logic and its extensions provide the expressive power to verify
concurrent heap-manipulating programs. However, similarly to VCC,
this power comes with a cost: while the specification language used by
Spec# was based on boolean expressions with first-order logic extensions
and could be understood by regular programmers, understanding and
writing separation logic specifications requires much deeper expertise.
Moreover, before the programmer can focus on proving the properties
they care about, theyneed to specifyhow thememoryownership is passed
through the program, which is a substantial upfront investment (even
compared to writing the additional ownership annotations required by
advanced type systems). For example, while predicates are a conceptually
simple abstraction mechanism (they are just named separation logic
assertions), designing them requires expertise. Also, in automatic tools
using predicates cause a significant annotation overhead because they
have to be declared andmanually managed by the user. Some researchers
tried to alleviate the upfront investment by designing approaches that
effectively infer specifications for common patterns. For example, [35]
used type inference to infer internal specifications of tree data structures
given top-level specifications of types and methods. However, such
approaches still require the user to master separation logic.

Implicit dynamic frames [19] is aHoare logic closely related to the separation
logic [36]. Instead of the points-to assertion ; ÞÑ E available in separation
logic, implicit dynamic frames provides an accessibility predicate accp;q

that expresses access permission to location ; without telling anything
about its value. The values stored at locations are constrained by using
heap-dependent expressions. For example, separation logic assertion
A. 5 ÞÑ 0 corresponds to accpA. 5 q ^ A. 5 “ 0 in implicit dynamic frames.
This example shows that implicit dynamic frames provides a natural way
of separating ownership (what memory is owned) and functional (what
is the value stored in owned memory) concerns. A common strategy
in separation logic to achieve similar separation between ownership
and functional concerns is to use snapshots [21]: mathematical values
that fully capture the value stored in a group of heap locations (for
example, a linked list). However, to use snapshots, the user needs to
define them and relate them to the values stored in the heap, which
requires additional effort. Besides cleaner separation of ownership and
functional specifications, implicit dynamic frames shares strengths and
weaknesses with separation logic: it is expressive (and has constructs that
correspond not only to core separation logic such as magic wand and
iterated separating conjunction, but also many of its extensions such as
fractional and counting permissions) but requires expertise and upfront
effort.

The paper that introduced implicit dynamic frames also presented
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an automated verifier VeriCool [19]. Later, Chalice [37] was used to
demonstrate supporting concurrency features such as channels and
locks in a verifier based on implicit dynamic frames. Viper verification
infrastructure [38] that is based on implicit dynamic frames was used to
build Nagini [39] and Gobra [40], verifiers that aim to support verification
of existing Python and Go code, respectively.

In separation logic and implicit dynamic frames, the part of the heap
that could be accessed by an operation, its footprint, is specified implicitly.
In the line of work on dynamic frames [41] and regional logic [42], the
footprint is an explicit set of locations. This set is typically specified by
using set-type specification variables. For each operation and method, a
user needs to specify a set of locations it may read and a set of locations
it may modify. The great flexibility of this approach comes from the
fact that the operation may modify the access sets and that the sets
manipulated by different operations could overlap if needed. On the flip
side, since the sets are not automatically ensured to be disjoint, a lot of
specification effort is spent on ensuring this property. As a result, writing
specifications requires comparable expertise and effort to the ones in
separation logic and implicit dynamic frames. Also, since footprints are
tracked by using specification variables, it is unclear how to extend this
approach to concurrency because that would require preventing races on
the specification variables themselves. SMT-based verifiers that use the
dynamic frames methodology are Dafny [43] and the KeY [44] verifier
for Java.

1.1.3 Reference Capabilities

All approaches based on permission logics mentioned in the previous
subsection suffer from the same two problems: using them requires
expert knowledge and a sizeable upfront investment. SYMPLAR [45]
attempted tomitigate both of these issues by going back to the verification
style that is similar to the one used with Universe Types [10] that had a
clear separation between alias tracking and functional specifications. In
SYMPLAR, alias control was done entirely in the type system, allowing
a simple specification language for specifying functional properties.
The alias control mechanism of SYMPLAR was inspired by separation
logic: it used reference capabilities [46] to represent permissions to access
objects. For example, annotating a reference with @Excl indicated that the
reference has a uniqueness [47] capability that expresses that the object
could be accessed only through that reference. Similarly, @Imm indicated
that the reference allows read-only access to the object. The following
snippet shows our example with SYMPLAR annotations.

1 public static void resetAndTest(

2 @Excl Counter x,

3 @Excl Counter y

4 ) {

5 int currentValue = x.getValue();

6 y.resetValue();

7 assert(currentValue == x.getValue());

8 }
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Uniqueness is a much stricter property than ownership. For example,
in an ownership type system, a linked list node object could be pointed
at not only by its owner (typically, an instance of the linked list class)
but also by its peer nodes. In a uniqueness type system, a node could be
pointed at only by a single reference, typically the field of the linked list
object pointing to the head node or a field of a preceding node pointing
to the next node. Due to this single reference requirement, ownership
transfer is trivial (we only need to ensure that the original owner does not
use their reference anymore, for example, by setting it to null). However,
it becomes impossible to implement cyclic data structures such as doubly-
linked lists. These restrictions made some researchers [12] believe that
uniqueness is too restrictive to be usable in practice, some even calling
them “draconian” [27]. SYMPLAR tried to improve the expressivity of
their type system based alias control by providing flexible borrowing
constructs that allowed the creation of temporary aliases to unique
references within a lexical scope. This flexible borrowing enabled the
paper‘s authors to verify the implementation of an iterator over an array
list – an example that none of the prior SMT-based verifiers could handle.
However, the SYMPLAR approach still has three significant limitations.
First, it does not support important patterns such as doubly-linked lists.
Second, since it relies on the type system, it requires the entire code
base to be written in the same programming language, which does not
always hold for modern systems. Third, while SYMPLAR‘s capability
type system supports complex borrowing patterns, SYMPLAR does not
provide a modular technique for verifying functional correctness of code
that uses these patterns4.

1.1.4 Avoiding Aliasing

Yet another approach for avoiding the difficulties of the frame prob-
lem caused by the heap and unrestricted aliasing is to forbid aliasing
completely. There are two main ways of achieving the absence of alias-
ing: using a pure functional programming language like Haskell where
programs always manipulate immutable values or use a subset of a
language without pointers and references. The former was employed by,
for example, LiquidHaskell [48], a verifier based on the Liquid Types [49]
approach. The latter was employed by, for example, SPARK [50], an
industrial strength verifier for Ada. While completely forbidding point-
ers and the heap is limiting, in some domains, it may be needed for
reasons other than simpler verification. For example, most of the verifiers
mentioned above assume that the heap is infinite and memory allocation
never fails because in desktop and server applications, such events are
rare, and a crash caused by an out-of-memory exception is unlikely to
cause serious issues. However, crashes must be prevented at all costs in
safety-critical domains such as avionics, making it easier to use other
memory management methods than a global heap.

1.1.5 Automating Verification

Almost all verifiers we mentioned are based on off-the-shelf SMT solvers
such as Z3 [8] due to the great automation provided by these automatic
provers, which made it much easier to develop verifiers that provide
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high degrees of automation. Another essential step that enabled building
verifiers for real programming languages was the creation of verification
infrastructures based on intermediate verification languages (IVLs). Many
modern verifiers were built as translators from the source language into
some IVL. For example, Gillian-JS and Gillian-C [51] use Gillian [52],
which provides a generic separation logic framework that can be instan-
tiated with different memory models; Vercors [53], Gobra, and Nagini
use Viper [38], which provides built-in reasoning about heap based on
implicit dynamic frames; VCC, Spec#, Chalice, Dafny, and even Viper
use Boogie [54], which provides reasoning about imperative, potentially
unstructured programs without heap; and SPARK, Cameleer [55], and
Frama-C [56] use Why3 [57], which, unlike Viper and Boogie, supports
many different solvers, including proof assistants (such as Coq [58] and
Isabelle/HOL [59]) that can be used for manually proving examples that
SMT solvers cannot handle.

1.1.6 Discussion

If we compare the state of the art with the five requirements we listed
at the beginning, the presented approaches are automated using SMT-
solvers and modular, which enables to scale them to realistic systems.
However, with respect to the over three requirements, we could group the
presented approaches into two conflicting camps. In one camp, we have
approaches such as Universe Types, Spec#, SYMPLAR, and SPARK. These
approaches restrict aliasing, which enables having simpler specifications,
lowering entry bar, and allowing users to focus sooner on the properties
that are relevant to them. However, these benefits come at the cost of
expressivity. For example, some of them do not support at all or poorly
support cyclic data structures such as doubly-linked lists. In the other
camp, we have approaches such as VCC and permission logics that
are expressive but require expert knowledge and a significant upfront
investment before a user can focus on the properties they are interested
in. To conclude, we still need an approach that would have a low entry
bar and allow users to focus on the properties they care about while
being sufficiently expressive.

1.2 Rust Opportunity

As we saw in the previous section, with existing approaches, users must
choose between ease-of-use and expressive power. Our key insight is
that instead of trying to close the gap between these two camps, we can
enable users to seamlessly travel between them: let the users start with an
easy-to-use technique and allow them to switch to a more powerful one
for the parts of the system that require it. Our crucial observation that
enables this seamless transition is that the main complexity and overhead
of permission logics come from the need to specify and prove a core set of
properties. This core set of properties, which we call the core proof, specify
the memory structure of the program. Importantly, these properties
are the same ones as proven by ownership or reference capability type
systems (as witnessed by the fact that separation logic is sometimes
used to prove soundness of such type systems [60, 61]). Therefore, if we
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managed to construct the core proof from the information available in a
capability type system, we would have a lightweight specification and
verification approach with a clear path for supporting examples where
the type system is not expressive enough.

While ownership and uniqueness types were widely explored by the
research community, who created both new programming languages [61–
63] and extensions to existing programming languages [60, 64–66], none
of the attemptswere taken seriously by thewiderprogrammer community.
The situation changed in 2015 when Mozilla released Rust: a new safe
systems programming language that is designed as a safe alternative
to C and C++ and is quickly gaining widespread adoption. Unlike
prior memory-safe systems programming languages, Rust for memory
safety relies not on the garbage collector but on its type system. Rust‘s
type system was inspired by works on uniqueness and region-based
memory management [60, 64, 67–69] and features uniqueness types with
borrowing5. Compared to prior work such as Cyclone and SYMPLAR,
Rust brings two essential innovations that arguably contributed to its
take-off. First, for tracking borrows, Rust introduced lifetimes, which are
an improved version of Cyclone regions. Lifetimes are not only more
flexible than prior mechanisms6, but also more ergonomic because type
inference can infer them automatically in most cases. The following code
snippet shows our example in Rust (&mut indicates that the type is a
unique reference to an object).

1 fn reset_and_test(x: &mut Counter, y: &mut Counter)

2 {

3 let current_value = x.get_value();

4 y.reset_value();

5 assert!(current_value == x.get_value());

6 }

Second, to compensate for restrictions of the type system, Rust provides
an escape hatch called unsafe code7: code marked with an unsafe keyword
gets access to more powerful language features such as raw pointers
and manual memory management [70]. By using unsafe code, program-
mers can extend the language with new safe abstractions that enable
new programming patterns [71]; for example, vector Vec and unique
owning pointer Box are two safe abstractions from the Rust standard
library implemented by internally using unsafe code. While unsafe code
gives additional expressive power, it comes at a significant cost: the
responsibility of ensuring the memory safety of the code that uses unsafe
is shifted from the compiler to the programmer. The development of safe
abstractions is additionally complicated by the fact that Rust code that
does not use unsafe must not be able to cause memory safety errors [72],
which means that the safe abstraction has to guarantee memory safety
even in cases when it is misused.

Rust becomingmainstreamgives us a unique opportunity to try achieving
our goal: developing a verification approach that enables building a
verifier usable by programmers. We pursue this goal by making the
verification incremental in two dimensions. First, the developer should
be able to focus on proving the properties they care about without large
prior investment. Second, the effort required for verifying common code
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should be as low as for type system based techniques while allowing a
smooth transition to more powerful methods when needed.

1.3 Overview and Contributions

In this thesis, we present a novel verification approach for imperative
heap-manipulating programs that exploits the special features of Rust
to make significant progress towards the five goals we mentioned at
the beginning. Our approach is modular, which enables it to scale, and
automated with SMT. We target the remaining three goals by making
our approach incremental on two dimensions. Our first dimension of
enabling the developer to focus on proving the properties they care about
without large prior investment corresponds to the goals of ensuring a low
entry bar and ability to focus. Unfortunately, as we saw from the state
of the art discussion, these two goals are in conflict with expressivity.
Therefore, instead of trying to create an approach that is both easy to use
and expressive enough to handle all cases (which is impossible), with
our second dimension, we enable the user to use more powerful concepts
for the parts of the project that require them. The thesis is divided into
three parts, which we discuss below.

In Part I, we focus on the first dimension showing how we enable the low
entry bar and the ability to focus when verifying safe Rust. In this part,
we show how to address three key challenges. First, we demonstrate how
information available in the Rust type system can be used to generate
a core proof in implicit dynamic frames completely automatically. In
particular, we show how to support non-lexical borrowing patterns
that were introduced in Rust 2018 edition [73], which are significantly
more flexible than the ones used in SYMPLAR and Rust 1.0. Second,
we show how specifications written as Rust expressions with first-order
extensions can be automatically incorporated into the generated core
proof to obtain complete specification of a Rust program. Third, we
address an important shortcoming of prior work: SYMPLAR presented
a type system that supports returning borrows but did not have a way
of describing their effects that respects information hiding. We present
pledges, a novel construct that fills this gap.Wefinish thepart bypresenting
Prusti, a Viper-based verifier that we used to evaluate our approach, and
comparing our model of Rust borrows with later proposals from other
researchers.

In Part II, we present our empirical study on how unsafe code is used
in practice, which is a preparation step before verifying unsafe code in
Part III. In this study, we investigate an assumption, which we dub Rust
hypothesis, that Rust programmers use unsafe code following three key
principles: use unsafe code sparingly, make it easy to review, and hide
it behind a safe abstraction such that client code can be written in safe
Rust. We analyse a large corpus of Rust projects to determine whether
the Rust hypothesis holds and to classify the purpose of unsafe code. In
particular, in the later parts, we aim to verify the uses of the two most
common unsafe features: calls to unsafe functions and dereferences of
raw pointers.
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In Part III, we focus on the verification of unsafe code and safe abstractions.
The two key challenges we address are related to the two dimensions.
First, we need to ensure that unsafe code does not violate the type
system properties on which safe code relies and which we exploit for the
lightweight verification described in Part I. We present a methodology
for verifying that safe abstractions guarantee memory safety even when
used by unverified safe clients. Second, we show how the verification
approach presented in Part I can be extended to the verification of
functions containing safe and unsafe code in a way that verification
overhead compared to verifying completely safe code is determined by
the complexity8 of unsafe code. The model of borrows presented in Part I
is too simplistic to verify unsafe code. Therefore, we started designing a
new model suitable for SMT-based verification of safe and unsafe code;
we present our partial results in Chapter 21. We evaluate our approach
by extending Prusti.

1.4 Publications

This dissertation contains text and material from the following publica-
tions:

§ Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.
Summers. ‘Leveraging Rust types for modular specification and
verification’. In: Proc. ACM Program. Lang. 3.OOPSLA (2019) [74]

This paper was used as the basis for Part I. This part uses the same
structure as the paper, but the text is in most cases new with the
main exception being Chapter 6 (Implementation and Evaluation)
that contains mostly paraphrased text. The figures used in Chapter
6 (Implementation and Evaluation) are taken from the paper.

The PCS elaboration algorithm described in Subsection 2.2.2 was
not described in the main publication. Its description is based on
the extended version of the paper [75]. The loan-dependency graph
described in Section 3.3 was not presented in the paper; we describe
it here for the first time.

§ VytautasAstrauskas,ChristophMatheja, FedericoPoli, PeterMüller,
andAlexander J. Summers. ‘Howdoprogrammers useunsafeRust?’
In: Proc. ACM Program. Lang. 4.OOPSLA (2020)

Text in Part II is taken from this publicationwithminor adjustments:
Chapter 9 (Motivations for Using Unsafe Code) was paraphrased
and Chapter 15 (Related Work) was expanded to include related
work published after our publication.

1.5 Collaborations

The work presented in Part I and Part II was done in collaboration
with fellow doctoral students Federico Poli and Aurel Bílý, postdoctoral
researcher Christoph Matheja, and the students we supervised. The
work presented in Part III was done entirely by me and the students
I9 supervised. Federico and I contributed equally to most aspects of
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the work presented in Part I. We together designed the specification
language, pledges, and the encoding of Rust types in Viper. We also
worked together on the implementation. Federico led thework on the PCS
elaboration algorithm, while I led the work on modelling mutable and
shared references. Federico did the large-scale core proof and overflow
freedom studies presented in Subsection 6.2.1 and Subsection 6.2.2,
respectively. I evaluated our approach by verifying the properties beyond
memory safety as presented in Subsection 6.2.3. The snapshots presented
in Section 5.2 were designed by Christoph and me, and implemented
over multiple iterations by Christoph, Aurel, and my student Till Arnold
as part of his bachelor thesis [77]. The students we supervised typically
contributed a specific feature. Therefore, I discuss a student‘s contribution
when discussing the feature they contributed to.

The work presented in Part II was led by me. The initial version of the
Rust compiler plugin for collecting data was written by Nicolas Winkler
as part of this bachelor thesis project [78] supervised by me. It also
received some fixes and improvements from independent contributor
Konstantinos Triantafyllou. Based on the learnings in this initial project,
I designed and implemented the Qrates framework, which I used to
collect the data. Then, Federico and I analysed the collected data together.
Notably, Federico contributed the classification of motivations for using
unsafe code discussed in Chapter 9 and the analysis that computes why
an unsafe block is needed.
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In the first part of the thesis, based on [74], we focus on the first of the two
dimensionsmentioned in the introduction.We showhowwe can leverage
the Rust type system to enable incremental verification where users can
immediately focus on the properties they care about and verify additional
properties only when they see a need. In the introduction, we discussed
that one of the key challenges in verifying heap-manipulating programs
is the frame problem and claimed that Rust type system helps address it.
Before diving into the technical aspects of our approach, we need to get
an intuition on how Rust simplifies reasoning about program correctness.
Therefore, we revisit the motivating example from the introduction.

1 pub struct Counter {
2 inner_value: i32,
3 }
4 impl Counter {
5 #[pure]
6 pub fn get_value(&self) -> i32 {
7 self.inner_value
8 // equivalent to: (*self).inner_value
9 }
10 #[ensures(self.get_value() == 0)]
11 pub fn reset_value(&mut self) {
12 self.inner_value = 0;
13 }
14 }
15 #[ensures(x.get_value() == old(x.get_value()))]
16 #[ensures(0 == y.get_value())]
17 fn reset_and_test(x: &mut Counter, y: &mut Counter)
18 {
19 let x_current_value = x.get_value();
20 // equivalent to let ... = Counter::get_value(&*x);
21 y.reset_value();
22 // equivalent to Counter::reset_value(&mut *y);
23 assert!(x_current_value == x.get_value());
24 assert!(0 == y.get_value());
25 }

Figure 1.1: An expanded version of the
reset counter example from the introduc-
tion. For this expanded version, we want
to prove not only that x did not change
(assert on line 23) but also that y was re-
set to 0 (assert on line 24). Note that the
compiler often automatically inserts op-
erations for creating and dereferencing
a reference. Therefore, for example, the
lines 7 and 19 are equivalent to the ones
shown in the comments below them.

Example. Figure 1.1 shows an elaborated version of the reset counter
example from the introduction with an additional assert. In addition to
showing that the value referenced by x is preserved (the call to assert!

macro on line 23), we want to show that the value referenced by y is reset
to zero (the assert on line 24). The example shows a declaration of Counter
struct with a single private field and two public methods. Field inner_-

value is a 32-bit signed integer. Method get_value is a getter that returns
the field’s value. Similarly to Python, a reference to the struct itself in Rust
is passed as a first argument. &self is a syntactic sugar for self: &Counter:
a shared reference to a Counter instance. Shared references in Rust can
be aliased but cannot be used for mutation. To make writing code more
ergonomic, the Rust compiler often automatically inserts operations
for dereferencing a reference. For example, on line 7, the compiler
automatically inserts a dereference, as shown by the comment on the line
below. Method reset_value resets the field’s value to zero. &mut self is
a syntactic sugar for self: &mut Counter: a unique (also called mutable)
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reference to a Counter instance. Unique references in Rust can be used for
mutation but cannot be aliased. The Rust type system guarantees that
either a memory location can be accessed through multiple aliases or is
mutable10. The annotations #[pure] and #[ensures(...)] are instructions
for Prusti and we explain them below.

Since Rust has a capability type system, each place [79], an expression
indicating a memory location (called L-value in other languages), po-
tentially carries a capability for the memory location. The parameters x
and y of function inc_and_test provide unique ownership capabilities to
the referenced memory locations. As a result, we have a guarantee that x
and y point to disjoint memory regions. Call x.get_value() automatically
reborrows x as a shared reference for the duration of the call (the reborrow-
ing is made explicit in the comment on line 20 that shows a desugared
form of the method call). This action makes the reference x unusable
for mutation while the reborrow is active. Similarly, call y.reset_value()
automatically reborrows y for the duration of the call. Since reset_value

takes a unique reference, y is completely unusable while the reborrow is
active. We will cover borrowing and reborrowing in detail in Chapter 3.

Correctness Arguments. In the introduction, we mentioned five prop-
erties that need to hold to prove that the assert on line 23 never fails:

1. The references x and y are non-null.
2. Method get_value does not modify any state.
3. The call to y.reset_value() does not affect the value returned by

x.get_value().
4. No other thread can mutate x target concurrently.
5. x.get_value() result depends only on its arguments.

The first four properties (1, 2, 3, and 4) are guaranteed by the Rust type
system while the last one (5) is specified by the user. Property 1 holds
because the Rust compiler forbids accessing invalid references. Property 2
is guaranteed because get_value takes a shared reference that provides a
capability to read, but does not allow mutating the memory. Property 3,
which is the frame property discussed in the introduction, is guaranteed
by the fact that x and y provide unique capabilities to their targets
and, therefore, are disjoint. Unique capabilities also imply that no other
thread has access to these memory locations, thus implying property 4.
Property 5 is stated by the user by annotating function get_value with
#[pure], which instructs the verifier that the method is a mathematical
function (deterministic, terminating, and side-effect free).

To prove that the assert on line 24 never fails,we additionally need to know
the value returned by y.get_value() after the call to y.reset_value().
The user can specify this value by adding a postcondition to reset_value

method (line 10). get_value can be used in the postcondition because it is
a pure function. We require the user to write the annotations specifying
the purity and the postcondition because we aim for modular verification
in which we rely on function contracts and not their implementation
(for the same reason, it is a good practice to use pure functions in the
specification instead of fields). If we allowed the verifier to inline the
called functions, these two annotations would not be necessary, and we
could prove the assert statement by relying entirely on the type system.
However, modularity is essential for scaling verification, being able to



19

[45]: Bierhoff (2011), ‘Automated pro-
gram verification made SYMPLAR: sym-
bolic permissions for lightweight auto-
mated reasoning’

verify libraries separately from clients, and localizing re-verification
efforts when a part of a codebase is changed.

In the introduction, we used the assert macro that performs a runtime
check to express the functional property because all languages have such
runtime checks. However, even if we prove that the assert cannot fail, it
will likely cause runtime overhead. Moreover, the clients of the function
reset_and_test cannot use the proven properties. Therefore, the lines 15
and 16 show the postconditions that express the same properties as the
two assert statements. The first postcondition expressing that the value
referenced by x did not change uses an old(...) expression that evaluates
the expression in the state at the beginning of the method. old(...) is
one of the few (but powerful) additional constructs of our specification
language. We could altogether avoid writing this postcondition if we
changed the type of x to use a shared reference &Counter because the
postcondition then would be implied by the capabilities.

Verification Approach Overview. Our example shows how the infor-
mation about capabilities for memory locations available in the Rust
type system can be combined with user-provided information about
values of these memory locations to achieve a full correctness proof.
Compared to prior work such as SYMPLAR, we contribute from both
user experience and methodological points of view. Since we base our
work on Rust that has a built-in capability type system, we can achieve
real incremental verification where the minimal specification that the
user has to provide before verifying properties that matter to them is
none at all. Our approach enables the user to decide whether to verify
the absence of overflows and other possible runtime errors or focus on
proving some functional correctness aspect of their program. Importantly,
the assertion language in which users express functional properties is at
the level of Rust expressions with a few additional constructs, such as the
aforementioned old(...) expression. One additional construct crucial
for verifying Rust programs is a pledge, a novel construct that enables
specifying functional behaviour of reborrowing; we present pledges in
Chapter 5, Section 5.3.

Prior work that aimed at lightweight specification and verification,
such as SYMPLAR [45], fully relied on the type checker to control
aliasing, side effects, and framing. As discussed in the introduction,
such design has two consequences: it is unclear how to support patterns
that do not fit into the type system and how to link with verified code
written in other programming languages. Therefore, in our work, we
explored an alternative path of encoding capabilities and user-provided
functional properties into implicit dynamic frames. This program logic is
sufficiently expressive to capture both and reason about their interactions.
Our technique consists of two steps. First, we encode the capability
information and the semantics of Rust statements into a core proof that
captures the information about aliasing and side effects. Second, we
incorporate the specifications the user provides into the core proof. The
key challenge is that these two steps and checking the core proof must be
completely automatic; otherwise, wewould fail to provide the abstraction
we aim for. Achieving such a level of automation for program logics
powerful enough to model Rust capabilities and non-lexical borrows is a
highly complex task. It requires not only choosing a suitable encoding
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11: Our prototype implementation al-
lows deactivating some of the checks
(for example, absence of arithmetic over-
flows).

but also providing auxiliary annotations to automate the proof search, as
we show in the chapters of this part. A crucial aspect of our work is that
it lays the foundations for supporting unsafe Rust: for Rust programs
without shared references, the core proof generated by our technique
guarantees memory safety without relying on the checks performed by
the compiler.

The verification and specification technique presented in this part can
handle a small but technically challenging part of safe Rust. It includes
primitive types (bool, integers, char), safe compound types (tuples, structs,
enumerations, and generic type parameters), and references to these
types. We provide special support for Box, a safe pointer for storing data
on the heap, a type defined in the standard library but treated specially
by the Rust compiler. The supported fragment also includes functions,
methods, and trait methods; we will use functions to refer to all three
in this thesis. Functions can use generics with trait bounds and lifetime
parameters without constraints. Deterministic, side-effect-free functions
can be marked as pure, which allows using them in specifications. Func-
tion bodies may contain branching constructs, loops, boolean and integer
operations, function calls, type constructor invocations, casts, assign-
ments that transfer ownership (move assignments), and assignments that
duplicate ownership (copy assignments). Users can specify functional
behaviour with pre- and postconditions and loop invariants. Commonly
used Rust features that fall outside the supported subset presented in this
part include drop handlers, closures, lifetime parameters to struct types,
two-phase-borrows, and unsafe code. Note that the language supported
by the prototype has additional restrictions; we provide the details in
Chapter 6.

Contributions. Contributions of the original publication [74] were:

1. A specification language based on Rust expressions that enables
modular specification and verification of functional properties.

2. A novel construct for modular specification and verification of Rust
functions that return references, which we call pledges.

3. A verification approach that uses the Rust type system information
to generate a core proof in implicit dynamic frames logic and
supports incorporating user-written specifications.

4. Sufficient automation of our approach by using Viper framework
that guarantees that the core proof is always accepted by the Viper
backend verifier.

5. A prototype implementation of our approach as a Rust compiler
plugin.

In addition to the contributions made in our publication, this part of the
thesis also compares in depth our approach for modelling Rust borrows
with the ones published later and discusses still open challenges.

VerifiedProperties andTrustedAssumptions. Ourverificationmethod-
ology and its prototype implementation ensure the following property:
if a Viper backend verifier accepts the generated proof, every execution
of the original Rust function that satisfies the user-written precondition
is guaranteed to execute without memory and runtime errors11 and to
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satisfy the user-written postcondition. For programs without shared
references, this property is ensured under two assumptions: Viper is
sound, and our modelling of Rust types and operations in Viper is
correct. We could avoid making the latter assumption by proving that
our modelling of Rust types and operations in Viper is consistent with
Rust operational semantics. However, such a proof would require having
semantics for Viper and Rust, both of which are still work in progress at
the time of writing. Therefore, we ensured that our modelling of Rust
matches the semantics implemented in the Rust compiler by creating a
test suite of more than 300 correct and incorrect Rust programs annotated
with expected verification errors. For programs with shared references
(Chapter 4), we additionally rely on the correctness of the borrow checker
to determine when a shared reference expires.

Outline. This part is structured as follows. We start by presenting in
Chapter 2 our approach for a Rust fragment without borrows. Then,
we show how our approach supports mutable and shared borrows in
Chapter 3 and Chapter 4, respectively. In Chapter 5, we discuss three
elements necessary for specifying and verifying realistic Rust programs:
pledges, pure functions, and snapshots. In Chapter 6, we present and
evaluate our implementation. In Chapter 7, we discuss related work that
was published before and after our publication [74] and, in Chapter 8,
we conclude.
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In this chapter, we show how to automatically construct a program in
the Viper [38]

[38]: Müller et al. (2016), ‘Viper: A Ver-
ification Infrastructure for Permission-
Based Reasoning’

intermediate verification language in such a way that the
correctness of the Viper program implies the correctness of the original
Rust program. We start by showing in this chapter our technique for
handling Rust programs without references and extend it to handle
references in the later chapters. With our methodology, we are aiming to
enable building a verifier that works for real Rust programs. Rust has a
rich syntax with many syntactic constructs that enable the programmers
to express complex ideas concisely.As a result, ifwedefinedour technique
on the source level, the critical parts of the technique would likely be
obscured by the handling of the complex syntactic constructs. Therefore,
we define our technique not for source Rust but for the CFG-based
middle intermediate representation (MIR) used in the compiler, where
the powerful syntactic constructs are desugared into a few fundamental
primitives. However, to make code examples easier to read, we show
them using the syntax of source Rust.

We start this chapter by providing background on Rust ownership in
Section 2.1. In Section 2.2, we discuss how capabilities differ from own-
ership and present an algorithm that makes the capability information
explicit in the program. Then, Section 2.3 presents how a Rust program
with explicit capability information can be automatically encoded into
Viper program with a core proof that is guaranteed to be accepted by the
verifier. Section 2.4 finishes the chapter by showing how to incorporate
user-written specifications in the core proof.

2.1 Ownership in Rust

Unlike all other memory-safe systems programming languages that en-
sure memory safety with a garbage collector, Rust relies on its ownership
type system. In Rust, every memory-allocated value is uniquely owned
by some variable (function parameters are also variables). Once the
owning variable goes out of scope, the value is deallocated. The following
example illustrates this behaviour. It shows that the Box (a unique pointer
for storing values on the heap) containing number 2 is deallocated before
the Box containing number 1 because its owner, variable b, goes out of
scope earlier.

1 {

2 let a = Box::new(1);

3 {

4 let b = Box::new(2);

5 } // Box(2) gets deallocated here

6 } // Box(1) gets deallocated here
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1: Whether an assignment creates a copy
or moves depends on whether the type
is copyable (implements a Copy trait).
The most important examples of copy-
able types are primitive types and shared
references.

2: In this and the following chapter, we
focus on exclusive capabilities. We dis-
cuss shared capabilities, as used in the
get_value method in Figure 1.1, in
Chapter 4.

A value can can be transferred from one owner to another. In this case,
the value is not deallocated when the original owner goes out of scope.
An assignment that transfers ownership is called move assignment1. For
instance, a modified version of the previous snippet illustrates that if the
Box ownership is moved from a to b, it gets deallocated when b goes out
of scope.

1 {

2 let a = Box::new(1);

3 {

4 let b = a; // Box(1) is moved into b

5 } // Box(1) gets deallocated here

6 } // since a`s value was moved out, nothing happens

7 // when a goes out of scope

Ownership in Rust is transitive: the owner of a struct value also owns all
of its fields. However, a field could be moved out, making the struct‘s
ownership partial. The following snippet illustrates this case by moving
out place pair.first, which results in the corresponding Box getting
deallocated earlier.

1 struct Pair {

2 first: Box<i32>,

3 second: Box<i32>,

4 }

5 {

6 let pair = Pair {

7 first: Box::new(1),

8 second: Box::new(2),

9 };

10 {

11 let b = pair.first;

12 } // Box(1) gets deallocated here

13 } // Box(2) gets deallocated here

This example shows that variables are too coarse for tracking ownership,
and ownership should be tracked on the granularity of places instead.

Rust guarantees an important safety property that when an owner of
a value goes out of scope, and the value gets deallocated, it cannot be
reached anymore. To understand this point better, we have to look into
how ownership differs from capabilities.

2.2 Capabilities in Rust

If a place a owns some value, that does not imply that this value can
always be accessed via a. For example, as shown in Figure 2.1, if the value
is mutably borrowed2 by some reference r, then the capability to access
the value is temporarily transferred to r. However, the value remains
owned by a. Knowing what capabilities are held at each program point is
crucial for verification because it enables us to address the frame problem:
if an activation record has a capability to some value, we can be sure
that the value cannot change. Conversely, since a temporarily lost its
capability, we cannot be sure that the value owned by a did not change.
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3: Destructors in Rust are implemented
by implementing a trait Drop and, there-
fore, have to be behavioural subtypes of
this trait. Since the precondition andpost-
condition of the Drop::dropmethod is
true, the destructors cannot affect the
functional correctness of safe Rust code.

However, since b continuously kept capability to the owned value, we
can be sure that the value is still the same.

1 {
2 let mut a = Box::new(1);
3 let mut b = Box::new(1);
4 {
5 let r = &mut a;
6 // Only r can be used to mutate Box(1).
7 // However, a still owns it.
8 **r = 2;
9 }
10 // r is dead, a can be used for access again
11 assert!(*a == 1); // Fails.
12 assert!(*b == 1); // Succeeds.
13 } // a and b go out of scope and boxes get deallocated

Figure 2.1:A simple example illustrating
how capabilities enable framing knowl-
edge. Since b keeps the capability all the
time, we know that its value could not
change and, therefore, the assert on line
12 is guaranteed to succeed. However,
since a temporarily lost the capability,
we cannot guarantee that its value did
not change and, therefore, the assert on
line 11 may fail.

While the capability information is useful for verification, unfortunately,
it is not available in the Rust source code. The source code does not tell
us directly whether we have a capability to a specific place or whether
it was borrowed or moved out. The Rust compiler computes some of
this information when type-checking a Rust program but not in a form
suitable for consumption by external tools. Therefore, we designed the so-
called PCS elaboration algorithm that takes the information obtainable from
the compiler and elaborates a Rust program with capability information
suitable for consumption by verifiers. The algorithm presented in this
section is optimised for verifying safe Rust code: it does not model
implicit deallocation3 and tracks only the capabilities that correspond to
places that can be accessed by safe Rust code. We present a version of the
algorithm that supports mixed safe and unsafe code in Part III.

The remaining section is structured as follows. In Subsection 2.2.1, we
present place capability sets, a formal way of presenting capability
information, and additional operations needed to manipulate them.
Subsection 2.2.2 presents our PCS elaboration algorithm for loop-free
code and Subsection 2.2.3 extends it to handle loops.

2.2.1 Place Capability Sets

The key information we need for verification is what capabilities we
have at each program point and how these capabilities evolve when the
program is executed. To capture capabilities, we define place capability
sets (PCSs) as follows:

Definition 2.2.1 (Place Capability Sets (first version)) Places, ranged
over by ?, are expressions defined by the following grammar: ? ::“ G |

?. 5 | p˚?q. For a place ? of the form ?1. 5 and p˚?1q, place ?1 is called a
sub-place of ?; this notion is extended transitively in the natural way. A
place capability set (PCS) is a finite set of places.

When a program is executed, capabilities can be changed in two ways.
First, executing a Rust statement consumes some capabilities and pro-
duces potentially different ones. For example, the following move as-
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signment consumes place capability a and produces place capability
b.

1 PCS: { a }

2 let b = a;

3 PCS: { b }

Second, sometimes, the shape of capabilities needs to be changed. Chang-
ing is needed when the shape of capabilities before a statement does
not match the shape required by the statement, or capabilities incoming
from two different branches need to be unified. For example, the follow-
ing move assignment requires capability pair.first while the available
capability is pair.

1 let pair = Pair {

2 first: Box::new(1),

3 second: Box::new(2),

4 };

5 PCS: { pair }

6 ???

7 let b = pair.first;

8 PCS: { pair.second, b }

In such cases, the Rust compiler and our algorithm reshape the capabili-
ties into the required form. Our algorithm makes the reshaping explicit
by inserting PCS operations before the corresponding statement. In our
example, the required capability pair.first can be satisfied by unpack-
ing the capability pair into its constituent capabilities pair.first and
pair.second:

1 PCS: { pair }

2 unpack pair

3 PCS: { pair.first, pair.second }

4 let b = pair.first;

5 PCS: { pair.second, b }

The other two PCS operations are pack and remove. All three operations
are defined as follows:

Definition 2.2.2 (PCS Operations (first version)) A PCS operation is a
remove, unpack, or pack of a capability in a PCS. Remove is defined as the
corresponding set operation.

Let ? be a place of struct type, and let 51 , . . . , 5= be the fields of the struct.
For a PCS ( such that ? P (, the unpacking of ? in ( is the PCS p(zt?uq Y
t?. 51 , . . . , ?. 5=u. If ? is instead of box type, the unpacking is p(zt?uqYt*?u.

The packing of ? in ( is the inverse operation. It is defined only when the
?. 58 (or *?) are in (.

In the rest of this section, we present our PCS elaboration algorithm.
In Section 2.3, we show how to automatically derive a core proof in an
implicit dynamic frames logic for a Rust function elaborated with PCSs
and PCS operations. For supporting user-written specifications, we also
need a variant of the PCS operation unpack that works on expressions.
We present it in Section 2.4.
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4: The algorithm designed by Fed-
erico Poli for Vytautas Astrauskas, Pe-
ter Müller, Federico Poli, and Alexander
J. Summers. ‘Leveraging Rust types for
modular specification and verification’.
In: Proc. ACM Program. Lang. 3.OOPSLA
(2019) [74] also computes PCS opera-
tions within user-provided assertions,
which was needed for the assertion en-
coding used at that time. In Section 2.4
of this thesis, we present an alternative
encoding that does not require PCS op-
erations within assertions. Therefore, in
this subsection, we present a simplified
algorithm that computes PCS operations
only for statements.

2.2.2 Deriving PCSs and PCS Operations

In the previous subsection, we introduced PCSs and PCS operations. In
this subsection, we present an algorithm4 that computes them for loop-
free code. We show how to handle loops in the following subsection.

Our algorithm is a forward pass over a Rust function‘s CFG that processes
a statement only after processing all preceding statements. Since we
consider only loop-free code, we can achieve this order by processing
statements in reverse topological order. The algorithm computes PCS
before and after each statement. The initial PCS at the procedure‘s entry
point contains capabilities of all function parameters. Each statement is
processed by collecting its requirements, computing the operations that
transform the PCS to satisfy the requirements, and applying the effects
of the statement. At join points, the PCSs are unified by trying to pack
capabilities; the capabilities not present in at least one of the incoming
states are removed because the compiler will conservatively not allow
accessing the corresponding places.

1 fn modify_first(mut pair: Pair) -> Pair {
2 if random() {
3 let first = pair.first;
4 } else {
5 }
6 pair = Pair {
7 first: Box::new(2),
8 second: Box::new(3),
9 };
10 pair
11 }

Figure 2.2: A simple example showing
how the first element of a pair is non-
deterministically moved out, and then
the entire pair is reinitialised.

Figure 2.2 shows a simple Rust function that takes a pair, non-determinis-
tically moves out its first element, and then reinitialises the whole pair.
Figure 2.3 shows the same example with computed PCSs and PCS
operations. The function‘s parameter is pair; therefore, the initial PCS
is {pair} . The move assignment on line 7 in Figure 2.3 consumes the
capability to its right-hand side (pair.first) and produces the capability
to its left-hand side (first). Since the input PCS has pair, but not
pair.first, the algorithm emits an unpack pair operation and applies its
effect to the PCS producing {pair.first, pair.second} . The algorithm
determines what PCS operations it needs to produce by comparing
the required capability with the capabilities in the current PCS. If the
required place is already in the set, then the requirement is satisfied, and
no operations are needed. If the current PCS contains a place that is a
prefix of the required place, then the algorithm recursively unpacks the
prefix until the PCS contains the required place. Otherwise, the algorithm
obtains the required place by packing. Since the algorithm is executed
on type-checked code, it is guaranteed to succeed. After unpacking pair,
the PCS has the required place pair.first and, therefore, the algorithm
proceedswith applying the effects of the statement: it removes pair.first
and adds first to the PCS.

After processing both branches of the if statement, the algorithm needs
to unify their PCSs. The algorithm unifies PCSs by trying to find for each
capability in one branch a matching capability in the other branch. If it
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Figure 2.3: The example from Figure 2.2
with elaborated PCSs and PCS opera-
tions.

1 fn modify_first(mut pair: Pair) -> Pair {
2 PCS: { pair }
3 if random() {
4 PCS: { pair }

5 unpack pair

6 // Consume: { pair.first } Produce: { first }
7 let first = pair.first;
8 PCS: { first, pair.second }

9 remove first

10 PCS: { pair.second }
11 } else {
12 PCS: { pair }

13 unpack pair

14 remove pair.first

15 PCS: { pair.second }
16 }
17 PCS: { pair.second }
18 // Soft-drop: { pair } Consume: { } Produce: { pair }
19 pair = Pair {
20 first: Box::new(2),
21 second: Box::new(3),
22 };
23 PCS: { pair }
24 // Consume: { pair } Produce: { }
25 pair
26 }

fails to find an exact match, the algorithm tries to obtain the match by first
packing, and if packingdoes notwork, thenunpacking capabilities. If both
fail, the capability is removed. In our example, the then-branch has PCS
{first, pair.second} , and the else-branch has PCS {pair} . first does
not exist in the else-branch PCS, so it gets removed by adding a remove

first PCS operation to the then-branch. The next capability checked
is pair.second. Since the else-branch PCS does not have pair.second

and pair is a prefix of pair.second, the algorithm checks whether it
can obtain the pair capability in the then-branch by packing it. This
check fails because the then-branch does not have pair.first capability.
The algorithm proceeds by unpacking pair in the else-branch PCS to
obtain {pair.first, pair.second} . After this operation, both branches
have the pair.second capability. Ultimately, the algorithm tries to match
pair.first from the else-branch, fails, and removes it. The final unified
PCS is {pair.second} .

The last move assignment on lines 19–22 consumes no capabilities.
However, it reinitialises the place pair, which means that if we have
any capabilities to pair, they need to be removed as indicated by “Soft-
drop” in the comment on line 18. More precisely, we need to remove any
capabilities that have pair as a prefix. In our example, pair.second. The
statement produces capability pair; therefore, the final PCS before the
end of the statement is {pair} .

The PCS elaboration algorithmwe presented is completely syntax-driven,
which is enabled by two observations. First, in safe Rust programs
without references, two syntactically different places are guaranteed to
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identify two different locations. This property allows us to treat each place
capability independently without worrying that, for example, unpacking
a capability through one placewould invalidate the view through another
place. Second, since we only need to deal with user-written places that
are of finite size, we are guaranteed that our algorithm will need only a
finite number of steps.

2.2.3 Handling Loops

In the previous subsection, we presented an algorithm for computing
PCSs and PCS operations for loop-free code. In this subsection, we extend
the algorithm to handle loops.

A standard way of handling loops in deductive verification is by using
loop invariants, a condition maintained by the loop that allows capturing
the effect of unbounded many iterations in a finite way. In our context,
a loop invariant must specify all capabilities required to execute the
loop body safely. Inferring loop invariants for general programs is an
open research problem [80]. Luckily, Rust was designed so that the type
checker could efficiently check the capabilities of the code with loops.
However, computing the loop invariant PCS is still non-trivial because
the invariant should be minimal to frame around as much knowledge as
possible. Consider the example shown in Figure 2.4 with two variables a
and b. Only b is modified in the loop body; therefore, we would like to
prove the assertion on the last line without any user input. However, if we
put the capability a into the loop invariant, the verifier will conservatively
have to assume that a could be modified by the loop and thus not frame
its value. Therefore, we must ensure that the loop invariant PCS for this
example contains only b.

1 let a = 5;
2 let mut b = 1;
3 while random() {
4 b += 1;
5 }
6 assert!(a == 5); Figure 2.4: A simple example showing a

loop.

We compute the loop invariant in two steps5
5: We present an algorithm that expects
the loop invariant at the loop head. It
can be generalised to supporting loop
invariants at any point in the loop by
duplicating the code between the loop
head and the invariant.

. First, we execute our regular
algorithm up to the loop invariant, which gives us a candidate PCS.
For the example in Figure 2.4, the candidate PCS is {a, b} . Second, we
obtain from the compiler the list of statements that belong to the loop
body and filter out from the candidate PCS the capabilities that are not
needed for these statements. Since in our example a is not used in the
loop body, the remaining loop invariant PCS is {b} . Since our algorithm
is executed on a type-checked Rust program, the loop body is guaranteed
to preserve the loop invariant PCS that was computed in this way.

This section presented a slightly simplified version of the algorithm. The
complete algorithm distinguishes between read and write accesses. For
modelling the former, we use shared capabilities, which we present in
Chapter 4.
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6: In this thesis, we refer to operations
such as Viper’s fold and unfold state-
ments that are needed only for convinc-
ing the verifier that the code is correct as
ghost operations

2.3 Constructing the Core Proof

In the previous section, we showed how to elaborate Rust functions
with explicit capability information. In this section, we show how that
information can be used for generating a core proof in the Viper [38]
intermediate verification language. Viper assertions are based on implicit
dynamic frames [19], a powerful permissions logic. A Viper program
consists of methods, fields, and predicates. Our goal is to encode a Rust
function into a Viper method in such away that themethod is guaranteed
to be successfully verified by a Viper verifier without any additional
input. Achieving this automation requires convincing the verifier that
each memory access is justified because the activation record holds the
required permission. In the following subsections, we showhow the place
capability information can be used to achieve the desired automation. We
start by giving the necessary background on Viper and showing what is
needed for verifying a program in Viper. Then, we show how we encode
a Rust function with capability information into a Viper method. We
finish this section by describing how we handle each kind of Rust type
and showing a complete encoding of the Rust function from Figure 2.3.

2.3.1 Viper Background

As mentioned in the introduction, in Viper, permissions are specified
by using an accessibility predicate acc(R, p) that gives p permission
amount to a resource R. In this chapter, p is always write, indicating that
the resource can be both read and mutated. A resource R can be either a
field or a predicate. Predicates are crucial for modelling recursive data
structures. For example, a linked list of mathematical integers in Viper
could be modelled by using the following predicate that refers to itself.

1 field value: Int

2 field next: Ref

3 predicate LinkedListNode(this: Ref) {

4 acc(this.value, write) &&

5 acc(this.next, write) &&

6 (this.next != null ==>

7 acc(LinkedListNode(this.next), write))

8 }

This snippet defines two fields: an integer value and a reference next.
The predicate LinkedListNode takes a reference to a node as an argument
and gives full permissions to its value and next fields. Also, if field
next is not null, the predicate gives full permission to the remainder
of the linked list. Recursive predicates pose a challenge to automatic
verifiers because they may get stuck by infinitely applying a predicate
definition. Therefore, automated verifiers such as Viper treat predicates
isorecursively [81–83], which means that the user is required to explicitly
specify when to apply a predicate definition. Viper provides statements
unfold P that replaces the predicate instance P with its body and fold

P that does the opposite6. Predicates are also important for modelling
abstract assertions; for example, an abstract Viper predicate (a predicate
without body) can be used for modelling unknown assertions.
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Predicates enable us to specify how a data structure looks at a specific
moment.However, executing aprogramchanges the shapeof thememory:
memory gets allocated and deallocated, and permissions are transferred
from one activation record to another. In Viper, such effects are modelled
with inhale and exhale statements. Statement inhale A assumes the
pure parts of assertion A and adds the permissions mentioned in its
accessibility predicates to the current state. The dual of inhale is exhale A

that asserts the pure parts of the assertion A, checks that the current state
contains enough permission to satisfy the permissions mentioned in the
accessibility predicates, and removes these permissions from the state.
For example, the following snippet shows how a program that allocates
an object r with field value, modifies the field, and deallocates it could
be modelled in Viper.

1 // Initially r has some unknown value.

2 var r: Ref

3

4 // Allocate the object.

5 inhale acc(r.value, write)

6

7 // Write to the field.

8 r.value := 42;

9

10 // Deallocate the object.

11 exhale acc(r.value, write)

Another vital use of inhale and exhale is to model permission transfer
between contexts such as caller and callee, or loop body and surrounding
context. The permissions (and knowledge) are transferred by exhaling
them on the sending side and inhaling them on the receiving side. For
example, ifwe havemethod calleewith precondition P andpostcondition
Q, we could model a call to it as shown in the snippet below.

1 method callee()

2 {

3 inhale P // inhale precondition

4 ...

5 exhale Q // exhale postcondition

6 }

7 method caller()

8 {

9 ...

10 exhale P // exhale precondition

11 inhale Q // inhale postcondition

12 ...

13 }

The caller sends assertion P by exhaling it, and the callee receives it by
inhaling. Similarly, the postcondition Q is transferred from the callee to
the caller by exhaling it on the callee side and inhaling it on the caller side.
Viper‘s inhale and exhale are powerful primitives that enable succinct
modelling of various concepts.
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2.3.2 Encoding Rust Functions in Viper

So far, we have seen how to compute explicit capability information
for Rust functions and what is needed for verifying a Viper method.
When linking the two, the main question is how to model the place
capabilities in Viper. The memory locations to which a place capability
gives access depend on the place‘s type, which in Viper can be captured
by an assertion. Therefore, we model Rust types with Viper predicates,
which are named assertions. For example, the following snippet shows
how we model a signed 32-bit integer in Viper (we show how we model
the main Rust kinds of types in the following subsection).

1 predicate i32(self: Ref) {

2 acc(self.val_i32, write) &&

3 MIN_i32 <= self.val_i32 && self.val_i32 <= MAX_i32

4 }

The value of the integer is stored in the field val_i32. The type of the field
is Int, a built-in Viper type for unbounded integers. The predicate gives
access to the field storing the value and constrains the value to be in the
valid range for 32-bit signed integers (if overflow checking is disabled, the
bounds are omitted). Parameter self is the identity of the object.We chose
to use object identity instead of an address for identifying objects because
addresses in safe Rust are of little value (pointer arithmetic requires
using unsafe code), enabling us to simplify the model. For example, this
design choice allows us to encode Rust move assignment let b = a; into
Viper as simple assignment b := a; followed by setting a to null, which
automatically takes care of the permission transfer.

Assigning to a newly declared variable in Rust creates a capability for
that variable, as shown by the following example.

1 PCS: {}

2 let mut a: i32 = 1;

3 PCS: { a }

We model the effects of creating and destroying place capabilities with
inhale and exhale statements. We encode the given snippet to Viper by
inhaling the permissions to the value field, writing a new value, and
folding the predicate instance corresponding to the created capability.

1 inhale acc(a.val_i32, write)

2 a.val_i32 := 1;

3 fold acc(i32(a), write)

We also use inhale and exhale statements to model capability transfer.
The capabilities of function parameters are transferred into the function
when it is called, and the capability of the return place is transferred to
the caller when the function terminates. Therefore, the capabilities of the
parameters belong to the function precondition, and we encode them
into Viper by exhaling the corresponding predicate instances on the call
side and inhaling the corresponding predicate instances on the callee
side. Similarly, the return place belongs to the function postcondition,
and we encode it by exhaling the corresponding predicate on the callee
side and inhaling it on the caller side.
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The last ingredient we need for generating the core proofs is handling
PCS operations. The PCS operations pack and unpack naturally map to
Viper statements fold and unfold. Similarly, the remove operation that
removes a capability from a state is modelled by using Viper statement
exhale.

2.3.3 Modelling of Rust Type Kinds

This subsection describes how we model each kind of Rust types.

As already explained, primitive types like bool, i32, u64, and char are
modelled by having a Viper field with potentially additional constraints
wrapped in a predicate. For example, the predicate for u64 is defined
similarly to the one for i32.

1 predicate u64(self: Ref) {

2 acc(self.val_u64, write) &&

3 0 <= self.val_u64 && self.val_u64 <= MAX_u64

4 }

Generic type parameters are modelled as abstract Viper predicates.

Safe abstractions are types that are internally implemented by using
unsafe code but provide a safe abstraction for the clients. Since the
technique presented in this part does not support unsafe code, we model
such types as abstract Viper predicates. We show how some of these
types could be supported in Part III.

Structs are modelled as a conjunction of their field predicates. For
example, the following struct:

1 struct Pair {

2 first: Box<i32>,

3 second: Box<i32>,

4 }

is encoded with the following predicate:

1 predicate Pair(self: Ref) {

2 acc(self.first, write) &&

3 acc(Box_i32(self.first), write) &&

4 acc(self.second, write) &&

5 acc(Box_i32(self.second), write)

6 }

The accessibility predicate acc(self.first, write) gives full permission
to the field that stores the identity of the Rust field first while acc(Box_-

i32(self.first), write) gives permission to the contents of the field.
Storing the identity of the field object in field first enables us to move in
and out values in a simple way. For example, the following Rust move
assignment:

1 pair.first = new_value;

is encoded as:

1 pair.first := new_value;
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7: A nice consequence of this encoding
is that it naturally captures uninhabited
types like Void [84] that are declared as
empty enums because this disjunction
becomes false. Uninhabited types are
used, for example, to inform the compiler
that a specific path is unreachable.

Enums are modelled as a conjunction of variants guarded by the enums‘
discriminant. For example, the following enum:

1 struct Option<T> {

2 None,

3 Some(T),

4 }

is encoded with the following predicate:

1 predicate Option(self: Ref) {

2 acc(self.discriminant, write) &&

3 (self.discriminant == 0 || self.discriminant == 1) &&

4 (self.discriminant == 0 ==>

5 acc(Option_Variant_None(self), write)) &&

6 (self.discriminant == 1 ==>

7 acc(Option_Variant_Some(self), write))

8 }

The discriminant field self.discriminant indicates which of the
enum‘s variants is active. The disjunction (self.discriminant == 0 ||

self.discriminant == 1) ensures that the discriminant is always valid7.
The last two conjuncts give permission to the corresponding variant if the
discriminant has thematching value.We encode predicates for variants of
an enum (in our example, Option_Variant_None and Option_Variant_Some)
using the encoding of structs. For example, variant None is encoded as an
empty struct and variant Some is encoded as a struct with a single field.

Box<T> is a safe abstraction providing a safe pointer to heap-allocated
memory. While the type is defined in the standard library, it is also
recognized and treated in a special way by the compiler, for example, by
allowing special syntax in match statements. Therefore, we also special
case boxes by encoding them as follows:

1 predicate Box_T(self: Ref) {

2 acc(self.pointer, write) &&

3 acc(T(self.pointer), write)

4 }

pointer is a field of type Ref that points to the heap-allocated part of the
box while T(self.pointer) represents the heap-allocated value of type
T.

2.3.4 Encoded Example

With all the details covered, we can finally show a complete encoding
of a Rust function. Figure 2.5 shows a slightly simplified for readability
encoding of Figure 2.3 into Viper.
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1 method modify_first(pair: Ref) returns (_result: Ref)
2 {
3 // Inhale precondition.
4 inhale acc(Pair(pair), write)
5

6 var first: Ref
7

8 if random() {
9 unfold acc(Pair(pair), write)
10 first := pair.first;
11 exhale acc(i32(first), write)
12 } else {
13 unfold acc(Pair(pair), write)
14 exhale acc(i32(pair.first), write)
15 }
16

17 exhale acc(i32(pair.second), write)
18

19 // Construct pair.first.
20 inhale acc(pair.first, write) &&
21 acc(pair.first.pointer, write) &&
22 acc(pair.first.pointer.val_i32, write)
23 pair.first.pointer.val_i32 := 2;
24 fold acc(i32(pair.first.pointer), write)
25 fold acc(box_i32(pair.first), write)
26

27 // pair.second is constructed in the same way.
28

29 fold acc(Pair(pair), write)
30

31 // Exhale postcondition.
32 exhale acc(Pair(pair), write)
33 }

Figure 2.5: Encoding of Figure 2.3 into Viper.

2.4 Functional Specifications

The core proof that we showed how to construct in the previous section
reproves the guarantees that are already checked by the type system.
However, this core proof contains information on how permissions
and values flow through the program. In this section, we show how
this information enables verifying the functional correctness of the
program.

We start by showing in Subsection 2.4.1 how our approach enables us
to check whether user-specified assertions and checks inserted by the
compiler could fail at runtime. While proving the absence of runtime
errors is valuable, users often want to prove full functional correctness,
which is enabled by Prusti‘s specification language. In Subsection 2.4.2,
we show how the core proof can be extended to accommodate user-
written specifications. The steps needed for supporting pure functions
are very similar, but since pure functions can only readmemory, most use
cases of pure functions rely on shared references. Therefore, we present
how we handle pure functions in Section 5.1 after we presented shared
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8: lookup in this snippet is a pure
method that returns the value stored
at the given index. We will cover pure
functions in Section 5.1

references.

2.4.1 Checking Absence of Panics and Assertion Failures

As mentioned in the introduction, the simplest way to specify functional
behaviour is by using assert!(...) macros, as shown in the following
example that computes the distance between two points.

1 fn compute_distance(start: i32, end: i32) -> i32 {

2 assert!(end > start);

3 end - start

4 }

The Rust compiler expands the assert!(...) macro into an if statement
that starts a panic when the asserted condition does not hold, as shown
in the snippet below.

1 fn compute_distance(start: i32, end: i32) -> i32 {

2 if !(end > start) {

3 // A call to a compiler intrinsic that starts

4 // a panic.

5 }

6 end - start

7 }

Therefore, to prove that the condition in the assert!(...) never fails, we
only need to prove that the then-branch of the if condition is unreachable.
We can make the Viper verifier check this property by encoding the
compiler intrinsic that starts the panic into Viper with an assert false

statement, which checks that the condition false holds at that state. With
this approach, we can check not only that user-written asserts always
succeed but also that other runtime checks performed by Rust such
as overflows and division by zero always succeed, too. If a user is not
interested in checking that the runtime checks never fail, we can easily
turn off these checks by encoding panics as assume false, which assumes
that the branch is unreachable. By providing the possibility to turn off
the checks, we enable the user to focus on the properties they are most
interested in.

2.4.2 Specifying and Verifying Functional Properties

Often, the user needs to express properties beyond the ones that are easy
to express with assert statements, for example, that a vector is sorted.
As shown in the following snippet, such properties can be expressed
with our specification language that is based on Rust expressions but
provides powerful first-order logic extensions such as quantification. The
postcondition in the example expresses that for any two indices i and
j, if i is not smaller than j, then the ith element of the vector will be
non-smaller than the jth element8.
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Lightweight Verification of Rust Soft-
ware’

1 #[ensures(

2 forall(i: usize, j: usize

3 (i <= j && j < result.len()) ==>

4 result.lookup(i) <= result.lookup(j)

5 )

6 )]

7 fn create_sorted_vector() -> VecI32 { /* ... */ }

Supporting user specifications requires overcoming three challenges. The
first challenge is guaranteeing that user-written specifications are suffi-
ciently stable for verifying concurrent and heap-manipulating programs.
For example, Dafny [43] does not support verifying concurrent code
because its specification language is not resilient against data races. We
ensure the stability of our specifications by type-checking them with the
Rust type-checker, which ensures that available capabilities frame them.
For example, a function precondition can only mention the function
parameters because these are the only places the called function has
capabilities at its invocation.

The second challenge is computing PCSs and PCS operations for specifi-
cations. For example, the state may have a capability to the entire pair

while the specification mentions only its first field pair.first. To justify
using pair.first, we need to unpack the capability within the specifi-
cation without affecting the outer PCS state because the specifications
should have no side effects. Therefore, we introduce a PCS operation
unpacking p in e that is similar to unpack p but works on expressions
instead of statements: the expression e is evaluated in a state where
the capability p is unpacked. We also extend the algorithm presented
in Subsection 2.2.2 to infer unpacking operations in specifications. A
simplified version of the extension would be for each place p mentioned
in the specification, find a place capability that is a prefix of p (such
place capability is guaranteed to exist for type-checked programs) and
insert the necessary amount of unpacking operations. Such an extension
is sufficiently expressive but suboptimal: it generates significantly more
than necessary unpacking operations. Federico Poli[85] designed a more
complex version of the algorithm that significantly reduces the number
of unpacking operations.

The third challenge is integrating user specifications into the core proof.
This challenge turns out to be surprisingly easy due to our choice to use
the implicit dynamic frames logic. As was mentioned in the introduction,
implicit dynamic frames supports heap-dependent expressions such as
pair.first == 4. Therefore,we can conjoin the user-written specifications
to the specifications generated from types. We only need to ensure
that all heap-dependent expressions are framed, which we achieve by
translating the unpackingPCSoperations into an unfolding acc(P, write)

in e Viper expression, which evaluates e in a state where the predicate
instance P is unfolded.

1 #[ensures(result.first == old(a))]
2 fn new_pair(a: i32, b: i32) -> Pair {
3 // ...
4 }

Figure 2.6: A simple example showing a
constructor of a Pairwith a postcondi-
tion. Note that old around a is inserted
automatically; we show it here for clarity.

Figure 2.7 demonstrates our encoding of the postcondition shown in
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Figure 2.7: A simplified encoding of Fig-
ure 2.6. The inhaled precondition has
true as a last conjunct because the pre-
condition defaults to true if omitted.
old[l](e) is a labelled old expression
that evaluates the expression e in a state
marked with label l.

1 method new_pair(a: Ref, b: Ref) returns (_res: Ref)
2 {
3 // Inhale preconditions.
4 inhale
5 // Preconditions from types.
6 acc(i32(a), write) &&
7 acc(i32(b), write) &&
8 // Functional preconditions.
9 true
10 label pre
11

12 ...
13

14 // Exhale postconditions.
15 exhale
16 // Postconditions from types.
17 acc(Pair(_res), write) &&
18 // Functional postconditions.
19 (unfolding acc(Pair(_res), write) in
20 unfolding acc(Box_i32(_res.first), write) in
21 unfolding acc(i32(_res.first.pointer), write) in
22 _res.first.pointer.val_i32)
23 ==
24 (old[pre](
25 unfolding acc(i32(a), write) in
26 a.val_i32))
27 }

Figure 2.6. Figure 2.6 shows a signature of a function that constructs
a new pair and whose postcondition guarantees that the value of field
first is equal to the value that the parameter a had at the function‘s
prestate. Figure 2.7 shows an encoding of the specification in Viper. The
inhale statement on lines 4–9 inhales the function‘s precondition. The
conjuncts on lines 6–7 inhale the permissions that were computed from
the type information and the conjunct on line 9 inhales the user-written
precondition. Since the user wrote no precondition, it defaults to true.
Statement label pre on line 10 saves the prestate so that later the labelled
old expression old[pre](e) could be used to evaluate expressions in that
state. The postcondition is exhaled on lines 15–26. The conjunct on line 17
exhales the permission to the result value and the conjunct on lines 19–26
exhales the user-written specifications. All unfolding expressions in the
functional specification are automatically computed by our technique,
even though the two sides of the equality use permissions from different
states: the left side uses the current state, and the right side uses pre

state.
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In the previous chapter, we presented how to handle Rust programs that
use move and copy assignments. Moving values around is often both
cumbersome and inefficient. Therefore, most Rust programs extensively
use references. Since Rust aims to guarantee that a memory location is
either mutable or shared, but never both, mutable references in Rust
are unique: they temporarily borrow the capability from the borrowed
place. In Figure 3.1, the owned value a is mutably borrowed by x on
line 4, which transfers the capability for mutating the memory location
from place a to *x. The capability is returned after the last use of *x on
line 8. As a result, the compiler rejects the assignment to a on line 6
but accepts the one on line 14. As shown on line 10, the place capability
for reference x contains two capabilities inside it: capability x.pointer,
which is the capability to the memory location containing the address
of the target, and capability x.*, which is the capability to the target
itself. When a reference expires, the capability to the target is transferred
back, but the capability to the address remains, allowing reassigning the
reference to point to a new location. Similarly to other place capabilities,
place capabilities for references can be unpacked and packed using the
corresponding PCS operations.

1 PCS: { }
2 let mut a = 1;
3 PCS: { a }
4 let x = &mut a;
5 PCS: { x }
6 // a = 2; // Illegal!
7 PCS: { x }
8 *x = 3;
9 unpack x

10 PCS: { x.*, x.pointer }

11 PCS: { a, x.pointer }
12 assert!(a == 3);
13 PCS: { a, x.pointer }
14 a = 4; Figure 3.1: A simple example of borrow-

ing showing the flow of capabilities.

A reference can not only temporarily borrow a capability from an owning
place but also temporarily reborrow a capability from another reference as
shown in Figure 3.2 where a reference y temporarily borrows the target
of reference x. Reborrowing (borrowing the target of another reference)
should not be mixed up with borrowing the entire reference. The latter
takes the capability to the entire reference, including its target. The
former takes the capability to the target but leaves the capability to the
pointer that stores the address. While the reborrowing pattern at first
glance looks obscure, in Rust, it is used all the time and supporting it
is crucial. For example, accessing an element of a vector gets desugared
into reborrow. Also, the Rust compiler often replaces moves of references
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1: Some exchange capability operations
are unnecessary for the Viper encoding
becauseViper can compute the necessary
actions itself. However, we still introduce
them to make changes to PCSs explicit.

with reborrows to allow more code to be accepted (moving a reference
moves the capability permanently while reborrowing it also allows to
restore it once the reborrowing reference expires).

Figure 3.2: A simple example of rebor-
rowing showing the flow of capabili-
ties. Since y borrows only the target of
x, the capability to the actual pointer
(x.pointer that stores the address of
the target remains with x.

1 PCS: { }
2 let mut a = 1;
3 PCS: { a }
4 let x = &mut a;
5 PCS: { x }
6 let y = &mut *x;
7 PCS: { y, x.pointer }
8 *y = 2;
9 PCS: { x.*, x.pointer }
10 *x = 3;
11 PCS: { a }
12 a = 4;

As already noted earlier, for verification, it is crucial to know how the
capabilities flow through the program because it gives us information
about the flow of values. The algorithm we presented in Section 2.2 that
makes the capability information explicit relies on move assignments
explicitly moving capabilities from one place to another. A borrow
statement let x = &mut a; also explicitly moves capabilities from the
lenderplace a to the borrowingplace x. Therefore, thepresented algorithm
can also be used for computing PCSs for forward capability flow through
borrows.However,when a reference expires, the capabilities are implicitly
returned to the lender: in Figure 3.1, there is no information that capability
from x.* has to go to a; the Rust compiler only knows that x.* loses its
capability and a regains the capability. Therefore, to be able to prove the
assertion on line 12 in Figure 3.1, we have to make the implicit backward
capability flow explicit to the verifier.

