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A B S T R A C T

Porous media are ubiquitous in the environment. It is a structural component
of living organisms, being present in plants, tissues, and biofilms, and also of
abiotic systems, such as soils. The latter stands out for its high environmental
relevance, as it mediates the effects on the subsurface of processes occurring in
the atmosphere. The unsaturated region of soils, extending from the surface
until the deeper aquifers, is key in this exchange, as it controls the fate of solutes,
pollutants, and nutrients entering the subsoil. This region is characterized
by the combined presence of more than one fluid phase in the pore space,
which translates into high spatial heterogeneity and large inherent topological
complexity. As a result, some of the most relevant physical processes taking place
in this region are not fully understood yet. Fluid flow and solute transport are
examples of such processes, whose study has been constrained by the difficulty
in both accessing these systems in a non-invasive manner and in observing and
quantifying them at the required spatial and temporal resolutions.

This doctoral thesis aims to provide a mechanistic understanding of the
control of saturation (fraction of the pore volume occupied by the liquid phase)
on the processes of fluid flow and solute transport in porous media. This was
achieved through an extensive numerical and theoretical investigation at the
pore scale, deeply rooted in previous experimental work. In particular, the
use of synchrotron X-ray micro-tomography allowed overcoming the technical
challenges mentioned above by allowing real-time observation of the movement,
spreading, and mixing of an injected solute in a porous medium at different
degrees of saturation and under different flow rates.

Results on the impact of saturation on flow revealed an enhancement in the
flow redistribution upon a decrease in saturation. This manifested itself in the
stronger formation of backbones of preferential flow and in larger dead-end
regions of very low velocity. The latter contributed largely to a marked change
of scaling in the velocity distribution and to a sharp transition to enhanced
anomalous transport, visible already after a slight desaturation in the system.
A theoretical framework is presented, which successfully captured these vari-
ations from structural properties in unsaturated porous media. Results from
the synchrotron X-ray experiments showed that this enhanced solute dispersion
at lower saturation imparts larger amounts of deformation to the solute plume,
which renders the mixing of transported solute with the resident solution more
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efficient. Similar outcomes were obtained upon an increase in the injection flow
rate under a constant saturation degree. A fully resolved 3D numerical investi-
gation of flow allowed explaining the physical mechanisms behind this interplay.
Lower saturation alters the connectivity of the system, enhancing the streamlines
convergence in the pore space and leading to backbone formation. This results
in a strengthened helical flow inside the liquid phase, with large values of
helicity density linked to strong streamlines deformation in the form of intensive
folding and braiding. This suggests the simultaneous presence of shear- and
vorticity-dominated deformation regions in the pore space, whose combination
is ultimately responsible for the enhanced solute plume deformation quantified
from the experimental data. Based on additional transport simulations per-
formed on the same 3D geometries, we conclude on the occurrence of chaotic
advection and chaotic mixing in the system, as initially suggested by the strong
braiding and folding of streamlines visible in the vicinity of air clusters and
solid boundaries. As indicated by the Lyapunov exponents, computed from the
solute plume deformation reconstructed for all tested conditions, the strength of
chaos in the liquid phase is enhanced upon both a decrease in saturation and an
increase in flow rate.

The study presented in this thesis is a major leap forward in our understanding
of the physical mechanisms behind the larger flow field heterogeneity and
enhanced transport dynamics characteristic of unsaturated porous media. The
results here presented are relevant for a wide range of environmental and
industrial applications, being especially useful in investigations on mixing and
reactive transport under multiphase conditions. The outcome of this thesis will
likely motivate further research in the field and will contribute to the study of
complex systems and additional processes of high environmental and industrial
relevance.



Z U S A M M E N FA S S U N G

Poröse Medien sind allgegenwärtig in der Umwelt. Sie sind Hauptbestandteil
sowohl von Lebenswesen, wobei sie in Pflanzen, Geweben, und Biolfilme zu
finden sind, wie auch von abiotischen Systemen, z.B. Böden. Die Letzteren zeich-
nen sich durch ihre Relevanz bei vielen Umweltprozessen aus, da sie sämtliche
Auswirkungen aller auf der Atmosphäre vorkommenden Prozesse auf den Un-
tergrund vermitteln. Die ungesättigte Bodenzone, die sich von der Oberfläche bis
zu den tiefen Grundwasserleitern erstreckt, spielt dabei eine Hauptrolle. Sie kon-
trolliert das Geschick aller in den Untergrund reinfliessenden Substanzen, wie
z.B. Schadstoffen und Nährstoffen. Diese Zone zeichnet sich durch das gemein-
same Anwesen von mehreren Phasen im Porenraum, bzw., Flüssigkeiten und
Gasen, was zu hoher Heterogeneität und zu grosser topologischer Komplexität
führt. Als Folge dessen sind heutzutage einige der wichtigsten physikalischen
Prozesse in dieser Zone noch nicht wohlverstanden. Dazu gehören die Flüs-
sigkeitsströmung und der Transport gelöster Stoffe, deren Erforschung bisher
hauptsächlich durch experimentelle Herausforderungen verhindert worden ist.
Insbesondere haben sich das nicht-invasive Testen von porösen Medien sowie
die experimentelle Beobachtung solcher Prozesse mit der erforderlichen Zeit-
und Raumauflösung als technisch sehr komplex erwiesen.

Diese Doktorarbeit hat als Hauptziel, ein mechanistisches Verständnis der
Kontrolle der Sättigungszahl (der von Flüssigkeiten, bzw. Wasser, besetzten
Anteil des Porenvolumens) auf die Flüssigkeitsströmung und auf den Transport
gelöster Stoffe zu gewinnen. Dies wurde durch eine intensiv numerische und
theoretische Erforschung im Porenmassstab erreicht, die auf früherer experi-
menteller Arbeit beruht. Insbesondere hat die Anwendung von Synchrotron-
Röntgenmikrotomographie dabei geholfen, die oben erwähnten technischen
Herausforderungen zu überwinden. Diese Technik hat die direkte Erfassung der
Bewegung, der Verbreitung, und der Vermischung eines injizierten Stoffes inner-
halb des Porenraums bei verschiedenen Sättigungszahlen und bei verschiedenen
Durchflussgeschwindigkeiten ermöglicht.

Unsere Ergebnisse haben eine Verstärkung der Strömungsverteilung nach
einer Senkung der Sättigungszahl gezeigt. Dies hat sich in der Entwicklung
sowohl von stärkerer Vorzugsströmung entlang kanalartiger Poren als auch von
grösseren Stauzonen tiefer Fliessgeschwindigkeiten erwiesen. Diese Stauzonen
haben ebenfalls bloss nach einer leichten Senkung der Sättigungsszahl eine
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markante Veränderung in der Form der Geschwindigkeitsverteilung verursacht,
die mit einem Übergang zu verstärkten anomalen Transportprozessen einher-
gegangen ist. Dem hier gezeigten theoretischen Model ist es gelungen, solche
Änderungen anhand struktureller Eigenschaften des porösen Mediums vor-
herzusagen. Ergebnisse aus der Synchrotron-Röntgenmikrotomographie haben
bestätigt, dass diese verstärkte mechanische Dispersion des Stoffes eine hohe
Verformung der Stofffahne hervorruft, die seine Vermischung mit dem vorher
liegenden Porenwasser verbessert. Eine ähnliche Auswirkung ergibt sich aus der
Erhöhung der Durchflussgeschwindigkeiten bei unveränderter Sättigungszahl.
Anhand einer numerischen Studie haben wir die physikalischen Mechanismen
erklärt, die für diese Wechselwirkung verantwortlich sind. Eine tiefere Sätti-
gungszahl ändert die Konnektivität des porösen Mediums, was die Konvergenz
von Strömungslinien innerhalb des Porenraums und die Bildung von kanalarti-
gen Poren fördert. Als Folge dessen entsteht eine starke Schraubenströmung in
der flüssigen Phase, die mit einer hohen Helizität und mit einer starken Strö-
mungslinienverformung verbunden ist. Diese Verformung zeigt sich vor allem
als intensives Falten und Verflechten. Dies weist auf die dominierende Rolle von
entweder Scherung oder Vortizität bei der lokalen Verformung innerhalb des
Porenraums hin. Ihre Kombination erklärt die starke Verformung des injiziertes
Stoffes, die in den dazugehörenden Experimenten beobachtet wurde. Mithilfe
von numerischen Simulationen von Stofftransport, die in den selben Geome-
trien der Experimente durchgeführt wurden, haben wir die Entwicklung von
chaotischer Advektion und chaotischer Vermischung im Porenraum erforscht,
die von dem früher erkannten Falten und Verflechten von Strömungslinien in
der Nachbarschaft von Gas- und Festkörperoberflächen angedeutet wurde. Als
ermittelte Lyapunov-Exponenten zeigten, die aus der Stofffahnenverformung für
alle getesteten Fälle berechnet wurden, führt eine Senkung in der Sättigunszahl
zu einer Verstärkung von Chaos in der flüssigen Phase.

Die in dieser Doktorarbeit gezeigte Forschung stellt einen wesentlichen Schritt
für das Verständnis der physikalischen Mechanismen dar, die die grosse Hetero-
geneität des Strömungsfeldes und den verstärkten Stofftransport erklären, durch
die ungesättigte poröse Medien sich auszeichnen. Unsere Ergebnisse können bei
zahlreichen Industrie- und Umweltprozessen breite Anwendung finden. Insbe-
sondere sind sie in der Forschung von Vermischungsprozessen und reaktivem
Stofftranport in mehrphasigen Medien von grosser Bedeutung. Die Ergebnis-
sen von dieser Doktorarbeit wirken motivierend für die weitere Forschung in
diesem Fachbereich, und sie tragen ebenfalls zur künftigen Untersuchung von
komplexen Systemen und von zusätzlichen hochrelevanten Prozessen für die
Umwelt und für die Industrie bei.
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have grouped together Sw = 0.76 and Sw = 0.75 given
their very similar saturation degree. . . . . . . . . . . . . 75
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Figure 3.2 Analysis of the solute front deformation over time, as a
function of the saturation degree. a) Deformation over
time of the plume’s advancing front, here represented by
the isosurface of 50% of concentration, shown at the time
instants t = 30 s (in light red) and t = 60 s (in yellow),
for the experiment performed at Sw = 0.92 and flow rate
q = 0.25 mm3 s−1 (refer to Movie S2 in the Supplementary
Material, Appendix 3.D, for a visualization of the entire
time series). The solid phase of borosilicate glass grains
is not displayed to improve the visualization, while the
gas phase (air) is shown in semi-transparent cyan. The
white arrow indicates the main flow direction. b) Tem-
poral evolution of the area of the advancing front, A,
normalized by the area computed at the initial time of
the deformation analysis, A0. Different line types corre-
spond to different injection flow rates, whereas different
line colors correspond to different saturation degrees.
Note that, in that regard and for facilitating experiment
comparison, we have grouped together Sw = 0.76 and
Sw = 0.75 given their very similar saturation degree. The
respective power law fitting curves are displayed with dot
lines for all cases except for Sw = 0.92, which is the only
case that reaches a plateau at later times. Scalings for
both a ballistic (A/A0 ∼ t1) and a Fickian (A/A0 ∼ t0.5)
regime are displayed for visual reference. . . . . . . . . . 77
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Figure 3.3 Hydrodynamic characterization and air clusters volume
distribution as a function of saturation degree. a) Proba-
bility density function (PDF) of the liquid flow velocity
magnitude, p(v), computed in each case via 3D flow
Finite Elements Method (FEM)-based numerical simula-
tions. p(v) has been normalized by the corresponding
average velocity magnitude value, v̄. p(v) for the addi-
tional case Sw = 1.00 is also included. The Log-Log scale
highlights the scaling of the low-velocity magnitudes,
with exact power-law scalings also shown for visual ref-
erence only. A semi-Log plot is shown in the inset to
display the exponential behavior at high-velocity mag-
nitudes. b) PDF of the volume of air clusters, p(Va), for
all experiments. p(Va) is expressed in units of µm3. The
minimum volume considered corresponds to that of an
average pore of size ξ̄ = 30 µm. The power-law scaling
V−2

a is shown for visual reference. In both panels, dif-
ferent line types correspond to different injection flow
rates, whereas different line colors correspond to different
saturation degrees. Note that, in that regard, we have
grouped together Sw = 0.76 and Sw = 0.75 given their
very similar saturation degree. . . . . . . . . . . . . . . . 79

Figure 3.4 Euler characteristic, χ, of the liquid phase, as a function
of saturation degree Sw, computed for every experiment
at a single time step chosen at about half of its duration.
Results were obtained in each case from binary tomo-
graphic images of the liquid phase of the entire sample
(liquid phase mask, see Figure 3.7 in Appendix 3.A). A
fully saturated condition Sw = 1.00 is also displayed for
comparison. The best fitting line is displayed black dot-
ted. The color criteria used for the markers follows the
same one used in Figures 3.1c, 3.1d and 3.2b. . . . . . . . 81
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Figure 3.5 Analysis of the occurrence of helical flow in the pore
space. a) Variation of the average absolute helicity den-
sity, ⟨|h|⟩, with Sw, for the three experimental injection
flow rates q = 0.125, 0.25, and 0.50 mm3 s−1. The con-
ditions investigated experimentally are displayed with
squared markers, whereas additional numerically simu-
lated conditions are shown with circular markers. The
dotted lines describe the linear trend obtained for the
variation of ⟨|h|⟩ with Sw. The color criteria corresponds
to that of Figures 3.1c, 3.1d and 3.2b. b) and c) show dif-
ferent streamlines deformation patterns induced by the
occurrence and enhancement of helical flow in the system.
These results correspond to the experiment performed
at Sw = 0.75 and q = 0.125 mm3 s−1, with numerically
generated streamlines colored based on the absolute lo-
cal helicity (log10(|h|)) and with the air phase imaged
experimentally displayed in semi-transparent cyan. The
borosilicate glass grains are not displayed to improve
visibility. White ribbon arrows describe the deformation
pattern common to the different groups of streamlines:
b) depicts the braiding of streamlines in the neighbour-
hood of an air bubble (see red streamlines on the left) and
the absence of it for streamlines travelling along a back-
bone (see grey streamlines on the right); c) depicts the
convergence of two groups of streamlines into the same
backbone, with one group experiencing strong braiding
and folding (red tones) and the other one showcasing no
strong streamline deformation (grey tones). . . . . . . . . 83
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circular markers. The dotted lines describe the linear
trends obtained for the variations of the respective indexes
as a function of Sw. b) PDF of the Q-criterion, p(Q), for
the experimental cases only, plus the case Sw = 1.00,
included for comparison. Different line types correspond
to different injection flow rates, whereas different line
colors correspond to different saturation degrees. Note
that, in this regard, we have grouped together Sw = 0.76
and Sw = 0.75 given their very similar saturation degree.
In both panels, we have indicated with grey shaded areas
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Figure 3.7 Graphical summary of the image analysis protocol used
for the post-processing and quantitative evaluation of the
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Figure 3.8 Summary of the experiment calibration process. a) Cali-
bration curve relating the tomographic voxel value (i.e.,
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tion, c, obtained following the procedure described in
Appendix 3.A. All thirteen pairs of points used for the
calibration are shown in blue markers and represent the
average voxel value of the calibration tomogram, Vi, and
their corresponding concentration values. The error bars
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dashed lines represent the 99% confidence intervals ob-
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linear equation is also shown. b) Variation in the me-
dian absolute deviation from the median value (MAD)
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ber of sampled voxels. This was used for estimating the
representative statistical sample size, to be used for defin-
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scalar field magnitudes better. The white arrows indicate
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Figure 3.11 Probability density function, p(ξ), of the pore size, ξ,
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Figure 3.13 Alternative representation of the experimental results.
a) Variance of the concentration field, σ2

c , against the
dimensionless time, τ, for all five transport experiments.
The values of σ2

c have been corrected by the variance at
time t = 0 s, σ2

c,t=0. τ is expressed as τ = t/tadv, where
the advective time tadv = ξ̄/v̄ is the time required for
the flow to bridge the average pore size ξ̄ at the average
flow velocity v̄. b) Evolution over the dimensionless time
τ of the area of the advancing front, A, normalized by
the area computed at the initial time of the deformation
analysis, A0. The respective power law fitting curves are
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which is the only case that reaches a plateau at later
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tion of connectivity. a) Variation of the average absolute
helicity density, ⟨|h|⟩, with the Euler characteristic χ, for
the three experimental injection flow rates q = 0.125, 0.25,
and 0.50 mm3 s−1. b) Average positive and negative Q-
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The grey shaded area indicates the range of Q-values
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merically simulated conditions are shown with circular
markers. The dotted lines describe the linear trend ob-
tained for the variation of both metrics with χ. The color
criteria corresponds to that employed in Section 3.4. . . . 112
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Figure 4.1 Main outputs from the two steady-state transport sce-
narios solved numerically. Results for a porous medium
with a saturation degree Sw = 0.82 and with an injection
flow rate q1 = 0.125 mm3s−1 are displayed. a) Solute’s
plume deformation, i.e., deformation of the isosurface
of the 1% of concentration, 3D-rendered in yellow, as re-
constructed from the low-diffusivity transport scenario
(DS = 1 × 10−12 m2s−1). In addition, the air phase vol-
ume is 3D-rendered in transparent cyan and the porous
medium boundaries are shown as a transparent cylinder.
The pore space boundaries on the inlet’s cross section are
highlighted in white, with the surface region of the chosen
injection pore on the inlet’s cross-sectional plane high-
lighted in magenta. b) Solute’s concentration field inside
the sample, expressed in units of solute moles per unit of
volume (molar concentration, M), as obtained from the
diffusive transport scenario (DH = 1.929 × 10−9 m2s−1).
All concentration values below 0.01 M are displayed in the
darkest blue. In addition, only the solid phase’s volume
is 3D-rendered in transparent grey. Only three-quarters
of the sample are displayed to improve the visualization
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panels, the white arrow indicates the main flow direc-
tion. See Figures 4.5, 4.7 and 4.8 in the Appendix, for the
remaining cases. . . . . . . . . . . . . . . . . . . . . . . . . 121
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I N T R O D U C T I O N

