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Abstract

The crisis periods of the past decades have highlighted the difficulty of forecasting

economic indicators due to increased non-linearity and rapidly changing dynam-

ics. To address this challenge, we introduce the Transform-Sparsify-Forecast (TSF)

framework. The TSF framework first applies multiple transformations to each pre-

dictor to account for non-linear effects. It then dynamically applies a dimension re-

duction (targeting) to select the most relevant predictors from the high-dimensional

dataset. Our approach is straightforward and can be seamlessly incorporated into

existing forecasting frameworks. We demonstrate its versatility by applying it to

five distinct classes of econometric and machine learning models. Using the FRED-

MD dataset, we show that the TSF framework substantially improves the fore-

casting accuracy across all models, with notable gains at short forecast horizons

and during periods of high economic uncertainties, attributable to the adaptive

realignment of variable interactions and the ability to capture non-linearities. On

short horizons, improvements are on average more than twice as high compared to

standard methods without transformations. Our findings highlight the importance

of the dataset composition and variable selection in effectively capturing evolving

relationships and dynamics over time.
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1 Introduction

During times of elevated uncertainty, economic data often exhibit non-linear relationships

and are subject to sudden changes. Forecasting with linear models might miss those

dynamics, resulting in large prediction errors and misleading policy recommendations.

Recent research on modern machine learning techniques, such as the factor-augmented

random forest or artificial neural networks, see e.g., Coulombe et al. (2021), Medeiros

et al. (2021), Hauzenberger et al. (2022) and Hauzenberger et al. (2023), highlights the

superior predictive performance of non-linear models. Non-linear models excel in captur-

ing complex relationships between predictors and target variables, which are crucial for

forecasting key macroeconomic indicators and understanding the current and future state

of the economy. However, implementing complex non-linear models can be challenging

and computationally intensive. An alternative approach involves capturing non-linear

relationships within linear model frameworks by expanding the model space through the

inclusion of alternative transformations of the variables, as demonstrated e.g. in Bai and

Ng (2008).

When forecasting aggregate time series, researchers often rely on theoretical economic

reasoning when selecting the transformation of the data. One example is the FRED-MD

dataset provided by McCracken and Ng (2016) that covers a comprehensive collection of

macroeconomic and financial time series for the US with a recommended transformation

for each variable. Nonetheless, relying solely on these recommended transformations may

have limitations. The presumed optimal transformations may provide only a static per-

spective, disregarding the dynamic nature of the level of integration of the variables over

time, as highlighted by McCracken and Ng (2020). Consequently, varying transforma-

tions might be required to maintain stationarity, underscoring the necessity for adaptive

approaches. Moreover, the complexity of economic dynamics often entails non-linear rela-

tionships, which challenges the assumption of a single optimal transformation per variable
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for different regimes in time. Further, according to Koop and Potter (2000) the evolv-

ing relationship between variables, influenced by non-linearities over the business cycle,

structural breaks, and outliers, challenges the assumption of a constant relationship over

time.

We argue that there is no ex-ante optimal choice of the dataset. Rather, researchers

should dynamically choose the relevant variables and transformations as relationships

change over time. The dataset itself can then be seen as another hyperparameter to be

optimized. Despite the potential benefits of using alternative transformations, determin-

ing the optimal transformations and selecting the right variables remain unresolved.

Instead of applying a single best transformation to each variable, resulting in a fixed

dataset with predefined transformations, we propose to allow for multiple transforma-

tions per variable, exploiting the full potential of the data combined with a regularization

approach to select the most informative transformations for prediction. We call our ap-

proach Transform-Sparsify-Forecast (TSF). This paper aims to show that the TSF frame-

work, by allowing multiple transformations per variable combined with a pre-shrinkage

step on the inflated dataset before forecasting, effectively improves the forecast per-

formance, especially of linear models, which may result from better capturing relevant

dynamics, interactions, non-linearities or changing relationships.

The TSF approach unifies several components into a single framework that have individ-

ually demonstrated performance improvements, thereby enhancing forecasting accuracy

beyond what each component achieves on its own. Recently, studies such as e.g., Medeiros

et al. (2021) and Coulombe et al. (2021) demonstrate the benefits of including various

transformations in the form of latent factors to capture different dynamics in the data.

Our TSF framework goes beyond these approaches by incorporating a broader range of

transformations, including levels, first and second differences, natural logarithms, first and

3



second differences of the natural logarithm, and percentage changes. Further, Coulombe

et al. (2021) highlight that the inclusion of moving averages and levels to the set of

predictors helps to capture low-frequency dynamics with random forests.

The TSF approach combines the use of multiple transformations with the concept of

targeting predictors, as introduced by Bai and Ng (2008). This concept involves selecting

a subset of the variables that carry the highest information and helps to mitigate issues

related to overfitting and multicollinearity arising from the curse of dimensionality. They

suggest that when data is excessively noisy, it might be advantageous to discard some

of it to enhance the forecast performance. Their study demonstrates substantial benefits

by applying targeted predictor methods for inflation, where only the most informative

predictors are selected to estimate the factors. Similarly, Boivin and Ng (2006) show in

the context of macroeconomic forecasting that the performance of the PCA estimator

deteriorates as more uninformative series are included in the panel, emphasizing the

merits of a preselection step. Giannone et al. (2021) provide evidence that macroeconomic

datasets, are sparse, meaning only a subset of the whole dataset has explanatory power

and a preselection of the most relevant predictors can improve the model performance.

In line with this finding, various studies have shown forecast improvements with targeted

predictors. For example Kotchoni et al. (2019); Kim and Swanson (2014, 2018) elaborate

on the benefits of combining factor models and a lasso-based targeting, especially in

turbulent times for forecasting macroeconomic key variables. Further Borup et al. (2023)

applied a variable preselection on Random Forests, showing gains, especially for larger

horizons. More recently, Ferrara and Simoni (2023) show that targeting predictors before

ridge regression improves prediction performance using Google search data. Similarly,

Borup et al. (2023) apply targeting to Google Trends data for predicting employment

growth, employing methods such as random forest and bagging. Chinn et al. (2023)

demonstrate the effectiveness of targeting in nowcasting world trade.
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In this paper, we aim to bridge a significant gap in the literature by integrating multiple

data transformations within a dynamic forecasting framework. This approach effectively

allows the measurement of non-linear effects within a linear setting. Our method combines

the strengths of targeting predictors with the flexibility of applying various transforma-

tions, thereby capturing complex non-linear relationships in economic data.

The TSF methodology is straightforward and can be seamlessly incorporated into existing

forecasting frameworks utilized by central bankers, policymakers, and other practitioners,

making it both feasible and practical. This approach addresses several critical challenges:

It enhances forecasting accuracy using the full potential existing datasets, which can

alleviate the necessity of collecting additional data. By increasing the dimensionality

of the original dataset using multiple transformations our framework relies on a high-

dimensional linear approximation of a potential non-linear true underlying model (see

e.g. Belloni and Chernozhukov, 2011). Moreover, it avoids any model overfit by targeting

the most relevant predictor variables. In addition, it highlights the importance of incor-

porating appropriate transformations, which can yield significant predictive gains. Third,

it demonstrates that the optimal approach often involves applying multiple transforma-

tions simultaneously and employing a targeting strategy to identify the most effective

predictor combination. By analyzing the composition of the dataset, we elaborate on the

sources of the forecast improvements achieved through the TSF framework and identify

circumstances in which its application may be particularly beneficial.