The examples above illustrate a bounded forward capability flow.However,
a function using a mutable reference to traverse a linked list leads to
unbounded forward capability flow. This unbounded flow poses the
challenge of expressing the backward capability flow in a bounded way.
Our key insight is that we can abstract over backward capability flow by
introducing an exchange capability:

Definition 3.0.1 (Exchange Capability) An exchange capability (EC) P1
→ P2 is a capability to exchange place capability set P1 into a place capability
set P2.

Intuitively, P1 → P2 expresses that P2 is blocked by P1 because forward
capability flow derived P1 from P2 and, therefore, we can regain P2

by giving up P1. There are two ways to obtain an exchange capability:
execute a borrow statement or derive it from other exchange capabilities.
For example, executing the borrow statement let x = &mut a; produces
exchange capability { x.* } → { a }. Exchange capability { x.* } → {

a } enables us to regain capability a by giving up both the exchange
capability and capability x.*. An exchange capability can be derived
using prove-exchange operation, which is one of the exchange capability
operations1:
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2: We originally called it reborrowing
DAG (directed acyclic graph). We still use
this name in the Prusti code repository.

[86]: Developers (2023),MIR borrow check

Definition3.0.2 (ECOperations) AnECoperation is exchange P1 → P2

or prove-exchange P1 → P2 G .

Executing exchange P1 → P2 in PCS ( checks that P1 is a subset of (,
consumes exchange capability P1 → P2, and updates ( to p(zP1q Y P2.

Executing prove-exchange P1 → P2 G executes the loan-dependency graph
G (defined below) to prove exchange capability P1 → P2.

Exchange capabilities enable us to abstract over arbitrary forward flow, in-
cluding recursive function calls: a function that takes reference arguments
returns an exchange capability that enables the caller to undo the for-
ward capability flow performed by the function. The returned exchange
capability could be either used in an exchange operation to regain the
originally borrowed capabilities or used in prove-exchange as a building
block to build another exchange capability that is returned to the caller.
Similarly to PCSs, reliably computing EC operations requires solving
multiple technical challenges, which we approach by introducing a loan-
dependency graph2 that captures the backward capability flow in a local
context, such as amethod or loop body. To simplify the presentation of the
loan-dependency graph, we introduce an operation expire-borrows G

that uses a loan-dependency graph G to expire borrows at a given pro-
gram point. This operation stands for a prove-exchange immediately
followed by the corresponding exchange .

We start this chapter by presenting in Section 3.1 different implementa-
tions of the borrow checker, the part of the Rust compiler that ensures that
capabilities are not duplicated. We explain why the borrow checker does
not need to explicitly track backward capability flow and what helpful in-
formation it has for us to restore that backward flow. Section 3.2 discusses
the challenges that must be addressed when computing the backward
flow for Rust programs. In Section 3.3, we present the loan-dependency
graph and explain how we construct it. We finish this chapter by show-
ing in Section 3.4 how we extend the core proof to support mutable
borrows.

3.1 Overview of Rust Borrow Checkers

A borrow checker is a part of the Rust compiler type checker that, as
the name implies, ensures the correct use of borrows. Since the borrow
checker is Rust‘s “secret sauce” [86], there is continuous work on trying to
improve it. This work resulted in several versions of the borrow checker,
each with different properties. Here, we briefly discuss them from a
verification point of view.

Lexical Lifetimes. The first version of Rust shipped with a borrow
checker requiring a borrow to last until the end of the scope. This borrow
checker would reject all three accesses to a in Figure 3.1 as illegal. The
motivation for this design was to have a bit more restrictive but easily
predictable behaviour. However, the lexical treatment of borrows turned
out to be very annoying for programmers.Also, the lexical borrow checker
was defined on an AST, and it turned out that correctly implementing a
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borrow checker on ASTs for a complex language like Rust is hard [86].
For these two reasons, the Rust compiler developers decided to switch to
a borrow checker based on non-lexical lifetimes [87]. When we started
our work, it was already clear that the non-lexical borrow checker would
replace the lexical one.

Non-Lexical Lifetimes. In the Rust 2018 edition3, a new borrow checker
was shipped based on non-lexical lifetimes [73]. This borrow checker is
currently the default one in Rust. As we presented in the introduction
of this chapter, in this version, a borrow lasts until the last use of the
reference. This version of the borrow checker guarantees that capabilities
are not duplicated without explicitly tracking the backward flow. It
achieves this property using an indirection via lifetimes, which in this
version of the borrow checker are sets of program points. For example,
the following snippet shows a borrowing statement where a reference x

borrows a with lifetimes made explicit.

1 let x: &'lb mut i32 = &'ll mut a;

In this example, a lifetime ’ll is the set of all program points for which
place a is loaned while ’lb is the set of all program points in which
borrow x is alive. Since x has a capability at program points ’lb, a
must not be used at these program points and, therefore, ’lb Ď ’ll.
Having these constraints, the borrow checker can compute minimal sets
that satisfy them and check whether, for example, a is not used at any
program point that is included ’ll. Unfortunately, these constraints do
not contain enough information to reconstruct the explicit backward flow
of capabilities, which we need to show the verifier how changes to the
borrow affect the loan.

Polonius. We discussed the idea of an algorithm that computes the
backward flow of capabilities without relying on the borrow checker
with Nicholas D. Matsakis, the leader of the Rust language and compiler
teams, and he came up with a new version of the borrow checker called
Polonius [88]. Polonius performs a may-borrows analysis, which is much
closer to standard may-alias analyses used in other compilers and tools.
The advantage of Polonius for Rust programmers is that it accepts more
correct programs than the non-lexical lifetimes borrow checker. The
advantage of Polonius for verification is that, while it does not compute
explicit backwardflow, its results aremuch easier to reuse for this purpose.
The key difference between Polonius and previous borrow checkers is
the definition of the lifetime: in previous approaches, the lifetime is a
set of program points, while, in Polonius, the lifetime is a set of loans.
Figure 3.3 shows how Polonius uses lifetimes to track which loans could
be borrowed by which references. Reference x declared on line 1 has
lifetime ’lx, which initially is empty. On line 4, x borrows variable a; this
loan is given identifier L1. After this borrow, the lifetime ’lx is a singleton
set containing L1. Similarly, after the borrow of b in the other branch,
’lx is a singleton set containing L2. After the if statement, the two sets
are merged, so we know that the assignment on line 11 affects either a
(through loan L1) or b (through loan L2).

Polonius tells us for each loanwhich referencemay borrow it. We decided
to reuse as much as possible information from Polonius because it gives
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1 let x: &'lx i32;
2 // 'lx = { }
3 if random_choice() {
4 x = &mut a; // L1
5 // 'lx = { L1 }
6 } else {
7 x = &mut b; // L2
8 // 'lx = { L2 }
9 }
10 // 'lx = { L1, L2 }
11 *x = 4; Figure 3.3: An illustration of how Polo-

nius treats lifetimes.

us confidence that our treatment of capabilitiesmatches the Rust compiler.
In the following sections, we discuss the challenges we need to address
to turn the information available in Polonius into an explicit backward
capability flow and our solution to them.

3.2 Challenges in Reconstructing Backward
Flow

At the beginning of this chapter, we discussed the exchange capabilities
that are our solution to challenge C0:

Modularity (C0). Since recursive functions can generate unbounded
reborrowing, we need a mechanism for capturing unbounded backward
capability flow.

In this section, we present three additional challenges that we need to
address to be able to reconstruct explicit backward capability flow from
the may-borrow information available in Polonius.

Handling effects of PCS operations (C1). When a borrow expires and
the borrowed place is usable again, we need to know not only that the
capability was returned but also the shape of the capability. For example,
if the borrowed capability was unpacked like in the following snippet, the
backward flowneeds to pack it back or bring it to some other well-defined
state.

1 PCS: {pair}

2 let x = &mut pair;

3 PCS: {x}

4 unpack x

5 PCS: {x.pointer, x.*}

6 unpack x.*

7 PCS: {x.pointer, x.*.first, x.*.second}

8 (*x).first = 5;

9 PCS: {pair}
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Handling conditional control flow (C2). In the example shown in
Figure 3.3, reference x conditionally borrows either a or b. As we can
see from the lifetime information shown on line 10, Polonius knows that
x could be borrowing a or b but does not know which one exactly is
borrowed on a specific execution. However, we must know the precise
information to restore the capabilities when reference x expires.

Handling reference reassignments (C3). In Rust, accessing a place that
is borrowed is illegal as long the borrow is active. However, reassigning
the reference whose target was reborrowed is allowed, as shown by the
following snippet.

1 let mut x = &mut a;

2 let y = &mut *x;

3 x = &mut b; // Allowed because x itself was not

4 // borrowed.

5 *y = 5;

This example demonstrates that when reference y expires, reference x has
a different meaning than the one it had when ywas created. In particular,
the backward capability flow must not try to use the new place x for
capability transfer.

3.3 Reconstructing Backward Flow

In the introduction of this chapter, we mentioned that we use a loan-
dependency graph to capture backward capability flow in a local context.
The loan-dependency graph is a directed acyclic graph that states how,
by using PCS and EC operations, we can transform one PCS into another
PCS. The expire-borrows operation uses this graph to return capabilities
from references to original places, and the prove-exchange operation
uses it to prove a new exchange capability. In this section, we show
how we iteratively define and construct the loan-dependency graph,
addressing all the challenges mentioned in the previous section.

When a reference (or, in a more general case, a set of references) ex-
pires, Polonius computes which loans get unblocked. At this point, the
capabilities are implicitly transferred from the expired references to the
borrowed places. We insert expire-borrows operations at these points
to make the capability transfer explicit. The unblocked set of loans have
dependencies between them. Figure 3.4a shows a Rust snippet where
variable a is borrowed by reference x that is reborrowed by reference
y. Borrowing with x creates loan L1 while reborrowing with y creates
loan L2. Since loan L2 was created by reborrowing the place created in
L1, we need to expire L2 before expiring L1. From such dependencies,
which we obtain from Polonius, we construct the basic structure of the
loan-dependency graph, which we show in Figure 3.4b.

In Figure 3.4b, nodes Start and End are helper nodes indicating entry and
exit points, respectively. Nodes marked with loan identifiers contain the
operations needed to bring the capabilities into the state just before the
loanwas created. The edges between the nodes indicate the dependencies
between the loans and are obtained from Polonius. Different paths
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1 let mut a = 1;
2 let x = &mut a; // L1
3 let y = &mut *x; // L2
4 *y = 2;

(a) A simple borrowing example.

Start L2 L1 End

(b) A loan-dependency graph for expiring reference y.

Figure 3.4: A simple borrowing example and the corresponding loan-dependency graph.

through the graph can mean either that some loans are alternatives
or that they happened in parallel. For example, Figure 3.5 shows the
conditional borrowing example from earlier and the corresponding
loan-dependency graph when reference x expires. In this case, different
paths through the graph mean that loans L1 and L2 are alternatives:
only one could have happened. Figure 3.6 shows that in code that calls
reborrowing functions, different paths can also mean that loans occurred
in parallel. In this example, loans L1 and L2 are not alternatives; they are
alive at the same time. We show how we resolve this ambiguity when we
present our solution to challenge C2.

1 let x;
2 if random_choice() {
3 x = &mut a; // L1
4 } else {
5 x = &mut b; // L2
6 }
7 *x = 42;

Start L1

L2

End

Figure 3.5: A conditional borrowing example and a corresponding loan-dependency graph when reference x expires. In this case,
different paths through the loan-dependency graph mean alternatives.

1 let x = &mut a; // L1
2 let y = &mut b; // L2
3 let z = borrow_both(x, y); // L3

Start L3 L1

L2

End

Figure 3.6: An example with a reborrowing function call demonstrating that different paths through the loan-dependency graph can
also mean parallelism.

Figure 3.4b shows the basic structure of the loan-dependency graph. As
mentioned earlier, after expiring a loan in the graph, the capabilities
should be returned to the state they were just before the creation of the
loan. In our example, before executing borrow let y = &mut *x; that
created loan L2, the capability was associated with place x.*. The borrow
statement transferred the capability from x.* to y.*. Therefore, to undo
the borrow statement‘s effect, we transfer the capability back from y.*

to x.* using EC operation exchange { y.* } → { x.* } . We have the
necessary exchange capability for executing this exchange operation
because executing the borrow statement produced it. We expire loan
L1 created by borrow statement let x = &mut a; in a similar way by
executing EC operation exchange { x.* } → { a } . If we add the two
exchange operations to our graph, we obtain a graph that completely
captures how capabilities get transferred when the reference y expires.
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4: Actually, a single function call can lead
to more than a single loan and thus re-
turn more than one exchange capability.
Our approach treats each loan separately.

The graph is shown below.

Start
exchange { y.* } → { x.* }

L2

exchange { x.* } → { a }

L1
End

Aswementioned in the introduction of this chapter, exchange capabilities
are also returned by function calls that take references as arguments4. For
example, the signature of the following function implies that the result
could reborrow either of the two parameters.

1 fn reborrow_one_of(

2 x1: &mut i32,

3 x2: &mut i32,

4 ) -> &mut i32;

This behaviour is captured by an exchange capability { result.* } → {

x1.*, x2.* } that is returned by this function to its caller. As we men-
tioned before, there are twoways to obtain an exchange capability: execute
a borrow statement or derive it fromother exchange capabilities. Typically,
the exchange capabilities returned by functions are non-trivial and have
to be derived. We prove the exchange capability { result.* } → { x1.*,

x2.* }byaddinga prove-exchange { result.* } → { x1.*, x2.* } G

operation at the end of the function body. The third argument of this
operation is G, a loan-dependency graph that justifies the capability
transfer. We construct this graph by asking Polonius what happens when
reference result expires.

On the caller side, the exchange capability returned by a function is
treated the same way as the ones returned by borrow statements. For
example, the following snippet shows a possible caller of reborrow_one_of
with explicit PCS information.

1 PCS: {a, b}

2 let x1 = &mut a; // L1

3 PCS: {x1, b}

4 let x2 = &mut b; // L2

5 PCS: {x1, x2}

6 let x = reborrow_one_of(x1, x2); // L3

7 PCS: {x}

8 *x = 42;

9 expire-borrows ...

10 PCS: {a, b}

The loan-dependency graph used in expire-borrows ... is shown be-
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5: The algorithm is almost the same. As
explained later, we need some adjust-
ments to handle the next challenge.

low.

Start
exchange { x.* } → { x1.*, x2.* }

L3

exchange { x1.* } → { a }

L1

exchange { x2.* } → { b }

L2

End

Aswe can see from the graph, themain difference between direct borrows
and borrows via functions is that the former always produces an exchange
capability between two singleton sets while the latter can be significantly
more varied. For example, suppose the called function takes mutable
reference arguments but does not return a mutable reference. In that case,
the returned exchange capability will have an empty set on its left-hand
side. Such capability can be applied for exchange immediately after the
function call.

In the following, we iteratively refine the definition of the graph to
address each of the challenges discussed in the previous section.

Handling effects of PCS operations (C1). It turns out we can address
this challenge using our PCS elaboration algorithm from Chapter 2
without adding any additional features5. However, we need to ensure
that the assumptions made by the algorithm are upheld. Since the borrow
checker is executed before our analyses, we know the program points
at which we need to insert expire-borrows operations before we run
our algorithm that computes PCS operations. As a result, we know the
PCS before expire-borrows . This property enables us to run our PCS
elaboration algorithm on the loan-dependency graph to compute the
necessary PCS operations. In Chapter 2, we mentioned that the PCS
elaboration algorithm assumes that each place capability can be modified
independently without affecting any other capability. This property
trivially holds for the Rust fragment without references because there is
no aliasing. We can treat each place independently in Rust with mutable
references, assuming two properties hold. First, only one of the aliased
places has the capability associated with it, allowing the algorithm to
use that syntactic place to manipulate the capability. This property is
ensured by the Rust type system. Second, when a borrow expires and
its capability is transferred from one place to another, the shape of the
transferred capability is known to the PCS elaboration algorithm. We
ensure this property by guaranteeing that when a borrow expires, the
capability is returned in the same shape it was borrowed.
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We used the snippet below to motivate the challenge.

1 PCS: {pair}

2 let x = &mut pair; // L3

3 PCS: {x}

4 let y = &mut x.first; // L4

5 PCS: {y, x.*.second, x.pointer}

6 *y = 5;

7 PCS: {y.*, x.*.second, y.pointer, x.pointer}

8 expire-borrows ...

After executing the PCS elaboration algorithm on the graph for this
snippet, we would get the result shown in the following diagram. In this
diagram, each node contains not only the EC operations but also the PCS
operations needed to get the capabilities into the required shape.

Start
{y.*,
x.*.second,

y.pointer,

x.pointer}

{y.*, x.*.second,

y.pointer, x.pointer}
exchange { y.* } → { x.*.first }

{x.*.first, x.*.second,

y.pointer, x.pointer}

L4
{x.*.first, x.*.second,

y.pointer, x.pointer}
pack x.*

{x.*, y.pointer, x.pointer}
exchange { x.* } → { pair }

{pair, y.pointer, x.pointer}

L3

End
{pair,
y.pointer,

x.pointer}

Handling conditional control flow (C2). The motivating example for
this challenge is repeated in the following snippet with PCS information
and PCS operations.

1 PCS: {a, b}

2 let x: &'lx i32;

3 if random_choice() {

4 PCS: {a, b}

5 x = &mut a; // L1

6 PCS: {x, b}

7 remove b

8 PCS: {x}

9 } else {

10 PCS: {a, b}

11 x = &mut b; // L2

12 PCS: {a, x}

13 remove a

14 PCS: {x}

15 }

16 PCS: {x}

17 *x = 4;

18 PCS: {x.*, x.pointer}

19 expire-borrows ...

20 PCS: {x.pointer, a, b}
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If we constructed the loan-dependency graph based on howwe described
so far, it leads to the graph below.

Start
{x.*, x.pointer}

{x.*, x.pointer}
exchange { x.* } → { a }

{a, x.pointer}
remove a

{x.pointer}

L1

{x.*, x.pointer}
exchange { x.* } → { b }

{b, x.pointer}
remove b

{x.pointer}

L2

End
{x.pointer}

This graph shows two limitations of our approach so far. First, our PCS
elaboration algorithm drops the capabilities a and b when joining the
states of nodes L1 and L2. Second, as we mentioned earlier, it is unclear
from the graph whether L1 and L2 are alternatives or should they happen
in parallel.

The first problem of dropping the capabilities happens because the
PCS elaboration algorithm we presented in the previous chapter does
not distinguish between capabilities that are missing because a place
was moved out and capabilities that are missing because a place was
borrowed. In the former case, dropping the capability when merging the
branches is okay because it cannot be recovered. In the latter case, as our
example shows, the capability can be recovered when the borrow expires.
We distinguish the two cases by assigning them different capabilities:

Definition 3.3.1 (Capability (first version)) A capability is either exclu-
sive (E) or borrowed (B)6 6: We present here slightly simplified

definitions. The actual implementation
in Prusti also remembers which loan bor-
rowed the capability to ensure that dif-
ferent borrows are not mixed up.

.

We use the new definition of capability to refine the definition of PCS:

Definition 3.3.2 (Place Capability Sets (final version)) A place capabil-
ity set (PCS) is a partial map from places to capabilities.

With the two capabilities defined, we change the semantics of the borrow
statement to remember that the borrowed place is borrowed by producing
the borrowed capability, as shown in the following snippet.

1 PCS: {a → E}

2 let x = &mut a;

3 PCS: {b → E, a → B}
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We update the existing definitions of PCS operations in an obvious way.
Unpacking place pwith capability 2 produces place capabilities for fields
with the same capability 2. Packing a place p is only allowed if places for
all fields have the same capability 2, which is also the capability of packed
place p. The only change to the algorithm that is more interesting is the
merging of PCSs, which now works slightly differently when performed
on code where the capabilities flow forward and when performed on
the loan-dependency graph where the capabilities flow backward. In
the forward flow, merging exclusive and borrowed results in borrowed. For
example, in the following snippet that shows an updated version of our
example, after the if statement, we have capability borrowed for both a

and b.

1 PCS: {a → E, b → E}

2 let x: &'lx i32;

3 if random_choice() {

4 PCS: {a → E, b → E}

5 x = &mut a; // L1

6 PCS: {x → E, a → B, b → E}

7 } else {

8 PCS: {a → E, b → E}

9 x = &mut b; // L2

10 PCS: {x → E, a → E, b → B}

11 }

12 PCS: {x → E, a → B, b → B}

13 *x = 4;

14 PCS: {x.* → E, x.pointer → E, a → B, b → B}

15 expire-borrows ...

16 PCS: {x.pointer → E, a → E, b → E}

Importantly, as can be seen from line 14, a and b are marked as borrowed
places in the PCS before the expire-borrows operation. Using this state
as the initial one for elaborating PCSs, we get the graph below. Since
when elaborating PCSs in the loan dependency graph the capabilities
flow backwards (we are restoring the borrowed capabilities), merging
exclusive and borrowed results in exclusive.

Start
{x.* → E,

x.pointer → E,

a → B,

b → B}

{x.* → E, x.pointer → E, a → B, b → B}
exchange { x.* → E } → { a → E }

{x.pointer → E, a → E, b → B}

L1

{x.* → E, x.pointer → E, a → B, b → B}
exchange { x.* → E } → { b → E }

{x.pointer → E, a → B, b → E}

L2

End
{x.pointer → E,

a → E,

b → E}

The root cause of the second limitation of the loan-dependency graph not
capturing that nodes L1 and L2 are mutually exclusive is that the current
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version of the loan-dependency graph is control flow independent. We
make it dependent on control flow by adding guards to each node: the
operations in a node are only executed if the guard condition evaluates
to true. Since the verifier knows precise information about which path
through the programwas taken,we use ghost variables tomarkwhether a
loan happened and needs to be returned. More specifically, for each loan,
we create a boolean ghost variable initialised to false at the beginning
of the function and set to true when the corresponding loan creation
statement is executed. For example, our motivating snippet would be
expanded as follows.

1 l1_executed = false;

2 l2_executed = false;

3 let x: &'lx i32;

4 if random_choice() {

5 x = &mut a; // L1

6 l1_executed = true;

7 } else {

8 x = &mut b; // L2

9 l2_executed = true;

10 }

11 *x = 4;

Ghost variable l1_executed tracks whether L1 was executed. Similarly,
ghost variable l2_executed tracks whether L2 was executed. With these
ghost variables added, we can make the execution of nodes guarded on
whether the corresponding loans were created. As shown in the graph
below, we use the ghost variables as the guards of the nodes.

Start
exchange { x.* → E } → { a → E }

L1 guard: l1_executed

exchange { x.* → E } → { b → E }

L2 guard: l2_executed

End

Handling reference reassignments (C3). The following snippet repeats
our motivating example for this challenge.

1 let mut x = &mut a; // L1

2 l1_executed = true;

3 let y = &mut *x; // L2

4 l2_executed = true;

5 x = &mut b; // L3

6 l3_executed = true;

7 *y = 5;

8 *x = 4;

The key problem in this challenge is modelling the expiration of L2

that occurs when reference y expires. If we followed the approach we
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discussed so far, when expiring L2, we should transfer the capability
from y.* to x.*. However, we cannot do that because x was reassigned
and x.* means a different memory location compared to the one when
y was created. The key observation that leads us to our solution is that
L2 is guaranteed not to be the “final stop”. For instance, in our example,
when reference y expires, both L2 and L1 expire: expiring L2 transfers
the capability from y.* to x.* and expiring L1 transfers the capability
from x.* to a. L2 is guaranteed not to be the final stop because when x is
reassigned, Polonius breaks the relation between x and L1 that is keeping
L1 alive. L1 is not expired only because it is kept alive by y. Therefore,
when y expires, both L1 and L2 expire at the same time.

Since L2 is guaranteed not to be the final stop, x.* is only a temporary
place where the capability is stored during the transfer. Therefore, we can
avoid the problem of x.* having a different meaning by using a freshly
created temporary place just for the transfer. The loan-dependency graph
constructed at the expiration of reference y is shown below with tmp1

used instead of the old place x.*. Note that L3 expires at a different point
and is, therefore, not shown in the graph.

Start
exchange { y.* → E } → { tmp1 → E }

L2 guard: l2_executed

exchange { tmp1 → E } → { a → E }

L1 guard: l1_executed
End

Final loan-dependency graph definition. With all challenges covered,
we can give the final definition of the loan-dependency graph:

Definition 3.3.3 (Loan-Dependency Graph) A loan-dependency graph is
a graph � “ p+, �q where:

§ + is a set of nodes. Each node E is the Start node, the End node, or
a loan node. A loan node is a triple p!, �, $q where ! is a loan, �
is a boolean variable indicating whether the loan was executed and
guarding the execution of operations in this node, and $ is a sequence
of PCS and EC operations.

§ � is a set of directed edges between nodes in+ . An edge p;1 , ;2q between
loan nodes exists in � if and only if loan ;2 directly depends on loan ;1
based on Polonius information. An edge pStart, ;q exists in � iff loan ;
does not depend on any loans. An edge p; ,Endq exists in � iff no loans
depend on ;.

3.4 Extending the Core Proof to Support
Mutable Borrows

In this section, we show how we model the introduced new concepts
in Viper to extend our core proof with support for mutable references.
We first discuss in Subsection 3.4.1 how we model mutable reference
capabilities as Viper predicates. Then, in Subsection 3.4.2, we present
magic wands, a connective common in permission logics, which is the key
primitive used for our model of exchange capabilities. In Subsection 3.4.3,
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we present our model of exchange capabilities based on magic wands.
We finish by presenting potential optimisations of the encoding in
Subsection 3.4.4.

3.4.1 Modelling Capabilities of Mutable Reference

As already discussed, if place x is a mutable reference, its capability
includes two capabilities inside it: a capability to pointer x.pointer and
a capability to the referenced target x.*. Therefore, we encode mutable
reference type &mut T as the following predicate where the permission
to field acc(self.pointer, write) corresponds to the pointer capability
and the permission to predicate instance acc(T(self.pointer), write)

corresponds to the capability to the target.

1 predicate UniqueRef_T(self: Ref) {

2 acc(self.pointer, write) &&

3 acc(T(self.pointer), write)

4 }

Similarly to the encoding of the Box<T> type, the type of the pointer

field is Ref, which we use as an abstract address. With this definition
of a reference, we can model borrow and reborrow statements in Viper
as simple assignments to the pointer field. For example, the following
snippet creates a mutable reference x and assigns 1 to its target.

1 let x = &mut a;

2 *x = 1;

This snippet is encoded in Viper as follows (we omit modelling of the
exchange capability for now; we discuss it later).

1 // let x = &mut a;

2 inhale acc(x.pointer, write)

3 x.pointer := a;

4 fold acc(UniqueRef_i32(x), write)

5

6 // *x = 1;

7 unfold acc(UniqueRef_i32(x), write)

8 unfold acc(i32(a), write)

9 x.pointer.val_i32 := 1;

10 fold acc(i32(a), write)

11 fold acc(UniqueRef_i32(x), write)

3.4.2 Magic Wand Connective

Amagic wand � ´̊ � expresses that � can be obtained by giving away
both � and � ´̊ �. The wand itself is a resource because it carries
the parts of � that are not in �. For example, the magic wand shown
in the following snippet must contain acc(r.second, write) inside it;
otherwise, applying it would forge permissions, which is unsound.

1 acc(r.first, write) --*
2 acc(r.first, write) && acc(r.second, write)



54 3 Mutable Borrows

In Viper, the magic wand can be obtained by using a package statement.
Packaging the wand requires proving that the right-hand side of the
wand can be obtained from its left-hand side. If any permissions are
missing, the verifier will pull them into the wand from the surrounding
context. For example, packaging the wand from the previous snippet will
pull acc(r.second, write) into thewand. If the surrounding context does
not contain the pulled permission, the packaging of the wand fails.

1 inhale acc(r.second, write)

2 package acc(r.first, write) --*
3 acc(r.first, write) && acc(r.second, write) {

4 }

Packaging a magic wand may involve other ghost operations, such as
folding a predicate or applying another magic wand. For example, if
the permissions to fields first and second were grouped into predicate
Pair, we could prove a variation of the magic wand from the previous
snippet that has a Pair predicate instance on its right-hand side. As the
following snippet shows, packaging such a magic wand requires folding
the predicate inside the package statement.

1 inhale acc(r.second, write)

2 package acc(r.first, write) --* acc(Pair(r), write) {

3 fold acc(Pair(r), write)

4 }

Once we have a magic wand, we can apply it by using Viper‘s apply

statement, as shown in the following snippet.

1 apply acc(r.first, write) --* acc(Pair(r), write)

Applying the magic wand consumes the wand and the permissions on
its left-hand side (in this case acc(r.first, write)) and produces the
permissions on its right-hand side acc(Pair(r), write).

It is important to note that Viper preserves precise information about
values of the heap locations captured by the wand. Therefore, Viper can
prove the two assert statements at the end of the following snippet.

1 inhale acc(x.f) && x.f == 1

2 inhale acc(x.g) && x.g == 2

3 package acc(x.f) --* acc(x.f) && acc(x.g)

4 apply acc(x.f) --* acc(x.f) && acc(x.g)

5 assert x.f == 1

6 assert x.g == 2

3.4.3 Modelling Exchange Capabilities

We already covered how we model a capability of a reference. We
still need to show how we model exchange capabilities, borrow state-
ments, and all newly introduced operations exchange , prove-exchange ,
expire-borrows .

The exchange capability P1 → P2 expresses that we can exchange capa-
bilities P1 together with the exchange capability itself into capabilities
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7: For example, we use a simplified syn-
tax for magic wands: Viper requires
both sides of the magic wand to be self-
framing, which means we need to have
permission to x.pointer on the left-
hand side of the magic wand. In the
implementation, we avoid this by storing
the value of x.pointer in a temporary
variable and using that variable instead.

P2. The magic wand connective is a natural way of modelling this ca-
pability. We model P1 → P2 as magic wand t%1u ´̊ t%2u. t%1u and t%2u
here are predicate instances corresponding to capabilities in P1 and P2

conjoined with a separating conjunction. We model that the function
takingmutable references as arguments returns an exchange capability to
the caller by adding the correspondingmagic wand to the Vipermethod’s
postcondition.

1 let x: &'lx i32;
2 if random_choice() {
3 x = &mut a; // L1
4 } else {
5 x = &mut b; // L2
6 }
7 *x = 4;
8 // x expires

Start
exchange { x.* → E } → { a → E }

L1 guard: l1_executed

exchange { x.* → E } → { b → E }

L2 guard: l2_executed

End

Figure 3.7: Conditional borrowing example repeated from Figure 3.3 and the corresponding loan-dependency graph when reference x
expires.

The choice to model the exchange capability using a magic wand makes
modelling of borrow statements and EC operations straightforward.
We model an exchange operation using Viper‘s apply statement, which
applies the corresponding magic wand. Similarly, we model creating an
exchange capability in a borrow statement or prove-exchange operation
by packaging the corresponding wand. Figure 3.7 repeats the conditional
borrowing example from before together with the loan-dependency
graph for the program point at which reference x expires. Figure 3.8
shows its simplified encoding in Viper7. To illustrate the encoding of all
EC operations with a single example, we replaced the expire-borrows

operation with an equivalent sequence of prove-exchange immediately
followed by exchange .

As mentioned above, we encode a borrow statement let x = &mut a; as
shown on lines 4–8. The borrow statement let x = &mut a; produces
an exchange capability { x.* } → { a }. We package the corresponding
magic wand by adding the package statement immediately after the
encoding of the borrow as shown on line 8. This package statement is
guaranteed to succeed because the verifier knows that x.pointer == a

and, therefore, the left-hand side is equal to the right-hand side.

The encoding of prove-exchange is more involved. We encode it as the
packaging of the corresponding magic wand. However, in this case, the
two sides of the magic wand might be different. Therefore, we need to
provide the body of the package statement that shows how to derive the
right-hand side of the magic wand from its left-hand side. We encode
the body by encoding each node of the loan-dependency graph in the
order that guarantees that nodes of the dependencies are executed before
the dependent nodes. Since the nodes in the loan-dependency graph
shown in Figure 3.7 are independent, we can encode them in arbitrary
order. Each graph node is a sequence of statements that must be executed
if the guard evaluates to true. Therefore, we encode each node as an
if statement with the guard in the condition and the encoding of the
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1 l1_executed = false;
2 l2_executed = false;
3 if random_choice() {
4 // x = &mut a; // L1
5 inhale acc(x.pointer, write)
6 x.pointer := a;
7 fold acc(UniqueRef_i32(x), write)
8 package acc(i32(x.pointer), write) --* acc(i32(a), write) {}
9 l1_executed = true;
10 } else {
11 // x = &mut b; // L2
12 inhale acc(x.pointer, write)
13 x.pointer := b;
14 fold acc(UniqueRef_i32(x), write)
15 package acc(i32(x.pointer), write) --* acc(i32(b), write) {}
16 l2_executed = true;
17 }
18

19 // *x = 4;
20 unfold acc(UniqueRef_i32(x), write)
21 unfold acc(i32(x.pointer), write)
22 x.pointer.val_i32 := 4;
23 fold acc(i32(x.pointer), write)
24

25 // prove-exchange { x.* → E } → { a → E, b → E }
26 package acc(i32(x.pointer), write) --* acc(i32(a), write) && acc(i32(b), write) // R
27 {
28 if (l1_executed) {
29 // exchange { x.* → E } → { a → E }
30 apply acc(i32(x.pointer), write) --* acc(i32(a), write)
31 // recover b
32 }
33 if (l2_executed) {
34 // exchange { x.* → E } → { b → E }
35 apply acc(i32(x.pointer), write) --* acc(i32(b), write)
36 // recover a
37 }
38 }
39

40 // exchange { x.* → E } → { a → E, b → E }
41 apply acc(i32(x.pointer), write) --* acc(i32(a), write) && acc(i32(b), write) // R

Figure 3.8:A simplified encoding of Rust example from Figure 3.7. We replaced expire-borrows with prove-exchange followed

by exchange to be able to illustrate all three operations with a single example. The encoding of expire-borrows would be exactly

the same as of prove-exchange (lines 26–38), except without line 26. Also, if expire-borrows was used, operation exchange

would not be needed (line 41).
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statements in the then branch. Lines 28–32 show the encoding of the
node for loan L1 while lines 33–37 show the encoding of the node for
loan L2. Each node has an exchange , which, as mentioned above, we
encode using an apply statement as shown on lines 30 and 35. If we used
expire-borrows directly instead of replacing it with prove-exchange

followed by exchange , the encoding would be almost the same: it would
not have lines marked with comment “R” (lines 26 and 41).

3.4.4 Optimising the Encoding

In the encoding we presented, we consistently use magic wands for
modelling all borrows. However, most magic wands are unnecessary
and can be removed, leading to a more straightforward encoding that is
easier to check for the backend verifier. We present two cases where we
can avoid creating magic wands.

Whenwe discussed packing amagicwand for the borrow statement let x

= &mut a;, we observed that it will always succeed because the left-hand
side of the magic wand is equal to its right-hand side. In other words, in
our Viper model, the magic wand‘s footprint is empty: the wand does not
transfer any permissions. This difference between Rust, where the capa-
bilities are transferred, and Viper, where permissions are not transferred,
comes from the different treatment of locations. In Rust, capabilities are
identified by syntactic places that cannot be aliased. In Viper, permissions
are associatedwith an object identity, which can be syntactically referred to
in different ways due to aliasing. We can exploit this additional flexibility
of our Viper model by avoiding creating magic wands for loans created
with borrow statements. However, we need to distinguish between loans
created by borrow statements and function calls. We, therefore, intro-
duce a new exchange capability operation transfer { p1 } → { p2 }

that we use instead of regular exchange { p1 } → { p2 } operation for
borrow statements (we continue using exchange for function calls). In
our optimised Viper encoding, we encode transfer as a no-op. Since by
encoding transfer as a no-op, we omit the applying of a magic wand,
we also change the encoding of a borrow statement to skip the packaging
of the corresponding magic wand.

The second place where we can avoid creating magic wands is functions
that take references as arguments but do not return references. The
following snippet illustrates this case with a function that sets the value
of the first element of a pair.

1 impl Pair {

2 fn set_first(&mut self, new_value: i32) {

3 self.first = new_value;

4 }

5 }

Since this function does not return any references, the exchange capability
for this function ({ } → { self.* }) has an empty left-hand side and,
therefore, is encoded to themagicwand shown in the following snippet.

1 true --* Pair(old(self.pointer))
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This magic wand is returned to the caller, and since the caller can trivially
satisfy its left-hand side, it would immediately apply it, obtaining the
resources on its right-hand side. In this case, we can simplify the encoding
by returning the permissions to the caller by putting themdirectly into the
postcondition instead of putting the permissions on the right-hand side
of the magic wand. The following snippet shows a simplified encoding
of the set_first function.

1 method set_first(self: Ref, new_value: Ref)

2 {

3 // Inhale precondition.

4 inhale acc(UniqueRef_Pair(self), write)

5 inhale acc(i32(new_value), write)

6 label pre // Mark the precondition state.

7

8 unfold acc(UniqueRef_Pair(self), write)

9 unfold acc(Pair(self.pointer), write)

10 unfold acc(i32(self.pointer.first), write)

11 unfold acc(i32(new_value), write)

12 self.pointer.first.val_i32 := new_value.val_i32;

13

14 // Expire borrows and reconstruct the permission to

15 // the target of the borrow.

16 fold acc(i32(self.pointer.first), write)

17 fold acc(Pair(self.pointer), write)

18

19 // Exhale postcondition.

20 exhale acc(Pair(old[pre](self.pointer)), write)

21 }
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In the previous chapter, we presented how to generate a core proof for
Rust programs that use mutable references. Mutable references require
exclusive access to their target. In this chapter, we focus on shared
references that (as the name implies) allow aliases but do not allow
mutating the target1

1: There are also so-called internally mu-
table types in Rust (for example, Mutex)
that allow mutation via a shared refer-
ence. We leave supporting such types for
future work.

. The following snippet illustrates the use of shared
references. The owned value a is shared borrowed by x and, without
ending it, borrowed again by y. Later, reference z is created by assigning
x to it.

1 let x = &a;

2 let y = &a;

3 let z = x;

4 // a = 5; // Illegal!

5 assert!(a == *x);

6 assert!(*z == *y);

The snippet shows three essential aspects of how shared borrows differ
from mutable ones. First, the original place a can still be used for reading
while the borrow x is active (lines 2 and 5). Mutable borrows completely
block the borrowed place until the borrowing reference expires. Second,
on line 3, the capability is copied from x to z: both places can be used
for reading as illustrated with the assert!(...) statements below. If x
were a mutable reference, this statement would cause a reborrow that
blocks x until z expires. Third, none of the aliases can be used for writing.
Therefore, the memory is guaranteed to be immutable as long as at least
one of the shared references is still alive.

Standard techniques in permission logics for giving access to a resource
to multiple readers are based on splitting the exclusive capability into
capabilities that give only read access. For example, we could adapt
fractional permissions [23] to PCSs by allowing one to split exclusive
capabilities into fractions: a full fraction 5 “ 1.0 of an exclusive capability
would allow read and write access while any positive fraction (0 ă 5 ă

1.0) would allow only read access. The downside of this approach is
that regaining the full capability requires collecting all parts of the split
capability and combining them back, whichwould require reconstructing
backward capability flow for shared borrows. This reconstruction is more
complicated than for mutable borrows (because shared references can
be aliased) and unnecessary (shared borrows do not allow mutation, so
there are no changes to propagate backwards). The vital information
for verification is for how long a borrowed place is guaranteed to be
immutable and hence retain the same value. As discussed in Section 3.1,
this information is precisely what the borrow checker computes.

The remainder of the chapter is structured as follows. In Section 4.1, we
introduce a newplace capability kind shared that guarantees that the value
stored at that place is immutable and show how we can obtain the flow
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of these capabilities from the information available in the borrow checker.
Choosing a capability model closer to the borrow checker leaves an open
problem of how to map shared capabilities to Viper that uses fractional
permissions. We show how we address this challenge in Section 4.2.

4.1 Shared Capabilities

To model shared references and shared borrowed places, we introduce
a new shared capability. shared is a temporarily duplicable capability
that guarantees that a place is immutable. We start by showing how we
update our capability model and then explain how we elaborate PCSs
for programs that use shared references.

In the previous chapter, we updated our definition of PCS to be a partial
map from places to exclusive or borrowed capabilities. We extend the
definition of capabilities also to include shared:

Definition 4.1.1 (Capability (final version)) A capability is either exclu-
sive (E), borrowed (B), or shared (S).

Existing PCS operations are mostly unaffected by the changed definition
since we updated them to be generic over capabilities in the previous
chapter. The only exception is unpack p and pack p operations when p

is a shared reference. Similarly to mutable references, unpacking a shared
reference p produces two capabilities p.pointer and p.*. However, unlike
with mutable references where the capabilities of all places always match,
with shared references, the target capability p.* is shared regardless
whether the capability for p was exclusive or shared.

The following snippet shows what PCS information the PCS elaboration
algorithm computes for the example in the introduction of this chapter
(we show all places unpacked and omit pointer capabilities to make the
code more readable).

1 PCS: {a → E}

2 let x = &a;

3 PCS: {a → S, x.* → S}

4 let y = &a;

5 PCS: {a → S, x.* → S, y.* → S}

6 let z = x;

7 PCS: {a → S, x.* → S, y.* → S, z.* → S}

8 // a = 5; // Illegal!

9 PCS: {a → S, x.* → S, y.* → S, z.* → S}

10 assert!(a == *x);

11 PCS: {a → S, y.* → S, z.* → S}

12 assert!(*z == *y);

13 PCS: {a → E}

As can be seen from the example, the first borrow of a (line 2) downgrades
the capability of the borrowed place from exclusive to shared and copies the
new capability to the reference. However, the second borrow statement
on line 4 only copies the capability from a to y. The capability is also
copied by assigning one shared reference to another on line 6. When a
reference expires, it loses its capability; for example, reference x lost its
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2: The encoding of shared references is
the only case where we are not fully re-
proving the memory safety

capability after line 10. When all references to a expire after line 12, its
capability is upgraded from shared to exclusive.

Downgrade and upgrade of a capability and expiration of a shared
reference are not explicitly visible in the code. Therefore, we create
three new PCS operations: downgrade , upgrade , and expire-shared .
downgrade p consumes an exclusive capability for place p and produces a
shared capability for it. The PCS elaboration algorithm emits this operation
in two cases: before the borrow statement that borrows a place that is not
yet shared-borrowed andwhenmerging the PCSs of incoming branches if
place p is exclusive in one branch and shared in another branch, the exclusive
capability is downgraded. upgrade p consumes a shared capability for
place p and produces exclusive. The PCS elaboration algorithm emits this
operation after all shared references to place p expire. The last operation
expire-shared p.* consumes a shared capability and is emitted when a
shared reference p expires. We rely on the information from the compiler
to deduce when all shared references have expired and all copies of the
capability were collected2. An important advantage of using duplicable
capabilities that can be associated with syntactic places is that we do
not make any changes to the parts of the PCS elaboration algorithm that
compute pack and unpack operations. The snippet below shows our
example with added PCS operations.

1 PCS: {a → E}

2 downgrade a

3 PCS: {a → S}

4 let x = &a;

5 PCS: {a → S, x.* → S}

6 let y = &a;

7 PCS: {a → S, x.* → S, y.* → S}

8 let z = x;

9 PCS: {a → S, x.* → S, y.* → S, z.* → S}

10 // a = 5; // Illegal!

11 PCS: {a → S, x.* → S, y.* → S, z.* → S}

12 assert!(a == *x);

13 PCS: {a → S, x.* → S, y.* → S, z.* → S}

14 expire-shared *x

15 PCS: {a → S, y.* → S, z.* → S}

16 assert!(*z == *y);

17 PCS: {a → S, y.* → S, z.* → S}

18 expire-shared *y

19 PCS: {a → S, z.* → S}

20 expire-shared *z

21 PCS: {a → S}

22 upgrade a

23 PCS: {a → E}

An important case not captured by our example is passing shared
references to called functions, as shown in the following snippet.

1 fn read_caller(x: &i32) {

2 read(x);

3 }
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sions without the Fractions’

In this case, the function read receives a copy of the reference x. Therefore,
after the call, we still have the capability to x, which enables us to conclude
that x was not modified by the call to read.

The presented system maintains the following invariant relating shared
and exclusive capabilities: if place p is not borrowed, place p has exclusive
capability; if place p is shared borrowed, place p and each of its shared
borrows have a shared capability.

4.2 Extending the Core Proof to Support
Shared Borrows

Similarly to Rust, Viper guarantees that a single writer can access a
memory location with exclusive read-write access or multiple readers
can only read that location. Viper achieves this by supporting fractional
permissions [23], which enable splitting and recombining accessibility
predicates. For example, the following snippet shows a typical pattern of
calling a method callee and giving it only half of the full permission that
allows the callee only to read.

1 method callee(r: Ref)

2 requires acc(r.val_i32, write/2)

3 ensures acc(r.val_i32, write/2)

4

5 method caller(r: Ref)

6 requires acc(r.val_i32, write) && r.val_i32 == 42

7 ensures acc(r.val_i32, write) && r.val_i32 == 42

8 {

9 callee(r)

10 }

Since the caller retains the other half of the permission, they know that
r.val_i32 could not have been changed and, therefore, can prove the
corresponding postcondition. This pattern can be generalized by using
symbolic permission amounts [25] as shown in the following snippet.

1 method callee(r: Ref, p: Perm)

2 requires none < p

3 requires acc(r.val_i32, p)

4 ensures acc(r.val_i32, p)

5

6 method caller(r: Ref, p: Perm)

7 requires none < p

8 requires acc(r.val_i32, p)

9 ensures acc(r.val_i32, p)

10 {

11 callee(r, p/2)

12 }

The parameter p is a symbolic permission amount that is required to
be positive, which ensures that the methods have at least read access to
r.val_i32. Since the permission amount is a real number, it can be split
an arbitrary number of times (for example, by dividing each time by 2,
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as shown in the snippet), enabling a natural way of supporting recursive
calls where each gets some non-zero permission providing read access.
Fractional and symbolic permissions are a natural fit for code where read
permission needs to be temporarily given for well-nested regions of code,
such as recursive function calls. However, in Rust, the lifetimes of shared
references can overlap, as shown in the following snippet (the comments
show the lifetime of each reference) and are, therefore, challenging to
model using these models.

1 let x = &pair.first; // x

2 pair.second = 1; // x

3 let y = &pair; // x y

4 assert!(x == &y.first); // x y

5 let z = &pair.second; // y z

6 assert!(z == &y.second); // y z

7 pair.first = 2; // z

8 assert!(z == &pair.second); // z

Our solution to this challenge exploits the fact that the code is borrow-
checked and relies on PCS operations for shared borrows being correct.
Instead of mapping each shared capability to a potentially different per-
mission amount as it is typically done when using symbolic permissions,
we use the same underspecified permission amount for all shared capa-
bilities. We define a global permission-typed variable read_perm that is
constrained to have some value strictly between no and full permission.
We use this variable as a permission amount for encoding places with
shared capability.

We model the new PCS operations with Viper inhale and exhale state-
ments. We defined downgrade p as consuming an exclusive capability
for place p and producing a shared capability for it. In Viper, this opera-
tion corresponds to exhaling write and inhaling read_perm permission
amount to the predicate instance that corresponds to place p, which
can be simplified to exhaling write - read_perm permission. Similarly,
we model upgrade p as inhaling write - read_perm permission to the
predicate instance corresponding to p. The last newly defined operation
expire-shared p only consumes the capability; therefore, we model it
as an exhale of permission read_perm. Similarly, when a shared capability
is duplicated by a borrow, copy assignment, or a function call, we inhale
read_perm permission to the predicate instance that corresponds to the
place that got the capability. Forging permissions when the capability
is duplicated may look suspicious, but it is sound because we never
constrain read_perm from below with any non-zero value. Therefore, no
matter how many copies of read_perm the verifier has, it will not be able
to conclude that the sum reaches the full permission amount.





[21]: Reynolds (2002), ‘Separation Logic:
A Logic for Shared Mutable Data Struc-
tures’

Specifications for Functional
Properties 5

5.1 Pure Functions . . . . . . . . 67
5.2 Generalising Functions and

Quantifiers with Snapshots 69
5.3 Pledges for Mutable Bor-

rows . . . . . . . . . . . . . . . 71

Up to now, we have focused on the core proof and have already shown
how we model basic functional specifications. However, the presented
features are not enough to verify the functional correctness of a data
structure like the generic linked list shown in Figure 5.1. For example, a
programmer may want to specify how the following snippet in which an
element at index 4 is mutably borrowed and assigned 42 affects the state
of the linked list.

1 let r = list.index_mut(4);

2 *r = 42;

To specify how this snippet affects the state of list, we have to solve
three challenges. First, the value field (line 2) that stores the value of the
node and the next field (line 3) that is an optional owned pointer to the
next node are private. Therefore, if we want a verification approach that
respects information hiding and has all the benefits of it, the specifications
visible to the client should not mention private fields. Second, since the
linked list is a recursive data structure, the statement “the element at index
4” is also defined recursively. The specification approach we presented
in Subsection 2.4.2 does not support talking about recursive definitions
and needs to be extended. Third, the reference returned by index_mut is
used to modify the internal values of list after the call. As a result, the
standard approach of using the postcondition for specifying how the
function affects the state is not applicable here because the postcondition
is evaluated in the state immediately after the function while r can still
be used for modification and thus invalidate the postcondition.

In the remainder of this chapter, we present specification features that
address the three challenges mentioned above. We start by presenting
pure functions in Section 5.1, which enable us to specify recursive data
structures and to respect information hiding. The presented version
of functions has an important limitation: they can return only Viper
primitive values. In Section 5.2, we show how we use snapshots [21] to
overcome this limitation. We finish by presenting in Section 5.3 pledges,
which enable specifying functional behaviour of reborrows in a modular
way.
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Figure 5.1:A linked list with slightly sim-
plified functional specifications, which
we discuss in the sections of this chapter.
We verify this example with overflow
checking disabled.

1 pub struct Node<T> {
2 value: T,
3 next: Option<Box<Node<T>>>,
4 }
5 impl<T> Node<T> {
6 #[pure]
7 pub fn len(&self) -> usize {
8 match self.next {
9 Some(box ref node) => {
10 1 + node.len()
11 }
12 None => {
13 1
14 }
15 }
16 }
17 #[pure]
18 #[requires(0 <= index && index < self.len())]
19 pub fn index(&self, index: usize) -> &T {
20 if index == 0 {
21 &self.value
22 } else {
23 match self.next {
24 Some(box ref node) => {
25 node.index(index - 1)
26 }
27 None => {
28 unreachable!()
29 }
30 }
31 }
32 }
33 #[requires(0 <= index && index < self.len())]
34 #[ensures(result === old(self.index(index)))]
35 #[after_expiry(result =>
36 self.len() == old(self.len()) &&
37 forall(|i: usize|
38 0 <= i && i < self.len() && i != index ==>
39 self.index(i) === old(self.index(i))
40 ) &&
41 self.index(index) === before_expiry(result)
42 )]
43 pub fn index_mut(&mut self, index: usize) -> &mut T {
44 if index == 0 {
45 &mut self.value
46 } else {
47 match self.next {
48 Some(box ref mut node) => {
49 node.index_mut(index - 1)
50 }
51 None => {
52 unreachable!()
53 }
54 }
55 }
56 }
57 }
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1: The limitation to use a primitive type
as a function result comes from our en-
coding to Viper presented in this section.
We show how we lift this restriction in
Section 5.2.

5.1 Pure Functions

A pure function is a Rust function that can be used in specifications. A
function is marked as pure by adding an annotation #[pure] as shown on
lines 6 and 17 in Figure 5.1. Pure functions are instrumental in verifying
realistic examples because they enable expressing recursive properties
and hiding implementation details. For example, by using the pure
functions len and index, the client could specify that a linked list is sorted
without knowing how the list is implemented, as shown in the following
snippet.

1 #[requires(

2 forall(i: usize, j: usize

3 0 <= i && i <= j && j < list.len() ==>

4 list.index(i) <= list.index(j)

5 ))]

6 fn require_sorted(list: Node) { /* ... */ }

The requirements for pure functions are the same as for Rust expressions
used in specifications: they have to be deterministic and side-effect-free.
We ensure these two properties by checking that pure function parameter
types implement the Copy trait, that the result is a primitive type (an
integer or a bool)1, and that pure functions call only pure functions.
Implementing the Copy trait for a type means that the value of that type
is entirely captured by the memory bit pattern and, therefore, can be
copied. We currently also require that expressions used in specifications
and pure functions do not contain loops, but this requirement could be
lifted by automatically rewriting the loops into recursion.

We model pure functions using Viper‘s heap-dependent functions. The
following snippet shows a predicate Segment that defines a segment with
start and end points and a heap-dependent function segment_length that
computes the length of the segment.

1 field start: Int

2 field end: Int

3 predicate Segment(this: Ref) {

4 acc(this.start) && acc(this.end) &&

5 this.start <= this.end

6 }

7 function segment_length(this: Ref): Int

8 requires acc(Segment(this, read_perm))

9 ensures result >= 0

10 {

11 unfolding acc(Segment(this, read_perm)) in

12 this.end - this.start

13 }

The function computes the length of the segment by subtracting the start
point from the end point on line 12. The body of the heap-dependent
function is a heap-dependent expression for which all necessary permis-
sions have to be provided by the function precondition (line 8). Since
pure functions only read memory, any non-zero permission amount
would work. We decided to use the same amount we used for shared
references, which is stored in global variable read_perm. Postconditions
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2: We present a technique capable of
verifying Vec in Part III.

of heap-dependent functions cannot mention any permissions because
heap-dependent functions are side-effect-free. Therefore, even though a
heap-dependent function can return a Viper reference, the caller typically
cannot use the returned reference because the function cannot return new
or reshaped permissions. As a result, Viper functions typically return
Viper primitive types such as integers and booleans.

1 function len(self: Ref): Int
2 requires acc(Node(self, read_perm))
3 {
4 unfolding acc(Node(self, read_perm)) in
5 unfolding acc(Option_Box_Node(self.next, read_perm)) in
6 self.next.discriminant == 0 ?
7 // Some case
8 1 + (
9 unfolding acc(Option_Variant_Some_Box_Node(self.next), read_perm) in
10 len(self.next.pointer)
11 )
12 :
13 // None case
14 1
15 }

Figure 5.2: An encoding of function len from Figure 5.1 in Viper. The encoding was slightly simplified for readability.

Encoding pure Rust functions into Viper heap-dependent functions is
straightforward. Figure 5.2 shows a (slightly simplified for readability)
encoding of the len function from Figure 5.1 in Viper. The preconditions
and postconditions are encoded in the same way as for regular Rust
functions, with the only difference that we use a built-in Viper Int as a
return type to accommodate the fact that pure functions cannot return
permissions. The function body is encoded as any other Rust expression
used in the specification.

Figure 5.3: Pure methods len and
index that enable specifying the func-
tional behaviour of Vec.

1 impl Vec {
2 #[trusted]
3 #[pure]
4 pub fn len(&self) -> usize { /* ... */ }
5 #[trusted]
6 #[pure]
7 #[requires(0 <= index && index < self.len())]
8 pub fn index(&self, index: usize) -> i32 { /* ... */ }
9 }

We presented how we encode pure functions for types that are verified.
However, since pure functions enable the creation of an abstraction layer,
they can also be used to provide trusted specifications for unverified
types. For example, vector Vec from the Rust standard library is a safe
abstraction implemented by using unsafe code and, therefore, cannot
be verified by the techniques presented in this part of the thesis2. As
mentioned in Subsection 2.3.3, we model safe abstractions as abstract
Viper predicates. Without pure functions, we could generate a core proof
for examples that use such data structures. However, we could not verify
their functional correctness because the verifier knows nothing about
instances of such predicates. Pure functions enable us to provide trusted
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[21]: Reynolds (2002), ‘Separation Logic:
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tures’
3: Snapshots were added to Prusti after
our publication [74]. Therefore, the work
described in the publication could not be
used to verify functional properties that
require pure functions returning non-
primitive types or quantification over
non-primitive types like the linked list
shown in Figure 5.1.

4: Separation logic does not have heap-
dependent functions. Therefore, in sep-
aration logic, a snapshot is related to
a predicate by making it an additional
parameter of the predicate.

specifications for such types. For example, the pure functions len and
index shown in Figure 5.3 can be used to specify the contents of the vector
in the same way as ones used for linked list in Figure 5.1.

Annotation #[trusted] informs the verifier that the function‘s specifica-
tion should be trusted without verifying its body. While this annotation
should be used with extreme care, it enables users to focus on the frag-
ment of the code base they care about. We encode trusted pure functions
as abstract heap-dependent functions in Viper.

5.2 Generalising Functions and Quantifiers
with Snapshots

In the approachpresented so far, the onlywaywe canhave a value of a non-
primitive type such as Pair is by having an instance of the corresponding
predicate, which leads to two important limitations. First, the pure
functions presented in the previous section can return only primitive
types because they are based on Viper functions that cannot return
permissions. Second, quantifiers allow quantifying only over values of
primitive types. While Viper supports quantifying over permissions,
such quantifiers are unsuitable for expressing user-written quantifiers
that quantify over values of non-primitive types because they express
possession of the quantified-over permission. We address this challenge
by using a standard technique called snapshots [21]3. The snapshots
supported by our verifier implementation presented in this part of the
thesis are a partial version of the one presented in Part III, which, for
example, additionally supports chaining pure functions returning non-
primitive types. Therefore, to avoid duplication, we show the general
idea in this section and present the more general version in detail in
Part III.

A snapshot is a mathematical value that fully captures the set of values
stored in a group of heap locations. For example, the following algebraic
data type (ADT) captures the values stored in a linked list of integers. We
use the naming convention Snap<T> for an ADT representing the snapshot
of T.

1 adt Snap<List> {

2 Nil()

3 Cons(value: Int, tail: Snap<List>)

4 }

In implicit dynamic frames, we can obtain a snapshot of a predicate
instance using a heap-dependent function4. We call such functions snap
functions (we use snap<T> as the name of the function that returns the
snapshot of T). For example, Figure 5.4 shows a List predicate and the
heap-dependent function snap<List> that returns its snapshot. Once the
snapshot is linked to the predicate, we can use it to specify the properties
of the list data structure without exposing its private fields.

While our work does not require snapshots for information hiding
preserving specifications (because implicit dynamic frames solves this
challengewith heap-dependent functions), we use them tomake our pure
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Figure 5.4: A definition of predicate
List and heap-dependent function
snap<List> that returns its snapshot.

1 predicate List(this: Ref) {
2 acc(this.value) && acc(this.next) &&
3 (this.next != null ==> List(this.next))
4 }
5 function snap<List>(this: Ref): Snap<List>
6 requires acc(List(this), read_perm)
7 {
8 unfolding acc(List(this), read_perm) in
9 this.next != null ?
10 Cons(this.value, snap<List>(this.next))
11 :
12 Cons(this.value, Nil())
13 }

Figure 5.5: Snapshot definitions for types
Node<T> and Option<Box<T» and a
simplified snapshot-based encoding of
method Node::index from Figure 5.1.

1 adt Snap<Option<Box<T>>> {
2 None()
3 Some(content: Snap<Box<T>>)
4 }
5 adt Snap<Node<T>> {
6 Constructor(value: Snap<T>, next: Snap<Option<Box<T>>>)
7 }
8 function index(
9 self: Snap<&Node>,
10 index: Snap<usize>,
11 ): Snap<&T>
12 requires 0 <= index && index < len(self)
13 {
14 index == 0 ?
15 self.value :
16 (self.next.isSome() ?
17 index(self.next.content, index - 1) :
18 unreachable()
19 )
20 }

5: We omit obvious conversions to im-
prove readability. For example, we omit
conversion from snapshots to Viper inte-
gers and conversion from a snapshot of
a reference to a snapshot of its target.

6: The implementation of the version
of Prusti presented in this part of the
thesis requires annotations in some rare
cases due to an implementation mistake.
The implementation of snapshots for the
version of Prusti presented in Part III
requires no input from the user.

functions and quantifiers more expressive. Figure 5.5 shows snapshot def-
initions for types Node<T> and Option<Box<T>> and a simplified encoding5
of method Node::index from Figure 5.1. As can be seen from lines 8–20,
we change the encoding of pure functions to use snapshots for both pa-
rameters and returned values, which also requires using snapshot-based
operations instead of permission-based ones in the body of a function.
Snapshot-based function encoding is very similar to permission-based
encoding, which enables us to generate it without any user input6. We
encode calls to pure functions by converting arguments into snapshots
using functions that obtain the snapshot similar to snap<List> above.
Changing the encoding of pure functions to a snapshot-based one en-
ables us to support pure functions that return shared references, which is
necessary to verify such examples as the one shown in Figure 5.1. We also
use snapshots to generalise the quantifiers to enable quantification over
arbitrary Copy types by encoding them as quantifying over snapshots.

The last bit related to snapshots we need to be able to support verifying
the example in Figure 5.1 is a way to compare for equality values of
arbitrary types. The Rust equality operator == is defined by the user
by implementing the PartialEq trait and is, therefore, not guaranteed
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to adhere to the requirements for equality. We solve this problem by
defining a snapshot equality operator === that compares the snapshots
of two values. With this operator, we can compare values of type T even
if this type does not implement PartialEq trait.

5.3 Pledges for Mutable Borrows

Method index_mut at lines 43–56 in Figure 5.1 mutably borrows the linked
list and returns a mutable borrow of the element at the specified index.
Since the method takes a mutable reference, it is allowed to modify the
linked list in arbitrary ways, and, therefore, we need to specify to the
client the state of the data structure after the effects have taken place. If a
method did not return a reborrow, like, for example, method set_head_-

value shown in the following snippet, which changes the value at the
head, we could specify the effect of the method in the postcondition. The
postcondition of this method expresses that the element at index 0 was
changed to the new value, and all other values stayed the same.

1 impl Node {

2 #[ensures(self.index(0) == new_value)]

3 #[ensures(

4 forall(i: usize

5 0 < i && i < self.len() ==>

6 self.index(i) == old(self.index(i))

7 ))]

8 pub fn set_head_value(&mut self, new_value: i32) {

9 self.value = new_value;

10 }

11 }

The difference between set_head_value and index_mut is that the latter
returns a reborrow that can be used by the client to modify the originally
borrowed linked list node even after the call to index_mut terminated. For
example, if the caller of index_mut assigns 42 to the returned reference,
as shown in our motivating snippet, we should be able to prove that the
element at index 4 is 42 after the returned reference expires as shown in
the following snippet.

1 let r = list.index_mut(4);

2 *r = 42;

3 assert!(list.index(4) == 42);

One may be tempted to solve this challenge by specifying in the post-
condition what changes the function already made and which part of
the borrowed data structure the returned reference reborrows so that
the client would have enough information to deduce how their changes
via reborrow affect the final state of the data structure. However, this
approach has multiple drawbacks. First of all, since r reborrows list, the
Rust compiler forbids accessing list until r expires, whichmeans that the
postcondition mentioning list would be violating Rust ownership rules
and, therefore, potentially be confusing. Second, to specify which part of
the data structure is reborrowed, the postcondition would likely need
to mention private fields, thus breaking the information hiding. Finally,
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reconstructing how modifying a reference that points into the middle
of a recursive data structure affects the entire data structure typically
requires writing recursive lemmas. Automatically writing such lemmas
is beyond state of the art and thus breaks the abstraction our technique
aims to achieve.

We propose a new specification construct called pledges that addresses all
mentioned challenges. A pledge is an assertion describing the value of the
borrowed place immediately after the reborrow expires, parametric to the
value of the reborrow just before it expires. The pledge is written inside
a #[after_expiry(reference => ...)] annotation as shown in Figure 5.1
on lines 35–42. A typical pledge expresses the state of the borrowed value
(in our example, self) by comparing it to the state just before the returned
reference expires (part of the assertion wrapped in before_expiry(...))
and to the function pre-state (wrapped in old(...)). The pledge in
Figure 5.1 expresses that the new value of the reborrowed element is
equal to whatever was the last value of the returned reference before it
expired and that all other elements of the linked list were unchanged.
Notably, these properties are expressed using public pure functions
without exposing any implementation details, which is essential for
modular reasoning.

Encoding pledges into Viper is surprisingly straightforward. In magic
wand � ´̊ �, � and � can not only be accessibility predicates but
any Viper assertions. Therefore, we can conjoin the pledge translated
into Viper to the right-hand side of the magic wand. For example, the
following snippet shows a simplified magic wand with encoded line 41
of the pledge from Figure 5.1.

1 acc(T(result.pointer), write) --*
2 acc(Node_T(old(self.pointer)), write) &&

3 index(snap<&Node<T>(old(self.pointer)), old(snap<usize>(index))) ==

4 old[lhs](snap<T>(result.pointer))

Lines 1–2 show the part of the magic wand generated from the types and
lines 3–4 show the encoding of the pledge corresponding to line 41 in
Figure 5.1. We translate before_expiry(...) into old[lhs](...), which
evaluates the argument on the left-hand side of the magic wand. Intu-
itively, the state of the left-hand side of the magic wand is the state in
which the magic wand is applied. When verifying the package statement
that packages the magic wand with the pledge, Viper will automati-
cally prove that the pledge holds with any final value of the reborrow.
Similarly, for non-reborrowing functions, we either conjoin the speci-
fication describing the value of the borrowed place after the function
call to the postcondition or the right-hand side of the corresponding
magic wand depending on whether we use the optimisation described
in Subsection 3.4.4.

Asserting pledges. In the paper in which pledges were originally
published [74], we considered only pledges that are translated into
assertions on the right-hand side of the magic wand. Such pledges have a
property that the caller of the reborrowing function can assign anyvalue to
the returned reborrow, and it is the reborrowing function implementer‘s
responsibility to ensure the correctness of the code. However, sometimes,
the implementer would like to rely on the caller assigning only specific
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values. For example, Figure 5.6 shows a struct Segment (lines 2–5) that has
two fields representing start and end points and a method borrow_start

(lines 13–15) that returns a mutable borrow to the start point. Suppose
the implementer of this struct wanted to add an invariant (line 1) that the
end point is always after the start point, they could not do this without
removing the borrow_start method. The reason is that the caller of this
method can use the borrow of the start point to assign any value to it,
including ones that violate the invariant.

1 #[invariant(self.start <= self.end)]
2 pub struct Segment {
3 start: i32,
4 end: i32,
5 }
6

7 impl Segment {
8 #[assert_on_expiry(result =>
9 *result <= old(self.end),
10 self.start == before_expiry(*result) &&
11 self.end == old(self.end)
12 )]
13 pub fn borrow_start(&mut self) -> &mut i32 {
14 &mut self.start
15 }
16 }

Figure 5.6:A segment with start and end
points that has an invariant that the end
point is after the start point.