Porous media belong to some of the most ubiquitous systems found in
nature. They are the building block of tissues and organs in a plethora
of living organisms (Khanafer and Vafai 2022), form essential features in

plants (Dadmohammadi and Datta 2022; Dullien 1991), and even describe the
basic aggregation mechanism of several microorganisms in the form of biofilms
(Kurz et al. 2023). In addition, porous media are an essential component of
abiotic factors in the environment, being soils the most abundant example, which
mediate mass and energy fluxes. In all these cases, porous media is described by
a volume, i.e., pore-space, hosted inside a solid matrix or skeleton in the form
of small interstices connected to each other. This leads to structures of high
topological complexity that serve as hosts for a variety of physical, chemical,
and biological processes.

Soils represent an interesting case of study given their role in controlling
the effects of processes taking place in the atmosphere on those occurring in
the subsurface. In particular, the unsaturated region of soils, which is located
between the soil surface and the deeper aquifers, is essential for this exchange.
This region is characterized by the presence of more than one fluid phase in the
pore space (water and air), what is usually referred to as unsaturated. It controls
both the distribution of any substance entering the subsoil and the mixing of
this substance with other fluid phases already present in the pore space, as
the solute moves and spreads through the pore space. Hence, it plays a major
role in controlling the fate of solutes, pollutants, or nutrients in the subsoil. In
particular, it acts as filter and buffer for contaminants (Burauel and Baßmann
2005). This region is thus of paramount importance for a series of environmental
and industrial applications, which include groundwater and soil remediation
(Cunningham et al. 2003; Lahav et al. 2010; Sebilo et al. 2013; Williams et al. 2009),
artificial groundwater recharge (Bouwer 2002; Dillon 2005), radioactive waste
disposal (Winograd 1981), agricultural irrigation (Rockström et al. 2009; Sebilo
et al. 2013; Valdes-Abellan et al. 2017), and energy storage (Barbier 2002), among
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others. However, our understanding of the physical mechanisms controlling
fluid flow and solute transport and mixing in these environments is rather
limited, which has impaired our capacity to develop effective predicting tools
and optimize some of the above-mentioned applications. This is mainly due to
the large degree of physical heterogeneity characterizing these systems, which
arise from both the complex spatial organization and the intricate interactions
of the different fluid phases at the pore scale, i.e., at the scale of the liquid- or
gas-filled voids between solid grains, at which intrinsically fluid flow, solute
transport, and mixing occur (Dentz et al. 2011). In addition, the high technical
complexity of accessing these micro-scale systems in a non-invasive manner and
imaging these processes at the required spatial and temporal resolutions has
represented a major bottleneck in their study.

This doctoral thesis presents a systematic study on the control of the spatial
heterogeneity, expressed though the saturation degree, Sw, i.e., the relative
occupancy of the liquid phase in the pore space, on the processes of fluid flow
and solute transport and mixing at the pore scale. It combines experimental,
numerical, and theoretical approaches to understand the physical mechanisms
behind them, providing new tools for their prediction and up-scaling, and for the
further study of other related processes also taking place in such environments.
The results of this study can also find application in other type of multiphase
systems of high environmental and industrial relevance, such as deep aquifers,
where geological CO2 sequestration is carried out (Szulczewski et al. 2012), and
static mixers, commonly operated under the presence of immiscible phases in
the process industry (Valdés et al. 2022).

1.1 flow and transport in porous media

Under the conditions most commonly found in nature, flow through porous
media at the pore scale is usually classified as Stokes flow, which is characterized
by laminar flow conditions at very low Reynolds numbers, Re ≪ 1.0. This
describes a fluid flow strongly dominated by viscous forces, with negligible
impact of inertial effects. From a simplification of the Navier-Stokes equation,
and under the consideration of incompressible flow conditions, the Stokes flow
field can be expressed as

0 = −∇P + µ∇2v + F, (1.1)
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1.1 flow and transport in porous media 3

where ∇P is the pressure gradient, µ is the dynamic viscosity of the fluid, v
is the fluid velocity, and F represents any additional body force acting on the
moving fluid.

Transport in porous media results from the combination of a series of single
processes, some of which are strongly linked to the flow field just described.
They are most commonly summarized in the form of the Advection-Dispersion
equation, which expresses the variation in time of the concentration of a trans-
ported species c. It is commonly written as

∂c
∂t

= D∇2c − v∇c + R, (1.2)

where R represents all solute mass sources and sinks, e.g., as result of reaction
or degradation processes, v∇ represents the advective transport component,
i.e., the solute movement with the underlying flow field, and D∇2c represents
the contributions from both solute dispersion and molecular diffusion to the
change of solute concentration over time. Solute dispersion is strongly associated
with the underlying flow field, as it results from velocity gradients acting on
neighbouring parcels of fluid, causing solute deformation and solute spreading
across the pore space. Contrastingly, diffusion is entirely independent of the
flow conditions and originates from concentration gradients built up in the pore
space, resulting in an increase in the volume occupied by the solute over time as
diffusion smooths out concentration differences existing between two miscible
solutions. This definition of transport has been widely used in the classical
formulations of solute transport at the continuum (Darcy scale). However, the
use of average parameters for describing the pore space does not allow for
taking into account the effects of pore space heterogeneity on the quantification
and prediction of solute dispersion and mixing. This impossibility is even more
pronounced in the case of unsaturated porous media, which display larger
degrees of heterogeneity due to the presence of several material phases in the
pore space (Jiménez-Martínez et al. 2017). As a consequence, classical models
applied in unsaturated porous media assume the instantaneous complete mixing
of entering solutes with the resident solution and/or the full displacement of
the existing pre-event water by the entering one, which has been shown to not
be accurate based on laboratory and field studies (Berkowitz et al. 2004; Brooks
et al. 2010; Silliman et al. 2002). This imposes the need for further research to
develop accurate model formulations for the study of flow and transport in
porous media, and in particular of unsaturated systems.
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1.1.1 The occurrence of anomalous transport

Recent studies, mainly based on micro- and millifluidics experiments and on
pore-scale numerical simulations, have shown the impossibility of describing
accurately solute transport and mixing in porous media by direct application of
Eq. 1.2 (Berkowitz et al. 2006; Bijeljic et al. 2011; Levy and Berkowitz 2003). They
have identified the occurrence of the so-called anomalous transport in the time
evolution of solute’s plume spreading and mixing. This is usually characterized
by breakthrough curves, i.e., time series of the solute concentration at fixed
locations, that display early arrival and long tailing, resulting in non-symmetric
solute plume spreading (Berkowitz et al. 2006; Bordoloi et al. 2022) and in
non-Fickian evolution of mixing in time (de Anna et al. 2014). Such findings
have been reported even for very simplified porous geometries, described by
narrow pore size distributions, and under fully saturated conditions, in which
the intrinsic structural heterogeneity of the pore space is still much smaller
than that found under natural conditions (Bordoloi et al. 2022; de Anna et al.
2014). Both experimental and numerical investigations, both in 2D and 3D,
and considering both natural and artificial porous media, have revealed the
dominant role of the local fluid flow velocity variations in shaping this transport
response. In particular, the role of velocity intermittency, i.e., the temporal
variation of Langrangian velocities and accelerations along single streamlines as
they move through the pore space, has been highlighted as main driver on the
development of anomalous transport (de Anna et al. 2014; de Anna et al. 2013;
Holzner et al. 2015; Kang et al. 2014), since it is associated with changes in the
correlation structure of flow velocities across the pore space. This intermittent
behavior stems itself from the morphological heterogeneity and the connectivity
of the porous medium, which lead to the formation of regions of high and low
flow velocity in the vicinity of pore throats and larger pore bodies, respectively
(de Anna et al. 2014; Holzner et al. 2015). Depending on the topology of the pore
space, isolated portions of pore bodies can even act as dead-end regions, where
flow is mostly rotational and transport is dominated by molecular diffusion
(Bordoloi et al. 2022). This leads to long-tailed non-symmetric distributions of
residence times of discrete solute particles across the pore space, characteristic
of anomalous transport.

The occurrence of a double flow structure (Holzner et al. 2015), characterized
by the combined presence of a backbone of high flow velocities and dead-end
regions of low flow velocity, has been shown to be enhanced under unsaturated
conditions (de Gennes 1983), altering the underlying flow field and leading to
broader distributions of flow velocities inside the pore space (Birkholzer and
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Tsang 1997; Datta et al. 2013; Guédon et al. 2019; Jiménez-Martínez et al. 2017;
Nützmann et al. 2002). An increase in both the resulting tortuosity and the solute
fingering formation has been observed (Jiménez-Martínez et al. 2015; Jiménez-
Martínez et al. 2017), leading to ballistic dispersion regimes at earlier times that
differ from the expected Fickian behavior predicted with classical formulations.
However, the impact of the increased porous space heterogeneity on solute
transport remains controversial. Studies across different observation scales have
reported both an increase (Aziz et al. 2018; Bromly and Hinz 2004; Haga et
al. 1999; Jiménez-Martínez et al. 2017; Nützmann et al. 2002) and a decrease
(Birkholzer and Tsang 1997; Vanderborght and Vereecken 2007) of dispersivity
with decreasing liquid phase saturation. Some investigations have also reported
non-monotonic variations of dispersivity with saturation characterized by a
critical saturation degree, below which dispersivity starts decreasing again
(Raoof and Hassanizadeh 2013). A systematic investigation on the impact of
saturation on the solute dispersion regimes over relevant time scales is thus
necessary and has not been reported yet. Moreover, an understanding of the
physical mechanisms behind the control of saturation on changes in the solute
transport response at the pore scale is still missing.

Advances in the development of analytical models for the prediction of flow
and transport in porous media have mainly centered around the study of fully
saturated systems. They have attempted to include the effects of pore-scale het-
erogeneity on transport across scales (Lasseux et al. 2021), through application of
dual-domain mass transfer models (Liu and Kitanidis 2012), pore-network mod-
els (Bijeljic and Blunt 2007), and more widely, of Continuous Time Random Walk
(CTRW) models (Berkowitz et al. 2006; Bijeljic et al. 2011; de Anna et al. 2013;
Kang et al. 2014; Le Borgne et al. 2011; Levy and Berkowitz 2003; Puyguiraud
et al. 2021). They have succeeded at providing better predictive tools than Eq. 1.2
through the addition of correlation schemes for the flow velocities and/or travel
times of single advected particles, allowing for a closer representation of the
solute breakthrough curves and of the early- and long-time dispersion scalings
in the pore space (Kang et al. 2014; Le Borgne et al. 2011; Puyguiraud et al. 2021).
However, they usually require a previous description of the underlying flow
field. Recent investigations have provided important contributions for relating
flow velocity distributions with properties of the medium structure, for example,
by identifying the dominant role of spatial correlations on the resulting flow
distribution and by implementing this on models for prediction of flow across
the system (Alim et al. 2017). However, the adaptation of flow and dispersion
predicting models to unsaturated porous media has not been straightforward
due to the not yet fully understood interactions among the different material
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phases occupying the pore space. In particular, the impact of the non-wetting
phase (a gas phase in the case of the unsaturated region of soils) on variations
in the velocity field and on the resulting solute dispersion and mixing remains
elusive, being essential for an accurate prediction of fluid-fluid (homogeneous)
and fluid-solid (heterogeneous) reactions under multiphase conditions.

1.2 the process of mixing

Mixing is a key process in the transport of solutes through porous media, as it
is ultimately responsible for the increase in the volume occupied by the solute
plume in the pore space. This occurs due to the action of molecular diffusion,
which smooths out concentration gradients existing at the interface between
the mixing solutions (Danckwerts 1952; Kitanidis 1994; Ottino 1989). Although
diffusion occurs in the absence of flow, the diffusive flux is largely enhanced
in the presence of flow. Local velocity differences lead to solute dispersion,
contributing to the stretching of the plume and therefore, to the increase of the
interface between the two miscible solutions (de Anna et al. 2014; Jha et al. 2011;
Jiménez-Martínez et al. 2015; Jiménez-Martínez et al. 2016). Hence, mixing is
an essential process in the occurrence of chemical reactions in the pore space
(Aquino et al. 2023; Markale et al. 2021).

1.2.1 Solute’s plume deformation and control on mixing

Previous studies, most of which have been performed under 2D conditions, at
both Darcy scale (Basilio Hazas et al. 2022; Chiogna et al. 2016; Cirpka et al.
2015; de Barros et al. 2012; Rolle et al. 2009) and pore-scale (de Anna et al.
2014; Jiménez-Martínez et al. 2015; Markale et al. 2021), have attempted to
describe the physical mechanisms behind the occurrence of mixing. They have
centered on the quantification of mixing from concentration fields obtained
either experimentally (de Anna et al. 2014; Hasan et al. 2020; Jiménez-Martínez
et al. 2015; Jiménez-Martínez et al. 2016; Markale et al. 2021; Van Offenwert
et al. 2019) or numerically (Cirpka et al. 2015; Jha et al. 2011; Puyguiraud et al.
2021) using descriptors such as the mixing volume (de Anna et al. 2014), the
mixing degree (Jha et al. 2011; Jiménez-Martínez et al. 2016), the dilution index
(Kitanidis 1994), the variance of the concentration field (Jha et al. 2011), or the
scalar dissipation rate (Jiménez-Martínez et al. 2015). In all these cases, these
metrics exhibit non-Fickian scalings of the evolution of mixing at early times,
commonly characterized by ballistic and/or superdiffusive scalings. Generally,
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these studies have relied on the quantification of the solute front deformation to
explain this enhanced mixing process, displaying in all cases a close correlation
with the scale of mixing over time, i.e., non-Fickian growth rates of deformation
up to characteristic diffusion times, after which the coalescence of material lines
leads to diffusion dominated transport regimes (Le Borgne et al. 2015; Le Borgne
et al. 2013). In particular, studies performed under unsaturated conditions have
shown the enhancement of the solute front deformation upon a decrease in
liquid phase saturation (Jiménez-Martínez et al. 2015; Jiménez-Martínez et al.
2016), highlighting the control of the increased morphological heterogeneity
within the pore space on the amount of deformation exerted on the solute
plume as it moves through it. This has been linked to the combined presence of
preferential flow paths and stagnation zones, as described in Section 1.1.1, which
also leads to larger concentration gradients at the interface between these two
flow regions, rendering mixing more efficient. However, the large majority of
these studies has relied on 2D observations, not allowing to take into account
the effects of 3D pore space connectivity on the analysis of solute deformation
and mixing.