Furthermore, we contribute to the literature on sparse models by applying a two-stage

dimension reduction procedure through the additional targeting step prior to the model

estimation, which significantly enhances forecasting performance. Meinshausen (2007)

and Belloni et al. (2013) show the theoretical and empirical superiority of a two-stage

Lasso procedure over the regular Lasso approach. Sparse factor models, as analyzed in

Luciani (2014), Kristensen (2017), Daniele et al. (2019), and Despois and Doz (2023),
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Figure 1: Average Short-term Forecast Improvement over AR(p)

2.8 3.2

8

Baseline Baseline 
 + Preselection

Transformation 
 + Preselection

FA−RF FADL Lasso Ridge SAF FA−RF FADL Lasso Ridge SAF FA−RF FADL Lasso Ridge SAF

0.0

2.5

5.0

7.5

10.0

Im
pr

ov
em

en
t o

ve
r 

A
R

(p
) 

in
 %

Notes: This figure presents the average RMSFE improvement over an AR(p) in percent, where p is

optimized by BIC. The out-of-sample analysis spans from 2007 to 2022 for CPI, INDPRO, and UNRATE

for one-step ahead forecasts. The x-axis categorizes the forecast models: Factor-augmented random forest

(FA-RF), static factor model (FADL), Lasso, Ridge, and the sparse approximate factor (SAF) model. The

Baseline utilizes the FRED-MD data; Baseline + Preselection dynamically selects 30 targeted variables

via Lasso; Transformation + Preselection applies up to seven stationary transformations to each predictor

and selects 60 targeted transformations via Lasso.

offer advantages in thoroughly analyzing and interpreting the underlying latent factors,

however, they do not necessarily lead to more precise forecasts. In contrast, our framework

shows that by incorporating alternative transformations and a predictor preselection step,

the predictive accuracy of these models is markedly improved, making them competitive

with other advanced machine-learning models.

To empirically assess the benefits of our TSF approach, we conduct a comprehensive

pseudo-out-of-sample forecasting experiment using the FRED-MD dataset. We consider

the growth rate of the Consumer Price Index (CPI), the growth rate of Industrial Pro-

duction (INDPRO), and the change in the Unemployment Rate (UNRATE) as target

variables and analyze the impact of the TSF framework on a large class of forecasting

models that have shown to be among the best-performing model types, including factor,

regularized, and machine-learning models. We compare the performance of the FRED-

MD baseline dataset, with our augmented dataset featuring multiple transformations,

along with a Lasso-based targeting, varying the fixed size of selected predictors to be 30

(as used by Bai and Ng (2008); Kotchoni et al. (2019)) or 60 (as used by Chinn et al.
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(2023)).

The key findings of our study reveal several important aspects. First, the TSF frame-

work substantially improves the forecasting accuracy across all model classes, with no-

table gains at short forecast horizons. As illustrated in Figure 1, our method shows

an average root mean squared forecast error (RMSFE) improvement of eight percent

over the standard AR(p) on short horizons, making it more than twice as effective as

conventional targeting methods.1 These improvements are particularly pronounced dur-

ing times of economic instability, where the TSF method effectively captures dynamic

changes and non-linear interactions in the data. Our results align with the findings of

Goulet Coulombe et al. (2022) and Kim and Swanson (2014), who show that incorpo-

rating non-linear dynamics can enhance forecasting performance, especially for linear

models during crisis periods. Second, the forecast gains can vary strongly between the

target variables. Specifically, the gains are substantial for CPI and UNRATE, while the

improvement for INDPRO is more moderate. Our analysis reveals that these outcomes

stem from variations in dataset compositions. For target variables exhibiting substantial

gains, the dataset composition shifts towards a higher proportion of variables related to

the target variable. Conversely, for target variables with no significant gains, there is

no notable shift in dataset composition, underscoring the importance of the variables

included in the original dataset. Third, the TSF approach selects a more diverse range

of variable transformations using often multiple transformations of the same variable,

with reduced emphasis on log-differences and levels, and increased focus on alternative

transformations.

The remainder of the paper is structured as follows. In Section 2, we introduce our fore-

casting framework and elaborate on the rationale behind incorporating multiple variable

transformations in the set of predictors, as well as the preselection step for selecting the

1Figure C.1 in the Appendix provides details on the short-term forecast improvement of the TSF approach
for each target variable.
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most informative predictor variables through shrinkage. Section 3 provides details on our

forecasting experiment, including the data description, the models used, and the fore-

casting setup. In Section 4, we present the forecasting results, while Section 5 provides

an in-depth analysis of the factors leading to the forecast improvement. Finally, Section

6 concludes.

2 Forecasting Framework

In this section, we present our forecasting framework and provide details on each compo-

nent within the forecasting process. Our methodology comprises three important parts.

Initially, we elaborate on the role of data transformations in augmenting the model do-

main, particularly in the context of linear models, thereby improving their accuracy in

predicting key macroeconomic and financial indicators. Subsequently, we discuss the ne-

cessity of incorporating shrinkage techniques for reducing the estimation complexity and

circumventing a potential model over-parametrization caused by the curse of dimension-

ality. Lastly, we further condense the dimension of the problem by extracting the most

valuable information from the data through latent factor models.

2.1 Econometric Model

We start with introducing our transform-sparsify forecasting (TSF) framework. Given a

large set of N predictors Xt at period t, where Xt = (X1,t, · · · , XN,t)
′, for t = 1, · · · , T , we

aim at predicting the target variable yt+h, h-steps ahead based on the following general

prediction model

yt+h = f (Xt) + ϵt+h, (1)
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where f (·) represents the functional form of a particular modeling strategy, which com-

monly encompasses linear or non-linear parametric formulations or a nonparametric rep-

resentation.

Our TSF approach aims to enhance the predictive capabilities, especially of linear mod-

els, while preserving their inherent structure, thereby mitigating potential increases in

computational complexity associated with structural modifications.

The predictive improvement is realized through several modeling steps. First, we largely

expand the predictor space by incorporating diverse transformations for each of the N

variables in Xt. In particular, we consider the following transformations: first and second

differences, natural logarithm, first and second differences of natural logarithm, and the

first difference of the percentage change. Given that the true underlying model f in (1)

may exhibit a complex non-linear functional form, we rely on a high-dimensional linear

approximation of the true model (see e.g., Belloni and Chernozhukov (2011), Caner and

Eliaz (2024)). Our objective is to capture non-linear relationships within linear models

by integrating multiple transformations of the predictors.

Second, we address potential issues of overfitting and multicollinearity that arise from

the curse of dimensionality when dealing with a large set of predictors, where the number

of predictors N may exceed the number of observations T . We achieve this by running a

h-step ahead regression

yt+h = X ′
tβ + ϵt+h, (2)

and employing the Lasso approach for estimating the model parameters β, identifying the

most relevant predictors in Xt and substantially reducing the estimation error. Specifi-
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cally, we solve the following optimization problem

β̂ = argmin
β

[
T∑
t=1

(yt+h −X ′
tβ)

2
+ λ

N∑
i=1

|βi|

]
, (3)

where in each out-of-sample forecasting step, we dynamically select the regularization

parameter λ > 0 to obtain active set sizes close to either 30 or 60 variables. We opt

for the soft-thresholding selection approach instead of hard-thresholding, as the latter,

selecting predictors one at a time does not take the information from the entire set of

predictors into account and may be prone to selecting similar predictors. Moreover, it is

sensitive to small changes in the data due to the discrete nature of the decision rule.

Third, we utilize this enriched dataset featuring diverse transformations in a broad array

of forecasting models, including modern machine learning models, regularization tech-

niques, and dimension reduction approaches.2

In the following, we elaborate in more detail on the importance of each component of our

TSF framework.

2.2 Data Transformations

By including multiple transformations of the predictors, we aim to capture non-linear

relationships within a linear model, avoiding the need for significant alterations to the

model structure, which potentially increases the complexity of model estimation. Specif-

ically, in our framework we deviate from the common practice of applying one single best

transformation3 to each considered variable and instead consider multiple transforma-

tions per variable largely enhancing the space spanned by the dataset. Especially, for

short-term forecasting horizons, Borup et al. (2023) shows that capturing non-linearities

2Appendix B provides a detailed overview of the model included in our empirical application.
3For the commonly used macroeconomic and financial dataset FRED-MD introduced by McCracken
and Ng (2016), the authors recommend a specific transformation for each variable to which researchers
usually rely on, potentially leading to a suboptimal choice of the variable transformation.
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Figure 2: RMSFEs for Linear and Non-linear Factor Models
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in the data is essential for the predictive accuracy.

In the following, we provide a short empirical demonstration that analyzes the merits of

using non-linear transformations of the predictor variables for improving the predictive

ability of traditional linear latent factor models. Specifically, we compute the one-step

ahead forecast of a target variable xi according to the following factor-augmented autore-

gressive process as introduced in Stock and Watson (2002)

xi,t+1 = βi,0 + βi(L)xi,t + γi,1F̂t−1 + ϵi,t+1, (4)

where βi,0 is an intercept, βi(L) = βi,1L + · · · + βi,lL
l are lag polynomials corresponding

to the variable xi and F̂ are the latent factors estimated based on principal component

analysis (PCA). We select the number of lags l according to the Bayesian information

criterion (BIC), where we consider a maximum of six lags, and include ten factors.