With Matthias Erdin [89], we explored a variation of pledges that enable
constraining the value of the returned reference and found that they
are a natural fit for programs that use types with invariants. Such
asserting pledges are defined by using #[assert_on_expiry(reference =>

constraint, assertion)] annotation that in addition to regular pledge
assertion also have constraint that is required to be satisfied when the
reference expires. For example, in Figure 5.6, the asserting pledge on lines
8–12 constraints the returned reference when it expires to be smaller than
the end point. The core advantage of asserting pledges is that, similarly
to regular pledges, they enable the implementer to specify the constraint
on the reference in terms of the public interface of the data structure
without leaking any details of the internal implementation.

The asserting pledges are encoded into Viper by conjoining the encoded
constraint to the left-hand side of the magic wand. Viper automatically
considers the additional assumptions when packaging a magic wand
with an asserting pledge.

Alternative designs. In this section, we presented a syntax for pledges
that uses two annotations after_expiry(A) and before_expiry(B). after_-
expiry(A) indicates that assertion A should be evaluated in the state
immediately after the reference expires while before_expiry(B) indicates
that B should be evaluated just before the reference expires. We chose
this syntax because the reference blocks the place it (re-)borrows and,
therefore, mentioning both in the same assertion would be invalid Rust,
which we felt would be confusing for the users if we allowed it. However,
it is important to note that using different syntax for the two cases is
unnecessary because they can always be distinguished. The places that
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should be evaluated in the after-expiration state have the borrowed place
as a root, and the places that should be evaluated in the before-expiration
state have the borrowing reference as a root. Therefore, we could rewrite
index_mut pledge as a postcondition, as shown in the following snippet.

1 #[ensures(

2 self.len() == old(self.len()) &&

3 forall(i: usize

4 0 <= i && i < self.len() && i != idx ==>

5 self.index(i) == old(self.index(i))

6 ) &&

7 self.index(idx) == *result

8 )]

From the compiler, we know that result is a reference blocking self.
Since result does not exist in the pre-state and cannot be used after it
expires, the only valid state from the three states used in a pledge inwhich
*result can be evaluated is the state just before the reference expires.
Similarly, self cannot be evaluated before the reference expires, and the
expressions that should be evaluated in the prestate are already wrapped
in old(...), so we are left with evaluating self.len() and self.index(i)

just after the reference expires.

This design was used by Florian Hahn, who did a master thesis [90]
to evaluate the feasibility of the approach presented in this part of the
thesis.
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We evaluated our technique by implementing a Rust verifier and exam-
ined its effectiveness in three ways: two automatic studies and manual
verification of examples. Our evaluation shows that our technique can
automatically generate core proofs and enables verifying important
properties without the need for complicated specifications. We start
this chapter by presenting our implementation in Section 6.1. Then, we
present our evaluation in Section 6.2.

In this chapter, we present the implementation and evaluation as they
were done for the paper [74]

[74]: Astrauskas et al. (2019), ‘Leveraging
Rust types for modular specification and
verification’

on which this chapter is based. Since then,
the tool has improved, and some parts had to be rewritten because the
components it relied on were deprecated. However, the high-level design
of the implementation presented in this chapter is still effectively the
same.

6.1 Presentation of the Prusti Tool

We implemented the verifier called Prusti as a Rust compiler plugin. This
choice has enabled two significant benefits. First, our tool provides the
same user interface as the Rust compiler and official linter Clippy [91]:
verification errors are reported in the same way as the compiler reports
compilation errors, with which Rust developers are already familiar.
Second, our tool reuses a significant portion of compiler infrastructure,
which gives us confidence that we interpret Rust programs in the same
way as the Rust compiler. Our tool performs the central part of its work
after the compiler‘s type-checking pass. We obtain from the compiler a
CFG representation of each function called MIR (Middle Intermediate
Representation). We use this representation because the borrow checker
also uses it and, therefore, we can obtain the borrow information crucial
for our technique. We use MIR with the type information to construct a
Viper program, which we verify with Viper‘s symbolic execution verifier.
Our implementationdoes not have an explicit intermediate representation
with PCSs; we run the corresponding analyses on the generated Viper
code, treating Viper permissions as capabilities. We encode mutable
borrows using the optimised encoding presented in Subsection 3.4.4.
If the verifier reports any errors, we translate them back and show
them to the user by using the error reporting functionality provided
by the compiler. To ensure that we correctly model Rust semantics,
we developed a test suite of more than 300 correct and incorrect Rust
programs annotated with expected verification errors.

Our tool supports an expressive fragment of Rust that, for example,
includes shared and mutable borrows, traits, generics, and common uses
of lifetime parameters to functions. As wasmentioned in Subsection 2.3.3,
we support a safe abstraction type Box by special-casing it. While safe
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abstractions cannot be verified with this version of Prusti, it still can be
used for verifying the code that uses these abstractions by providing
trusted specifications for them: if a function is annotated with #[trusted],
its body is not verified. However, its specifications are still used when
verifying callers. This feature can be used not only to specify types not
supported by Prusti but also to focus the verification effort on components
vital to the user. In addition to checking the functional specifications
provided by the user, Prusti can optionally check the absence of panics
and overflows. The implementation presented in [74] does not support
reborrowing inside loops, pure functions returning non-primitive types,
and abrupt termination of loop bodies. Unless explicitly stated, we
present the evaluation of this version in the following section.

6.2 Evaluation of the Verification Approach

We evaluated our work in three ways, which we present in the following
subsections. In Subsection 6.2.1, we present the construction of core proofs
for supported functions from the 500most popular crates (Rust packages).
In Subsection 6.2.2, we discuss whether the absence of overflows can
be automatically proven without the user providing any specifications.
Finally, Subsection 6.2.3 discusses using user-provided specifications
for verifying panic-freedom and richer functional properties. The per-
formance measurements shown in the following subsections were done
using a clean Ubuntu 18.04.1 installation on a desktop with a 4-core (8
hyper-threads) Intel i7-2600K 3.40GHz CPU, 32GB of RAM, and an SSD
disk.

6.2.1 Automatically Generating Core Proofs

We evaluated the construction of core proofs on 500 crates that, on
November 2, 2018, were the most popular on the Rust official package
index https://crates.io/ [92]. From the 500 crates, we obtained the
list of functions on which we tested the construction of the core proof
by applying three simple filters. First, we filtered out all crates (148) that
did not compile within 15 minutes with the standard nightly compiler1
and Polonius borrow checker2 (without our tool). The remaining 352
crates left us with 56,257 functions and methods. Second, we applied a
simple syntactic check for unsupported language features, leaving us
with 11,801 functions. Finally, we manually removed ten unusually large
functions, each requiring more than one minute just for the encoding.
Five of these functions implement 4 ˆ 4 matrix operations. The other
five contain huge match expressions with up to 2,000 cases. In the end,
we had 11,791 functions (21% of the total) on which we ran Prusti with
disabled checks for panics and overflows.

As expected, for each of 11,791 functions, Prusti generated a core proof
successfully verified by the Viper symbolic execution verifier without
any manual intervention. This successful verification shows that the
core proofs generated by our technique are sufficiently complete to be
accepted by Viper. However, the proofs were non-trivial. They required
a significant number of Viper guiding statements: from 1,140,384 lines of

https://crates.io/
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generated Viper code, 138,499 lines were fold, unfold, package, and apply

statements.
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(a) The horizontal axis is the verification time in seconds.
The blue line shows a cumulative distribution of how many
functions from the supported 11,791 functions required at least
that many seconds to verify. 188 functions took more than 10
seconds and, therefore, are not shown on the graph: 177 took
between 10 and 120 seconds, while 11 took between 120 and
888 seconds.

Error Num

assert!(..) might fail 2
unreachable!(..) might be reachable 1
add with overflow 77
remainder with a divisor of zero 50
remainder with overflow 48
divide by zero 42
divide with overflow 45
multiply with overflow 105
negate with overflow 18
subtract with overflow 71
solver incompleteness 8

(b) How often each error message was reported by Prusti for
the 519 functions used for overflow freedom evaluation.

Figure 6.1: Results of the large scale evaluation.

Figure 6.1a shows how long it took Viper to verify each function, averaged
over three runs. The graph shows that the average verification time per
function is 1.2 seconds. However, only 0.16 seconds are enough to verify
half of the functions and almost all of the functions (98.6%) are verified
in less than 10 seconds each. 1.4% of functions that take more than 10
seconds are slow to verify for the same reasons as the ten unusually large
functions we discarded (see above).

6.2.2 Automatically Checking Overflow Freedom

To evaluate whether runtime overflow checks can be proven without user
interaction, we automatically collected all 519 supported functions from
our evaluation presented in the previous subsection that contain runtime
checks for integer overflows or division by zero. We re-ran Prusti on these
functions with enabled panic and overflow checks. Out of 519 supported
functions, Viper successfully verified 52. Our manual inspection revealed
that used expressions could not overflow (for example, a/2 + a/3) or
were guarded by range checks. Since our tool soundly proved that these
checks can never fail, they could be removed to improve performance
without compromising safety.

Table 6.1b shows verification errors reported for each of the remaining
467 functions. Manual inspection revealed that, in most cases, the authors
of these functions implicitly assumed that the arguments would always
be within the valid ranges. Our technique enables the authors to make
these assumptions explicit by using preconditions that are verified at
each call site. The runtime checks emitted by the Rust compiler must
guarantee that a potentially overflowing operation can be executed only
with arguments that would not lead to overflow, but Prusti failed to
verify this property in eight cases. Manual investigation revealed that
the examples contain non-linear arithmetic, which led the SMT solver
Z3 used by Viper to struggle. We addressed the problem by increasing
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the Viper timeout for Z3 queries from 10 to 60 seconds. After increasing
the timeout, Prusti reported the expected “divide by zero” verification
errors in all eight cases.

6.2.3 Specifying and Verifying Functional Behaviour

Table 6.1 shows an overview of the examples we collected to evaluate
specification and verification of panic-freedom and richer functional
properties. We collected the examples from three different sources. From
the programming chrestomathy site Rosetta Code [93], we manually
chose eleven examples that either fall into the supported subset or can
be adapted without significant changes. Instead of taking the linked list
example from Rosetta, we took a more extensive version from a Rust
tutorial on linked lists [94]. The last two examples we took from Nicholas
D. Matsakis‘ blog posts on Rust language design [95, 96]. These two
examples illustrate complex borrowing patterns: “Message” (from [95])
was not supported by lexical lifetimes, and “Borrow First” (from [96])
still works only with Polonius.

As the column “LOC” of Table 6.1 shows, the unmodified examples had
7 to 89 lines of code, not counting blank lines and comments. We had
to modify some examples to make them fit into the supported subset.
For these examples, we rewrote for loops as while loops, changed code
to avoid return and break statements, and wrote trusted wrappers with
specifications for standard library types. As shown in column “#Fns”,
each example had between 1 and 6 functions. The average total verification
time (over three runs) is, for most examples, below 30 seconds. The two
slowest examples, “Knight‘s tour” and “Knapsack Problem/0-1”, take
less than two and a half minutes. Each of these two examples has a
large function that takes most of the time. For all examples, the standard
deviation of verification time was around 1 second.

We grouped the examples in Table 6.1 into three groups. The first group
contains seven examples which contain code that could panic or overflow.
For these examples, we verified the absence of these behaviours by adding
appropriate specifications3. The amount and complexity of specifications
varied significantly for different examples, as seen from the column
“Spec. LOC”. On one end, example “Binary Search” needed only a simple
loop invariant showing that the indices are within the required range.
These two lines of specifications (for 16 lines of original code) enabled the
verifier to prove the absence of both out-of-bounds accesses and integer
overflows. On the other endwere algorithms that simulate some traversal
of a grid. “Knight‘s tour”, where the goal of the algorithm is to find a
path that visits every square of the chessboard, required a significant
amount of ghost code (71 lines of specifications for 89 lines of original
code) to maintain the invariants necessary to show that the algorithm
does not try accessing squares outside of the defined chessboard, which
would lead to runtime errors. Another example that required large
specifications is “Langton‘s Ant”, a cellular automaton implemented
by simulating an ant walking on a grid according to predefined rules.
While this example required fewer specifications than “Knight‘s tour”
(22 lines of specifications for 58 lines of original code), the specifications
were more complex because they had to maintain an invariant of the
grid on which the ant walks, which involved using a pledge to specify
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how borrowing an element of the grid affects the grid‘s state. When we
tried to verify “Langton’s Ant”, we found that the example contained a
bug: the authors used unsigned integer type usize for the ant‘s position,
which could sometimes underflow. We fixed the bug by changing the
type to isize and fixing the bounds checks.

For the second group of examples, we verified some properties beyond
basic safety. This group also contains seven examples, two taken from
the previous group. “Selection Sort” is the same as in the previous
group, but with strictly more properties verified. “Binary Search” is
a monomorphised version of the example from the previous group,
where we changed polymorphic types to integers. We monomorphised
this example because the evaluated version of Prusti did not support
quantifying over non-primitive types, which is needed, for example, for
expressing that the ordering function defined on a trait is transitive. Our
initial attempt to verify the functional correctness of example “Binary
Search” failed. During our investigation, we found an off-by-one bug that
sometimes results in an element being skipped during the search. We

Table 6.1: Overview of the examples verified in the third part of the evaluation.

Columns: LOC is the number of lines in the unmodified example, #Fns is the number of functions, Spec. LOC is the num-
ber of lines used for specification and ghost code, All Time is the total time in seconds that includes the time needed to encode and
verify the example, Viper Time is the time needed by the Viper symbolic execution backend verifier to verify the encoding, No Panic is
whether we verified absence of panics, No Overflow is whether we verified absence of overflows. Value “–” used in No Panic or No
Overflow columns means that the example contains no operations that could panic or overflow, respectively.

The table shows three groups of examples. We took the first two groups of examples from the Rosetta Code website [93]
with the exception of example “Linked List Stack”, which we took from [94] because it is more extensive than the one in Rosetta. For the
first group of examples, we verified only the absence of panics and overflows, while for the second group, we verified properties that go
beyond the basic ones. We had to monomorphise “Binary Search” to prove stronger functional properties because Prusti did not yet
support quantification over non-primitive types required to express properties such as transitivity of the less-than operator. In [74], we
incorrectly marked “Selection Sort” as generic; we fix the mistake here. For example “Ackermann Func.”, we chose preconditions that do
not prevent overflow as “×” indicated in the corresponding column. Specifying the correctness of the result and absence of overflows
for example “Knapsack Problem/0-1” requires sum comprehensions, an advanced specification feature not yet supported in Prusti.
Therefore, we verified only the correctness of all intermediate computations for this example. The last group of examples are from
Nicholas D. Matsakis blog posts about non-lexical lifetimes in Rust illustrating complex borrowing patterns [95, 96]. We could not verify
the absence of panics for example “Message” because the program does not handle all IO errors.

Example LOC #Fns Spec. Time (s) No No Verified Additional
LOC All Viper Panic Overflow Properties

100 doors 19 2 7 10.9 7.4 X X
Binary Search (generic) 16 1 2 16.2 12.9 X X
Heapsort 39 3 18 30.6 26.2 X X
Knight‘s tour 89 6 71 127.6 120.2 X X
Knuth Shuffle 16 2 3 9.5 6.2 X X
Langton‘s Ant 58 4 22 16.7 11.8 X X
Selection Sort (no-panic)* 20 2 8 19.2 15.2 X X

Ackermann Func. 16 2 17 7.4 4.4 - × Correct result
Binary Search (mono.) 16 1 29 25.5 21.4 X X Correct result
Fibonacci Seq. 46 6 26 9.1 5.7 - - Correct result
Knapsack Problem/0-1 27 1 86 139.4 131.6 X × Correct computation
Linked List Stack 59 5 60 21.4 16.9 X - Correct behaviour
Selection Sort (functional) 20 2 34 29.6 24.2 X X Sorted result
Towers of Hanoi 10 2 5 5.9 3.2 - X Correct param. range

Borrow First 7 1 1 6.6 3.6 X X
Message 13 1 0 7.2 4.2 × -
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4: Prusti git commit: cee016e86b6-
32cb368a8609c4bf450fc564282d5.
Z3 version: 4.8.7. Viper
version: v-2023-08-26-2125.

fixed the bug and verified that if the function terminates, it produces the
correct result. However, after the publication, we discovered that in some
cases, the function does not terminate; we discuss the fixed version later,
together with examples we used to evaluate snapshots. Other examples
for which we verified functional correctness were “Fibonacci Seq.” and
“Ackermann Func.”; for them, we showed that different implementations
compute the same correct result. For “Knapsack Problem/0-1”, a classical
dynamic programming problem, we verified that the values stored in the
table match the recursive formula. For data structure example “Linked
List Stack”, we specified and verified the functional behaviour of each
method. For “Selection Sort”, we verified that the result is sorted; for
“Towers of Hanoi”, we verified that the parameter values are valid.

Table 6.2 shows an overview of examples verified in a later version of
Prusti4, which supports snapshots. The performance was measured on a
ThinkPad T470p laptop with a 4-core (8 hyper-threads) Intel i7-7700HQ
2.80GHz CPU, 16 GB of RAM, an SSD disk, andUbuntu 20.04.6. To enable
comparison with timings shown in Table 6.1, the first two examples in the
table, “Binary Search (generic)” and“Binary Search (mono.)”, are identical
to the ones in Table 6.1, just with updated specification syntax. The other
three examples are generic versions of the examples from Table 6.1 for
which snapshots enabled us to verify some functional properties. The
code of “Binary Search” is almost the same as that of “Binary Search
(generic)”, with the only difference that we added a break statement to
fix the non-termination. We verified that the fixed version terminates by
manually asserting at the endof the loopbody that the size of the currently
explored range is non-negative and strictly smaller than at the beginning
of the loop body. The functional correctness properties we proved for
this example are the same as the ones we proved for the monomorphised
version “Binary Search (mono.)” (the non-termination did not affect
the correctness of the specifications, so we could directly translate the
existing specifications to generic versions). Similarly, “Selection Sort” is a
generic version of the corresponding example from Table 6.1 for which
we proved the same functional correctness properties. The final example,
“Linked List”, is a generic linked list taken from the same tutorial as
“Linked List Stack”, for which we additionally verified index_mutmethod
similar to the one shown in Figure 5.1 in Chapter 5.

Table 6.2: Examples verified in an updated version of Prusti. The meaning of columns is the same as in Table 6.1, except “Time (s)”
refers to the overall time needed to encode and verify the example. The first two examples (“Binary Search (generic)” and “Binary
Search (mono.)”) are identical to the ones in Table 6.1 just with updated specification syntax. “Binary Search” and “Selection Sort” are
generic versions of the examples from Table 6.1 with verified functional properties. The last example, “Linked List”, is based on [98],
which is a generic linked list taken from the same tutorial as “Linked List Stack” in Table 6.1. For this example, we verified List::new,
List::push, List::pop, and test::basicsmethods taken from [98], and a version of List::index_mutmethod from Figure 5.1
in Chapter 5 adapted to the example.

Example LOC #Fns Spec. Time (s) No No Verified Additional
LOC Panic Overflow Properties

Binary Search (generic) 16 1 2 3.1 X X
Binary Search (mono.) 16 1 29 5.5 X X Correct result

Binary Search 16 1 43 6.0 X X Correct result, terminates
Selection Sort 20 2 38 373.6 X X Sorted result
Linked List 39 5 81 11.9 X - Correct behaviour
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The examples in Table 6.2 demonstrate that features enabled by snapshots
are crucial for verifying the functional correctness of generic code. All
three examples required quantifying over non-primitive types and using
functions that return non-primitive types. However, the evaluation also
revealed that there is still work to be done to make the experience of
verifying generic code smooth: when verifying monomorphic versions
of our examples, we relied heavily on SMT solver‘s built-in support
for integers and its knowledge of transitivity property of operators like
less-equals. However, when verifying generic code, we had to manually
express these properties using quantifiers, which is tedious and requires
care to achieve good performance (as seen from the verification time of
“Selection Sort” example). A possible solution to this problem would be
implementing a standard library that provides well-designed primitives
for reasoning about generic code, similar to the libraries provided by
Why3 and Dafny.

Analysis of both groups of examples confirms three key advantages of our
approach compared to the state-of-the-art verifiers for heap-manipulating
programs that existed at the time of the publication. First, specifying
the functional properties listed in Table 6.1 took, on average, 1.3 lines of
specifications for each line of code. While this overhead is non-negligible,
it is still significantly smaller than other tools. For generic versions of
the examples listed in Table 6.2, the average increases to 2.6 lines of
specifications for each line of code; as discussed before, the additional
overhead could be reduced by implementing a library of verification
primitives. Second, our annotations are effectively Rust expressions
with standard first-order logic connectives that are much simpler to
understand and use than the powerful logics required for specifying
heap-manipulating programs. Third, our approach supports incremental
verification. For example, proving the absence of panics and overflows
for “Binary Search” example requires only two lines of specifications. A
user can additionally verify that if the function reports that it found an
element (by returning Some), the returned element is correct by adding
another two assertions. Verifying the last bit that if the function reported
that it did not find an element (by returning None), it does not exist in the
input is slightly more involved: it requires using a quantifier to specify
that the input is sorted. However, none of these specifications exposes
the complexity of the underlying permission logic.





[45]: Bierhoff (2011), ‘Automated pro-
gram verification made SYMPLAR: sym-
bolic permissions for lightweight auto-
mated reasoning’

[71]: Jung et al. (2018), ‘RustBelt: securing
the foundations of the Rust program-
ming language’

[46]: Boyland et al. (2001), ‘Capabilities
for Sharing: A Generalisation of Unique-
ness and Read-Only’

[64]: Swamy et al. (2006), ‘Safe manual
memory management in Cyclone’
[65]: Fähndrich et al. (2006), ‘Language
support for fast and reliable message-
based communication in singularity OS’
[60]: Gordon et al. (2012), ‘Uniqueness
and reference immutability for safe par-
allelism’
[66]: Haller et al. (2010), ‘Capabilities for
Uniqueness and Borrowing’
[62]: Clebsch et al. (2015), ‘Deny capabil-
ities for safe, fast actors’
[61]: Balabonski et al. (2016), ‘The De-
sign and Formalization of Mezzo, a
Permission-Based Programming Lan-
guage’
[63]: Stork et al. (2014), ‘Æminium: a per-
mission based concurrent-by-default pro-
gramming language approach’
[45]: Bierhoff (2011), ‘Automated pro-
gram verification made SYMPLAR: sym-
bolic permissions for lightweight auto-
mated reasoning’

Related Work 7
This chapter discusses the work related to what we presented in this part
of the thesis. Our work, presented in this part of the thesis, focuses on
using Rust‘s capability type system to lower the barrier for verification
significantly. As we mentioned in Section 1.2, Rust is not the first pro-
gramming language with a capability-based type system. We discuss
other languages with capability type systems in Section 7.1. We already
discussed the related work on using type systems for verification in
Section 1.1. In Section 7.2, we take another look at SYMPLAR [45] and
compare it in more detail with Rust and our work. Then, in the following
three sections, we discuss related work on Rust. In Section 7.3, we discuss
verification tools for Rust. In Section 7.4, we present formalisations of Rust,
except RustBelt [71], which we discuss in Section 7.5. Since borrowing
is the key novelty of Rust, there are multiple proposals for modelling
borrows. We compare these models in detail in Section 7.5.

7.1 Capability-Based Type Systems

Rust uses capabilities to enable safe memory management and guarantee
the absence of data races. Many type systems associate capabilities [46]
with references to achieve stronger properties than the ones guaranteed
by typical type systems. Most of the systems that were developed either
as extensions to existing programming languages ([64] to C, [65] and [60]
to C#, and [66] to Scala) or as built-in to new programming languages
(Pony [62], Mezzo [61], Æminium [63]) focused on guaranteeing absence
of data races, which became pressing with the raise of multi-core comput-
ers. However, compilers of new programming languages also sometimes
exploited the additional information available in the type system for
othermeans: for example, Pony showed that capabilities could be used for
enabling distributed garbage collection. The main advantage of reference
capability type systems is that they provide stronger guarantees than the
regular type system at a comparatively low annotation cost. Our work
shows how the strengths of the reference capability type systems could
be exploited to enable lightweight verification.

7.2 Ownership and Uniqueness for Verification

In Subsection 1.1.3, we discussed SYMPLAR [45] that exploited reference
capabilities for verification. Our work presented in this part of the thesis
improves over SYMPLAR at least in two ways. First, the fragment of Rust
supported by our work accepts more patterns than are supported by
SYMPLAR. SYMPLAR‘s type system does not have a concept similar to
Rust‘s lifetimes and determines the length of a borrow based on the scope
in which the borrow was created. The core advantage of scope-based
borrows is that they are much easier to automate because the borrowing
patterns have a tree-like structure,which leads tomore explicit permission
flow compared to the flows possible in an arbitrary control flow graph on
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which Rust borrow checker is defined. For example, tree-like borrowing
patterns fit well the patterns supported by abstract read permissions [25],
which, therefore, could be used to encode read capabilities. As witnessed
by Rust switching from lexical to non-lexical lifetimes, programmers
prefer a more expressive borrow management based on the uses of
references than the easier-to-understand one based on lexical scopes. Our
work showed that supporting Rust non-lexical borrows is possible and
restricting programmers is unnecessary. The second crucial contribution
of our work compared to SYMPLAR is pledges. While the SYMPLAR
capability type system supports borrowing, SYMPLAR had no construct
allowing modular specification of borrows.

7.3 Rust Verification Tools

Before the publication of our work, there has been work on both bounded
and unbounded verification of Rust programs. The initial tools for verifying
Rust were bounded C verifiers adapted to Rust. CRUST [99] is based on
CBMC [100], a bounded model checker for C. The key contribution of
CRUST was the automatic generation of test drivers that exercise API
calls in a way that is likely to trigger aliasing invariant violations if the
tested safe abstraction did not uphold them. [101] added support for Rust
to SMACK [102], a verifier that works by translating LLVM bytecode
into Boogie. Similarly, [103] adapted KLEE [104], a symbolic execution
engine for LLVM, to support bytecode generated by the Rust compiler.
Both SMACK and KLEE supported adding checks as Rust expressions.
The key downside of integrating at the LLVM level is that the Rust
type information is already gone and cannot be used. However, it also
enables these tools to support not only safe but also unsafe code. Since we
integrate at a higher level, we can exploit the available type information
for unbounded modular verification of significantly richer properties.

The first work on unbounded verification of Rust was a feasibility study of
the approach presented in this part of the thesis by Florian Hahn [90]. He
developed Rust2Viper, a small prototype that supported certain patterns
of owned types and shared and mutable (re-)borrows. Even though
Rust2Viper targeted an older version of Rust that still used the lexical
borrow checker and had no MIR, it clearly showed that this approach
of verifying Rust programs is worth exploring. Sebastian Ullrich, in
his master thesis on Electrolysis [105], took a different path. The key
observation he exploited is that safe Rust programs can be purified:
encoded into equivalent pure functional programs. This observation
enabled encoding Rust programs into the Lean theorem prover [106]
and interactively verifying them. Electrolysis supported a fixed set of (re-
)borrowing patterns via lenses [107]. The same observation was exploited
by recent work at Galois that encodes Rust programs into SAW [108]. In
contrast to these works based on purification, our technique does not
require the user to construct proofs manually. Also, purification-based
approaches have the same drawbacks as SYMPLAR: no clear path exists
to support unsafe code.

Verus [109, 110] is anSMT-basedverifier that, similarly to otherpurification-
based verifiers, relies on the Rust type checker to be able to generate an
encoding of the Rust program that contains no capability information.



7.4 Rust Semantics and Formalisations 85

[111]: Developers (2023), Verus Tutorial
and Reference: Memory safety is conditional
on verification
[112]: Lehmann et al. (2022), ‘Flux: Liquid
Types for Rust’

[113]: Wolff et al. (2021), ‘Modular spec-
ification and verification of closures in
Rust’
[114]: Bılý et al. (2022), ‘Compositional
Reasoning for Side-effectful Iterators and
Iterator Adapters’
[115]: Denis et al. (2023), ‘Specifying and
Verifying Higher-order Rust Iterators’

[116]: Reed (2015), ‘Patina: A formaliza-
tion of the Rust programming language’

[117]: Benitez (2016), ‘Short Paper: Rusty
Types for Solid Safety’

[118]: Crary et al. (1999), ‘Typed Memory
Management in a Calculus of Capabili-
ties’

Unlike other verifiers for Rust, Verus focuses on developers who build
verified systems from scratch instead of focusing on verifying existing
Rust code. This different focus leads to different priorities: instead of
prioritising supporting as many Rust constructs as possible, Verus pri-
oritises high verification performance and an expressive specification
language. For example, Verus has only basic support for Rust‘s mutable
borrows, which are allowed only as function parameters. However, it
gives the developer more control over how a part of the code is checked
by an SMT-solver, enabling the user to achieve better and more stable
verification performance. The key innovation of Verus is linear ghost code.
While other purification-based verifiers rely on the Rust type checker
only for executable Rust code, Verus uses it also to enable resource-based
specifications. For example, the Verus standard library contains pointer
type PPtr that, unlike Rust references, can be used for shared-mutable
accesses. Verus ensures that the accesses are safe by requiring the user to
provide an instance of PointsTo type that matches the pointer: reading
from PPtr requires a shared reference to PointsTo and writing to PPtr

requires a mutable reference to PointsTo. An instance of this PointsTo

type acts as a points-to predicate in separation logic, effectively turning
Rust type system into a lightweight checker for separation logic. Flexible
linear ghost code enables specifying many interesting patterns but also
has a cost: code written with the types from the Verus standard library is
sound only if verified with Verus, which means that Verus is effectively a
dialect of Rust [111].

Flux [112] is a verifier for Rust that is based not on some program
logic like the verifiers mentioned earlier but on refinement types. Flux
enables the user to refine a Rust type by specifying a logical predicate
restricting the set of values the type could hold. Compared to our work,
the key advantages of Flux are its better performance and low annotation
overhead. However, Flux is limited to properties that can be expressed
with unary predicates. For example, it cannot be used to verify that the
result of a sorting algorithm is sorted.

Initial versions of many verification tools focused on modelling borrows,
which is the key novelty of Rust. We discuss these approaches in Sec-
tion 7.5. Later, work on these verification tools switched its focus to
verifying features from other programming languages, to which owner-
ship and borrowing give a unique twist. [113] enabled verification of Rust
closures in Prusti. [114] enabled verification of Rust iterators in Prusti
while [115] enabled their verification in Creusot. Both Prusti extensions
heavily rely on snapshots, demonstrating the importance of the ability
to separate functional specification from the management of resources
when specifying complex language features.

7.4 Rust Semantics and Formalisations

Patina [116] was the first attempt to formalise a subset of Rust that
included unique places and lexical borrowing. This work targeted the
version of Rust before the first stable release, which led to Rust not
matching the model anymore. [117] presented a formal semantics for a
Rust-like language with ownership and borrowing modelled by using
indirect capabilities (based on [118]). In their model, borrows stored in
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reference variables are kept alive until the end of the function body.
Oxide [119] formalised a type system that captures a subset of safe Rust
that includes non-lexical lifetimes. Importantly, Oxide uses the same
notion of lifetimes as Polonius. However, unlike us, the Oxide authors
are not interested in reconstructing the backward capability flow. A later
version of Oxide [120] introduced an Oxide type checker and a compiler
from Rust to Oxide, which the authors used to ensure that Oxide matches
Rust. The Oxide model was also used to implement a program slicer for
safe Rust called Flowistry [121]. Flowistry uses the input of Polonius to
implement may-alias analysis, whose results it uses to determine which
statements could affect the value the user is interested in. The analysis
looks similar to parts of Polonius, so it would be interesting to explore the
differences and similarities between the two inmore depth. [122] and [123]
formalised subsets of safe Rust in the K Framework [124], which can be
used to derive a verifier from the given semantics automatically. However,
the derived verifier exposes the logic used to define the semantics to the
user, while our goal was to enable the user to reason on the Rust level.
Featherweight Rust [125] presented a formalisation of a type system for a
greatly simplified version of Rust that, for example, omits control flow
and still uses lexical lifetimes. Jung et al. [126] proposed operational
semantics for Rust called Stacked Borrows that defines what non-aliasing
assumptions the compiler canmakewhen optimising code. The proposed
semantics turned out to forbid important use cases. Therefore, Villani [127,
128] proposed a different version called Tree Borrows that aims to support
the same key optimisations while allowing the important use cases. It
would be interesting to try connecting these works to our PCSs because
PCSs have a direct connection to how the Rust compiler reasons about
code.

7.5 Modelling Borrows in Rust-Like Languages

Since borrows are one of the core novelties of Rust, most work on Rust
focuses on modelling them. The proposed approaches for modelling
borrows target various use cases such as proving the soundness of Rust
type system, manually verifying functional correctness of unsafe code
in a proof assistant, and (like our own work in this part of the thesis)
SMT-based verification of the functional correctness of safe code. In
this section, we analyse the proposed models to answer two questions.
First, are the models fundamentally different, or is some underlying idea
common to all? For example, in Chapter 3, we discussed that the model
of mutable borrows has to address four challenges to reconstruct the
backward flow. In this section, we compare how different approaches
address each challenge and their benefits and weaknesses. Second, is
there a model suitable for SMT-based verification of mixed safe and un-
safe Rust code? This question is important because we focus on verifying
mixed safe and unsafe code in the rest of the thesis. By reviewing the
related work, we could distinguish three main approaches for capturing
backward flow: hiding it behind a library abstraction, using prophecies,
and reconstructing explicit backward flow as in our work. We compare
the technical differences of these approaches and their strengths and
weaknesses in Subsection 7.5.1, Subsection 7.5.2 and Subsection 7.5.3, re-
spectively. Finally, in Subsection 7.5.4, we discuss the findings concerning
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our two questions and potential future work.

7.5.1 Borrowing via Library in RustBelt

RustBelt [71, 129] is a formalisation of Rust that, differently from prior
work, focuses on unsafe code. As we mentioned in the introduction, in
unsafe code, programmers can use unsafe language features such as raw
pointers at the cost of becoming responsible for memory safety. Unsafe
code is crucial for Rust: it enables extending the language with new type
system primitives that are implemented as safe abstractions that safely
hide the unsafe code inside them so that client code written in safe Rust
cannot tell whether the implementation is unsafe or not. The goal of
RustBelt was to formalise this extendable type system approach and
state the precise rules under which it is sound. Instead of using a more
standard progress-and-preservation approach used by most prior work,
RustBelt chose a path based on semantic typing. The authors formalised
semantic typing for Rust using a separation logic, which is powerful
enough to prove the type-correctness of both safe and unsafe Rust code.
Then, they showed that a syntactically type-correct (safe) Rust program
is also semantically type-correct. This approach enabled them to prove
the soundness of several complicated safe abstractions, which implies
that these abstractions can be safely used by arbitrary safe code.

Since RustBelt had different goals from ours, the authors of RustBelt
made different design choices and contributions. High-level differences
are that RustBelt is based on the powerful higher-order separation logic
framework Iris and is fully mechanised in the Coq proof assistant, which
enables modelling the most complex types allowed by the Rust type
system (for example, a type of a function returning itself) and gives a
small trusted base. Our work is based on the first-order implicit dynamic
frames logic and the SMT-based verification infrastructure Viper, which
enables us to achieve a high degree of automation. RustBelt uses �Rust as
a language. �Rust is similar to the Rust compiler‘s middle intermediate
representation (MIR) but is based on continuation passing, which makes
it more convenient to use in Coq. Before a verification expert can start ver-
ifying the type soundness of a function, they have to manually translate it
into �Rust. Since RustBelt focuses on type soundness, it does not provide
a clear way of verifying the functional correctness of Rust functions.
While our implementation, Prusti, uses MIR for most of its work, the
user interacts with Prusti at the Rust source level, which includes writing
specifications in a specification language based on Rust expressions. Veri-
fying a function in RustBelt requires the verification expert to directly use
a complex separation logic while our work completely hides the complex
logic from the user and is, therefore, suitable for regular programmers.

In the approach we presented in Chapter 3, we use the information
available in Polonius to reconstruct the backward flow of capabilities
when a borrow expires. Instead of reconstructing the backward capability
flow, RustBelt introduced a lifetime logic that, similarly to the Rust
compiler, enables implicit capability transfer when a lifetime expires.
Intuitively, the lifetime logic can be understood as a library written in
a functional programming language that implements a bank-like entity.
Creating a borrow let x = &’l1 mut a; transfers the permission to the
borrowed place a into the bank, and the bank issues two tokens: a mutable
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borrow token and an inheritance token. Themutable borrow token grants
exclusive permission to the borrower to access the borrowed place as long
as lifetime ’l1 is alive. The inheritance token grants exclusive permission
to the lender to regain access to the borrowed place as soon as lifetime
’l1 ends. That a lifetime is still alive is tracked via a lifetime token: any
non-zero permission to a lifetime token indicates that the lifetime is still
alive. The borrower can access the borrowed place by opening the borrow.
Opening the borrow consumes the borrow token and a fraction of the
lifetime token, giving permission to the borrowed place. Closing the
borrow consumes the permission to the borrowed place and returns the
borrow token and a fraction of the lifetime token. It is important that
opening the borrow consumes some fraction of the lifetime token because
it guarantees that the lifetime cannot be ended as long as there are any
open borrows because ending the lifetime requires full permission to
the lifetime token. Ending the lifetime consumes the lifetime token and
produces a dead lifetime token. The lender can use the dead lifetime
token and the inheritance token to regain permissions to the borrowed
place, thus returning to the initial state of capabilities. Shared borrows
are supported similarly with the difference that the shared borrow token
is duplicable and opening it gives only read access.

The first challenge (C1) we had to address in our approach was handling
the effects of PCS operations in backward capability flow, which required
us to run the PCS elaboration algorithm on the loan-dependency graph.
In contrast, the lifetime logic hides this complexity inside the bank. It
provides an interface that enables the user to transfer the borrowed
capability back to the lender in two simple steps. First, the user ends
the lifetime to get the dead lifetime token. Second, the user regains
the loaned capability using the dead lifetime token. To provide such a
simple interface to the user requires the bank to do complex and precise
accounting. Intuitively, the lifetime logic bank keeps two accounts (called
boxes in [129]) for each lifetime: one for borrowers and one for lenders
(there can be multiple borrowers and lenders because lifetime logic
allows creating multiple borrows for the same lifetime). When a place
a is borrowed for the lifetime, it is put into the borrower‘s account to
indicate that the borrower can access it at any point. When the lifetime
expires, all resources from the borrower‘s account are transferred into
the lender‘s account to indicate that the resources from now on belong
to the lender. Maintaining the accounts requires solving three technical
challenges. First, the borrower‘s account needs to be maintained in sync
with the borrower‘s tokens. For example, if a borrower splits a mutable
borrow token for a struct into mutable borrow tokens for its fields, the
corresponding accounts must be split, too. Second, the lifetime logic
has to guarantee that through all operations performed on borrowers‘
accounts, these accounts together always contain sufficient resources
to justify all lenders‘ requirements for that lifetime. Third, reborrowing
allows borrowing away the contents of a borrower‘s account, which
requires ensuring that all reborrows return their borrows before the
original borrow expires. Solving these challenges required complex
technical solutions, which we do not discuss here. However, RustBelt‘s
authors successfully solved these technical challenges, which enabled
them to completely hide C1within the library. Since the complexity of
applying PCS operations in the backward flow is completely hidden
inside the library, the encoding that uses such a library-based approach
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could be potentially simpler than ours. Therefore, exploring whether
the library-based approach could be applied to SMT-based functional
verification would be interesting.

Hiding PCS operations inside the library is not the only aspect of the
lifetime logic approach that could lead to potentially simpler to generate
encodings, which makes it an interesting approach for automated verifi-
cation. In the lifetime logic, the state transitions are tied to changes in
lifetimes and not to hitting verification boundaries like in our approach
(C0). In our approach, when a verification boundary, such as the end
of a loop or method body, is reached, all unneeded capabilities must
be collected into the corresponding exchange capabilities to ensure that
they are transferred back. In RustBelt, borrow tokens can be just leaked
because they are not needed for recovering the borrowed place and
leaking them does not affect the internal state of the bank. However,
this flexibility comes at the cost of weaker specifications: RustBelt only
ensures that the borrow is guaranteed to maintain its type invariant,
precisely the property needed for verifying type system soundness. Our
encoding enables the implementation of asserting pledges that assert
a user-specified functional property at the point when the reference
expires.

The second challenge (C2) of handling conditional control flow we ap-
proached by introducing ghost variables l*_executed that trackwhether a
loan was created or not. The lifetime logic tracks what loans were created
in the internal state of the bank. An important advantage of the RustBelt‘s
approach is that it avoids using ghost variables and branching on them,
which is important because branches can significantly impact verification
time. However, tracking loans in the internal state also has one crucial
drawback: it does not allow attaching functional specifications.

The third challenge (C3) of handling reassignments of mutable references
we approached by using temporary places in the loan-dependency graph
instead of the overwritten ones. In the lifetime logic, this challenge is
handled implicitly by the fact that the bank sees only the targets of the
references and not the references themselves.

To summarise, RustBelt‘s lifetime logic provides a library-like interface for
managing borrows that, similarly to the Rust compiler, enables implicit
backward capability flow. The essential advantage of lifetime logic is that
it enables verification of the soundness of safe abstractions, whichwas the
project’s goal. While RustBelt targets manual verification of soundness in
a proof assistant, it seems likely that the library-based approach could
also benefit SMT-based verification. In particular, pushing complexity
into the library that is proven once and for all may lead to a simpler
and more performant encoding of the core proof for Rust programs.
Therefore, an interesting future research direction would be to build an
SMT-based verifier that uses the library-based approach and evaluate
its performance, simplicity of the encoding, and completeness with
respect to the Rust compiler (similarly to how we evaluated Prusti in
Subsection 6.2.1). Since RustBelt focused on type soundness, it left an
unanswered question of how the library-based approach could be used
to verify functional correctness. We discuss one possible solution in the
following subsection.
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7.5.1.1 RustBelt Extensions

The original RustBelt paper [71] made a simplifying assumption that
the language is sequentially consistent. However, many safe abstractions
designed for concurrent code try to achieve maximum performance
and, as a result, rely on relaxed memory operations. Therefore, [130]
adapted RustBelt to lift the assumption that the language is sequentially
consistent.

Another change toRustBeltwas explored by the authors of GhostCell [131].
GhostCell is a safe abstraction that enables creating cyclic data structures
without the performance overhead caused by other solutions such as
reference counted smart pointers Arc<T>. For soundness, GhostCell relies
on the client being unable to use lifetime ’l1 used in the type of one
GhostCell<T, ’l1> to call a method of another GhostCell<T, ’l2> if the
two lifetimes ’l1 and ’l2 are not syntactically the same lifetime. However,
original RustBelt used a semantic notion of lifetimes that, for example,
allowed proving that all lifetimes are equal to ’static if the code provably
does not terminate1. Therefore, the authors of [131] added a syntactic
notion of lifetimes to RustBelt, which allowed them to prove GhostCell

sound. Interestingly, the algorithm used in Polonius would also conclude
that all lifetimes are equal to ’static if it managed to prove that the code
does not terminate. However, Polonius cannot prove non-termination in
practice because it has to consider that any called Rust function might
panic, which is arguably a very fragile protection.

7.5.2 Prophecies

In our model, the value of a memory location is coupled with the
capability to access thatmemory location:whoever can access thememory
location also knows its value. In Section 5.2, we showed that for specifying
functional correctness, it is often helpful to introduce snapshots, which
are mathematical values that fully capture the meaning of a group of
memory locations. These snapshots are still linked to the capabilities that
justify them. As a result, by restoring the explicit backward capability
flow, we also reconstruct the knowledge of how the actions performed
on references affect the values of borrowed places. As was shown by
SYMPLAR [45], in some cases, it is possible to completely separate
reasoning about capabilities and values: if we have the flow of capabilities
checked by, for example, a type system,we can exploit this knowledge and
construct a purified encoding that tracks only values. When applying this
approach for Rust, themain challenge is finding away to supportmutable
references, which requires answering the following three questions:

1. How do we capture the backward value flow when a reference
expires?

2. How do we justify that the backward value flow is correct?
3. How do we enable the user to specify the flow?

In our encoding into Viper, magic wands capture point 1 and point 2
while pledges enable point 3. In this subsection, we discuss an alternative
way of capturing the backward flow based on a concept called prophecies,
and, in the next section, we discuss approaches that explicitly capture
the backward value flow. We focus on mutable borrows and generally
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omit discussing shared borrows because supporting them in purification
approaches is straightforward.

Up to now, prophecies have been explored in three papers, each focusing
on a different question from our list. RustHorn [132] introduced prophe-
cies and focused on using them to capture the backward value flow. We
present prophecies in Subsubsection 7.5.2.1. While RustHorn [132] did
contain a soundness proof that showed the approach is sound for a core
fragment of safe Rust, the justification of the prophetic approach was the
core focus of the RustHornBelt paper [133]. As indicated by the name,
RustHornBelt combined RustBelt with prophecies to enable functional
verification of unsafe code, which required finding a way to justify the
prophetic approach even in the presence of unsafe code. We discuss
RustHornBelt in Subsubsection 7.5.2.2. Lastly, Creusot [134] focused on
prophecies as a specification mechanism for reasoning about mutable
borrows in the context of modular unbounded SMT-based verification,
which we discuss in Subsubsection 7.5.2.3. With prophecies introduced,
we compare them with magic wands and pledges used in our work in
Subsubsection 7.5.2.4 and Subsubsection 7.5.2.5, respectively.

7.5.2.1 RustHorn: Capturing Backward Value Flow With Prophecies

The goal of RustHorn [132] was to enable functional verification of
Rust programs using an approach based on constrained Horn clauses
(CHCs) [135, 136]. Similarly to unboundedmodular verification discussed
in this thesis, one of the critical challenges in CHC-based verification is
controlling aliasing, which makes Rust an appealing verification target.
Similarly to Electrolysis [105], RustHorn exploits Rust‘s ownership type
system to treat functions written in safe Rust as if they were written in a
pure functional programming language. The key innovation of RustHorn
was a novel way of modelling references as a pair of a current value and a
prophecy of what the final value the reference will have when it expires.

1 let x = &mut a;
2 *x = 5;
3 assert!(a == 5);

(a) A simple borrow.

1 var a: Int
2 var x_current: Int
3 var x_final: Int
4

5 assume x_current == a
6 havoc a
7 assume x_final == a
8

9 havoc x_current
10 assume x_current == 5
11

12 assume x_current == x_final
13

14 assert a == 5

(b) An encoding of the simple borrow
using the prophetic model. Figure 7.1:Asimple borrowexample and

its encoding using the prophetic model.

The prophetic encoding has some interesting relation to our work, under-
standing which requires to have an intuition of how it works. Figure 7.1
shows a simple borrowing example (Figure 7.1a) and its encoding in
Viper based on the prophecies approach (Figure 7.1b). In Figure 7.1a,
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place a is borrowed by x and then its value is set to 5 via this reference.
Since the RustHorn approach is based on purification, in the encoding
shown in Figure 7.1a, there are no resources on the Viper heap, and the
variable a is encoded as a Viper integer Int. Similarly, x_current, the
current value of reference x, and x_final, the final value of reference x,
are also just integers. Borrowing is done in two steps. First, the current
value of the reference becomes equal to the value of the borrowed place
as shown on line 5 in Figure 7.1b to model the fact that when reading
via x we will observe the same values as a had at the time of borrowing.
Second, the borrowed place and the final value of the reference are set
to the same fresh prophecy as shown on lines 6–7 to model the fact that
when the reference x expires, a will have the same value as x at that time.
Lines 9–10 show how the assignment to the reference is encoded; for
consistency with the rest of the example, we encode it by havocking the
target and then assuming the new value. Finally, when a reference expires,
its current value becomes its final value, which means that we can learn
the value of the prophecy by resolving the prophecy that assumes both
values to be equal as shown on line 12. As a result, we can prove that the
new value of a is 5.

In our model presented in Chapter 3, we reconstruct the backward value
flow by explicitly telling the verifier how to transfer the capabilities
back to the lenders once the borrows expire. This explicit capability
flow enables the verifier to reconstruct the backward value flow. The
prophetic approach teaches the verifier how to reconstruct the backward
value flow by linking the prophetic values of references via assumptions.
For example, if we have a reborrow statement let y = &mut *x; after
which x is not used anymore, the effect of the prophetic encoding will be
equivalent to the two statements shown in the following snippet.

1 y_current := x_current;

2 assume y_final == x_final;

This snippet shows that the final value of xwas linked to the final value of
y. An important property of prophetic encoding is that these links depend
on the control flow. The following snippet resembles our motivating
example from challenge C2.

1 if random_choice() {

2 z = &mut *x;

3 } else {

4 z = &mut *y;

5 }

Depending on which branch is executed, the reference z will be linked
either to x or y. This way, the prophetic encoding constructs the precise
backward value flow without introducing ghost variables, which we
needed for solving C2. For the same reason that the link is established
when the borrow is created, the prophetic encoding handles reassign-
ments of references (C3) without any additional effort. Handling of PCS
operations (C1), which in the value context means how deeply definitions
should be unrolled, RustHorn leaves to the heuristics of the underlying
verifier. One may wonder whether it is possible to link the capabilities in
the same way as the prophetic encoding links values to avoid using ghost
variables required by our approach. Such linking would be possible,
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but only if we had a verifier that can completely automatically compute
all necessary PCS operations (in other words, if we pushed the PCS
elaboration step into the verifier).

While the magic wands used in our approach capture the backward flow
of values and justify it, the prophetic approach requires an external argu-
ment that shows that the same prophecy cannot be resolved to different
values. The RustHorn paper [132] proved that the prophetic encoding
is sound for a core fragment of safe Rust. In the following subsection,
we present RustHornBelt that showed how prophetic reasoning can be
supported even in Rust code that contains unsafe.

7.5.2.2 RustHornBelt: Justifying Prophetic Backward Value Flow

Justifying prophetic backward value flow requires solving two key chal-
lenges. The first challenge is relating the mathematical values used in
the encoding to capabilities that the Rust program manipulates. The
second challenge is ensuring that a prophecy cannot be resolved to two
different values because that would be unsound. RustHorn proved these
two properties against the type system of safe Rust, which left an unan-
swered question of how to support specifying and verifying unsafe code.
RustHornBelt [133], as the name implies, followed the path of RustBelt:
updated the definition of semantic typing to include reasoning about
mathematical values and prophecies and proved that syntactic typing
implies semantic typing. RustHornBelt addressed the first challenge of
relating RustHorn mathematical values to RustBelt resources by using
the snapshot approach for separation logics, which we discussed in
Section 5.2: they changed the definition of a predicate that models an
owned Rust value to include also the snapshot (called “representation
value” in the paper [133]). To address the second challenge of guaran-
teeing that prophecies are used soundly, RustHornBelt introduced a
new separation logic construct called parametric prophecies, which enables
ensuring the desired property that the same prophecy cannot be resolved
to different values. RustHornBelt changed how the RustBelt predicates
are defined and how the lifetime logic bank is used. However, it kept
the implementation of the lifetime logic bank unchanged: the values of
prophecies are effectively tracked outside of the lifetime logic. As a result,
in RustHornBelt, mutable borrows are modelled on three levels: RustBelt
lifetime logic tracks capabilities, snapshots are used for tracking values,
and parametric prophecies with some other Iris constructs are used for
soundly linking the two together. Similarly to RustBelt, RustHornBelt
had to solve many technical challenges we are not discussing here.

7.5.2.3 Creusot: Prophecies as a Specification Tool

In our work, we used magic wands to capture the precise backward value
flow and pledges to enable the user to specify the backward value flow
when the precise flow cannot be restored, for example, when crossing a
verification boundary. Since prophecies link values and not resources,
they can be used as an alternative way to provide specifications on the
level of Rust expressions, enabling lightweight modular unbounded
verification. Creusot [97, 134] is a Why3 [57] front-end that uses a
prophecy-based purification approach to enable unbounded verification
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of safe Rust programs. Similarly to our work, Creusot uses a specification
syntax based on Rust expressions with the key difference that instead
of pledges, they use prophecies: Creusot introduces new dereference
operator ˆ that allows accessing the final value of the reference while
regular dereference operator * allows accessing the current value of the
reference. The following snippet shows a simple reborrowing function
and its specification in Creusot that expresses that the final value of
field first will be equal to the final value of the result and that field
second will be unchanged (Creusot does not have old(...) expressions
and always evaluates arguments in the pre-state of the function).

1 #[ensures(

2 (^pair).first == ^result &&

3 (^pair).second == (*pair).second

4 )]

5 fn reborrow_first(pair: &mut Pair) -> &i32 {

6 &mut pair.first

7 }

The authors of Creusot also showed that the specification approach based
on prophecies can be used for modular specification of types containing
references inside them. For example, the following snippet shows a
function that takes a generic Box<T> and drops it.

1 #[ensures(b.resolve())]

2 fn destroy<T: Resolve>(b: Box<T>) {}

Since the parameter b is dropped, any reference contained in Twill expire.
However, since T is generic, the implementation of destroy does not know
whether T contains any references, and if it does, it has noway of referring
to them. Creusot solves this challenge by introducing the Resolve trait
whose resolve method specifies what it means for all references within
a specific type to be expired. For example, this trait is implemented for
mutable references of integers, as shown in the following snippet (we
slightly simplified the definition to make it more readable).

1 impl Resolve for &mut i32 {

2 #[predicate]

3 fn resolve(self) -> bool { ^self == *self }

4 }

The resolve method is annotated with #[predicate], which means that
it contains an assertion and not an executable code. Unsurprisingly, the
Resolve implementation expresses that the current and final values of
expired references are the same. With this implementation, we can verify
the following snippet that calls the destroy function with a mutable
reference.

1 let x = &mut a;

2 let y = Box::new(x);

3 **y = 5; // Double dereference because we need to also

4 // dereference the Box.

5 destroy(y);

6 assert!(a == 5);
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An important difference between Creusot and Prusti is that Creusot relies
on the Rust compiler for tracking capabilities while Prusti reconstructs
the core proof that is checked by Viper. This different design leads to two
important consequences. First, Creusot requires an intricate soundness
proof showing that relying on the Rust compiler can ensure that each
prophecy is resolved at most once, and it is impossible to create prophetic
cycles. Second, pushing the complexity into the soundness proof makes
it much easier for Creusot to support complex control flow. For example,
supporting reborrowing in loops in Prusti is challenging: even though
the loop invariant computed by Polonius expresses the same constraints
as a function signature, recovering exchange capabilities is much more
complicated because of themany shapes loops can take. Creusot side steps
this problem by relying on the Rust compiler to check the capabilities.

In the following subsubsections, we compare how the prophetic approach
differs from ours in detail. We start by comparing prophecies to magic
wands in Subsubsection 7.5.2.4.

7.5.2.4 Prophecies and Magic Wands

On a surface level, ours and the prophetic approach look very different,
so the question arises whether they are related in any way. Magic
wands relate both permissions and values, while prophecies relate
only values. Therefore, to compare the two, we look “under the hood”
and see how magic wands are implemented in Viper. Viper‘s symbolic
execution backend used by Prusti uses snapshots to track the values of the
resources [137], which enables it to support heap-dependent expressions
and functions. The following equation shows the definition of the magic
wand. This definition expresses that magic wand � ´̊ � holds in state �
iff combining � with any state �1 for which � holds gives us a state in
which � holds.

� |ù � ´̊ � ô @�1 K � ¨ p�1 |ù � ñ � Z �1 |ù �q (7.1)

Let B� be the snapshot of � and B� be the snapshot of �. Then, from
the definition of a magic wand, we can see that for each magic wand,
there must be a function 5wand such that applying it to any valid snapshot
B�, we get a valid snapshot such that B� “ 5wandpB�q [137]2. Packaging
a magic wand must define this function 5wand, and applying the magic
wand obtains the snapshot of � by applying 5wand on the snapshot of �
in that state.

Malte Schwerhoff [137] observed that the magic wand snapshot can
be simplified from a function to a constant under certain conditions
(magic wand is applied only once; applying expressions and fractional
magic wands are not allowed). More specifically, instead of defining
function 5wand that takes the snapshot of � as an argument, we can
represent it as a constant that is constrained against a fresh snapshot B1

�

representing the snapshot of � at the hypothetical state in which the
magic wand is applied [137]. To see how this observation enables us
to relate prophecies and magic wands, consider Figure 7.2 showing an
encoding of Figure 7.1a in Viper. In addition to Viper statements and
available resources, the example shows the snapshots for resources and
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Figure 7.2: A Viper encoding of the ex-
ample from Figure 7.1a with shown snap-
shots for resources (in blue) and the
equalities learned between snapshots (in
green). Since snapshots are immutable,
we show only newly learned equalities.
We omit the snapshot changes done by
unfold and fold statements for read-
ability.

1 acc(i32(a), write): B1
2

3 x.pointer := a;
4 package acc(i32(x.pointer), write) --* acc(i32(a), write)
5 acc(i32(x.pointer), write) --* acc(i32(a), write): Bwand

6 acc(i32(x.pointer), write): B1
7 Blhs “ Bwand
8

9 unfold acc(i32(x.pointer), write)
10 x.pointer.val_i32 := 5;
11 acc(i32(x.pointer), write) --* acc(i32(a), write): Bwand

12 acc(i32(x.pointer), write): B2

13 B2 “ 5
14

15 fold acc(i32(x.pointer), write)
16 apply acc(i32(x.pointer), write) --* acc(i32(a), write)
17 acc(i32(a), write): Bwand
18 B2 “ Blhs
19

20 unfold acc(i32(a), write)
21 assert a.val_i32 == 5

3: In Viper, we could avoid using the
snapshots directly by relying on heap-
dependent expressions.

learned equalities between them. Creating a borrow on lines 3–7 transfers
the predicate instance i32 from place a to x.pointer and packaging a
magic wand that represents a capability to undo this action. The transfer
of the predicate instance in our example is shown by removing the
corresponding resource on a and creating a resource on x.pointer with
the same snapshot B1 (as discussed in Subsection 3.4.4, Viper remembers
that the two values are aliased instead of transferring the resource, but
to simplify the explanation we pretend that it does transfer). Packaging
produces a magic wand with snapshot Bwand. This snapshot depends on
the snapshot Blhs that represents the snapshot of the left-hand side of the
magic wand when it is applied. Since the magic wand is trivial, the two
snapshots are simply equated to each other. Assigning the target of the
reference on lines 10–13 creates a fresh snapshot for the corresponding
resource and assumes it to be equal to the snapshot of the assigned
value. When the reference expires, the magic wand is applied (lines
15–18|), which consumes the magic wand and reference target resources,
produces the resource that corresponds to the right-hand side of the
magic wand with the wand‘s snapshot Bwand, and assumes that the
snapshot of the hypothetical left-hand side is equal to the actual left-hand
side. If we compare the prophetic encoding shown in Figure 7.1b with
how the snapshot values are updated in Figure 7.2, we can see that the
two are effectively the same with hypothetical snapshot Blhs acting as
a prophecy. In other words, hypothetical snapshot Blhs is effectively a
prophecy.

We build on this observation to show that prophecies and magic wands
are highly related, and we could also extend our approach to support
prophetic specifications. To make the explanation of howwe could justify
prophetic specifications with magic wands more explicit, we need a way
to refer to the snapshot of a magic wand3. In Section 5.2, we presented
snap functions that can be used to obtain predicate snapshots. By using
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referring to the state on the left-hand side
of a magic wand. In that case, the wand
would be A(x) ´̊ B(y) ˚ snap_B(y) =
5wandpold[lhs](snap_A(x))q.

5: The snapshots we presented in Sec-
tion 5.2 include only valid values. The
snapshots we present in Part III also
include invalid values and, therefore,
would require adding a guard that the
snapshot is valid.

these functions, we can rewrite a magic wand A(x) ´̊ B(y) that expresses
that reference x reborrows from reference y to an equivalent magic wand
shown in the following assertion.

A(x)˚ snap_ApGq “ B�
loomoon

ˆx

´̊ B(y)˚ snap_BpHq “ 5wandpB�q
loooomoooon

ˆy

(7.2)

In this assertion, B� is a snapshot of predicate A(x) and corresponds to
the final (prophetic) value of x while 5wandpB�q is a snapshot of predicate
B(y) and corresponds to the final value of y. One of the key contributions
of Viper‘s support for magic wands [31, 33] is the package algorithm
that infers the resources that need to be taken from the context to
prove the magic wand and that as part of this process defines 5wand.
In our work, we always know precisely what permissions (capabilities)
should be consumed by the magic wand and, therefore, can manually
define 5wand. Therefore, using 5wand explicitly in a wand would require
more implementation effort but would not cause additional challenges.
However, if we tried to use this form of a magic wand to model mutable
borrows, we would run into the exact problem that prophecies andmagic
wands are supposed to solve: we would have to provide the final value
of B� when packing the magic wand while the magic wand should work
for any value of B�. We can avoid this problem by quantifying over B�, as
shown in the following assertion4.

@B� ¨ pA(x)˚ snap_A(x) “ B� ´̊ B(y)˚ snap_B(y) “ 5wandpB�qq (7.3)

It is important to note that @B� in this assertion is a logical quantification,
an unbounded generalisation of regular conjunction (as opposed to
separating conjunction). B� in this assertion ranges over all possible valid
snapshots of A(x)5. This assertion cannot be written in the current version
of Viper because Viper‘s forall has a requirement that the quantified
resources are injective with respect to bound variables [30], which does
not hold for our assertion. However, we could still write it in an implicit
dynamic frames logic formalised in a proof assistant such as Coq or
Isabelle/HOL.

As presented in Section 5.3, we encode pledges by conjoining the encoded
assertion to the right-hand side of a corresponding magic wand. The
encoded assertion relates the left and right sides of the magic wand.
Since B� captures the value of the left-hand side and 5wandpB�q captures
the value of the right-hand side, we can represent the encoded pledge
as a boolean function 5pledgepB� , 5wandpB�qq. We would get the following
assertion by conjoining this function to the right-hand side of the magic
wand.

@B� ¨ pA(x)˚ snap_ApGq “ B� ´̊ B(y)˚ snap_BpHq “ 5wandpB�q˚ 5pledgep B�
loomoon

ˆx

, 5wandpB�q
loooomoooon

ˆy

qq (7.4)

Since B� is the final value of x and 5wandpB�q is a final value of y, we
can see that the pledge is an assertion that relates the prophecies of
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the reborrowing and the reborrowed references. As a result, we can
see that pledge-based specifications (excluding asserting pledges) can
always be rewritten as prophetic specifications (assuming other parts
of Prusti‘s specification language are unchanged). While the asserted
part of the asserting pledge is also a function that relates the prophecies
of the reborrowing and the reborrowed references, it belongs to the
left-hand side of the magic wand and, therefore, is asserted and assumed
in different locations than regular prophetic specifications. Therefore,
modelling of asserting pledges in the prophetic approach would require
adding an assert statement that performs the check before it is assumed
that the current value of the reference is equal to its final value. However,
the soundness proof of the prophetic encodingwould need to be extended
to showwhy inserting assert and assume statements at the corresponding
locations is justified.

This shape of magic wands enables us to show how a pledge-based speci-
fication can be rewritten prophetically and howmagic wands can be used
to justify prophetic specifications. For example, when discussing Creusot,
we showed the following snippet with the prophetic specification.

1 #[ensures(

2 (^pair).first == ^result &&

3 (^pair).second == (*pair).second

4 )]

5 fn reborrow_first(pair: &mut Pair) -> &i32 {

6 &mut pair.first

7 }

Figure 7.3 shows the encoding of the postcondition of the function from
this snippet based on Assertion 7.3. Lines 5–12 contain the permission
specification generated from the type information: line 5 contains the
permissions of the returned reference, and lines 6–12 contain the magic
wand for recovering the permission of the argument. The quantifier that
binds s_res, the snapshot of the left-hand side of the magic wand, wraps
the entire postcondition, including both permission and functional speci-
fications. We use the symbol @ for the quantifier instead of Viper‘s forall
to indicate that it is a logical quantifier. Putting the entire postcondition
under a quantifier enables us to translate the prophetic specification
straightforwardly as shown on lines 14–15: s_res corresponds to ˆresult,
5wand(s_res) corresponds to ˆpair, and old(snap<Pair>(pair.pointer) cor-
responds to *pair. Pair_first and Pair_second are projection functions
that given the snapshot of Pair, return the snapshot of first or second
fields respectively.

The shown rewriting enables us to justify prophecies using magic wands.
However, the approach is still limited to the fragment of Rust forwhichwe
can automatically generate the core proof, which is currently smaller than
the one supported by Creusot. However, there is also a significant gap
between Creusot and RustHornBelt, which may allow unsoundnesses to
creep inwhen advancedCreusot features such as ghost code are combined
with prophecies. One advantage of linking prophecies to magic wands
via quantifiers is that these are well-understood concepts that provide
the tool developer with an intuition of what uses of prophecies could be
unsound.
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1 method reborrow_first(pair: Ref) returns (res: Ref)
2 requires ...
3 ensures @ s_res :: (
4 // Specification from types.
5 acc(res.pointer, write) && i32(res.pointer) &&
6 (
7 i32(res.pointer) &&
8 snap<i32>(res.pointer) == s_res
9 --*
10 Pair(old(pair.pointer)) &&
11 snap<Pair>(old(pair.pointer)) == 5wand(s_res)
12 )
13 // User provided specification.
14 Pair_first( 5wand(s_res)) == s_res &&
15 Pair_second( 5wand(s_res)) == Pair_second(old(snap<Pair>(pair.pointer)))
16 )

Figure 7.3: A prophetic encoding of reborrow_first postcondition with justification based on magic wands.

[138]: The dafny-lang community (2023),
Dafny Reference Manual: Two-state lemmas
and functions

7.5.2.5 Prophecies and Pledges

In the previous subsubsection, we saw that pledges can be seen as
assertions that relate prophecies, fromwhich follows that all specifications
using non-asserting pledges can be translated into prophetic ones. For
the other direction, we know how to translate prophetic specifications
into pledge-based ones for patterns that are supported by our approach.
However, there are patterns supported by Creusot, which we do not
know yet how to support in pledge-based specifications. One example
is function destroy we showed above. We repeat the function in the
following snippet.

1 #[ensures(b.resolve())]

2 fn destroy<T: Resolve>(b: Box<T>) {}

The challenge for specifying this function is that its specification needs
to be generic over type T. Creusot‘s solution to this challenge relies on
predicates that can contain prophetic assertions.When designing pledges,
we did not consider them being used inside predicates. However, there
also does not seem to be any fundamental reason why a solution similar
to Dafny‘s two-state predicates [138] could not be adopted in this case. So
far, we have not found an example that could be specifiedwith prophecies
but could not be specified with pledges extended with features already
present in other mature verifiers such as Dafny. Therefore, it remains an
open question whether specifications based on prophecies can always be
translated into ones based on pledges. It is also an open question what
prophetic syntax would be suitable for expressing asserting pledges.