Additional 2D and 3D studies, performed at Darcy-scale under fully satu-
rated conditions, have attempted to explain the physical mechanisms behind the
enhanced solute plume’s deformation through the analysis of secondary flow
motions in the pore space (Chiogna et al. 2015; Chiogna et al. 2016; Chiogna
et al. 2014; Cirpka et al. 2015; de Barros et al. 2012; Ye et al. 2020; Yu et al. 2015).
By using both numerical and experimental approaches, they have exposed the
occurrence of helical flow and twisted streamlines in systems characterized by
an anisotropic permeability tensor (Bakker and Hemker 2004; Chiogna et al.
2014; Yu et al. 2015), which has been linked to larger plume deformation and an
increased plume dilution. They have also provided important contributions for
the quantification of the former through the successful application of topological
descriptors in mixing investigations. On one hand, they have managed to iden-
tify the relevant deformation mechanisms acting locally across the pore space
through computation of vortex identification indexes, such as the Okubo-Weiss
parameter (de Barros et al. 2012; Geng et al. 2020; Okubo 1970; Weiss 1991) and
the Q-criterion (Geng et al. 2020; Hunt et al. 1988). These are expressed as a
function of the local deformation tensor and allow the local identification of
shear-dominated and vorticity-dominated deformation regions, i.e., a quantifi-
cation of the local excess of rotation strain rate relative to the shear strain rate.
On the other hand, these studies have also managed to characterize streamlines
deformation by applying descriptors of both the spatial complexity and the
strength of secondary flows across the pore space, such as the helicity density
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(Chiogna et al. 2015; Chiogna et al. 2016; Cirpka et al. 2015; Moffatt 1992; Sposito
2001; Yu et al. 2015), which directly relates the velocity and vorticity vector fields
existing in the system. In general, these studies have highlighted the importance
of the topological uniqueness of porous systems in controlling solute plume
deformation, and have shed light on the important role of rotational deformation
on mixing enhancement. However, similar investigations at the pore scale and
under the presence of several material phases in the pore space have not been
reported yet, given both the complexity of experimentally observing these
processes at the temporal and spatial scale required to capture the interac-
tions among all material phases, and the high computational cost of similar
numerical investigations.

1.2.2 Advances in pore-scale 3D imaging for flow and transport in porous media

Recent technological advances have allowed the novel application of different
imaging techniques in 3D flow and transport studies in porous media. This has
been possible thanks to improvements in the spatial and temporal resolution
achieved with these techniques, in the computational tools required for the
gathering and post-processing of experimental information, and in the fabri-
cation techniques employed for generating artificial porous media. Some of
these techniques include Magnetic Resonance Imaging (MRI) (Lehoux et al.
2016; Markale et al. 2021; Song 2013), high-resolution laser imaging (Heyman
et al. 2021; Heyman et al. 2020; Souzy et al. 2020), and X-ray micro-tomography
(Armstrong et al. 2016; Boon et al. 2017; Chen et al. 2021; Hasan et al. 2020; Van
Offenwert et al. 2019), which have been applied either for direct visualization of
the physical processes themselves, or for providing the working geometry for
further numerical investigations. The cited studies, whose large majority has
focused on fully saturated systems, have either relied on artificial and simplified
porous media made of circular beads of constant or varying diameter (Hasan et
al. 2020; Heyman et al. 2020; Markale et al. 2021), or, to a lesser extent, on natural
systems consisting of either sand packing or rock cores (Chen et al. 2021; Lehoux
et al. 2016; Van Offenwert et al. 2019). They have reported important insights
on both flow and transport processes. MRI experiments have provided new
ground for more accurate descriptions of particle dispersion in sand-like porous
systems (Lasseux et al. 2021), and it has also been employed in investigations on
unsaturated porous media to analyze the impact of wetting-phase saturation on
fluid-fluid chemical reactions, directly linked with the process of transport and
mixing of reactants across the pore space (Markale et al. 2021). High-resolution
laser imaging has been applied with success for imaging the movement of small
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fluorescent particles used for the reconstruction of experimental flow fields
(Souzy et al. 2020). Additionally, groundbreaking studies of transport under
low-diffusivity conditions have also been reported after the application of this
technique, which has allowed a detailed reconstruction of the transversal de-
formation of a solute injected punctually in a fully saturated porous medium
composed of glass beads (Heyman et al. 2021; Heyman et al. 2020). Nevertheless,
X-ray micro-tomography has been the most exploited technique for 3D trans-
port investigations in recent years. Laboratory-based micro-tomography has
enabled imaging the advance of a tracer through artificial and natural porous
media (Van Offenwert et al. 2019). However, this study has been limited by
the spatial and temporal resolutions achieved in such experimental facilities,
which are not high enough to effectively map dispersion and mixing dynamics
at the pore scale. This has largely limited the applicability of this technique
from laboratory-based campaigns to the acquisition of porous geometries for
further use in numerical investigations (Guédon et al. 2019; Kang et al. 2014;
Puyguiraud et al. 2021). Such studies have unveiled important mechanisms be-
hind the non-Fickian scalings of plume spreading over time and on the relevance
of velocity and acceleration intermittency on solute spreading, allowing for their
implementation in improved analytical models for dispersion and transport
prediction. X-ray micro-tomography at the high spatial and temporal resolutions
required for porous media transport investigations can only be carried out in
synchrotron facilities. Such studies have been reported only very recently, on
one hand focusing on transport in unsaturated porous media through direct
imaging of the movement and mixing of a tracer, providing a characterization of
incomplete mixing at the pore scale (Hasan et al. 2020); and on the other hand,
for the analysis of hysteresis in the hydrodynamic dispersion of fully saturated
sandy soils during cycles of imbibition and drainage (Chen et al. 2021). However,
the use of these imaging techniques for the study of mixing in unsaturated
porous media, especially aimed at providing a mechanistic understanding
of the impact of saturation on solute mixing and on the reported enhanced
mixing efficiency, still remains largely unexplored.

1.3 chaotic advection and chaotic mixing

The technical advances described in Section 1.2.2, together with improvements
in computational power during the last decades, have offered new research
opportunities for understanding solute transport in porous media. Recent
studies have described the inherent nature of porous media to promote chaotic
flow dynamics (Lester et al. 2013), which have been more commonly associated
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Cycle 1
Cycle 3Cycle 2

Figure 1.1: Schematic of the repeated occurrence of flow branching and merging result-
ing from the topological complexity of porous media, i.e., Baker’s flow. The
increase in the interface between mixing solutions after repeated cycles of
branching and merging is depicted.1

with turbulent flow. Numerical investigations have shed light on the inherent
capacity of 3D porous systems to promote the exponential divergence of fluid
particles as they are advected through the pore space, which is a main feature
of chaotic systems, despite the existence of laminar flow conditions. This trend
differs from the algebraic scales of dispersion and mixing usually reported from
2D experimental and numerical investigations (de Anna et al. 2014; Jha et al.
2011; Jiménez-Martínez et al. 2015), and it is associated to the presence of a
third degree of freedom in the system (Metcalfe et al. 2022). This exponential
divergence leads to complex fluid particle trajectories (Aref 1984; Ottino 1989),
which translates into enhanced solute plume deformation, leading to the rapid
generation of small-scale structures over which diffusive mass transfer occurs
more efficiently. As a consequence, mixing is enhanced (Aref 2002). This
exponential growth of material lines in porous media arises from the combined
effect of two deformation mechanisms, namely, stretching and folding, both
hallmarks of chaotic advection. They are induced in porous media by the
repeated branching and merging of material lines taking place along pore
throats in the vicinity of solid boundaries, i.e., baker’s flow (Carrière 2007; Lester
et al. 2013). This is better shown in Figure 1.1, where the increase in the interface
length between both mixing solutions after repeated cycles of branching and
merging is depicted. This larger mixing interface in time, together with an
increase in the concentration gradients sustained along this boundary, ultimately
renders mixing more efficient.

1 Reprinted and adapted from Lester et al. (2016) with permission from Elsevier, and from Carrière
(2007) with permission from AIP Publishing.
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Some of the Darcy-scale studies discussed in Section 1.2.1, which investigated
the physical mechanisms behind solute plume deformation, have already re-
ported some signs of chaotic advection. The experimental investigation of Yu
et al. (2015) reported the occurrence of twisted streamlines linked to helical flow,
which resulted in increased lateral mass exchange. This has been backed up by
numerical investigations, where stretching and folding have been quantified and
associated with mixing enhancement (Chiogna et al. 2015; Chiogna et al. 2016;
Cirpka et al. 2015). Twisting leads to braiding between neighbouring streamlines,
which reflects characteristics of the flow topology (Thiffeault and Finn 2006) and
constitutes an essential mechanism for the occurrence of exponential deforma-
tion of material lines and ultimately of chaos (Boyland et al. 2000; Metcalfe et al.
2022). However, these studies have not presented a direct assessment of chaos
through the quantification of either the deformation of material lines and/or
the divergence of neighbouring streamlines. Advances in such quantification in
porous media have been reported mostly from pore-scale studies. Experimental
studies are very scarce and have only been reported recently (Heyman et al. 2021;
Heyman et al. 2020) after successful application of high-resolution laser imaging
via high-precision refractive index matching on a porous media composed of
transparent borosilicate glass spheres. It allowed observing the movement of a
fluorescent dye injected punctually under low-diffusivity conditions, enabling
the reconstruction of the lateral deformation of the plume over distance. Re-
sults exposed the exponential scaling of the solute deformation due to strong
stretching and folding, and values for the Lyapunov exponent, λ, characterizing
this deformation, were reported. This index measures the rate of exponential
divergence of neighbouring parcels of fluid, being a proxy for the growth of a
material line with time (Ottino 1990). Hence, it informs on the strength of chaos
in the system (Lester et al. 2016). It is expressed as

λ = lim
t→∞

1
t

ln
ℓ(t)
ℓ0

, (1.3)

where ℓ(t) is the size of the material line at any given time, t, expressed as
a relative deformation compared to the initial length ℓ0. Most of the current
understanding of the physical mechanisms behind chaotic advection and chaotic
mixing in porous media comes from numerical and analytical investigations.
They have pointed out the dominant role of the topological complexity intrinsic
to these systems in controlling the repeated separation and reattachment of
fluid at the contact with solid interfaces (Lester et al. 2014; Lester et al. 2016).
In particular, the formation of stagnation points in the skin friction field on
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these solid boundaries gives place to the development of stable and unstable
manifolds, both of which are responsible for the strong deformation imposed on
the fluid further downstream in the form of intense stretching and folding (Lester
et al. 2014; Lester et al. 2016). Nevertheless, these studies have been exclusively
performed under fully saturated conditions and in very simplified porous
systems. An investigation on the strength of chaotic advection and chaotic
mixing in more heterogeneous systems and on the impact of the saturation
degree on these chaotic dynamics through direct quantification of the rate of
solute deformation has not been reported yet. Such an investigation would
widen our knowledge on the enhanced solute mixing and solute transport in
systems of high environmental relevance, such as the unsaturated region of soils.
In addition, they could support ongoing research at the large scale that aims at
exploiting the advantages of chaotic mixing for subsurface processes, such as
groundwater remediation (Cho et al. 2019; Mays and Neupauer 2012; Neupauer
et al. 2014) and biodegradation (Bagtzoglou and Oates 2007).

1.4 thesis objective and research questions

The overarching goal of this doctoral thesis is to gain a deep understanding
of the control of the saturation degree on the processes of fluid flow and
solute transport in porous media, and on the physical mechanisms controlling
this dependency. We aim to apply these findings both in the prediction
of fluid flow, solute dispersion, and mixing through the characterization of
processes such as solute plume deformation and chaotic advection and chaotic
mixing under unsaturated conditions. Considering the different knowledge
gaps identified in the previous sections, we propose the following research
questions, addressed during the development of this doctoral thesis:

1. What is the control of liquid phase saturation on the processes of fluid flow
and solute dispersion in porous media? and what mechanisms contribute
to their prediction?

2. How does the saturation degree impact the process of solute plume de-
formation and solute mixing in porous media? and what are the physical
mechanisms behind this response?

3. How does saturation influence the occurrence of chaotic advection and
chaotic mixing in porous media? and how does this relate to the observed
solute plume deformation?
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We address these research questions with a combination of experimental,
numerical, and analytical work. This is summarized in three publications, which
constitute the core of this document. The document is organized as follows:

• Chapter 1 presents a summary of the state-of-the-art in the study of flow
and transport processes in porous media, and it also summarizes the
main goal and research questions of this thesis. It highlights the main
contributions in the field from a multi-scale perspective, both on fully
saturated and unsaturated porous media, and it aims at revealing the main
knowledge gaps in the field, and for unsaturated conditions in particular.

• Chapter 2 deals with the study of the impact of liquid phase saturation on
fluid flow and dispersion in porous media, addressing Research Question
No. 1. It is based on a 2.5D numerical and analytical investigation, rooted
in previous millifluidic experiments (Jiménez-Martínez et al. 2017), that
allowed identifying the impact of an additional immiscible (gas) phase
in the pore space, i.e., air bubbles, on flow reorganization and solute
dispersion. The former is observed in the formation and enhancement of
the double-flow structure (Holzner et al. 2015) upon a reduction in the
saturation degree of the system, that is, the formation of backbones of
high flow velocity and larger dead-end regions of low flow velocity. This
chapter exposes the dominant role of the physical heterogeneity added
by the immiscible phase, and in particular by the size distribution of the
dead-end regions, in shaping the dispersion dynamics of the transported
solute. Based on these findings, we propose an analytical model for the
prediction of the flow redistribution, i.e., probability density functions
(PDF) of flow rate and velocity, as a function of the saturation degree.
We combine this analytical formulation with a Continuous Time Random
Walk model to extend its applicability for the prediction of the anomalous
dispersion scalings observed from numerical particle tracking simulations.
This work provides an important contribution to the fluid flow and solute
transport prediction from morphological and structural properties of the
pore space, addressing also the physical mechanisms involved in such
interplay. This work has been published as Velásquez-Parra, A., T. Aquino,
M. Willmann, Y. Méheust, T. Le Borgne, and J. Jiménez-Martínez. (2022).
"Sharp transition to strongly anomalous transport in unsaturated porous
media." In: Geophysical Research Letters 49, e2021GL096280.