To analyze whether a polynomial transformation of a subset of the included predictor

variables has a positive impact on the forecast accuracy, we consider the following non-

linear factor-augmented autoregressive process

xi,t+1 = βi,0 + βi(L)xi,t + γi,1F̂t−1 + γi,2F̂
2
t−1 + ϵi,t+1, (5)
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where we extend the process in (4) by additionally incorporating the squared factors F̂ 2.

Hence, the process in (5) keeps the linear relation between the target variable xi and the

predictors, however incorporates non-linearities through the squared factors.

Identical as in our empirical application presented in Section 3, we conduct a rolling

window out-of-sample forecasting experiment using the FRED-MD dataset for the period

January 1975 - December 2022,4 where we aim at predicting the monthly CPI inflation

rate. Figure 2 illustrates the average root mean squared forecast errors (RMSFE) of

the linear and non-linear factor models relative to an autoregressive model of order p

(AR(p)) used as a benchmark model, where p is selected based on the BIC. We analyze

the average relative RMSFEs for two out-of-sample periods, where the first one covers the

more turbulent period January 2007 - December 2011, which includes the recent Financial

crisis, and the second one spans the rather calm period January 2012 - December 2016.

The findings show that the linear and non-linear factor models outperform the benchmark

model in both periods. Further, we see that the non-linear factor model leads to a

higher forecast precision compared to the linear factor model during the period 2007-2011,

which emphasizes the importance of incorporating non-linearities in the factor modeling,

especially during more volatile periods. For the period 2012-2016, the linear factor model

specification is slightly more precise compared to the non-linear factor model, indicating

that during more calm periods including non-linearities in the factor modeling does not

necessarily improve the predictive power.

Hence, the results from our real data illustration emphasize the potential benefit of in-

cluding non-linear transformations in the predictor variables for improving the forecast-

ing performance of linear models. Specifically, augmenting linear models with additional

predictor transformations potentially leads to enhanced model flexibility, capturing a

broader array of relationships between predictors and the response. However, the results

4The data description can be found in Section 3.1.
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further show that it is important to choose the relevant transformation dynamically as

the relations in the data can change over time.

2.3 Regularization and Dimension Reduction

While incorporating multiple transformations can indeed enhance the predictive capabil-

ity of linear models, it introduces some challenges. One issue emerges from the inflated

size of the dataset, where the number of variables can be much larger than the number of

observations. In such a high-dimensional setting conventional estimation techniques like

ordinary least squares (OLS) yield inconsistent estimates, and statistical inference suffers

from a lack of degrees of freedom. Additionally, models may become over-parameterized,

increasing the risk of overfitting and diminishing predictive performance. Furthermore,

there is the potential risk of multicollinearity, especially prevalent in macroeconomic

datasets where many variables depict similar dynamics, thus conveying redundant infor-

mation. The inclusion of various transformations exacerbates this issue, as some trans-

formations are highly relevant while others may not contribute substantially to model

informativeness.

To address the challenges posed by the curse of dimensionality and multicollinearity,

our framework employs a dynamic preselection to identify the most relevant predictors.

We utilize the Lasso procedure for variable selection, significantly reducing the predictor

space. Shrinkage techniques, like the Lasso, have the added benefit of amplifying the

signal-to-noise ratio, leading to more accurate estimates and enhancing the predictive

performance. It has been shown in the literature that a predictor preselection by selecting

only the variables with the highest predictive power can significantly increase forecast

accuracy (see e.g., Bai and Ng, 2008, Kotchoni et al., 2019, Ferrara and Simoni, 2023,

Borup et al., 2023). This is especially important in datasets with variables with a high

component of noise and with many highly correlated variables.
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The need for preselecting the most relevant predictors is further justified asymptotically.

Meinshausen (2007) shows that the convergence rate of the ordinary Lasso estimator

significantly deteriorates when the number of variables N grows faster than the number

of observations T .5 Specifically, in the high-dimensional scenario when log(N) ∼ T ζ ,

where 0 < ζ < 1, the convergence rate of the lasso estimator can degrade to O(T−r), for

r < 1−ζ, contrasting the common rate of convergence of the Lasso of O(T−1). The quan-

tity ζ determines the rate at which the logarithm of the number of predictors diverges,

when T increases to infinity, lying between constant (ζ = 0) and exponential (ζ = 1)

increase. Intuitively, this slow convergence occurs because a large regularization param-

eter is required to shrink the coefficients of irrelevant predictor variables towards zero.

However, this also impacts the estimated coefficients of non-zero components, shrinking

them towards zero as well, thereby leading to suboptimal predictions.

Meinshausen (2007) proposes a straightforward adjustment to the ordinary Lasso estima-

tion technique to circumvent this issue. This modification involves employing the Lasso

procedure twice. In the first step, the relevant predictors with non-zero coefficients are

preselected using a relatively large regularization parameter. In the second step, the coef-

ficients of the selected variables are re-estimated using a relaxed penalty. The convergence

rate of the two-step lasso procedure is not affected by the presence of many irrelevant

predictor variables and the coefficients of the non-zero variables can be estimated at the

standard
√
T rate.

Although we reduce the number of predictor variables to a large extent using our pre-

selection procedure as previously described, the number of predictors can still be quite

large and can be close to the number of observations. As part of our forecasting models

used, we rely on factor modeling, to further reduce the number of predictors. Factor

models are used to measure the information content of a large set of economic variables

5Note that Meinshausen (2007) conducts the analysis under an iid assumption.
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by a much smaller number of latent factors. Thus, these models allow high-dimensional

problems to be mapped into spaces of much lower dimension, reducing the number of

parameters to be estimated and the corresponding estimation error.

Specifically, the static approximate factor model (AFM) as introduced in Chamberlain

and Rothschild (1983) is defined as follows

xit = λ′
i ft + uit, (6)

where xit denotes the data for the i-th variable at time t, for i = 1, . . . , N and t = 1, . . . , T .

λi is a (r×1)-dimensional vector of unobserved factor loadings and ft is the corresponding

(r × 1)-dimensional vector of latent factors, where r is the number of included factors.

Finally, uit denotes the idiosyncratic component, which can incorporate some weak tem-

poral and cross-sectional correlations. We estimate the loadings and factors based on

principal component analysis (PCA).

A common assumption in the traditional AFM is that the first r eigenvalues of the

covariance matrix of the loadings ΛΛ′, where Λ = (λ1, · · · , λN)
′ diverge with the number

of variables in the system N . Intuitively, this means that all factors are strong and

affect the entire set of time series. However, the strong factor assumption is usually

not supported by empirical evidence. E.g., Ludvigson and Ng (2009) and Uematsu

and Yamagata (2022) show that the spectral structure of macroeconomic and financial

datasets is better captured by factor models, which incorporate weak factors, affecting

only a subset of the considered time series.

For that reason, we extend our analysis by including the sparse approximate factor (SAF)

model by Daniele et al. (2019). The SAF is a hybrid model that combines the structure

of the AFM with regularization techniques. Specifically, the model incorporates sparsity

via l1-regularization on the factor loadings. In this way, the model shrinks elements of the
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factor loadings to zero and thus allows for measuring weak factors, reduces the number

of parameters to be estimated, and therefore potentially diminishes the estimation noise.

3 Empirical Application

In this section, we provide details on the design of our empirical application, which refers

to an out-of-sample forecasting experiment for predicting various key macroeconomic

variables.

3.1 Data

To conduct the out-of-sample forecasting experiment, we utilize historical data from the

United States, based on the FRED-MD dataset, introduced by McCracken and Ng (2016).

The dataset includes observations from January 1975 to December 2022, resulting in an

observation length of 576 months.6 Moreover, it comprises 134 monthly macroeconomic

and financial variables and covers a wide range of economic variables, including output,

income, the labor market, housing, and price variables.