7.5.3 Explicit Backward Flow

This subsection presents work that, similarly to ours, attempted to
reconstruct the backward flow for mutable borrows.
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[139]: Ho et al. (2022), ‘Aeneas: Rust veri-
fication by functional translation’

[119]: Weiss et al. (2019), ‘Oxide: The
Essence of Rust’

6: Aeneas manipulates the capabilities
only when checking the program. Dur-
ing the verification, it is up to the user to
apply the required definitions.

7.5.3.1 Aeneas

The prophetic purification approach we discussed in the previous sub-
section generates a non-executable logical encoding of a Rust program.
Aeneas [139] set a goal to purify a Rust program into an executable
functional program. Similarly to Electrolysis, this functional program
then could be manually verified in a proof assistant; Aeneas‘s authors
chose to target F*. Another important difference from prior work is
that Aeneas does not rely on Rust‘s borrow checker; instead, the au-
thors defined a borrow calculus that enables them to check whether
capabilities and borrows are used correctly in a function. Similarly to
Oxide [119] and our work, the borrow calculus is based on the notion
of lifetimes as loans introduced by Polonius. Aeneas supports mutable,
shared, and two-phase borrows and reborrows of mutable references. To
translate mutable references into a pure functional program, Aeneas has
to reconstruct the backward flow of values. Similarly to an optimised
version of our encoding, they use different approaches for function-local
(re-)borrows and reborrowing functions.

For function-local borrows, Aeneas precisely tracks what is borrowed
by what and uses this information to propagate the new value to the
borrowed placewhen the borrow ends. Aeneas achieves the required high
precision by, instead of joining control flow branches (except at the end of
the function body), duplicating the code after them. This simple solution
works because all traces in a type-correct Rust function are guaranteed to
end with the same capability state: they return the capabilities to result
and borrowed parameters. The Aeneas approach is a much simpler way
of addressing the challenges C1 (handling the effects of PCS operations
in backward capability flow)6 and C2 (conditional control flow). A
complex part of solving C1 is unifying incoming PCSs when joining the
control flow. By not joining the branches, Aeneas completely avoids this
complexity. C2 is a direct consequence of joining the control flow: by
joining the branches, our approach “compresses” the loan-dependency
graph from a tree into a directed acyclic graph and, in this way, loses
the precision, which we recover by introducing ghost variables. While
Aeneas‘s solution to these challenges is more straightforward, it likely
leads to a larger and potentially less efficient encoding. When restoring
backward capability flow, Prusti branches only when the borrow checker
does not have precise information which loan the expiring reference
was borrowing. In contrast, Aeneas duplicates branches always. As we
discussed in Subsection 7.5.1, the third alternative to whether to join the
control flow is to hide the state behind an abstraction, which enables
the use of a significantly simpler unification procedure. Similarly to our
approach, Aeneas handles reassigned references (C3) by introducing new
ghost variables that store the old value of a reference.

Aeneas encodes reborrowing functions by generating a forward and a
backward function for each of them. A forward function corresponds
to the original reborrowing function in which the values flow forward
from the borrowed places into the reborrowing ones. In contrast, in the
backward functions, the flow is reversed, enabling the caller to deduce
how the changes via a reborrow affect the original borrow.When a borrow
expires, Aeneas applies the backward function to obtain the new value of
the borrow passed to the reborrowing function. A backward function is
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effectively function 5wand we discussed above that enables obtaining the
snapshot of the right-hand side of the magic wand given the snapshot of
its left-hand side. A backward function is created fromaRust reborrowing
function by adding parameters corresponding to returned reborrows,
inverting the direction of all assignments, and changing the function
to return the new values of the borrowed parameters. When a borrow
expires, the backward function is called with the original arguments
with which the reborrowing function was called and the final values of
the reborrowing references. An important difference between backward
functions and 5wand is that a backward function is generated for a specific
reborrowing function while 5wand is defined when a magic wand is
packaged. As a result, 5wand, similarly to closures, implicitly captures the
state, such as the original arguments and what non-deterministic choices
were made, which enables us to support non-deterministic reborrowing
functions with no additional effort. Similarly, to function-local borrows,
constructing reborrowing functions is much simpler than the Viper
package statements needed to package a magic wand but is likely to
lead to larger and potentially slower encoding because the reborrowing
function contains the entire original functionwhile the package statement
generated by Prusti contains only the encoded PCS operations.

Understanding Aeneas also gives an interesting perspective on the
prophetic encoding we discussed earlier. As we mentioned, Aeneas for
each reborrowing function creates a backward function by inverting all
assignments in the original function. The prophetic encoding could be
understoodas anoptimisationof this encoding that, insteadofduplicating
the function, duplicates the value of each reference: the current value
of the reference participates in the forward flow, and the final value
of the reference participates in the backward flow. Since verifiers do
not support inverted assignments, the prophetic approach uses assume
statements instead, which enable achieving the same effect. Alternatively,
Aeneas could be viewed as a way to justify the prophetic approach. For
verification, the prophetic approach has three key advantages compared
to the more explicit Aeneas approach. First, it generates only one function
for each reborrowing function, whichmay lead to significant performance
gains. Second, as we mentioned in Subsubsection 7.5.2.1, the backward
flow generated by the prophetic encoding depends on the forward flow,
which enables it to avoid the challenges of joining the branches without
duplicating the control flow. Third, the prophetic encoding (and purely
magic wand based encoding) with the same technique supports both
function-local borrows and reborrowing functions. The key advantages
of Aeneas are that it does not rely on the borrow checker for correctness
and generates an executable pure functional program.

7.5.3.2 The Move Prover

Rust‘s success inspired many language designers to adopt ownership
and borrowing. One such language is Move, a programming language
for the Diem blockchain. Similarly to Rust, Move supports shared and
mutable references, including functions returning references, but without
reference-typed fields. Move has a strong focus on safety and includes
a built-in specification language based on first-order logic. The criti-
cal limitation of the specification language is that it does not support
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specifying functions that return borrows [140], which would require a
construct similar to our pledges. However, it does support specifying
functions that take reference-typed parameters. In addition to its na-
tive specification language, Move also has an official verifier called The
Move Prover (MVP) [141, 142]. The second and significantly improved
version [142] uses the strong guarantees provided by the Move type
system to eliminate references when encoding a Move program with
specifications into Boogie intermediate verification language [54]. MVP
eliminates references by using a static analysis to construct a borrow
graph that tracks relationships between references and enables it to
deduce how the borrowed places should be updated when the references
expire. This borrow graph looks pretty similar to the loan-dependency
graph used by our work, with the key difference being that the borrow
graph cannot represent reborrowing functions. MVP encodes the effects
of borrows in one of two ways depending on whether the borrowing
relationship is static or dynamic (our challenge C2). For the static case,
MVP determines the originally borrowed variable and writes a new
value into it when the borrow ends. It supports functions with mutable
reference parameters by treating them as input-output parameters. The
rewriting of the function signature is shown in the following snippet (we
use Rust syntax for readability).

1 // Function signature:

2 fn set_value(x: &mut i32) { /* ... */ }

3 // Becomes:

4 fn set_value(x: i32) -> i32 { /* ... */ }

For the dynamic case, MVP puts the borrowed value in a wrapper that
stores the loan identifier, which is then used to determine where the new
value needs to be written to propagate the effect of a borrow.

7.5.3.3 SPARK

Rust inspired not only the Move, but also SPARK developers. SPARK is a
subset of Ada for mission-critical software. Originally, SPARK avoided
the problems caused by aliasing by simply forbidding pointers. However,
inspired by Rust‘s success, the SPARK developers added support for
Ada pointers by adopting Rust-like ownership and borrowing [143,
144]. Similarly to SYMPLAR and the Move prover, SPARK relies on the
type information to purify the program and avoid modelling the heap
completely. Since the SPARK developers had to add support for pointers
without changing the language to avoid breaking backward compatibility,
the borrowing patterns supported by SPARK are fundamentally more
limited than the ones supported by Rust. However, SPARK does support
complex patterns like reborrowing in a loop. SPARK encodes borrows by
using a borrow relation predicate (which is similar to manually encoded
magic wands [32]) that maintains the relationship between the borrowing
reference and the borrowed place. For specifying the functional behaviour
of reborrows, SPARK authors initially adopted our pledges that allow
the user to specify the overapproximate behaviour of the borrow relation
on verification boundaries such as loop invariants. However, later they
switched to using prophetic specifications [145].
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7.5.4 Discussion and Future Work

In this section, we discussed multiple ways of modelling borrows and
found that they all share a similar structure. Almost all models that
support reborrowing functions model them using a construct similar to
a closure: a magic wand, encoding of a closure with prophetic variables,
or a function that takes the otherwise captured arguments as explicit
parameters. The only exception is RustBelt, which uses a custom data
structure inside its library to track borrows. Even though this data
structure uses a magic wand, the meaning of this wand is different:
instead of tracking a single borrow, this magic wand tracks all borrows
createdwith the same lifetime. Formodelling local borrows, the discussed
approaches either used the same technique as for functions or explicitly
reconstructed the backwardflowwith assignments.While the approaches
have similar structures, they still have different strengths and weaknesses
in addressing the challenges from Chapter 3. While RustBelt was created
for manual verification in a proof assistant, we observed that its approach
could also be useful for SMT-based verification: pushing the complexity
of tracking borrowing behind an abstraction enables potentially simpler
encoding of the core proof and avoids some branching in the verifier
checking the core proof. When comparing Aeneas with the prophetic
encoding, we observed that the prophetic encoding exploits the fact that
it operates on purified values that the SMT solver can manipulate to push
the complexity of reconstructing the backward flow into the solver. We
also observed that prophetic encoding could be justified by using magic
wands.

This thesis aims to enable incremental verification on two dimensions:
enable programmers to focus on proving properties they care about
without significant prior investments for safe code and allow a smooth
transition to more powerful techniques for unsafe code. From our anal-
ysis of the related work, we can see that multiple models of borrows
successfully target the first dimension where the key challenge of the
model is to capture backward value flow. When moving to the second
dimension, we need a model of borrows that addresses the following
challenges:

1. Soundness with respect to operational semantics: does the model
ensure that the aliasing rules imposed by the operational semantics
(for example, Stacked Borrows or Tree Borrows) are respected?

2. Soundness with respect to the borrow checker: does the model
assume only the properties guaranteed by the borrow checker and
guarantee all the properties assumed by the borrow checker?

3. Completeness with respect to the borrow checker: can we automat-
ically generate encoding for all borrowing patterns accepted by the
borrow checker?

4. Functional correctness: does the model enable verifying functional
correctness?

5. Automation: can the model be automated in an SMT-based verifier?

Existing models address only some of the challenges and often only
partially. For example, our model targets challenges 3, 4, and 5 while
RustBelt focused on 2 and RustHornBelt on 4. Currently, no single model
would address all five challenges, and it is important future work to
create such a model.





Conclusions of Part I 8
The goal of the thesis is to make verification incremental on two dimen-
sions. In this part of the thesis, we focused on the first dimension: enabling
incremental specification and verification of heap-manipulating code.
We presented a specification and verification approach that leverages the
type system of safe Rust. Unlike prior work on verifying functional prop-
erties of heap-manipulating programs, our approach enables incremental
verification where the user can immediately focus on the properties that
are important to them. We achieve this by using Rust type information
to generate the core proof that captures the information about aliasing
and side effects. Our evaluation shows that our technique can completely
automatically generate core proofs for realistic Rust code, enabling users
to focus on verifying interesting functional properties without learning
complex logics. Our analysis of alternative approaches of modelling
references revealed that while all models have a similar structure, some
models enable pushing the complexity away from the Rust verifier (either
into a once-and-for-all verified library or an SMT solver), which could be
beneficial for SMT-based verification. In the analysis, we also found that
multiple models successfully target our first dimension, but no model is
suitable for SMT-based verification of unsafe code yet.

In the rest of the thesis, we will focus on the second dimension: enabling
a smooth transition to more powerful verification methods, which are
needed for verifying unsafe Rust. Since supporting all unsafe code is
unfeasible, we start by analysing the most important patterns to support
in Part II. Then, in Part III, we present our approach for verifying the
safety and functional correctness of safe abstractions in the presence of
panics.





Part II

Understanding How Programmers Use
Unsafe Rust
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1: In addition, the entire body of an un-
safe function is implicitly treated as if it
were enclosed in an unsafe block. Since
the publication of our work [76], a fea-
ture was added to the Rust compiler that
allows the developers to turn off this
behaviour.

In the previous part of the thesis, we looked into how the strong guaran-
tees available in safe Rust enable significantly reducing the verification
effort. In the remainder of the thesis, we focus on enabling verification of
unsafe Rust. However, unsafe code is a vast topic, and the Rust community
still discusses the concrete rules describing what unsafe should be al-
lowed to do. Therefore, it is crucial to understand how programmers use
unsafe Rust in practice to help the discussion and to focus the initiatives
working on improving unsafe code. In this part of the thesis, based
on [76], we aim to provide the necessary understanding.

As mentioned in the introduction, the purpose of unsafe Rust is to
enable programmers to express patterns that cannot be expressed in
safe code. By leveraging unsafe Rust, it is possible to implement, for
example, cyclic data structures, hardware abstraction layers, and lock-free
algorithms – features that are difficult or impossible to realise in purely
safe Rust. However, this added expressiveness comes at a price. The
compiler cannot enforce the strong guarantees available in safe Rust; this
enforcement becomes the developer’s responsibility, entailing significant
cognitive effort even for small pieces of unsafe Rust. Examples of the
subtleties involvedwhen taking this responsibility are found, for instance,
in the discussions of Rust’s unsafe code guidelines working group [146].
Importantly, as noted by [147], the correctness of unsafe code may rely on
invariants that could be invalidated by all functions modifying the same
struct fields; a thorough code review of whether a block of unsafe code
is acceptable therefore is not limited to the code within the block itself,
but has to include at least all code which could modify these fields.

1 let x = 17;
2 let r = &x; // borrow x
3 // cast reference r to raw pointer
4 let p = r as *const i32;
5 unsafe { assert!(*p == 17); }

(a) Example of Unsafe Blocks

1 // only safe to call with x == 17
2 unsafe fn foo(x : i32) { ... }
3 fn bar() { // safe abstraction
4 unsafe{ foo(17); } // safe for 17
5 }

(b) Example of Unsafe Functions

Figure 8.1: Examples of unsafe Rust.

Rust provides two primary forms of unsafe code with different purposes.
The first form allows programmers to bypass compiler checks. Its core
feature is an unsafe block defining the scope in which these checks are
disabled. For instance, in Figure 8.1a, an unsafe block is required to
dereference the C-style raw pointer p. By default, it is assumed that
such an unsafe block contained within, say, a struct method should
use unsafe features in a way which is encapsulated from callers of the
function and thus provides a safe abstraction: it is the responsibility of the
function and not the client code that this code will always execute safely.
Alternatively, one can explicitly declare an unsafe function (a function
annotated with the unsafe keyword). This feature is intended to indicate
that the responsibility for the correctness of the unsafe code in the
function body lies at least partially with its callers1. Figure 8.1b shows
the syntax for such an unsafe function foo, which can be called only
from within unsafe blocks. As with any unsafe block, the call within the
body of bar combined with the fact that bar is not an unsafe function
indicates that the implementer of bar intends that this usage of unsafe
Rust is safely encapsulated from bar’s callers: the developer promises
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that foo(17) preserves Rust’s safety guarantees even though the compiler
cannot enforce them.

The second main form of unsafe Rust involves Rust traits, which are
comparable to Java interfaces. Instead of turning off compiler checks, an
unsafe trait declaration acts as a documentation feature: it warns developers
that all implementations of the trait are expected to satisfy someadditional
semantic properties such as preconditions, postconditions, or invariants
that are not checked, neither at compile nor at run time; furthermore,
these properties may be depended upon for the safety of client code
using these traits. For trait implementations, unsafe takes the role of an
annotation by which developers acknowledge their responsibility to
respect the required semantic properties. We consider usages of unsafe in
the above sense as a documentation feature since the compiler does not
check the properties mentioned above. However, using unsafe in these
cases is not optional. Adherence to all documented properties is crucial
for upholding Rust’s safety guarantees: clients calling an unsafe trait’s
functions can rely on these properties to argue the safety of their own
code. Conversely, for a trait not declared as unsafe, all of its clients must
ensure safety for every possible safe implementation of that trait – regardless
of how much it deviates from its originally intended purpose.

Unsafe code must be used with care to retain Rust’s strong guarantees.
The commonly advocated practice is that programmers should, as far as
possible, use unsafe Rust according to the following three basic principles,
which aim to limit the necessary scope of code reviews (cf. [148], [149,
Ch. 19], and prominent sources from the Rust community, e.g. [150–
153]):

1. Unsafe code should be used sparingly, in order to benefit from the
guarantees inherently provided by safe Rust to the greatest extent
possible.

2. Unsafe code blocks should be straightforward and self-contained to
minimise the amount of code that developers have to vouch for,
e.g. through manual reviews.

3. Unsafe code should be well-encapsulated behind safe abstractions, for
example, by providing libraries that do not expose the usage of
unsafe Rust (via public unsafe functions) to clients.

Ideally, these principles are implemented by encapsulating unsafe code
inside carefully reviewed and tested libraries, providing safe abstractions
whose clients can be written in safe Rust and need not be aware of the
presence of unsafe code. Parts of the Rust language documentation [148,
149] claim that programmers can use unsafe code according to these
three basic principles – a claim that we refer to as the Rust hypothesis.

Understanding howRust programmers use unsafe code and, in particular,
whether the Rust hypothesis holds is essential for users of the Rust
language. It allows project managers to judge to what extent they can
rely on Rust’s promise to eliminate certain errors, developers to follow
(evolving) best practices, testers todeterminewhichproperties to check for
which parts of the codebase, library designers to identify further idioms
of unsafe code that could be safely encapsulated, language designers to
devise safe solutions for commonly-used unsafe idioms, and tool builders
to support common idioms of unsafe code and their interaction with safe
code.
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In this part of the thesis, we present an empirical study on how unsafe
code is used in practice. This study goes significantly beyond existing
studies by analysing a large corpus of Rust projects to assess the validity of
the Rust hypothesis and to classify the purpose of unsafe code. To answer
these questions, we identify queries that can be answered by automatically
inspecting the program’s source code, its intermediate representation
MIR, as well as type information provided by the Rust compiler. For
instance, to assess how often unsafe code is used to implement custom
concurrency primitives,we collect information about concurrency-related
compiler intrinsics such as calls to compare-and-swap. To obtain a deeper
understanding of the semantics and intent of unsafe code,we complement
this automatically-collected data by manual code inspection.

Our results support the Rust hypothesis partially. Most unsafe code is
simple and well-encapsulated behind safe abstractions. However, unsafe
code is used quite extensively, especially to interoperate with other
programming languages. Interoperability is by far the most prevalent
motivation for using unsafe code, followed by implementations of data
structures requiring complex sharing (via raw pointers or mutable global
data). Other purposes, such as using unsafe concurrency features and
applying unsafe to document semantic properties that are critical for
upholding Rust’s safety guarantees (the second form of unsafe code
mentioned above), are less common.

Contributions. The contributions of this part are the following:

§ Aclassification of themotivations for usingunsafe code.We identify
six main purposes for unsafe code. This classification serves as a
basis for our empirical study but is also useful for the systematic
documentation of unsafe code and tailoring techniques such as test
case generation and program analysis towards specific use cases of
unsafe code.

§ An empirical study of how unsafe code is used in practice. Our
study shows that code that is not concerned with interoperability
typically adheres to the Rust hypothesis.

§ A discussion of the implications for reasoning about Rust code (in
code reviews or during verification).

§ Our reusable open-source infrastructure and the analysed data is
available online [154].

Outline. This part of the thesis is structured as follows. Chapter 9
classifies the main usages of unsafe code into six different categories.
Chapter 10 summarises themethodology of our empirical study and states
our core research questions. Chapter 11 presents our general framework
for analysing Rust code. The results of our study are presented in
Chapter 12 and discussed in detail in Chapter 13. We discuss threats
to validity in Chapter 14, summarise related work in Chapter 15, and
conclude in Chapter 16.
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In this chapter, we discuss six main reasons for using unsafe code. As
discussed in the introduction of this part of the thesis, unsafe code is
used either to work around restrictions of safe code or to document
the existence of conditions that have to be upheld by the developer to
ensure memory safety. The former can be further divided into two large
groups: working around the limitations of the ownership type system
and accessing inherently unsafe operations. In the following sections, we
discuss six main reasons for using unsafe, grouped into the three groups
mentioned above.

9.1 Overcoming Type System Restrictions

As was shown in Part I, the Rust type system provides strong guarantees
that rule out many errors and enable simpler reasoning about Rust pro-
grams. However, this simpler reasoning comes at a cost, as demonstrated
by two scenarios discussed in the following subsections.

9.1.1 Data Structures with Complex Sharing

In Part I, we explained that in safe Rust, each place can either be unique
and allow mutation or shared and be immutable. While this design
has clear benefits, it also has two important limitations. First, a direct
consequence of this design is that in pure safe Rust, we can express
only tree-shaped data structures. Therefore, to implement cyclic data
structures such as graphs or doubly-linked lists, programmers need to
directly use unsafe features such as raw pointers or safe abstractions
such as the reference counting pointer Rc implemented using unsafe
code internally. Second, many patterns require mutation via shared
references; for example, synchronising state between two threads via a
shared mutex. Rust‘s standard library provides multiple interior mutable
types like Mutex that enable safe mutation via shared references. These
types are implemented internally using UnsafeCell: an unsafe primitive
provided by the Rust language that allows shared mutation.

9.1.2 Incompleteness Issues

In Chapter 3, we mentioned that Rust‘s borrow checker is improved over
time to enable it to accept more examples. However, there are still many
cases where the borrow checker is too restrictive. Figure 9.1 shows one
such example from the RFC that proposed non-lexical lifetimes [87]. The
examplewas planned to be accepted by the non-lexical lifetimes.However,
the proposed analysis was too slow, and support for this example had to
be removed [96]. The developer can get this example to compile on stable
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Rust by casting away the problematic lifetime, as shown on lines 5–7.

Figure 9.1:Problem case #3 from the non-
lexical lifetimes proposal [87] supported
by Polonius but not by the non-lexical
borrow checker, available in the stable
version of Rust. Replacing line 8 with
lines 5–7 makes the example compile.

1 fn get_default<'r, K: Hash + Eq + Copy, V: Default>(
2 map: &'r mut HashMap<K, V>,
3 key: K,
4 ) -> &'r mut V {
5 // let map2 = unsafe {
6 // &mut *(map as *mut HashMap<K, V>)
7 // };
8 let map2 = &mut *map;
9 match map2.get_mut(&key) {
10 Some(value) => value,
11 None => {
12 map.insert(key, V::default());
13 map.get_mut(&key).unwrap()
14 }
15 }
16 }

9.2 Using Inherently Unsafe Operations

Rust is a systems programming language and, therefore, needs to support
working with inherently unsafe operations, such as directly accessing
hardware or calling functions written in other programming languages.
Below, we list three scenarios that require inherently unsafe operations.

9.2.1 Foreign Functions

Since Rust is still a relatively new programming language, most Rust
programs have to interact with libraries written in other languages. For
example, Rust‘s standard library depends on the C standard library libc

to provide an abstraction layer over the operating system primitives.
Therefore, Rust provides the keyword extern that can be used to de-
clare unsafe bindings to functions defined in libraries written in other
programming languages. Working with foreign functions is inherently
unsafe because the programmer needs to guarantee that the require-
ments of both programming languages are ensured. For example, if a
pointer to a Rust object is passed to a foreign function, the programmer
needs to ensure that the function does not violate potential aliasing or
immutability requirements imposed on that object.

Similar requirements are imposed on inline assembly blocks that can be
declared in Rust by using asm! macro.

9.2.2 Concurrency through Compiler Intrinsics

Rust‘s standard library provides a set of safe concurrency primitives
such as mutexes and atomic integers. However, the existing primitives
are not always suitable for the task. For example, the implementation
of a safe primitive may rely on the existence of some operating system
service, which is not available if a programmer is trying to implement
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an operating system itself. Therefore, Rust exposes low-level LLVM con-
currency intrinsics [155] that can be either used directly or to implement
new safe concurrency primitives. These low-level concurrency primitives
are defined on unsafe types such as raw pointers; therefore, using them
is inherently unsafe.

9.2.3 Performance

When Rust cannot ensure memory safety statically, it guarantees it with
runtime checks. For example, accessing an element of an array checks
at runtime whether the index is within bounds. Since such checks can
cause runtime overhead, programmers who want to achieve the highest
possible performance may desire to disable them. Therefore, many data
structures provide unsafe versions of the functions that do not perform
the checks, thus pushing the responsibility of memory safety to the
programmer who dares to use them. For example, an array element
can be retrieved without performing the array check using method
get_unchecked.

9.3 Emphasise Contracts and Invariants

The scenarios we discussed so far are all related to working around
restrictions of safe Rust. However, the unsafe keyword also has another
purpose: documenting the fact that there is some property that the
compiler could not ensure and that the programmer has to ensure
manually. In these cases, the unsafe keyword marks functions and traits
that require special care. Unsafe functions indicate that the programmer
using them has to be careful. Functions are typically marked as unsafe in
two cases: if they have some precondition that needs to be satisfied to
maintain memory safety or if they can be used to break the invariant of a
safe abstraction on which some other code relies for memory safety. An
example of the former case would be method get_unchecked of an array
that performs indexing into the array and requires its client to guarantee
that the provided index is valid. An example of the latter would be
method set_len on Vec shown in the following snippet.

1 pub unsafe fn set_len(&mut self, new_len: usize) {

2 debug_assert!(new_len <= self.capacity());

3 self.len = new_len;

4 }

This method contains only safe code, but it could be used to break the
invariant of Vec type that first self.len elements are valid. If this invariant
is violated, then, for example, indexing into a vector becomes unsafe
because the runtime check is not guaranteed to work anymore.

Traits are marked as unsafe to indicate that the programmer writing the
type that implements the trait has to be careful. For example, a developer,
by implementing core::marker::Send trait for their type, promises that it
is safe to transfer the type from one thread to another.
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The uses of unsafe presented in this chapter are based on anecdotal
evidence. In the remainder of this part of the thesis, we systematically
study how unsafe is used in real-world Rust code.
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Recall that the main goal of our study is to gain insights into how unsafe
Rust is used in practice. To this end, we aim to answer the following
high-level questions:

§ Does the Rust hypothesis hold?
§ What are the most prevalent use cases programmers have for using
unsafe code?

In this chapter, we first refine the above questions into five research
questions (RQs) that guide our search for a better understanding of
unsafe Rust. After that, we break each of these questions down into
more-specific queries1 which allow us to infer answers for the original
questions. We aim to answer each specific query fully automatically; the
details of our approach are presented in Chapter 11. The results gathered
by these queries are discussed in Chapter 12.

10.1 The Rust Hypothesis – Do Developers Use
Unsafe Rust as Intended?

As introduced in the introduction of this part of the thesis, there are three
widely-advocated basic principles for using unsafe Rust:

1. Unsafe code should be used sparingly.
2. Unsafe code should be straightforward and self-contained.
3. Unsafe code should be well-encapsulated behind safe abstractions.

The Rust hypothesis is that developers typically can and do follow the
above principles. To checkwhether general Rust code in thewild supports
this hypothesis, we investigate each principle through dedicated research
questions. We first explore how widespread unsafe code is:

RQ 10.1 (Frequency) How often does unsafe code appear explicitly in Rust
crates?

The first principle of the Rust hypothesis predicts that unsafe code will
rarely appear in our dataset compared to its overall size. To verify this
claim, we take a two-pronged approach: First, we identify every usage
of unsafe Rust in our dataset and specifically count how many crates
(i.e., binaries or libraries) include any unsafe code. That is, we count
how many crates contain at least one unsafe block, function, trait definition, or
implementation; all other crates contain only safe Rust. Even small pieces
of unsafe code require a significant cognitive effort by developers: they
need to be aware of their responsibility to guarantee safety rather than
relying on the Rust compiler. Determining what fraction of crates is
completely safe allows us to measure how frequently developers aim to
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avoid this burden by sticking to safe Rust, as we would expect by the first
principle.

Second, evaluating frequency solely based on whether a crate contains
any unsafe code may lead to a coarse impression. To compensate, we
complement this data by measuring the relative amount of unsafe code in
each crate, i.e. the ratio of the size of both unsafe blocks and unsafe function
bodies to the total size of the crate. We discuss how we specifically measure
the size of code alongside our second research question below.

By the second principle, unsafe code should be straightforward – an
admittedly subjective notion. To evaluate whether developers prefer to
keep their unsafe blocks simple, we measure the size of each unsafe
block as a proxy for its complexity (where smaller size means lower
complexity):

RQ 10.2 (Size) What is the size of unsafe blocks that programmers write?

Attacking this question requires a reasonable means of quantifying the
size of an unsafe block. An obvious candidate is to count the lines of Rust
code in each unsafe block. However, lines of code are a weak indicator for
a block’s complexity because some features, such as closures and macros,
might realise quite complex behaviour with a few lines of code. Moreover,
different indentation and whitespace schemes would inadvertently bias
such measurements.

To obtain a measure that is more robust against programming styles
of different verbosity, we turn to the Rust compiler’s intermediate CFG
representation (MIR) in which many (potentially complex) high-level
Rust constructs have already been translated to MIR instructions. Our
next query thus checks how many MIR statements does the compiler generate
for unsafe blocks. We also use this query to determine the total amount of
unsafe code in a crate, to complement the binary query above.

RQ 10.3 (Self-containedness) Is the behaviour of unsafe code dependent only
on code in its own crate?

Unsafe code that is compliant with the second principle of the Rust
hypothesis should rarely reach out to other crates in order to keepmanual
reviews of unsafe code as simple as possible. In particular, unsafe code
which relies on the functional behaviour of code from other crates may
become vulnerable due to updates to its compilation dependencies.

A naïve query to evaluate this principle would count how many function
calls in unsafe blocks have a call target outside the current crate – a low
number then indicates a high degree of self-containedness. However, not
all call targets are equal: The standard library crates, i.e., std, core, alloc,
and proc_macro, are used heavily in a wide variety of projects. Since they
are thoroughly reviewed, relying on the behaviour of these libraries is –
while still technically in violation of self-containedness – arguably less
problematic. Moreover, some crates are intended to provide low-level
access to librarieswritten in other languages. For example, so-called “-sys”
crates (whose name, by convention, ends with -sys) mirror the interface
of C libraries [156]. This can be seen as a separation of concerns since
multiple safe abstractions of the same C library may be sensible: the -sys
gives unfettered access and other crates can implement safe abstractions
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on top of it. Naturally, such a design leads to dependencies between
crates that are justified but in direct conflict to self-containedness.

We consider call targets in the above two categories separately as they
amount to expected and intentional violations of self-containedness. Hence,
we use a refined query that counts how many function calls in unsafe blocks
have a call target which is located in (1) its own crate, (2) a crate belonging to the
standard library, (3) a -sys crate, or (4) any other crate. Calls in category (4)
point to likely unintended violations of the second principle.

Notice that the above query requires detailed knowledge about the targets
of function calls.We evaluate it for standard function callswhose call targets
can always be determined at compile time from the call expression alone.
Since unsafe code should be as simple as possible to facilitate manual
reviews, we expect unsafe blocks to contain only a few other function calls
involving trait methods, closures, or function pointers, which require
more manual effort from code reviewers as they have to trace down all
possible implementations. To validate our expectation and as another
proxy for simplicity, we measure how many function calls in unsafe blocks
and unsafe functions are (a) standard function calls, (b) calls of trait methods, or
(c) calls of closures or function pointers.

RQ 10.4 (Encapsulation) Is unsafe code typically shielded from clients through
safe abstractions?

The third principle of the Rust hypothesis requires programmers to
shield unsafe code from clients through safe abstractions. In other words,
clients should be oblivious to the fact that unsafe code is used internally
within a crate. Checking whether developers succeed in constructing
suitable abstractions amounts to a difficult – if not impossible – task
for automatic analyses, for instance, because they would have to check
whether executions may exhibit data races. Therefore, we focus on the
apparent design intentions of developers. That is, are they trying to hide
their unsafe functions from other crates as much as possible?

To answer this question, we take a closer look at Rust’s concept of
visibility. Broadly speaking, there are three main notions: The default is
private, meaning only visible within the current module – a user-defined
collection of Rust items, such as functions, traits, etc. Alternatively, an
item can be visible within either only the current crate or all crates.

We then count how many unsafe functions are (1) declared private, (2) visible
within their crate, and (3) visible to other crates. Queries (1) and (2) cover all
of the unsafe functions that comply with the third principle. Query (3)
collects uncompliant cases, i.e., unsafe functions that are exposed to other
crates.

10.2 Measuring the Unsafe World – How do
Developers Use Unsafe Code?

We now take a closer look at possible reasons for developers to rely
on unsafe code. Recall from Chapter 9 our classification of use cases
for writing unsafe code ranging from overcoming aliasing restrictions
over emphasising contracts and invariants to accessing lower abstraction
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layers. Our goal is to identify code where these use cases are applied to
answer the following:

RQ 10.5 (Motivation) What are the most prevalent use cases for unsafe code?

In the following paragraphs, we present specific queries for identifying
individual use cases. All of these queries search for syntactic patterns
that are characteristic for the use case in question. As such, they collect
evidence for particular use cases rather than precisely capturing them.
We intentionally do not attempt to find perfect characterisations because
the results of our queries should be gathered automatically, possibly with
manual follow-up efforts. As is common for most automated program
analyses, we thus rely on approximations.

Data structures with Complex Sharing. Since Rust’s ownership rules
prevent complex sharing, some data structures are notoriously difficult
– or even impossible – to implement in safe Rust. Although a few pat-
terns, such as the interior mutability pattern, have evolved in the Rust
community to deal with limitations of the ownership system, they all
ultimately rely on using raw pointers2. Hence, we consider raw pointer
dereferences as an indicator of a programmer’s intention to bypass the
ownership system to allow for complex sharing. To identify this use
case, we thus collect all functions that contain a dereference of a raw pointer.
We explore pointer dereferences at the function level rather than, e.g.
studying individual unsafe blocks, to obtain unified results for both safe
functions (which need to use unsafe blocks) and unsafe functions (which
do not). Moreover, some developers advocate usingmanyminimal unsafe
blocks whereas others prefer fewer and larger ones. By phrasing our
query at the function level, we keep it agnostic to these different styles.

The above query risks overcounting how frequently developers rely on
unsafe code to implement complex data structures because raw pointers
are, for example, also used to interoperate with C libraries. To obtain
a more conservative estimate, we filter out usages of raw pointers for
which we can identify different intentions: we do not count raw pointers
appearing in structs that are equippedwith attributes, such as #[repr(C)],
indicating that they are used for interoperability.

Incompleteness Issues. It is not generally possible to precisely identify
all cases inwhich developerswork around incompleteness issues of Rust’s
type and ownership system3. Therefore, we focus on unsafe functions
for which the Rust documentation lists overcoming limitations of the
compiler as a use case: we collect all calls of unsafe functions involving explicit
type casts. For instance, both the “incredibly unsafe” function transmute

and its close relative transmute_copy reinterpret the bits of a value as
another type and are suggested by the Rust documentation to work
around limitations of lifetimes, e.g. extending a lifetime or shortening an
invariant lifetime [157].

Emphasise Contracts and Invariants. Recall that the unsafe keyword
in Rust may also serve as a documentation feature when attached to
functions or traits. To understand whether developers have used unsafe

to document contracts and invariants, we run two queries: First, we
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search for unsafe functions whose body contains only safe Rust code. Since
there is no technical reason why these functions need to be declared
as unsafe, we expect that any such functions are declared unsafe either
accidentally, or in order to document some implicit contract or invariant
that is critical for upholding safety (for example, of unsafe code in the
same module). Second, we count the number of both safe and unsafe traits
declared. For traits, unsafe is always a documentation feature. Based on
the low number of unsafe traits in the Rust standard library (at the time of
our publication [76], there were only eleven that are listed in Figure 10.1),
we expect to find only a few unsafe trait declarations.

Trait Visibility

core.alloc.AllocRef Public
core.alloc.GlobalAlloc Public
core.array.FixedSizeArray Public
core.iter.adapters.zip.TrustedRandomAccess Crate
core.iter.traits.marker.TrustedLen Public
core.marker.Freeze Crate
core.marker.Send Public
core.marker.Sync Public
core.panic.BoxMeUp Public
core.str.pattern.ReverseSearcher Public
core.str.pattern.Searcher Public Figure 10.1: A list of unsafe traits in the

Rust standard library.

Concurrency through Compiler Intrinsics. The Rust compiler pro-
vides access to low-level concurrency intrinsics through dedicated unsafe
functions. To measure how frequently developers rely on them, we col-
lect a list of unsafe functions wrapping concurrency intrinsics in the
std::intrinsics module. We then run a query collecting all unsafe blocks
that call one of the collected functions.

ForeignFunctions. Interoperabilitywith other languages, e.g. accessing
C/C++ libraries, is mentioned by [158] as a frequent use case for writing
unsafe code. To identify code that is likely to interoperate with foreign
code, we exploit the following observations in our queries:

§ The attribute #[repr(C)] ensures that the memory layout of a type
is interoperable with the C programming language; unsafe code
that relies on such types is thus likely to exchange data with foreign
code. Hence, we count how many types are equipped with #[repr(C)].

§ Thenameof crates thatwrapCsystem libraries ends –by convention
– with the suffix -sys. We thus classify all -sys crates as belonging
to this use case.

§ Rust allows functions to be declared externwith a custom Applica-
tion Binary Interface (ABI) such that foreign codewith the specified
ABI can call them. Consequently, we determine how many unsafe
functions are declared with a foreign ABI.

§ Finally, we search for usages of inline assembly via the asm! macro.
A closer analysis of the motivation for using inline assembly, e.g.
low-level optimisations or interacting with hardware devices, is
subject to manual inspection.
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Performance. We consider two standard optimisations that use unsafe
code to boost performance: First, we search for unchecked functions (those
with “unchecked” in their name). By convention, these functions sacrifice
run-time checks for better performance; they are consequently unsafe.
The standard library, for example, adheres to this naming convention
and frequently provides both a safe (checked) and an unsafe (unchecked)
variant of the same functionality.

Second, we determine whether unsafe blocks contain the special union type
MaybeUninit. The Rust documentation describes this type as a highly
unsafe variant of optional types that avoids any safety checks at run time
(cf. [159]). In fact, it may reintroduce dangling references as developers
may use it to define uninitialised references in unsafe blocks.
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Crates 11

To automatically evaluate the queries presented in the previous chapter,
we developed a framework – called Qrates – for Querying Rust Crates
for a large dataset of publicly available Rust code. It is inspired by both
an idea proposed by [160] (one of the project leaders of the Rust compiler
team) for adding Datalog output to the Rust compiler and commercial
tools such as [161] for analysing other programming languages. In this
chapter, we briefly outline the main components of Qrates.

Intuitively, our framework works as follows: We first create a database of
Rust crates enriched with metadata, e.g. the crates’ origin and whether it
compiles to a binary or a library. After that, we run a set of queries on the
database to extract statistical data that enables answering the questions
from the previous chapter. Answering a research question then amounts
to combining the data gathered by one or more queries.

To construct the database, we implemented a plugin for the Rust compiler
that extracts information such as the program‘s CFG as well as type
information for a given Rust crate during compilation and stores it in a
local database. Extracting data through a compiler plugin has immedi-
ate benefits: It integrates well into Rust’s existing build infrastructure,
including its widely-used package manager cargo. Moreover, we gain
access to the analysed code in various intermediate formats, such as the
CFG representation (MIR) in which all types and static function calls are
fully resolved. Another consequence is that we consider only crates that
compile successfully.

For the compilation, Qrates is based on the Rustwide library, which was
mainly developed by [162] from the Rust infrastructure team. Its original
purpose is to run ecosystem-wide tests of the Rust compiler. Rustwide
provides a Docker image with the necessary dependencies needed to
compile most publicly available crates.

After creating local databases for all crates of interest,Qratesmerges them
into one comprehensive database with additional cross-link information.
Once the final database has been constructed, the user can query it to
gather statistics. Prime examples of supported queries include – but
are not limited to – all highlighted queries from Chapter 10. In particular,
Qrates can count how often a specific Rust feature, say a call to a function
of interest, appears in (unsafe) blocks, functions, entire crates, or across
all crates in the database.

It is noteworthy that, since crates may specify fixed versions for their
dependencies, our database may contain different versions of the same
crate. To prevent double-counting, our queries report results only for a
single version of each crate (for this study, we chose the latest version).
We still keep all crate versions in the database, because some queries
are concerned with dependencies. For example, when analysing the call



124 11 A Framework for Querying Rust Crates

targets of a function, some of them may be defined in older versions of a
dependency.

Furthermore, our database keeps precise information about the origin of
the analysed code in order to avoid counting the same code, e.g. statically
linked libraries, twice.

We note that all queries concerning functions are based on Rust’s interme-
diate CFG representation (MIR). On the one hand, basing on MIR gives
us access to the type information, which is not available in the AST. On
the other hand, this means the compiler has already performed various
transformations, such as macro expansion, desugaring pattern-match
constructs, and generating code for #[derive(...)] attributes. Conse-
quently, some care is needed to check whether a piece of code can be
attributed to the programmer, e.g. by considering the unsafe block check
mode provided by the compiler; otherwise, we risk overcounting features
that are predominantly introduced by the Rust compiler.
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In this chapter, we present the results automatically gathered by our
queries, complementedby somemanual inspections, andprovide answers
to the research questions from Chapter 10. We first discuss our data sets,
then the experimental setup, and finally the results for each research
question.Weprovide a detailed discussion of our findings inChapter 13.

12.1 Datasets and Experimental Setup

We evaluated our queries on a dataset that comprises the most-recent
version (as of 2020-01-14) of all 34445 packages published on the central
Rust repository crates.io. The implementation of a package can be com-
posed of multiple crates, one of which is usually primary and determines
the name of the package. We excluded 5,459 packages (15.8%) whose
most recent version did not successfully compile. For packages with
conditional compilation features, we used the default flags specified in
the manifest. In cases where a package failed to compile with the default
flags, but succeededwith different ones (when compiled as a dependency
of another package) we selected a random build for analysis. As a result,
our dataset consists of 31867 crates. Most of these crates are compiled
to Rust libraries (76.0%), or binaries (20.0%). The remaining crates are
procedural macros (4.0%).

Our experiments were conducted on a computer equipped with an Intel
Xeon E5-4627 processor (3.30GHz, 16 cores), 252 GB of RAM, running
Ubuntu 16.04.6 as an operating system and version nightly-2020-02-03

of the Rust compiler. Since our experiments do not depend on timings or
performance, it should be straightforward to reproduce our results on
different hardware. We collected all of our results in Jupyter notebooks
for follow-up analyses using Python [163]; these are also available online
[154].

12.2 The Rust Hypothesis – Do Developers Use
Unsafe Rust as Intended?

We first answer the research questions related to the Rust hypothesis, i.e.,
the claim that developers typically use unsafe Rust (1) sparingly and in a
way such that its behaviour is (2) both straightforward and self-contained,
and (3) well-encapsulated behind safe abstractions.

https://crates.io/
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Table 12.1: Rust crates with and without
any unsafe code grouped by feature. A
crate may contain multiple unsafe fea-
tures.

Unsafe Feature #crates %

None 24,360 76.4
Some 7,507 23.6

Blocks 6,414 20.1
Function Declarations 4,287 13.5
Trait Implementations 1,591 5.0
Trait Declarations 280 0.9

Figure 12.1: The cumulative proportion
of statements in unsafe blocks and func-
tions in all crates (blue) and in crates that
have at least one such statement (orange).
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1: Notice that Figure 12.1 does not ac-
count for unsafe traits. Consequently, the
percentage of crates without any unsafe
blocks or functions (78.7%) is slightly
larger than the percentage of entirely
safe crates (76.4%).

[164]: Evans et al. (2020), ‘Is Rust used
safely by software developers?’

[164]: Evans et al. (2020), ‘Is Rust used
safely by software developers?’

12.2.1 RQ 10.1 (Frequency): How often does unsafe code
appear explicitly in Rust crates?

Table 12.1 shows in both absolute and relative numbers how many crates
contain unsafe code, and which unsafe features they use (our first query),
while Figure 12.1 shows the relative amount of statements in unsafe
blocks and functions in (1) all crates and, for readability, (2) crates that
contain at least one unsafe statement (our second query)1. The majority of
crates (76.4%) contain no unsafe features at all. Even in most crates that
do contain unsafe blocks or functions, only a small fraction of the code is
unsafe: for 92.3% of all crates, the unsafe statement ratio is atmost 10%, i.e.,
up to 10% of the codebase consists of unsafe blocks and unsafe functions.
However, with 21.3% of crates containing some unsafe statements and –
out of those crates – 24.6% having an unsafe statement ratio of at least
20%, we cannot claim that developers use unsafe Rust sparingly, i.e., they
do not always follow the first principle of the Rust hypothesis.

Nevertheless, if we compare our results with the ones from [164], we can
see that they report higher percentages of unsafe crates across all features
in their experiments. Their experiments are based on a 16 months older
snapshot (from September 2018) of the central Rust repository crates.io. In
the meantime, more than 10,000 crates have been added to the repository
and, in particular, the percentage of unsafe crates dropped from 29% to
23.6%. This finding differs from [164], who observed that the amount
of unsafe code in the most downloaded crates slightly increased over 10
months. One possible explanation for these observations is that the most
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[150]: Rust Secure Code Working Group
(2019),Mission Statement of the Secure Code
Working Group

1 fn nop(x: u32) {}

2

3 fn main() {

4 let x = 42;

5 unsafe {

6 nop(x);

7 nop(x);

8 }

9 }

Figure 12.2:Unsafe block of size 12 #MIR,
more than the overall median of 10.

downloaded crates provide the necessary extensions to the language or
standard library (for example, an efficient random number generator)
that cannot be implemented in safe code and, therefore, the amount of
unsafe in the most popular crates does not change while a significant
portion of the newly added crates are application code that does not need
to use unsafe. Another possible explanation of these observations is that
they may reflect concerted efforts within the Rust community to reduce
the overall usage of unsafe code, such as the “Rust Safety Dance” project
by the security working group of the [150].

From Table 12.1, we can also see that the most used unsafe features
are unsafe blocks and unsafe function declarations. Both unsafe trait
declarations and unsafe trait implementations are rare – the former are
found in less than 1% of all crates; given that implementations generally
do have interesting contracts and invariants, this low number suggests
that programmers do not find it useful to highlight those via the unsafe

keyword.

12.2.2 RQ 10.2 (Size): What is the size of unsafe blocks
that programmers write?

Recall from Section 10.1 that we measure the number of MIR statements
the compiler generates for an unsafe block, #MIR for short, as a proxy
for its code complexity. Figure 12.3 shows the cumulative distribution of
MIR statements generated for each unsafe block, cropped at 100 #MIR
to improve readability; the depicted graph covers 97.4% of all unsafe
blocks. The size of most blocks is quite small: 75% of all unsafe blocks
comprise at most 21 #MIR, which almost coincides with the mean of 22.0
#MIR. For comparison, the compiler already generates 12 MIR statements
– more than the overall median of 10 – for the small unsafe block shown
in Figure 12.2. Upon closer manual inspection, there is a significant
share, namely 14.4%, of tiny unsafe blocks that either wrap an expression
(without function calls) or call a single unsafe function whose arguments
were computed before the unsafe block. Conversely, there is a small
number (78 or 0.02%) of huge outliers whose size ranges from 2,000 to
21,306 #MIR. Most of these unsafe blocks are automatically generated,
e.g. through user-written macros or external scripts.

In summary, the size of unsafe blocks is typically small. Assuming that
the number of MIR statements adequately approximates the complexity
of unsafe blocks, we conclude that most developers keep their unsafe blocks
simple, which supports the second principle of the Rust hypothesis.

12.2.3 RQ 10.3 (Self-containedness): Is the behaviour of
unsafe code dependent only on code in its own
crate?

In our dataset, we have in total 772,228 calls in unsafe blocks. As shown
in Figure 12.4, more than three-quarters of them are calls to standard
functions while calls to trait methods and calls to closures and function
pointers are only 18.0% and 3.6%, respectively. If we compare with the
distribution of the entire dataset (shown in Figure 12.5) that includes
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Figure 12.3: Cumulative distribution of
the size of unsafe blocks, cropped at 100
MIR instructions (#MIR).
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2: The compiler-generated unsafe code
contains only standard function calls.

also the compiler-generated code2, we can see that calls in unsafe blocks
have a significantly larger proportion of standard function calls (78.3%
in unsafe blocks vs. 56.3% in the entire dataset) and, correspondingly,
a significantly smaller proportion of calls to trait methods (18.0% in
unsafe blocks vs. 42.9% in the entire dataset). Even though 18.0% is
still a substantial proportion, the relatively low number confirms our
expectation that developers avoid those calls in unsafe blocks to keep the
code simpler and more self-contained. In particular, a manual inspection
of 100 randomly-selected calls to trait methods in unsafe blocks revealed
that in 82 cases, the call target can be determined statically, just by looking
at the function containing the unsafe block. Therefore, these calls do not
add substantially to the complexity of the unsafe code.

To understand why the proportion of calls to closures and function
pointers is larger in unsafe blocks than in all code (3.6% vs. 0.7%), we
manually looked into several examples and observed three main patterns.
The first one is parameterising the behaviour of unsafe code with a
closure that is passed in as an argument to the safe wrapper. A typical
example of this pattern is the sort_by function on the primitive type slice,
which takes a comparison function as an argument. The second pattern
is using function pointers to call functions from dynamically-loaded
libraries (which can be done only from within an unsafe block), and the
third pattern is using function pointers to implement callbacks to system
libraries.

Figure 12.4:Distribution of types of calls
in unsafe blocks.

78.3%

standard function calls

18.0%

trait methods

3.6% closures and
function pointers
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56.3%

standard function calls

42.9%

trait methods

0.7%
closures and

function pointers

Figure 12.5: Distribution of types of
calls in the entire dataset (including the
compiler-generated code).
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Figure 12.6: The call targets of standard
calls.

Besides the different forms of calls, we analysed where the call targets
of standard calls are implemented, to assess the extent to which unsafe
code is self-contained. Figure 12.6 illustrates the distribution of targets of
calls to standard functions, grouped into four categories. The majority
(52.1%) of all function calls are into the standard library; as argued in
Section 10.1, we consider such function calls only a minor violation of
self-containedness. Most of the remaining calls (25.9%) stay within the
same crate. Only 7.4% of all calls targets are located in other crates. We
manually inspected a few of these crates and found that most of them,
similarly to -sys crates, encapsulate system libraries. So in summary, for
codebases written purely within Rust, very few calls actually violate the
self-containedness principle of the Rust hypothesis.

We also analysed how the distribution of call targets changes when
we consider only calls to unsafe functions (which, as we will see in
Section 12.2.5, is the most common motivation for using an unsafe block).
As shown in Figure 12.7, the share of calls to -sys crates is significantly
higher, whereas the share of calls that stay within the same crate remains
almost the same. This suggests that developers hesitate to call unsafe
functions that reach out to other crates unless they explicitly wish to
interact with system libraries.
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Figure 12.7: The call targets of standard
calls when only calls to unsafe functions
are considered.

45.6%

calls to trusted

24.0%
calls to -sys

25.9%

calls to the same crate

4.4% remaining calls

3: All percentages below are with re-
spect to this number of unsafe functions.

12.2.4 RQ 10.4 (Encapsulation): Is unsafe code typically
shielded from clients through safe abstractions?

In Table 12.2, we classify unsafe functions based on their visibility, which
may be private (only callable from this submodule), visible within a
restricted module, or public. We use visibility as an indication for the
programmer’s intention to encapsulate unsafe implementations from
client code. Our metric is based on the information in a function’s
declaration, and does not differentiate between using the public modifier
to enable calls from other submodules within the same crate, or from
different crates entirely. For the latter, the functions would also need to
be declared visible in the root module of the crate, which is a separate
decision. Note that as soon as a function is declared public, its call-sites
are in general unknown andmay change over time.We removed from this
analysis all unsafe trait methods (only 687, 0.1% of all unsafe functions),
as their visibility is implicit.

Weobserved that only 12.0%of unsafe functions are not visible to arbitrary
code (say, in other crates) because they are either private or restricted to
a module. The vast majority (88.0%) of unsafe functions are declared to
be public. At first glance, this suggests that programmers rarely shield
their unsafe code from clients. To investigate this, we also studied the
ratio of public unsafe functions compared to all unsafe functions in each
crate containing at least one unsafe function. That is, a ratio close to
1 indicates that a crate poorly encapsulates unsafe functions (as all of
these functions are public). Conversely, a ratio close to 0 indicates strong
encapsulation as almost all unsafe functions are not publicly visible.
The results are depicted in Figure 12.8. Based on this metric, we get a
clearer picture: most crates (78.5%) have either all or none of their unsafe
functions declared public. In particular, 34.7% of all crates seem to be
well encapsulated: they declare unsafe functions but none of them are
visible from the outside.

Moreover, 43.8% of crates declare all of their unsafe functions public;
more precisely, these crates contain 274,434 (49.2%) unsafe functions3.

Continuing our investigation, we queried how many public unsafe
functions within these crates provide raw bindings to system libraries, as
it is common practice to make these bindings public. At first, we checked
the ABIs of the functions. We found that 163,650 (59.6%) have foreign
item ABI, which means that they are bindings of foreign items (most
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Visibility # functions %

Private 65,230 11.7
Restricted 1,535 0.3
Public 489,928 88.0

Table 12.2: Visibility of unsafe function
definitions (excluding trait methods).
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Figure 12.8: The number of crates for
each ratio of public unsafe functions com-
pared to all unsafe functions.

[165]: Rust Team (2020), File: check_un-
safety.rs

likely C functions). We also found that 571 functions (0.2%) have C ABI,
which means that they can be called from C code and, therefore, it makes
sense to have them public. The vast majority of the remaining functions
(110,212 or 40.2%) have Rust ABI and, therefore, it is hard to automatically
tell whether they are bindings or not. Therefore, we checked the meta
information of the crates that contain these functions and found that
9,642 (3.5%) are assigned to categories that indicate them as crates that
wrap system libraries and 49,363 (18.0%) are assigned to categories
related to embedded programming. Finally, we manually reviewed 30
crates from the remaining list that have most unsafe functions (in total
41,063 functions or 15.0%) and found that they either provide APIs to
microcontrollers or OpenGL bindings. After our analysis we are left with
only 10,148 functions (3.7%) that are public and which may not be from
the crates that provide bindings.

To summarise, even though the large number of crates that provide
bindings make it hard to draw definitive conclusions, it seems that Rust
programmers at least attempt to not expose unsafe functions to their
clients because we found that 34.7% of all crates using unsafe functions
do not declare a single public one; conversely crates that declare a
lot of public unsafe functions can often be attributed to cases where
encapsulation is not intended.

12.2.5 RQ 10.5 (Motivation): What are the most prevalent
use cases for unsafe code?

To answer this question,wefirst identified a set of independent reasons for
which the compiler requires unsafe blocks and functions to be declared
unsafe. We extracted these reasons from the source code of the Rust
compiler [165]; they are therefore complete. Then, we collected which
reasons apply to the implementation of each function (either the body
of an unsafe function or the unsafe blocks inside a safe function). The
results are summarised in Table 12.3. As the data shows, calls to unsafe
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4: While all reasons mentioned in
the table should require to use un-
safe code, the reason “borrow of a
packed field” does not due to a com-
piler bug; see https://github.com/

rust-lang/rust/issues/27060 for de-
tails.

functions are by far the main reason why unsafe code is unsafe, followed
by dereferencing raw pointers4.

A block or function may be unsafe for multiple reasons. We found that
for 83.5% of all functions that have at least one reason of unsafety, calling
unsafe functions is the only reason of unsafety. In 93.6% of the functions,
unsafety is due only to the first 2 entries of the table, and that in 99.4% of
the functions, all reasons for unsafety are among the top 3 entries of the
table. This data will enable, for instance, developers of static analysers
and verification tools for Rust to prioritise which features of unsafe Rust
code should be supported in their tools.

The classification in Table 12.3 indicates why the compiler requires a block
or function to be declared unsafe, but does not explain why programmers
chose to use these unsafe features. To understand their motivation, we
studied the prevalence of the specific use cases proposed in Section 10.2,
as we discuss next.

12.2.5.1 Data Structures with Complex Sharing

To assess how often unsafe code is used to implement data structures
with mutable aliases, we measured how many functions dereference a
raw pointer and how many structs have raw pointer fields. Our database
contains 7,385,690 function definitions, out of which only 46,263 (0.6%)
dereference a raw pointer in their implementation. In particular, this is
done in 9,273 out of a total of 557,380 unsafe functions (1.7%), in 35,761
out of 6,221,053 safe functions (0.6%), and in 1,229 of 607,257 closure
declarations (0.2%). Overall, 7.0% of all crates have unsafe code that
dereferences at least one raw pointer. Regarding the raw pointer fields,
we found that 6.6% of all crates have types with raw pointer fields. After
filtering out raw pointers in structs whose attributes indicate that they
are likely intended for interoperability, this number reduces to 4.6% of
all crates.

Given that the restriction to tree-shaped data structures seems to be a
major limitation of safe Rust, the number of raw-pointer dereferences
is sizeable, yet rather low. It seems that raw pointers are rarely used
to implement more complex data structures. A possible explanation is
that sharing occurs especially in standard data structures, such as cyclic
lists, doubly-linked lists, smart pointers, and trees with parent-pointers.
However, such data structures are provided by the standard library
and, thus, do not often occur in the form of custom implementations in
application code. Another possible explanation is that Rust programmers
choose designs that can be implemented without mutable sharing in
safe Rust rather than resorting to unsafe manipulation of raw pointers.
Finally, developers may circumvent the ownership system while staying
within safe Rust by relying on custom vector-backed heaps and using
less constrained integer indices instead of references.

Even though not necessarily related to data structures, the use of mutable
static variables (the thirdmost-prevalent reason for unsafety in Table 12.3)
is also a form of sharing because global data can be accessed andmutated
by multiple functions – behaviour that one could alternatively achieve
via aliased raw pointers.

https://github.com/rust-lang/rust/issues/27060
https://github.com/rust-lang/rust/issues/27060
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Table 12.3: Reasons why blocks and functions need to be declared unsafe, aggregated on the function level. For a specific function, there
can be more than one reason why it needs to be declared as unsafe.

Reason #functions %

call to unsafe function 403,307 89.76
dereference of raw pointer 46,263 10.30
use of mutable static variable 25,888 5.76
access to union field 1,426 0.32
use of extern static variable 548 0.12
use of inline assembly 493 0.11
borrow of packed field 326 0.07
initialising type with rustc_layout_scalar_valid_range attr 41 0.0
assignment to non-Copy union field 3 0.0
pointer operation (in a const function) 2 0.0
cast of pointer to int (in a const function) 1 0.0
borrow of layout-constrained field with interior mutability 0 0.0
mutation of layout-constrained field 0 0.0

[148]: Developers (2023), The Rustonomi-
con

12.2.5.2 Incompleteness Issues

In safe Rust, the type system is able to prevent, for instance, usage of
references whose target might have been deallocated in some preceding
conditional branch. These checks are a form of static analysis subject
to incompleteness, as they conservatively reject some otherwise valid
programs. Since incompleteness cases cannot be precisely identified
automatically,we insteadmeasured the calls to unsafe functions involving
explicit type casts (transmute and copy_transmute) as a proxy to assess
how frequently programmers need towork around incompleteness issues
of the type checker. We found that 28,469 out of 319,600 unsafe blocks
(8.9%) call a transmute function, and that 4.5% of all crates contain at least
one call to a transmute function. Interestingly, only 1.7% of all crates have
more than 3 unsafe blocks with a call to those functions. This confirms
our expectation that calls to transmute functions, including workarounds
for incompletenesses of the compiler, are rare, and that when crates have
to make those calls, they use them sparingly. However, there still exist
some outliers that make thousands of calls to transmute. After manual
inspection, we found these crates to contain code generated by scripts or
recursive macros, which explains the anomaly.

12.2.5.3 Emphasise Contracts and Invariants

To check how prevalent unsafe is used as a documentation feature, our
queries gathered data for unsafe traits and unsafe functions with safe
implementations.

We found 1,093 unsafe trait declarations, which amounts to only 2.5%
of all trait declarations. We conclude that developers rarely use unsafe
traits, possibly because (1) the compiler never forces them to and (2) there
are no decisive guidelines for using unsafe traits. Instead, the Rust
documentation seems to discourage developers from frequently declaring
traits as unsafe [148, Ch. 1.1]. Notably, we observed that a few developers
embraced unsafe traits enthusiastically: Five crates are responsible for
40.4% of all unsafe trait declarations.
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[166]: Compiler-builtins developers
(2020), Safety of intrinsics

Regardingunsafe functions, our experiments yield that 36.1%of all unsafe
functions are written in completely safe Rust. We found this number
surprisingly high. After all, the compiler does not force developers to
declare such functions as unsafe – in contrast to other unsafe features.
Rather, a programmer has to intentionally type an additional keyword.
Hence, at first glance, it seemed that developers frequently were using
unsafe functions for the same reason as unsafe traits: to document
properties, e.g. invariants that are potentially critical for upholding Rust’s
safety guarantees.

To find explanations for the surprisingly high number of unsafe func-
tions with safe implementations, we performed manual inspections: We
manually inspected the ten crates with the highest overall count of unsafe
functions with completely safe bodies. All of these crates are automati-
cally generated to provide peripheral access to various microcontrollers.
The involved code generation seems to be conservative and frequently
use unsafe functions even if it does not have to. Moreover, we randomly
selected a few additional unsafe functions with safe bodies for manual
inspection. Among these functions, a few were equipped with explicitly
documented invariants. Other functions seem to be marked as unsafe
primarily for legacy reasons. So these extra inspections suggest that
most of these functions are declared unsafe almost accidentally, rather
than to intentionally highlight contracts and invariants. Therefore, the
discrepancy between unsafe traits and unsafe functions seems much
smaller than the initial numbers suggest.

Overall, there is no clear evidence that unsafe functions are frequently
used for documenting contracts and invariants, except when those con-
tracts overlap with (and perhaps protect against) situations in which
unsafe Rust features are used in the functions’ implementations.

12.2.5.4 Concurrency through Compiler Intrinsics

To measure to what extent compiler intrinsics are used to implement
fine-grained concurrency, we collected all unsafe blocks that call one of
the 89 compiler concurrency intrinsics defined in the core::intrinsics

module, or their re-export from std::intrinsics. These functions are
used by only 4 crates in our dataset: core (8 calls), compiler_builtins
(7 calls), rs_lockfree (6 calls), and hsa (1 call). We thus conclude that
compiler intrinsics are not widely used, probably because they are still
marked as experimental and require a nightly version of the compiler.

Interestingly, while analysing the results, we found that the concurrency
intrinsics exposed by the compiler_builtins crate are incorrectly not
marked as unsafe even though they internally dereference a raw pointer
passed as parameter. It is, thus, possible for safe code to dereference a null
pointer from safe Rust code by calling these intrinsics. We reported this
unsoundness in the API, which was confirmed by the library developers
[166].

12.2.5.5 Foreign Functions

To detect interoperability with other languages we first measured how
many types are equipped with #[repr(C)], to have a memory layout com-
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patible with C structures. Out of 1,486,978 definitions of structures and
enumerations, we found that only 3.9% are annotated with #[repr(C)].
This annotation is used in 6.2% of all crates.

As a second query, we collected all crates whose name ends with -sys,
to find those that adhere to the -sys naming convention for providing
public bindings to a C system library. We found 650 crates (2.0% of
all crates) whose names end with -sys, but we also noticed that other
crates use different naming conventions: for 24 crates the name ends with
-ffi, for 13 with -bindings, and for 10 with -bindgen. These suffixes all
clearly mark a crate that provides public bindings to C libraries, as -sys
crates should do. By further manual inspection of popular crates, we also
found various crates such as libc, gl, and winapi that provide bindings
to system libraries without using any naming convention. This plethora
of cases suggests that the -sys convention is known, but not consistently
applied by library developers.

As a third query, we measured how many unsafe functions are declared
with a foreign ABI, to detect bindings to system library functions. We
found that 248,522 (44.6%) out of 557,380 unsafe function definitions are
actually static bindings to foreign items. This large percentage – which
does not include functions that provide bindings to dynamically loaded
libraries – shows that interoperability with foreign functions is actually a
very common pattern of unsafe code. Overall, 1,599 crates (5.0% of all
crates) contain at least one function with a foreign ABI. This reinforces
the hypothesis that the -sys naming convention by itself is not enough to
completely detect the crates that wrap system libraries.

Finally, as a fourth query, we measured usage of inline assembly. Out
of more than 7 million function definitions we only found 493 cases of
functions that use assembly. In particular, we found that 10 low-level and
hardware-related crates actually contain 69.8% of all the functions that
make use of inline assembly. This strongly suggests that inline assembly
is in general rarely used.

12.2.5.6 Performance

Regarding our anticipated usages of unsafe code to improve performance,
we found that 5.9% of unsafe calls in unsafe blocks involve unchecked
functions spread across 4.3% of all crates. Avoiding run-time checks does
not appear to be frequently used by all developers. However, it plays a
significant role for some performance-oriented crates. For example, the
Rust bindings of the X Window System call 4,852 unchecked functions
in a single crate.

Developers rarely use the union MaybeUninit, which allows declaring
uninitialised variables: We detected it in only 1,816 unsafe blocks, which
appear in 0.55% of all crates.

In summary, performance optimisations using unsafe Rust seem to be a
niche problem: They are mostly concentrated among a few crates. Within
these crates, however, they are heavily used.
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We now discuss the overall results of our study of unsafe Rust. Moreover,
we address possible implications of our findings for the Rust commu-
nity.

13.1 Does the Rust Hypothesis Hold?

One of themain research questions whichmotivated our study is the Rust
hypothesis, i.e., the claim that Rust developers both can and typically do
write unsafe code according to the three basic principles introduced in
the introduction of this part of the thesis. That is, unsafe code should be
(1) used sparingly, (2) straightforward, self-contained, and (3)well-encapsulated.
While this claim is widely-advocated in the Rust community, the results
of our study support it only partially, and must be qualified by the fact
that we discovered that unsafe code concerned with interoperability is
far more prevalent than might be expected.

We found strong evidence that programmers usually adhere to the
second principle, i.e., they keep their unsafe blocks simple (RQ 10.2) and
self-contained (RQ 10.3). This is encouraging, as the rationale underlying
this principle is to reduce the amount of code whose safety relies on
manual efforts by programmers instead of automated guarantees by the
compiler.

However, the first principle is not widely adhered to if one examines our
data set as a whole; crates containing at least some unsafe code are not at
all uncommon: we discovered that almost a quarter of all crates contain at
least some unsafe code (RQ 10.1). The total ratio between safe and unsafe
code also indicates that unsafe code is used quite extensively. When
compared to previous studies, we observed that the usage of unsafe Rust
is most-likely decreasing over time: possibly a reflection of efforts in the
Rust community to reduce the overall reliance on unsafe code.