• Chapter 3 addresses Research Question No. 2 by means of an extensive
experimental and numerical investigation of the process of mixing in un-
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saturated porous media. This study relies on previous 4D synchrotron
X-ray micro-tomography experiments performed at the beamline for To-
mographic Microscopy and Coherent Radiology Experiments (TOMCAT)
at the Paul-Scherrer Institute in Villigen, Switzerland. They allowed the
real-time observation of the spreading and mixing of an injected solute
in a porous medium resembling a sandy soil at unprecedented spatial
and temporal resolutions for such an investigation. Both the impact of
the sample’s saturation degree and of the solute’s injection flow rate were
tested during the experimental campaign. In this chapter, I present the
results of an intensive image-analysis protocol to post-process the experi-
mental data, supported by additional numerical simulations of flow built
up on geometries reconstructed from the samples tested and imaged ex-
perimentally. This allowed both the reconstruction of the experimental
concentration fields and of the solute front deformation, i.e., the interface
where mixing between the injected and the resident solution takes place,
and the numerical generation of the corresponding flow fields, respectively.
Results revealed an enhancement of mixing both upon a decrease in satu-
ration and with an increase in the injection flow rate. This was associated
with an increase in the solute plume’s front deformation. We explain the
latter by analyzing the impact of lower liquid phase saturation on con-
nectivity changes in the pore space through the computation of different
topological indexes, which describe the morphological heterogeneity of
the pore space (Euler characteristic) and the occurrence of secondary flow
motions in the system (helicity density). By combining these analyses
with vortex-identification criteria (Q-criterion), which help identify shear-
dominated and vorticity-dominated flow deformation regions across the
pore space, we were able to describe the physical mechanisms explaining
the enhanced solute front deformation, and thus, the enhanced mixing
efficiency observed and quantified from our experiments. This study pro-
vides important insights into the role of pore space heterogeneity, and of
its variation upon change in saturation, in driving solute front deforma-
tion and mixing under unsaturated conditions. In addition, it exposes
the potential of synchrotron-based X-ray micro-tomography for the study
of transport in porous media. This investigation has been accepted for
publication as Velásquez-Parra, A., F. Marone, R. Kaufmann, M. Griffa, and
J. Jiménez-Martínez. (2024). "Phase saturation control in vorticity enhances
mixing in porous media". In: Water Resources Research.
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1.4 thesis objective and research questions 15

• Chapter 4 presents the results from a numerical investigation aimed at
both complementing the results summarized in Chapter 3 and addressing
Research Question No. 3. It is based on steady-state numerical simulations
of flow and transport on the same porous media tested experimentally
in Chapter 3. By implementing a punctual injection of a miscible tracer,
we focus on the quantification of its rate of transversal deformation and
of its rate of mixing as it moves along the main longitudinal direction,
to characterize the occurrence of chaotic advection and chaotic mixing in
3D porous systems under unsaturated conditions. These two processes
were investigated by simulating conditions of low-diffusivity and also
those tested in the reference experiments, respectively, which was achieved
by varying the diffusion coefficient of the injected solute. Five different
saturation degrees and three different flow rates were considered for each
of these two transport scenarios, resulting in a total of thirty fully resolved
3D flow and transport simulations. Results allowed the reconstruction of
the mixing interface between the injected solute and the resident solution
and the generation of concentration fields for all conditions. These were
used for the computation of the growth rate of both the plume deformation
and the mixing volume over travel distance, respectively. Results revealed
chaotic scalings for both metrics, i.e., exponential growth rates, which were
enhanced both upon a decrease in saturation and upon an increase in the
injection flow rate, independently of the diffusivity of the mixing solutions
for the dimensions of the domain. Results also allowed the computation of
the Lyapunov exponent as a function of time for all conditions, providing
a direct quantification of chaos. The obtained results are explained relying
on the main findings presented in Chapters 2 and 3 on the impact of
the system’s heterogeneity on solute dispersion and mixing. This study
presents for the first time a quantification of the strength of chaos in
unsaturated porous media, explaining the impact of the saturation degree
and of the imposed flow dynamics on chaotic advection and chaotic mixing.
The corresponding publication has been submitted to Environmental Science
and Technology as Velásquez-Parra, A., F. Marone, M. Griffa, and J. Jiménez-
Martínez, J. (2024). "Chaotic transport of solutes in unsaturated porous
media".

• Chapter 5 discusses the main findings presented in previous chapters with
the aim of concluding on the overarching goal of the doctoral thesis. It also
discusses future research perspectives on the field, using our key findings
and the state-of-the-art presented in Chapter 1 as a starting point.
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S H A R P T R A N S I T I O N T O A N O M A L O U S T R A N S P O RT I N
U N S AT U R AT E D P O R O U S M E D I A

This chapter has been published on January 19 2022 as: Velásquez-Parra, A., T. Aquino, M. Willmann,
Y. Méheust, T. Le Borgne, & J. Jiménez-Martínez (2022). “Sharp transition to strongly anomalous
transport in unsaturated porous media”. In: Geophysical Research Letters 49, e2021GL096280.
http://doi.org/10.1029/2021GL096280

Key Findings:

• The presence of an immiscible phase in porous media leads to an
abrupt shift in the scaling of the liquid phase velocity distribution.

• Dispersion is quasi-Fickian in saturated systems, but becomes
quasi-ballistic under even slightly unsaturated conditions.

• We predict flow and advective transport based on phase distribu-
tion and porous medium geometry.

Authors’ contribution: A. Velásquez-Parra: conceptualization, numerical
analysis, theoretical development, data analysis, paper writing; T. Aquino:
theoretical development, paper writing; M. Willmann: conceptualization,
numerical analysis, data analysis; Y. Méheust: theoretical development,
paper writing; T. Le Borgne: theoretical development, paper writing; J.
Jiménez-Martínez: conceptualization, supervision, paper writing.
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abstract

The simultaneous presence of liquid and gas in porous media increases
flow heterogeneity compared to saturated flows. However, the impact
of saturation on flow and transport has so far remained unclear. The

presence of gas in the pore space leads to flow reorganisation. We develop a
theoretical framework that captures the impact of that reorganization on pore-
scale fluid velocities. Preferential flow is distributed spatially through a backbone
and flow recirculation occurs in flow dead-ends. We observe, and predict
theoretically, that this previously-identified flow structure induces a marked
change in the scaling of the velocity probability density function compared
to the saturated configuration, and a sharp transition to strongly anomalous
transport. We develop a transport model using the continuous time random
walk theory that predicts advective transport dynamics for all saturation degrees.
Our results provide a new modeling framework linking phase heterogeneity to
flow heterogeneity in unsaturated media.

plain language summary

The unsaturated zone, where water and air coexist in the pore space, extends
between the soil surface and the groundwater level. Its pronounced structural
heterogeneity induces complex flow patterns, which lead to rich solute transport
behaviors. Inputs (precipitation) and outputs (evaporation and deep drainage)
induce spatio-temporal variability in water saturation (i.e., fraction of the pore
space occupied by water), which impacts flow, transport, and biochemical
reactions. It has been observed that water-unsaturated conditions lead to a
strong separation of flow in regions of high velocity, where most of the fluid
is transported, and regions of low velocity. We identify the spatial distribution
and size of the low-velocity regions as key control features on water flow and
transport of dissolved chemical species, leading to transport behaviors that
differ from those described by classical transport formulations. We use these
findings to develop a theoretical framework that allows us to predict flow and
advective transport under unsaturated conditions, based on parameters that
describe the heterogeneity in phase distribution within the pore space and that
are directly linked to the geometry of the system. These results represent a
decisive step towards the prediction of fate and transport phenomena from
structural properties in unsaturated porous media.
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2.1 introduction

Unsaturated porous media, where liquid and gas phases coexist, play a central
role in a broad range of environmental and industrial applications, including con-
taminant transport (Lahav et al. 2010; Sebilo et al. 2013), artificial groundwater
recharge (Bouwer 2002), underground gas storage (Panfilov 2010), radioactive
waste disposal (Winograd 1981), and energy storage (Barbier 2002), among
others. Previous studies have shown that under saturated conditions, i.e., for
single-phase flow, structural heterogeneity in the solid phase is sufficient to
induce anomalous transport (de Anna et al. 2013; Holzner et al. 2015; Kang
et al. 2014; Le Borgne et al. 2011; Morales et al. 2017; Moroni et al. 2007; Stoop
et al. 2019). This typically translates to early solute arrival and longer tailing
at a given control plane, as well as non-Fickian scaling of spatial solute spread-
ing (Berkowitz et al. 2006; Bijeljic et al. 2011), all features that cannot be described
using classical transport formulations.

In unsaturated porous media, the presence of several immiscible or partially-
miscible fluid phases in the pore space induces complex flow topologies, in-
creasing flow tortuosity and resulting in more extreme high and low veloci-
ties (Birkholzer and Tsang 1997; Datta et al. 2013; de Gennes 1983; Jiménez-
Martínez et al. 2017; Nützmann et al. 2002; Wildenschild and Jensen 1999). The
consequences of this heterogeneity for solute transport properties remain con-
troversial. Both an increase (Aziz et al. 2018; Bromly and Hinz 2004; Haga et al.
1999; Padilla et al. 1999) and a decrease (Birkholzer and Tsang 1997; Vander-
borght and Vereecken 2007) of dispersion with decreasing saturation have been
reported. However, these studies have resorted to continuum/effective-scale
theories, where the use of locally-averaged velocity values does not reflect the
complexity of the pore-scale velocity field.

Here, we use images from millifluidic experiments and pore-scale numerical
simulations to derive a new theoretical framework linking medium structure
parameters and saturation degree (Sw, fraction of the pore volume occupied by
the liquid) to the probability density function (PDF) of both flow rate through
pore throats and velocities, and to anomalous transport dynamics. We identify
a previously-unknown abrupt change in the velocity statistics, which become
much broader even for low desaturations. Our theory is built on the partition of
the pore space into two contrasting structures, a backbone of preferential flow
paths, and dead-end regions of low velocity. While the backbone/dead-end
structure is known since the work of de Gennes (1983), dead-ends were simply
assumed to have zero velocities, and its direct impact on velocity statistics
remained unknown. Our theory elucidates the mechanisms leading to the
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observed transition and predicts the change exerted by the presence of dead-
ends on the velocity PDF scaling for unsaturated systems, compared to fully
saturated conditions. Using a continuous time random walk (CTRW) approach,
parameterized according to the theoretical velocity PDFs, we predict a transition
from quasi-Fickian to highly anomalous, quasi-ballistic transport in unsaturated
systems, in agreement with resolved simulations.

2.2 methods

2.2.1 Numerical flow simulations

We employ experimental images of a quasi two-dimensional (2D) porous medium
characterizing the arrangement of two immiscible phases (water and air) un-
der different Sw (1.00, 0.83, 0.77, and 0.71) (Jiménez-Martínez et al. 2017) and
simulate flow at the pore scale. Experiments were performed for low capillary
numbers, hence the air clusters (non-wetting phase) remain immobile (Tang et al.
2019). Under these conditions, variations in the viscosity of the non-wetting
phase are not relevant. The dimensions of the system are 132 mm × 87 mm, and
its thickness (vertical gap) h = 0.5 mm. The average pore throat width (short-
est distance between grains) am = 1.17 mm, and the mean pore size (meeting
point of pore throats) λ = 1.85 mm, leading to a porosity of 0.71, similar to
that reported in other studies addressing 2D systems (Andrade, Jr. et al. 1997;
Tallakstad et al. 2009).

We numerically simulate 2D steady-state Stokes flow, in which the flow
of water around the solid grains and air bubbles is exclusively controlled by
viscous dissipation. The effect of the third dimension on depth-averaged flow
is introduced in the Stokes equation through a Darcy-like term (Ferrari et
al. 2015) representing the drag force exerted on the liquid by the upper and
lower walls in the experimental configuration (Jiménez-Martínez et al. 2017).
A constant flow rate of 1.375 mm3s−1 for the saturated case and 0.277 mm3s−1

for the unsaturated cases is imposed at the inlet (Jiménez-Martínez et al. 2017).
Atmospheric pressure is imposed at the outlet. We assign a no-slip boundary
condition to solid–liquid interfaces and a slip boundary condition to liquid–gas
interfaces, i.e., zero longitudinal stress is imposed along these interfaces rather
than a zero velocity (Kazemifar et al. 2016).
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2.2.2 Particle tracking simulations

To investigate the consequences of our velocity analysis for advective transport,
we also perform advective particle tracking simulations to allow for a numerical
quantification of dispersion. We perform a flux-weighted injection of 104 particles
along the inlet boundary of the porous medium, over an area with a length equal
to the medium width in the y-direction and a width equal to the average grain
size (i.e., 0.83 mm) along the x-axis. Particle positions are tracked isochronically
over fixed time steps ∆t (t-Lagrangian sampling). For Sw = 1.00, ∆t = 0.05 ta,
where ta = λ/v̄ is the advective time over the mean pore size λ at the mean
velocity v̄. For the unsaturated cases, ∆t ranges between 0.021 ta and 0.029 ta.
A 100-times finer time discretization is introduced at early times to improve
resolution in the ballistic dispersion regime.

2.3 prediction of unsaturated flow distribution

2.3.1 Impact of saturation on flow velocities

While the simulated velocity fields exhibit limited variability under saturated
conditions (Figure 2.1a), the flow heterogeneity is strongly enhanced in the
unsaturated case (Figure 2.1b). The introduction of air induces a partition of the
flow field into two flow structures (de Gennes 1983): a backbone of preferential
flow paths, and dead-end regions (velocity is non-zero (Jiménez-Martínez et
al. 2015; Jiménez-Martínez et al. 2017)) that branch out from the backbone
(Figure 2.1c and 2.1d). For the Eulerian velocity PDF pE(v), this reorganization
of flow compared to the saturated case leads to an increase in the probability
of low velocities (Figure 2.2a), as they are not only encountered close to the
solid–liquid interfaces but also within dead-end regions (Figure 2.1b). This is
described by the sharp transition from a plateau for Sw = 1.00 to a power-law-
like behavior for Sw < 1.00. High velocities follow an exponential trend, in
agreement with existing literature (Datta et al. 2013), and can be characterized
by a saturation-dependent characteristic velocity vc.

We partition the flow field into backbone and dead-end regions (Figure 2.1c
and 2.1d) by selecting a velocity threshold at the transition between the power-
law and exponential velocity regimes. Results suggest a more accentuated flow
separation with lower saturation, where dead-end regions increase both in size
and number as Sw decreases, and where the dead-end area PDF pA decays
as a power-law (Figure 2.3). Note that previous studies in 2D porous media
have analyzed air cluster area distributions, rather than fluid dead-end area
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Figure 2.1: Velocity fields obtained from Stokes flow numerical simulations, displayed
in terms of the velocity magnitude v normalized by its mean value v̄, for (a)
Sw = 1.00 and (b) Sw = 0.71. The colorbar is common to subfigures (a) and
(b), with red colors indicating high velocities and blue colors low velocities.
Regions where log10(v/v̄) ≤ −1 are shown in the darkest blue tone. The
solid phase (circular obstacles) is shown in gray and air clusters in black.
Subfigures (c) and (d) show the partition of the velocity field into two types
of flow structures: (i) backbone or preferential paths, depicted in red, and
(ii) dead-end regions of low velocity, depicted in blue, for Sw = 0.83 and
Sw = 0.71, respectively. The inset in subfigure (d) depicts the geometry of a
dead-end region, with ℓ representing the dead-end region’s depth.

distributions, and found a power-law behavior with an exponential cutoff at
large cluster sizes (Jiménez-Martínez et al. 2017; Tallakstad et al. 2009).

2.3.2 Theoretical flow model

To derive a theoretical framework for pE(v), we first consider the local flow
rate through a pore throat, or pore flow rate q. It is computed by integrating
flow velocities over the cross section of the pore throat. For all unsaturated
conditions, the PDF of pore flow rates over the ensemble of throats pQ(q) shows
a scaling similar to that of pE(v) for both low and high magnitudes (Figure 2.2a).
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(a) (b)

Figure 2.2: Numerical (continuous lines) and predicted (dashed lines) probability den-
sity functions (PDF) for (a) Eulerian velocities and (b) pore flow rates, nor-
malized by their respective average values v̄ and q̄, for Sw = 1.00, 0.83, 0.77,
and 0.71. The log-log scale highlights the scaling of low magnitudes; the
power law scalings are shown for visual reference. Semi-log insets highlight
the exponential behavior at high magnitudes.

However, for Sw = 1.00, pQ(q) increases with q at low values instead of the
plateau observed for pE(v). For Sw = 1.00, pQ(q) is well captured by the flow
rate PDF in the backbone pb

Q, which follows a gamma distribution,

pb
Q(q) =

qe−q/qc

q2
c

, (2.1)

where the saturation-dependent characteristic flow rate qc controls the exponen-
tial high-flow tailing. This is consistent with the random aggregation model
of Alim et al. (2017), based on the random splitting and merging of flow through-
out the pore network (Coppersmith 1996).