In the majority of cases, the models used for forecasting rely on a stationarity assumption

on the variables under consideration, necessitating the transformation of each variable by

a suitable predefined transformation to remove a potential unit root. The transformation

is commonly determined through unit root tests and expert judgment. As we question

the optimality of only using one predefined transformation, we transform each of the

134 variables by multiple transformations. More precisely, we consider all data trans-

formations described in McCracken and Ng (2016) and apply each transformation to all

variables in the dataset, regardless of their optimal transformation. Thus, each variable

is included in level, first and second differences, natural logarithm, first and second dif-

6We disregarded the period before 1975, as more than 80% of the series had not yet commenced at that
time.
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ferences of natural logarithm, and first difference of the percentage change, resulting in

938 variables.

Before the model estimation, we remove any outliers7 and verify the stationarity of each

variable transformation, based on the augmented Dickey-Fuller test adjusted for the ef-

fective sample size and the Phillips-Perron test (Dickey and Fuller, 1979 and Phillips and

Perron, 1988).8 A variable or variable transformation is retained only if both tests reject

the null hypothesis of a unit root. After removing the non-stationary transformations,

the dataset comprises 652 variables. Finally, the data is standardized to have a sample

mean of zero and a sample variance of one.

Our target variables are the growth rate of the Consumer Price Index (CPI), the growth

rate of Industrial Production (INDPRO), and the change in the Unemployment Rate

(UNRATE). Those target variables have high economic relevance and are analyzed in a

large number of studies.9

3.2 Forecasting Setup

The sample used for the model estimation starts in January 1975 and ends in Decem-

ber 2006, comprising 32 years (384 months) of data. The out-of-sample evaluation is

conducted as a rolling estimation window from January 2007 to December 2022, encom-

passing 16 years (192 months) and representing approximately one-third of the entire

sample.10 We compute direct forecasts over a h = 1, 6, and 12-month horizon. All

7Outliers are defined as values that are larger than ten times the interquartile range of the deviation to
the absolute value of the median and are replaced for estimation with values generated by a cubic filter
with seven lags moving average.

8For the Dickey-Fuller test, the optimal lag selection is chosen according to the Bayesian information
criterion. For the Phillips-Perron test, the appropriate number of autocovariance lags to include in the
Newey-West estimator of the long-run variance is chosen by lag Lt = 4 ∗ (T/100)1/4 with T being the
length of the respective time series.

9See e.g., Stock and Watson (2002); Kotchoni et al. (2019); Coulombe et al. (2021); Borup et al. (2023)
for studies analyzing the same target variables.

10In line with the prevailing view in the literature, highly influential observations during the COVID-19
pandemic are treated as outliers, for instance in Carriero et al. (2022), Antoĺın-Dı́az et al. (2024),
Schorfheide and Song (2021), Lenza and Primiceri (2022), or Baumeister and Hamilton (2023). Con-
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models, including the entire set of hyperparameters, are re-estimated for each out-of-

sample period, each target, and each forecast horizon. This approach allows us to follow

a dynamic model selection strategy, taking into account the potential evolution of re-

lationships between variables or the underlying data-generating process. The relevance

of such a dynamic model selection approach has been demonstrated in several studies,

including Kotchoni et al. (2019), who found that the optimal number of factors varies

considerably across out-of-sample periods, target periods, and forecast horizons.

Prior to the estimation of each forecasting model, we select the most informative variables

for predicting the respective target variable. As the optimal information set may vary

over time, we conduct the variable selection for each OOS period. As outlined in Section

2.1, we employ the Lasso approach to identify the relevant predictors. For selecting the

regularization parameter λ in (3), we follow the approach proposed by Bai and Ng (2008)

and utilize a soft-thresholding rule such that a predefined fixed number of variables is

obtained and the datasets are comparable. The soft-threshold selects 30 and 60 targeted

predictors.11 For the baseline FRED-MD dataset we refer to these fixed set specifications

as targeted predictors, while for our large dataset encompassing all stationary transfor-

mations of each considered predictor, we denote them as targeted transformations.

In Table 1, we provide an overview of the models used in the forecasting experiment. The

models are implemented according to the references and details mentioned. More details

can be found in Appendix B.

To assess the predictive performance of the considered models across various periods, we

evaluate our forecasts not only for the entire sample period, which spans from January

2007 to December 2022 but also within distinct economic episodes. Specifically, we evalu-

sequently, the four months from March 2020 to June 2020 have been excluded from the sample.
11The size of the fixed sets is chosen because 30 and 60 variables are commonly used in the literature. For
example, Bai and Ng (2008) show that a soft-thresholding for the FRED-MD dataset to 30 variables
results in forecast gains. Also Giannone et al. (2021) demonstrates that the optimal shrinkage for the
FRED-MD dataset is approximately 30 variables. Chinn et al. (2023) use a dataset of 60 variables.
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Table 1: Summary of Forecasting Models

Acronym Model Details

AR Autoregressive Model AR-lags selected by BIC

Lasso Least Absolute Shrinkage and Selec-
tion Operator as in Tibshirani (1996)

Regularization parameter λ selected by CV

Ridge Ridge Regression as in Hoerl and Ken-
nard (1970)

Regularization parameter λ selected by CV

FADL Factor-augmented Distributed Lag
Model as in Stock and Watson (2002)

Number of factors chosen by the IRa infor-
mation criterion of Bai and Ng (2002) and
AR-lags selected by BIC

SAF Sparse Approximate Factor Model as
in Daniele et al. (2019)

Regularization parameter µ selected by the
adapted BIC type criterion

FA-RF Factor-augmented Random Forest as
in Medeiros et al. (2021)

Trees estimated via block bootstrapping
First 4 PCs are included as regressors

Notes: The OOS CV is performed using 70% as training and 30% as the test set. The maximum

number of AR-lags is set to six. The maximum number of factors is set to ten.

ate the models during periods of economic crisis, subsequent recovery phases, and periods

excluding these events, separately. In the crisis sample, we incorporate all recessionary

events identified according to the definition provided by the National Bureau of Economic

Research (NBER) within our OOS period. This encompasses the Great Recession and

the COVID-19 crisis. We define crisis periods as the three months preceding and the

twelve months succeeding the commencement of the NBER recessionary phase.12

4 Forecasting Results

Figure 3 provides a graphical visualization of the strength of our forecasting frame-

work. It uses a color-coded scheme to show the RMSFE minimizing specification -

across different models, target variables, and forecast horizons. Blue highlights areas

where transformation-based approaches outperform, while red indicates the superior per-

formance of existing methods. The figure shows that the TSF approach consistently

outperforms at short horizons with h = 1 (in 14 out of 15 cases) and maintains a signifi-

cant advantage at h = 6 and h = 12 (both 11 out of 15 cases).

12This definition of crisis periods is in alignment with for example Goulet Coulombe et al. (2022).
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Figure 3: Best-Performing Dataset Specification
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Notes: The figure shows for each target variable, model, and forecast horizon the dataset specification

that minimizes the root mean squared forecast error (RMSFE). Each heatmap illustrates the results for

one forecast horizon (h1: one-month, h6: six-months, h12: twelve-months). The columns represent the

different target variables and the rows the different models. The dataset specifications are BL: baseline,

BL30: 30 targeted predictors, BL60: 60 targeted predictors, TF: transformations, TF30: 30 targeted

transformations, TF60: 60 targeted transformations.

This chapter builds on the findings of Figure 3. First, we show that the most significant

effects are observed at shorter forecast horizons. We then examine the strength of these

effects in more detail by analyzing their distribution across different models and target

variables. Finally, we show that these gains are particularly significant in times of crisis,

underlining the robustness of our approach in difficult economic conditions.

4.1 Forecast Improvements on Short Horizons

To quantify the magnitude of the improvement offered by transformations and shrinkage,

Figure 4 shows the relative RMSFE against an AR(p) model for different horizons across

all target variables and models for each dataset specification in a box-plot.

Forecast improvements are largest for short horizons. For the shortest horizon,

h = 1, all dataset specifications significantly outperform the AR(p) model. Notably,

the transformation datasets (TF) show enhanced forecast gains; median improvements

reach 5%, and increase to approximately 10% for TF60 and nearly 6% for TF30. This

is consistent with the findings of Borup et al. (2023), who show that including squared

and cubic transformations in the targeting step for Random Forests tends to improve
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Figure 4: Boxplots of relative RMSFE across Dataset Specifications
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Notes: The figure shows the relative RMSFEs against an AR(p) model across models and targets for

different horizons and dataset specifications. Each boxplot contains the RMSFEs of five models and

three target variables resulting in 15 observations for each boxplot. The figure contains three subfigures

for the different horizons (h1: one-month, h6: six-months, h12: twelve-months).

short-term forecast accuracy. Despite a slightly broader performance spread for TF30

and TF60, with a few observations underperforming or matching the AR(p) model, the

majority demonstrates a superior performance.