Regarding the third principle, while our initial measurements suggest
that unsafe functions are extremely prevalent, our follow-up steps paint
a clearer picture: Rust developers frequently seem to attempt to hide
all of their unsafe functions from clients. Moreover, a great many of the
exposed unsafe functions originate from crates that provide bindings
for interoperating with hardware or libraries written in other languages
(typically C and C++). After several attempts to classify these cases, we
were left with sufficiently few public unsafe functions to conclude that for
unsafe functions implemented in Rust alone, programmers avoid making at
least the vast majority publicly visible (RQ 10.4). A precise measurement
is made challenging by the fact that crates performing interoperability
not only contribute many unsafe functions to our data set but do not, in
general, adhere to naming conventions designed to make them easy to
identify (i. e., -sys suffix for crates providing C library bindings).
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[91]: Clippy contributors (2023), Clippy

[167]: Wilhelm et al. (2002), ‘Shape Anal-
ysis and Applications’

Overall, our results appear to support the Rust hypothesis for at least the
majority of Rust code which is not for interoperability. However, there
appear to be non-trivial exceptions to all three principles; something that
project managers may want to keep in mind when adding dependencies
to their own codebases, and software testers should consider paying
close scrutiny to. Our Qrates analysis framework could be repurposed in
this setting as a means of gathering important metadata about the usages
of unsafe code in a crate under consideration. Simple checks could also
be added to the official Rust linter Clippy [91] to warn of potentially-risky
visibility of unsafe functions.

13.2 How Is Unsafe Rust Used?

The second key question of our study was concerned with finding
the most prevalent use cases of unsafe Rust. To this end, we explored
all reasons that the Rust compiler used to enforce the use of unsafe
blocks, and considered six specific use cases based on our own manual
classification.

In general, calls to unsafe functions suffice to explain why 83.5% of all
unsafe blocks and unsafe functions need to be declared unsafe; unsafe
functions are the main feature that tool developers who wish to support
unsafe Rust should prioritise. This percentage climbs to 93.6% if we
additionally consider raw pointer dereferences and to 99.4% by also
including access to mutable static variables.

Taking a closer look at the individual use cases, we observed that the
number of raw pointer dereferences is sizeable, yet low compared with
calls of unsafe functions. It seems that Rust developers rarely use raw
pointers for implementing custom C-style data structures; they seem to
prefer either the standard library abstractions, ordifferent implementation
patterns, such as using vector-based heaps and integer indices. This
has interesting consequences for tool developers, as many automated
program analysis techniques, e.g. shape analysis [167], work well on
tree-shaped data structures, but suffer dramatically in the presence of
complex sharing. If complex sharing is predominantly achieved through
a few standard abstractions and patterns, tools may have a chance to
recognise and exploit idiomatic usages of popular abstractions.

Rust’s type system and run-time checks rarely seem to concern developers
enough to take the risk of circumventing the rules; they rarely (in
fewer than 9% of all unsafe blocks) opted to disable compiler checks or
transmute types to either gain performance or manually override the
standard type system.

While concurrency-related compiler intrinsics appear only in a tiny
fraction of crates, our manual follow-up on our experiments confirms
that they can be quite dangerous: during our analysis, we discovered a
bug that allowed us to dereference a null pointer from safe Rust code by
calling one of them (albeit in an unstable feature under development).

We observed that many functions are declared unsafe despite not em-
ploying any of the language features which the compiler requires to be
used only in unsafe code. This suggests either confusion on the part of
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the programmer as to when such blocks are required, legacy reasons
(e.g. the same function must be unsafe on a different platform), or that
programmers employ such blocks to document either their own ad hoc
correctness properties, or properties that are required for upholding
Rust’s safety even though the Rust compiler neither checks them nor
associates them with unsafe Rust. An example of the latter case could
be to indicate a precondition for a function which is necessary for the
preservation of some invariant that the safety of other functions depends
upon. While the latter case matches with the community’s expectations1,
we encountered only few instances in which unsafe functions explicitly
document contracts or invariants. Similarly, hardly any programmer de-
clares unsafe traits, which act purely as documentation features (warning
implementers to take care of a particular property). One reason for the
low adoption of this feature could be that contracts and invariants are not
enforced by the compiler. This could be changed by allowing developers
to attach more formal specifications to traits and functions, for example,
by developing a standard specification language used by all verification
tools.

Finally, we observed that a large amount of unsafe code serves to inter-
operate with libraries written in other programming languages. Many
crates purely act as an interface for these libraries. To facilitate future
code analyses, it would be beneficial if these could be made easier to
detect and classify, e.g. through an explicit attribute for low-level crates.
We observed that naming conventions (in particular, the -sys convention
for crates providing C bindings) appear to be insufficient for this purpose,
presumably because programmers have their own preferences for crate
naming.





1: We are grateful to Ana Nora Evans for
showing us how to avoid pitfalls related
to code generated by macros when ex-
tracting information from the Rust com-
piler.
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In this chapter, we present threats to the validity of our empirical study
and its evaluation.

14.1 Dataset

The main threat to validity is the selected dataset, and any biases this
may introduce compared with current practice using the Rust language
in general. By taking all currently-compiling crates from crates.io, we
have a substantial slice of the open-source Rust code available, but other
complementary sources (such as github.com) could also be solicited.

On the other hand, it is possible that we are sampling too much code from
our chosen source; our dataset likely includes crates which are no longer
maintained, for example. Arguably, these crates are not flawed as sources
for our study, but the older they are, the less significant their features are
for evaluating current practice.

Since we currently pre-filter crates by whether they compile, there is a
chance that some crates have been missed because we were not able to
identify the right compiler version or settings. We mitigated this last
specific threat by taking such compiler arguments from the crate’s own
manifest; unfortunately, determining the intended compiler version is
not possible in general.

14.2 Generated Code

Some occurrences of unsafe code are generated internally by the compiler.
For example, the desugaring of pattern-matching constructs can yield
unsafe code, even for source code which never uses unsafe Rust. To avoid,
for example, potentially classifying such crates as containing usages of
unsafe (RQ 10.1), we eliminate all compiler-generated unsafe blocks in
advance (the compiler never generates unsafe functions) for all relevant
queries in our experiments1. Sincewe filter out compiler-generated unsafe
blocks but keep all compiler-generated safe code, our measurements may
underestimate the ratio of unsafe to safe code. Similarly, the distribution
of types of function calls reported for our entire dataset (Figure 12.5) may
change when filtering out all compiler-generated code.

Themeasurements for RQ 10.2 (Size) show awide distribution, with a few
huge outliers. As explained in Chapter 12, rather than simply reporting
our answers (and averages) directly, we were able to identify manually
that these outliers are due to generated code. However, our dataset might
contain other forms of non-standard Rust code (e.g. generated by scripts),
which we did not identify. Nevertheless, the cumulative distribution we

crates.io
github.com
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chart forms an adequate basis for our conclusion that the vast majority
of unsafe blocks are small.

14.3 Comprehensiveness of Queries

Our results are mostly based on queries that collect data automatically.
Some of these queries check proxies for the properties of interest, for
example, the size of unsafe blocks as a measure of complexity and the
visibility of unsafe functions as an indication for the presence of safe
abstractions. There is a risk that our choice of proxies (and queries) does
not faithfully capture the properties of interest. To mitigate this risk, we
complemented our automatic queries by manual code inspections.

14.4 Overlapping Motivations

Our presented analysis of the motivation for programmers using unsafe
Rust (RQ 10.5) does not include a detailed analysis of the overlap between
multiple motivations (for example, blocks containing both raw pointer
operations and assembly code). Our framework and data set do provide
this information, and exploring these correlations could be interesting
future work.

14.5 Errors in the Implementation

Most of our results are based on our Qrates framework and subsequent
data processing in Jupyter notebooks. Errors in the implementation
could invalidate our findings. To mitigate this risk, we subjected all
implementations to careful code reviews and tested them extensively.

14.6 Errors in the Rust Compiler

Some of ourmeasurements, e.g. the reasons for unsafety in Table 12.3, rely
on internal data computed by the Rust compiler – they are, consequently,
sensitive to compiler bugs.Whilewe checkedRust’s bug tracker and asked
for feedback from the Rust community to account for known compiler
issues, our results may be influenced by so-far unknown bugs.
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In this chapter, we focus mainly on other studies of Rust code; other
references to relevant related work are mentioned throughout this part
of the thesis where appropriate. We start with the related work that
appeared before the publication of our paper [76] in Section 15.1. Then,
Section 15.2 discusses studies published later.

15.1 Prior Work

Closest to our work is a study by [164] that performs a quantitative
evaluation of unsafe Rust. Since their dataset relies on a 16 months older
snapshot of the same repository (crates.io), we can observe a few
developments over time: in particular, the percentage of crates containing
any unsafe code (a measurement made in both studies) has dropped
from 29% to 23.6% (noting though that these comparisons relate figures
which were computed by different experimental methods).

Apart from such basic statistics, the two studies are complementary as
they take fundamentally opposite perspectives on the usage of unsafe
code: we study (intended) compliance with the Rust hypothesis, i.e.,
commonly advocated best practices for writing unsafe code; in particular,
our work takes into account whether programmers aim to shield their
unsafe code behind safe abstractions. By contrast, [164] measure how the
unsafe keyword permeates call chains and, thus, how many functions
transitively depend on unsafe code; they consider all of these functions as
tainted, or, in their terminology, “possibly unsafe”. This notion ignores
whether a function (1) depends on unsafe code through a safe abstraction
that takes responsibility (by declaring exposed functions as safe) for Rust‘s
guarantees, or (2) is explicitly exposed to unsafe code (by declaring all
functions in the call chain as unsafe).

These different perspectives can lead to quite different results for the
same data set. For example, assume the corpus under analysis consists
of two idealised codebases, say � and �, where � strictly adheres to
the Rust hypothesis, and � frequently violates it. Moreover, suppose
that many (declared safe) functions are at least transitively clients of
the unsafe code in � and �, respectively. Our methodology distinguishes
these codebases, concluding that some developers (those of �) aim to
apply commonly advocated guidelines, and some do not (those of �). In
contrast, the approach of [164] cannot distinguish them: both codebases
are possibly unsafe. Furthermore, our study provides an in-depth analysis
of the reasons why programmers employ unsafe code, which was not an
apparent primary focus of [164] (where this question was explored via a
survey rather than by analysing a codebase).

Our work evaluates the extent to which programmers intend for their
unsafe code to be encapsulated from clients. However, we do not attempt

crates.io
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to judge whether the programmer‘s implementation correctly provides
such an abstraction. This question has many subtle dimensions (as has
been explained by e.g. [147]), and addressing it, in general, requires
extremely sophisticated formal reasoning, as explored in the context of
the RustBelt project [71].

[158] perform manual code inspections of 850 selected instances of
unsafe Rust, i.e., unsafe blocks or functions, to elicit the motivation for
using unsafe code and to explore the memory safety and concurrency
errors caused by these instances of unsafe code. They select examples
for their study by analysing bug reports and filtering commit messages
for keywords indicating memory errors. Their work includes an analysis
of incorrect usages of unsafe code but does not assess how and why
unsafe code is used in general. Our much larger dataset yields a different
perspective in several respects: for example, they observe that “calling
unsafe functions counts for 29% of the total unsafe usages”, whereas the
percentage across our full data set is much larger, namely 84.6%. We can
also confirm over our larger data set their observation that a significant
number of unsafe functions need not (from the compiler‘s perspective)
be labelled as unsafe.

[168] performs an early study of how unsafe Rust is used. The high-
level approach is somewhat similar to our own; source code analysis
is performed by a compiler plugin that collects statistical data about
unsafe blocks and functions. The presented results are mostly covered
by our first two research questions. In particular, Ozdemir notes that
30% of all crates contain some unsafe code; this confirms the trend we
noted in Chapter 12 alongside RQ 10.1 that the overall number of unsafe
crates appears to be declining over time. Given the significant changes to
the Rust language and its user base over the last four years, we do not
compare all results in detail.

In addition to the above studies, which specifically consider unsafe Rust,
there have also been qualitative studies on how well-suited Rust could be
for certain applications: [169] study the usability of Rust‘s cryptographic
libraries, whereas both [170] and [171] evaluate Rust in general as a
systems programming language.

15.2 Later Studies

The studies published after the publication of our paper [76] mostly
focused on understanding bugs and vulnerabilities related to unsafe
code. [172] presented a static analyser RUDRA that enabled the authors
to scan the entire Rust ecosystem for specific problematic patterns related
to unsafe code. The scan revealed 264 previously unknown bugs caused
by implicit execution paths introduced by panics and incorrect bounds
of Send and Sync traits. [173] analysed all existing Rust common vulner-
abilities and exposures (CVEs) of memory-safety issues by 2020-12-31.
They found that all bugs either required to use unsafe or exploit Rust
compiler bugs. [174] focused on the lifecycle of vulnerabilities discovered
between 2014-11-11 and 2022-05-24. They also found that unsafe code is
more likely to be vulnerable, but they also noticed that programmers
tend to fix vulnerable unsafe blocks by replacing themwith safe code. All
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these studies demonstrate that using unsafe code correctly is notoriously
hard and that there is a clear motivation for developers to write the
code according to the three principles mentioned in the introduction.
However, as discovered by [174], some developers do that only after they
find vulnerabilities in their unsafe code, which could explain why unsafe
code is used more commonly than expected.

[175] analysed the documentation of unsafe methods in the Rust standard
library and found that even this well-maintained documentation some-
timesmisses important information or has other inconsistencies. Together
with our finding that many unsafe functions do not document require-
ments imposed on callers, this study shows an important weakness in
Rust development practices.
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Conclusions of Part II 16
We have presented a large-scale study addressing the current practices of
Rust programmers with respect to unsafe Rust, as well as an investigation
of the motivations for why unsafe code is employed in practice. We
identified three commonly held expectations regarding unsafe Rust
practice (the Rust hypothesis), and our study showed partial support
for these. In particular, while our study shows that unsafe code is very
commonly used in small and self-contained quantities, it is much less
scarce overall than one might expect, and in total, a great many unsafe
functions are exposed to arbitrary client code across crate boundaries.
On the other hand, a very sizeable portion of these functions ultimately
result from the need to provide interoperability with custom hardware
and native code written in C; when one eliminates the vast majority
of these cases, it becomes clear that most unsafe functions written in
Rust are not actually publicly-accessible, indicating a common effort by
programmers to encapsulate the unsafe aspects of their implementations.
On the other hand,many of the unsafe functionswe investigatedmanually
did not document the intended requirements imposed on their callers;
this suggests a weakness in development practice which programmers
should be aware of and software testers should look to highlight.

We have also presented the Qrates framework with which we have
carried out our study, along with a large repository of harvested data on
unsafe code usage. Our framework and experimental methodology can
be straightforwardly reused for a wide variety of Rust-related empirical
studies (not limited to unsafe code). They could, for example, be used to
complement the annual Rust Survey [176] with data on current coding
practice in the community. This survey asks specifically for recommen-
dations for improvement; the widespread reuse of C libraries we have
observed during our study (e.g. those providing GUI libraries such as Qt
with no existing Rust alternative, or facilities to dynamically load code,
which is not natively possible in Rust) provides empirically-justified
directions for future language and library development.

Our investigation of the reasons why unsafe code is employed shows that
the vast majority of unsafe code is used to call unsafe functions, while
only a few other causes arise commonly. These results have important
implications for the potential development of Rust analysis tools, partic-
ularly where the aim is to help programmers reason about whether their
unsafe code is correct; an ability to specify or otherwise support reasoning
about external function calls is a critical concern, while our study shows
that support for, say, inline assembly need not be prioritised.

In the next part of the thesis, we present a technique for verifying safe
abstractions that are supposed to safely encapsulate unsafe code inside
them.





Part III

Verifying Mixed Safe and Unsafe Rust
Code
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In Part I, we showed how to leverage the memory safety guarantees
provided by the Rust type system to enable lightweight verification.
Unfortunately, unsafe Rust can break the memory safety guarantees the
compiler provides. In Part II, we discussed that the safety of unsafe
code depends not only on code within, for example, an unsafe block
but also on safe code surrounding the unsafe block and even on safe
code in other methods. Multiple studies have shown that ensuring the
correctness of such code is crucial. Our study (presented in Part II)
found that unsafe code is relatively common, with more than one in
five crates (Rust packages) containing some unsafe code. [164] found
that a large portion of safe Rust transitively depends on some unsafe
code. All studies that focused on vulnerabilities [158, 172–174] found
that almost all vulnerabilities in Rust projects are caused by bugs in
code related to unsafe. Therefore, in this part of the thesis, we focus
on verifying functional correctness and memory safety of mixed safe
and unsafe code. We aim to maintain the benefits of our work from
Part I and keep verification of safe code simple even if the same function
contains some unsafe code. Achieving this goal is challenging because, as
discussed in the thesis introduction, simplicity is often in direct conflict
with expressivity, which is needed for verifying complex unsafe code.

Aswediscussed inPart II, theprogrammerswriting libraries are supposed
to hide unsafe code behind safe abstractions so that the safe clients of these
libraries do not need to worry about memory safety [72]. To completely
relieve the programmer writing the client code from the cognitive load
of thinking about memory safety, a safe abstraction is required to ensure
memory safety even when used incorrectly. However, [172, 173] found
that programmers writing libraries that provide a safe interface over an
unsafe implementation oftenmake incorrect assumptions about their safe
clients. For example, they forget that callbacks provided by clients may
panic. One of the challenges with correctly handling panics is that panic
implicitly executes drop handlers, which may observe invalid memory
and cause a memory error. Since most Rust code is unverified, verifying
that a safe abstraction guarantees memory safety even when used by
unverified clients has potentially a much more significant impact than
verifying that it is functionally correct. Therefore, in this part of the
thesis, we aim to support verifying two complementary use cases: mixed
safe-unsafe code is functionally correct and safe abstractions guarantee
memory safety even when used by unverified clients written in safe
Rust.

Supporting verifying all aspects of unsafe code within a single thesis is,
unfortunately, unrealistic, partly because the specific rules describing
what should be allowed in unsafe code are still under active discussion.
Our study found that calls of unsafe functions and uses of raw pointers
account for 93.6% of unsafe code uses. Moreover, [174] found that 59.7%
of vulnerabilities are caused by bugs that are typical for code that uses
raw pointers: buffer overflows, use-after-free and null pointer dereference.
Therefore, as a first step towards verification of complex unsafe code, we
decided to focus on code that uses unsafe functions and raw pointers
with a focus on guaranteeing the absence of the standard memory safety
errors such as the ones found by [174]. In particular, we do not aim
yet to support verifying that code adheres to the aliasing requirements
proposed in either Stacked Borrows [126] or Tree Borrows [127, 128]
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(currently, there is no verification approach that would support them).
However, as we explain below, our automation technique relies on non-
aliasing guarantees provided by these models1. We leave extending our
verification approach to support checking that code adheres to these
models to future work.

Currently, two logics can be used for modular unbounded verification
of unsafe Rust code: RustBelt [71] and RustHornBelt [133]. We already
discussed both in Chapter 7. RustBelt enables verifying that an internally
unsafe function is safe against arbitrary safe clients, while RustHornBelt
enables proving functional specifications for both safe and unsafe code.
However, there are at least three downsides to using RustBelt and
RustHornBelt for verification. First, both RustBelt and RustHornBelt
require manually translating Rust programs into �Rust and verifying
them manually in a proof assistant. Manually translating code is a
tedious task; as a result, the translated examples typically focus on a few
key aspects of the example, which leads to a large gap between the actual
Rust code and the verified �Rust model. For example, neither approach
supports verifying panic safety. Second, while RustBelt and RustHornBelt
are similar, they are still two different verification approaches that make
different assumptions about clients: RustBelt assumes that clients are
safe (or unsafe and verified) while RustHornBelt assumes that clients
are verified. As a result, if we wanted to verify both the safety of a
safe abstraction and its functional correctness, we would have to do
two completely separate proofs, one in each of these logics. Third, our
study found that for 92.3% of the crates containing some unsafe code, no
more than 10% of all code is unsafe. While RustBelt and RustHornBelt
can be used to verify not only unsafe code, but also safe and mixed
safe-unsafe code, these approaches are significantly less automated than
SMT-based approaches and require deep-expert knowledge. In Chapter 7,
we also discussed Verus [109], a verifier for a dialect of Rust with its
own primitives for implementing patterns such as double-linked list
that in Rust require using unsafe code. While Verus is lightweight and
reasonably expressive, it requires all code to be verified in Verus [111] and
neither supports Rust‘s raw pointers nor verifying that a safe abstraction
is actually safe. To summarize, currently, no approach is lightweight
enough to be usable for verifying real code bases and capable of handling
the critical aspects of unsafe code.

In the introduction of the thesis, we stated our goal to develop an incre-
mental verification approach that is lightweight for common cases and
enables a smooth transition to more powerful verification methods when
needed. In this part of the thesis, we present an approach for verifying
mixed safe-unsafe Rust. Similarly to the approach presented in Part I,
this approach is based on generating the core proof in implicit dynamic
frames and layering functional specifications on top of it. However, it
solves the challenges related to unsafe code and the interaction of unsafe
code with safe code we mentioned above. For entirely safe code, the
approach presented in this part is as lightweight as the one presented
in Part I and its complexity for verifying unsafe code depends directly
on the complexity of the unsafe code2. Enabling such lightweight ver-
ification requires completely automatically deriving the core proof for
some part of the function, even in the presence of unsafe code, while
at the same time giving the user enough expressive power to verify the
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unsafe elements. The approach presented in Part I relied on the absence
of mutable access via multiple aliases. However, this property can be vio-
lated by using raw pointers. Our approach relies on two key observations.
Our first observation is that the non-aliasing requirements intended3 to
enable the compiler to optimise Rust code (such as the ones imposed
by Stacked Borrows or Tree Borrows) enable us to slice a Rust function
into managed and non-managed parts. As a result, we can reuse techniques
from Part I to automatically derive the core proof for the managed part,
thus requiring the developer to provide specifications related to memory
safety only for the non-managed part. Our second observation is that
the two goals (verifying a safe abstraction’s correctness and safety in the
presense of safe unverified clients) have a substantial common part: they
both require proving the memory safety of non-panicking executions.
Therefore, we are able to reuse the memory safety specifications for both
goals, significantly reducing the amount of specifications the user has to
write.

Contributions. In this part of the thesis, we make the following contri-
butions:

1. We refine the core proof presented in Part I to enable verification
of unsafe code that uses raw pointers. We focus on verifying the
ownership-related memory safety properties and leave checking of
provenance and aliasing of raw pointers to future work since these
topics are still under active discussion in Rust community.

2. We present a modular verification and specification approach that
enables the verification of safe and unsafe functions containing
safe and unsafe code. The presented approach enables verifying
both safety and functional correctness together. The verification
effort needed for verifying completely safe code is equivalent to the
approach presented in Part I while the effort for verifying mixed
safe-unsafe code depends directly on the complexity of the unsafe
code.

3. We show how to extend our specification and verification approach
to enable verifying memory safety of code containing implicit
control flow paths caused by potential panics and drop handlers.

4. We evaluated our approach by extending Prusti and attempting to
verify challenging examples, which revealed interesting limitations
in the underlying Viper infrastructure.

Borrowing. In this part of the thesis, we focus on verifying mixed safe-
unsafe code and consider borrowing an orthogonal concern. However,
to be able to evaluate our approach on interesting examples, we have to
support reasoning about borrows. Unfortunately, the model of borrows
wepresented inPart I does notmodel lifetimes,which are used extensively
to ensure the memory safety of safe abstractions. Therefore, we develop
a new model of borrows based on RustBelt and RustHornBelt. Since the
model is still a work in progress, we do not claim it as a contribution
yet.

Verified Properties and Trusted Assumptions. The methodology and
its prototype implementation presented in this part of the thesis ensures
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two properties. The first one is the same as presented in Part I: if a
Viper backend verifier accepts the generated proof, every execution of
the original Rust function that satisfies the user-written precondition is
guaranteed to execute without memory and runtime errors and to satisfy
the user-written postcondition. The key difference from Part I is that we
extend our work to unsafe Rust. The second property is specific to safe
abstractions: if a Viper backend verifier accepts the generated proof of a
Rust function declared as safe (which can still contain unsafe code inside
it), every execution of the original function with function arguments
matching their types is guaranteed to execute without memory errors.
These two properties are ensured under three assumptions. Two of them
are the same as in Part I: we are assuming that Viper is sound and our
modelling of Rust types and operations in Viper is correct. The third
assumption is that our new model of borrows based on RustBelt and
RustHornBelt is correct. We discuss this assumption in more detail in
Chapter 21, which presents our new model of borrows. It is important
to note that our new model of shared borrows does not depend on the
correctness of the borrow checker, unlike the one presented in Part I.

Outline. This part of the thesis is structured as follows. In Chapter 17,
we present a motivating example and discuss the challenges for verifica-
tion brought by unsafe code. Then, we present our approach bottom-up.
In Chapter 18, we present the ingredients needed to manually construct
a core proof in Viper suitable for verifying unsafe code with raw pointers
and without references. In this chapter, we focus on presenting the ingre-
dients and postpone the discussion on how to automate the generation
of the core proof for later. We call the presented core proof unsafe core
proof ; it is suitable for verifying unsafe, safe, and mixed code. In this part
of the thesis, we will refer to the core proof introduced in Part I as safe
core proof. In Chapter 19, we present the additional tools for checking
that safe abstractions guarantee memory safety even in the presence of
unverified safe clients. With the ingredients covered, Chapter 20 shows
how the new core proof for unsafe code can be linked to ideas presented
in Part I. More specifically, we show how and to what extent we can reuse
our PCS-based automatic generation of the core proof and extend the
specification language from Part I to enable specifying mixed safe-unsafe
code. We finish this part by describing our new model of borrows in
Chapter 21, presenting our implementation and evaluation in Chapter 22,
discussing related work in Chapter 23, and concluding in Chapter 24.
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In Chapter 5, we showed a linked list written in safe Rust for which
we specified its functional behaviour. Figure 17.1 repeats the example
but shows only the parts visible to the client. In the original example,
methods index and index_mut are implemented by recursively traversing
the list, which is inefficient. Therefore, wewould like to implement amore
efficient data structure using unsafe code. However, the client should
not be able to tell the two data structures apart (except for differences in
performance), which means that our implementation must satisfy two
properties. First, it must be a safe abstraction that ensures memory safety
even when used by unverified safe clients. Second, it must satisfy the
specifications given in Figure 17.1.

1 pub struct Node<T> { /* ... */ }
2 impl<T> Node<T> {
3

4 #[ensures(result.len() == 0)]
5 pub fn new() -> Self { /* ... */ }
6

7 #[pure]
8 pub fn len(&self) -> usize { /* ... */ }
9

10 #[pure]
11 #[requires(0 <= i && i < self.len())]
12 pub fn index(&self, i: usize) -> &T { /* ... */ }
13

14 #[requires(0 <= i && i < self.len())]
15 #[ensures(result === old(self.index(i)))]
16 #[after_expiry(
17 self.len() == old(self.len()) &&
18 forall(|j: usize|
19 0 <= j && j < self.len() && j != i ==>
20 self.index(j) === old(self.index(j))
21 ) &&
22 self.index(i) === before_expiry(result)
23 )]
24 pub fn index_mut(&mut self, i: usize) -> &mut T {
25 /* ... */
26 }
27 } Figure 17.1: Linked list interface visible

by the client.

17.1 Memory Safety

Figure 17.2 shows ArrayList, a safe abstraction similar to Vec from the
standard library but providing the same interface as our linked list from
Figure 17.1. Before we discuss what we need to guarantee to show that
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ArrayList is a safe abstraction, we need to discuss how we can reason
about its memory safety. According to the Vec’s documentation [177], Vec
can be understood as a triplet (ptr, cap, len) where ptr points to amemory
block that can store cap elements of type T, the first len of which must be
initialised. Our struct ArrayList contains three fields each corresponding
to one element of the triplet: ptr (line 2), cap (line 3), and len (line 4).
index_unchecked (lines 24–28) is an unsafe method that allows the client
to obtain a shared reference to an element. The caller of this method must
ensure three properties so that this method can execute successfully and
return a shared reference. First, the caller needs to ensure the property
specified in the Vec documentation saying that ptr points to a block of
len initialised elements. Second, the caller must ensure that index i is in
range. If a programmer called index_unchecked with argument i that is
larger than capacity cap, pointer element_ptr would point to unallocated
memory and dereferencing it would lead to a memory error. Similarly,
if the function was called with i larger than length len but smaller
than the capacity cap, the pointer element_ptr would point to potentially
uninitialisedmemory andmay lead to amemory error. Third, Rust shared
references must be dereferenceable for the duration of their lifetime, or as
we would say in the terminology of Part I, they carry the read capability.
Therefore, the caller must give the capability to index_unchecked to create
such a reference for the specified lifetime. Out of these three properties,
the specification language presented in Part I allows specifying only that
parameter i is in range, but not the other two.

To support specifying the required properties, we need to extend our
specification language from Part I with support for specifying alloca-
tion, initialisation, and owned capabilities of memory pointed at by a
raw pointer. Since index_unchecked reads from pointer element_ptr, the
pointer must point to initialisedmemory. If the pointer were used towrite
to a memory location, it would be sufficient for the memory to be only
allocated. To support these two cases, we need to be able to distinguish
between allocation and initialisation in our specification language. In
addition to these two properties, unsafe functions may have additional
requirements that have to be ensured to guarantee memory safety. For
example, the deallocation function dealloc can be called only for memory
blocks allocated on the heap, and it has to be called with exactly the
same arguments as the ones used when allocating the memory block.
Besides being able to specify allocation, initialisation, and capabilities
of contiguous memory blocks, our specification language must be able
to capture more complex patterns to support realistic examples. For
example, function std::ptr::copy [178] copies data from one memory
block to another, and the blocks can be overlapping.
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1 pub struct ArrayList<T> {
2 ptr: *mut T,
3 cap: usize,
4 len: usize,
5 }
6 impl<T> ArrayList<T> {
7 pub fn new() -> Self {
8 let cap = if size_of::<T>() != 0 {
9 0
10 } else {
11 isize::MAX as usize
12 };
13 Self {
14 ptr: dangling_ptr(),
15 len: 0,
16 cap,
17 }
18 }
19

20 pub fn len(&self) -> usize {
21 self.len
22 }
23

24 pub unsafe fn index_unchecked(&self, i: usize) -> &T {
25 let element_ptr = self.ptr.add(i);
26 let result = unsafe { &*element_ptr };
27 result
28 }
29

30 pub fn index(&self, i: usize) -> &T {
31 assert!(i < self.len);
32 unsafe { self.index_unchecked(i) }
33 }
34

35 pub fn index_mut(&mut self, i: usize) -> &mut T {
36 /* Similar to index. */
37 }
38 }
39 impl<T> Drop for ArrayList<T> {
40 fn drop(&mut self) {
41 if size_of::<T>() != 0 && self.cap != 0 {
42 let mut i = self.len;
43 while i > 0 {
44 i -= 1;
45 let element_ptr = self.ptr.add(i);
46 unsafe { drop_in_place(element_ptr); }
47 }
48 let ptr = self.ptr as *mut u8;
49 let layout = Layout::array::<T>(self.cap);
50 unsafe { dealloc(ptr, layout); }
51 }
52 }
53 }

Figure 17.2: A safe abstraction of a list using unsafe code.
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17.2 Encapsulating Unsafety

We discussed in the previous section that method index_unchecked is un-
safe, which means that ensuring memory safety is a shared responsibility
between the implementation and the caller. The developer writing the
implementation of the method has to explicitly specify the conditions
necessary for the method to execute without memory errors. The devel-
oper writing the implementation of the caller has to uphold the specified
conditions. Method index (lines 30–33) is a safe wrapper around index_-

unchecked. As such, it is the sole responsibility of index to ensure the
three properties we mentioned in the previous section that are needed to
guarantee that index_unchecked executes safely. Importantly, index must
ensure these properties even when it is used by unverified safe clients
that may not respect its precondition. As a result, index is not allowed
to make assumptions about its clients for memory safety, meaning its
precondition for memory safety must be true.

Rust programmers use two key techniques for ensuringmemory safety of
safe abstractions, such as method index: runtime assertions and invariants.
index‘s implementation uses the assert on line 31 to ensure the require-
ment that parameter i is in the valid range. This assertion illustrates
an important difference between assertions when verifying functional
correctness, our primary focus in Part I, and when verifying memory
safety of safe abstractions. In the former, our goal was to prove that asser-
tions never fail. In the latter, we must prove that the runtime assertions
are sufficient to guarantee memory safety. An example of an invariant
would be the requirement from Vec‘s documentation that ptr points to a
memory block of len initialised elements. Vec‘s developers aim to ensure
that this informal invariant is maintained by all Vec‘s methods.

Runtime assertions and invariants are powerful tools for ensuring that
safe abstractions are memory-safe even when used by arbitrary safe
clients. However, using them correctly is challenging, especially because
invariants written in English prose are prone to be imprecise. First, since
the safe abstraction is required to work with arbitrary safe clients, the
programmer must consider all possible edge cases. For example, generic
parameter T in our example could be instantiated with a zero-sized type
(ZST). The Rust API for allocating raw memory blocks requires allocated
blocks to have a positive size and, therefore, the ArrayList is required to
avoid calling the allocation API when it is instantiated with a zero-sized
type. As a result, constructor new (lines 7–18) and destructor drop (lines
40–52) treat ZSTs specially. Second, the programmer has to ensure that
the invariants and runtime assertions are sufficient to guarantee memory
safety. For example, if we omitted the assert (line 31) in method index,
the method would still be functionally correct: it is guaranteed to return
the correct element when called in a context that satisfies the three safety
requirements. However, it would not guaranteememory safety. Third, the
programmer has to ensure that safe clients cannot violate the invariant.
Our ArrayList ensures this property by making the fields private and
requiring that all safe methods that may modify these fields preserve
the invariant. Solving all these challenges requires great expertise and
care from the programmer to consider all cases. However, the situation is
aggravated by Rust features like panics that can lead to implicit control
flow, as elaborated next.
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1: It is possible to configure the compiler
to abort the process immediately instead
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is sometimes used as a workaround for
problems caused by panics. However,
unwinding on a panic is the default and
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fore, it is important to ensure that un-
winding does not cause memory errors.
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17.3 Panic Safety and Drop Handlers

In the previous section, we showed that programmers use runtime asser-
tions to prevent executions that may lead to memory errors. assert!(...)
macros in Rust work similarly to assert statements in Java. When a
Java assert statement fails, an exception is thrown, and the execution is
propagated up the stack until it is caught or reaches the top of the stack
and terminates the thread. Similarly, when a Rust assert!(...) fails, a
panic is raised, and the stack is unwound by implicitly propagating the
execution up the stack until the panic is caught or the top of the stack is
reached, which results in terminating the thread1. Panics significantly
complicate reasoning about code because Rust does not have a notion of
non-panicking functions and, therefore, the programmer should expect
that any called function, whose implementation they do not know, could
panic, causing stack unwinding at the most unexpected program points.
Unfortunately, even the documentation for functions in the standard
library often does not explicitly mention whether a function could panic.
[172, 173] found that especially problematic are client-provided functions,
whose panics programmers implementing safe abstractions forget often
to handle. For example, the comparison a == b in the following snippet
is (in general) a call to a user-provided function and may panic.

1 pub fn compare<T: Eq>(a: &T, b: &T) -> bool {

2 a == b

3 }

In the previous section, we mentioned that safe abstractions rely on
invariants to prevent memory errors; therefore, it is crucial for the code
to maintain them. However, methods often need to temporarily break an
invariant, which is fine as long as the invariant is restored before calling
methods that expect the invariant to hold. Panics may lead to calling
methods when an invariant is broken in two ways. First, drop handlers
such as the one on lines 40–52 in Figure 17.2 typically assume that the
invariant of the deallocated type holds. When a stack is unwound by a
panic, all local variables are deallocated by calling their drop handlers.
If any of the variables is in an invalid state, a memory error may be
caused when executing its drop handler. Second, a panic is an implicit
return, and it is the responsibility of the safe abstraction to restore the
invariant when returning from a method. For example, the following
snippet shows a method that overrides the contents of ArrayList with
new data from some source input.

1 pub fn override_from_input<T: Input>(

2 &mut self,

3 input: &mut T,

4 ) {

5 unsafe {

6 let len = read_into(input, self.ptr, self.cap);

7 self.len = len;

8 }

9 }

If function read_into panics, the execution will return to the caller with
the number of initialised elements notmatching the value stored in the len
field. The caller then can catch the panic and then trigger a memory error
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by calling index with an argument that accesses an uninitialised element
or by calling the drop handler that tries to deallocate an uninitialised
element.

Programmers use three techniques to prevent memory errors caused by
panics when an invariant is broken. The first technique programmers
use is ensuring that no code can panic when an invariant is temporarily
broken. For example, the following snippet shows a comment from the
implementation of the swap function in the standard library [179] stating
an assumption that none of the called functions are supposed to panic.
However, this property is not even mentioned in the documentation of
the called functions.

1 // SAFETY: exclusive references are always valid to

2 // read/write, including being aligned, and nothing

3 // here panics so it's drop-safe.

4 unsafe {

5 let a = ptr::read(x);

6 let b = ptr::read(y);

7 ptr::write(x, b);

8 ptr::write(y, a);

9 }

The second technique is ensuring that the invariant of the data structure
always holds [180]. For example, the following snippet shows a variation
of method override_from_input from above with an additional state-
ment that sets len to zero before calling read_into, making all elements
unreachable in case of a panic.

1 pub fn override_from_input<T: Input>(

2 &mut self,

3 input: &mut T,

4 ) {

5 unsafe {

6 self.len = 0;

7 let len = read_into(input, self.ptr, self.cap);

8 self.len = len;

9 }

10 }

The downside of this approach is that the initialised elements will be
leaked in the case of a panic. While this solution is not ideal, it guarantees
memory safety because leaking resources in Rust is considered safe
(programmers can explicitly leak resources in safe code using the safe
function std::mem::forget [181]).

In some cases, memory leaks are avoided using the third and last
technique: fixing the broken invariantwhen apanic occurs. This technique
relies on the fact that drop handlers are executed even when a panic
occurs, which allows the execution of custom code to fix the invariant.
Examples we found that use this technique are large and complex.
Figure 17.3 shows pseudo-code for the method dedup that removes
duplicate elements from ArrayList. The pseudo-code is based on the
implementation of Vec::dedup_by [182]. Lines 7–10 declare a method-
private struct FillGapOnDrop that takes amutable reference to the array list
and also keeps track information which elements are properly initialised.
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An instance of the struct is created on line 17 and stored in variable gap.
The while loop that does the actual deduplication calls the equality and
dropmethods on instances of T. These methods are provided by the client
code and can panic. If a panic occurs, the destructor of FillGapOnDrop on
lines 11–15 is called, which restores the invariant of the list. If the execution
does not panic, the variable gap is forgotten on line 29, which prevents
the execution of its drop handler. While the example shown in Figure 17.3
focuses on the last technique, the actual implementation of Vec::dedup_by
also relies on parts of the code not panicking. All three techniques are
error-prone and require extreme care from the programmer to ensure
that memory safety is guaranteed in all cases, which makes those panic
safety properties an important target for verification.

1 pub fn dedup(&mut self) {
2 let len = self.len();
3 if len <= 1 {
4 return;
5 }
6

7 struct FillGapOnDrop {
8 list: &mut ArrayList<T>,
9 /* ... */
10 }
11 impl Drop for FillGapOnDrop {
12 fn drop(&mut self) {
13 /* ... */
14 }
15 }
16

17 let mut gap = FillGapOnDrop {
18 list: self,
19 /* ... */
20 };
21 let ptr = gap.list.ptr;
22

23 /* While loop that does the actual deduplication. */
24

25 // Fix the invariant.
26 gap.list.len = /* ... */
27

28 // Forget the drop guard.
29 mem::forget(gap);
30 }

Figure 17.3: A pseudo-code for dedup
method for ArrayList based on
Vec::dedup_by implementation [182].

One aspect hidden in the simplified example illustrating the third tech-
nique (Figure 17.3) is that the drop trait implementation used for fixing
the broken invariant is often not a behavioural subtype of trait Drop.
Method drop of trait Drop must be callable on any valid instance of the
type, which means that its precondition should be simply true. However,
the drop handlers used to fix invariants typically have additional require-
ments to be ensured at the call site. Drop handlers not being behavioural
subtypes of the Drop trait is acceptable because structs like FillGapOnDrop
are method-private and never passed as generic arguments. As a result,
the drop handler is invoked only from program points where it is known
what implementation will be executed.
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2: In Rust, using unsafe code to store the
number 5 in a variable of type bool is
allowed. However, moving or copying
this variable while it stores 5 would im-
mediately trigger undefined behaviour.

It is worth noting that drop handlers are not entirely normal Rust
functions. In particular, their signature is a lie: &mut self in a regular Rust
method means that the method can assume that the reference self is
pointing to a valid value when the method is called and that the method
needs to ensure that the reference is still pointing to a valid value at the
end of the method. However, drop handlers are not intended to ensure
that the value is completely valid at the end of the method because they
would not be able to deallocate memory.

17.4 Verification Approach Overview

In the remaining chapters of this part, we show how we generalise the
approach we took in Part I to address the challenges mentioned in this
chapter.We start by extending the core proof presented in Part I to support
verifying memory safety of mixed safe-unsafe code in Chapter 18. In that
chapter, we present four major changes. First, we distinguish between
allocation and initialisation capabilities. An allocation capability expresses
ownership of an allocated but potentially uninitialisedmemory block. An
initialisation capability expresses ownership of a memory block that is
allocated and initialised (in Part I, we had only initialisation capabilities).
Second, we change our model of addresses to support raw pointers
and pointer arithmetic. Third, we introduce a new kind of specification
(such as preconditions, postconditions, and invariants), which we call
core specifications. Unlike regular specifications for verifying functional
correctness and the absence of panics, core specifications enable users
to specify conditions required to ensure memory safety such as the
ownership and status of memory referenced by raw pointers. Since we
base our core proof on implicit dynamic frames, a permission logic, it
naturally captures capabilities to heap-allocated memory. Fourth, we
enable users to formally state their intended invariants like the one
mentioned in the documentation of Vec by writing them as core type
invariants that express when a value is considered a valid instance of its
type. We require the core type invariants to hold always when a value
is moved, copied, or borrowed (we treat returning from a function as
implicitly moving the borrowed values back to the caller) because these
are the locations at which Rust requires values to be valid2.

We build on this generalised core proof to enable verification of the
two goals we identified in the introduction of this part: encapsulating
unsafety in safe abstractions and functional correctness. As mentioned
above, these two goals require different interpretations of specifications
and runtime assertions. When verifying the memory safety of a safe
abstraction, safe functions cannot rely onpreconditions formemory safety,
and runtime assertions are just early returns. When verifying functional
correctness, runtime assertions must succeed when preconditions hold.
We address this conflict by verifying each function twice: inmemory-safety
mode, we verify the function‘s memory safety by omitting functional
preconditions (unsafe functions can rely on core preconditions) and
treating each runtime assertion as an early return; in functional-correctness
mode, we verify that runtime assertions cannot fail when the function‘s
preconditions are upheld. An important aspect of this design choice to
verify twice is doubling the work for the verifier rather than for the user.
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We explain the differences between the two modes and how we handle
the challenges related to verifying the safety of abstractions in Chapter 19.
In Chapter 20, we present how we extend the automation presented in
Part I to mixed safe-unsafe code. For example, even though method len

on lines 20–22 in Figure 17.2 is declared on an internally unsafe type,
it is entirely safe and we would like to be able to verify it without any
additional input from the user. In that chapter, we present how we solve
this challenge and enable lightweight specifications like the ones shown
in Figure 17.1 for safe abstractions.

Our approach presented in this part of the thesis extends Part I with
support for raw pointers, unsafe functions, and drop handlers. While we
rely on guarantees given by Stacked Borrows or Tree Borrows models, we
do not verify that programs adhere to these models. Our refined model
of references is still a work in progress.
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Constructing the core proof for safe Rust in Part I was a two-step process.
First, we defined the ingredients of the core proof: a model of memory
locations, a model of Rust (MIR) operations, and a model of capabilities
as permission logic resources together with ghost operations for trans-
forming them. Then, we showed how, using information available in the
Rust compiler, we can automatically combine these ingredients to justify
the safety of each Rust operation. In this part of the thesis, we aim to
construct the core proof suitable for verifying the safety of unsafe Rust
code. In the rest of this part, we use “safe core proof” to refer to the core
proof presented in Part I and “unsafe core proof” to refer to the core
proof presented in this part of the thesis. In this chapter, we focus on the
first step of defining the core proof: defining the ingredients. Similarly to
Part I, we can automatically generate the definitions of ingredients based
on the information available in the Rust compiler. However, automatically
combining these ingredients into a complete core proof for any example
of unsafe code is impossible (if a complete and automatic approach for
checking memory safety existed, we would not need unsafe code). In
this chapter, we assume that the user manually combines the ingredients
into a core proof; we discuss to what extent and how we can automate
the process in Chapter 20.

In safe Rust, memory is managed automatically, and the compiler guar-
antees that safe code can read memory when it represents valid instances
of types. In unsafe Rust with raw pointers and unsafe functions, pro-
grammers can manually manipulate memory, and it is the programmer‘s
responsibility to do that correctly. As a result, we want to ensure that
memory accesses performed by Rust operations are safe by constructing
a core proof for code containing unsafe operations. For example, we want
to guarantee that code only writes to allocated memory. We call such core
proof that guarantees memory safety of unsafe, safe, and mixed code
unsafe core proof. We will refer to the core proof introduced in Part I as safe
core proof. In a permission logic, we can show that an operation is safe by
proving that the context executing the operation has sufficient permis-
sions to the necessary resources. Similarly to Part I, we model capabilities
as permission logic resources, which can be transferred and transformed
but cannot be fabricated. We create and destroy the resources that model
allocation capabilities exactly when the Rust allocation primitives pre-
scribe it. We made the resources that model initialisation capabilities
dependent on resources that model allocation capabilities to ensure that
only allocated memory can be initialised. The core proof ingredients
presented in this chapter enable manually specifying that the resources
are passed around appropriately to justify the safety of Rust operations.

Since we target a substantial subset of a realistic programming language,
we need to consider many details and edge cases. When designing the
ingredients, we considered two possible designs. The first option was to
try having as few general primitives as possible. The second optionwas to
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have more but more specialised and easier-to-use primitives. We decided
to go with the latter option because having easier-to-use primitives aligns
with our goal of enabling programmers without extensive training in
verification to verify code. We present the ingredients of the unsafe core
proof by going over types from the simplest ones to the more complex
ones. In Section 18.1, we present how we change the core proof to also
capture allocation by presenting the updated model of primitive types. In
Section 18.2, we present the composite types and explain how we change
the modelling of fields to accommodate pointer arithmetic. Before we
present types with invariants in Section 18.4, we provide a specification
language that enables the user to combine the ingredients into a core
proof in Section 18.3. In Section 18.5, we present low-level but essential
details on how we define addresses to satisfy the requirements of certain
constructs we use in our encoding. Similarly to Part I, we use Viper and
Prusti to make examples concrete and easier to understand. However, the
approach is not limited to Viper and is applicable to a general separation
logic.

18.1 Primitive Types

In this section, we show the updated model of primitive types: integers,
booleans, and raw pointers (since a raw pointer gives no capabilities to
its target, we treat it as a primitive value that stores the target‘s address).
Figure 18.1 shows a simple Rust function that assigns value 42 to variable
a. The comments in the code indicate the places where the compiler
inserts statement StorageLive(a) (line 3) that allocates a on the stack and
statement StorageDead(a) (line 5) that deallocates a. The overall structure
of the core proof is the same as presented in Part I: we model Rust types
as Viper predicates and translate Rust functions into Viper methods.

Figure 18.1: A simple Rust program that
assigns value 42 to variable a of type
i32.

1 fn main() {
2 let a: i32;
3 // StorageLive(a)
4 a = 42;
5 // StorageDead(a)
6 }

An important difference between the safe core proof presented in Part I
and the unsafe core proof is that the former models only initialisation
capabilities while the latter models both initialisation and allocation
capabilities. Since having an initialised memory location means that
it is also allocated, we model the initialisation capability as allocation
capability combined with the knowledge that the memory location
contains a valid instance of a type. Similarly to the safe core proof, in
the unsafe core proof, we model capabilities using Viper predicates.
Figure 18.2 shows an updated predicate Own<i32> for modelling an
initialised value of i32 in a Viper-like syntax. We use a different name for
the predicate to distinguish between the two versions of the predicate.
Also, to make code more readable, we use predicate names formed by
using a syntax similar to generics by putting the Rust type between angle
brackets “<” and “>” (Viper does not support generic predicates).
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1 predicate Own<i32>(address: Address) {
2 acc(MemoryBlock(address, size<i32>()), write) &&
3 is_valid<i32>(
4 from_bytes<i32>(bytes(address, size<i32>()))
5 )
6 } Figure 18.2: A predicate representing an

allocated and initialised value of i32.

[71]: Jung et al. (2018), ‘RustBelt: securing
the foundations of the Rust program-
ming language’

Predicate Own<i32>(addr) models an initialisation capability to a valid
instance of type i32 at address addr. We model the allocation capability
using predicate MemoryBlock on line 2 that represents ownership of
untyped raw memory. The other conjunct on lines 3–5 captures the
knowledge that the memory block represents a valid instance of type i32.
The MemoryBlock predicate has two parameters: address and size. The
address matches the address of the wrapping Own<i32> predicate while
size<i32>() is a function that returns the size of i32, which is 4 bytes.
bytes<i32> is a Viper heap-dependent function that returns the bytes
stored in the memory block. Function from_bytes<i32> is a total function
that maps the bytes to a snapshot representing a mathematical value
of a i32 integer. Unlike in Part I where snapshots represent only valid
values, in our new model, a snapshot represents a valid value only if
function is_valid<i32> returns true. We discuss snapshots in more detail
in Section 20.2.

With the most important predicates covered, we can show how we trans-
late a Rust function into Viper. Figure 18.3 shows a simplified encoding of
function main from Figure 18.1. Viper variable a_address (line-2) models
the address of Rust variable a. If a Viper variable is not assigned, it has an
unconstraint symbolic value of its type.Weuse this property to encode the
fact that the address of variable a is unknown. Unsurprisingly, we model
allocation and deallocation of a by inhaling (line 5) and exhaling (line 13)
predicate MemoryBlock. Rust requires a memory block to be deallocated
with the same parameters as it was allocated. We ensure this property by
following the RustBelt [71] approach and introducing a predicate that
models a capability to deallocate a memory block. This predicate tracks
the parameterswithwhich thememory blockwas allocated, guaranteeing
that it is deallocated in the sameway it was allocated. Unlike RustBelt that
models all memory on the heap, we distinguish between heap and stack
allocated memory using MemoryBlockDropHeap and MemoryBlockDropStack

predicates, respectively. Encoding of StorageLive(a) statement inhales
an instance of MemoryBlockDropStack, and that instance is exhaled by the
encoding of matching StorageDead(a).

One advantage of our encoding for safe Rust is that we could use
Viper assignments to model Rust assignments. This approach no longer
works for the new encoding because Viper does not allow assigning to
predicates. Instead, wemodel assignments by using helper methods such
as assign_constant<i32>, which is called on line 9. These helper methods
are implemented using more primitive operations. For example, method
assign_constant<i32> (lines 17–23) uses abstract method write_bytes to
write number 42 to the memory block and then folds an instance of the
Own<i32> predicate to indicate that this memory now holds a valid value
of type i32. To deallocate the memory for a, we need to convert Own<i32>
back into MemoryBlock. We do this conversion by calling another helper
method forget_initialisation<i32> on line 12.
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1 method main() {
2 var a_address: Address
3

4 // StorageLive(a)
5 inhale acc(MemoryBlock(a_address, size<i32>()), write) &&
6 acc(MemoryBlockDropStack(a_address, size<i32>()), write)
7

8 // a = 42;
9 assign_constant<i32>(a_address, snap_constructor<i32>(42))
10

11 // StorageDead(a)
12 forget_initialisation<i32>(a_address)
13 exhale acc(MemoryBlock(a_address, size<i32>()), write) &&
14 acc(MemoryBlockDropStack(a_address, size<i32>()), write)
15 }
16

17 method assign_constant<i32>(address: Address, constant: Snap<i32>)
18 requires acc(MemoryBlock(address, size<i32>()), write) && is_valid<i32>(constant)
19 ensures acc(Own<i32>(address), write) && snap<i32>(address) == constant
20 {
21 write_bytes(address, size<i32>(), to_bytes<i32>(constant))
22 fold acc(Own<i32>(address), write)
23 }
24

25 method forget_initialisation<i32>(address: Address)
26 requires acc(Own<i32>(address), write)
27 ensures acc(MemoryBlock(address, size<i32>()), write)
28 {
29 unfold acc(Own<i32>(address), write)
30 }

Figure 18.3: A simplified encoding of function main from Figure 18.1 into Viper.

18.2 Composite Types

Figure 18.4 shows an example similar to Figure 18.1, but with a composite
type Pair that is a pair of integers instead of the primitive type i32.
Predicate Own<Pair>, which models an allocated and initialised value of
the Pair is shown in Figure 18.5. Similarly to the encoding presented
in Chapter 2, the predicate‘s body contains an Own<i32> predicate for
each field to indicate that the field is allocated and initialised. The
main difference between the two encodings is that in Chapter 2, we
used object identities instead of addresses to identify objects and had
an additional indirection via Viper Ref-typed fields, which enabled us
to model Rust assignments as Viper assignments. Unfortunately, this
model is unsuitable for modelling unsafe Rust code that may perform
pointer arithmetic for two reasons. First, the object identity changes
when, for example, a field is reassigned while the address stays the same.
This difference does not matter for safe code that works on the level
of places but is crucial for unsafe code that may manipulate addresses
directly. Second, the indirection via Ref-typed fields requires providing
permissions to these fields, while in Rust, pointer arithmetic itself does
not require any capabilities. Therefore, we use abstract addresses instead
of object identities for our unsafe core proof.
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1 struct Pair {
2 first: i32,
3 second: i32,
4 }
5 fn main() {
6 let a: Pair;
7 // StorageLive(a)
8 a = Pair { first: 41, second: 43, };
9 // StorageDead(a)
10 }

Figure 18.4: A simple Rust program that creates a variable of type Pair.

1 predicate Own<Pair>(address: Address) {
2 acc(Own<i32>(field_address_Pair_first(address)), write) &&
3 acc(Own<i32>(field_address_Pair_second(address)), write)
4 }

Figure 18.5: A simplified predicate representing an allocated and initialised value of Pair from Figure 18.4. To simplify explanation, we
omitted the MemoryBlock used to represent padding.

1: We could have continued using the
Ref type but decided that using a new
type makes the encoding clearer.

2: Rust provides attributes that con-
trol what guarantees the compiler gives
about the layout. By default, the com-
piler gives no guarantees, but, for exam-
ple, adding the annotation #[repr(C)]
guarantees that the compiler will pre-
serve the field order during the compi-
lation. We could support such annota-
tions by adding axioms that constrain
the values the field address computation
functions return.

We model addresses using a newly-defined Viper type Address1, which
we describe in more detail in Section 18.5. As we already showed in
Figure 18.2, an address of a primitive type matches the address of the
underlyingmemory block. For composite types like Pair, we compute the
addresses of the fields by using uninterpreted mathematical functions.
Function field_address_Pair_first takes the address of the pair and
computes the address of field first. Function field_address_Pair_second

does the same for field second. Our model expresses that Rust by default
gives no guarantees about the layout. For example, it does not guarantee
whether field first or field second will be first in memory2.

Another challenge for supporting composite types is reshaping MemoryBlock
predicates. Figure 18.6 shows a simplified encoding of function main from
Figure 18.4 into Viper. As can be seen on lines 5 and 14, StorageLive and
StorageDead statements operate on memory blocks of size size<Pair>()

while the Own<i32> predicate contains amemory block of size size<i32>().
Therefore, we introduce two operations for splitting and joining mem-
ory blocks. Helper method assign_composite<Pair> (lines 18–30), which
encodes the assignment to variable a, uses method split_memory_block

(on line 26) to split the memory block for Pair into memory blocks for
its fields. Then, it calls for each field the helper method assign_constant,
which consumes the memory block of size size<i32>() and produces an
instance of Own<i32> predicate. Lastly, assign_composite<Pair> folds the
predicates for fields into a predicate for the entire Pair. Similarly, helper
method forget_initialisation<Pair> (lines 32–40) unfolds Own<Pair>

into its fields, calls helper methods to convert fields into the underlying
memory blocks, and uses join_memory_block<Pair> (line 39) to recon-
struct the memory block for the entire struct. Many helper methods
for composite types have a similar structure: they divide the predicate
either by unfolding Own or splitting the memory block, recursively call
the helper methods for fields, and recombine the new predicate either by
folding Own or joining the memory blocks.

In our encoding, we axiomatise the split and join operations for each
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type. We made this choice because we wanted to assume about layouts
of Rust types as little as possible. However, if we specified the layout of a
type, we could define and verify split and join operations for that type
by changing predicate MemoryBlock from abstract to the one shown in the
following snippet in Viper-like syntax.

1 predicate MemoryBlock(address: Address, size: Snap<usize>) {

2 forall i: Snap<usize> :: 0 <= i && i < size ==>

3 acc(MemoryBlockByte(byte_offset(address, i)), write)

4 }

Intuitively, the body of this predicate is a separating conjunction of a
contiguous sequence of size bytes starting at address. As we mentioned
in the introduction of the thesis, such potentially unbounded sets of
permissions in permission logics are modelled using iterated separating
conjunctions. In Viper, the iterated separating conjunction is written
using a quantifier, as shown in our snippet. By using this definition of
MemoryBlock, we could define split_memory_block<Pair> as an unfolding
of the MemoryBlock for Pair followed by folding of memory blocks for its
fields as shown in the following snippet.

1 method split_memory_block<Pair>(address: Address)

2 requires acc(MemoryBlock(address, size<Pair>), write)

3 ensures acc(MemoryBlock(field_address_Pair_first(address), size<i32>), write)

4 ensures acc(MemoryBlock(field_address_Pair_second(address), size<i32>), write)

5 {

6 unfold acc(MemoryBlock(address, size<Pair>), write)

7 fold acc(MemoryBlock(field_address_Pair_first(address), size<i32>), write)

8 fold acc(MemoryBlock(field_address_Pair_second(address), size<i32>), write)

9 }

While this way, we can reduce the number of trusted methods, we
decided that keeping assumptions about the layout to the minimum is
more important.
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1 method main() {
2 var a_address: Address
3

4 // StorageLive(a)
5 inhale acc(MemoryBlock(a_address, size<Pair>()), write) &&
6 acc(MemoryBlockDropStack(a_address, size<Pair>()), write)
7

8 // a = Pair { first: 41, second: 43, };
9 assign_composite<Pair>(
10 a_address, snap_constructor<i32>(41), snap_constructor<i32>(43))
11

12 // StorageDead(a)
13 forget_initialisation<Pair>(a_address)
14 exhale acc(MemoryBlock(a_address, size<Pair>()), write) &&
15 acc(MemoryBlockDropStack(a_address, size<Pair>()), write)
16 }
17

18 method assign_composite<Pair>(
19 address: Address,
20 constant_first: Snap<i32>,
21 constant_second: Snap<i32>
22 )
23 requires acc(MemoryBlock(address, size<Pair>()), write) && /* ... */
24 ensures acc(Own<Pair>(address), write) && /* ... */
25 {
26 split_memory_block<Pair>(address)
27 assign_constant(field_address_Pair_first(address), constant_first)
28 assign_constant(field_address_Pair_second(address), constant_second)
29 fold acc(Own<Pair>(address), write)
30 }
31

32 method forget_initialisation<Pair>(address: Address)
33 requires acc(Own<Pair>(address), write)
34 ensures acc(MemoryBlock(address, size<Pair>()), write)
35 {
36 unfold acc(Own<i32>(address), write)
37 forget_initialisation<i32>(field_address_Pair_first(address))
38 forget_initialisation<i32>(field_address_Pair_second(address))
39 join_memory_block<Pair>(address)
40 }

Figure 18.6: A simplified encoding of function main from Figure 18.4 into Viper.



172 18 Verifying Memory Safety

18.3 Specification Language for Memory Safety

The previous two sections presented how we encode safe types in
the updated core proof suitable for verifying mixed safe-unsafe code.
Since unsafe code is used in cases where safe code is insufficiently
expressive, it is inevitable that, in some cases, the user will have to
manually fill in parts of the core proof when verifying an unsafe program.
In particular, the users have to be able to specify three things: the
conditions necessary to ensure memory safety, the capabilities that are
transferred from one function to another during a function call, and the
ghost operations used to transform capabilities. Users can specify the
conditions necessary to ensure memory safety using core specifications
such as core preconditions and core postconditions. Core preconditions
express the conditions required to ensure memory safety but do not
imply properties related to functional correctness, such as the absence
of panics. Only unsafe functions are allowed to have core preconditions
since only unsafe functions are allowed to rely on preconditions for
their memory safety. The key use of core specifications is for expressing
capability transfer. For example, by writing capability predicate own!(*p) in
the core precondition, the user expresses that the initialisation capability
to the memory referenced by raw pointer p is transferred from the caller
to the callee. We encode capability predicates into Viper predicates or
iterated separating conjunctions of Viper predicates. Users can invoke a
ghost operation by calling a corresponding Rust macro.

Table 18.1: Variants of predicates for
specifying initialisation and allocation
capabilities.

Variant \ Capability Allocation Initialisation

Single raw!(...) own!(...)

Range raw_range!(...) own_range!(...)

Set raw_set!(...) own_set!(...)

This section presents the capability predicates and ghost operations sup-
ported by our approach. As mentioned earlier, we decided to provide the
users with potentially less general but easier-to-use constructs. Therefore,
we have three main variants of predicates for specifying capabilities
shown in Table 18.1, each with its own ghost operations. In Subsec-
tion 18.3.1, we present the simplest variant that enables the user to specify
a capability to a singlememory location. In Subsection 18.3.2, we go from
a single memory location to a group of memory locations and present
two variants of capability predicates. One variant enables us to specify
capabilities for a contiguous range of memory locations. The other variant
enables specifying capabilities to a set of memory locations. Important
examples require us to convert from capabilities to a contiguous range of
memory blocks to a capability to a memory block encompassing all these
smaller blocks and back. We present the necessary ghost operations in
Subsection 18.3.3. In Subsection 18.3.4, we present an additional variant
needed for specifying rare but important cases that require capabilities
to a range of memory locations with holes. In the last subsection, we
summarise the presented specification constructs. In this chapter, we
assume functions cannot panic; we show how to verify panic safety in
Chapter 19.
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18.3.1 Allocating a Memory Block

1 fn main() {
2 unsafe {
3 let layout = Layout::new::<i32>();
4 let p_u8: *mut u8 = alloc(layout);
5 if !p_u8.is_null() {
6 let p_i32: *mut i32 = p_u8 as *mut i32;
7 assign(p_i32);
8 forget_initialisation!(*p_i32);
9 dealloc(p_u8, layout);
10 }
11 }
12 }
13

14 #[core_requires(raw!(*p, size_of::<i32>()))]
15 #[core_ensures(own!(*old(p)))]
16 unsafe fn assign(p: *mut i32) {
17 unsafe {
18 *p = 42;
19 }
20 }

Figure 18.7: A simple Rust program that
assigns value 42 to memory allocated
on the heap. In this example, we focus
on the heap memory and do not show
StorageLive and StorageDead state-
ments.

1 #[core_requires(layout.size() > 0)]
2 #[core_ensures(
3 !result.is_null() ==> (
4 raw!(*result, layout.size()) &&
5 raw_dealloc!(
6 *result, layout.size(), layout.align()
7 )
8 )
9 )]
10 pub unsafe fn alloc(layout: Layout) -> *mut u8; Figure 18.8: Specification of function

alloc.

In this subsection, we focus on a variant of capability predicates that
enables specifying a capability to a singlememory location. Our approach
supports three kinds of capability predicates that express a capability for a
single memory location. Predicate own!(addr) expresses the initialisation
capability to memory location addr. An initialisation capability to a
struct can be unpacked into initialisation capabilities to its fields using
ghost operation unpack!(...) while pack!(...) allows packing back the
capability. Predicate raw!(addr, size) expresses an allocation capability
of size bytes to a memory location with address addr. The user can
split and join allocation capabilities using ghost operations split!(...)
and join!(...) respectively. The user can also convert an initialisation
capability into an allocation capability using ghost operation forget_-

initialisation!(...). Asmentioned above,wemust ensure thatmemory
is deallocated the same way it was allocated; for example, we need
to prevent splitting a memory block into two and deallocating the
parts separately. Therefore, predicate raw_dealloc!(addr, size, align)

expresses a capability to deallocate a heap-allocated memory block of
a given size and alignment. We illustrate the use of these capability
predicates with an example.

Figure 18.7 shows function main similar to the one in Figure 18.1, but
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Figure 18.9: Specification of function
dealloc.

1 #[core_requires(
2 raw!(*pointer, layout.size()) &&
3 raw_dealloc!(
4 *pointer, layout.size(), layout.align()
5 )
6 )]
7 pub unsafe fn dealloc(pointer: *mut u8, layout: Layout);

with the key difference that it allocates the integer manually on the
heap instead of allocating it on the stack. Unsafe function alloc called
on line 7 returns a pointer to a freshly allocated memory block or a
null pointer to indicate that the allocation failed. The struct Layout

passed as an argument to alloc is a pair of size and alignment. We
specify core preconditions using annotation #[core_requires(...)] and
core postconditions using annotation #[core_ensures(...)]. We express
that alloc returns the allocation capability to a memory block using
predicate raw!(*result, size) in its core postcondition as shown on
line 2 in Figure 18.8. Function dealloc consumes this predicate via its
core precondition (line 1 in Figure 18.9) when deallocating the memory
block. In addition to the allocation capability, function alloc produces
and function dealloc consumes a deallocation capability expressed by
predicate raw_dealloc!(...).

Compared to Figure 18.1, we moved the assignment to the integer into
function assign, called on line 4. This function consumes an allocation
capability to amemory block as specified bypredicate raw!(...) on line 14.
Assigning through pointer p on line 18 initialises this memory block
and turns it into a valid integer. The function returns the initialisation
capability of this value to the caller as specified by predicate own!(...)

in the core postcondition on line 15. Similarly to memory allocated
on the stack, function dealloc expects an allocation capability of a
memory block. Therefore, on line 8, we use forget_initialisation!(...)
to manually forget that the value referenced by the pointer is initialised.
After converting the initialisation capability to an allocation capability,
we can verify the call to function dealloc on line 9.