To model pQ(q) and pE(v) for Sw < 1.00, we quantify the flow statistics in
backbone (pb

Q) and dead-end (pd
Q) regions. We first determine the ratio f of

the area occupied by dead-end regions to the total area of the pore space (e.g.,
0.2601 for Sw = 0.71, refer to Figure 2.6 in Appendix 2.A for the remaining Sw).
We express pQ(q) as

pQ(q) = f pd
Q(q) + (1 − f )pb

Q(q). (2.2)

Next, we determine pd
Q. Simulation data suggest that flow-rate magnitudes

within dead-end regions decay exponentially with depth 0 ⩽ z ⩽ ℓ (see Ap-
pendix 2.A, Figure 2.7), up to the total depth ℓ of the dead-end region, which
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extends from the contact with the backbone to the far liquid–gas boundary (see
inset in Figure 2.1d). Such exponential decay is consistent with the fundamental
solutions of the Laplace equation for the propagation within the dead-end of
the pressure perturbation applied from the boundary with the backbone (Bland
1965). We expect macroscopic pressure gradients within dead-ends regions to
obey a Laplace equation resulting from Darcy’s law (Whitaker 1986). We thus
approximate the flow rate decay along the depth as

qd(z|ℓ) ≈ q0e−z/am H(ℓ− z), (2.3)

where q0 = qd(0|ℓ) is the flow rate at the contact with the backbone and H
is the Heaviside step function. Since this flow rate profile is monotonically
decreasing, the associated PDF for a given q0 and ℓ can be computed as (Aquino
and Le Borgne 2021)

pd
Q(q|ℓ, q0) =

ℓ
dqd(z|ℓ)

dz

∣∣∣∣∣
z=zq(q)

−1

, (2.4)

where zq(q) is the point at which the flow has a given value q, i.e., qd[zq(q)|ℓ] =
q. Thus, inverting Eq. 2.3 for depth as a function of flow rate, computing
dqd(z|ℓ)/dz, and substituting, Eq. 2.4 becomes

pd
Q(q|ℓ, q0) =

am

ℓq
H(q0 − q)H(q − q0e−ℓ/am), (2.5)

for the dead-end flow-rate PDF pd
Q(·|ℓ, q0), given maximum depth ℓ and flow

rate q0 = qd(0|ℓ) at the entrance. Taking q0 to be distributed according to Eq. 2.1
and averaging over the latter, we can now express the flow rate PDF in dead-ends
given ℓ as

pd
Q(q|ℓ) =

∫ ∞

0
dq0 pd

Q(q|ℓ, q0) pb
Q(q0), (2.6)

which after computing the integral leads to

pd
Q(q|ℓ) =

am

ℓqcq

[
e−q/qc(q + qc)− exp

(
− eℓ/am q

qc

)(
eℓ/am q + qc

)]
. (2.7)
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By approximating ℓ ≈
√

A, with A the dead-end area, and averaging over
areas, we obtain an expression for the PDF of dead-end flow rates,

pd
Q(q) ≈

∫ ∞

0
dA pd

Q(q|
√

A) pA(A). (2.8)

The PDF pA of dead-end areas, defined for a given flow field such that pA(A) dA
is the probability of a uniformly randomly chosen dead-end region to have
area in an infinitesimal neighborhood dA of A, is shown in Figure 2.3 for each
unsaturated flow field. The area PDFs were determined based on the flow field
partitions, as shown in Figure 2.1 for Sw = 0.83 and Sw = 0.71. We approximate
pA by a Pareto PDF,

pA(A) =
γ

a2
m

(
A
a2

m

)−1−γ

H(A − a2
m), (2.9)

where the exponent γ decreases with decreasing Sw, indicating broader dead-
end area variability. The approximations thus obtained are plotted as dashed
lines in Figure 2.3. We consider the minimum area of a dead-end region to be
equal to the area of one pore throat, approximated as a2

m.

We can now expand the integrand in Eq. 2.8 using Eq. 2.9, obtaining

pd
Q(q) ≈

∫ ∞

0
dA

am

qc
√

A
e−q/qc pA(A). (2.10)

Computing this integral, and combining it with the expression for pb
Q(q) (Eq. 2.1)

in Eq. 2.2, we deduce an expression for pQ(q). For q ≪ qc, the latter is controlled
by the dead-end contribution as long as f ̸= 0, corresponding to Sw < 1.00.
Notice also that the nested exponential in Eq. 2.7 varies rapidly from zero
to unity around q = qce−ℓ/am , so that it is well approximated by a cutoff for
A ≈ ℓ2 > [amln(qc/q)]2. This leads to

pd
Q(q) ≈

∞∫
0

dA
am

qc
√

A

[
1 − H

([
am ln

(
qc

q

)]2

− A

)]
pA(A),

≈ 2γ

q(1 + 2γ)

[
ln
(

qc

q

)]−1−2γ

, q ≪ qc, (2.11)
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(a) (b) (c)

Figure 2.3: PDF of the dead-end areas pA for (a) Sw = 0.83, (b) Sw = 0.77, and (c)
Sw = 0.71. For all three cases, pA is well approximated by a Pareto PDF
(Eq. 2.9) describing power-law decay. Corresponding values of the fitting
parameter γ describing a power law decay ∝ A−1−γ, which decreases with
decreasing liquid phase saturation, are also shown. Quantities are non-
dimensionalized with respect to the area a2

m associated with the average
pore-throat aperture.

which, combined with Eqs. 2.1 and 2.2, leads to

pQ(q) ≈
2γ f

q(1 + 2γ)

[
ln
(

qc

q

)]−1−2γ

. (2.12)

Thus, our model predicts that for Sw < 1.00, pQ(q) scales for low flow rates as
a power law, q−1, corrected by a logarithmic factor, raised to a power controlled
by pA(A) through the exponent γ. In the particular case f = 0, i.e., Sw = 1.00,
Taylor expansion of pb

Q (Eq. 2.1) for low q leads to pQ(q) ≈ q/q2
c , linear in q.

Proceeding similarly for q ≳ qc, for which we must consider contributions from
both pb

Q(q) and pd
Q(q), we obtain the exponential decay

pQ(q) ≈
[

2γ f
1 + 2γ

+ (1 − f )
q
qc

]
e−q/qc

qc
. (2.13)
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We now turn our attention to pE(v). It results from the combined effect
of pQ(q) and the intra-throat variability arising from the local velocity profile
within each throat. Thus, these two PDFs are related by

pE(v) =
∫ ∞

0
dq pQ(q)pE(v|q), (2.14)

where pE(·|q) is the PDF of velocities associated with a pore throat characterized
by q. Since pore throat widths are comparable in size to the channel thickness h,
we consider the impact of this third dimension on the intra-pore, depth-averaged
2D velocity profile. The latter differs from the parabolic profile expected in a
purely-2D scenario (see Appendix 2.B, Figure 2.8, for a plot of velocity profiles
across the system). By approximating the pore throat as a cuboid channel of
width am and thickness h, we express the velocity profile for Stokes flow over
the channel thickness h as a series in the form (Bruus 2008)

vx(y, z) =
4h2∆p
π3µL

∞

∑
n,odd

1
n3

[
1 −

cosh(nπ
y
h )

cosh(nπ am
2h )

]
sin
(

nπ
z
h

)
, (2.15)

where µ is the viscosity of the liquid (wetting) phase, ∆p is the pressure dif-
ference across the cuboid channel of length L, and the sum extends over odd
values of n as indicated. Here we have set a local coordinate system at each
pore throat, with x representing the local mean flow direction, the throat width
running parallel to y, and z running along the channel thickness. Averaging this
function over z values between 0 and h, we obtain

⟨vx(y, z)⟩z =
8h2∆p
π4µL

∞

∑
n,odd

1
n4

[
1 −

cosh(nπ
y
h )

cosh(nπ am
2h )

]
, (2.16)

where ⟨·⟩ denotes the mean value. Given the low variability of pore-throat sizes
across the medium, we approximate throat widths by their average value am.
For the dimensions of our porous medium (thickness h and average throat width
am), this series is governed by its first term, reducing the expression to

⟨vx(y, z)⟩z ≈
h2∆p

2π4µL

[
1 −

cosh(2π
y
h )

cosh(π am
h )

]
. (2.17)
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The Eulerian velocity PDF associated with the velocity profile across a pore
throat with local flow rate q is then (see Appendix 2.B.1, for further details)

pE(v|q) =
2h

πamvmax(q)
(C − 1)H[vmax(q)− v]√

[C − (C − 1)v/vmax(q)]2 − 1
, (2.18)

where C = cosh[πam/(2h)], and vmax(q) = αq/(ham) is the maximum velocity
within the pore throat, with

α = 2
(

1 + coth
(πam

4h

) [
coth

(πam

4h

)
− 4h

πam

])−1

. (2.19)

For Sw = 1.00, the integral in Eq. 2.14 can then be approximated for v ≪ vc

and v ≳ vc = qc/(amh), respectively, by using Eq. 2.1, as

pE(v) ≈
2h

πamαvc
tanh

(πam

4h

)
, (2.20a)

pE(v) ≈
2h

αamvc
sinh

(πam

4h

)√ v
παvc

e−
v

αvc . (2.20b)

Equation 2.20a describes a low-velocity plateau, while Eq. 2.20b encodes expo-
nential tailing at large velocities.

For Sw < 1.00, the previous derivation holds for the backbone component.
Similar to pQ(q), pE(v) for v ≪ vc is dominated by the dead-end regions, while
for v ≳ vc the contribution of both backbone and dead-ends matters. The
low-velocity behavior is controlled by low flow rates. For small q, pE(v|q)
becomes arbitrarily narrow, because the maximum velocity is linear in q, see
Eq. 2.18. Accordingly, pE(v) is well approximated for low v by setting pE(v|q) ≈
δ[v − q/(ham)] in Eq. 2.14, where δ(·) is the Dirac delta, and by using Eq. 2.12

for pQ(q). We obtain, for v ≪ vc,

pE(v) ≈
2γ f

v(1 + 2γ)

[
ln
(vc

v

)]−1−2γ
. (2.21)

Analogously, for v ≳ vc, pE(v) can be computed using Eq. 2.13 for pQ(q), and
Taylor expanding Eq. 2.18 for v ≈ vmax(q), which leads to

pE(v) ≈
[

2γ f
1 + 2γ

√
αvc

v
+ (1 − f )

√
v

αvc

]
C∗e−

v
αvc

αvc
, (2.22)
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where C∗ = 2h sinh (πam/4h) /(
√

πam). Note that for large h values compared
to am, Eqs. 2.20a–2.22 reduce to expressions that correspond to those obtained
under the assumption of a Poiseuille velocity profile (fully-2D case) (see Ap-
pendix 2.B.2, for a complete mathematical deduction).

Figure 2.2 shows the predictions (dashed lines) for both pQ(q) and pE(v). The
model successfully captures the different regimes and scaling variation for the
various Sw. The low-velocity plateau for Sw = 1.00 is also captured. The results
shown here correspond to numerical computation of the full theoretical PDFs
according to Eqs. 2.1, 2.2, 2.8, and 2.14. Further details on the regime scalings
and parameter values can be found in Appendix 2.B, Figure 2.9.

2.4 prediction of advective transport

Using the results of the particle tracking simulations (see Section 2.2.2), we
compute (advective) dispersion σ2

x(t), as a function of time t, as the variance
of longitudinal particle positions. Lower saturation induces larger particle
dispersion due to the increased velocity heterogeneity, as discussed above. At
early times, a ballistic regime, σ2

x ∼ t2 is observed in Figure 2.4 for all Sw, which
then transitions to an asymptotic superdiffusive regime. The crossover time
between the ballistic and asymptotic regimes is also larger for smaller Sw, i.e.,
the Lagrangian correlation length ζx of velocities along the mean flow direction
increases with decreasing saturation (refer to Appendix 2.C, Figure 2.10, for
correlation plots).

To develop a transport modeling framework that links the dispersion dynamics
to hydrodynamics, we employ a CTRW approach (Berkowitz et al. 2006; Cortis
and Berkowitz 2004; Dentz et al. 2016). The CTRW framework used here models
transport in terms of Lagrangian particles taking fixed spatial steps of length
ζx along the mean flow direction (s-Lagrangian sampling). Particle velocities
remain constant over a step and are assumed to fully decorrelate between steps.
They are sampled independently in each step from the s-Lagrangian velocity
distribution, which is given by the flux-weighted pE(v), ps(v) = vpE(v)/v̄ (Dentz
et al. 2016). This approach captures the intermittent nature of the t-Lagrangian
velocity signal through the distributed waiting times to cross the fixed distance
ζx.

To assess the applicability of our theoretical model to predict advective trans-
port, we employ ps(v) defined from the predicted pE(v) (dashed lines in Fig-
ure 2.2a) in the CTRW description. Figure 2.4 shows σ2

x computed from the
resulting CTRW for each Sw (dashed lines), together with σ2

x computed from the
particle tracking simulations. Dispersion is well predicted over both the ballistic
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Figure 2.4: Advective dispersion σ2
x in time for Sw = 1.00, 0.83, 0.77, and 0.71. Time

is normalized by the advective time ta = λ/v̄ over the mean pore size λ.
The plot compares σ2

x from the particle tracking analysis (continuous lines)
with σ2

x from a CTRW approach computed using the predicted velocity PDF
pE(v) (dashed lines). Scalings for a ballistic (σ2

x ∼ t2) and a Fickian (σ2
x ∼ t1)

regime are also displayed for reference.

and superdiffusive regimes, and so the impact of Sw on the temporal scaling.
A slight overestimation of early-time dispersion is visible for Sw = 1.00, which
might be explained by the assumption of full velocity decorrelation beyond ζx.
Late-time dispersion is well captured in all cases, exhibiting more pronounced
superdiffusive behavior for Sw < 1.00. Overall, these results support the suit-
ability of both our theoretical description of velocity statistics and the CTRW
to predict advective transport in unsaturated porous media, representing a
major step towards predicting solute transport in such systems from the sole
knowledge of the medium’s geometry.

The CTRW model presented here provides a theoretical framework to quantify
the relationship between dispersive scalings and velocity variability. In particular,
the late-time scaling is controlled by the low-velocity behavior of pE(v). If
pE(v) exhibits power-law decay near v = 0, pE(v) ∼ v−θ with 0 < θ < 1,
late-time dispersion scales like σ2

x ∼ t1+θ (Dentz et al. 2016), between the
Fickian and ballistic limits σ2

x ∼ t and σ2
x ∼ t2. The scalings found here for

saturated and unsaturated conditions correspond to two contrasting edge-cases.
Under saturated conditions, θ = 0 (Eq. 2.20a), which leads to logarithmically-
enhanced Fickian dispersion (Dentz et al. 2016). Note that pure power-law decay
characterized by θ ⩾ 1 is not integrable near v = 0. In this sense, unsaturated
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conditions are characterized by maximal variability of low velocities, described
by logarithmic corrections to power-law decay with θ = 1 (Eq. 2.21). This leads
to logarithmically-inhibited ballistic dispersion. In light of these considerations,
along with the fact that the unsaturated pE(v) is broader than for the saturated
case (Figure 2.2), the apparent power-law scalings in Figure 2.4 vary slowly with
time, as logarithmic corrections and the effect of progressively lower velocities
come into play. A rigorous derivation of asymptotic dispersion scalings is
beyond the scope of this work and will be presented elsewhere.