For longer forecast horizons, the advantages of our TSF approach diminish.

An increased variability in the forecast performance is notably observed for the six-

month horizon as depicted in the middle boxplot of Figure 4. While TF30 and TF60 still

demonstrate lower relative RMSFEs, affirming their sustained improvements over baseline

models, the distinction between targeting methods lessens as we extend the horizon to

twelve months.

These insights advocate for using transformations in macroeconomic forecasting. Given

that the gains are most significant for short forecast horizons, and our preselection ap-

proach is optimized for this setting, as we do not incorporate longer lag structures, we

concentrate on short-term forecasts with h = 1 in our subsequent analysis. To improve

the robustness and enhance the performance at higher horizons, an extension could in-

volve modifying the soft-thresholding to incorporate lags through grouping, as suggested

by Babii et al. (2022).
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Figure 5: Forecast Improvements over the Baseline Dataset across Dataset
Specifications
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Notes: The figure displays the relative RMSFEs of the baseline dataset against an AR(p) model in a

dotted line. The bars indicate the absolute deviation in percentage points of the relative RMSFEs for

the different datasets from the baseline. The forecast horizon is equal to one month.

4.2 Model Comparison

This section presents a quantitative analysis of the impact of data transformations and

the dimension of the predictor set on the forecast accuracy. Figure 5 displays the rel-

ative forecast gains from various dataset specifications (BL60, BL30, TF, TF60, TF30)

compared to the baseline dataset (BL) for short-term (h = 1) predictions. The figure

also depicts the relative RMSFE of BL in comparison to the AR(p) benchmark model,

represented by a horizontal line. Values below one indicate that models using the baseline

dataset outperform the AR(p) model and the opposite for values above one. The bars

represent the absolute differences in relative RMSFE between the dataset specifications

and BL.

Selecting the right dataset is more critical than the model. In general, the relative

RMSFE ratios presented in Figure 5 demonstrate the strongest forecast improvements
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for TF specifications. This pattern is consistent across different sizes of the preselected

dataset sizes (30 and 60), highlighting the effectiveness of targeted transformations in

enhancing forecast accuracy.

Selecting the right transformation and preselection size within the TF framework proves

more crucial than the choice of forecasting model. Our findings reveal that, across various

targets, a randomly selected model employing TF60 consistently outperforms the top-

performing model using standard dataset specifications such as BL, BL60, and BL30. All

models employing TF60 exhibit enhanced performance in forecasting CPI and UNRATE.

However, the results for INDPRO are more dispersed, indicating that the effectiveness of

the TF60 approach can vary depending on the specific economic target.

Building on these insights, Table 2 presents a detailed comparison of the model per-

formances. It presents the relative RMSFEs of each model and dataset specification

against the AR(p) benchmark and applies the Diebold-Mariano test (Diebold and Mar-

iano (1995)) to assess the significance of differences in predictive accuracy between the

AR(p) and each model. As detailed in Table 2, the TF60 specification consistently demon-

strates the most significant improvements in RMSFE when compared to the AR(p) model,

confirming the robustness of this approach.

This evidence highlights the crucial role of dataset selection over model selection in

macroeconomic forecasting and supports a strategic emphasis on improving data quality

and relevance through targeted transformations.

Linear models benefit the most from our TSF approach. The efficacy of our TSF

approach varies significantly among different models. Especially, linear models benefit

the most through the integration of multiple data transformations. The TSF effectively

addresses the limitations of linear models in capturing non-linear data structures, thereby

enhancing their predictive capabilities as detailed in Section 2.2. Sparse models such as
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Table 2: Relative RMSFE against an AR(p) Model

BL BL30 BL60 TF TF30 TF60

CPI
FA-RF 1.007 1.005 1.013 0.994 0.993 1.000
FADL 0.971 0.983 0.997 0.944 0.937 0.888*
Lasso 0.962 0.953 0.965 0.951 0.939 0.930
Ridge 0.963 0.952 0.977 0.956 0.921** 0.897**
SAF 0.973 0.981 0.97 0.997 0.932 0.871*

INDPRO
FA-RF 0.958 0.950 0.967 0.944 0.941 0.934*
FADL 0.975 0.968 0.964 0.951 0.986 0.950
Lasso 0.981 0.974 0.982 0.991 1.017 1.037
Ridge 0.963 0.990 0.977 0.953 0.987 0.996
SAF 0.965 0.973 0.978 0.939 1.018 0.947

UNRATE
FA-RF 0.972 0.968 0.970 0.918** 0.875*** 0.899**
FADL 0.981 0.946 0.960 0.914 0.831** 0.884*
Lasso 0.938 0.933 0.928* 0.924** 0.835** 0.862***
Ridge 0.973 0.957 0.952 0.945* 0.853*** 0.835**
SAF 0.967 0.972 0.975 0.791* 0.887** 0.880**

Notes: This table presents the relative RMSFE against an AR(p) model
for the one-month ahead forecast horizon. Significance levels indicate
differences in forecast performance according to the one-sided Diebold-
Mariano test against the AR(p) benchmark and are denoted by aster-
isks: *** (1% level), ** (5% level), and * (10% level).

the SAF, and the remaining shrinkage methods like Lasso and Ridge, significantly improve

through the ”double sparsity” obtained via the predictor preselection. The preselection

improves the model performance by effectively reducing noise motivated by Meinshausen

(2007). While the improvements for random forest models are generally modest, the FA-

RF model still benefits from our TSF approach, especially for CPI. This is largely due

to the noise reduction in the PCA factors used as predictors, following Medeiros et al.

(2021), and an enhanced signal-to-noise ratio resulting from more robust trees through

our preselection process, as indicated by Borup et al. (2023).

Improvements vary significantly across different target variables. The applica-

tion of the TSF approach yields highly significant forecast improvements for UNRATE

across all specifications with transformations. This stands in contrast to the BL speci-

fications with targeted predictors, which show mostly minor non-significant gains. CPI

also benefits substantially from the TSF approach, particularly with the TF60 and TF30
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specifications where ridge regression and factor models demonstrate significant improve-

ments in predictive performance. For instance, the SAF with TF60 records a gain of

9.1 percentage points over the optimal baseline model, underscoring the effectiveness of

targeted transformations in forecasting CPI. Conversely, INDPRO presents a contrast to

the pattern observed in UNRATE and CPI. The improvements for INDPRO are mod-

est and not consistently significant, with some models even showing a deterioration in

performance when using the TSF approach.

4.3 Timing - When do Transformations Matter?

As the forecast performance can be significantly influenced by specific periods, particu-

larly those characterized by economic downturns and subsequent recovery, it is essential

to analyze these periods separately. Consequently, results are presented for the crisis and

non-crisis periods. The crisis periods are defined as the three months preceding and the

twelve months following the official start of the recession period, as determined by the

National Bureau of Economic Research (NBER). In our sample, this encompasses the

period of the Great Recession, as well as the Covid-19 pandemic.

Figure 6 shows the relative RMSFEs for each model and target variable in comparison to

its baseline specification, presented as a boxplot for the different dataset specifications,

split into crisis and non-crisis periods. Consequently, each boxplot combines the forecasts

from five different models across three target variables.

Forecast improvements are particularly substantial in turbulent times. Fig-

ure 6 illustrates that the BL30 and BL60 specifications perform similarly well as the BL

specification, with a median around one and a relatively small dispersion, exhibiting a

slight upward skew. In contrast, the TF, TF30, and TF60 specifications significantly

outperform the BL, with a median relative RMSFE around 0.96 for TF, 0.9 for TF30,

and TF60. This indicates that transformations offer a significant advantage in the con-
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Figure 6: Boxplots of the relative RMSFE across Specifications against the
Baseline Specification
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Notes: The figure shows the relative RMSFEs of one-month ahead forecasts for each model and target

variable against its baseline specification as a boxplot for the different dataset specifications split into

crisis and non-crisis periods. Therefore, each boxplot combines the forecasts from five different models

across three target variables.

text of crisis periods. During non-crisis periods, the figure shows almost no differences in

forecast performance compared to the baseline dataset.