We encode capability predicate own!(addr) to the Viper predi-
cate Own<T>(...) (T is determined based on the type of addr),
predicate raw!(...) to MemoryBlock(...), and raw_dealloc!(...) to
MemoryBlockDropHeap. Ghost operations unpack!(...) and pack!(...) are
mapped to Viper‘s unfold and fold statements, respectively. We map the
other three ghost operations to the corresponding helper methods on the
Viper level.

18.3.2 Capability Groups

In this subsection, we introduce the specification primitives needed for
specifying and verifying functions that operate on multiple memory
locations. Typically, such functions operate on memory blocks divided
into smaller blocks intended to store values of the same type. To specify
such functions, we need a capability predicate that expresses capabilities
to a contiguous range of memory locations. Therefore, we introduce range
variants of initialisation and allocation capability predicates. Capability
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[183]: Maier (2022), ‘Towards Verifying
Real-World Rust Programs’

predicate own_range!(addr, count) expresses initialisation capabilities
to count memory locations starting at addr. Capability predicate raw_-

range!(addr, count, element_size) expresses allocation capabilities of
size element_size to count memory locations starting at addr. A less
commoncase than functions operating on contiguous ranges are functions
that operate on a group of memory locations that do not belong to
the same contiguous range. An example of such a function would be
a function operating on a doubly linked list implemented with raw
pointers. For this case, we introduce set variants of initialisation and
allocation capability predicates. Capability predicate own_set!(pset)

expresses initialisation capabilities to all memory locations pointed by
pointers stored in mathematical set pset (we support mathematical
sets by encoding them into Viper sets [183]). Similarly, raw_set!(pset,
element_size) expresses a set of allocation capabilities.

1 #[core_requires(layout.size() > 0)]
2 #[core_ensures(
3 !result.is_null() ==> (
4 own_range!(*result, layout.size()) &&
5 raw_dealloc!(
6 *result, layout.size(), layout.align()
7 )
8 )
9 )]
10 pub unsafe fn alloc_zeroed(layout: Layout) -> *mut u8; Figure 18.10: Specification of function

alloc_zeroed.

In the previous subsection, we showed how to specify functions that
operate on a bounded number of memory locations, which enabled
us to specify two out of four allocation primitives exposed by the Rust
allocationAPI. From the remaining two, allocationprimitive alloc_zeroed
allocates a memory block already initialised with zeros. Range capability
predicates enable us to specify this function as shown in Figure 18.10.
The specification of this function is very similar to the one of function
alloc with the key difference that instead of predicate raw!(...), we use
range capability predicate own_range!(...). own_range!(...) in the core
postcondition expresses that if the returned pointer is non-null, it points
to a sequence of layout.size() valid u8s (we will present the specification
constructs that can be used to express that the memory blocks contain
zeros in Chapter 20). We present the ghost operations necessary to verify
the clients of such functions in the following subsection.

We encode range and set capability predicates using Viper‘s iterated
separating conjunctions. The encoding is complicated; we discuss it in
Section 18.5. We decided to provide range and set capability predicates to
the users instead of exposing the general iterated separating conjunction
from Viper because the general version requires a deep understanding
of the feature, and by providing customised primitives, we can shield
the user from some of this complexity.

18.3.3 Reallocating a Memory Block

In the previous subsection, we introduced capability predicates for speci-
fying capabilities to groups of memory locations. In this subsection, we
introduce the ghost operations and specification constructs necessary for
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1 #[core_requires(old_layout.align() == new_layout.align())]
2 #[core_requires(old_layout.size() > 0 && new_layout.size() > 0)]
3 #[core_requires(
4 raw!(*ptr, old_layout.size()) &&
5 raw_dealloc!(*ptr, old_layout.size(), old_layout.align())
6 )]
7 #[core_ensures(
8 !result.is_null() ==> (
9 raw!(*result, new_layout.size()) &&
10 raw_dealloc!(*result, new_layout.size(), new_layout.align()) &&
11 forall(|i: usize| i < old_layout.size() && i < new_layout.size() ==>
12 old(bytes(*ptr, old_layout.size())[i]) == bytes(*result, new_layout.size())[i]
13 )
14 )
15 )]
16 #[core_ensures(
17 result.is_null() ==> (
18 // Specification that the original block is returned.
19 )
20 )]
21 pub unsafe fn realloc(
22 ptr: *mut u8,
23 old_layout: Layout,
24 new_layout: Layout,
25 ) -> *mut u8;

Figure 18.11: Specification of function realloc.

verifying important patterns such as clients of the fourth Rust allocation
primitive: realloc. We introduce four new ghost operations. Operation
split_range!(...) is similar to split!(...); it enables the user to split a
single allocation capability into a range of allocation capabilities. Oper-
ation join_range!(...) is the opposite of split_range!(...); it enables
to join a range of allocation capabilities into a single one. Operation
stash_range!(...) is similar to operation forget_initialisation!(...).
forget_initialisation!(...) enables to permanently forget that some
memory is initialised while stash_range!(...) enables to temporary
convert a range of initialisation capabilities to underlying allocation ca-
pabilities. The initialisation capabilities can be recovered using operation
restore_stash_range!(...) that requires proving that the bytes stored in
memory are still the same. We enable specifying that bytes of a memory
block are still the same by introducing function bytes to access the raw
bytes stored in a memory block. We illustrate the newly introduced
features using an example based on allocation primitive realloc.

Function realloc resizes a memory block by deallocating the existing
one and allocating a new one of the requested size. The specification of
this function is shown in Figure 18.11. The specification mixes alloc and
dealloc specifications. Similarly to dealloc, realloc consumes raw!(...)
and raw_dealloc!(...) predicates by requiring them in its core precondi-
tion. Similarly to alloc, realloc returns raw!(...) and raw_dealloc!(...)

predicates with new_layout.size() if allocation succeeds and result is
not null. However, differently from alloc, if the allocation fails, realloc
returns the original memory block. A more important difference be-
tween realloc and the other two functions is that realloc has to preserve



18.3 Specification Language for Memory Safety 177

1 #[core_requires(cap > 0)]
2 #[core_requires(
3 own_range!(*ptr, cap) &&
4 raw_dealloc!(*ptr, cap * size_of::<i32>(), align_of::<i32>())
5 )]
6 #[core_ensures(
7 !result.is_null() ==> (
8 own_range!(*result, cap) &&
9 raw_range!(*result.add(cap), 2 * cap, size_of::<i32>()) &&
10 raw_dealloc!(*result, 2 * cap * size_of::<i32>(), align_of::<i32>())
11 )
12 )]
13 #[core_ensures(/* specification for the failure case */)]
14 pub unsafe fn extend(
15 ptr: *mut i32,
16 cap: usize,
17 ) -> *mut i32 {
18 unsafe {
19 stash_range!(*ptr, cap, stash);
20 join_range!(*ptr, cap);
21 let old_layout = Layout::array<i32>(cap);
22 let new_layout = Layout::array<i32>(2 * cap);
23 let new_ptr = realloc(
24 ptr,
25 old_layout,
26 new_layout,
27 );
28 if new_ptr.is_null() {
29 // Handle the failure case.
30 } else {
31 let new_ptr_i32 = new_ptr as *mut i32;
32 split_range!(*new_ptr_i32, 2 * cap);
33 restore_stash_range!(*new_ptr_i32, stash1);
34 new_ptr_i32
35 }
36 }
37 }

Figure 18.12: Function extend that doubles the size of a memory block while preserving the initialisation of existing elements.

values while alloc and dealloc do not. The quantifier on lines 11–14 of
the realloc core postcondition expresses that the beginning of the new
memory block contains the same values as the old memory block. This
property is expressed using function bytes that returns a mathematical
sequence of bytes stored in the corresponding memory block.

It is crucial for realloc to preserve the values of the reallocated memory
block because it is typically used for resizing memory that contains
information. For example, function extend in Figure 18.12 demonstrates
the essence of extending the underlyingmemory block of a data structure
such as ArrayList. The implementation of extend is straightforward: it
doubles the size of the given memory block by calling realloc. However,
realloc requires an allocation capability to the memory block while
extend in its precondition takes a range of initialisation capabilities as
shown on line 3. Therefore, we convert the initialisation capabilities
into allocation capabilities using ghost operation stash_range!(...) on
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line 19. The parameters of this operationmatch the ones of predicate own_-
range(...) except the last one, which is the name that can be used when
restoring the stash. Since realloc expects a single allocation capability,
we additionally join the range of allocation capabilities into a single
capability using operation join_range!(...) on line 20. After the call to
realloc(...), we split the allocation capability into a range of allocation
capabilities and restore the knowledge about initialisation to the new
memory location. Since realloc guarantees that the prefix of the newly
returned memory block contains the same bytes, restoring initialisation
capabilities succeeds.

We encode operations split_range!(...) and join_range!(...) into
Viper using the split_memory_block_range and join_memory_block_range

helper methods. We encode operations stash_range!(...) and restore_-

stash_range!(...) using magic wands. Operation stash_range!(...)

splits an initialisation capability into an allocation capability and a
magic wand. The magic wand requires an allocation capability together
with a proof that the bytes are still the same and ensures the original
initialisation capability. Operation restore_stash_range!(...) applies
this magic wand to the new allocation capability. We use the name of the
stash to identify the magic wand that needs to be applied. We encode
the bytes function to function bytes on the Viper level.

18.3.4 Overlapping Memory Ranges

Figure 18.13: Specification of function
std::ptr::copy_nonoverlapping.

1 #[core_requires(
2 raw_range!(*src, count, size_of::<T>()) &&
3 raw_range!(*dst, count, size_of::<T>())
4 )]
5 #[core_ensures(
6 raw_range!(*src, count, size_of::<T>()) &&
7 raw_range!(*dst, count, size_of::<T>()) &&
8 /* quantifier expressing that values are the same */
9 )]
10 pub const unsafe fn copy_nonoverlapping<T>(
11 src: *const T,
12 dst: *mut T,
13 count: usize
14 );

In the previous subsection, we presented the own_range(...) and raw_-

range(...) predicates that are well-suited for specifying non-overlapping
memory ranges. For example, using them, it is straightforward to specify
functions such as std::ptr::copy_nonoverlapping from the Rust standard
library whose specification is shown in Figure 18.13. However, Rust pro-
grammers also use functions such as std::ptr::copy that allow copying
between overlapping ranges. This function is, for example, used for im-
plementing the Vec::dedup_by method we mentioned earlier. To support
specifying such functions, we also introduce a generalised version of
the range predicate that takes a boolean filter instead of the start and
end points of the range as shown on lines 4–9 in Figure 18.14. The filter
uses function range_contains(start_pointer, count, checked_pointer)

to check whether checked_pointer is between pointers start_pointer and
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start_pointer.add(count). Similarly to our design choice related to range
predicates, we decided to give users the function range_contains instead
of the complex primitives that can be used to implement it.

1 #[core_requires(raw_range!(*src, count, size_of::<T>()))]
2 #[core_requires(raw_range!(
3 *dst,
4 |index| {
5 index < count &&
6 !range_contains(
7 src, count, unsafe { dst.add(index) }
8 )
9 },
10 size_of::<T>()
11 ))]
12 #[core_ensures(raw_range!(*dst, count, size_of::<T>()))]
13 #[core_ensures(raw_range!(
14 *src,
15 |index| {
16 index < count &&
17 !range_contains(
18 dst, count, unsafe { src.add(index) }
19 )
20 },
21 size_of::<T>()
22 ))]
23 #[core_ensures(/* values are preserved and copied */)]
24 pub unsafe fn copy<T>(
25 src: *const T,
26 dst: *mut T,
27 count: usize,
28 ); Figure 18.14: Specification of function

std::ptr::copy.

18.3.5 Summary

Table 18.2 lists all predicates supported by our approach that can be used
to specify allocation and initialisation capabilities. Table 18.3 lists all ghost
operations for manipulating allocation and initialisation capabilities.
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Table 18.2: Predicates for specifying initialisation and allocation capabilities.

Predicate Explanation Encoding

own!(addr) Initialisation capabiltiy at addr. Predicate Own.

own_range!(addr, count) A sequence starting at addr of count
initialisation capabilities.

Iterated separating conjunction of
Own predicates.

own_range!(addr, filter) A sequence starting at addr of ini-
tialisation capabilities for elements
for which filter returns true.

Iterated separating conjunction of
Own predicates.

own_set!(pset) A set of initialisation capabilities at
locations pointed by pointers stored
in set pset.

Iterated separating conjunction of
Own predicates.

raw!(addr, size) Allocation capability of addr of size
size.

Predicate MemoryBlock

raw_range!(addr, count, size) A sequence starting at addr of count
allocation capabilities of size size.

Iterated separating conjunction of
MemoryBlock predicates.

raw_range!(addr, filter, size) A sequence starting at addr of allo-
cation capabilities for elements for
which filter returns true.

Iterated separating conjunction of
MemoryBlock predicates.

raw_set!(pset, size) A set of allocation capabilities at
locations pointed by pointers stored
in set pset.

Iterated separating conjunction of
MemoryBlock predicates.

raw_dealloc(addr, size, align) A capability to deallocate a heap-
allocated memory block.

Predicate MemoryBlockDropHeap.
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Table 18.3: Ghost operations for manually managing initialisation and allocation capabilities.

Ghost Operation Explanation Encoding

unpack!(addr) Unpacks the initialisation capability
at addr.

Viper unfold statement to unfold
the corresponding Own predicate.

pack!(addr) Packs the initialisation capability at
addr.

Viper fold statement to fold the
corresponding Own predicate.

forget_initialisation!(addr) Forgets that thememory block is ini-
tialised by converting initialisation
capability into allocation capability.

forget_initialisation helper
method to convert the Own

predicate into the MemoryBlock

predicate.

stash!(addr, name) Stash the initilisation capability un-
der name name revealing the alloca-
tion capability.

Package a magic wand from
MemoryBlock to Own predicate.

restore_stash!(addr, name) Restore the stash name. Apply the corresponding magic
wand.

stash_range!(addr, count,

name)

Stash the range of initialisation ca-
pabilities under name name.

Package a magic wand.

restore_stash_range!(addr,

name)

Restore the stash name. Apply the corresponding magic
wand.

split!(addr, T) Splits the allocation capability at
addr of size size_of::<T>() into al-
location capabilites for T fields.

split_memory_block helper
method to split the MemoryBlock

predicate into MemoryBlock

predicates for its fields.

join!(addr, T) Joins allocation capabilities of T

fields into an allocation capability
of size size_of::<T>().

join_memory_block helper method
to join MemoryBlock predicates for
fields into the MemoryBlock predi-
cate for T.

split_range!(addr, count, T) Splits the allocation capability of
size count * size_of::<T>() into a
range of allocation capabilities of
size size_of::<T>().

split_memory_block_range helper
method to split the MemoryBlock

predicate into a range of count

MemoryBlock predicates.

join_range!(addr, count, T) Joins the range of allocation capabil-
ities of size size_of::<T>() into the
allocation capability of size count *
size_of::<T>()

join_memory_block_range helper
method to join the range of
count MemoryBlock predicates into
a MemoryBlock predicate.
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18.4 Types With Invariants

In Section 18.1 and Section 18.2, we explained how our core proof for
unsafe code differs from the one presented in Part I for types that are
supported by both. In the previous section, we showed specification
language extensions that enable us to prove memory safety manually. In
this section, we demonstrate howwe combine the two to enable verifying
code that uses types with invariants as our ArrayList. As we mentioned
in the introduction of this part, we support types with invariants by
extending the automatically generated Viper predicate for that type with
the user-written invariant.

Figure 18.15: Invariant of ArrayList.

1 #[core_invariant(
2 size_of::<T>() * self.cap <= (isize::MAX as usize)
3 && !self.ptr.is_null()
4 && self.len <= self.cap
5 && (
6 if size_of::<T>() != 0 {
7 (self.cap != 0 ==> (
8 own_range!(self.ptr, self.len)
9 && raw_range!(
10 unsafe { self.ptr.add(self.len) },
11 self.cap-self.len,
12 size_of::<T>()
13 )
14 && raw_dealloc!(
15 *self.ptr,
16 size_of::<T>() * self.cap,
17 align_of::<T>())
18 ))
19 } else {
20 self.cap == (isize::MAX as usize)
21 && own_range!(self.ptr, self.len)
22 && raw_range!(
23 unsafe { self.ptr.add(self.len) },
24 self.cap-self.len,
25 size_of::<T>()
26 )
27 }
28 )
29 )]
30 pub struct ArrayList<T> {
31 ptr: *mut T,
32 cap: usize,
33 len: usize,
34 }

Figure 18.15 shows the definition of the ArrayList with its invariant
written in a #[core_invariant(...)] annotation. The invariant stated in
Figure 18.15 is more precise than the informal one we gave in Chapter 17.
For example, it states that ArrayList owns the memory block referenced
by ptr and explicitly handles the case when T is a zero-sized type.
The invariant also includes raw_dealloc!(...) predicate, which enables
the implementation of ArrayList to call dealloc and realloc functions
needed to implement, for example, extend and dropmethods. Figure 18.16
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shows the predicate for ArrayList. As discussed in Section 18.2, the pred-
icate includes a predicate for each field of ArrayList. Predicate Own<*mut

T>(...) gives permission only to the pointer itself since raw pointers,
unlike references, do not give capabilities to their targets. Using implicit
dynamic frames that support heap-dependent expressions enables us to
conjoin the invariant to the automatically generated conjuncts.We discuss
how we encode functional specifications and specifications that, like our
invariant, mix capabilities and functional properties in Chapter 20.

1 predicate Own<ArrayList>(address: Address) {
2 acc(Own<*mut T>(field_address_ArrayList_ptr(address)), write) &&
3 acc(Own<usize>(field_address_ArrayList_cap(address)), write) &&
4 acc(Own<usize>(field_address_ArrayList_len(address)), write) &&
5 /* encoded invariant */
6 }

Figure 18.16: Predicate of ArrayList.

Figure 18.17 shows an implementation of method ArrayList::push that
pushes a new element at the end of the list. This method calls method
ensure_sufficient_capacity on line 3 that ensures that the capacity of
the list is sufficient to store the new value. On line 9, the length of the
list is increased by one, which breaks the type invariant. The invariant is
restored on the following line by writing the value through the pointer
referencing thememory block after the last element. Since accessing fields
ptr and len requires having capabilities to them, we unpack *self on
line 7. Unpacking *self also allows us to temporarily break its invariant
until we pack *self on line 11. In this example, we have omitted the ghost
operations required for reasoning about references; we discuss them in
Chapter 21.

1 pub fn push(&mut self, value: T) {
2 // The following call ensures: self.len < self.cap
3 self.ensure_sufficient_capacity();
4

5 // Ghost operations for handling reference self.
6

7 unpack!(*self);
8 let element_ptr = unsafe { self.ptr.add(self.len) };
9 self.len += 1;
10 unsafe { element_ptr.write(value); }
11 pack!(*self);
12

13 // Ghost operations for handling reference self.
14 }

Figure 18.17: An implementation
of method ArrayList::push that
pushes a new element at the end of the
list with ghost operations necessary
to prove memory safety. Method
ensure_sufficient_capacity
ensures that the capacity is sufficient to
store an additional element. We have
omitted ghost operations related to
reference handling; we present them in
Chapter 21.

18.5 Memory Addresses

We mentioned above that we use a newly-defined Viper type Address for
modelling addresses. To fully support raw pointers, we need to choose
a model of addresses that supports pointer arithmetic and works well
with range and set capabilities. We encode range and set capabilities
using Viper iterated separating conjunctions. Reliably supporting range
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capabilities requires solving three challenges. We present the challenges
and our solution to them in the first three subsections of this section. We
believe that the low-level challengeswediscuss in this sectionmotivate our
design decision to hide the general form of iterated separated conjunction
from users well. In the last subsection, we present how we encode set
capabilities.

18.5.1 Injectivity Requirement of the Iterated Separating
Conjunction

The following snippet shows a general form of iterated separated con-
junction supported by Viper.

1 forall vs :: guard(vs) ==>

2 acc(P(arguments(vs)), pamount(vs))

Here, vs is a set of bound variables, guard(vs) is a boolean expression,
arguments(vs) are the expressions that compute the arguments of predi-
cate P, and pamount(vs) is an expression that computes the permission
amount. For this iterated separating conjunction to be well-formed,
Viper requires arguments(vs) to be injective [30]3. In this subsection, we
iteratively derive the model of addresses and encoding of range capabil-
ity predicates that satisfy the injectivity requirement. In the following
subsections, we refine the solution to address two other challenges.

First Attempt: Naïve Encoding. The first attempt to model the range
capability predicate raw_range!(pointer, count, size_of::<T>()) could
be as shown in the following snippet (to make examples easier to under-
stand, in this section, we omit some type conversions such as converting
the value of a pointer to an address).

1 forall index: Int ::

2 0 <= index && index < count ==>

3 acc(MemoryBlock(

4 address + index * size<T>(),

5 size<T>()

6 ), write)

In this snippet, we compute the address of an element by taking the
base address and adding an index multiplied by the size of an element.
Unfortunately, the element address is not injective with respect to index

when T is a zero-sized type because all element addresses would be equal
to the base address.

Second Attempt: Wrapper Predicate Trick. A standard Viper trick
used when a location is computed by an expression that is not injective
is to hide the computation inside a wrapper predicate. For example, the
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following snippet shows a wrapper predicate that depends on the base
address and index, and computes the actual address in its body.

1 predicate MemoryBlockWrapper(

2 address: Address,

3 index: Int,

4 size: Snap<usize>

5 ) {

6 MemoryBlock(address + index * size, size)

7 }

This predicate can now be used in the iterated separating conjunction
instead of the original one, as shown below.

1 forall index: Int :: 0 <= index && index < count ==>

2 acc(MemoryBlockWrapper(

3 address, index, size<T>()

4 ), write)

This solution satisfies the injectivity requirements (index is trivially
injective). However, with this encoding we could only match ranges that
start at the same address. For example, using this approach, we could
not verify the function shown in the following snippet, which takes a
capability to the range of size count and splits it at split_at into two
capabilities for each subrange.

1 #[core_requires(...)]

2 #[core_requires(raw_range!(*p, count))]

3 #[core_ensures(raw_range!(*p, split_at))]

4 #[core_ensures(raw_range!(*result, count-split_at))]

5 unsafe fn split<T>(

6 p: *mut T,

7 count: usize,

8 split_at: usize,

9 ) -> *mut T {

10 p.add(split_at)

11 }

The problem with verifying this function is that the raw_range!(*result,

count - split_at) predicate uses a different base pointer and, therefore,
Viper cannot automatically match the predicate instances. While this
function is artificial, the same pattern occurs, for example, in quick sort
and merge sort algorithms, and, therefore, it is crucial to support it.

ThirdAttempt: InjectiveAddresses. Instead of using a predicatewrap-
per approach to keep the index explicit, which is necessary for injectivity,
we take inspiration from CompCert‘s memory model [184] and define the
address as a triple (allocation, is_zst, byte_index)4. Here, allocation
is a unique identifier of the entire allocated block, byte_index is an offset
into a byte within that block, and is_zst is a boolean flag that enables us
to special case zero-sized types. Using this interpretation of addresses,
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we can define offsetting a pointer as the partial function defined by the
pseudo-code match statement in the following snippet.

1 function offset_byte(addr: Address, o: Int, s: Snap<usize>): Address {

2 match (addr, s) {

3 (Address { allocation, is_zst: true, byte_index }, 0) =>

4 Address { allocation, is_zst: true, byte_index: byte_index + o }

5 (Address { allocation, false, byte_index }, size) if size != 0 =>

6 Address { allocation, is_zst: false, byte_index: byte_index + o * s }

7 }

8 }

This function takes address addr, offset o, and the size of the pointer
target s and computes the offset address. The result of offset_byte is
unspecified if the function is calledwith arguments whose zero-sizedness
differs (address is ZST but s > 0 or vice-versa). In other words, we treat
addresses of non-zero sized values and addresses of zero sized values as
separate groups of addresses and do not allow mixing them. We made
this design decision because mixing these groups of addresses is likely
to be a mistake.

Using function offset_byte we can define the range capability predicate
raw_range!(pointer, count, size_of::<T>()) as shown in the following
snippet.

1 forall index: Int :: 0 <= index && index < count ==>

2 acc(MemoryBlock(

3 offset_byte(address, index, size<T>()),

4 size<T>()

5 ), write)

This version is injective with respect to index and enables matching
capability ranges that start at different offsets.

18.5.2 Non-Linear Arithmetic

The definition of Address and function offset_byte given at the end of
the previous subsection enable us to define raw_range!(...) in a way
that satisfies the injectivity requirement. However, multiplication of
offset and size o * s in function offset_byte is likely to lead to non-
linear arithmetic when the size is statically unknown, which is, for
example, the case for type parameters. Non-linear arithmetic is poorly
supported by SMT solvers and is likely to lead to unstable verifier
behaviour, which is very frustrating for the users. We observed that in
many examples, pointer arithmetic is performed on pointers of the same
type, meaning their targets are the same size. Therefore, we generalise
our approach of treating addresses to zero-sized values and addresses
to non-zero-sized values separately to having a group of addresses per
size. This way we can mitigate the non-linear arithmetic problem by
hiding the multiplication from size behind an additional abstraction.
More specifically, we introduce an alternative constructor new and partial
function get_index for Address type that are conceptually defined as
shown in the following snippet containing pseudo-code. However, in the
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actual encoding, we encode them as opaque functions so that the SMT
solver does not see the multiplication at all.

1 function Address::new(allocation: Allocation, index: Int, size: Snap<usize>): Address

2 {

3 if size == 0 {

4 Address { allocation, is_zst: true, byte_index: index }

5 } else {

6 Address { allocation, is_zst: false, byte_index: index * size }

7 }

8 }

9 function Address::get_index(address: Address, size: Snap<usize>): Int

10 {

11 if size == 0 {

12 address.byte_index

13 } else {

14 address.byte_index / size

15 }

16 }

Using this wrapper, we can define a partial function offset that enables
us to compute the offset of a pointer to a type of unknown size without
exposing non-linear arithmetic to the SMT solver in many cases. The
following snippet shows the definition of offset in pseudo-code.

1 function offset(

2 addr: Address, o: Int, s: Snap<usize>

3 ): Address {

4 Address::new(

5 addr.allocation,

6 Address::get_index(addr, s) + o,

7 s,

8 )

9 }

The following snippet shows the updated definition of the range capa-
bility predicate raw_range!(pointer, count, size_of::<T>()) that uses
function offset.

1 forall index: Int :: 0 <= index && index < count ==>

2 acc(MemoryBlock(

3 offset(address, index, size<T>()),

4 size<T>()

5 ), write)

This version still satisfies the injectivity requirement but additionally
avoids exposing the SMT solver to non-linear arithmetic. We use function
offset also for defining the meaning of pointer manipulating Rust
functions such as add we used in our examples.

Unfortunately, avoiding multiplication in the definition of the range
capability predicate does not solve the problem completely because users
may write multiplication themselves. The type invariant of ArrayList
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(shown in Figure 18.15) contains conditions as the one shown in the
following snippet.

1 size_of::<T>() * self.cap <= (isize::MAX as usize)

This condition expresses that the total size in bytes of the memory block
used by ArrayList is not larger than the largest value that can be stored
in an integer of type isize. To mitigate this scenario and enable users
to express their intent more directly, we add a specification function
array<T>(count) inspired by the Layout::arraymethod that is used by the
implementation to compute the actual size. array<T>(count) represents
the size of an array that contains count elements of type T. Under the
hood, this function maps to an uninterpreted multiplication with axioms
tailored for proving scenarios related to memory management. This
approach is similar to how verifiers like Dafny [43] deal with non-linear
arithmetic. We leave integrating the more general approach used by
Dafny to future work.

18.5.3 Quantifier Triggers

Our definitions of iterated separating conjunctions up to now omitted one
aspect that is crucial for automation: triggers [186]. A trigger is a syntactic
pattern that tells the SMT solver when to instantiate the quantifier during
the proof search. Viper uses triggers to guide an SMT solver also when
reasoning about iterated separated conjunctions [30]. The following
snippet shows a definition of predicate raw_range!(...) with the trigger
shown between the curly braces.

1 forall index: Int ::

2 { offset(address, index, size<T>()) }

3 0 <= index && index < count ==>

4 acc(MemoryBlock(

5 offset(address, index, size<T>()), size<T>()

6 ), write)

The trigger offset(address, index, size_of::<T>()) tells the SMT solver
to instantiate the iterated separating conjunction every time it finds a
term matching offset(address, ?, size_of::<T>()). The subterm that
matches ? is used as a value of index when instantiating the iterated
separating conjunction. For example, the following snippet shows a Rust
function that writes to the fifth element using pointer arithmetic.

1 #[core_requires(raw_range!(ptr, 10, size_of::<i32>()))]

2 fn write_to_five(ptr: *mut i32) {

3 *(ptr.add(5)) = 42;

4 }

Call ptr.add(5) gets encoded to offset(address, 5, size_of::<T>()),
which matches the trigger with index = 5 and, therefore, the verifier
can prove that the assignment is justified. However, if we try to write to
an element without calling the add method, as shown in the following
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snippet, the verification fails because there is no suitable term to trigger
the iterated separated conjunction.

1 #[core_requires(raw_range!(ptr, 10, size_of::<i32>()))]

2 fn write_to_five(ptr: *mut i32) {

3 *ptr = 42;

4 }

This snippet illustrates why choosing triggers is crucial for SMT-based
verification. Since we use the raw_range!(...) predicate to specify that
we have permissions to a MemoryBlock predicate at some address, the
most flexible trigger would be MemoryBlock(element_address). However,
SMT triggers are required to mention all bound variables. Therefore,
we have to write our iterated separating conjunction defining raw_-

range!(...) in a way that quantifies over addresses instead of indices.
We can achieve this goal using the function range_contains we used
before when discussing the raw_range!(...) variant with a filter in
Subsection 18.3.4. The following example shows our final encoding of
predicate raw_range!(...).

1 forall element_address: Address ::

2 { MemoryBlock(element_address, size<T>()) }

3 range_contains(address, count, element_address) ==>

4 acc(MemoryBlock(

5 element_address, size<T>()

6 ), write)

In this iterated separating conjunction, we are quantifying over addresses
of elements and use function range_contains to check that they are within
the required range. We define range_contains as shown in the following
snippet.

1 function range_contains(address, count, size, checked_address): Bool

2 {

3 address.allocation == checked_address.allocation &&

4 address.is_zst == checked_address.is_zst &&

5 Address::get_index(address, element_size) <=

6 Address::get_index(checked_address, element_size) &&

7 Address::get_index(checked_address, element_size) <

8 Address::get_index(address, element_size) + count

9 }

own_range!(...) is defined analogously with predicate Own<T>(...) in-
stead of MemoryBlock(...). We define the variants of raw_range!(...) and
own_range!(...) with a boolean filter in the same way as regular ones,
but with the guard replaced with the filter. Since the filter takes the
index and not the address of the element, when encoding the filter, we
replace the index with an expression that computes it from the element
address.

18.5.4 Set Predicates

Up to now, we focused on range capability predicates. As we mentioned
above, the set capability predicate raw_set!(pset, size) expresses allo-
cation capabilities to all memory blocks referenced by pointers stored
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in mathematical set pset. Supporting set capability predicates is much
easier than range capability predicates. The following snippet shows how
we encode raw_set!(pset, size_of::<T>()) using iterated separating
conjunction.

1 forall address: Address ::

2 { MemoryBlock(address, size<T>()) }

3 address in pset ==>

4 acc(MemoryBlock(address, size<T>()), write)

The injectivity requirement is automatically satisfied since we use
the quantified variable address directly as the argument. We encode
own_set!(pset) in an analogous way using predicate Own<T> instead of
MemoryBlock.

In this chapter, we presented the new core proof together with specifi-
cation constructs suitable for verifying mixed safe and unsafe code. In
the next chapter, we show how we use our new core proof to verify the
safety of abstractions.
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In the introduction of this part, we mentioned that we aim to support two
verification goals. First, wewant to enable verifying functional correctness
of mixed safe-unsafe code. Second, we want to enable verifying that
safe abstractions guarantee memory safety when used by unverified safe
clients. As we mentioned in Chapter 17, these two goals require us to
model, for example, Rust assert statements differently, which we address
by verifying each function in two different modes. We explain the two
modes in Section 19.1. The mode for addressing the first goal of verifying
functional correctness is very similar to what we used in Part I. Therefore,
in the remainder of this chapter, we focus on the challenges related to
our second goal of ensuring that safe abstractions are memory safe. In
Chapter 17, we discussed the key techniques programmers use to ensure
that safe abstractions maintain their invariants. In Section 19.2, we show
how we verify that these techniques were used correctly. We cover the
additional challenges caused by panic safety and how we support drop
handlers used for fixing invariants in Section 19.3. We finish this chapter
by discussing how we support verifying drop handlers in Section 19.4.

19.1 Two Verification Modes

Aswementioned above, we support our two verification goals (functional
correctness andmemory safety) byverifying each function in twodifferent
modes: functional-correctness and memory-safety. In these two modes,
we differently handle the following four properties: memory safety,
functional correctness, absence of panics, and absence of arithmetic
errors such as overflows. We first discuss how the two modes differ when
verifying safe functions and then extend the explanation to also include
unsafe functions and core specifications (we call a function safe if it is
declared as safe even when it contains unsafe blocks inside it).

For safe functions, the functional-correctness mode is effectively the same
what we used in Part I: we verify that assuming a precondition, the func-
tion does not panic, does not cause arithmetic errors, and if it terminates
it ensures its postcondition. Verifying in memory-safety mode is more
interesting. Since our goal is to verify that a safe function is memory safe
against unverified safe clients, we can rely only on properties that are
ensured by the Rust compiler: that function parameters are valid instances
of their types. In particular, we cannot rely on functional preconditions
when verifying memory safety of safe functions. For example, method
ArrayList::index is declared as a safe function. Therefore, it must guaran-
tee memory safety even when called with an out-of-bounds index. Since
postconditions can typically be established only when preconditions
hold, we do not verify functional postconditions in memory-safety mode
by default. When verifying a function in memory-safety mode, we do not
check that the preconditions of called safe functions are upheld because of
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two reasons. First, a safe function cannot cause a memory safety violation
even if its precondition is violated. Second, to establish the precondition
of the called function, it is often necessary to assume the precondition
of the caller, which we do only when verifying in functional-correctness
mode. Since without establishing the precondition of the called function,
its postcondition is not guaranteed to hold, in memory-safety mode
we do not assume the postcondition. To summarize, when verifying a
function declared as safe in memory-safety mode, we by default ignore
all functional specifications: both the preconditions and postconditions of
the function being verified, as well as preconditions and postconditions
of the called safe functions. One consequence of ignoring functional
specifications is that the verified and called functions may panic. As we
discussed in Chapter 17, safe abstractions use runtime assertions such as
bounds checks to prevent memory errors. Therefore, when verifying in
memory-safety mode, we treat panics as early returns instead of verifying
that they do not occur. Arithmetic errors pose a unique challenge when
verifying in memory safety mode. We typically cannot prove that they
do not occur without relying on the functional precondition and we do
not know what exactly happens if an error occurs. In Rust, an arithmetic
error such as overflow can either cause a panic or produce an unexpected
value depending on the compiler settings. Therefore, when verifying a
function inmemory-safety mode, we require that the function guarantees
memory safety in both cases: when an arithmetic error leads to a panic
and when it leads to an incorrect value. We model the incorrect value
case by storing into the result of the arithmetic operation an unknown
value that is a valid instance of the type.

Unsafe functions, unlike safe functions, are allowed to rely on clients
ensuring certain properties for their memory safety. In Chapter 18, we
presented core specifications that programmers can use to express the
conditions necessary to ensure memory safety of unsafe functions. When
verifying an unsafe function in memory-safety mode, we assume its core
precondition and require it to ensure its core postcondition when the
function does not panic. When verifying a call to an unsafe function
(from either safe or unsafe function), we check its core precondition and
assume its core postcondition. When verifying an unsafe function in
functional-correctness mode, we verify it assuming both core and func-
tional preconditions and require it to establish both core and functional
postconditions. While distinguishing between core and functional speci-
fications for unsafe function sounds complicated, the users need to worry
about the distinction only if the verified unsafe function distinguishes
the two cases. If the distinction for a specific function is not relevant, the
user can simply mark all specifications as core.

There are two important exceptions to the overall approach we described
so far. The first exception are functions that fully check their preconditions
with runtime assertions. If such a function does not panic, it guarantees
its postcondition. To support this case, we introduce an annotation #[no_-

panic_ensures_postcondition]. When verifying a function annotated
with this annotation, we verify its functional postcondition even in the
memory-safety mode. As a result, the caller of such a function can
also assume its functional postcondition in the memory-safety mode.
The second exception are unsafe functions that guarantee properties
even when they panic. For example, if an unsafe function received a
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capability to some memory from the caller, it often needs to return that
capability even if it panics. To support this case, we provide a special panic
core postcondition #[panic_core_ensures(...)] (inspired by exceptional
postconditions in [187] and [188]) that the unsafe function ensures when
it panics.

19.2 Maintaining Type Invariants

In Chapter 17, we discussed that safe abstractions like our ArrayList rely
on type invariants to ensure their memory safety. For example, method
ArrayList::index in Figure 17.2 relies on field ptr pointing to a sequence
of len initialised values to ensure that the reference it returns is valid.
Therefore, it is crucial to guarantee that these type invariants hold. As
we mentioned in Chapter 17, the general approach programmers use
to maintain a type invariant of a struct like ArrayList is ensuring that
client code cannot break the invariant and that the implementation of the
abstraction maintains it. The former is ensured by making the fields of
the struct private while the latter is ensured by checking that all methods
that can modify the fields preserve the invariant.

In our approach, we make this intuitive method used by programmers
more precise. As described in Chapter 18, users can specify a type
invariant using #[core_invariant(...)] annotation. The type invariant
is then conjoined to the automatically generated predicate for that type.
Predicates in permission logics like implicit dynamic frames are required
to be self-framing. Intuitively, this means that the predicate (and thus the
invariant written by the user) cannot constrain memory locations, which
it does not own. This property guarantees that the predicate cannot be
invalidated without unfolding it. As a result, we need to only verify
code that could directly modify the memory locations owned by the
predicate. The predicate owns two kinds of locations: fields of the struct
and locations pointed at by raw pointers. The former can be directly
modified by all safe and unsafe code to which access is granted by the
Rust visibility rules. This reason is why we require all fields of a struct
with a user-specified invariant to be private and consider the code that
has direct access to them as part of the safe abstraction that needs to be
verified. In Rust, all functions that are declared in the same module as
the struct can read its private fields and, therefore, should be considered
part of the safe abstraction. The locations pointed at by raw pointers can
be modified only by unsafe code because dereferencing a raw pointer is
an unsafe operation. As a result, safe clients cannot violate the invariant
constraining memory locations referenced by raw pointers (as we noted
before, ensuring memory safety against unverified unsafe clients is a
non-meaningful goal because such a client can in general break type
system properties in arbitrary ways; luckily, most client code is written
in safe Rust).

We require the type invariant to hold each time a value is moved, copied,
or borrowed. This requirement implies that function definitions are
allowed to assume that all parameters are valid instances of their types
(because arguments are moved into a function when it is called), but
are also required to ensure this property when calling other functions
or when returning values (also when a panic occurs). Requiring values
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to be valid when they are moved, copied, or borrowed is stricter than,
for example, the visible state semantics [189] used in other verification
approaches based on invariants. However, we chose this design because
it is consistent with how Rust treats primitive values: moving a value
of type bool that does not store a valid bit-pattern for bool is undefined
behaviour [70]. We enforce the requirement by encoding move, copy, and
borrow operations to require a packed version of a capability (a folded
version of a predicate), which implies that the invariant holds.

19.3 Ensuring Panic Safety

In Chapter 17, we presented two ways a panic can lead to a memory
safety error if it is raised when a type invariant is temporarily violated.
First, a panic causes drop handlers to be executed, which can lead to
a drop handler observing the broken invariant. Second, if the type
whose invariant is broken was obtained from the caller via a mutable
reference, the callermay observe the broken invariant through the original
reference. The general approach for ensuring type invariants presented in
the previous section prevents both of these scenarios. However, with the
approach we presented so far, we cannot verify some correct code that
uses the three techniques to deal with panics wementioned in Chapter 17.
In the following, we explain how we enable verifying code that uses each
of the techniques.

19.3.1 Avoiding Panics

Panics can be avoided in two ways: if the called function promises to
never panic or if the called function’s functional precondition is ensured,
which implies that it will not panic. Below we discuss each of these two
cases.

Never Panicking Functions. Examples of functions that never panic
would be many pointer manipulating functions in the standard li-
brary such std::ptr::read and std::ptr::write that are called by the
std::mem::swap implementation we showed in Section 17.3. We repeat
the example below.

1 // SAFETY: exclusive references are always valid to

2 // read/write, including being aligned, and nothing

3 // here panics so it's drop-safe.

4 unsafe {

5 let a = ptr::read(x);

6 let b = ptr::read(y);

7 ptr::write(x, b);

8 ptr::write(y, a);

9 }

In our technique, a user can specify that a function never panics by
annotating it with #[no_panic]1. When verifying the implementation
of such a function in memory-safety mode, we check that all panic
branches are unreachable. When verifying a call to such a function, we
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correspondingly assume that the function does not panic even if its
functional precondition does not hold.

Non-Panicking FunctionCalls. The annotation #[no_panic] enables us
to express that a specific function never panics. However, we sometimes
need to show that a specific function call is guaranteed not to panic. We
can prove that a called function is guaranteed not to panic by proving
that its functional precondition holds since the functional precondition
implies the absence of panics. We enable the user to temporarily enable
checking of preconditions in memory safety mode by wrapping code in
checked! block as shown in the following snippet.

1 if list.len() > 0 {

2 let first_element = checked! { list.index(0) };

3 // ...

4 }

The called method ArrayList::index panics if the index is out-of-bounds.
Since the if condition guarantees that index 0 is in bounds, we can prove
the precondition of ArrayList::index even in memory-safety mode and,
therefore, be sure that it never panics.

Within checked!{...}block, function calls are always checked in functional-
correctness mode: function preconditions are checked, postconditions
are assumed, and panic branches are omitted.

19.3.2 Preserving Invariants

Figure 19.1 shows method override_from_input from Section 17.3 we
used to motive the technique. Before calling read_into, which potentially
panics, the method sets the len field of *self to zero. This change ensures
that in the case of a panic, the invariant is already in a valid state. The call
to the unsafe method read_into requires capability to the memory block
pointed at by *self.ptr. This capability is stored in *self invariant and to
access it, we need to unpack!(*self) as shown on line 7. (We also need to
perform some ghost operations related to references that are indicated by
... on line 6; we discuss them in Chapter 21.) When the control flow exits
the method, our approach requires *self to be packed. We can easily
do that when no panic occurs by adding a ghost statement pack!(...)
at the end of the method. However, there is no place where we could
add statement pack!(...) when a panic occurs. We enable performing
ghost operations on panic branches by providing two new constructs:
block before_drop!{v => ...} and block after_drop!{v => ...}. Block
before_drop!{v => ...} enables executing ghost code before the drop
handler of v is called. Block after_drop!{v => ...} enables executing
ghost code after the drop handler is called. In our example, we put
the pack!(...) operation in before_drop!{g => ...} as shown on line 9.
Since drop handlers are executed even when panics occur, this approach
enables us to pack *self on a panic.

The example also shows how to deal with a situation when the example
has no value with a drop handler that is called in the right moment. We
define our own ghost value (line 8) using empty struct GhostDrop (line 18)
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with an empty drop handler (line 19) and attach the ghost operations to
it.

Figure 19.1: Function override_-
from_input from Section 17.3 that we
used to motivate the preserving the in-
variant techniquewith specifications nec-
essary to verify memory safety.

1 pub fn override_from_input<T: Input>(
2 &mut self,
3 input: &mut T,
4 ) {
5 unsafe {
6 // ...
7 unpack!(*self);
8 let g = GhostDrop;
9 before_drop! { g =>
10 pack!(*self);
11 // ...
12 }
13 self.len = 0;
14 let len = read_into(input, self.ptr, self.cap);
15 self.len = len;
16 }
17 }
18 struct GhostDrop;
19 impl Drop for GhostDrop {}

19.3.3 Fixing Invariants

To support the previous technique, we used a drop handler to execute
ghost code when a panic occurs. The last of the three techniques is
similar in that it uses a drop handler to execute code that fixes the
invariant when code panics. Figure 19.2 shows a fragment of method
Vec::from_iter from the Rust standard library. In this fragment, a drop
guard is created on line 4 and then potentially some panicking code is
executed (line 5). If the code does not panic, the drop handler is cancelled
by forgetting the drop guard (line 6) and an instance of the vector is
constructed using unsafe constructor Vec::from_raw_parts (line 7). If the
code panics, the drop handler is called and uses the unsafe constructor
(lines 17–19) to create an instance of the vector that is then safely dropped.
The unsafe constructor is an unsafe function that consumes capabilities
to the memory referenced by raw pointer ptr. These capabilities must
be provided by the drop handler, which must take them from the caller.
In other words, the implementation of the drop handler behaves like an
unsafe function: it depends on the caller ensuring its requirements to
guarantee memory safety.

As we discussed in Section 17.3, treating the drop handler as an unsafe
function violates behavioural subtyping. A drop handler is declared as a
safe method on trait Drop whose precondition is true (it requires only a
valid instance of a type). We resolve this conflict by special-casing drop
handlers defined on private structs that are never used as arguments to
generic functions, which ensures that they are never called via the Drop

trait without knowing the concrete implementation that is going to be
executed. We treat drop handlers on such structs as unsafe functions,
which, for example, enables users to write core preconditions.
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1 unsafe fn from_iter(
2 /* ... */
3 ) -> Vec<T> {
4 let dst_guard = InPlaceDstBufDrop { ptr, len, cap };
5 /* ... */
6 std::mem::forget(dst_guard);
7 unsafe { Vec::from_raw_parts(ptr, len, cap) }
8 }
9 struct InPlaceDstBufDrop {
10 ptr: *mut T,
11 len: usize,
12 cap: usize,
13 }
14 impl Drop for InPlaceDstBufDrop {
15 fn drop(&mut self) {
16 unsafe {
17 Vec::from_raw_parts(
18 self.ptr, self.len, self.cap
19 )
20 };
21 }
22 }

Figure 19.2: A simplified fragment
of method std::vec::Vec::from_-
iter from the standard library illus-
trating a drop handler that consumes
capabilities from the context in which it
is called.

19.4 Drop Handlers

As was mentioned in Section 17.3, the signature of a drop handler in
Rust is a lie: it says that the value pointed at by self should be valid
when the drop handler returns while that is clearly not the intention
because the drop handler could not deallocate memory in that case.
The precise rules for what should and should not be allowed in a drop
handler are still under discussion. For example, it is not clear whether
the fields of a dropped struct must be valid instances of their types when
the drop handler returns. However, it is clear that the drop handlers
must be able to deallocate heap-allocated memory. Therefore, we aim
for a conservative option that requires the fields to be valid instances
of their types but allows the core invariant of the type to be violated
when the drop handler returns. We implement this conservative option
in our approach by special-casing the encoding of drop handlers. The
drop handler starts execution with an initialisation capability to *self

and is required to ensure initialisation capabilities of each field in *self

when it returns.
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Up to now, we have focused on defining an updated version of core
proofs suitable for verifying mixed safe-unsafe code and showing how it
can be used for verifying safe abstractions. One of the goals of this part
of the thesis is to make verification lightweight. In Part I, we significantly
reduced the verification effort by automatically generating the core proof
and enabling users to use a simple specification language based on Rust
expressions.We achieved this by leveraging the fact that Rust type system
forbids unrestricted mutable aliasing in safe Rust. However, raw pointers
enable unrestricted mutable aliasing and, therefore, the approach based
on place capabilities we used in Part I does not apply to unsafe code. In
this chapter, we show how we can regain lightweight verification even in
the presence of raw pointers. In Section 20.1, we focus on automatically
generating the core proof of functions that contain both safe and unsafe
code. As we mentioned in the introduction of this part, our solution is
based on the observation that non-aliasing requirements intended to
enable the Rust compiler to optimise code enable us to slice a function into
managed and non-managed parts. Therefore, we are able to generate the
core proof for themanaged part automatically. In Section 20.2, we present
how we change the encoding of functional specifications to maintain the
simple specification language from Part I for safe code while enabling
the new specification features needed for specifying mixed safe and
unsafe code. This section also shows how we use snapshots to integrate
specifications with the unsafe core proof.

20.1 Place Capabilities for Safe-Unsafe Code

As we discussed in Chapter 18, a crucial part of a core proof is the ghost
operations that transform the capabilities to justify the actions the code
performs. In Part I, we used the PCS elaboration algorithm to compute
all necessary such operations. Since raw pointers enable mutable aliases,
we cannot expect to design an algorithm that can automatically compute
all needed ghost operations for all Rust code that may use raw pointers.
One option is to let the user write all necessary ghost operations if a
function contains any unsafe code. This option would greatly increase the
required verification effort and, therefore, is undesirable. Another option
is to try designing heuristic for inferring ghost operations that would be
as complete as possible. However, debugging why a complex heuristic
failed can be extremely frustrating to the user. Therefore, we decided to
aim for a middle ground: we use a few simple rules to slice each function
into managed and non-managed parts. For the managed part, we use a
modified version of the PCS algorithm from Chapter 2 to automatically
compute the necessary ghost operations. For the non-managed part, we
require the user to write the ghost operations. We designed the rules in
such a way that we over-approximate the non-managed part assuming
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the code adheres to either Stacked Borrows [126] or Tree Borrows [127,
128]1. In Subsection 20.1.1, we show two scenarios where using the PCS
elaboration algorithm on an entire function could lead to surprising
verification errors. In Subsection 20.1.2 and Subsection 20.1.3, we present
how our technique addresses each of the scenarios. In Subsection 20.1.4,
we discuss the changes we made to the PCS elaboration algorithm from
Chapter 2 to support the unsafe core proof.

20.1.1 Challenges Caused by Aliasing

A key property of place capabilities is that they are identified by syntactic
places. For example, after executing the following snippet, exclusive
capabilities are associated with syntactic places a.first and a.second.

1 let mut a = Pair { first: 1, second: 2 };

2 PCS: {a → E}

3 unpack a

4 PCS: {a.first → E, a.second → E}

This property enabled us to create the PCS elaboration algorithm (pre-
sented in Chapter 2) we used for computing PCS operations. However,
once we have raw pointers, we cannot anymore identify capabilities using
syntactic places as shown by the following snippet.

1 let mut a = Pair { first: 1, second: 2 };

2 PCS: {a → E}

3 let x = addr_of_mut!(a);

4 PCS: {???}

5 unpack ???

Raw pointer x aliases a and both can be used to mutate the underlying
memory location. Therefore, we could say that both a and *x share
the same capability (which we cannot call anymore “place capability”
because it is not associated with any single place). In permission log-
ics such as implicit dynamic frames and separation logic, capabilities
(more specifically, access permissions) are typically associated not with a
syntactic place, but with an address. Since both *x and a have the same
address, this model can naturally capture code that uses raw pointers.
However, since the same capability can bemodified viamultiple syntactic
names, we cannot anymore use our simple syntactic approach to track
its state. Since in the example shown above x is directly assigned to
alias a, we could still track the state of the capability by remembering
which syntactic places alias each other. However, with pointer arithmetic,
tracking of aliases quickly becomes complicated. For example, either of y
or z in the following snippet could be aliases of b.

1 let mut a = Pair { first: 1, second: 2 };

2 let mut b = Pair { first: 3, second: 4 };

3 let x = addr_mut!{a};

4 let y = x.add(1);

5 let z = 0x42 as *mut Pair;

Without being able to track aliases, we also cannot track the state of
capabilities. If we tried to apply the PCS elaboration algorithm when
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it cannot track precise state of capabilities, we could get surprising
verification errors. There are two scenarios in which this problem could
occur, which we illustrate with examples below.

Local Aliases. In the following snippet, we initialise local variable a

of type Pair, create raw pointer x pointing into it, manually unpack the
capability referenced by x, and finally try to assign a.first to b.

1 let mut a = Pair { first: 1, second: 2 };

2 let x = addr_of_mut!(a);

3 unpack!(*x);

4 let b = a.first; // Verification error.

If we run the PCS elaboration algorithm on this example and then try
to verify it, we get a surprising verification error on the last line saying
that the capability to a is missing. The verifier reports the error because
the PCS elaboration algorithm seeing access to a.first, tries to unpack
capability a, which fails because the capability was already unpacked
via alias x. Such surprising errors can be very frustrating to the user and,
therefore, it is important to avoid them.

Hidden Capabilities. In the following snippet, we create an instance of
our safe abstraction ArrayList, store it in variable list, unpack it, create
raw pointer element_ptr to an element of list, pack list, and try to
dereference element_ptr.

1 let list: ArrayList = // ...

2 unpack!(list);

3 let element_ptr = list.ptr.add(index);

4 pack!(list);

5 let a = unsafe { *element_ptr }; // Verification error.

Since list is packed before element_ptr is dereferenced, the verifier does
not see the capability that justifies dereferencing and reports a verification
error. In this snippet, the user can see operation pack!(list) in the code
and conclude that it is causing the error.However, if operation pack!(list)

were inserted automatically, understanding the problem could be hard
and frustrating for the user.

20.1.2 Local Aliases

In the previous subsection, we saw that we do not have a reliable way
to track the state of capabilities potentially aliased by raw pointers.
Therefore, we require the user to manually write ghost operations for
all capabilities that could potentially be aliased by raw pointers. As a
result, we need to distinguish which capabilities can be aliased by raw
pointers and which cannot. The PCS elaboration algorithm described in
Chapter 2 manages capabilities identified by safe places, that is, variables2
(for example, a), field accesses (for example, a.f.g), and dereferences of
references (for example, *x and (*a.g).f). We use the following rule to
determine whether a safe place could be aliased by a raw pointer: a safe
place is considered as potentially aliased by a raw pointer only if the
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function contains an expression that creates a raw pointer aliasing that
place.

To make it easier to explain why we picked such a rule, we split it into
two parts:

1. A local variable or a field access p is considered potentially aliased
by a raw pointer only if the function contains an expression (either
addr_of!(p) or addr_of_mut!(p)) that creates a raw pointer of it.

2. A mutable reference r is considered aliased by a raw pointer
only if the function contains an expression (either r as *const
_ or r as *mut _) that casts the reference to a raw pointer. (Since
shared borrow capabilities are duplicable, we avoid the challenges
caused by aliasing by associating a copy of the capability with each
syntactic place.)

The first part of the rule is justified by the fact that the Tree Borrows and
Stacked Borrows models forbid using raw pointers to access memory to
which a raw pointer was never created. The goal of the Tree Borrows and
Stacked Borrows models is to enable the compiler to use non-aliasing
information for optimisations. Since unsafe code can break the types and
the Rust compiler cannot reliably determine the boundaries of unsafe
code, it cannot use type information for optimisations. Therefore, Jung
et al. [126] proposed that, instead of relying on the type system, the
compiler should rely on operational semantics for optimisations. More
specifically, Jung et al. proposed to define an operational semantics that
would clearly state which behaviours are allowed and which ones lead
to undefined behaviour (UB). When optimising, the compiler can assume
that UB does not occur. For example, if a compiler observes that index i

is used for an unchecked access of an array element, it can assume that
the value of i is between 0 and the array‘s length.

Stacked Borrows and the later model Tree Borrows require the use of raw
pointers to adhere to provenance rules. Simply speaking, a raw pointer
can be used to access a location only if it was somehow derived from
it (using addr_of_mut!(...), casting a reference to a raw pointer, from
another valid pointer to that location, or some other way). For example,
it is illegal to use y to access b in the following snippet even though we
know that y is valid inside the if statement.

1 let mut a = 1;

2 let mut b = 2;

3 let x = addr_of_mut!{a};

4 let y = x.add(1);

5 if y == addr_of_mut!{b} {

6 *y = 42; // Undefined Behaviour!

7 }

Requiring that a pointer was somehow derived from a location is not
sufficient to ensure that the pointer was created in the function we are
verifying, which is the property we want to have. There are two possible
ways how this property could be violated. First, a value and a pointer
pointing into it could be passed to a function as arguments as shown in
the following snippet.

1 call_aliased(addr_of!(a), a);
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Second, a called function could derive a pointer from a passed reference
and return to the caller as shown in the following snippet.

1 let x = &mut a;

2 let p: *mut Pair = into_raw_pointer(x);

Stacked Borrows and Tree Borrows ensure that the first part of the rule
works even in these two cases. The first case is prevented because in
Stacked Borrows and Tree Borrows, moving a value invalidates all raw
pointers pointing to it as shown in the following snippet. In this snippet,
we create raw pointer x to local variable a, move out a into b, restore a by
moving back from b, and finally dereference x that references now valid
again a. However, the dereference of x still causes undefined behaviour
because moving out a invalidated the pointer.

1 let mut a = Pair { first: 1, y: 2 };

2 let x = addr_of!(a);

3 let b = a; // Moving out a.

4 a = b; // Moving back.

5 let z = unsafe { (*x).first }; // Undefined behaviour!

Since function arguments are moved from the caller to the callee, and,
similarly, the result is moved from the callee to the caller, the values
obtained from other functions cannot have any valid pointers referencing
them.

The case in which a called function derives a raw pointer from a passed
reference and returns it to the caller is allowed in Stacked Borrows and
Tree Borrows. However, in these models, expiring a reference invalidates
all the pointers derived from it. For example, in the following snippet,
assignment a = 42 invalidates not only mutable reference x, but also the
raw pointer y that was derived from it, making the assignment on the
last line illegal.

1 let mut a: i32 = 1;

2 let mut x = &mut a;

3 let y = x as *mut i32;

4 a = 42;

5 unsafe { *y = 2; } // Undefined Behaviour!

As a result, when variable a is used again, we are sure that no valid
aliases exist anymore.

The second part of the rule is justified by Stacked Borrows and Tree
Borrows for the common case of non-nested references. These models
allow using raw pointers only when the mutable borrow fromwhich they
were directly derived is active. For example, in the following snippet,
we create reference x to variable a, cast reference x into raw pointer p,
reborrow reference x with reference y, dereference raw pointer p, and
dereference reference y.

1 let x = &mut a;

2 let p = x as *mut Pair;

3 let y = &mut *x;

4 let b = unsafe { (*p).first }; // Expires y.

5 let c = y.first; // Undefined behaviour!
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Since p was created from x, reborrowing x makes it unusable as long
as reborrowing reference y is alive. Therefore, when we dereference p,
we automatically expire y and, as a result, later dereferencing y causes
undefined behaviour.

When a function is called all non-nested references in its parameters are
implicitly reborrowed guaranteeing that there are no valid aliases for the
duration of the function3. Similarly, returning a reference from a function
also reborrows.

Stacked Borrows and Tree Borrows do not guarantee non-aliasing for
nested borrows because thesemodels aim to allowunsafe code to redefine
the meaning of types, which is required in some cases. For example, the
code shown in the following snippet is allowed by these models.

1 unsafe fn modify(x: & &mut Pair) {

2 unsafe {

3 let p: *mut *mut Pair = std::mem::transmute(x);

4 (**p).first = 42;

5 }

6 }

The surprising part of this example is that it mutates a value behind
a shared reference. Our current verification approach does not allow
verifying such examples.We leave extending our approach fromboth core
proof design and automation points of view to support such examples to
future work.

20.1.3 Safe Abstractions

The second scenario we showed in Subsection 20.1.1, in which automati-
cally inferred ghost operations can lead to surprising verification errors,
is hiding a capability inside a core invariant by packing. We avoid this
scenario using the following rule: if a type has a core invariant, then the
user is required to unpack and pack capabilities to values of this type
manually.

It is important to note that values of types that contain fields of types
with core invariants are still managed automatically as long as the field
with invariant is not unpacked. For example, the following snippet shows
struct TreeNode that stores children nodes in ArrayList and a method that
replaces children nodes with new ones.

1 struct TreeNode<T> {

2 value: T,

3 children: ArrayList<Node<T>>,

4 }

5 impl<T> TreeNode<T> {

6 fn replace_children(&mut self, new_children) {

7 self.children = new_children;

8 }

9 }
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As expected for a completely safe method, all necessary ghost operations
can be computed automatically even though children is of type ArrayList
that has a core invariant. The presented rule enables us to compute the
capability operations automatically for clients that use only safe APIs
of values with core invariants even when the same function contains
(unrelated) unsafe code.

20.1.4 Supporting Mixed Safe-Unsafe Code in the PCS
Elaboration Algorithm

The PCS elaboration algorithm we presented in Part I exploits the fact
that place capabilities are identified by syntactic places to compute the
PCS operations automatically. Figure 20.1 on the following page shows
a safe Rust code snippet with elaborated place capabilities and PCS
operations, which were elaborated using the algorithm from Part I. As
we mentioned in Part I, the algorithm does the forward pass over all
statements, computing the capabilities before and after each statement.
The algorithm ensures that a processed statement has the required
capabilities by inserting the necessary PCS operations that transform the
current capabilities into the required ones. For example, the assignment
on line 8 requires exclusive capability to place pair2.second. Therefore, the
algorithm inserts the unpack pair2 operation on line 10 to unpack the
capability pair2 into capabilities pair2.first and pair2.second. We must
make three important changes to adapt this PCS elaboration algorithm
to support mixed safe-unsafe code. First, we need to integrate the rules
we discussed in previous subsections to distinguish which capabilities
should be managed by the algorithm and which should be left to be
managed by the user. Second, we need to adapt the algorithm to generate
the unsafe core proof we presented in Chapter 18 because, even for
entirely safe code, the unsafe core proof is more detailed than the one
presented in Part I. Importantly, we need to change the algorithm to
distinguish between allocation and initialisation capabilities because
we had only initialisation capabilities in Part I. Third, in safe code,
the algorithm has precise knowledge of available capabilities, while in
mixed safe-unsafe code, it needs to be changed to work with only partial
knowledge. To avoid presenting too many details at once, we exploit
the fact that the changes are orthogonal and discuss each change in its
subsubsection. More specifically, in Subsubsection 20.1.4.1, we present
how we integrate the rules using the capabilities from Part I. Then, in
Subsubsection 20.1.4.2, we show howwe handle the new capability types
in our algorithm. Finally, in Subsubsection 20.1.4.3, we discuss how we
address the challenge of having only partial information.

20.1.4.1 Managed and Non-Managed Capabilities

In the previous two subsections, we motivated the rules that enable us to
decide for which capabilities we can use the PCS elaboration algorithm.
To summarise, we require the user to manually write ghost operations
that transform capabilities in the following cases:

1. For capabilities that are identified by dereferencing raw pointers.
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Figure 20.1: A safe Rust example with
elaborated PCSs and PCS operations.

1 PCS: {}
2 let mut pair1 = Pair { ... };
3 PCS: {pair1 → E}
4 let mut pair2 = Pair { ... };
5 PCS: {pair1 → E, pair2 → E}

6 unpack pair2

7 PCS: {pair1 → E, pair2.first → E, pair2.second → E}
8 pair2.second = 1;
9 PCS: {pair1 → E, pair2.first → E, pair2.second → E}

10 unpack pair1

11
PCS: {pair1.first → E, pair1.second → E, pair2.first → E,
pair2.second → E}

12 pair1.second = 2;

13
PCS: {pair1.first → E, pair1.second → E, pair2.first → E,
pair2.second → E}

14 pack pair1

15 PCS: {pair1 → E, pair2.first → E, pair2.second → E}
16 let pair3 = pair1;
17 PCS: {pair3 → E, pair2.first → E, pair2.second → E}

4: The Tree Borrows model allows mod-
ifying via both pair1 and *x while
Stacked Borrows allows only via *x. In
our approach,we rely only on guarantees
that both models provide.
5: For clarity, we use the same notation
for raw pointers as we used for refer-
ences.

2. For safe places to which a raw pointer was created in the same
function.

3. For places whose types have core invariants.

The capabilities to which these rules apply we call non-managed capabili-
ties. The algorithm uses rule-specific approaches to determine whether a
rule applies to a specific capability.

To determine whether rule (1) applies, we only need to check whether
the capability is identified by a raw pointer. This check does not require
keeping any state in the algorithm. Therefore, we omit such capabilities
from the algorithm‘s state. Figure 20.2 illustrates our approach. The ex-
ample shown in Figure 20.2 is a variation of the example from Figure 20.1.
Compared to Figure 20.1, the example in Figure 20.2 has an additional
statement on line 6 that creates raw pointer x referencing pair1. After this
statement, the capability can be modified via both *x and pair14. Since
*x is a dereferencing of raw pointer x, we omit it from the algorithm‘s
state as can be seen on line 7, which shows that the state contains only
the capability to the pointer x.pointer5, but not to its target x.*.

Rule (2), unlike rule (1), is path sensitive as Figure 20.3 illustrates. In this
example, a raw pointer to place a is only created if the value of b is true.
As a result, the capability identified by location a should be managed by
the algorithm only if b was false. Therefore, we need to track whether
the capability is managed in the algorithm‘s state. For this reason, we
introduce a raw-borrowed (RB) capability to track locations that are known
to have potentially raw pointers pointing to them. As shown on line 7 in
Figure 20.2, after creating a raw pointer to pair1, its capability is changed
to RB. In Tree Borrows, once a raw pointer is created pointing to a place,
the raw pointer can be used to modify that place until the place gets
deallocated. Therefore, pair1 has the capability RB until the end of the
method to indicate that it is not managed (moving pair1 to pair3 on
line 18 does not deallocate the memory location of pair1). As shown
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1 PCS: {}
2 let mut pair1 = Pair { ... };
3 PCS: {pair1 → E}
4 let mut pair2 = Pair { ... };
5 PCS: {pair1 → E, pair2 → E}
6 let x = addr_of_mut!(pair1);
7 PCS: {x.pointer → E, pair1 → RB, pair2 → E}

8 unpack pair2

9
PCS: {x.pointer → E, pair1 → RB, pair2.first → E,
pair2.second → E}

10 pair2.second = 1;

11
PCS: {x.pointer → E, pair1 → RB, pair2.first → E,
pair2.second → E}

12 unpack!(pair1);

13
PCS: {x.pointer → E, pair1 → RB, pair2.first → E,
pair2.second → E}

14 pair1.second = 2;

15
PCS: {x.pointer → E, pair1 → RB, pair2.first → E,
pair2.second → E}

16 pack!(*x);

17
PCS: {x.pointer → E, pair1 → RB, pair2.first → E,
pair2.second → E}

18 let pair3 = pair1;

19
PCS: {x.pointer → E, pair1 → RB, pair3 → E,
pair2.first → E, pair2.second → E}

Figure 20.2: A mixed safe-unsafe Rust
example with elaborated PCSs and PCS
operations.

1 if b {
2 let x = addr_of_mut!(a);
3 // ...
4 }
5 // a is managed capability depending on whether b is true

Figure 20.3:An example illustrating that
sometimes whether a capability is man-
aged can depend on the path.

on line 12, user-written pack and unpack operations do not affect the
RB capabilities. In the PCS elaboration algorithm presented in Part I,
we always merged the state of incoming branches. In the version for
mixed code, we merge the state only if that can be done without loss of
information (otherwise, we remember what state we had when coming
from a specific branch). This way, we can provide a better user experience
because we require fewer annotations from the user.