2.5 conclusions and outlook

Here we have presented a new theoretical framework for the prediction of pore-
scale flow PDFs and advective transport capturing the impact of liquid-phase
saturation. Results reveal that the introduction of an immiscible gas phase leads
to a shift in the scaling of the velocity PDFs that induces a sharp transition to
strongly anomalous transport. Under saturated conditions, dispersion is quasi-
Fickian. In contrast, even under slightly unsaturated conditions, dispersion
becomes quasi-ballistic. In practice, this superdiffusive dispersion behavior is
sustained until low-velocity cutoffs introduced by additional processes, such
as diffusion, become relevant. The long-term residence time of a particle in
a dead-end region is eventually controlled by molecular diffusion, effectively
cutting off extreme slow velocities (de Gennes 1983). While in the presence of
diffusion the transport is thus always asymptotically Fickian at sufficiently late
times, the dispersive scalings related to the velocity variability remain relevant
over significant time scales. Our CTRW formulation also opens the door to the
quantification of nontrivial scalings of dispersion (Aquino and Le Borgne 2021;
Bijeljic and Blunt 2006).

The theoretical formulation developed here successfully predicts flow and
velocity PDFs based only on a small set of parameters, which reflect characteris-
tics of the porous medium (average pore throat width am and thickness h), the
relative occupancy of backbone and dead-ends in the system (power-law tailing
exponent γ and ratio of dead-end area to total pore-space area f ), and flow
properties (correlation length of longitudinal velocities ζx and tortuosity χ, along
with the characteristic flow rate qc, used to determine the characteristic velocity
vc = qc/(ham)). While the values of these parameters depend on properties
such as porosity and liquid phase saturation, we expect the uncovered transition
in the velocity PDF and its impact on transport scaling properties to be robust.

We expect the power-law dead-end area distribution to hold for (quasi-)2D
systems, independently of the detailed pore geometry. In particular, it holds for
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fully 2D systems, and so does the spatial distribution of pore flow rates in dead-
end regions (Eq. 2.3), providing good predictions for h/am ≫ 1. In addition, we
also expect it to persist in 3D systems, as is known to happen for both wetting
and non-wetting phase cluster size distributions (Iglauer et al. 2012; Iglauer
et al. 2010; Scheffer et al. 2021). These authors also report this behavior for
wetting phase saturation degrees lower than 0.71, which we could not achieve
in the present study, as they would approach the percolation threshold for
the experimental medium. However, following previous works that report a
decrease in dispersivity once the system is desaturated below the so-called
critical saturation (Raoof and Hassanizadeh 2013), we hypothesize a decrease
in the broadness of the velocity distribution through an increase in the dead-
end area-PDF exponent γ for saturation degrees below that critical saturation.
In addition, although the present study considers a high porosity (0.71), the
distribution of non-wetting-phase cluster sizes still exhibits power–law behavior
for porosity values as low as 0.11 (Iglauer et al. 2012; Iglauer et al. 2010; Scheffer
et al. 2021). The effect of broader pore size variability (de Anna et al. 2017) under
unsaturated conditions remains an important open question. Note, however, that
even if a different functional dependency were observed for the dead-end area
PDF, our new theoretical framework provides the means to quantify its impact
on flow velocity distributions and transport. Furthermore, the upscaling of flow
and transport presented here is a first step towards theoretical assessment of
mixing and chemical reactions in unsaturated porous media, which are essential
processes for the analysis and optimization of environmental and industrial
systems.
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This appendix has been published as Supplementary Material to: Velásquez-Parra, A., T. Aquino,
M. Willmann, Y. Méheust, T. Le Borgne, & J. Jiménez-Martínez (2022). “Sharp transition to
strongly anomalous transport in unsaturated porous media”. In: Geophysical Research Letters 49,
e2021GL096280. http://doi.org/10.1029/2021GL096280.

In this Supplementary Material, we present additional details and derivations
regarding the results reported in Chapter 2. It is organized in three Appendixes.
Appendix 2.A concerns additional results on the numerical velocity analysis
for all analyzed saturation degrees. Further details on the derivation of the
theoretical model for the prediction of the probability density function (PDF)
of both velocities and flow rates through the pore throats are presented in
Appendix 2.B. Finally, details on the performance and application of the model
for the prediction of advective transport and dispersion dynamics are discussed
in Appendix 2.C.

2.a porous medium structure and flow

Here, we present additional results on the flow fields obtained from the nu-
merical Stokes flow simulations. The velocity fields for all analyzed saturation
degrees are shown in Figure 2.5. The associated partition of the three unsatu-
rated flow fields into a backbone of preferential flow paths, and dead-ends, or
regions of low velocity, for the unsaturated cases is shown in Figure 2.6. Given
the large velocity gradient at the boundaries between backbone and dead-ends,
the regions distribution do not change significantly when varying the velocity
threshold chosen for this partition.

We now turn our attention to the structure of dead-end regions in the three
unsaturated flow cases. A representative example of the velocity variation
occurring within a single dead-end region is presented in Figure 2.7. This
describes an exponential decrease of velocities within the dead-end region
starting from the point of contact with the backbone.

45
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Figure 2.5: Velocity fields obtained from Stokes flow numerical simulations, displayed
in terms of the velocity magnitude v normalized by its mean value v̄, for
(a) Sw = 1.00, (b) Sw = 0.83, (c) Sw = 0.77, and (d) Sw = 0.71. The color
scale is common to all panels, with red colors indicating high velocities and
blue colors low velocities. Regions where log10(v/v̄) ≤ −1 are shown in the
darkest blue tone. The solid phase (circular obstacles) is shown in gray and
air clusters in black. More accentuated backbone and dead-end regions are
induced with decreasing liquid phase saturation.
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Figure 2.6: Partition of the velocity field for (a) Sw = 0.83, (b) Sw = 0.77, and (c)
Sw = 0.71 into two types of flow structures: (i) backbone or preferential
paths of high velocity, depicted in red, and (ii) dead-end regions or stagnation
zones of low velocity, depicted in blue. The number and size of dead-ends
increase as liquid phase saturation decreases. The ratio f of dead-end area
to the total area of the pore space is reported for each case.

2.b theoretical model for flow and velocity pdfs

The assumptions and core of the approach behind our model for the flow and
velocity PDFs are discussed in Section 2.3. Here, we provide some additional
details on the derivations of some of our main results, specifically concerning
the velocity PDF. We first provide details on the full model, corresponding to
our main results, which takes into account three-dimensional effects due to the
finite medium thickness h. We then discuss its two-dimensional limit am/h → 0,
in which the flow within pore throats reduces to a standard Poiseuille profile.
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(a) (b)

Figure 2.7: (a) Close view of the velocity field for Sw = 0.71, highlighting the velocity
field within a dead-end region. An observation cross-section is depicted as a
continuous line. (b) Velocity variation over the depth of a dead-end region,
here parallel to the y-axis, along the observation cross-section shown in (a).
The velocity decays exponentially as a function of depth.

2.b.1 Full formulation considering three-dimensional effects

The porous medium used in the numerical Stokes flow simulations (Jiménez-
Martínez et al. 2017) (see Figure 2.5) has a pore throat width that is comparable
in size to the channel thickness. Therefore, three-dimensional effects impact
the intra-pore velocity profiles and the corresponding point statistics. Setting a
local coordinate system at each pore throat, with x representing the local mean
flow direction, the throat width running parallel to y, and z along the channel
thickness, we analyze the resulting velocity profile over the y direction, averaged
over the ensemble of pore throats (see Figure 2.8).

As mentioned in Section 2.3.2, we can express the velocity profile for Stokes
flow over the channel thickness h for a pore throat, approximated as a cuboid
channel of width am and thickness h, as the series shown in Eq. 2.15. Averaging
this function over z values between 0 and h, we obtain Eq. 2.16. The velocity
profile obtained with this expression is represented by the continuous line in
Figure 2.8. For the dimensions of our porous medium (h and am), this series is
governed by its first term, reducing the expression to Eq. 2.17. We are now in
a position to derive a theoretical expression for the PDF of the depth-averaged
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Figure 2.8: Spatial distribution of liquid-phase velocities v within each pore throat in
the medium along the direction y transverse to the local main flow direction
at each throat, under fully-saturated conditions (Sw = 1.00). Velocities
are normalized by the maximum velocity vmax at each pore throat and y
coordinates are normalized by the corresponding pore throat size a. The plot
highlights the variability of the velocity profile across pore throats. The color
map represents the pore throat size, with dark blue tones corresponding to
small pore throats and yellow colors representing large ones. The continuous
line represents the mean velocity profile described by Eq. 2.16. The dashed
line shows a parabolic (i.e., Poiseuille) velocity profile (Eq. 2.26), found only
in the smaller pore throats.

velocity magnitudes in the x-y plane. Normalizing the previous result by the
maximum depth-averaged velocity vmax and then inverting for y, we obtain

yv(v) =
h

2π
arcosh

[
C − v

vmax
(C − 1)

]
, C = cosh

(πam

2h

)
. (2.23)

Following the same procedure as for Eq. 2.5, we obtain Eq. 2.18 for the velocity
PDF pE(·|q) given pore flow rate q. In order to characterize the maximum
velocity in the pore vmax(q) as a function of the flow rate q, we multiply Eq. 2.18

by velocity v and integrate, which leads to the mean pore velocity

vm(q) =
vmax(q)

2

(
1 + coth

(πam

4h

) [
coth

(πam

4h

)
− 4h

πam

])
. (2.24)

Relating the local flow rate q to the local mean velocity by q = hamvm(q), we
find vmax(q) = αq/(ham), with α a constant given by Eq. 2.19.
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As discussed in the Section 2.3.2, using these results and those for the flow
rate PDF together with Eq. 2.14 allows us to obtain analytical scalings for
the low- and high-velocity dependencies of the Eulerian velocity PDF pE by
appropriate Taylor expansions. We note here that, for the range v ≳ vc, we
expand the integrand for v − αq/(ham) ≪ 1 (velocities near the maximum
pore velocity), which corresponds to a pole of the integrand and provides the
dominant contribution in this case. We obtain, in terms of the Meijer G function,

pE(v) ≈
√

2πhv
amv2

cα2

[
G20

24

(
v2

4v2
cα2

∣∣∣∣−1
4

,
1
4

;−1
2

,
1
2

, 0, 0
)

−G20
24

(
v2

4v2
cα2

∣∣∣∣−1
4

,
1
4

; 0, 0,−1
2

,
1
2

)]
.

(2.25)

Expanding again for v ≳ vc, we obtain the high-velocity behavior for the
saturated case, Eq. 2.20b.

2.b.2 Two-dimensional limit

In two-dimensional porous media, the velocity profile within pore throats is
typically well approximated by a Poiseuille profile (de Anna et al. 2017). We
now show that this assumption is equivalent to the formulation described in
Section 2.3.2, where we consider three-dimensional effects, in the limit of large
medium thickness or small pore throats, am/h → 0, when the flow dynamics
are effectively two-dimensional. As shown in Figure 2.8, the Poiseuille profile
provides a good fit across the smaller pore throats in our medium, but, for wider
throats, three-dimensional effects become relevant. Note that the arguments
leading to the flow rate PDF make no use of the flow profile within pores, and
therefore pQ remains unchanged. The presence of three-dimensional effects
impacts only the velocity PDF pE, although, as we now show, the functional
scalings at low and high velocity remain unchanged.

First, assume that the velocity field within a pore throat is well approximated
by a Poiseuille profile. Then, for a local flow rate q at the pore throat, the
Eulerian velocity profile in the direction transverse to the flow is

vE(v|q) =
3q

2am

(
1 − y2

a2
m

)
, (2.26)

where the mean velocity within the pore throat is given by vm = hamq and
the maximum velocity is equal to 3vm/2. Consider the case of fully-saturated
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conditions. The intra-pore PDF associated with the Poiseuille flow profile
is (Aquino and Le Borgne 2021)

pE(v|q) =
amH[3q/(2am)− v]
3q
√

1 − 2amv/(3q)
. (2.27)

In the limit am/h → 0, we have α → 2/3 (Eq. 2.19), yielding the same result
for the relationship between flow and maximum velocity mentioned previously
for the full formulation. Substituting this in Eq. 2.18 and again taking the limit
am/h → 0, we obtain Eq. 2.27. This shows that intra-pore Poiseuille velocity
profiles are a limit case of the general model derived in Section 2.3.2 and shortly
expanded in Appendix 2.B.1.

Based on the definition of the overall velocity PDF pE(v), Eq. 2.14, and recalling
that pQ(q) is given by Eq. 2.1 for the backbone, the global PDF can then written
in terms of the Meijer G function as

pE(v) =
√

π

3vc

2v
3vc

G20
12

(
2v
3vc

∣∣∣∣−1
2

;−1, 0
)

, (2.28)

where the characteristic velocity vc = qc/(ham). For small velocities, v ≪ vc,
this admits the series expansion

pE(v) ≈
1

3vc

[
1 −

(
1 + ln

[
2e2(γE−1)+𭟋(−1/2)v

3vc

])
v

3vc

]
, (2.29)

where 𭟋 is the digamma function, defined in terms of the Gamma function Γ
as 𭟋(x) = d ln Γ(x)/dx, and γE ≈ 0.5772 is the Euler-Mascheroni constant. We
have 𭟋(−1/2) ≈ 0.03649. In particular, pE(v) ≈ pE(0) = 1/(3vc) for sufficiently
small v, which agrees with Eq. 2.20a when am/h → 0. For large velocities, v ≳ vc

we find

pE(v) ≈
1

3vc

√
2πv
3vc

e−
2v

3vc , (2.30)

which is again equivalent to the limit am/h → 0 of Eq. 2.20b. Thus, the high-
velocity behavior remains exponential, and the low-velocity behavior remains
flat.

Next, we examine unsaturated conditions. For low velocities, we can again
approximate pE(v|q) ≈ δ[v − q/(ham)]. Therefore, Eq. 2.21 remains valid with-
out change. As before, the contribution of dead-end regions to the high-velocity
behavior is controlled by the high-flow-rate behavior. The backbone contribution
is proportional to Eq. 2.30. Proceeding similarly to the three-dimensional for-
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mulation, and using Eq. 2.13 for the flow contribution of flow rates in dead-end
regions for q ≳ qc, we find

pE(v) ≈
[

γ f
1 + 2γ

√
3vc

v
+ (1 − f )

√
v

3vc

] √
2π

3vc
e−

2v
3vc , (2.31)

which agrees with the limit am/h → 0 of Eq. 2.22.

2.b.3 Model parameters and regime scalings

Table 2.1 summarizes the parameter values employed in our model results for the
velocity and flow rate PDFs, as well as for the CTRW transport model discussed
in Section 2.4 and in Appendix 2.C. In all cases, the average pore-throat width
am = 1.17 mm, the medium thickness h = 0.5 mm, and the mean pore size
λ = 1.85 mm, as measured.

As a verification of the low- and high-magnitude analytical scaling results,
Figure 2.9 shows comparison of the numerical data from Stokes flow simulations,
the full theoretical PDFs computed numerically from the general theoretical
expressions as discussed in Section 2.3.2, and the regime scalings. Figure 2.9a
concerns the velocity PDFs, with regime scalings given by Eqs. 2.20a, 2.20b, 2.21,
and 2.22, whereas Figure 2.9b shows the flow-rate PDFs, with scalings according
to Eqs. 2.1, 2.12, and 2.13.

2.c particle tracking simulations and the ctrw model

To assess the applicability of the theoretical model introduced in Section 2.3 for
the prediction of advective transport, we employ a Continuous Time Random
Walk model (CTRW). The CTRW description discussed in Section 2.4 corre-
sponds to a set of stochastic recursion relations for the particle positions and
times Xk and Tk at the completion of the kth step,

Xk+1 = Xk + ζx, Tk+1 = Tk + τk, (2.32)

where the initial position X0 = 0, the initial time is T0 = 0, ζx is the longitudinal
(i.e., along the mean flow direction) correlation length, and τk is the transition
time, or duration, associated with step k.