Table C.1 in Appendix C provides more details on the results displayed in Figure 6.

Notably, only specifications using transformations show significant differences from the

AR(p) model during crises.

5 Changes in Dataset Decomposition

Our previous analysis demonstrates a generally positive impact of the TSF approach on

the forecast performance, particularly effective at short forecast horizons. This effect

was pronounced for CPI and UNRATE, whereas the results for INDPRO were more

heterogeneous.

In the following, we present empirical evidence supporting three key mechanisms by which

the TSF enhances forecasting accuracy. First, the introduction of additional transfor-

mations generates more informative data, leading to an improved model performance.

Second, these transformations enable a more effective sectoral composition, contributing
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Figure 7: Adjusted R-squared by Number of Selected Variables

CPI INDPRO UNRATE

0 30 60 90 120 0 30 60 90 120 0 30 60 90 120

0.2

0.3

0.4

0.5

0.6

0.7

Number of Targeted Variables

A
dj

us
te

d 
R

−
S

qu
ar

ed

Baseline

Transformations

Notes: This figure shows the adjusted R-squared outcomes from one-step ahead regressions for varying

numbers of predictor variables selected by the Lasso. The x-axis indicates the number of selected vari-

ables, while the y-axis displays the adjusted R-squared for each regression. When multiple values of λ

result in the selection of the same number of variables, the λ yielding the minimum RMSFE is chosen.

All data are standardized.

to the benefits observed. Third, the framework facilitates a more refined decomposi-

tion of transformations, selecting fewer logarithmic differences. Across these aspects, the

changes are more pronounced in UNRATE and CPI, with less significant changes noted

for INDPRO.

5.1 Explanatory Power of Active Set

Figure 7 presents the adjusted R-squared outcomes from one-step ahead regressions for

a varying number of predictor variables selected by the Lasso approach. For each target

variable and dataset specification, the regularization parameter in the Lasso selection is

chosen to provide an active set size between 5 and 120 targeted predictors.

Transformed datasets deliver higher explanatory power compared to baseline

sets. The figure illustrates the impact of the variable selection on the explanatory power

of the predictor set across different sizes of selected variables for both dataset specifica-

tions (TF and BL). While differences between the two dataset specifications are minimal

for a small number of selected variables, after a certain threshold depending on the target
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variable, the transformation specification yields a higher explanatory power compared to

the baseline. For CPI, the explanatory power experiences a notable increase until approx-

imately 20 predictor variables are included. Beyond this threshold, the marginal increase

diminishes, however, the information gained from including additional variables is higher

for the transformation dataset. Similarly, for the UNRATE the two specifications contain

similar explanatory power until around 15 variables. After this threshold, the transfor-

mations specification encompasses another set of highly informative variables before the

marginal utility of additional variables decreases such as in the baseline specification.

This highlights the substantial explanatory value offered by these transformations. In

contrast, for INDPRO, both the baseline and transformations specifications provide sim-

ilar predictive power with a threshold at around 50 variables. Moreover, the marginal

increase is only slightly higher for the transformations specification. Overall, the ex-

planatory power of the dataset is higher for CPI and UNRATE than for INDPRO. This

partly explains why forecast improvements for INDPRO are limited. The general higher

explanatory power of the transformations dataset demonstrates the benefits of our trans-

formation strategy using targeted transformations instead of solely relying on targeted

predictors based on the baseline dataset. Moreover, it underlines the importance of ad-

ditional transformations on the predictive accuracy after a certain number of variables is

included.

5.2 Sectoral Changes

Figure 8 illustrates the dynamically selected variables segmented by economic sectors, as

defined in McCracken and Ng (2016). Subfigure 8(a) shows the shares in percentages of

variables by category for the baseline specifications (BL), 30 targeted predictors (BL30)

and 30 targeted transformations (TF30). Subfigure 8(b) depicts the absolute difference

in selected variables by category between the TF30 and BL30 specifications over time.
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Figure 8: Sectoral Changes
(a) Share by Dataset
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Notes: This figure illustrates the dynamically selected variables segmented by sectors, as defined in

McCracken and Ng (2016). Subfigure (a) shows the shares in percentages of variables by category

for the baseline specification (BL), 30 targeted predictors (BL30), 30 targeted transformations (TF30).

Subfigure (b) shows the absolute difference in selected variables by category between the TF30 and BL30

specifications over time.

Greater forecasting accuracy through targeting aligns with a heightened focus

on key sectors. Our analysis of the sectoral composition within the active sets for each

target variable reveals notable shifts that are closely related to the effectiveness of our

TSF approach. In particular, for CPI, we observe a significant increase in the proportion

of price-related variables within the active set, rising from 16% to approximately 50% fol-

lowing the application of targeted transformations. The increase in price-related variables

is observed throughout the sample and is most pronounced during the Great Recession.
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This significant adjustment promotes the capture of price dynamics, which explains the

improvement in forecasting accuracy of the TF30 over the BL and BL30 specifications.

A similar pattern is observed in the case of UNRATE, where the active set shows an

increase from 24% to 59% in labor-related variables. This reflects a deeper incorporation

of labor market dynamics, particularly noticeable after the beginning of the COVID-19

pandemic, which spiked in early 2020. This adjustment aligns the forecast models more

closely with the economic circumstances that influenced the unemployment rate, which

is crucial for capturing the fluctuations in the labor market. Conversely, INDPRO shows

more modest changes in its active set, with an increase from around 14% to around 17%

in the output and income variables. This suggests that the pre-existing transformations

are already well aligned with the stable sectoral composition of industrial production.

The observed increase in the output and income variables occurred mainly between the

two crisis periods, while during the Great Recession and the COVID-19 pandemic, the

labor-related variables received a higher weight. The only slight adjustments indicate

that the TSF approach has not been able to bring much improvement, underscoring the

importance of the variables included in the original dataset.

These observations not only demonstrate the tailored effectiveness of our data trans-

formation and selection strategy across different sectors but also highlight the critical

importance of tailoring transformation techniques to the unique economic characteristics

of each indicator. By dynamically adjusting the variable composition within our models,

we ensure that each model is optimized to capture the most relevant and meaningful

economic signals, thereby improving overall forecasting accuracy.

5.3 Transformation Changes

Figure 9 illustrates the dynamic variable selection segmented by each transformation as

defined in McCracken and Ng (2016), including level (lvl), natural logarithm (log), first
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Figure 9: Transformation Changes
(a) Share by Dataset
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Notes: This figure illustrates the dynamic variable selection segmented by transformation as defined

in McCracken and Ng (2016), including level (lvl), natural logarithm (log), first and second difference

(dif 1m, 2nd dif 1m), first and second difference of natural logarithm (dif log, 2nd dif log), and first

difference of percentage change (dif pct). Figure (a) depicts the proportions of variables in percentages

resulting from the transformations for the baseline (BL), 30 targeted predictors (BL30), and 30 targeted

transformations (TF30). Figure (b) illustrates the absolute number of variables included in the TF30

specification that are selected with more than one transformation.

and second difference (dif 1m, 2nd dif 1m), first and second difference of the natural

logarithm (dif log, 2nd dif log), and first difference of percentage change (dif pct). Fig-

ure 9(a) depicts the proportions of variables in percentages resulting from the BL, BL30,

and TF30 datasets. Figure 9(b) illustrates the absolute number of variables included in

the TF30 specification that are selected with more than one transformation.

A detailed examination of the transformation composition within the active sets for each
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target variable reveals a significant reduction in the reliance on the difference of the nat-

ural logarithm (dif log) transformation, which is traditionally favored in macroeconomic

analysis. For example, the proportion of dif log transformations decreased substantially

from BL30 to TF30 across all target variables. This is evident for CPI, with the propor-

tion of dif log transformations decreasing from 66% to 27.5%, for INDPRO from 64% to

25%, and for UNRATE from 68% to 35%. This shift towards a more diversified set of

transformations, including a higher share of variables in first and second differences, first

differences of percentage change, and natural logarithms improves the responsiveness to

both sudden economic changes and longer-term trends.