Rule (3) is also path sensitive like rule (2). Therefore, we handle it similarly.
Figure 20.4 shows a snippet in which a field of variable list is read. Since
list is of a type that has a core invariant, according to rule (3), we require
the user to manually unpack the capability as shown on line 3. Instead
of producing the nested capabilities, unpacking converts the capability
of list to unpacked (U) as shown on line 4. The U capability informs the
PCS elaboration algorithm that when the user packs list back, it should
restore the E capability. This way, the PCS elaboration algorithm can
manage the data structures containing safe abstractions as fields.
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Figure 20.4: An example illustrating
rule (3).

1 let mut list: ArrayList = ...
2 PCS: {list → E}
3 unpack!(list);
4 PCS: {list → U}
5 let len = list.len;
6 PCS: {list → U, len → E}
7 pack!(list);
8 PCS: {list → E, len → E}

20.1.4.2 Allocation and Initialisation Capabilities

In the previous subsubsection, we showed how to distinguish managed
capabilities from non-managed. This subsubsection explains what kind
of managed capabilities and PCS operations we must handle to generate
the unsafe core proof. In Chapter 18, we discussed capabilities and
operations we need to add to support mixed safe-unsafe code. Many
of these capabilities and operations are also needed for constructing
the unsafe core proof of completely safe Rust programs (because the
unsafe core proof is more detailed than the safe core proof). Therefore,
the PCS elaboration algorithm has to compute them. The capabilities
that our PCS elaboration algorithm does not handle because we cannot
automatically determine whether they are aliased or not are capabilities
to heap-allocated memory, range capabilities, and set capabilities.

In Part I, for programs without references, we needed only one kind of
capability: exclusive. This capability expresses that a place is allocated
and initialised. As we mentioned earlier, in unsafe core proof, we need to
model allocation and initialisation separately. Therefore, in Chapter 18,
in addition to initialisation (I) capability that expresses that a memory
location is allocated and initialised, we also introduced allocation (A) and
drop-stack (DS) capabilities. The allocation capability indicates that the
place is allocated and ismapped to a MemoryBlock predicate. The drop-stack
(DS) capability expresses that the corresponding place is allocated on the
stack and can be deallocated. These capabilities and the operations that
manipulate them are computed analogically to how the PCS elaboration
algorithm for safe code computes exclusive capabilities and corresponding
PCS operations.

Figure 20.5 on the next page demonstrates how the algorithm works
on a simple example. In this example, a variable pair is created, its
field first is moved out into variable a, and then both variables are
deallocated. Before a variable is initialised, it gets allocated by StorageLive
(lines 1 and 5), which results in allocation capabilities (A) added to the
state as shown on lines 2 and 6. Initialising variable pair converts its
allocation capability (A) into initialisation capability (I) as shown on
line 4. Unpacking and packing of initialisation capabilities works in the
same way as in the safe version (lines 6–8). Like in the safe version,
unpacking is encoded into Viper‘s unfold and packing to Viper‘s fold.
StorageDead(a) on line 13 requires an allocation capability to a but we have
initialisation capability. Therefore, the PCS elaboration algorithm inserts
forget-initialisation a operation on line 11, which gets encoded into
calling the corresponding helper method. StorageDead(pair) on 19 also
requires allocation. To satisfy this requirement, the PCS elaboration
algorithm needs to insert not only forget-initialisation pair , but also
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memory-block-join pair operation (line 17). Asmentioned in Chapter 18,
split and join operations are similar to unfold and fold operations but
are for allocation capabilities.

1 // StorageLive(pair)
2 PCS: {pair → A}
3 let pair: Pair = ...
4 PCS: {pair → I}
5 // StorageLive(a)
6 PCS: {a → A, pair → I}

7 unpack pair

8 PCS: {a → A, pair.first → I, pair.second → I}
9 let a: BigInt = pair.first;
10 PCS: {a → I, pair.first → A, pair.second → I}

11 forget-initialisation a

12 PCS: {a → A, pair.first → A, pair.second → I}
13 // StorageDead(a)
14 PCS: {pair.first → A, pair.second → I}

15 forget-initialisation pair.second

16 PCS: {pair.first → A, pair.second → A}

17 memory-block-join pair

18 PCS: {pair → A}
19 // StorageDead(pair)
20 PCS: {}

Figure 20.5: An example showing how
the PCS elaboration algorithm elaborates
allocation and initialisation capabilities.

20.1.4.3 Handling Partial Knowledge

Since the algorithm presented in Part I is executed on a type-checked
safe Rust program, it is guaranteed to always succeed in finding a way to
produce the capabilities of the desired shape. This property no longer
holdswhenwe run the algorithmonmixed safe-unsafe code. For example,
in the following snippet, the user manually unpacks a, which changes its
capability to unpacked. As a result, the PCS elaboration algorithm cannot
satisfy the requirement to provide the capability to a.f, which is needed
for the assignment to b.

1 unpack!(a);

2 let b = a.f;

Therefore, if the PCS elaboration algorithm cannot satisfy the require-
ments, it proceeds under the assumption that it succeeded in satisfying
them. This behaviour is sound because the verifier tracks capabilities pre-
cisely and will report a verification error if some capability is missing.

20.2 Functional Specification of Safe-Unsafe
Code

In Part I, we presented how we can exploit the non-aliasing guarantees
available in safe Rust to provide a simple specification language based
on Rust expressions. We want to maintain this lightweight specification
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while enabling the specification of mixed safe-unsafe code. This goal
requires us to solve two challenges. First, we need a new way of linking
the user-written specifications to the core proof. In Part I, we modelled
Rust primitive types using primitive Viper types. For example, we
modelled a value of type i32 as a field of type Intwrapped in a predicate.
This choice allowed us to translate specifications directly into heap-
dependent expressions that can be conjoined to encoded type capabilities.
In our new unsafe core proof, we model primitive types using untyped
memory blocks and, therefore, need a different approach for linking
functional specifications to capabilities. We present our solution to this
challenge in Subsection 20.2.1. Second, for functional specification to
be well-defined, each memory access in the specification has to be
justified with a corresponding capability. In Part I, we used the PCS
elaboration algorithm to find the capabilities that justify each memory
access in the functional specification. Since the PCS elaboration algorithm
cannot be used with raw pointers, we need an alternative technique for
finding the capabilities that justify dereferencing them. We present in
Subsection 20.2.2 a lightweight extension to our specification language
from Part I that enables showing that dereferencing a raw pointer in the
functional specification is justified.

20.2.1 Encoding of Functional Specification

In this section, we show how we use snapshots to link functional spec-
ifications to the unsafe core proof. As we mentioned in Section 5.2, a
snapshot is a mathematical value that fully captures the set of values
stored in a group of heap locations. We decided to base our specifications
on snapshots because (as we discussed in Section 5.2), they enable quan-
tifying over non-primitive types and returning non-primitive types from
functions. However, when designing the snapshots we have to solve two
challenges. First, when handling unsafe code, we have to consider invalid
values. Therefore, unlike in Part I, we have to consider snapshots that
can be invalid instances of their types. As we mentioned in Chapter 18,
we address this challenge by introducing a validity function is_valid

for each type, that returns true if a snapshot is a valid instance for that
type. For example, snapshot s is a valid instance of i32 if it is an integer
whose value is between i32::MIN and i32::MAX. Second, we have to link
snapshots to predicates. For this purpose, we use snap functions, which
we showed in Section 5.2, that take a permission to a predicate and
return a snapshot that represents the value stored in the predicate. The
following snippet shows the snap function for Rust type i32.

1 function snap<i32>(address: Address): Snap<i32>

2 requires acc(Own<i32>(address), wildcard)

3 ensures is_valid<i32>(result)

4 {

5 unfolding acc(Own<i32>(address), write) in

6 from_bytes<i32>(bytes(address, size<i32>()))

7 }

As discussed in Section 18.1, bytes is a heap-dependent function that
returns the bytes of a memory block, and function from_bytes is a mathe-
matical function that converts bytes to a (potentially invalid) snapshot of
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an i32 value. Since having an instance of predicate Own signifies that the
value is valid, snap functions can ensure that the snapshot they return is
a valid instance of the type. The keyword wildcard used as a permission
amount signifies that this function needs any positive permission amount
to the predicate.

The following snippet shows a simple function with a precondition that
expresses that the values stored at the targets of pointer p and parameter
a are positive.

1 #[core_requires(own!(*p) && *p > 0 && a > 0)]

2 unsafe fn require_positive(p: *mut i32, a: i32) { }

On the definition side, this precondition is encoded as the two inhale

statements shown in Figure 20.6. The inhale statement on line 1 inhales the
permissions generated from the parameter types. The inhale statement
on line 2 inhales the core precondtion. The function call snap<*mut

i32>(p) obtains the snapshot of predicate instance Own<*mut i32>(p). The
function call to function value<*mut i32> obtains the actual address out
of the snapshot. This address is passed to function call snap<i32>, which
obtains the snapshot of i32. Finally, the mathematical value stored in
this snapshot is extracted by calling value<i32> and compared to 0. The
encoding of a > 0 is analogous.

1 inhale acc(Own<*mut i32>(p), write) && acc(Own<i32>(a), write)
2 inhale acc(Own<i32>(value<*mut i32>(snap<*mut i32>(p))), write) &&
3 value<i32>(snap<i32>(value<*mut i32>(snap<*mut i32>(p)))) > 0 &&
4 value<i32>(snap<i32>(a)) > 0

Figure 20.6: An inhale of permissions to parameters and core precondition.

In the rest of this section, we describe for each kind of type howwe define
their snapshots and validity functions. To make examples clearer we
present snapshots using pseudo-Viper syntax with algebraic data types
(ADTs); in our actual implementation, we manually axiomatise them to
have a more optimised encoding.

Primitive Types. We define snapshots of primitive types such as bool,
i32, char, and *mut T by using an ADT that is either a valid value or
uninit as shown in the following snippet for <i32>.

1 adt Snap<i32> {

2 Value(Int)

3 Uninit

4 }

As was mentioned above, a destructor value<i32> allows extracting the
Viper value out of the snapshot (Bool for bool, Int for integer types and
char, Address for raw pointers).

is_valid<bool> returns true if snapshot is an ADT variant Value. is_valid
for integer types and char requires the snapshot to be Value(v) where v

is required to be within the valid range for that type. is_valid for raw
pointers is an uninterpreted function, which means that a user cannot
prove that some sequence of bytes is a valid pointer; valid raw pointers
can be obtained only through built-in Rust operations.



212 20 Making Verification Lightweight

Generic Type Parameters. Since generic type parameters are modelled
using abstract predicates, their snapshot types, and validity functions,
and snap functions are also abstract.

Structs. We define the snapshot of a struct similarly to a snapshot of a
primitive type, just with a parameter for each field. The following snippet
shows the definition of a snapshot for type Pair.

1 adt Snap<Pair> {

2 Value(first: Snap<i32>, second: Snap<i32>)

3 Uninit

4 }

A snapshot of a struct is valid if it has ADT variant Value and all of its
fields are also valid. The snap function obtains the snapshots of all fields
and combines them to obtain the snapshot of the struct. The following
snippet shows a snap function for Pair.

1 function snap<Pair>(address: Address): Snap<Pair>

2 requires acc(Own<Pair>(address), wildcard)

3 ensures is_valid<Pair>(result)

4 {

5 unfolding acc(Own<Pair>(address), write) in

6 Snap<Pair>::Value(

7 snap<i32>(...first...),

8 snap<i32>(...second...),

9 )

10 }

Structs with Core Invariants. When defining a snapshot of a struct
with an invariant, we treat each synctactically mentioned initialisation
predicate as if it were an additional field. For example, the following
snippet shows a definition of MyBox<T> with its core invariant.

1 #[core_invariant(!self.ptr.is_null() ==> own!(*self.ptr))]

2 struct MyBox<T> {

3 ptr: *mut T,

4 }

The snapshot for this type is shown in the following snippet.

1 adt Snap<MyBox<T>> {

2 Value(ptr: Snap<*mut T>, ptr_deref: Snap<T>),

3 Uninit,

4 }

The additional parameter ptr_deref captures the value of the predicate
referenced by pointer ptr. The validity function requires such fields
to contain valid snapshots only when the corresponding capability is
present in the invariant. For our example, ptr_deref is ADT variant Uninit
when field ptr is null. The snap function, similarly to structs without
invariants, obtains snapshots of each real or fictional field and creates
the snapshot of the entire struct. However, its implementation becomes
significantly more complicated because it has to consider all possible
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initialisation variants as shown in the following snippet containing the
snap function for MyBox<T>.

1 function snap<MyBox<T>>(address: Address): Snap<MyBox<T>>

2 requires acc(Own<MyBox<T>>(address), wildcard)

3 ensures is_valid<MyBox<T>>(result)

4 {

5 unfolding acc(Own<MyBox<T>>(address), write) in

6 (...ptr.is_null() ?

7 Snap<MyBox<T>>::Value(

8 snap<*mut T>(...ptr...),

9 Snap<T>::Uninit,

10 )

11 :

12 Snap<MyBox<T>>::Value(

13 snap<*mut T>(...ptr...),

14 snap<T>(...),

15 )

16 )

17 }

Since core invariants can also contain own_range(...) and own_set(...)

predicates, we also need to define their snapshots. For own_range(...),
we use Viper sequences and for own_set(...) we use Viper sets.

Enums. We define a snapshot of an enum by having a variant for each
variant of the enum and an additional variant to represent an invalid
enum. For example, the Option<T> type in Rust is shown in the following
snippet.

1 enum Option<T> {

2 Some(T),

3 None,

4 }

We define the snapshot of Option<T> as shown in the following snippet.

1 adt Snap<Option<T>> {

2 ValueSome(Snap<T>),

3 ValueNone,

4 Uninit,

5 }

A snapshot of an enum is valid if it is one of the enum variants and the
arguments of the variant are all valid. The snap function for enums is
defined analogously to the one for structs with the key difference that
we need to consider each variant separately as shown in the following
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snippet.

1 function snap<Option<T>>(address: Address): Snap<Option<T>>

2 requires acc(Own<Option<T>>(address), wildcard)

3 ensures is_valid<Option<T>>(result)

4 {

5 unfolding acc(Own<Option<T>>(address), write) in

6 (... discriminant == 0 ?

7 Snap<Option<T>>::ValueSome(snap<T>(...))

8 :

9 Snap<Option<T>>::ValueNone

10 )

11 }

In this subsection, we presented snapshots, which we use to link memory
accesses in specifications to capabilities that justify them. In the following
subsection, we discuss how can we justify raw pointer dereferences in
specifications.

20.2.2 Specifying Memory Referenced by Raw Pointers

The specification technique presented in Part I enabled us to use a
specification language based on Rust boolean expressions as shown in
the following snippet.

1 #[requires(r1.first == r2.first)]

2 unsafe fn test(r1: &Pair, r2: &Pair) { }

Such specifications are enabled by the PCS elaboration algorithm that for
each memory access in the specification finds a capability that justifies it.
The following snippet shows an alternative version of the example that
uses raw pointers instead of shared references.

1 #[core_requires(own!(*p1))]

2 #[core_requires(p1 != p2 ==> own!(*p2))]

3 #[requires((*p1).first == (*p2).first)]

4 unsafe fn test(p1: *mut Pair, p2: *mut Pair) { }

In this version,wehave twomemoryaccesses (*p1).first and (*p2).first

that need to be justified. However, we cannot use the PCS elaboration
algorithm anymore since it cannot handle raw pointers.

For statements, we solved this challenge by giving to the user ghost oper-
ations such as unpack!(...) that enable them to manually transform the
capabilities into the required form in the cases when the PCS elaboration
algorithm cannot do that. We could approach the challenge for specifica-
tions in the same way by providing a ghost operation unpacking!(...)

that enables the user to manually unpack the capability inside a specifica-
tion. However, this can lead to verbose and tedious to write specifications
in cases a user needs to unpack a capability multiple times; for example,
to unpack capability *p into *p.f.g.h, they would need three nested
unpacking!(...) operations. Therefore, we decided to enable the PCS
elaboration algorithm to track capabilities tomemory locations referenced
by raw pointers instead.
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In the previous section, we showed several examples how changing
a capability through one alias causes a verification error when using
another alias. The key problem in all these examples is that all aliases
are using the same exclusive capability to a memory location and,
therefore, changes through one alias affect all other aliases. Rust‘s shared
references also allow aliasing, but each shared reference is associatedwith
a duplicable read-only capability that is limited in time (the capability
expires when the lifetime of the corresponding reference expires). This
property enabled us to treat the capability of each shared reference
separately in Part I. We exploit this observation to enable using the
PCS elaboration algorithm for specifications that contain raw pointer
dereferences.

The key difference between capabilities used to justify specifications and
capabilities used to justify user-written code is that the former never
consumes the capabilities: it only requires proving that a capability is held
and that it can be transformed into the required form. Therefore, when
justifying specifications,we canpretend that all capabilities areduplicable,
which enables us to treat each capability separately. We introduce a
new specification construct eval_using!(own!(p) => assertion) that tells
the PCS elaboration algorithm that when elaborating operations in
assertion, it can assume that syntactic place p has an initialisation
capability associated with it. The following snippet shows the updated
version of the snippet from before that uses eval_using!(...) to tell the
PCS elaboration algorithm that *p1 and *p2 have initialisation capabilities
associated with them.

1 #[core_requires(own!(*p1))]

2 #[core_requires(p1 != p2 ==> own!(*p2))]

3 #[requires(

4 eval_using(own!(*p1) ==>

5 eval_using(own!(*p2) ==>

6 (*p1).first == (*p2).first

7 )

8 )

9 )]

10 unsafe fn test(p1: *mut Pair, p2: *mut Pair) { }

As can be seen from the snippet, the fact that eval_using(...) does not
consume the capability enables us to avoid branching on whether p1 and
p2 alias when writing the functional part of the specification.

While eval_using(...) enables us to specify functional properties of
functions that use raw pointers, we can often simplify these specifications.
Often functional specifications are written immediately after predicates
that provide the capabilities that justify these specifications as shown in
the following example.

1 #[core_requires(

2 !p.is_null() ==> own!(*p) && (*p).f.g == 5

3 )]

We interpret such examples as if eval_using(...) is following the predi-
cate as shown in the following snippet.
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1 #[core_requires(!p.is_null() ==>

2 own!(*p) && eval_using(own!(*p) => (*p).f.g == 5))]

This simple syntactic sugar avoids the need to use eval_using(...) in
most cases making most functional specifications for code that uses raw
pointers not much more complex than the ones for safe code. With this
syntactic sugar, expressions like (*p).f.g look similar to Viper’s heap
dependent expressions. However, there are two important differences.
First, in our specification language, places are matched syntactically
while Viper determines the corresponding capability based on the actual
value identifying the resource. Second, our PCS algorithm automatically
ensures that capabilities are transformed into the right shape while
Viper requires the user to do that manually by providing the necessary
unfolding expressions.

It is important to note that eval_using(...) cannot be used to specify
permissions that are hidden inside type invariants. For example, the
following snippet shows struct MyBox that owns the memory location
referenced by field p.

1 #[core_invariant(!self.p.is_null() ==> own!(*self.p))]

2 pub struct MyBox<T> {

3 p: *mut T,

4 }

If we have a function that takes a reference to this box, eval_using!(...)
unfortunately cannot be be used to specify the value stored in the
memory location referenced by field p because the syntax does not allow
specifying that predicate own!(...) is inside the core invariant of the
box. We considered extending the syntax to allow specifying (potentially
arbitrary long) chain of places whose invariants contain the permissions.
However, we decided against this extension because it leads to hard-to-
read specifications and the desired specifications can be expressed by
calling a pure function on a type with invariant.
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Borrowing is one of the key features of Rust and is used constantly by
programmers. Therefore, all verification techniques developed for Rust
have to support borrowing to be useful. While the focus of this part
of the thesis is on the verification of mixed safe-unsafe code, to enable
evaluating our approach on interesting examples, this chapter presents
our technique for supporting references. Based on our discussion in
Chapter 7 of approaches for modelling references, we have two options
we could use as a base for developing a model of references suitable for
SMT-based verification of unsafe code. The first option would be to build
on our model based on magic wands we presented in Part I. The key
challenge we would have to address to enable verifying unsafe code in
this model is adding a model of lifetimes, which are extensively used by
safe abstractions to ensure memory safety. The second option would be
to base our work on the models of references presented in RustBelt [71]

[71]: Jung et al. (2018), ‘RustBelt: securing
the foundations of the Rust program-
ming language’

and RustHornBelt [133]

[133]:Matsushita et al. (2022), ‘RustHorn-
Belt: a semantic foundation for functional
verification of Rust programs with un-
safe code’

. The advantage of these models is that they were
designed for verifying unsafe code. However, as we discussed in the
introduction of this part, RustBelt and RustHornBelt were designed for
manual verification in a proof assistant and their approaches would
have to be adapted to enable SMT-based verification. We believe that
both options are viable. However, we decided to base our approach on
RustBelt and RustHornBelt because they are more different from our
work and we expect that working on them can give us a different view
and deeper understanding of Rust references and borrowing.

As we discussed in Chapter 7, the tracking of borrows in RustBelt is
done by the lifetime logic, the library that implements the “bank”. An
important property of RustBelt‘s design is that the lifetime logic is
designed as a separable component. This property enables us to integrate
the unchanged lifetime logic with our approach, which we investigated
with Pascal Huber in his Master‘s thesis [190]. Since the focus of RustBelt
is verifying the soundness of safe abstractions, the lifetime logic does not
provide any mechanism for specifying the values of borrows, which is
necessary for verifying functional correctness. Verification of functional
correctness is enabled by RustHornBelt. However, RustHornBelt enables
functional verification by tracking prophecies outside of the lifetime logic,
which exposes the complexity of the mechanism for tracking prophecies
in the core proof making it challenging to reliably automate in an SMT-
based verifier1. Therefore, instead of trying to automate RustHornBelt
directly, we took a different path: we extended the interface of the
lifetime logic in a way that enables RustHornBelt-like reasoning. The
key advantage of our approach is that the resulting logic is significantly
more suited for automating in an SMT-based verifier. The design of our
lifetime logic enables us to completely automatically derive a proof in
our new lifetime logic for programs written in safe Rust, giving the users
exactly the same experience as in Part I. For unsafe code, we provide
annotations that the user can use to guide the generation of the proof.
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2: The main exception is the modelling
of shared references in Part I. Other ex-
ceptions are operations for type parame-
ters (because to decompose some opera-
tions we need to know a concrete type)
and operations for splitting and join-
ing memory blocks (because to decom-
pose these operations we would need to
choose a concrete memory layout).

[191]: Jung et al. (2018), ‘Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic’
[58]: Barras et al. (1997), The Coq proof
assistant reference manual: Version 6.1

[191]: Jung et al. (2018), ‘Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic’

Wementioned that we decided to base our approach on the lifetime logic
because this path is more different from the work we did in the rest of
the thesis and can give us a deeper understanding of Rust references and
borrowing. Up to now, almost all2 operations for transferring and trans-
forming resources were either Viper‘s primitive operations (for example,
Viper‘s unfold statement) or operations that could be decomposed into
them (for example, the forget_initialisation ghost operation that can
be decomposed into recursively unfolding all predicates and joining all
memory blocks). Therefore, the soundness of these operations depends
on the soundness of Viper. Our lifetime logic introduces new operations
for transferring and transforming resources, which are axiomatised with-
out relating them to primitive Viper operations. Therefore, to gain the
same level of trust, we need to prove that the lifetime logic is sound and
that we are modelling it correctly in Viper. We are convinced that our
lifetime logic is sound because it is based on RustBelt‘s lifetime logic with
extensions guided by RustHornBelt‘s design, both of which were proven
sound in Iris [191] (and mechanised in Coq [58]). We are also convinced
that our modelling of the logic in Viper is correct because we took the
standard approach of modelling lifetime logic resources as opaque Viper
resources and lifetime logic rules as opaque Viper methods. However,
we do not yet have the formal proofs and, therefore, consider the work
presented in this chapter incomplete.

This chapter is structured as follows. In Section 21.1, we present how we
model RustBelt‘s lifetime logic in Viper and how we integrate it with
our core proof presented in Chapter 18. In Section 21.2, we show how
we use information from Polonius and our PCS elaboration algorithm to
automatically derive a core proof for safe Rust functions using references.
In Section 21.3, we present our extensions of the lifetime logic and show
how we use them to enable verification of functional correctness in
programs that use references. In Section 21.4, we summarise.

21.1 Modelling RustBelt‘s Lifetime Logic in
Viper

As we discussed in Part I, when reference x expires in Rust, the capability
that the reference is borrowing (x.*) is returned to the lender. In ourmodel
of borrows based on magic wands we presented in Part I, we reconstruct
the explicit backward flow that returns the borrowed capabilities to the
lenders. As we discussed in Subsection 7.5.1 (Borrowing via Library in
RustBelt) on page 87, in RustBelt, the capabilities are returned implicitly,
similarly to the Rust compiler.

This section shows how we can model RustBelt‘s lifetime logic, which is
defined in the higher-order framework Iris [191], in Viper, which uses a
first-order logic. In this section, we focus on modelling the elements of
RustBelt‘s lifetime logic in Viper. Since the same elements of RustBelt‘s
lifetime logic are used for verifying safe and unsafe code, we use only
safe Rust examples in this section. In the following section, we show how
the information available in the compiler can be used to compute all the
necessary operations for safe code examples automatically and how the
user can guide the generation of the proof for examples using unsafe code.
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3: Rule LftL-borrow on page 142 in [129]:
Jung (2020), ‘Understanding and evolv-
ing the Rust programming language’.

4: Ź is a later modality related to step
indexing, which Iris requires for dealing
with recursive types. We do not model
the later modality because our approach
does not support types forwhich it is nec-
essary to use step indexing in RustBelt
(for example, &dyn Trait). While we
are confident that not modelling step in-
dexing is justified in our case, it would be
important future work to formally prove
that this is indeed the case.

We start this section by repeating the intuition of how the lifetime logic
works in Subsection 21.1.1. In Subsection 21.1.2, we present the general
approach we use to model the lifetime logic in Viper. In Subsection 21.1.3,
we illustrate our encoding by walking through a simple example. We
finish this section by discussing in Subsection 21.1.4 important challenges
related to modelling RustBelt borrows in Viper.

21.1.1 Library-Based Modelling of Borrows

As we discussed in Subsection 7.5.1, the lifetime logic can be understood
as a library written in a linear functional programming language that
implements a bank-like entity. Creating a borrow stores the borrowed
capability in the bank for the lifetime for which the borrow was created.
When the borrow is created, the bank issues a borrow capability and
inheritance. The borrow capability can be used to access the borrowed
capability as long as the corresponding lifetime is alive, which is tracked
using the lifetime token. The inheritance can be used to take out the
borrowed capability from the bank once the lifetime is dead, which is
tracked using the duplicable dead lifetime token. For mutable borrows,
the borrow capability is unique while, for shared borrows, the borrow
capability is duplicable. To access the borrowed capability, the user has
to open the borrow. Opening the borrow consumes the borrow capability
and a fraction of the lifetime token. The user can regain the borrow
capability and the consumed fraction of the lifetime token by closing the
borrow. Creating a lifetime generates a full lifetime token for that lifetime.
The user can end the lifetime by giving up the full lifetime token, which
produces a dead lifetime token.

The full lifetime logic supports significantly more operations to enable
verifying realistic Rust code. However, in this section, we focus on
describing how we model these operations. We model the remaining
operations in a similar way.

21.1.2 Encoding Overview

The intuitive behaviour of the lifetime logic we described is formally
captured using rules thatmanipulate Iris resources. The following equation
shows the lifetime logic rule for creating a borrow3.

Ź% ”́̊ &�
full%

loomoon

borrow capability

˚ pr:�s ”́̊ Ź%q
loooooooomoooooooon

inheritance

(21.1)

In this rule, %4 is a resource that models the capability that is stored in
the bank, &�

full% is a resource that models the mutable borrow capability,
and r:�s ”́̊ Ź% is a resource that models the inheritance.

Our general approach is to model Iris resources using (typically abstract)
predicates in Viper. For example, if the borrowed capability is an ini-
tialisation capability to place a of type Pair, which we model in Viper
using predicate instance Own<T>(a), we model the mutable borrow ca-
pability for lifetime lft as an instance of predicate MutBorrow<Pair>(lft,

a). Similarly to Own<Pair>, “<Pair>” in MutBorrow<Pair> is part of the
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5: In Iris both ”́̊ and V connectives
are called view shifts as explained on
page 138 in [129]: Jung (2020), ‘Under-
standing and evolving the Rust program-
ming language’. However, the rules we
model contain only ”́̊ .

6: Alternatively, we could use the so-
called wildcard permission amount for
the dead lifetime token. When consum-
ing a wildcard permission amount of
a resource, Viper consumes a positive
amount that is strictly smaller than cur-
rently available. As a result, if a wild-
card permission amount is used for a
resource, we know that we always have
some positive amount to it, which is suit-
able for modelling duplicable resources.
However,wildcardpermissions aremore
complex and Viper is sometimes slower
handling them than the constant ones.
Therefore, we decided to model duplica-
ble permissions by using constant per-
mission amounts.

name of the predicate: since Viper is first-order, we model higher-order
resources bymonomorphising them.Wemodel the inheritance produced
by borrowing a using an abstract Viper predicate Inheritance<Pair>(lft,
a). The inheritance in Iris is defined as a view shift5. Intuitively, a view
shift � ”́̊ � can be understood as a resource that similarly to a magic
wand can be applied to transform resource � into resource �. We model
applying a view shift using an abstract Viper method that consumes
the view shift resource together with the resources on its left-hand side
and produces the resources on its right-hand side. The following snippet
shows the method we use to model the application of the inheritance for
Pair.

1 method apply_inheritance<Pair>(

2 lft: Lifetime,

3 addr: Address

4 )

5 requires acc(Inheritance<Pair>(lft, addr), write)

6 requires acc(DeadLifetimeToken(lft), write)

7 ensures acc(DeadLifetimeToken(lft), write)

8 ensures acc(Own<Pair>(addr), write)

The fact that method apply_inheritance consumes the predicate instance
modelling the inheritance ensures that the inheritance is applied only
once. This snippet also shows that we model the dead lifetime token
using an abstract Viper predicate DeadLifetimeToken(...). Unlike the
inheritance, the dead lifetime token is a duplicable resource. Therefore,we
encode apply_inheritance to return the consumed dead lifetime token6.
We model lifetimes using uninterpreted Viper type Lifetime.

The borrow creation rule shown in Equation 21.1 is itself defined as a
view shift. Therefore, we model applying the rule as a Viper method.
However, unlike the view shift used in the definition of the inheritance,
this view shift can be always proven without consuming any resources.
Therefore, in our Viper encoding we omit the corresponding predicate;
the method that encodes the applying of the rule requires only resource
% in its precondition. In general, we model lifetime logic rules as Viper
methods that check additional requirements and require the consumed
resources in their preconditions and ensure the produced resources in
their postconditions. If a lifetime logic rule is bidirectional, we model it
as two Viper methods; one for each direction.

The last concept we need to explain is how we model references. In Rust,
a reference is a pointer to the borrowed memory location. Therefore, we
model references as pointers whose initialisation capabilities include
the borrow capabilities. More specifically, we encode this initialisation
capability of a mutable reference to Pair using the Viper predicate shown
in the following snippet.

1 predicate Own<&mut Pair>(addr: Address, lft: Lifetime) {

2 acc(Own<*mut T>(addr), write) &&

3 acc(MutBorrow<T>(

4 lft, value<*mut T>(snap<*mut T(addr))

5 ), write)

6 }

Predicate Own<*mut Pair>(addr) provides a capability to the raw pointer
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while MutBorrow<T>(...) is the mutable borrow capability of the target.
We make the lifetime of the reference an explicit argument of the Own

predicate representing the reference. We model a shared reference to T in
the same way as a mutable reference with the only difference that we use
predicate ShrBorrow instead of MutBorrow. Predicate ShrBorrow expresses
shared borrow capability of the target.

In the next subsection, we show how we generate the core proof for a
simple borrowing example.

21.1.3 Example Core Proof Walkthrough

Figure 21.1 shows a simple borrowing example. In this example, variable a
is mutably borrowed by reference x for lifetime ’l0 (we use illegal syntax
to make the example clearer; Rust does not allow specifying lifetimes
in borrow expressions). Then, reference x is used to mutate field first.
Since this is the only use of x, the reference expires after the assignment
and a becomes unblocked. Figure 21.2 shows a slightly simplified version
of the Viper encoding of this example, automatically generated by our
approach. In Figure 21.2, before each statement we show the resources
consumed by that statement (if any) and after the statement we show the
resources produced by the statement (if any).

1 let mut a = Pair { first: 1, second: 2 };
2 let x = &'l0 mut a;
3 x.first = 42;

Figure 21.1: A simple borrow.

Encoding of let mut a = .... The first statement in Figure 21.1 ini-
tialises variable a. We encode it as shown on line 4 in Figure 21.2 by
calling the helper Viper method assign<Pair>(a). As can be seen on
line 5, this statement produces an initialisation capability to a, which we
model with predicate instance acc(Own<Pair>(a),write).

Encoding of let x = &’l0 mut a. The second statement in Figure 21.1
borrows variable a for lifetime ’l0with reference x. Borrowing in RustBelt
does not automatically create the lifetime; the user needs to create the
lifetime using a ghost statement newlft. We automatically insert this
statement before creating the borrow to create the lifetime ’l0 as shown
in Figure 21.2 on line 6. This statement returns a fresh lifetime and a full
lifetime token that signifies that the lifetime is alive. We model the newlft
statement in Viper as a helper method that produces a lifetime token
as shown on line 7. Similarly to the dead lifetime token, we model the
lifetime token as an abstract Viper predicate LifetimeToken(lifetime).

With lifetime created, we can execute the borrow statement itself. Borrow-
ing variable a consumes the initialisation capability for a and produces
an initialisation capability for reference x and an inheritance to recover a
(shown on line 10). The unique borrow capability of the target is hidden
inside the initialisation capability of the reference as we can see after the
reference predicate is unfolded on line 12. We model the creation of a
borrow using an abstract Viper method borrow_mut as shown on line 9.
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1 var l0: Lifetime
2 var a: Address
3 var x: Address
4 assign<Pair>(a);
5 Produce: { acc(Own<Pair>(a),write) }
6 l0 := newlft();
7 Produce: { acc(LifetimeToken(l0),write) }

8 Consume: { acc(Own<Pair>(a),write) }
9 borrow_mut(x, l0, a);
10 Produce: { acc(Own<&mut Pair>(x, l0),write), acc(Inheritance<Pair>(l0, a), write) }

11 Consume: { acc(Own<&mut Pair>(x, l0),write) }
12 unfold acc(Own<&mut Pair>(x, l0),write)

13
Produce: { acc(Own<*mut Pair>(x),write),

acc(MutBorrow<Pair>(l0, value<*mut Pair>(snap<*mut Pair>(x))), write) }

14 Consume: { acc(MutBorrow<Pair>(l0, value<*mut Pair>(snap<*mut Pair>(x))), write) }

15 unfold_mut_ref<Pair>(l0, value<*mut Pair>(snap<*mut Pair>(x)))

16
Produce: { acc(MutBorrow<i32>(l0, ..._first(...(...(x)))), write),

acc(MutBorrow<i32>(l0, ..._second(...(...(x)))), write) }

17
Consume: { acc(MutBorrow<i32>(l0, ..._first(...(...(x)))), write),

acc(LifetimeToken(l0),token_perm) }
18 token_perm = open_mut_ref<i32>(l0, field_address_Pair_first(value<...>(snap<...>(x))))

19
Produce: { acc(Own<i32>(..._first(...(...(x)))), write),

acc(MutBorrowClose(l0, ..._Pair_first(...(...(x))), token_perm), write) }

20 Consume: { acc(Own<i32>(..._first(...(...(x)))), write) }
21 assign<i32>(field_address_Pair_first(value<...>(snap<...>(x))), ...42...)
22 Produce: { acc(Own<i32>(..._first(...(...(x)))), write) }

23
Consume: { acc(Own<i32>(..._first(...(...(x)))), write),

acc(MutBorrowClose(l0, ..._first(...(...(x))), token_perm), write) }
24 close_mut_ref<i32>(l0, field_address_Pair_first(value<...>(snap<...>(x))), token_perm)

25
Produce: { acc(MutBorrow<i32>(l0, ..._first(...(...(x)))), write),

acc(LifetimeToken(l0),token_perm) }

26 Consume: { acc(LifetimeToken(l0),write) }
27 endlft(l0);
28 Produce: { acc(DeadLifetimeToken(l0),write) }

29 Consume: { acc(Inheritance<Pair>(l0, a), write), acc(DeadLifetimeToken(l0),write) }
30 apply_inheritance(l0, a);
31 Produce: { acc(Own<Pair>(a),write), acc(DeadLifetimeToken(l0),write) }

Figure 21.2: A slightly simplified version of the encoding of simple borrow from Figure 21.1 using RustBelt lifetime logic, generated
automatically by our approach. Before each statement we show resources consumed by the statement (if any) and after each statement
we show the resources produces by the statement (if any).

Encoding of x.first = 42. The last statement in Figure 21.1 assigns to
a field of the borrowed pair via reference x. To justify this assignment,
we need to obtain the initialisation capability to place x.*.first. On a
high-level, this requires unpacking capability x twice to obtain the borrow
capability for x.*.first and then open the borrow to obtain the initial-
isation capability for x.*.first. Since we have a regular initialisation
capability for x, we can unpack it using a Viper unfold statement (line 12)
as we presented in Chapter 18. Unpacking x consumes the initialisation
capability for x (shown on line 11) and produces the initialisation capa-
bility for x.pointer and a mutable borrow capability (shown on line 13).
To obtain the borrow capability for x.*.first, we need to unpack the
borrow capability for x.*. Unpacking mutable borrow capabilities for
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7: Rule LftL-bor-acc on page 142 in [129]:
Jung (2020), ‘Understanding and evolv-
ing the Rust programming language’.

complex types requires care as we explain in Subsection 21.1.4. However,
mutable borrow capabilities to simple structs like Pair can be unpacked
in the same way as initialisation capabilities. We encode the unpack-
ing of the capability using a helper method unfold_mut_ref<Pair>(...)

(line 15), which for Pair has the same effect as a Viper unfold statement: it
consumes the capability for the pair (shown on line 14) and produces the
capabilities for its fields (shown on line 16). Finally, we have the mutable
borrow capability x.*, which we need for opening the borrow to obtain
the initialisation capability for x.*.

As we mentioned earlier, the RustBelt rule for opening the mutable
borrow 7 enables exchanging a mutable borrow capability and a fraction
of a lifetime token for the corresponding initialisation capability. We
model this rule using method open_mut_ref<i32> as shown on line 18. As
shown on line 17, this method consumes the mutable borrow capability
for x.*.first and some positive permission amount of the lifetime token.
Since the permission amount this method consumes is under-specified
(it is known to be positive and smaller than the currently held permission
amount), it returns the actually consumed permission amount, which
we store in the variable token_perm. The method gives to the caller the
initialisation capability to x.*.first, which we model with predicate
Own<i32>, and a view shift for closing the borrow, which we model using
an abstract Viper predicate MutBorrowClose as shown on line 19. After the
assignment, which we model with assign<i32> helper method, we apply
the view shift by calling close_mut_ref<i32>method as shown on line 24.
This method consumes the initialisation capability to x.*.first together
with the resource for the view shift itself and restores the capability state
to the one we had before opening the borrow.

Encoding of Expiration. Since the assignment of x.first is the last
use of reference x, we can end lifetime ’l0. In RustBelt, the lifetime is
ended by executing statement endlft that consumes the full permission
to the lifetime token and produces the dead lifetime token. Wemodel this
statement using an abstract Viper method as shown on line 27. Once we
obtained thedead lifetime,we canuse it to apply the inheritance view shift
to recover that borrowed initialisation capability a. We model applying
the inheritance view shift by calling method apply_inheritance as shown
on line 30. This method consumes the inheritance resource together with
the dead lifetime token and produces the borrowed capability. The dead
lifetime token is a duplicable resource. Since Viper does not support
duplicable resources, apply_inheritance returns the predicate instance
modelling the dead lifetime token back to the caller.

In this example,we showedhowwemodel themost important parts of the
lifetime logic. The full lifetime logic has significantly more rules, which
we model in a similar way using the general principles we presented in
Subsection 21.1.2 and, therefore, we do not describe them here. Table 21.1
summarises the predicates we use to model RustBelt resources.

21.1.4 Modelling Borrow Capabilities

We mentioned that we model mutable borrow capabilities using Viper
predicates MutBorrow(...) and shared borrow capabilities using Viper
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Table 21.1: Viper predicates used for modelling lifetime logic resources.

Predicate Explanation

LifetimeToken(lifetime) Any positive permission amount of a lifetime token indicates
that the corresponding lifetime is alive.

DeadLifetimeToken(lifetime) Dead lifetime token indicates that the corresponding lifetime
is dead. This predicate is duplicable.

MutBorrow<T>(lifetime, address) A predicate representing a mutable borrow capability.
MutBorrowClose<T>(lifetime, address, tperm) Apredicatemodelling the viewshift to close amutable borrow.
ShrBorrow<T>(lifetime, address) A predicate representing a shared borrow capability.
ShrBorrowClose<T>(lifetime, address, tperm) A predicate modelling the viewshift to close a shared borrow.
Inheritance<T>(lifetime, address) A predicate modelling the viewshift to recover the mutably

borrowed capability.

predicates ShrBorrow(...). However, we have not described how we
model them. We do that in this subsection.

Similarly to Own predicates, the borrow predicates MutBorrow and
ShrBorrow express that the target is initialised because Rust references can
point only to valid instances of types. However, differently from owned
values, borrow values cannot be moved or reallocated. Therefore, while
the lifetime logic allows borrowing arbitrary predicates, we decided to
not model borrowed variants of allocation predicates such as MemoryBlock
and MemoryBlockDropHeap. Based on this decision, we define MutBorrow

and ShrBorrow for primitive types as abstract Viper predicates. We define
MutBorrow<T>(...) for composite type T similarly to Own<T>(...) with all
nested Own predicates replaced with MutBorrow predicates and all allo-
cation predicates removed. We define ShrBorrow<T>(...) for composite
types in the same way. In the rest of this subsection, we discuss how we
model unpacking and packing borrow capabilities.

Shared Borrow Capabilities. Shared borrow capabilities in RustBelt
are duplicable resources. This means that if we unpack the shared borrow
capability for place p, we can still use it. Since Viper does not support
duplicable resources, we model unpacking and packing of a shared
borrow capability as preserving the predicate instances in a similar
way how applying inheritance preserves the dead lifetime token. The
following snippet shows the definition of the abstractmethod thatmodels
unpacking of a shared borrow capability for Pair.

1 method unfold_ref<Pair>(lifetime: Lifetime, address: Address)

2 requires acc(ShrBorrow<Pair>(lifetime, address), write)

3 ensures acc(ShrBorrow<Pair>(lifetime, address), write)

4 ensures acc(ShrBorrow<i32>(lifetime, field_address_Pair_first(address)), write)

5 ensures acc(ShrBorrow<i32>(lifetime, field_address_Pair_second(address)), write)

6 ensures /* Link values of the pair with the values of its fields. */

As shown on line 3, we model that the shared borrow capability is
duplicable by returning the original predicate instance to the caller. We
encode packing of a shared borrow capability in a similar way.

Mutable Borrow Capabilities. The key property that a model of muta-
ble borrows must guarantee is that when a borrow expires, the borrowed
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8: Rule LftL-bor-split on page 142 in [129]:
Jung (2020), ‘Understanding and evolv-
ing the Rust programming language’.

value is in a valid state, which for types with core invariants means
that the core invariant must hold. In models that use explicit backward
capability flow, like the one we presented in Part I, we can ensure this
property by performing the necessary checks during the backward flow.
RustBelt‘s lifetime logic, similarly to the Rust compiler, uses implicit
backward capability flow, which does not allow performing the explicit
checks during the flow itself. Therefore, the lifetime logic guarantees that
the invariant of the borrowed value holds when the borrow expires by
ensuring that it holds at any program point at which the backward capa-
bility flow can be triggered. The backward capability flow is triggered
when the corresponding lifetime is ended, which requires the full lifetime
token. Since opening a borrow requires a fraction of a lifetime token, the
backward capability flow can be triggered onlywhen the borrow is closed.
As a result, the lifetime logic must guarantee that when the borrow is
closed, the borrowed value is in a valid state. The lifetime logic maintains
this property by enforcing two rules. First, it checks that the value is valid
when it is returned to the bank by closing the borrow. Second, it ensures
that the invariant can be split only into independent parts8, which in
implicit dynamic frames means that each part needs to be self-framing.
For example, this rule does not allow splitting off permission to self.len

in the Viper assertion shown in the following snippet because that would
make the expression that does the comparison not self-framing.

1 acc(self.cap, write) && acc(self.len, write) &&

2 self.len <= self.cap

The reason why the lifetime logic disallows splitting off permission to
self.len is that mutating self.len could break assertion self.len <=

self.cap. Requiring the assertion to be self-framing ensures that the
assertion cannot be broken without observing that it was broken.

Figure 21.3 demonstrates what could go wrong if the lifetime logic had
a more flexible rule that did not require to guarantee that the parts are
independent. The example shows the implementation of method set_len

on ArrayList that just sets the value of field len to the user provided
value. This method implementation should not verify because at the
end of the method, the core invariant of *self is potentially broken: for
example, the core invariant of ArrayList requires that the value of field
len is not larger than the value of field cap while the new value provided
by the user does not guarantee this requirement. If len was set to a value
larger than cap, the client could trigger a memory error by calling method
index with an index larger than cap. If we used a more flexible version of
the split rule that just splits the invariant into conjuncts, we could use
it to obtain a mutable borrow capability to self.*.len. Then, we could
use this capability to change the value of the field to an arbitrary value.
Since the backward flow is implicit, the postcondition of set_len does not
require to return back any borrow capabilities and we can just leak them.
More specifically, there is nothing that would force us to reconstruct the
invariant, which would enable us to observe that it was violated.

There is no operation in Viper that would enable us to directly encode
lifetime logic‘s split operation, which we need to model unpacking
of a mutable borrow capability. Therefore, we define our own two
operations that enable us to soundly unpack mutable borrow capabilities,
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Figure 21.3: An example that demon-
strates why it is necessary to ensure that
borrowed capabilities are always in a
valid state.

1 impl<T> ArrayList<T> {
2 fn set_len(&mut self, new_len: usize) {
3 // unpack self
4 // ???
5 // open_mut_ref self.len
6 self.len = new_len;
7 // close_mut_ref self.len
8 }
9 }

which we encode as Viper methods unfold_mut_ref(...) and unfold_-

mut_ref_obligation(...). Method unfold_mut_ref(...) is based on the
observation that the invariant can be broken onlywhen amemory location
on which it depends is mutated, like field len in our example. Therefore,
when this method unpacks the mutable borrow capability, it removes
the capabilities of memory locations whose values are mentioned in the
invariant. For example, unpacking the mutable borrow capability of type
ArrayList removes capabilities to fields ptr, cap, and len while leaving
the capability to the own_range!(...) referenced by ptr. This option is
suitable, for example, for verifying the ArrayList::index_mut method
that takes a mutable borrow to an entire ArrayList and “narrows” it
to a mutable borrow to a single element. It is important to note that
for structs without invariants, this method behaves the same as Viper‘s
unfold statement.

For packing mutable borrow capabilities, we provide method fold_-

mut_ref(...), but only for structs without type invariants because only
mutable borrow capabilities to these types could be successfully packed
after unpacking them. Method unfold_mut_ref_obligation(...) is based
on the observation that the invariant is allowed to be broken while the
borrow is open because the backward capability flow cannot be triggered
due to a missing fraction of a lifetime token. This method, similarly
to opening a borrow, consumes a fraction of a lifetime token, which
can be recovered only by packing the capability back using method
fold_mut_ref_obligation(...). Since the lender can regain the borrowed
capability only by ending the lifetime, which requires the full permission
to the lifetime token, we ensure that the mutable borrow is packed back
(which checks that the invariant holds) or the lender permanently loses
access to the borrowed value.

Enums raise similar challenges to structs with invariants because the
variant of the enum depends on the discriminant field. Similarly to our
solution for structs with invariants, when unpacking a mutable borrow
capability for enum, we remove the capability to the discriminant field.
This encoding prevents reading the discriminant while having only the
mutable borrow capability to the discriminant itself. We mitigate this
potential incompleteness by defining reading of the discriminant to take
capability to the entire enum. Nevertheless, our incomplete solution may
lead to a verification error when verifying safe code that uses mutable
references to enums; we leave addressing this issue to future work.

In this section,we showed howwemodel RustBelt‘s lifetime logic in Viper.
In the following section, we show how we use the Polonius information
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erating Memory Safety Certificates for
Rust Programs’

and our PCS elaboration algorithm for automatically deriving the core
proof for safe Rust functions containing references.

21.2 Inferring Ghost Operations for Borrows

As we showed in the previous section, the encoding based on the lifetime
logic consists of two parts: accounting of lifetimes and automation of
operations on references. We start by showing in Subsection 21.2.1 how
we use information available in Polonius to derive the lifetime accounting
operations. Then, in Subsection 21.2.2, we show how we adapt the PCS
elaboration algorithm to infer the ghost operations on references. For
both parts, the presented approach can completely automatically handle
safe code andwe expose annotations that can be used by the user to guide
the core proof generation for unsafe code. In this section, we present
the key ideas of the approach. For details we refer the reader to Pascal
Huber’s master thesis [190] with whom we worked on implementing the
approach.

21.2.1 Inferring Lifetime Accounting Operations

One advantage of the library approach used by RustBelt is that the
abstraction level provided by the library is close to the borrow checker,
which makes it relatively straightforward to automatically generate the
core proof for code that uses references. As we discussed in Chapter 3,
a lifetime in Polonius is a set of loans where a loan corresponds to a
program point where a borrow occurred. Figure 21.4 repeats the example
from Chapter 3, which we used to illustrate how Polonius works. In this
example, reference x conditionally borrows either variable a or b and
then is used to mutate the borrowed one. x is defined on line 1 and has
lifetime ’lx. On the then-branch, x borrows a. Polonius marks that a is
blocked for loan L1 and that x keeps this loan alive by putting L1 into
lifetime ’lx. Similarly, for the else-branch, Polonius creates loan L2 and
adds it to set ’lx. After the if statement, Polonius unifies the states of the
branches taking a union of ’lx values resulting in ’lx containing both L1

and L2. RustBelt’s lifetime logic does not distinguish between loans and
lifetimes. However, we can express both of them using lifetime logic‘s
lifetimes. To avoid confusion, in this section we will refer to lifetimes
used in the context of Polonius as “Polonius lifetimes” and lifetimes used
in the context of RustBelt lifetime logic as “RustBelt lifetimes”.

1 let x: &'lx i32;
2 // 'lx = { }
3 if random_choice() {
4 x = &mut a; // L1
5 // 'lx = { L1 }
6 } else {
7 x = &mut b; // L2
8 // 'lx = { L2 }
9 }
10 // 'lx = { L1, L2 }
11 *x = 4;

Figure 21.4: A conditional borrowing ex-
ample with lifetime information com-
puted by Polonius.
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For loans, the key property we want to capture is how long they are alive
because this property controls when the borrowed place can be used
again. In lifetime logic, whether a RustBelt lifetime is alive is tracked
using lifetime tokens: having some positive permission amount to the
token for some lifetime witnesses that the lifetime is alive. Figure 21.5
shows an encoding of lifetime accounting of Figure 21.4 in Viper. We
model loans using fresh RustBelt lifetimes. When a new loan is created
by a borrow statement, we create a new RustBelt lifetime using newlft

ghost operation as show on line 2. When the loan expires, we end it using
endlft ghost operation as shown on line 15. As we mentioned in the
previous section, the ghost operation newlft produces a full permission to
LifetimeToken that signifies that the lifetime is alive. Ending the lifetime
with the ghost operation endlft requires full permission to this token
and, therefore, if some part of the permission is missing, the loan cannot
be ended.

Figure 21.5:Asimplified encoding of life-
time accounting of Figure 21.4 in Viper.

1 if random_choice() {
2 l1 := newlft();
3 lx := lft_tok_sep_take_1(l1, 1/2);
4 borrow_mut(x, l1, a);
5

6 lft_tok_sep_return_1(l1, 1/2);
7 old_lx := lx;
8 lx := lft_tok_sep_take_2(l1, l2, 1/2);
9 bor_shorten(lx, old_lx, 1/2, x);
10 } else {
11 // ...
12 }
13 // ...
14 lft_tok_sep_return_2(l1, l2, q)
15 endlft(l1);
16 endlft(l2);

For Polonius lifetimes, the key property we want to capture is that they
do not outlive the loans they contain. We achieve this property using
lifetime logic’s rule LftL-tok-inter that allows creating a RustBelt lifetime
that is an intersction of other RustBelt lifetimes. Applying this rule takes
a fraction of the token of each of the intersected RustBelt lifetimes and
gives back the fraction of the token to the resulting RustBelt lifetime. The
following snippet shows method lft_tok_sep_take_3 that models this
rule for intersecting three RustBelt lifetimes (the number in the method
name indicates how many loans it intersects).

1 method lft_tok_sep_take_3(

2 l1: Lifetime,

3 l2: Lifetime,

4 l3: Lifetime,

5 q: Perm

6 ) returns (lifetime: Lifetime)

7 requires acc(LifetimeToken(l1), q)

8 requires acc(LifetimeToken(l2), q)

9 requires acc(LifetimeToken(l3), q)

10 ensures acc(LifetimeToken(intersect({l1, l2, l3}), q)

This method consumes q permission amount to lifetime tokens of the
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intersected lifetimes, and returns q permission amount to the lifetime
token of RustBelt lifetime intersect({l1, l2, l3}) that is an intersection
of lifetimes l1, l2, and l3. Function intersect is an abstract function
that maps a multiset of RustBelt lifetimes into a RustBelt lifetime. Rule
LftL-tok-inter is two sided, which means that the fractions of the original
tokens can be recovered by giving up the fraction of the token to the
intersected RustBelt lifetime. The following snippet shows a method that
undoes the effect of lft_tok_sep_take_3.

1 method lft_tok_sep_return_3(

2 l1: Lifetime,

3 l2: Lifetime,

4 l3: Lifetime,

5 q: Perm

6 ) returns (lifetime: Lifetime)

7 requires acc(LifetimeToken(intersect({l1, l2, l3}), q)

8 ensures acc(LifetimeToken(l1), q)

9 ensures acc(LifetimeToken(l2), q)

10 ensures acc(LifetimeToken(l3), q)

We define a Polonius lifetime as a RustBelt lifetime that is an intersection
of RustBelt lifetimes representing loans. When x borrows a, lifetime ’lx

contains only loan L1, which we encode by calling lft_tok_sep_take_1

on line 8. For the permission amount q, we use the value 1
2`1 where 2

is the largest number of lifetimes containing a specific loan, which is
guaranteed to be small enough to satisfy all lft_tok_sep_take operations.
At the end of the if statement, we have to update ’lx to contain both L1

and L2. We achieve this by returning the fraction of the lifetime token by
calling lft_tok_sep_return_1 on line 6 and assigning the intersection of
loans L1 and L2 to lx by calling lft_tok_sep_return_1 on line 8. We can
freely recreate lifetime tokens every time Polonius tells us that the set of
loans included into the lifetime changed because lifetime tokens carry no
value information that we would need to preserve. Since lifetime lx is
used in the type of x and, as a result, the predicate that represents it, when
the lifetime changes, the predicate for x has to be updated to use the new
value of lx. We update the predicate by calling method bor_shorten on
line 9 that models rule LftL-bor-shorten. When the reference is not used
anymore and lifetime ’lx dies, we call lft_tok_sep_return_2 to return
the fractions of the loan lifetime tokens. After this operation, we have full
permission to lifetime tokens for RustBelt lifetimes l1 and l2 that model
loans L1 and L2. Therefore, we can end the two lifetimes using endlft

statements.

The presented technique can be extended to support function calls in a
straightforward way. Figure 21.6 shows function caller that takes two
references x and y, reborrows y as z, and calls function callee with z.
Reference x is declared to have lifetime ’lx while reference y has lifetime
’ly. Lifetime bound ’ly: ’lx expresses that lifetime ’ly outlives ’lx.
For simplicity, Polonius treats parameter lifetimes as loans. Therefore,
reborrow lifetime ’lz includes not only reborrow loan L3, but also lifetime
’ly.

Figure 21.7 shows our encoding of lifetime accounting of Figure 21.6 in
Viper. Since function caller is parametrised with two lifetimes ’lx and
’ly, its encoding takes permissions to lifetime tokens that correspond
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Figure 21.6:A simple function call exam-
ple with lifetime information computed
by Polonius.

1 fn caller<'lx, 'ly: 'lx>(
2 x: &'lx mut i32,
3 y: &'ly mut i32,
4 ) {
5 let z: &'lz = &*y; // L3
6 // 'lz = { L3, 'ly }
7 callee(z);
8 }

[25]: Heule et al. (2013), ‘Abstract
Read Permissions: Fractional Permis-
sions without the Fractions’

to these lifetimes (lines 8 and 9). We use abstract read permissions [25]
to enable calling this method with any positive permission amount:
permission amount call_perm is a function parameter for which we
only require it to be positive (line 7). The method returns the same
permission amount to the tokens as it took in the precondition to ensure
that the caller can end the lifetimes (lines 23 and 24). We encode the
lifetime constraints using the outlives(ly, lx) function that expresses
that lifetime ly outlives lifetime lx (line 6). We define this function for
lifetimes as a multiset subset relation. If the encoded function has lifetime
parameters, for parameter q in method lft_tok_sep_take we use call_-

perm as the base permission amount as shown on line 12, which prevents
verification failing to due lft_tok_sep_take taking too much permission.
We do not need to change the encoding of calls to lft_tok_sep_takewhen
the arguments include not only loans, but also lifetimes because RustBelt
does not distinguish between loans and lifetimes. As can be seen from
the encoding of a function call to callee function on lines 16–18, for
parameter call_permwe provide the same permission amount as for calls
to lft_tok_sep_take.

Figure 21.7: A simplified encoding of
lifetime encoding of Figure 21.6 in Viper.

1 method caller(
2 x: Address, lx: Lifetime, y: Address, ly: Lifetime,
3 call_perm: Perm
4 ) {
5 // ...
6 inhale outlives(ly, lx)
7 inhale call_perm > none
8 inhale acc(LifetimeToken(lx), call_perm)
9 inhale acc(LifetimeToken(ly), call_perm)
10

11 l3 := newlft();
12 lz := lft_tok_sep_take_2(l1, ly, call_perm/2);
13 reborrow_mut(z, lz, ...y...);
14

15 // Function call to callee.
16 exhale acc(LifetimeToken(lz), call_perm/2)
17 // ...
18 inhale acc(LifetimeToken(lz), call_perm/2)
19

20 lft_tok_sep_return_2(l1, ly, call_perm/2);
21 endlft(l3);
22

23 ensures acc(LifetimeToken(lx), call_perm)
24 ensures acc(LifetimeToken(ly), call_perm)
25 }

When discussing Polonius information for Figure 21.6, we omitted an
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9: Ideally, this operation should wrap
a block of statements and apply only
to casts within the block. However, due
to technical reasons related to compiler
APIs, we had to make this operation
global for the entire function in which it
is used.

important detail. After the reborrowandbefore the call to callee, Polonius
kills the loan L3making lifetime ’lz longer. Removing loan L3 andmaking
lifetime ’l3 longer is sound in this case because L3 is not borrowing any
new memory (it is reborrowing what was already borrowed by lifetime
’lz). RustBelt supports this scenario via rule F-equalize. However, this
RustBelt rule is the one that the authors of GhostCell [131] had to weaken
to be able to prove GhostCell sound in RustBelt. Therefore, we were
interested whether we can generate the encoding without using this rule
and decided to use heuristic that, in scenarios like this, avoids generating
the unnecessary loan. The heuristic seems sufficient for realistic cases,
but a proper evaluation is still needed.

We have presented how we infer lifetime accounting operations for safe
code based on information available in Polonius. We cannot automati-
cally infer the lifetime accounting operations for unsafe code because
raw pointers do not have lifetime information associated with them;
therefore, user input is needed. Instead of exposing ghost operations that
enable the user to do the lifetime accounting manually (like we did with
operations that manipulate capabilities), we decided to expose higher-
level operations that enable the user to change the input of Polonius by
adding additional relations between lifetimes. This additional informa-
tion enables Polonius to compute the lifetimes without the user manually
writing the lifetime accounting operations. Currently, we provide two
ghost operations for changing how the lifetime accounting part of the
core proof is generated.

The first operation enables specifying lifetimes to references produced
from raw pointers. The key challenge for lifetime accounting in code that
uses raw pointers is that casting a raw pointer into a reference produces
a reference with an unconstrained lifetime. For example, in the following
snippet that reborrows y into x via cast to raw pointer p, the lifetime of
reference y is completely unrelated to the lifetime of reference x.

1 let x = &mut a;

2 let p = x as *mut i32;

3 let y = unsafe { &mut *p };

However, to prove that y is a valid reference, we need to link it to the bor-
rowcapability of reference x. The easiestway todo thatwouldbe to specify
that x and y have the same lifetime. However, Rust does not have suitable
syntax for expressing such properties. Therefore, we introduce ghost
operation set_lifetime_for_raw_pointer_reference_casts!(r) that tells
Polonius for all casts from a raw pointer to a reference to use the lifetime
of reference r9. This operation allows us to link lifetimes of references
that are created via raw pointers as shown in the updated version in the
following snippet.

1 let x = &mut a;

2 set_lifetime_for_raw_pointer_reference_casts!(x);

3 let p = x as *mut i32;

4 let y = unsafe { &mut *p };

The second operation enables extending a lifetime until some value is
dropped and is needed for verifying code that uses drop handlers to
preserve or fix invariants when a panic occurs. Figure 21.8 shows function
override_from_input from Chapter 19, which we used to illustrate how
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drop handlers can be used to attach ghost operations necessary to show
that the invariant is preserved when a panic occurs. On a panic branch of
function read_into, line 15 is the last use of reference self and, therefore,
Polonius tries to immediately expire it (ghost operations like pack!(...)

do not affect Polonius). However, expiring self fails because it needs to
be packed (as shown on line 10), which is done only later when the drop
handler of g is executed. Therefore, to enable verifying this function, the
user needs to be able to extend the lifetime of self until g is dropped,
which they can do by using ghost operation attach_drop_lifetime!(...)

as shownon line 13.Operation attach_drop_lifetime!(value, reference)

instructs Polonius that the lifetime of reference should extended until
value is dropped.

Figure 21.8: Function override_-
from_input from Figure 19.1 with
ghost operation attach_drop_-
lifetime!(...) necessary to ensure
that the lifetime does not end too soon.

1 pub fn override_from_input<T: Input>(
2 &mut self,
3 input: &mut T,
4 ) {
5 unsafe {
6 // ...
7 unpack!(*self);
8 let g = GhostDrop;
9 before_drop! { g =>
10 pack!(*self);
11 // ...
12 }
13 attach_drop_lifetime!(g, self);
14 self.len = 0;
15 let len = read_into(input, self.ptr, self.cap);
16 self.len = len;
17 }
18 }

21.2.2 Inferring Operations of Borrow Capabilities

For managing borrow capabilities we use the same approach as with
initialisation and allocation capabilities, showed in Chapter 18 and
Chapter 20. We define ghost operations that enable the user to manually
manage borrow capabilities and modify the PCS elaboration algorithm
to infer the operations for safe Rust. However, since we currently aim for
a minimal support for references, we do not expose yet any predicates
for talking about borrowed capabilities pointed at by raw pointers in our
specifications.We also do not allow directly borrowing a value referenced
by a raw pointer as shown in the following snippet.

1 let p = alloc(...);

2 unsafe { *p = 42 };

3 let x = unsafe { &mut *p };

It is clear how we could verify such examples in our core proof (the
encoding is almost the same as when borrowing values allocated on the
stack). However, the main challenge is finding an ergonomic syntax for
providing the necessary specification.
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As we showed in the previous section, for managing borrow capabilities
weneed three kinds of ghost operations,whichwediscuss in the following
paragraphs.

Unpacking and packing borrow capabilities. Similarly to initialisa-
tion capabilities, we need to unpack and pack borrow capabilities to
ensure they are in the right shape to justify accesses. Figure 21.9 repeats
the implementation of the indexmethod on ArrayList. This method takes
a shared borrow capability to the entire list and returns a shared borrow
capability to one of its elements. To justify this action, we need to unpack
the shared reference capability, which we can do using the unpack_ref!

operation as shown on line 8. Operation unpack_ref!(lifetime, place)

requires to provide the lifetime because the unpacked capability could
be behind a raw pointer and, therefore, with unknown lifetime. Rust
allows giving names only to lifetimes that are used as function parame-
ters. Therefore, we provide a ghost operation take_lifetime!(reference,

name) that allows giving a name to a lifetime used in the type of a ref-
erence. We use this operation on line 7 to give name lft_self to the
lifetime used by reference self. We use this name to specify the lifetime
in unpack_ref! operation. unpack_ref!(...) operation is mapped to oper-
ation unfold_ref(...) on the Viper level. In addition to unpack_ref!(...)

we also expose pack_ref!(...) for packing the capabilities of shared
borrows (mapped to fold_ref(...)), unpack_mut_ref!(...) and unpack_-

mut_ref_obligation!(...) for unpacking capabilities of mutable borrows
(mapped to unfold_mut_ref(...) and unfold_mut_ref(...), respectively),
and pack_mut_ref!(...) and pack_mut_ref_obligation!(...) for pack-
ing capabilities of mutable borrows (mapped to fold_mut_ref(...) and
fold_mut_ref_obligation(...)) operations.

1 #[pure]
2 #[requires(index < self.len())]
3 pub fn index(&self, index: usize) -> &T {
4 assert!(index < self.len());
5 let element_ptr = unsafe { self.ptr.add(index) };
6 set_lifetime_for_raw_pointer_reference_casts!(self);
7 take_lifetime!(self, lft_self);
8 unpack_ref!(lft_self, *self);
9 let result = unsafe { &*element_ptr };
10 result
11 }

Figure 21.9: Implementation of
ArrayList::index with ghost oper-
ations necessary to verify its memory
safety.

For safe code, we infer the unpacking and packing of borrow capabilities
using the PCS elaboration algorithm. In the algorithm, we treat borrow
and initialisation capabilities uniformly because we can decide which
of the operations we need to generate purely based on the type of the
place: if the unpacked place is behind a mutable reference, we emit
unpack_mut_ref!, if behind a shared reference, we emit unpack_ref!, and
otherwise we emit unpack!.