We determine ζx based on s-Lagrangian (i.e., sampled equidistantly along
particle trajectories) velocity statistics obtained from linear interpolation of the t-
Lagrangian trajectories. Correlation lengths increase with decreasing saturation;
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(a) (b)

Figure 2.9: (a) Eulerian velocity PDFs and (b) local flow rate PDFs for all analyzed
saturation degrees Sw = 1.00, 0.83, 0.77, and 0.71. Continuous lines represent
the data from Stokes flow simulations; dashed lines represent full numerical
computation of the integral representation of the theoretical PDFs discussed
in Section 2.3.2; and circular markers represent the analytical low- and high-
magnitude regime scalings. Plots are non-dimensionalized according to the
mean velocity v and the mean pore flow rate q of the numerical data set,
respectively.

the values obtained are given in Table 2.1. The corresponding auto-correlation
functions, from where the values of ζx for each saturation are obtained, are
shown in Figure 2.10.

The velocities Vk of a particle are assumed to be constant throughout each step
k, and fully uncorrelated between steps, as an approximation of the Lagrangian
correlation structure of the flow associated with the longitudinal correlation
length ζx. Accordingly, for each step k, Vk is independently sampled from the
equilibrium s-Lagrangian velocity PDF, which is given by ps(v) = vpE(v)/v̄. The
flux-weighting of the underlying Eulerian PDF is required by the fixed-distance
sampling of particle velocities (Dentz et al. 2016). Note that the initial velocity
V0 is determined by the initial condition, which here is also flux-weighted.
The transition time τk associated with each fixed longitudinal displacement
depends on the current particle velocity and on its orientation with respect to
the mean flow direction. The latter can be quantified in terms of the average
tortuosity χ, determined as the ratio of average Eulerian velocity magnitudes
to the average projection of Eulerian velocities along the mean flow direction.
Values of tortuosity for each analyzed saturation degree are reported in Table 2.1.
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Figure 2.10: Auto-correlation functions ρ of the longitudinal velocities, as a function of
longitudinal distance x normalized by the mean pore size λ, for Sw = 1.00,
0.83, 0.77, and 0.71.

The correlation length along streamlines, corresponding to the full particle
displacement within a step, is then ζ = χζx, and

τk =
χζx

Vk
. (2.33)

As discussed in Section 2.4, we employ the CTRW approach to compute the
temporal evolution of the advective longitudinal dispersion σ2

x based on our
predictions for the velocity PDF. Figure 2.11 shows additional comparisons to
the results obtained from parameterizing the CTRW using the velocity PDF
obtained directly from the simulated velocity field.
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Table 2.1: Model parameters. The parameters employed to model the flow and velocity
PDFs are the ratio f of dead-end areas to total pore space area, the Pareto
exponent γ of the dead-end area PDF, and the characteristic pore flow rate
qc. The characteristic velocity vc = qc/(ham) is also reported. The CTRW
transport model requires the tortuosity χ and the longitudinal correlation
length ζx of Lagrangian velocities.

Sw f [−] γ [−] qc [m3/s] vc [m/s] χ [−] ζx [λ]

1.00 0.000 − 1.19 × 10−11 2.04 × 10−5 1.10 0.45
0.83 0.072 0.35 2.90 × 10−12 4.95 × 10−6 1.18 1.10
0.77 0.119 0.25 4.82 × 10−12 8.25 × 10−6 1.23 2.23
0.71 0.260 0.10 9.65 × 10−12 1.65 × 10−5 1.29 6.70

(a) (b)

Figure 2.11: Temporal evolution of advective longitudinal dispersion σ2
x . Time has

been non-dimensionalized by the advective time ta for each saturation. (a)
Comparison of dispersion from particle tracking simulations (continuous
lines) with dispersion obtained from CTRW using the numerical Eulerian
velocity PDFs (dash-dotted lines). (b) Comparison of σ2

x from CTRW using
the numerical Eulerian velocity PDFs (dash-dotted lines) and from CTRW
using the velocity PDFs from the theoretical model (dotted lines). Scalings
for ballistic (σ2

x ∼ t2) and Fickian (σ2
x ∼ t1) regimes are shown as visual

guides.
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Key Findings:

• Lower liquid phase saturation induces stronger solute plume’s
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• Helical flow in the pore space is promoted by an increased conver-
gence of flow streamlines.
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ration decreases.
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abstract

Mixing controls the fate of any solute entering porous media. Hence,
an understanding of the involved processes is essential for assessing
subsurface contamination and planning for its protection. However,

the three-dimensional mechanisms dominating solute mixing in the presence of
several fluid phases in the pore space, and their dependency on phase saturation
degree (fraction of the pore volume occupied by a phase) are unknown. Here, we
analyze solute mixing in unsaturated porous media at the pore scale using X-ray
micro-tomography performed with synchrotron radiation at unprecedented tem-
poral and spatial resolutions for such an investigation. Transport experiments
through a synthetic, sand-like porous medium, followed in 4D using a contrast
solution, are performed at different liquid phase saturation degrees. The results
reveal larger solute’s front deformation at lower saturation, which translates
into an enhanced mixing with time. Using different topological indexes, defined
based on a description of the liquid phase geometry and of the resulting hydro-
dynamics, we show an increase in the spatial convergence of flow streamlines at
lower saturation, which, in turn, leads to a strengthened helical flow inside the
liquid phase. Consequently, this increases the number of shear- and vorticity-
dominated deformation regions, as characterized by larger negative and positive
Q-criterion values, respectively. These findings represent a major step towards
understanding the control of both saturation and the system’s heterogeneity on
solute mixing, essential, among others, to assess reactivity in porous media.

plain language summary

The fate of any solute spreading through porous media, as it is the case for nutri-
ents or pollutants entering the subsoil, is controlled by liquid-liquid mixing with
the resident solution. However, it is still unknown which mechanisms control
mixing in the presence of several fluid phases, as it occurs in the unsaturated
region of soils. A combination of synchrotron 4D X-ray micro-tomography ex-
periments with very high temporal and spatial resolutions, advanced 3D image
analysis, and numerical simulations of flow, allowed to reveal an enhancement
of the spatial convergence of flow streamlines at lower liquid phase content,
i.e., at a lower fraction of the entire pore volume that is occupied by the liquid
phase. This increases the number of shear- and vorticity-dominated flow regions,
inducing an overall larger solute front deformation with time and rendering
mixing more efficient. These findings can highly contribute to the assessment of
mixing and reactions in natural porous media.
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3.1 introduction

Porous media in the environment often include several material phases within
the pore space, both in liquid and gas form. In such a case, porous media
are commonly referred to as unsaturated. Subsurface examples include soils,
which act as a filter and buffer for contaminants (Burauel and Baßmann 2005),
so as deep aquifers and exhausted hydrocarbon reservoirs, where geological
sequestration of CO2 is typically carried out (Szulczewski et al. 2012). In all
these cases, flow and transport processes intrinsically occur at the micro-scale,
within the liquid- or gas-filled voids (pores) between solid grains, whose size
usually spans the range of a couple to hundreds of micrometers. In those
locations, initially segregated miscible phases come into contact with each
other and homogenize by the action of molecular diffusion through what is
commonly referred to as mixing, increasing the volume occupied by the solute
and smoothing out concentration gradients across their interface (Danckwerts
1952; Kitanidis 1994; Ottino 1989). However, our current understanding of
the micro-scale coupling of flow dynamics and associated liquid-liquid mixing
and reactive processes in unsaturated porous media is very limited, owing
to both the complexities related to the presence of multiple phases and the
difficulty in experimentally probing/observing these systems in real-time, in
particular with visible light. The classical modelling approaches for solute
transport in unsaturated porous media are often based on equivalent parameters
(permeability, dispersion) derived from analogy with saturated conditions and
on systematic ad hoc incorporation of a dependency on the phase saturation
degree (the fraction of the pore volume occupied by a phase) (Simunek et al.
2008). However, expressing solute transport in terms of a bulk phase saturation
value introduces inaccuracy due to the high degree of heterogeneity in these
systems. Fundamentally, current large-scale (continuum) models (Simunek et al.
2008) cannot accurately predict the fate of chemicals and reactions (both liquid–
liquid and liquid–solid) in unsaturated porous media because of the control
exerted by pore-scale processes on mixing (Dentz et al. 2011; Li et al. 2017;
Valdés et al. 2022).

Recent studies have attempted to identify and include the effect of this hetero-
geneity on flow and transport prediction across scales (Lasseux et al. 2021). 2D
studies, mainly based on microfluidics experiments and pore-scale numerical
simulations, have exposed signs of anomalous transport already in simplified,
model system porous media (Bordoloi et al. 2022). Anomalous transport is
usually characterized by breakthrough curves, i.e., time series of the solute con-
centration at a fixed location, that show early arrival and long tailing, describing
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non-symmetric solute’s plume spreading patterns and non-Fickian evolution of
mixing in time (Berkowitz et al. 2006; de Anna et al. 2014; de Anna et al. 2013;
Levy and Berkowitz 2003). Such behavior has been shown to be enhanced in
unsaturated conditions (Hasan et al. 2019; Jiménez-Martínez et al. 2015; Jiménez-
Martínez et al. 2017; Karadimitriou et al. 2016), given the increase in the system’s
heterogeneity, i.e., broader fluid flow velocity distributions (Velásquez-Parra
et al. 2022). In particular, the presence of a second immiscible material phase
in the pore space leads to both the formation of larger interface areas between
mixing fluids and enhanced concentration gradients across them, rendering
mixing more efficient (Jiménez-Martínez et al. 2015). New advances in imaging
techniques such as magnetic resonance imaging (Lehoux et al. 2016; Markale
et al. 2021), high-resolution laser imaging (Heyman et al. 2020), and X-ray micro-
tomography (Boon et al. 2017; Hasan et al. 2020) have allowed expanding these
observations to 3D systems, involving both artificial and real porous media.
Advances in X-ray micro-tomography have increasingly enabled the imaging of
rock- and soil-like samples and of flow and transport through them, both for
real-time visualization of the physical processes themselves (Armstrong et al.
2016; Chen et al. 2021; Dobson et al. 2016; Hasan et al. 2020; Schlüter et al. 2016)
and for supporting the development and validation of respective numerical
investigations (Guédon et al. 2019; Kang et al. 2014; Puyguiraud et al. 2021;
Shih et al. 2022). These studies have unveiled important features of pore-scale
flow and transport, such as intermittency of local velocities and accelerations,
essential to be taken into account for improved model formulations (Kang et al.
2014). They have also provided relevant findings on the mechanisms behind
non-Fickian scalings both of plume spreading over time (Puyguiraud et al. 2021)
and of pore-scale concentration distributions (Hasan et al. 2020). Such studies
exemplify the potential of X-ray micro-tomography for flow and transport anal-
yses. However, its use to study systematically similar processes in unsaturated
porous media, at the pore scale, has not been fully explored yet. In particular,
the control of saturation on solute plume deformation, as a driver of mixing,
under nature-like conditions, remains an open question.

Under fully saturated conditions, 3D experimental studies at the Darcy scale
have exposed the role of secondary flow motions, i.e., helical flow, on mixing
enhancement (Chiogna et al. 2016). Twisted streamlines strongly deform the
solute plume, increasing the surface for diffusive mass transport and enhancing
plume dilution (Chiogna et al. 2016; Yu et al. 2015). Studies in 2D heterogeneous
flow fields have highlighted the interplay of vorticity- and shear-dominated
deformation areas in bending the solute plume and enhancing plume dilution,
respectively (de Barros et al. 2012). In these cases, topological indicators such
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as helicity density, reflecting the effect of vorticity on streamlines deformation,
and indexes such as the Okubo-Weiss parameter (Okubo 1970; Weiss 1991) or
the Q-criterion (Hunt et al. 1988), which can be used for characterizing both
vorticity- and shear-dominated deformation regions, have been applied with
success in mixing analyses. On the contrary, similar studies under unsaturated
conditions have mainly drawn attention towards changes in the connectivity of
the non-wetting phase during cycles of imbibition and drainage (Schlüter et al.
2016; Shih et al. 2022), and also during stages of constant saturation as a result
of coalescence and snap-off events of trapped ganglia (Armstrong et al. 2016).
The impact of saturation on wetting phase topology both in 2D and 3D model
systems and its implications for flow and transport at the pore scale remain
unanswered.

Here, we report a synergetic experimental and numerical 3D time-resolved
(i.e., 4D) investigation and analysis of pore-scale solute mixing in unsaturated
porous media. We show that lower saturation increases the spatial convergence
of flow streamlines, allowing distant parcels of fluid to meet further down-
stream. This enhanced streamlines convergence leads to a strengthened helical
flow, enhancing both shear- and vorticity-dominated flow deformation regions.
We took advantage of synchrotron radiation-based X-ray micro-tomography
experiments, performed with temporal and spatial resolutions unprecedented
for such an investigation, to image in 4D a solute’s concentration field. Such
high resolutions, together with extensive 3D image analysis approaches, have al-
lowed us to characterize the liquid phase topology and its effect on the system’s
hydrodynamics. Thus, we could systematically study the impact of liquid phase
saturation and of fluid flow rates on mixing. Our results reveal that not only the
bulk liquid phase saturation, but also its impact on both liquid phase topology
and streamlines convergence, is fundamental for understanding and predicting
the dynamics of contaminants and of geochemical cycles in soils.

3.2 methods

3.2.1 Synchrotron X-ray micro-tomography experiments

Results obtained from 4D synchrotron X-ray micro-tomography performed
during transport experiments allowed the observation of real-time concentration
changes inside the pore space of a soil-like sample, under different saturation
degrees (Sw = Vw/VT, where Vw is the volume occupied by the liquid phase
and VT is the total pore space volume). Experiments were carried out at the
beamline for Tomographic Microscopy and Coherent Radiology Experiments
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(TOMCAT) of the Swiss Light Source (SLS), located at the Paul Scherrer Institute
(PSI), in Villigen, Switzerland. An artificial porous system, consisting of a
sintered packing of irregularly shaped borosilicate glass grains (Hilgenberg
GmbH), was used for all transport experiments. The cylindrical sample was
8 mm high and had a diameter of 4 mm, with a bulk porosity of 0.28, an intrinsic
permeability of 10−10 m2, and an average pore size of 30 µm. It resembled a
poorly graded sandy soil, with a relatively homogeneous pore size distribution
(refer to Appendix 3.E, Figure 3.11, for the pore size distribution) and close to
a spatial constant porosity. This represents a more realistic porous medium
than the simplified porous systems consisting of spherical glass beads, usually
employed in similar transport studies (Hasan et al. 2020; Heyman et al. 2020). A
3D rendering of the porous system’s tomographic reconstruction together with
the air phase hosted inside of the pore space is shown in Figure 3.1a for the
experiment performed at a saturation degree Sw = 0.82.

The sample was placed inside a flow cell composed of three units: (i) a bottom
conic cap allowing the separate and simultaneous injection of both the liquid and
the gas (air) phases, (ii) a middle cylindrical casing, hosting the sample, and (iii)
a top conic cap allowing the connection of the outlet line. The middle casing was
internally coated with paraffin to avoid lateral flow and boundary effects. We
fabricated each unit via 3D printing by stereo-lithography, using a photosensitive
resin composed of acrylic monomers. The same pair of sample and flow cell was
employed for all transport experiments. The pressure was constantly monitored
during the experiments via two sensors (MPS by Elveflow) placed at the end of
the inlet and outlet lines, respectively. A potassium iodine (KI) aqueous solution
was used both as a tracer and as background, i.e., resident solution, albeit at
different concentrations, namely, 0.06 M for the resident solution and 0.90 M for
the injected tracer. The use of KI is justified in its lack of chemical reactivity
with borosilicate glass and its high effective atomic number. This resulted in
an optimal trade-off between X-ray absorption and phase contrast levels both
between such a solution and air and between such a solution and the grain
packing (Marone et al. 2020).