A closer look at the selected variables for the TF30 specification shows that a large

proportion of variables are selected in multiple versions but in different transformations

over the whole time horizon. The proportion varies over time, but for CPI up to 20 out of

30 variables appear in multiple transformations. For UNRATE the proportion is similarly

high, but then decreases over time as fewer different variables but more transformations

of the same variable are selected. This is particularly noticeable after the COVID-19

pandemic, which led to a strong shift in the selection of variables. In this way, the TSF

approach places more emphasis on highly explanatory variables and exploits the non-

linear dynamics of these variables. For INDPRO, there are generally fewer variables with

multiple transformations and these rarely occur more than twice. This broader and more

diverse range of transformations augments the modeling capacities, particularly of linear

models, enabling them to better capture potential non-linear dynamics in the variables,

thereby improving overall forecasting accuracy.
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6 Conclusion

In this paper, we address the challenge of optimizing dataset specifications for macroe-

conomic forecasting in a data-rich environment. Traditional econometric models often

struggle to capture the non-linear dynamics and sudden changes inherent in economic

data, leading to significant forecasting errors and potentially misleading policy recom-

mendations. Instead of relying on complex non-linear models, we suggest to capture

non-linear interrelations by expanding the model space through the inclusion of alter-

native transformations. We introduce the Transform-Sparsify-Forecast (TSF) approach,

which allows for a dynamic selection of relevant variables and transformations, thereby

maximizing the information extracted from the data.

Through a comprehensive pseudo-out-of-sample forecasting experiment using the FRED-

MD dataset, we illustrate the effectiveness of our TSF approach. Our results highlight

the superiority of targeted transformations based on the TSF over traditional methods in-

cluding targeted predictors with preselected variables. We observe significant forecasting

gains, especially for short horizons and during crisis periods. Furthermore, our analysis

highlights the importance of the dataset composition and variable selection for forecast-

ing performance. The TSF approach not only selects a more diverse range of variable

transformations but also emphasizes the inclusion of multiple transformations of the same

variable, underlining the relevance of capturing non-linear dynamics, leading to improved

forecast accuracy.

Overall, our findings demonstrate the value of incorporating multiple steps, including

transformations and preshrinkage, in the context of a data-rich environment. By pro-

viding a framework that dynamically adapts to changing relationships in economic data,

our TSF approach offers a promising way to improve economic forecasting and policy

analysis where the optimal choice of the data is unclear.
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A Transform-Sparsify-Forecast Algorithm

In the following, we summarize our transform-sparsify-forecast procedure.

Let T denote the total number of observations and m be the number of out-of-sample

periods.

At each out-of-sample step j = 1, . . . ,m:

1. Transform

Let X̃i = (Xi,j, . . . , Xi,T−m−1+j), denote the i-th predictor variable for the observa-

tions in the estimation window. For each predictor variable Xi, where i = 1, . . . , N :

1.1. Compute the following transformations for X̃i: first and second differences,

natural logarithm, first and second differences of the natural logarithm, and

the first difference of the percentage change.

1.2. Check the stationarity of each variable transformation based on the augmented

Dickey-Fuller test and the Phillips-Perron test. If both tests reject the null

hypothesis of a unit root, keep the transformation, otherwise drop the trans-

formation.

2. Sparsify

Let W denote the set of stationary transformations of all predictor variables. For

each target variable yk, for k = 1, . . . , K:

2.1. Compute the h-step ahead l1-norm penalized regression of yk,t on Wt−h, where

yk,t is the k-th target variable at period t. Specifically, run the regression

yt+h = W ′
tβ + ϵt+h,

and employ the Lasso approach for estimating the model parameters β by

1



solving the optimization problem

β̂ = argmin
β

[
T∑
t=1

(yt+h −W ′
tβ)

2
+ λ

N∑
i=1

|βi|

]
.

2.2. Perform a preselection of the most informative predictor variables according

to a soft thresholding rule, leading to an active set size of either 30 or 60

variables, i.e., select the 30 or 60 predictor variables in W with the largest

coefficients in the Lasso regression.

2.3. Collect the selected variables in the matrix W̃ .

3. Forecast

Let t̃ = T −m − 1 + j denote the last insample observation. For each forecasting

model s = 1, . . . , S:

Compute the h period ahead forecast ŷh,s
k,t̃+h|t̃ = f̂s (Wt̃), where f̂s denotes the func-

tional form of model s estimated on the insample period.

B Models

In the following, we provide an overview of the models used in the forecasting experiment.

Autoregressive Model

As an univariate benchmark model, we use an autoregressive (AR) model of order p

Xi,t+h = β0 + βi(L)Xi,t + ϵi,t+h, (7)

where Xi,t represents the observation of the target variable at period t, β0 is an intercept,

βi(L) = βi1L + . . . + βipL
p are lag polynomials corresponding to the data Xi,t and p is

selected based on the Bayesian information criterion assuming a maximum lag order of

2



six.

Penalized Regression Models

In our comparative forecasting study, we include two commonly used shrinkage estimators

for the following h-step ahead linear regression model

yt+h = X ′
tβ + ϵt+h,

where yt is the target variable, Xt is a potentially high-dimensional set of N predictors

and β is the N -dimensional vector of coefficients.

The general penalized optimization problem to estimate β can be expressed as follows

β̂ = argmin
β

[
T∑
t=1

(yt+h −X ′
tβ)

2 + λ
N∑
i=1

((1− α)β2
i + α|βi|)

]
, (8)

where λ > 0 represents the regularization parameter.

The first penalized regression model that we consider is the Ridge Regression (Ridge)

model proposed by Hoerl and Kennard (1970), represented by a least squares regression

with a l2-norm regularization, which is obtained by setting α = 0 in (8). Its goal is to

prevent overfitting arising from a large set of predictors by shrinking large coefficients

towards zero.

Furthermore, we incorporate the Least Absolute Shrinkage and Selection Operator

(Lasso) proposed by Tibshirani (1996), which is represented by a l1-norm regularization,

obtained by setting α = 1. In contrast to Ridge, the Lasso approach encourages sparsity

in the model by forcing some coefficients to be exactly zero.

The predictive performance of both models hinges on an optimal selection of the reg-

ularization parameter denoted by λ. In our framework, we employ an out-of-sample

3



cross-validation procedure to estimate λ. At any prediction date t, we partition the avail-

able data into a training sample, comprising the first 70% of the observations and the

successive 30% of the observations constitute the validation sample. We estimate the

models on the training sample for different values of λ and compute h-step ahead direct

forecasts for each observation in the validation sample using a rolling window setup. To

alleviate the computational burden, we re-estimate the models only every five periods.

Finally, we select the optimal λ, which minimizes the out-of-sample root mean squared

forecast error.

Factor Model (FADL)

Factor models are commonly used models for forecasting in data-rich environments. We

apply the factor-augmented autoregressive distributed lag model (FADL), following the

example of Stock and Watson (2002), including next to the factors, additionally the

lagged target variables, as outlined in equation (4).

The factors F̂t are extracted from the data set by PCA, and the optimal number of

factors r̂ is chosen by the IRa information criteria introduced in Bai and Ng (2002) with

a maximum of ten factors. The number of included lags of the factors and the target

variable is chosen by the BIC and is restricted to a maximum of six lags.

Sparse Approximate Factor Model (SAF)

To assess the effect of incorporating sparsity in the loadings matrix of the approximate

factor model, which allows for measuring weak factors, on the predictive accuracy of

the factor model, we incorporate the sparse approximate factor model of Daniele et al.

(2019). The SAF is defined based on the following static factor model equation, for

i = 1, . . . , N ; t = 1, . . . , T ,

xit = λ′
ift + uit,
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and shrinks each element of the loadings matrix λi according to the l1-norm penalized

maximum likelihood problem

Λ̂,Φu ∈ argmin
Λ,Φu

[
log |ΛΛ′ + Φu|+ tr

[
Sx (ΛΛ

′ + Φu)
−1
]
+ µ

N∑
i=1

r∑
k=1

|λik|

]
,

where Λ = (λ1, · · · , λN)
′, Φu is the idiosyncratic error covariance matrix, Sx is the sample

covariance matrix and µ > 0 denotes the regularization parameter. As suggested in

Daniele et al. (2019), we determine µ based on the minimization of the following adapted

BIC type criterion

IC(µ) = 2 log
∣∣∣Λ̂Λ̂′ + Φ̂u

∣∣∣+ tr

[
Sx

(
Λ̂Λ̂′ + Φ̂u

)−1
]
+

κµ

4

√
logN

N
+

logN

N · T
, (9)

where κµ denotes the number of non-zero elements in the estimated factor loadings matrix

Λ̂ for a given value of µ. To select the optimal µ, we estimate the criterion in (9) for a

grid of different values for µ and choose the one that minimizes the information criterion.