Opening and Closing Borrow Capabilities. As we mentioned above,
the lifetime logic does not allow using borrow capabilities directly for
reading or writing. Therefore, before reading or writing we have to
always open the borrow capability. For example, in the following snippet
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10: For example, linked ghost state such
as prophecy controller and value ob-
server.

a is borrowed by reference x, which is then cast to raw pointer *p used
for mutation.

1 let x = &mut a;

2 take_lifetime!(x, lft);

3 let p = x as *mut i32;

4 open_mut_ref!(lft, *x, witness);

5 let b = unsafe { *p };

6 close_mut_ref!(*x, witness);

To justify the read through the raw pointer p, we need to provide the
initialisation capability for the target.We obtain this capability by opening
the borrow capability using operation open_mut_ref!(lifetime, place,

identifier). The identifier is a name we use to link opening of the
reference with closing it. This name has to be provided to close_mut_ref!

operation when closing the borrow capability. For safe code, we use a
simple heuristic for inferring open and close operations: we wrap the
access operation in open and close pair.

Recovering Borrowed Capabilities. Since we do not support yet di-
rectly borrowing values referenced by pointers, borrows can be created
only in safe code. Therefore, we do not need to expose any operation
that would manually restore the borrowed capability by applying the
inheritance. For inferring application of inheritance for safe code, we
use an approach similar to the one used by �Rust type system. In the
PCS elaboration algorithm, we mark which places are currently blocked
and when they are accessed again, we unblock them by emitting the
application of the inheritance.

21.3 Lifetime Logic for Functional
Specifications

In the previous sections, we showed how we can incorporate RustBelt’s
lifetime logic into our core proof and automate it using Polonius informa-
tion. However, RustBelt does not enable verifying functional correctness,
which is enabled by RustHornBelt. In Chapter 7, we showed that the
prophetic model used by RustHornBelt can be used to encode pledges.
Therefore, it would be a natural choice for us to use this model for
modelling references in mixed safe-unsafe code. As we mentioned in the
introduction of this chapter, automating RustHornBelt in an SMT-based
verifier is challenging because it tracks values of borrows outside of
the lifetime logic using powerful and complex constructs10. Therefore,
instead of attempting to automate RustHornBelt, we decided to imagine
a variant of the lifetime logic that would encapsulate the complexity
of justifying prophetic reasoning inside it. This approach enables us to
significantly simplify the encoding making it much easier to automate in
an SMT-based verifier. The presented approach is still work-in-progress:
for example, we do not have yet a clear argument why the designed
interface is sound.

We use the prophetic approach only in the encoding. Forwriting specifica-
tions, we use the pledges we introduced in Part I. We encode pledges into
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prophecies using the relationship between the two models we showed
in Chapter 7. Even though we could, we currently do not expose any
operator that would allow specifications or ghost code to refer to the
final value of a reference. Our encoding of functional specifications relies
on snapshots. Therefore, in Subsection 21.3.1, we explain how we define
snapshots for references and, in Subsection 21.3.2, we show how we link
predicates with snapshots. Finally, in Subsection 21.3.3, we present the
ghost operations for resolving mutable references and explain how we
infer them for safe code.

21.3.1 Reference Snapshots

In this subsection, we show how we define snapshots for shared and
mutable references. As we mentioned above, we define a capability for
a reference as a capability for the raw pointer and a capability for the
referenced memory location. The following snippet shows Own predicate
for a shared reference to T.

1 predicate Own<&T>(addr: Address, lft: Lifetime) {

2 Own<*const T>(addr) &&

3 ShrBorrow<T>(lft, addr)

4 }

Based on this definition of the predicate, we define the snapshot of a
shared reference similarly to a struct that contains a raw pointer field
and a field of type T. The following snippet shows the definition of a
snapshot for &T.

1 adt Snap<&T> {

2 Value(pointer: Snap<*const T>, deref: Snap<T>)

3 Uninit

4 }

A snapshot is valid if both the pointer and the target value are valid. We
define the snap function for &T as shown in the following snippet.

1 function snap<&T>(addr: Address, lft: Lifetime): Snap<&T>

2 requires acc(Own<&T>(addr, lft), wildcard)

3 ensures is_valid<&T>(result)

4 {

5 unfolding acc(Own<&T>(addr, lft), wildcard) in

6 Snap<&T>::Value(

7 snap<*const T>(addr),

8 snap_shr_ref<T>(

9 lft,

10 value<*const T>(snap<*const T>(addr))

11 ),

12 )

13 }

The definition is similar to snap functions for other types with the
exception that to obtain a snapshot of shared borrow target we use
function snap_shr_ref, which we will define below.

The main difference between snapshots of shared references and snap-
shots of mutable references is that the latter in the prophetic model
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include the final value of the target. Therefore, the snapshot for &mut T

we define as shown in the following snippet.

1 adt Snap<&mut T> {

2 Value(

3 pointer: Snap<*const T>,

4 deref_current: Snap<T>,

5 deref_final: Snap<T>

6 )

7 Uninit

8 }

Similarly, the snap function for mutable references obtains the final
snapshot of the target as shown in the following snippet.

1 function snap<&mut T>(

2 addr: Address, lft: Lifetime

3 ): Snap<&T>

4 requires acc(Own<&mut T>(addr, lft), wildcard)

5 ensures is_valid<&mut T>(result)

6 {

7 unfolding acc(Own<&mut T>(addr, lft), wildcard) in

8 Snap<&mut T>::Value(

9 snap<*mut T>(addr),

10 snap_mut_ref_current<T>(

11 lft, value<*mut T>(snap<*mut T>(address))

12 ),

13 snap_mut_ref_final<T>(

14 lft, value<*mut T>(snap<*mut T>(address))

15 ),

16 )

17 }

In this snippet, function snap_mut_ref_current obtains the current snap-
shot of the target while function snap_mut_ref_final obtains the final
snapshot of the target. We define both of these functions below.

21.3.2 Obtaining Snapshots

In the previous subsection, we mentioned two functions snap_shr_ref
and snap_mut_ref_current for obtaining current snapshots of borrows
and function snap_mut_ref_final for obtaining the final snapshot of the
mutable borrow. We first show howwe define the functions for obtaining
the current snapshot and then discuss howwe obtain the final snapshot.

Current Snapshot. A straightforward way to define functions snap_-

shr_ref and snap_mut_ref_current would be as taking both a borrow
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predicate and a lifetime token as shown in the following snippet.

1 function snap_shr_ref<i32>(

2 lft: Lifetime, addr: Address

3 ): Snap<i32>

4 requires acc(ShrBorrow<i32>(lft, addr), wildcard)

5 requires acc(LifetimeToken(lft), wildcard)

6 ensures is_valid<i32>(result)

However, if we defined these functions in this way, we would not be
able to call them from the snap functions of references because these
functions do not have access to the lifetime token. Therefore, we define
snap_shr_ref and snap_mut_ref_current to take only a corresponding
borrow predicate. As a result, these functions can be used to read values
of already expired references. After the expiration of the lifetime, these
functions are guaranteed to always return the last snapshot that the
reference had before the expiration of the lifetime. For shared references
this property holds trivially because they are immutable. For mutable
references, this property holds because updating the reference requires
to open it, which requires to provide both a fraction of the lifetime token
and the full mutable borrow.

As shown in the snippet above, we define snap_shr_ref and snap_mut_-

ref_current for primitive types as abstract functions. For composite type
T, we define snap_shr_ref by transforming function snap<T> by replacing
calls to nested snap functions with snap_shr_ref. The following snippet
shows the definition of snap_shr_ref for Pair.

1 function snap_shr_ref<Pair>(

2 lft: Lifetime, addr: Address

3 ): Snap<Pair>

4 requires acc(ShrBorrow<Pair>(lft, addr), wildcard)

5 ensures is_valid<Pair>(result)

6 {

7 unfolding acc(ShrBorrow<Pair>(addr), write) in

8 Snap<Pair>::Value(

9 snap_shr_ref<i32>(...first...),

10 snap_shr_ref<i32>(...second...),

11 )

12 }

Similarly, we define snap_mut_ref_current by replacing nested snap calls
with snap_mut_ref_current.

Final snapshot. A current value of amutable borrow can change, which
is the reason why snap_mut_ref_current has to depend on predicate
MutBorrow. However, the final snapshot is fixed (prophetised) at the
borrow creation time and after that does not change. Therefore, we
model snap_mut_ref_final using a heap-independent function. Besides
this difference, we define snap_mut_ref_final similarly to snap_mut_-

ref_current. For primitive types, snap_mut_ref_final is abstract and for
composite types it is defined as snap with nested calls replaced with
snap_mut_ref_final.
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21.3.3 Resolving References

In the previous subsections we presented snapshots of references that
enable expressing functional specifications and functions that link these
snapshots with predicates. In this section, we show how we model the
last ingredient of the prophetic approach: operation resolve that is used
to resolve the prophecy when a reference expires. Intuitively, operation
resolve tells the verifier that the reference will not be modified anymore
and its current value is the final one. For example, the following snippet
shows how place a is modified via mutable reference x.

1 let mut a = 1;

2 let x = &mut a;

3 take_lifetime!(x, lft);

4 *x = 42;

5 resolve!(lft, *x);

6 assert!(a == 42);

After the assignment to x, the reference is resolved using operation
resolve!(lft, *x), which enables proving that a value is 42. We model
operation resolve!(lifetime, place) in Viper using an abstract Viper
method shown in the following snippet.

1 method resolve<T>(lft: Lifetime, addr: Address, q: Perm)

2 requires acc(LifetimeToken(lft), q)

3 requires acc(MutBorrow<T>(lft, addr), write)

4 ensures old(snap_mut_ref_current<T>(lft, addr)) ==

5 snap_mut_ref_final<T>(lft, addr)

6 ensures acc(LifetimeToken(lft), q)

Similarly to RustHornBelt‘s rule F-resolve, this method consumes the
predicate instance MutBorrow<T>(...) disallowing any further mutations.
In addition to the resolve!(...) operation for resolving a single capability,
we also provide resolve_range!(...) and resolve_set!(...) variants for
resolving ranges and sets of capabilities. For example, Figure 21.10 shows
the implementation of index_mut method of our ArrayList in which on
lines 10 and 12 we use resolve_range!(...) to resolve all the elements
of the list, except the one that is returned. In Figure 21.10, we do not
explicitly resolve the fields of ArrayList. As we discussed earlier, unpack_-
mut_ref!(...) removes permissions for the predicate instances for fields
to ensure that each predicate instance is self-framing. Actually, instead of
simply removing them, we resolve them so that the verifier knows that
values of these fields.

Thepresentedoperation resolve!(...) is sufficient formanually verifying
complex borrowpatterns.However, theRust compiler to acceptmore code
automatically inserts many reborrows that can be challenging to resolve
automatically. For example, Figure 21.11 shows function reborrow that
takesmutable reference x, reborrows it as y, and returns to the caller.While
a programmer is unlikely to write such a function manually, this pattern
is generated by the compiler when a programmer writes an identity
function that simply returns the parameter. To verify the functional
postcondition of function reborrow, we need to resolve parameter x.
However,we cannot use operation resolve!(...) for this purpose because
its encoding requires predicate instance MutBorrow(...), which was
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1 pub fn index_mut(&mut self, index: usize) -> &mut T {
2 assert!(index < self.len());
3 set_lifetime_for_raw_pointer_reference_casts!(self);
4 take_lifetime!(self, lft_self);
5 let ptr = self.ptr();
6 let len = self.len();
7 let element_ptr = unsafe { ptr.add(index) as *mut _ };
8 unpack_mut_ref!(lft_self, *self);
9 let result = unsafe { &mut *element_ptr };
10 resolve_range!(lft_self, ptr, 0, len, 0, index);
11 let next_index = index + 1;
12 resolve_range!(lft_self, ptr, 0, len, next_index, len);
13 result
14 }

Figure 21.10: Implementation of
ArrayList::index_mut with ghost
operations necessary to verify its
memory safety.

[134]: Denis et al. (2022), ‘Creusot: A
Foundry for the Deductive Verification
of Rust Programs’

consumed by reborrowing into y. Therefore, we resolve x using operation
resolve_reborrowed!(...) on line 5. This operation instead of consuming
predicate MutBorrow, consumes the inheritance that allows recovering it.
This way, this operation ensures that reference x cannot be used anymore
after it is resolved.

1 #[after_expiry(*x == before_expiry(*result))]
2 pub fn reborrow(x: &mut i32) -> &mut i32 {
3 take_lifetime!(x, lft);
4 let y = &mut *x;
5 resolve_reborrowed!(lft, *x);
6 y
7 }

Figure 21.11: A simple reborrowing
function demonstrating the need of
resolve_reborrowed!(...) opera-
tion.

For inferring resolveoperations,weuse a similar approach toCreusot [134],
which resolves the reference when it dies. The key difference between our
approach and Creusot is that we use the information available in the PCS
elaboration algorithm to decide whether we need to emit resolve!(...)
or resolve_reborrowed!(...). Creusot can treat both cases uniformly
since it does not model capabilities.

21.4 Summary

In this chapter, we showed how we extend our approach for verifying
mixed safe-unsafe code to Rust programs with references. The extension
presented in this chapter maintains all the properties of the approach
presented in this part of the thesis: it enables verifying memory safety
and functional correctness of mixed safe-unsafe programs, it completely
automatically generates the core proof for safe code based on the infor-
mation available in the compiler, and it provides annotations that the
user can use to guide the generation of the core proof for examples that
contain unsafe code. An important property of our approach is that the
visible behaviour of safe abstractions can be specified using the constructs
we introduced in Part I. For example, Figure 21.12 shows the functional
specification of method ArrayList::index_mut, which is identical to the
one of the linked list shown in Figure 17.1 on page 155. As a result,
in Figure 21.13, regardless if variable list is a safe type LinkedList or
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internally unsafe type ArrayList, the required effort for the user trying
to verify the client is exactly the same.

Figure 21.12: Functional specification of
ArrayList::index_mut. The imple-
mentation with annotations required to
verify this method are shown in Fig-
ure 21.10 on the preceding page.

1 #[requires(0 <= index && index < self.len())]
2 #[ensures(result === old(self.index(index)))]
3 #[after_expiry(
4 self.len() == old(self.len()) &&
5 forall(|i: usize|
6 0 <= i && i != index && i < self.len() ==>
7 self.index(i) === old(self.index(i))
8 ) &&
9 self.index(index) === before_expiry(&*result)
10 )]
11 pub fn index_mut(&mut self, index: usize) -> &mut T {
12 // ...
13 }

Figure 21.13: A client using a list. Since
both ArrayList and LinkedList pro-
vide the same interface, the effort re-
quired for verifying the client code is
the same for both data structures.

1 // Assuming: list.index(0) == 1 && list.index(1) == 1
2 let r = list.index_mut(1);
3 *r = 42;
4 assert!(list.index(0) == 1 && list.index(1) == 42);
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In the introduction of this part of the thesis we named two goals we aim
to achieve in the context of verifying existing Rust code. The first goal is
to enable verifying functional correctness and memory safety of mixed
safe-unsafe code that uses unsafe functions and raw pointers. In this goal,
we aim to balance two conflicting desires: ease-of-use and expressive
power. We aim to enable verifying complex unsafe code while at the
same time keeping the approach lightweight for safe parts of the code. In
particular, for completely safe code, we wanted to keep the benefits of the
verification approach presented in Part I and shield the user from complex
permission logics. The second goal is to enable verifying memory safety
of safe abstractions used by unverified safe code. As we mentioned in the
introduction, one of the main challenges is ensuring panic safety, which
programmers typically ensure using error-prone techniques. In this goal,
we aim to support ensuring that these techniques are used correctly.

Our original plan for evaluating how the approach presented in this part
of the thesis achieves these two goals was to implement our approach as
an extension to Prusti, which we presented in Part I, and perform a large
case study. For example, collections from the standard library such as
Vec, VecDeque, and LinkedList should fall within the fragment supported
by our approach, exemplify all three techniques for ensuring panic
safety, and had important memory safety bugs. However, in the course
of evaluation we ran into a blocking problem: Viper, the verification
framework used by Prusti, is extremely slow on examples that use
range or set capabilities. In many cases, Viper‘s symbolic execution
backend (the backend we use for evaluation) would not terminate within
an hour on an encoding of a Rust function that has a few lines of
code. In our investigation of the performance problem, we found that
when iterated separating conjunctions are used (to which we encode
range capabilities), Viper‘s symbolic execution backend switches to a
more complete algorithm for managing resources. The runtime of this
algorithm, at worst case, can be exponential in the number of resources
present in a Viper method (we present our investigation in more detail
in the appendix, Chapter A). When the Rust compiler lowers a Rust
program into MIR, it introduces many temporary variables that become
resources in the encoded Viper method. As a result, even for relatively
small Rust functions, the generated Viper methods can potentially have
many resources. The examples we planned to evaluate are, unfortunately,
too large for verification to terminate in reasonable time without fixing
the performance problem. Not using iterated separating conjunction is
also not an option since this feature is crucial for modelling non-trivial
examples with raw pointers.

We considered attempting to fix the performance problem but decided
against it for three reasons. First, we have ideas (presented in Chapter A)
how we could approach the cause of the performance problem we
identified but trying them out takes a significant amount of time and we
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do not know whether they work. Second, we are not sure whether the
cause of the performance problem we identified is the only one. Third,
the investigation is made significantly harder by a bug in Z3, the SMT
solver used by Viper, that causes it to crash non-deterministically. To
sum up, attempting to fix the performance problem requires a significant
amount of time and we are not certain that we are going to succeed.
Therefore, we instead implemented the mitigations based on our current
understanding of the problem and evaluated our approach on examples
on which our encoding to Viper terminates in reasonable amount of time
(we chose less than one minute per Rust function).

The rest of this chapter is structured as follows. In Section 22.1, we present
the status of our prototype implementation. In Section 22.2, we present
how we used our prototype to evaluate our approach and our findings.

22.1 Presentation of Changes Made to the
Prusti Tool

We implemented the approach described in this part of the thesis as a
prototype extension of Prusti, the verifier we presented in Part I. We
made two kinds of changes to Prusti: implemented our approach for
reasoning about mixed safe-unsafe Rust code and implemented some
mitigations for the performance problem. We give an overview of each
kind of change below.

22.1.1 Verifying Mixed Safe-Unsafe Code

We modified Prusti to support our new verification approach without
changing the high-level design of the tool. The updated Prusti is still
implemented as a compiler plugin that extracts a CFG representation
of each function with type and Polonius information and encodes that
function in Viper. The verification errors are reported to the user using
the Rust compiler error reporting mechanism and are at the level of the
Rust program. Even though the core proof generated by our prototype is
more complex, we maintain the key property we achieved in Part I: the
core proof for safe Rust programs is generated completely automatically
and the users interact with the tool at the level of Rust expressions, being
completely shielded from the complexity of the permission reasoning.

Our prototype implements the verification approach presented in this
part of the thesis and supports all presented specification constructs.
Compared to the version of Prusti presented in Part I, the new imple-
mentation additionally supports drop handlers, unsafe functions, raw
pointers, and pointer arithmetic; we have removed special support for
the Box type since a similar data structure can be verified using our
approach. To support drop handlers, we have to integrate information
from two different versions of MIR; our current implementation handles
most common cases. The Rust compiler developers expressed that they
would be open to provide all information in a single version of MIR.
Due to a bug in the implementation, creating a raw pointer either by
casting from a reference or by using addr_of!(...) currently requires an
initialisation capability even though it should not require any. Also, the
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implementation currently does not duplicate shared capabilities that are
aliased via raw pointers. The implementation performs the discussed
well-formedness checks, but some of them are incomplete: the implemen-
tation checks that drop handlers with specifications are used only on
private structs, but does not enforce yet that these structs are not used as
type arguments. Our newmodel of references requires us to have lifetime
information in functional specifications. Unfortunately, the Rust compiler
does not provide a reliable way of obtaining lifetime information for
trait methods. As a consequence, our prototype implementation does not
support trait methods with reference parameters. For some specification
constructs, the implementation supports a more restricted syntax than
presented due to the technical limitations of the approach we use to parse
and type-check specifications. For example, addr in predicates such as
own!(addr) must be a place (a local variable, or a field access) and using
a pure function call is not supported. Also, the implementation does not
support some combinations of specification constructs yet; most notably,
pure functions are not yet allowed in type invariants.

Our implementation encodes panic safety and functional correctness as
two different Viper programs. Even though the verifier needs to repeat
some work, this design presents three benefits. First, it scales better to
larger functions than having a single large Viper program. Second, this
split presents optimisation opportunities that could be explored in the
future. For example, the two could be cached independently avoiding
full verification if a user changed specification relevant only for one
part. Third, since panic safety requires a more comprehensive memory
safety proof, the memory safety proof could sometimes be omitted when
verifying functional correctness. We verify all functions (including the
pure ones) by encoding them as Viper methods because it is unclear how
to model some of the ghost operations (for example, opening a shared
reference) as Viper expressions. To avoid verifying each pure function
twice (once as a Viper method and once as a Viper function), we encode
Rust pure functions using Viper domain functions and corresponding
axioms.

22.1.2 Mitigating the Performance Problem

Our main hypothesis based on the investigation we present in Chapter A
is that our issues with the performance are caused by the fact that when
iterated separating conjunctions are used, Viper‘s symbolic execution
backend switches to amore complete and slower algorithm for accounting
permissions. More specifically, we found that the runtime of the iterated
separating conjunctions algorithm could be, at worst case, exponential
in the number of predicate instances. In many cases, when attempting
to verify Rust programs, the verification time does not simply increase
exponentially with each added statement in a Rust function but, instead,
at some point suddenly jumps above a reasonable verification time. We
think that there could be two reasons for such behaviour. First, a small
change on the source level can sometimes result in relatively large changes
on the MIR level. For example, calling a function with four parameters
can lead to creating five temporary variables on the MIR level (four for
the parameters and one for the result), which could increase the runtime
of an exponential algorithm by a factor of 25 “ 32. The second and more
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1: The number of annotations is inflated
by the need towrite annotations that help
tomitigate the performance problemand
the need to split larger functions into
smaller ones that often have very similar
specifications.

[185]: Furrer (2023), ‘Verifying Vulnera-
bility Fixes in a Rust Verifier’
[172]: Bae et al. (2021), ‘Rudra: Find-
ing Memory Safety Bugs in Rust at the
Ecosystem Scale’

likely reason is related to heuristics used by Viper‘s symbolic execution
backend. On a conceptual level, one strategy used by this backend to
improve performance is to use heuristics to split resources into groups
whose permissions can be tracked separately. Potentially, even a small
change in a program can lead to two groups being merged. If two groups
of sizes = and < get merged, the runtime would change from 2= ` 2< to
2=`< , which could be a noticeable change.

Unfortunately, Viper does not expose a way to control these heuristics
and implementing such a mechanism would require major changes to
the infrastructure. Since we are not certain that the potential reasons
we found are sufficient causes to explain the performance problem, we
decided to try mitigating the problem on the Prusti side. The key idea
of the mitigation is to do permission accounting of resources that do
not belong to iterated separating conjunctions in Prusti. This way we
can ensure that these resources do not affect the performance of the
iterated separating conjunction algorithm. By default, we manage all
resources that are not iterated separating conjunctions in Prusti and
provide an annotation quantified!(c) that allows the user to specify that
the resource corresponding to capability c should be managed by Viper.
This approach puts additional burden on the user, which is against the
goals we aim to achieve, but we found it necessary to expose as few
resources to the iterated separating conjunction algorithm as possible.
Our implementation of manual permission accounting in Prusti is highly
incomplete; we focused on supporting scenarios that are important for the
evaluation and that we can hope to support. For example, our support
for loops is limited because examples containing loops are typically
too large to hope for them to terminate in reasonable time. Since our
permission accounting in Prusti supports only Viper predicates, we
changed the encoding to avoid magic wands by replacing them with
abstract predicates and appropriate assertions. Thesemitigations enabled
us to verify some non-trivial examples, which we present in the following
section, but did not solve the problem in general and further work is
needed to understand it and potential ways of fixing it.

22.2 Evaluation of the Verification Approach

We evaluated whether our approach is suitable for verifying realistic
mixed safe-unsafe Rust code by performing two studies. In these studies,
we focus on expressivity of our approach since the performance problem
prevents us from meaningfully evaluating verification performance
and annotation overhead1. In the first study, we evaluate whether our
technique is expressive enough to verify safe abstractions that can be
used for writing verified safe code. In the manual evaluation of Rust
examples we presented in Subsection 6.2.3, we used safe abstraction
data structures and functions with trusted specifications. In this first
study, we attempt to verify these trusted specifications. We discuss this
study in Subsection 22.2.1. In the second study, we evaluate whether
our technique is sufficiently expressive for verifying tricky patterns that
programmers use to ensure memory safety. This study was mainly done
by Olivia Furrer under our supervision as part of her bachelor thesis [185].
In this study, she attempted to verify fixes of bugs found by RUDRA [172].
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Table 22.1: Safe abstractions used in examples that we used in Subsection 6.2.3 to evaluate the suitability of Prusti for verifying functional
correctness of safe code. The first half contains examples from Table 6.1. The second half contains examples from Table 6.2. The first three
safe abstractions (Vec, Box, and String) are data structures and the last one is function (std::mem::replace) that enables the client
to swap a value referenced by a mutable reference with an owned one. The subcolumns of Vec show how the vector was used. “Generic”
indicates that a generic version of the vector was used (Vec<T> with T as a generic parameter). “Mono.” that a monomorphised version
of the vector was used; for example, Vec<i32>. “Inv.” indicates that the wrapper had also a type invariant associated with it; for example,
that all values stored in the vector are between -2 and 2. “Vec<Vec<T>>” indicates that a two-dimensional vector was used. In all
examples two dimensional vectors also contained an invariant that all inner vectors are of the same length.

Example Vec
Box String replaceGeneric Mono. Inv. Vec<Vec<T>>

100 doors X
Binary Search (generic) X
Heapsort X
Knight‘s tour X X X
Knuth Shuffle X
Langton‘s Ant X X
Selection Sort (no-panic) X
Ackermann Func.
Binary Search (mono.) X
Fibonacci Seq.
Knapsack Problem/0-1 X X X
Linked List Stack X X
Selection Sort (functional) X
Towers of Hanoi
Borrow First X
Message X

Binary Search X
Selection Sort X
Linked List X

We present this study in Subsection 22.2.2.

22.2.1 Verifying Trusted Safe Abstractions

Table 22.1 lists the examples we verified in Subsection 6.2.3 together with
safe abstractions for which we had to give trusted specifications. The
examples use three data structures Vec, Box, and String, and method
std::mem::replace. Table 22.2 gives an overview of the safe abstractions
we verified. We could not verify Vec because of the performance problem.
Therefore, instead of Vec, we use our ArrayList whose implementation
is heavily inspired by Vec, but is written in a way that verification
terminates within reasonable time (less than one minute per function).
The key principle we used when implementing ArrayList is to strucure
the code in such a way that each function operates on as few range
capabilities as possible, which result in many small functions. To check
that the specifications of ArrayList are suitable, we tried to implement
the trusted stubs we used in examples and verify their specifications.
Instead of Box, we verified our own implementation SimpleBox because
Box in the Rust standard library is partially a compiler built-in with its
most important functions such as allocation and deallocation being Rust
compiler primitives. We checked whether specifications of SimpleBox are
sufficient by trying to reverify the examples “Linked List Stack” and
“Linked List” with SimpleBox instead of Box. String in example “Message”
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Table 22.2: The verified safe abstractions we used intead of the standard library abstractions to verify the wrappers used in the examples.
Column “Abstraction” lists the abstraction from the standard library, column “Replacement” lists the verified safe abstraction we used,
“LOC” is the number of lines of code in the verified abstraction, “Spec. LOC” is the number of lines of specifications and ghost code
needed to verify the abstraction, and “Verification Time” is time it took to verify the specifications averaged over 3 runs. It is important to
note that since the implementations were written by us in a style that mitigates the performance problem, the numbers should be taken
with caution.

Abstraction Replacement LOC Spec. LOC Verification Time
Vec ArrayList 227 367 14 min. 48 sec.
Box SimpleBox 47 31 1 min. 23 sec.
replace n/a 5 6 17 sec.

[192]: Developers (2024), Implementation
of function std::mem::replace

2: The Vecmethods we reimplemented
for ArrayList and verified are new,
with_capacity, from_elem, drop,
len, capacity, push, index, index_-
mut, and swap. All of these metods are
part of thepublicVecAPI, exceptfrom_-
elem that is used internally by macro
vec![...].

is used as an opaque type with only an equality method without any
specification defined on it; therefore, we omit it from our study. We
verified the original implementation of function std::mem::replace [192]
with a single-line change that makes a cast from a reference to a raw
pointer explicit, which makes the compiler generate MIR operations
supported by our implementation. In the following, we give an overview
of what we achieved and then discuss for each safe abstraction which
uses of it we managed to verify and what additional challenges we had
to solve.

Overview. The key property of a safe abstraction is that it gives an
illusion to a safe client that it is written in safe Rust. More specifically, it
cannot cause memory errors and its behaviour can be specified using the
simple constructs we presented in Part I. For all three safe abstractions,
we verified that they are memory safe and that their public functional
specifications written in the specification language from Part I are upheld.
For example, even though the ArrayList and SimpleBox implementations
handle zero-sized types differently, this difference is hidden behind the
abstraction. Therefore, the client is not required to know whether the
type with which they instantiated the collection is zero-sized if it is not
relevant for them (as we discuss below, for clients written in the context
of embedded software, precise tracking of sizes may be important).
As can be seen from Table 22.2, the implementations of ArrayList and
SimpleBox are non-trivial with the ArrayList implementation taking 227
lines and the implementation of SimpleBox taking 47 lines of code. The
original implementation of function std::mem::replace contains only 5
lines of code, but requires complex reasoning about raw pointers. The
required number of lines of specification and ghost code is around the
number of lines of code: ArrayList required 367, SimpleBox required 31,
and std::mem::replace required 6 lines of specification. However, it is
important to note that since ArrayList and SimpleBox were written by
us in a style that mitigates the performance problem, the verification
overhead could be lower significantly if the performance problems were
solved. We measured how long it takes to verify the safe abstractions
on Lenovo T470p laptop with Intel(R) Core(TM) i7-7700HQ CPU with 4
cores (8 threads), 16 GB of RAM, and Ubuntu 20.04.6 averaged over 3
runs. Verification of ArrayList takes almost 15 minutes, SimpleBox takes 1
minute 23 seconds, and std::mem::replace takes 17 seconds to verify.

ArrayList. We managed to implement and verify our own versions
of all methods2 used by Vec wrappers that use generic and monomor-



22.2 Evaluation of the Verification Approach 247

[193]: Linux Project Developers (2023),
Rust for Linux Vec::try_with_capacity

[181]: Developers (2023), Function
std::mem::forget
[194]: Developers (2023), Struct
core::mem::ManuallyDrop

phised versions of the data structure. When specifying the behaviour
of methods that allocate memory such as with_capacity(n) that creates
a new list with capacity n, we had to solve a challenge that allocating
can non-deterministically fail and cause a panic. Since the functional
precondition is required to imply absence of panics, the only sound
precondition we could give to an allocating method is false. Verifiers
such as Dafny that target verification of application software for servers
and personal computers, where running out of memory is an exceptional
event, just assume that allocation never fails. However, Rust is also used
for embedded software where it is critical to ensure that allocation er-
rors are handled correctly. For example, a version of Vec for the Linux
kernel [193] provides a method try_with_capacity that would return an
error instead of panicking if an allocation error occurs. To support both
of these scenarios, when verifying ArrayList, we introduced a constant
allocation_never_fails, which we used to specify that allocation func-
tions can fail only if this constant is false. Using this constant, we could
give a meaningful functional specification to the with_capacity method:
instead of precondition false, we used precondition allocation_never_-

fails. A user who does not care about allocation failures, could set this
constant to true and use method with_capacity. The user for whom
allocation failures are important would set this constant to false and
would be prevented from accidentally using methods that panic when
allocation fails. When verifying the wrappers, we set the constant to true

since the safe examples were not designed to handle allocation failures.
In addition to examples that use monomorphised and generic versions
of Vec, we also considered examples that use Vec with an additional type
invariant and examples that use two-dimensional vectors Vec<Vec<T>>.
Currently, our implementation supports only core invariants on types
and, therefore, we could not verify the wrappers of these examples.
However, enabling them seems to be a straightforward extension of our
approach. Overall, the approach itself seems to be suitable for verifying
specifications of safe abstractions such as ArrayList that enable using
them for building safe clients.

SimpleBox. We implemented and verified the key operations such as
creating a new box, destroying it, borrowing the value stored in it, and
moving the value out of it. Since creating a new box potentially allocates
new memory, which can non-deterministically fail, we used allocation_-

never_fails as its precondition. Implementing and verifying all methods
was straightforward with the exception of moving out the value from
the box, whose signature is shown in the snippet below.

1 fn into(self) -> T { /* ... */ }

This method consumes the box and returns the value stored in it. The
challengewith implementing thismethod is that at the end of thismethod,
the drop handler of the box is automatically called, which deallocates the
box and the value stored in it, which is a problem because we want to
return the value to the caller. Therefore, we need to cancel the invocation
of the drop handler to be able to return a valid value. Rust provides
two ways of cancelling the drop handler: function forget [181] and struct
ManuallyDrop [194]. Function forget consumes the value without calling
its destructor while ManuallyDrop allows wrapping the value to indicate
to the compiler that the drop handler should not be called. The wrapped
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value can be accessed using methods that return references pointing
to it. ManuallyDrop is a newer and preferred way of cancelling the drop
handler. Unfortunately, our model of references is too restrictive to model
this struct: our model requires that when a mutable borrow expires, the
referenced value is in a valid state. For our SimpleBox, this means that it
still has the capability to the value contained in it. However, the whole
point of using ManuallyDrop is to be able to move out capabilities from
it. When using forget, we run into a similar problem that this function
consumes the value, which requires the value to be valid. To be able to
move the value out of a box, we decided to special case the treatment
of function forget in a similar way to how we treat the drop handler:
when calling forget, instead of requiring the initialisation capability to
the entire value, we require initialisation capabilities to its fields. This
way we are able to keep the capability to the value stored in the box and
return it to the caller.

We have successfully used SimpleBox to reverify the example “Linked
List Stack”. However, we could not verify example “Linked List” because
the example uses patterns not yet supported by our mitigations for the
performance problem.

std::mem::replace. As mentioned above, we successfully verified func-
tion replacewith a small change to its implementation. Function replace,
similarly to std::mem::swap discussed in Section 19.3, relies on called
functions not panicking for its memory safety. Since the comment in
the function claims that none of the called functions could panic, we
annotated them with #[no_panic] annotations and were able to success-
fully verify the function. However, it is important to note that the Rust
documentation of these functions does not mention that these functions
guarantee absence of panics. In general, it seems that in the Rust docu-
mentation it is uncommon to mention the behaviour of a function with
respect to panics. Since knowing this behaviour is crucial when writing
unsafe code, the Rust documentation should be improved to include
this information. We have successfully used function replace with our
verified specifications when reverifying example “Linked List Stack”.

22.2.2 Verifying Vulnerability Fixes

In this subsection, we summarise the study done by Olivia Furrer in her
bachelor thesis and its key findings. For details, we refer the interested
reader to her thesis report [185]. The goal of the study was to identify
missing features that are required for verifying real-world unsafe Rust
code. During her bachelor thesis project, Olivia tried to verify using
our approach fixes of bugs found by RUDRA [172], a static analysis
tool capable of scanning all publicly available Rust code for certain
problematic patterns. She attempted to verify four complex examples,
each representing a different pattern. She successfully verified examples
glium::buffer::Content::read and bam::bgzip::Block::load in Prusti,
example std::vec::Vec::from_iter verified in Prusti only partially, and
for example std::vec::Vec::dedup_by verified a manual encoding of our
approach in Viper. In the rest of this subsection, we discuss each example
and the findings related to it.
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glium::buffer::Content::read. In this example, Vec is initialised with
data using a user-provided closure. The key pattern is shown in the
following snippet.

1 let value = Vec::with_capacity(size);

2 unsafe { value.set_len(size); }

3 let slice = &mut *value;

4 f(slice);

Avector of capacity size is created and its length is set tomatch its capacity.
Then, a mutable reference slice to its contents is created and passed
to the user-provided closure f to initialise. Since creating a reference to
uninitialised data is unsound according to the operational semantics
presented in Stacked Borrows and Tree Borrows, Olivia changed the
closure to take a mutable reference to the vector instead (actually, she
changed the function that models the closure since our implementation
does not support closures). The key challenge in verifying this example
is specifying the call to closure f that takes a mutable reference to a
vector with a weaker invariant: the invariant of Vec requires that the
first len fields are initialised while in this example they are not. It is
potentially surprising, but calling functions in a state that satisfies weaker
requirements than implied by the type system is allowed as long as the
called function explicitly allows that. Ralf Jung named such functions that
can be called with weaker requirements than implied the type invariants
of their parameters super-safe [195]. Olivia verified this example by
introducing a new struct BrokenVec that tracks initialisation using a
ghost field instead of field len and used that struct as a parameter for
closure f (both Vec and BrokenVec are based on our ArrayList). While
creating a new type works, it is clearly preferrable to avoid it. To better
support such examples, a possible extension of our approach would be
to enable defining multiple core invariants that can be switched when
verifying unsafe code. An alternative extension would be to introduce
an annotation that enables specifying that a type invariant is broken.
However, it is unclear how to elegantly integrate such an extension with
our approach because we check that the type invariants hold not only
at the function boundaries, but also at each assignment and closing of a
borrow.

bam::bgzip::Block::load. This example also calls a user-provided func-
tion to initialise the contents of a vector. However, in this example, the
vector is created already initialised with zeroes and then cleared. The
following snippet shows the key pattern.

1 // In constructor:

2 let value: Vec<u8> = vec![0u8; size];

3 value.clear();

4 // In method read:

5 unsafe { value.set_len(size); }

6 let slice = &mut *value;

7 read_exact(slice, size);

The key difference from the previous example is that reference slice

pointing into the contents of the vector in this example is a valid one even
though the vector was cleared after it was initialised. Clearing the vector
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does not affect the initialisation of contents because the vector holds
elements of unsigned integers u8 that implement trait Copy. One property
of types that implement trait Copy is that they do not implement Drop and,
therefore, clearing the vector is equivalent to just changing field len of the
vector to 0. Olivia verified this example by adding a ghost field to Vec<u8>

that tracks the actual number of initialised elements and specifying that
the implementation of method clear preserves the initialisation. This
example shows that it would be beneficial to extend our approach with
the ability to make specifications dependent onwhether a type parameter
implements some trait.

std::vec::Vec::from_iter. Rust iterators enable expressing complex
patterns with a few lines of code. For instance, in the following snippet
we consume a vector into an iterator with into_iter, filter some elements
out, map the remaining ones, and construct a new vector out of the
result.

1 let new_vec = vec.into_iter().filter(/*...*/).map(/*...*/)

2 .collect();

To achieve good performance, Rust iterators are heavily optimised. For
example, in some cases new_vecwill reuse the allocation of vec thus saving
the overhead of doing a large allocation. Function std::vec::Vec::from_-

iter is exactly the function that implements a part of such optimised
iteration. Verifying this example is interesting because it employs all
three techniques for ensuring panic safety. Since the entire function
is too large to verify with our performance issues, Olivia targeted the
final fragment of this function that constructs the new iterator because
that is the location where RUDRA found the bug. An interesting aspect
of function into_iter is that it looks into memory from two different
viewpoints. One viewpoint is the type invariant of the iterator that at the
beginning of the fragment specifies that the memory looks as shown in
the following diagram.

ptr curr end ptr.add(cap)

Pointer ptr points to a memory block of capacity cap, pointer curr points
to the current element, and pointer end points one past the last element.
Memory between ptr and curr is uninitialised because these elements
are already consumed while memory between curr and end is initialised
and contains the remaining elements. The code in the function extends the
viewpoint of the invariant and specifies that first dst_len elements are
initialised and store the newly computed destination elements as shown
in the following diagram.

ptr ptr.add(dst_len) curr end ptr.add(cap)

The fragment we want to verify drops the remaining elements and turns
the allocation with destination elements into a vector. The following
snippet shows the key parts of the fragment.

1 src.forget_allocation_drop_remaining();

2 unsafe { Vec::from_raw_parts(dst_buf, len, cap) };
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3: This example is one of the reasons
why we think that the cause of slow
performance we identified in Chapter A
could be not the only one.

Variable src is the iterator and its method forget_allocation_drop_-

remainingdrops the remaining elements. The key challengewith verifying
this function call is that this function is a safe function defined on the
iterator, which means that it views memory from the viewpoint of the
iterator and is not aware about the initialised elements at the beginning of
the memory block, which it needs to preserve. We can stash the elements
at the beginning of the block to switch from the function viewpoint to
the type invariant viewpoint. However, to unstash the elements, we need
to prove that the bit-pattern of the block was preserved, which we cannot
do because the function can express only that snapshots are preserved
and we did not include the values of raw memory into the snapshots.
This example shows that for verifying some unsafe code, it is necessary
to make values of potentially uninitialised memory a part of snapshots.
Besides not being able to specify that the function preserves the values
of the uninitialised memory, verifying it is straightforward. The function
employs two techniques for ensuring panic safety (calling only functions
that do not panic and changing the type invariant to safe one before
entering the code that may panic), which pose no challenges for our
approach.

A later version of function from_iter includes a drop guard that tries
to deallocate the destination elements in case dropping the remaining
elements panics. The following snippet shows the code of the changed
fragment.

1 let dst_guard = InPlaceDstBufDrop { /* ... */ };

2 src.forget_allocation_drop_remaining();

3 std::mem::forget(dst_guard);

4 unsafe { Vec::from_raw_parts(dst_buf, len, cap) };

InPlaceDstBufDrop is a private struct with a drop handler that drops the
destination elements in case a panic occurs. If this code does not panic,
this drop handler is cancelled by calling function forget. Olivia did not
attempt to verify this version of the code. However, we did verify the
call to the drop handler after her thesis, gaining some evidence that our
approach for verifying code with drop guards is suitable for verifying
realistic code (we replaced forget_allocation_drop_remaining with an
unsafe function that takes raw memory instead of the iterator to be
able to prove the unstash operation). Unfortunately, we were not able
to verify the body of the drop handler because verification does not
terminate within an hour, even though it should trivially verify since
its precondition matches exactly the precondition of called function
Vec::from_raw_parts(dst_buf, len, cap)3.

This example shows the importance of supporting all three techniques
for ensuring panic safety and splitting and merging memory ranges. It
also demonstrates that unsafe code may care that safe functions preserve
the values of potentially uninitialised memory, which requires snapshots
to include the values of raw memory. Making values of raw memory part
of snapshots would be a straightforward change to our approach.

std::vec::Vec::dedup_by. We used dedup_by in Chapter 17 to motivate
the need to support drop guards and complex memory access patterns.
Olivia did her thesis before the implementation of Prusti was complete;
more specifically, Prusti did not have yet support for the raw_range!(...)
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variant needed to specify function std::ptr::copy. Therefore, Olivia veri-
fied the example in Viper using hand-written encoding. Prusti now does
support the features necessary to verify this example, but unfortunately
the example cannot be verified due to the performance problem.

22.2.3 Discussion

This section presented two studies we used to evaluate our approach.
While the performance problem prevents us from evaluating verification
performance and annotation overhead, the studies confirm three key
advantages of our approach compared to prior work. First, our work
enables verifying memory safety and functional correctness of safe,
unsafe, and mixed safe-unsafe Rust code using an SMT-based verifier.
As a result, using our approach, the entire project can be verified with
a single tool, even if the project contains code that uses patterns whose
memory safety cannot be proven by the Rust compiler. Second, our
work enables verifying the memory safety of code with implicit control
flow such as panics. As we saw from our studies, this feature is crucial
when verifying the memory safety of safe abstractions. Third, our studies
show that with our approach, we can specify the interfaces of safe
abstractions using a specification language based on Rust expressions
we introduced in Part I. This result shows that our approach enables
incremental verification: the programmers can specify and verify their
safe code using the simple specification language from Part I, even if that
safe code uses safe abstractions whose implementations were verified
using more complex features introduced in this part of the thesis.

Our evaluation also revealed that to verify some of the examples, we need
to extend our approach with additional features. We identified three
extensions of our approach that are important for verifying real-world
code. First, we found several examples that temporarily use a different
core invariant for a specific value. In our evaluation, we rewrote such
examples to use an additional typewith the temporary invariant; however,
allowing the user to switch temporarily to a different invariant for a
specific value would be much better. Second, we found that sometimes
the value of uninitialisedmemory is important, and, therefore, we should
include it in the snapshot so that knowledge about it is preserved. Third,
ManuallyDrop allows moving out values through a mutable reference into
it, which our approach does not support. Since this type is one of the core
building blocks for writing unsafe code, we need to find a way to support
it. We are convinced that the first two extensions can be supported with
minor modifications to our approach. Since ManuallyDrop is a special type
in Rust, we could support it by treating it in a special way in the verifier.
Supporting the general pattern is an open question we leave to future
work.
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In the earlier parts of the thesis, we discussed the relevant related work
on unbounded verification of safe and unsafe Rust. In this chapter, we
discuss work related to the other aspects of the work presented in this
part of the thesis.

23.1 Bug Hunting Tools for Rust

There are many tools developed for Rust that enable their users to
efficiently find bugs, including in unsafe Rust code. These tools can
be grouped into three categories: bounded verifiers, static analysers,
and sanitisers. The bounded verifiers CRUST [99], Kani [196], Rust
SMACK [101], and [103]’s and [197]’s work enable bounded verification of
Rust programs containing unsafe code against specifications written as
boolean Rust expressions. The static analysis tools RUDRA [172], Safe-
Drop [198], Rupair [199], MIRAI [200], and its extensionMirChecker [201],
and [158]’s and [202]’s work enable efficiently analysing large codebases
with little to no input from the user and finding bugs for which the
analyser was designed. Currently, these static analysers can find memory
bugs, including ones caused by panics, wrong type declarations, as well
as simple functional property violations such as out-of-bounds accesses.
Sanitisers such as Valgrind [203] and Miri [204] execute a Rust program
in instrumented mode and check for violations of various properties
such as dangling pointers, memory leaks, and even aliasing rules such
as Stacked Borrows [126] or Tree Borrows [127]. All bug hunting tools
are effective at finding various classes of bugs, but they also share one
key limitation compared to our work: they cannot be used to prove the
absence of bugs.

23.2 Handling Untrusted Code

One of our goals was to enable verifying that a safe abstraction guarantees
memory safety evenwhenusedbyunverified safe clients.Aswediscussed
in the introduction, this property is important because it gives peace
of mind to the programmers writing safe clients because they can be
sure that their code will not cause memory errors. More generally,
the question is how can we ensure that the guarantees provided by
checked code (either verified, or checked by some type system) are not
invalidated by unchecked code. Related work on protecting checked
code from unchecked code could be grouped into three categories: work
that, like ours, uses verification to ensure that checked (verified) code
guards properly itself from unchecked (unverified) code using runtime
assertions and private state, work that uses runtime isolation to separate
the two, and hybrid approaches.
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The most similar approach to ours is probably the one by David Cok
and Rustan Leino [205], who developed an approach for specifiying
a boundary between verified and unverified code for JML and Dafny.
The two approaches have many similarities on the technical level, but
have important differences on the meta level due to different goals. The
goal of Cok and Leino‘s approach is to ensure that a verified function
validates its input and “fails fast” with an appropriate error in case input
is invalid. Their core idea is to replace in the boundary functions between
verified and non-verified code the requires Pre construct used for regular
preconditions with a recommends Pre else Exc construct. Similarly to
requires, recommends expresses a condition that should hold when the
function is called. However, the function is not allowed to assume that
the condition holds: instead, it needs to check it and if it does not hold,
throw an exception specified in the else clause. A fundamental difference
between the two approaches is that Cok and Leino aim to guard verified
code from invalid inputs while we aim to ensure that verified code
is memory safe when called with untrusted inputs and when making
callbacks to unverified clients. For example, if a client violates a condition
specified in recommends, the implementation is required to throw an
exception and leave the state unchanged as if the call did not happen
while violating the functional precondition does not give any guarantees
about the behaviour of the function, except that it does not violatememory
safety. Therefore, the two approaches are complementary and could be
combined for functional correctness as described in the paper. Besides
fundamental differences, Cok and Leino‘s approach has many technical
similarities to our approach. In some cases, our functional preconditions
specify validity conditions of the input and act similarly to recommends.
For example, the functional precondition of method ArrayList::index

specifies that the index parameter must be in bounds and violating
this requirement leads to a panic. Our checked! annotation is the exact
opposite of their //@ allow, which they use to express that the annotated
operation may throw an exception.

The approaches that use runtime isolation to protect safe fromunsafe Rust
are Galeed [206], Sandcrust [207], and XRust [208]. These approaches
create runtime isolation between memory accessed by safe and unsafe
Rust and check the data on the boundary so that unsafe Rust (and C code
called by it) cannot corrupt the memory used by safe Rust. A similar
path was taken by [209] for protecting C modules verified in VeriFast
from the unverified ones: they used module private memory for storing
data of verified modules and runtime checked all specifications at the
boundaries. The key challenge they solved was how to check separation
logic assertions at runtime. We avoid the need for any runtime isolation
and the runtime cost associated with it by explicitly checking that we rely
only on the validity of types, which is guaranteed by the Rust compiler
for safe code.

23.3 Panic Safety

Rust panics are similar to exceptions in programming languages like C++
and Java. Abrahams [210] described three possible levels of exception
safety in the context of C++:
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1. Basic: the invariants are preserved and no resources are leaked.
2. Strong: the operation either completes successfully, or throws an

exception leaving the state exactly as it was before throwing the
exception.

3. No-throw: the operation guarantees to not throw an exception.

Our approach by default guarantees level basic but without a guarantee
that no resources are leakedbecause leaking inRust is considered safe. The
user can optionally ensure level no-throw by using the #[no_panic(...)]

attribute. Currently, our approach cannot be used to ensure level strong
(we could ensure it by adopting the technique from [205]). However,
since panics in Rust are intended for unrecoverable errors, level strong
does not seem to be useful in practice.

Spec#, a superset of C# designed for verification, ensures exception
safety in a similar way to ours [187]: it requires object invariants to hold
regardless wither the execution leaves the method due to successfully
returning or due to throwing an exception. However, since the languages
are quite different, the mechanisms used to ensure the invariants are
very different. Spec# does not have drop handlers and instead uses try {

... } catch { ... } to handle exceptions and potentially perform the
necessary ghost operations. In contrast, our approach based on attaching
ghost code to drop handlers is idiomatic to Rust.
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In this thesis we aim to enable incremental verification in two dimensions.
In Part I, we focused on the first dimension of making incremental the
verification of safe Rust. In this part of the thesis, we focused on the
second dimension of enabling a smooth transition to verifying unsafe
code where some of the Rust type system guarantees do not hold
anymore and memory safety has to be ensured manually. The approach
we presented in this part of the thesis addresses two key challenges. First,
it enables functional verification of mixed safe-unsafe code that may use
raw pointers and call unsafe functions. For parts of the code that are
completely safe, the verification approach is as lightweight as the one
in Part I while the complexity of verifying unsafe code directly depends
on the complexity of unsafe code. We achieve this goal by extending the
approach from Part I to work on mixed safe-unsafe code. Importantly,
we adapt the PCS elaboration algorithm to generate the core proof for
safe parts of the code even if the same function contains some unsafe
code, which enables us to hide a large part of tedious and complex
work of writing the core proof from the user. Second, our approach
enables verifying that safe abstractions are memory safe even when used
by unverified safe clients. We achieve this goal by verifying that safe
abstractions do not make unjustified assumptions (for example, that their
clients respect their preconditions) and providing specification constructs
that enable the programmers to verify correctness of error-prone patterns
used to ensure panic safety. While our evaluation is limited due to
performance problem in the underlying infrastructure, it still shows that
our approach is expressive enough to verify important patterns used
when writing unsafe code.
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At the beginning of the thesis, we identified five requirements that a
deductive verifier needs to satisfy if we want it to be considered by
programmers as part of their toolbox: automation, scalability, expres-
sivity, low entry bar, and ability to focus. Advancements in automated
theorem provers such as SMT solvers enabled building verifiers that
can automatically verify simple programs. However, scaling verification
beyond trivial examples requires using modular techniques that require
addressing the frame problem. The existing verification techniques that
address the frame problem can be divided into two camps. The first camp
contains approaches like Universe Types, Spec#, SYMPLAR, and SPARK
that provide a relatively low entry bar and allow the programmer to focus
on the properties they care about without large prior investment at the
cost of expressivity. The second camp contains approaches like VCC and
permission logics that are expressive, but require expert knowledge and
a significant upfront investment before a user can focus on the properties
they are interested in. Importantly, when starting a new project, the user
had to choose a methodology and, for example, if they chose one from
the easier-to-use camp, they could not switch to a more expressive one
for the parts of the project that require more expressive power.

In this thesis, we improved the state of the art by developing an approach
that enables incremental verification in two dimensions. In Part I, we
showed that by using the strong uniqueness guarantees available in safe
Rust, we canmake the verification truly incremental. The prior investment
that a programmer needs to make with our approach is effectively zero;
the programmer can immediately focus on the properties they are inter-
ested in. Moreover, our specification language based on Rust expressions
enables users to focus on verifying functional properties without learning
complex logics, which keeps the entry bar low. We achieved these goals
by solving three challenges. We developed a technique that, as shown by
our evaluation, can completely automatically generate core proofs for
realistic Rust programs, including ones that use borrows. We showed
how user-written functional specifications can be intertwined with the
automatically generated core proof. Moreover, we developed pledges,
a specification construct that enables specifying the effects of mutable
borrows in a modular and information hiding preserving way. As we
have shown in our analysis in Part II, most Rust code is safe and, therefore,
the technique described in Part I is applicable to it. However, the analysis
also showed that there is a substantial amount of unsafe code, most of
which calls unsafe functions and manipulates raw pointers. Therefore, in
Part III, we extended our technique from Part I with primitives necessary
for verifying unsafe code. An important difference between our approach
and prior work is that we enable the users to still verify safe parts of
their code using the simple technique presented in Part I and require to
use more advanced constructs only for the parts that use unsafe code.
While an in-depth evaluation was prevented by performance issues in
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the underlying tools, our evaluation still showed that our technique is
expressive enough to verify important data structures.

In this thesis, we focused on the Rust programming language. However,
since Rust took off, the designers of over languages started experimenting
with integrating uniqueness and borrowing. For example, SPARK added
support for Rust-inspired unique pointers [211]. Therefore, we believe
that our findings will be useful beyond Rust.

In the remainder of this chapter, we discuss possible directions of future
work related to deductive verification of imperative heap-manipulating
programs.

Performance of Iterated Separating Conjunctions. The key problem
that blocked us from properly evaluating our approach in Part III is the
performance of Viper‘s symbolic execution algorithm used for handling
iterated separating conjunctions. Since addressing this performance
problem is crucial for making the approach presented in Part III for
verifying existing codebases such as data structures in the Rust standard
library, fixing it should be the immediate goal of the future work. We
started an investigation and present our preliminary results in Chapter A.
However, more time is needed to fully understand the problem and
evaluate the fixes we proposed in Chapter A.

Lifetime Logic for Functional Verification. In Chapter 21, we pre-
sented an interface of a RustBelt and RustHornBelt inspired lifetime
logic suitable for SMT-based verification of functional correctness. An
important future work is to formally define and proof soundness of such
a logic. One possible way would be to try to hide the RustHornBelt logic
behind the interface we proposed.

Specification Language. When designing the specification language in
Part I, we tried to make it as close to executable Rust as possible with the
hope that it will be more intuitive for Rust programmers. For example,
we borrow check and type-check the specifications and clearly separate
the before and after states of the borrow. Other Rust verifiers such as
Creusot took a different design and treat all values in specifications as if
they were copy types. It would be interesting to conduct a user study to
determine, which specification style is more intuitive for programmers.

Switchable Type Invariants. The study done by Olivia [185] revealed
that often unsafe code needs to temporarily use a different type invariant
for a specific value. In her thesis, Olivia worked around the problem
by creating custom types. However, to be able to verify existing unsafe
code without modifying it, we would need a mechanism for temporarily
changing the type invariant of a value. While it is clear how to change
the encoding to support such a feature, there are many questions related
to specification design and implementation in the tool.
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Verifying Adherence to Tree Borrows. Tree Borrows maintains for
each byte a tree data structure that tracks all pointers and references that
could potentially access that byte. The key challenge in verifying that
code adheres to the Tree Borrows model is finding an abstraction that
allows soundly overapproximating the state of the tree. Since the Tree
Borrows model was designed as an operational version of the borrow
checker, it is likely that a more flexible version of the lifetime annotations
(for example, that supports using constraints as arbitrary predicates in
specifications) should be sufficient for specifying the abstract state of
the tree in a way suitable for verification. However, a complete design
and evaluation is needed to determine whether this idea could work in
practice.
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Appendix





1: Version v-2023-08-26-2125.

2: The SMT solver used by Viper.

3: Allmeasurements in this chapterwere
done on Lenovo T470p laptop with In-
tel(R) Core(TM) i7-7700HQ CPU with
4 cores (8 threads), 16 GB of RAM, and
Ubuntu 20.04.6, symbolic execution back-
end version 151f2218.
[212]: Voinov (2019), ‘Optimisation of a
Deductive Program Verifier’

Understanding Performance of
Viper‘s Separated Iterated

Conjunction Algorithm A
This chapter presents our investigation of the Viper’s performance prob-
lem, which impeded our evaluation of Prusti presented in Chapter 22.
From the user’s perspective, the problem could be described as follows:
after making a small change to a Rust function, which uses a predi-
cate encoded into an iterated separating conjunction, Viper1 seemingly
does not terminate anymore. Typical reasons why a SMT-based veri-
fier does not terminate are non-linear arithmetic and infinite quantifier
instantiations. We quickly ruled out non-linear arithmetic because we
were able to reproduce the problem with non-linear arithmetic solver
disabled. Determining whether quantifiers could be the root cause of
non-termination was significantly harder because in Z32 traces we could
see a huge number of quantifier instantiations, but we could not find
so-called matching loop: a set of quantifiers that cause an infinite chain
of instantiations by causing instantiations of each other. By analysing
the trace, we noticed that many of these instantiations are caused by
quantifiers being instantiated with the same ground terms over and over
again. To the best of our knowledge, a quantifier can be instantiated
with the same ground terms multiple times only if the SMT solver is
resetting its state. This observation helped us to notice that Z3 traces
for Viper programs with iterated separating conjunction contains many
DecideAndOr events that indicate that the solver is doing a case split. Case
splits explain why quantifiers are instantiated multiple times with the
same ground terms: after exploring a case, Z3 rolls back all changes made
to the state while exploring that case, which also includes forgetting
all quantifier instantiations. When comparing Prusti-generated Viper
programs with iterated separating conjunctions and without them, we
noticed that DecideAndOr events are extremely common in the former
and almost never occur in the latter. Therefore, we hypothesise that the
performance problem is caused by exhaustive branching and we can
prevent or at least mitigate non-termination by addressing the reasons
that cause the branching.

We pursued the goal of finding the root cause for branching by trying to
find aminimal Viper example that demonstrates the branching behaviour.
Figure A.1 shows a Viper example with n inhales of predicate P followed
by n exhales. For a human, it is obvious that this example should always
trivially verify because we are exhaling the same predicates we just
inhaled. However, if we force the symbolic execution backend to use
the algorithm for iterated separating conjunctions by adding line 20, we
can see in Figure A.2 that the verification time (averaged over 5 runs)
is exponential with respect to n showing that the SMT solver is doing
significant thinking3. From the same graph, we can see that the default
algorithm, called greedy, scales much better. A very similar example was
discovered by Philippe Voinov in his bachelor thesis [212], in which
he investigated the slow performance of Viper’s verification condition
backend. For Prusti, we always used the symbolic execution backend
because the verification condition backend was too slow even for very
small examples. Philippe, in his example, used unfolding instead of
exhale, but his and our investigation shows that the problem comes from
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Figure A.1: A simple example of n in-
hales followed by n exhales demonstrat-
ing the performance problem in Viper.
Line 20 tricks the backend into using
the algorithm for iterated separating con-
junctions.

1 predicate P(a: Address)
2

3 method test() {
4 var a01: Address
5 var a02: Address
6 // ...
7 var a_n: Address
8

9 inhale acc(P(a01), write)
10 inhale acc(P(a02), write)
11 // ...
12 inhale acc(P(a_n), write)
13

14 exhale acc(P(a01), write)
15 exhale acc(P(a02), write)
16 // ...
17 exhale acc(P(a_n), write)
18

19 assume false
20 inhale forall a: Address :: {P(a)} false ==> acc(P(a))
21 }

consuming a predicate instance, which can be done either by exhaling
or unfolding it. Philippe explained why verification condition backend
is slow on his example on the level of encoding. We believe that the
problem can be understood on a higher level as a fundamental trade-off
between completeness and performance.

To understand the problem, we need to look into what a verifier does
when it consumes a resource. For the first exhale of predicate P on line 14,
the operations performed by the verifier are straightforward. The verifier
first checks that it has at least write permissions to predicate P(a01). This
check corresponds conceptually to checking the assertion shown in the
following snippet that sums up the permissions of predicate instances
inhaled for location a01 (remember that predicate instance P(a01) is
stored not at syntactic place a01, but at the value of a01).

1 assert write <= (a01 == a01 ? write : none) +

2 (a01 == a02 ? write : none) +

3 /* ... */

4 (a01 == a_n ? write : none)

In this case, the assertion can be easily proven because we have a clear
match (a01 == a01) and all other summands are non-negative. After
performing the check, the verifier remembers that it removed write

permission amount from predicate P at address a01. For the second
exhale, the verifier performs the same two operations, but the sufficient
permission check is more interesting because it needs to take into account
the exhale for address a01. The assert that corresponds conceptually to
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this permission check is shown in the following snippet.

1 assert write <= (a02 == a01 ? write : none) +

2 (a02 == a02 ? write : none) +

3 /* ... */

4 (a02 == a_n ? write : none) +

5 // exhales:

6 (a02 == a01 ? -write : none)

In this assertion, we have a negative summand that could potentially
make the sum smaller than write. Therefore, the SMT solver needs to
consider two cases: when equality a02 == a01 holds and when it does
not hold (we will discuss later whether this case split is really necessary).
If we write the permission check for the nth exhale, we can see that the
solver needs to do n-1 case splits.

1 assert write <= (a_n == a01 ? write : none) +

2 (a_n == a02 ? write : none) +

3 /* ... */

4 (a_n == a_n ? write : none) +

5 // exhales:

6 (a_n == a01 ? -write : none) +

7 (a_n == a02 ? -write : none)

8 /* ... */

9 (a_n == a_(n-1) ? -write : none)

n-1 case splits generate 2n-1 combinations, which can easily explain the
exponential slow-down shown in Figure A.2.

In Figure A.2, we have also shown that the greedy algorithm scales much
better than iterated separating conjunctions one, which raises a natural
question: why is this the case? If we consider the last permission check
again, we can see that we can group summands by addresses as shown
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in the following snippet that ensures that the value of each group is
non-negative.

1 assert write <= // a01 group

2 ((a_n == a01 ? write : none) +

3 (a_n == a01 ? -write : none)) +

4 // a02 group

5 ((a_n == a02 ? write : none) +

6 (a_n == a02 ? -write : none)) +

7 /* ... */

8 // a_(n-1) group

9 ((a_n == a_(n-1) ? -write : none) +

10 (a_n == a_(n-1) ? -write : none)) +

11 // a_n group

12 (a_n == a_n ? write : none)

Since a_n == a_n holds syntactically, we know that the total sum is
the sum of write plus some summands that are guaranteed to be non-
negative, whichmeans that the total sum is guaranteed to be at least write.
Grouping by addresses is exploited by the greedy algorithm to achieve
performance. Instead of trying to compute the sum, when exhaling a
predicate instance, the greedy algorithm tries to find the group that has
provably the same address and subtracts the exhaled permission amount
from that group. For instance, for exhale of predicate instance P(a01) in
our example, the greedy algorithm would consider to take permissions
only from inhale of predicate instance P(a01) because a01 is the only
aliasing relation that the SMT solver can prove. This greedy approach
gives better performance at the cost of completeness. One example that is
not supported by the greedy approach is, so called, disjunctive aliasing
shown in the following snippet.

1 inhale acc(P(x), write) && acc(P(y), write)

2 assume z == x z == y

3 exhale acc(P(z), write)

The exhale in this snippet should clearly verify, but the greedy algorithm
rejects it because it cannot find a group from which it could always
take the necessary permission. This example, however, verifies if we
use a verification condition generation backend or symbolic execution
backendwith iterated separating conjunctions algorithm. In the spectrum
between the greedy algorithm, which is fast and incomplete, and iterated
separating conjunction algorithm, which is significantly more complete,
but slow, there are also other algorithms that provide different trade-
offs between completeness and performance. Important examples are
an algorithm dubbed “more complete exhale” [213], which does not
support iterated separating conjunctions, but can verify disjunctive
aliasing, and an algorithm presented in [214] that could probably be best
summarised as a greedy algorithm for iterated separating conjunctions.
The algorithm from [214] supports taking permission to a single element
from an iterated separating conjunction and returning it back, but does
not support splitting or joining iterated separating conjunctions, which
we saw are necessary for verifying unsafe Rust code. It is important to
note that symbolic execution backend uses many heuristics to improve
the performance of the iterated separating conjunctions algorithm, which
make it to typically perform better than on our artificial example, but also
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making the performance less predictable, which could be one explanation
why on Prusti examples we observe that Viper after a small change does
not terminate anymore.

To the best of our knowledge, the researchers up to now focused on
algorithms that treat all resources uniformly as fractional ones and use
SMT solvers as opaque components. We think that there are at least three
research directions worth pursuing in the future work. One research
direction could be to give more control to the users over how resources
are managed. Sometimes the frontend generating the Viper encoding
knows that predicate instance P(a) is guaranteed to be disjoint from
all predicate instances mentioned in iterated separating conjunctions.
For example, in Prusti we know that MemoryBlock of a local variable to
which no pointer was created cannot be included into raw_range!(...)

predicate. Such a predicate instance could be explicitly specified as
managed by the greedy algorithm reducing the number of predicate
instances managed by the iterated separating conjunction, which also
should improve its performance. A variation of this approach we use
in the evaluation presented in Chapter 22 to mitigate the performance
problem. Another research direction could be designing algorithms that
take advantage of special properties of the resources. For example, in
Prusti, for some resources fractional permissions are not needed and,
therefore, permissions to them could be modelled as boolean values,
for which SMT solvers have better decision procedures. A variation of
this research direction would be investigating whether there are theories
with faster decision procedures that could be used to encode fractional
permissions; a promising one, suggested on Stack Overflow [215] is
pseudo-booleans that supports reasoning about expressions that look
very similar to proof obligations that we need to check when consuming
resources. The last research direction would be to to explore whether
APIs provided by Z3 could be used to guide the proof search to perform
the case split only when it is strictly necessary. Unfortunately, we did not
have time to properly explore any of these research directions and leave
them to future work.
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