Factor-Augmented Random Forest (FA-RF)

The random forest is an ensemble learning technique proposed by Breiman (2001) that

uses bootstrap aggregation (bagging) to combine the predictions of multiple regression

trees. Each regression tree is considered a weak learner and provides one prediction. The

final prediction of the random forest is obtained by a mean aggregation of the individual

predictions of the regression trees. We follow the specification of Medeiros et al. (2021)

which can be described as follows:1

X̂i,t+h =
1

B

B∑
b=1

[
Kb∑
k=1

ĉk,bIk,b

(
Xt; θ̂k,b

)]
, (10)

1They included a dummy for the year 2017 which we did not include.
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where B denotes the total number of regression trees2, K is the number of terminal nodes

that are created by the splits, ck,b is a tree- and node-specific constant which is the sample

mean of the observations of the target variable that are in this node. Each regression

tree is constructed by recursively splitting the data into subsets based on the predictor

variables. The tree aims to create binary splits at each node to partition the data as

follows:

Ik (Xt;θk) =


1 if Xt ∈ Rk

(
θ̂k,b

)
0 otherwise

(11)

where I is an indicator function that maps the observations of the predictors according

to the set of parameters θk that define the nodes. The optimal variables and split points

are selected to minimize the mean squared error between the observed target variable

values and the predicted values.3 Single trees are estimated by block bootstrapping. We

include the first four principal components of the data set as predictors following Medeiros

et al. (2021), who show that this factor-augmented random forest performs superior to

standard random forests.

C Additional Tables

2We create an ensemble of 500 regression trees.
3All variables are considered at each split when growing a tree and the minimum size of a terminal node
is equal to 5.
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Table C.1: Relative RMSFE against an AR(p) Model by
Subperiods

A. Crisis Periods

BL BL30 BL60 TF TF30 TF60

CPI
FA-RF 0.998 1.002 1.003 0.994 0.965 0.970
FADL 0.921 0.991 1.006 0.907 0.818 0.815
Lasso 0.909 0.931 0.914 0.858* 0.811* 0.836*
Ridge 0.92 0.942 0.945 0.882* 0.855* 0.848**
SAF 0.914 0.972 0.963 1.019 0.872 0.812

INDPRO
FA-RF 0.953 0.947 0.967 0.899* 0.92 0.906*
FADL 0.941 0.946 0.933 0.925 0.958 0.909
Lasso 0.947 0.950 0.952 0.972 0.985 0.998
Ridge 0.946 0.977 0.957 0.918 0.98 0.982
SAF 0.939 0.936 0.947 0.901 1.025 0.916

UNRATE
FA-RF 0.968 0.959 0.963 0.897* 0.848** 0.873**
FADL 1.00 0.963 0.960 0.885 0.770** 0.856
Lasso 0.946 0.937 0.934 0.912* 0.779** 0.836**
Ridge 1.009 0.972 0.970 0.955 0.808** 0.785**
SAF 0.950 1.004 0.992 0.668 0.852* 0.844*

B. Non-Crisis Periods

BL BL30 BL60 TF TF30 TF60

CPI
FA-RF 1.015 1.008 1.022 0.994 1.018 1.027
FADL 1.015 0.975 0.988 0.977 1.035 0.950
Lasso 1.008 0.973 1.010 1.03 1.043 1.01
Ridge 1.002 0.961 1.006 1.019 0.977 0.941**
SAF 1.024 0.990 0.976 0.976 0.984 0.922**

INDPRO
FA-RF 0.969 0.959 0.966 1.043 0.990 0.997
FADL 1.051 1.018 1.033 1.012 1.050 1.042
Lasso 1.057 1.030 1.050 1.035 1.089 1.126
Ridge 1.003 1.019 1.024 1.031 1.005 1.030
SAF 1.025 1.056 1.05 1.025 1.00 1.019

UNRATE
FA-RF 0.979 0.983 0.980 0.950** 0.915*** 0.938**
FADL 0.951 0.918** 0.960 0.956 0.917** 0.926**
Lasso 0.926* 0.927* 0.918** 0.942* 0.915*** 0.901**
Ridge 0.914** 0.932 0.923** 0.928** 0.917*** 0.906**
SAF 0.993 0.921** 0.948 0.948 0.938** 0.934*

Notes: See Table 2. The crisis periods are defined as the three months preceding
and the twelve months following the official start of the recession period, as
determined by the National Bureau of Economic Research (NBER).
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Table C.2: Relative RMSFE h = 6

BL BL30 BL60 TF TF30 TF60

CPI
FA-RF 0.873*** 0.884*** 0.883*** 0.862*** 0.903*** 0.907**
FADL 1.007 1.013 1.017 0.990 0.976 0.968
Lasso 0.907*** 0.960 0.916*** 0.898* 0.870* 0.878*
Ridge 0.895*** 0.929*** 0.911*** 0.913*** 0.912 0.911***
SAF 1.025 0.947** 1.007 0.999 0.938*** 0.974*

INDPRO
FA-RF 0.945** 0.952* 0.963 0.957 0.918** 0.923**
FADL 1.048 1.057 1.024 1.079 1.002 1.012
Lasso 1.002 1.035 1.022 0.940* 0.913* 0.900*
Ridge 1.001 1.023 1.004 0.978* 0.917** 0.910**
SAF 1.023 1.084 1.063 1.037 0.971 1.028

UNRATE
FA-RF 0.912** 0.919** 0.914** 0.921 0.976 0.989
FADL 0.973 1.077 0.965 1.055 1.060 1.059
Lasso 0.962 0.942 0.937* 0.920** 0.886* 0.949
Ridge 0.965** 0.922* 0.927* 0.971* 0.883** 0.948
SAF 0.981 0.947 0.948 1.076 1.047 1.013

Notes: This table presents the relative RMSFE against an AR(p) model for the
six-month ahead forecast horizon. Significance levels indicate differences in fore-
cast performance according to the one-sided Diebold-Mariano test against the AR(p)
benchmark and are denoted by asterisks: *** (1% level), ** (5% level), and * (10%
level).

Table C.3: Relative RMSFE h = 12

BL BL30 BL60 TF TF30 TF60

CPI
FA-RF 0.954* 0.927*** 0.944** 0.924** 0.967 0.971
FADL 0.968 1.015 0.970* 0.971 1.010 0.988
Lasso 0.950** 0.959** 0.946*** 0.949*** 0.944*** 0.940***
Ridge 0.966** 0.956*** 0.956*** 0.949*** 0.944*** 0.960**
SAF 0.966** 1.009 0.962* 0.978 0.990 1.030

INDPRO
FA-RF 0.967 0.948 0.970 0.925** 0.997 0.988
FADL 1.017 1.009 1.019 1.133 1.040 1.009
Lasso 1.038 1.022 1.039 0.990* 0.991 0.985**
Ridge 1.031 1.001 1.021 1.001 0.989 0.994
SAF 0.981 1.041 1.039 1.135 1.027 1.063

UNRATE
FA-RF 0.952*** 0.939*** 0.952** 0.922 0.931*** 0.924***
FADL 0.990 0.998 0.980 1.023 0.961* 0.999
Lasso 0.980** 0.959** 0.983 0.928*** 0.940** 0.923***
Ridge 0.966** 0.964** 0.965*** 0.951*** 0.942*** 0.936***
SAF 0.973** 0.958*** 0.982 1.030 0.965* 1.026

Notes: This table presents the relative RMSFE against an AR(p) model for the
twelve-month ahead forecast horizon. Significance levels indicate differences in fore-
cast performance according to the one-sided Diebold-Mariano test against the AR(p)
benchmark and are denoted by asterisks: *** (1% level), ** (5% level), and * (10%
level).
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Figure C.1: Short-term Forecast Improvement over AR(p)
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Notes: This figure presents the RMSFE improvement over an AR(p) for each target (CPI, INDPRO,

and UNRATE). For details see the notes for Figure 1.
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