In the first stage, a simultaneous injection of both the gas (air) and the
liquid phase (the aqueous solution) was performed until reaching a steady-
state flow condition within the sample, i.e., until no large oscillations in the
pressure difference between the inlet and outlet were registered. Then, the
fluid pair injection was stopped, resulting in a static mixture of the two phases
(Tallakstad et al. 2009a). The injection was performed with an automatically
controlled syringe pump (Harvard Apparatus) at a constant flow rate. Transport
experiments were carried out in a second stage with the goal of observing,
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in real-time, the impact of both Sw and the flow rate, q, on solute transport
and mixing. The tested flow rates included 0.125, 0.25, and 0.50 mm3 s−1. We
injected the tracer at low capillary numbers (ratio between viscous and capillary
forces) to guarantee that the air (non-wetting phase) remained immobile during
the tracer injection (Tallakstad et al. 2009b; Tang et al. 2019). We estimated an
average (across experiments) capillary number Ca = 2.67 × 10−6, here defined
as Ca = v̄µ/σ, where v̄ is the average flow velocity associated with every
experiment and obtained through numerical simulations of flow, and µ and σ

are the average dynamic viscosity, i.e., 8.65 × 10−4 kg m−1s−1 (Desnoyers and
Perron 1972), and the average surface tension, i.e., 72.5 mN m−1 (Ali et al. 2009),
of the KI solution in the range of concentrations used in the experiment at a
temperature of 25 ° C, respectively. Table 3.1 summarizes the single Ca and v̄
values obtained for every experiment.

Very high spatial and temporal resolutions, unprecedented for transport
studies in porous media, were essential for the purpose of this study, given the
rapid nature of the observed processes. Each tomographic dataset consisted
of 2016 × 2016 × 1100 isotropic voxels of lateral size of 2.75 µm, acquired over
a total time of 2.4 s (approximately 15% smaller voxel size and 60% faster
acquisition time compared to similar studies (Hasan et al. 2020)). This included
the time required for the acceleration, rotation (from 0° up to 180° around the
cylindrical sample symmetry, vertical axis), and deceleration of the sample (1.2 s
in total), during which a total of 500 angular projections, i.e., radiographs, of
the sample were collected. In particular, the total tomographic acquisition time
needed to be smaller than the time scales of the solute’s advection and diffusion
over the average pore size. The remaining 1.2 s were needed for rotating the
sample back to a position of 0°. This was required since the inlet and outlet lines
were connected without a slip ring, hence not allowing for an uninterrupted
rotation of the sample. To avoid motion artifacts in the reconstruction, we made
sure that the sample’s movement during rotation with respect to the vertical
axis was kept smaller than the voxel size. In addition, the acceleration and
deceleration of the sample back and forth movement together with the achieved
low capillary numbers, led to non-rotating flow conditions. The tomographic
image acquisition was achieved by using almost monochromatic radiation at an
energy of 21 keV, to be able to capture concentration gradients and to estimate
quantitatively concentration values inside the pore space. Each experiment’s set
of results included a total of 250 tomograms, i.e., 250 time steps, for a total of
eight experiments. This work focuses on the results from five of them. Before
starting each experiment, we acquired 10 radiographs in the absence of the X-ray
beam (so-called dark-current radiographs) and 100 of them in the presence of
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the beam but with the sample out of the beam (so-called flat-field radiographs).
Both sets of radiographs were then used for the usual dark-current and flat-field
corrections of the sample’s radiographs, at any successive point in the time
series. We used as X-ray detector the system available at the TOMCAT beamline,
consisting of (i) a 150 µm-thick LuAg:Ce scintillator screen, converting the X-ray
photons into visible light ones; (ii) a high-efficiency visible light microscope,
called macroscrope (Bührer et al. 2019), which, in our case, was set to provide a
4× geometrical magnification; and (iii) the high throughput GigaFRoST detection
and read-out system (Marone et al. 2020), including a sCMOS chip as visible
light photons detector (PCO.Dimax by PCO GmbH, with 11 µm physical pixel
size). The detector’s exposure time for acquiring each radiograph was 2 ms.

The tomograms were reconstructed using the beamline’s software and hard-
ware infrastructure, relying upon TOMCAT in-house-developed Fourier space
re-gridding algorithm (Marone and Stampanoni 2012). In correspondence with
each point in the tomographic time series, we reconstructed two types of to-
mograms. The first one assumed only X-ray absorption as the main image
formation mechanism (contrast mechanism), using the Beer-Lambert law for
relating radiographic pixel values to the linear projection of the X-ray linear
attenuation coefficient along the respective ray hitting the detector at such pixel
(Als-Nielsen and McMorrow 2011). The second type of reconstruction assumed
X-ray refraction as the main contrast source (so-called phase-contrast tomogram).
In this case, the phase retrieval, i.e., the calculation of the linear projection of the
real part of the X-ray index of refraction from the radiographic pixel value, was
performed with an implementation of the algorithm proposed by Paganin et al.
(2002), with an estimated ratio of real-to-imaginary parts of the complex-valued
X-ray index of refraction, δ/β, of about 371. We note that at each time point
during every experiment, our acquired tomographic datasets contained both
X-ray absorption and refraction information. This was achieved by the sample
being located at a distance from the detector, dS−D, equal to 20 mm, which
laid within the Fresnel diffraction region of the imaging configuration. Such
downstream region past the object is where refraction effects on the X-ray beam
propagation can be still exploited for the phase retrieval type based upon the
cited approach by Paganin et al. (2002). At the mentioned X-ray photon energy of
21 keV, the Fresnel number, NF, of the imaging configuration could be estimated
as NF = ld

2/(λ dS−D) ≈ 25.6, where λ is the X-ray wavelength (in vacuum)
corresponding to 21 keV and ld is the adopted level of detail of the sample. This
was chosen equal to an upper bound of the effective, tomographic spatial resolu-
tion, being equal to twice the voxel size, ld = 5.5 µm. By its definition, within
the Fresnel diffraction region of the imaging configuration NF ≥ 1. The cited
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phase retrieval approach by Paganin et al. (2002) requires NF ≫ 1, a condition
well satisfied in our case. Images of the experimental setup and of the sample
are shown in Appendix 3.E, Figure 3.12. As expanded in subsection 3.2.2, the
experiments post-processing relied primarily on the phase-contrast tomograms.

3.2.2 Experimental concentration calibration

In addition to the high spatial and temporal resolutions, X-ray micro-tomography
with almost monochromatic and highly spatially coherent synchrotron radiation
allowed us to achieve a statistically robust mapping of image voxel values to
actual solute concentration ones (expressed in molar, M). The experimental
calibration of the tomograms’ voxel values versus the solute’s concentration
values was achieved via a set of fourteen, single tomogram experiments. They
involved the sample fully saturated with an aqueous KI solution at different
concentration values, in the range from 0.06 M to 1.81 M. The obtained calibra-
tion curve, created following the procedure presented in Lavin et al. (2018) and
in Bevington and Robinson (2003), describes a linear relationship between the
directly measured voxel value and the corresponding solution concentration
inside the liquid phase. It also describes a rather narrow confidence band (see
Appendix 3.A, Figure 3.8a). The calibration curve was obtained by employing
the 32-bit phase-contrast tomograms, considering only the regions occupied by
the liquid phase, as obtained from segmentation (see Section 3.2.3). We chose
the phase-contrast tomograms because they showed a smaller coefficient of
variation of the voxel values in comparison with the absorption tomograms,
i.e., a smaller ratio between the standard deviation computed from all voxels
inside the liquid phase relative to their mean value. In general, we observed a
slight heteroscedastic behavior of such voxel values across concentrations, with
a slight increase in standard deviation towards the lower range of concentrations.
Not much difference was observed between 32-bit and 16-bit tomograms, the
latter obtained from the former by a coarser quantization of a 32-bit voxel value
range chosen identical at any concentration, i.e., an identical dynamic range.
However, we decided to use the 32-bit tomograms for the calibration and also for
further analysis of the transport experiments since they are not affected by the
dynamic range chosen for the image reconstruction. Hence, we could guarantee
no bias in the calibration curve derivation as well as in any successive steps of
the image analysis protocol described below. In addition to the linear mapping
accuracy, the temporal stability of all components of the TOMCAT tomography
beamline allowed for achieving high temporal consistency in such mapping.
All these features further highlight the capabilities and advantages offered by
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this experimental technique in studying transport processes at the pore scale.
Further details on the mathematical derivation of the calibration curve and on
the corresponding uncertainty analysis are presented in Appendix 3.A.

3.2.3 Image analysis

We defined an image analysis protocol for the post-processing of the transport
experiment tomograms. Out of the 250 of them available per experiment,
we applied such protocol to a total of 44 for the experiment performed at
q = 0.50 mm3 s−1 and on an average of 65 of them for the remaining cases. We
did not use, in any experiment, all 250 tomograms since the arrival, spreading,
and mixing of the solute occurred only during specific time intervals shorter
than the overall experiment duration. The latter was chosen long enough to be
sure of always including enough duration to fully observe, and thus analyze,
those processes. This is indicated in Table 3.1, which summarizes the total
number of pore volumes, PV, i.e., the ratio of injected volume relative to the
total volume of the liquid phase, injected over the chosen range of scans for
every experiment. We first applied a 2D (XY planes, orthogonal to the cylindrical
specimen’s symmetry axis) non-local means denoising algorithm (Buades et al.
2005), implemented in the software Avizo (ThermoFisher Scientific 2022), on
the full 32-bit tomographic slice stack of each one of those tomograms. No
significant improvement was observed when applying the same algorithm in
3D. We then employed the Active Contours plugin available in the open source
software Icy (version 2.1.3.0) (De Chaumont et al. 2012a; De Chaumont et al.
2012b) to generate a binary tomogram acting as a sample mask, i.e., to segment
the sample’s volume only. The latter is an 8-bit tomogram with only two
possible voxel values: either 255, to indicate that a voxel is located inside the
sample’s volume, or 0, to indicate the opposite. Such sample mask allowed
excluding the imaged areas surrounding the cylindrical sample from further
analysis. Only one sample mask was generated per experiment. The remaining
steps in the image analysis protocol were performed using the open-source
software ImageJ (Schneider et al. 2012a; Schneider et al. 2012b), in particular,
the Xlib plugin library (Münch 2022). We aimed at creating accurate phase
material masks (i.e., binary 8-bit tomograms of the liquid, gas, and solid phases,
respectively) of every analyzed tomogram, for extraction of single-phase image
information. In the first step, we applied a K-means clustering algorithm (Lloyd
1982) on the 16-bit tomograms at each time instant. This aimed at associating
all voxels belonging to every material phase to one single, distinct image voxel
value. This was followed by a segmentation protocol, which also combined
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artifacts removal (3D fill holes morphological operator) and background removal
algorithms, resulting in corrected, binary masks for every material phase of
the analyzed tomogram. The liquid phase binary mask was then used on
the denoised version of the original 32-bit tomograms for extracting a final
tomogram containing experimental information only in voxels belonging to
this phase. This was performed in the same fashion for the air phase. The
post-processing and analysis of the transport experiments were carried out using
these final tomograms. A graphical summary of the image analysis protocol is
shown in Appendix 3.A, Figure 3.7.

3.2.4 Solute advance front reconstruction

Our analysis of the mechanisms controlling the mixing behavior observed in the
experimental results required the reconstruction of the solute plume’s front. This
was represented via the isosurface of 50% concentration (c = 0.48 M for the range
of concentrations used in this study). To reconstruct this isosurface, we first used
the software Paraview (Kitware 2023) to threshold the denoised 32-bit liquid
phase tomograms and to extract single voxels belonging to the 49.8% − 50.2%
concentration range. We created an analysis pipeline, implemented in Matlab
(The MathWorks 2022), first to interpolate the obtained point cloud and to
generate a continuous surface. We then corrected this surface using the liquid
phase mask (see Section 3.2.3) to overwrite and set as image background all
positions belonging to either the solid or the gas phase. The corresponding
surface area was obtained by first triangulating the corrected isosurface using a
moving observation window at the voxel scale of the images and then adding
up the surface area of single triangular planes. Triangulation also allowed the
generation of single *.stl files for reconstructing the corrected isosurface.

3.2.5 Numerical simulations of flow

Given the impossibility of obtaining a fully resolved velocity field from the
experimental data only, we complemented our data set with additional 3D
numerical simulations of flow. They consist in the solution of the Stokes flow
equation for non-compressible flow for all experimental cases and also for the
additional case Sw = 1.00. In these simulations, the spatial domain corresponded
with the one occupied by the resident solution, thus the space throughout which
transport and mixing occurred. Such spatial domain was obtained from a
tomogram corresponding to a time step chosen at about half of each experiment
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duration, via the image analysis workflow presented in the Appendix 3.A (see
Figure 3.7 for a schematic summary of such workflow). Such digitized spatial
domain was downsampled by a factor of five, compared with the original
voxel size, thus leading to a spatial discretization scale of 13.75 µm. We also
added the case Sw = 1.00 by using the tomogram of the entire sample’s pore
space. The tetrahedral meshing of the segmented liquid phase region was
performed using the fTetWild algorithm (Hu et al. 2020) on these full-sample
liquid phase masks. The obtained meshes were then imported into the Finite
Elements Method software COMSOL Multiphysics for further analysis. Different
boundary conditions were applied to simulate the same conditions tested during
the experiments. They included a fixed inflow velocity at the inlet cross-section,
a constant pressure at the outlet, and a no-slip boundary condition (zero velocity
at the boundary) at all material interfaces. The use of the latter at the interface
liquid-gas has been demonstrated to have a negligible impact, both in 2D and
in 3D, on fluid flow velocity distributions in porous media (Guédon et al. 2019;
Triadis et al. 2019). Further details on the numerical model setup can be found in
Appendix 3.B. The main outputs of the simulations included resultant velocity
magnitude and velocity tensor, vorticity tensor, shear rate tensor, and pressure
at every node location. The values of such fields were extracted at a four-
times smaller spatial resolution than that of the experimental data sets, i.e.,
over a regular grid of size 11 µm in all three principal directions. The results’
post-processing revealed that PDFs of the listed fields’ values experienced no
significant variations when the numerical results were extracted at higher spatial
resolutions. In the same fashion, no significant variations in the PDFs scalings
were observed when using higher-resolution liquid phase masks for mesh
generation. Both the resultant velocity fields and the vorticity magnitude fields
obtained for every performed simulation are shown in Figures 3.9 and 3.10 of
Appendix 3.B, respectively.

3.3 theoretical concepts and metrics

3.3.1 Variance of the concentration field

The experimental concentration calibration allowed representing the tomo-
graphic datasets obtained from the synchrotron X-ray micro-tomography ex-
periments as fields of solute concentration c(x, t) for every time step at every
location of the pore space occupied by the liquid phase. We quantify mixing
from these datasets in terms of concentration statistics, in particular through
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computation of the variance of the concentration field σ2
c (t) at every time step t

(Dentz et al. 2022; Jha et al. 2011). σ2
c (t) can be expressed as

σ2
c (t) = ⟨c(x, t)2⟩ − ⟨c(x, t)⟩2, (3.1)

where ⟨·⟩ denotes the expected value over the entire ensemble of voxels in the
liquid phase. σ2

c is thus a measure of the heterogeneity of the mixture, providing
a good proxy for the amount of segregation existing between the resident
solution and the continuously injected solute during the entire experiment
duration.

3.3.2 Euler characteristic

Recent studies have highlighted the role of the topological complexity inherent
to porous media in driving local fluid stretching, ultimately controlling transport,
mixing, reactions, and biological processes occurring in porous systems (Lester
et al. 2013; Lester et al. 2016). In order to assess this aspect, we first rely on a
geometrical characterization of the wetting liquid phase topology, by means of
the Euler characteristic χ, a topological invariant widely used in soil and porous
systems research (Armstrong et al. 2019; Lester et al. 2016; Schlüter et al. 2016;
Shih et al. 2022). In particular, it can be used to characterize the connectivity of
the porous system, with strong implications on the divergence or convergence
of streamlines, as it is directly linked to the dynamics of the skin friction field,
i.e., to the occurrence of separation and reattachment points along boundary
surfaces (Lester et al. 2016). It can be defined based on entities that describe a
spatial region (Vogel 2002) (the pore space in this case) as

χ = N − C + H, (3.2)

where N is the number of isolated objects or clusters in the analyzed spatial
domain, C is the number of redundant connections or loops, and H is the number
of completely enclosed cavities. Negative values of χ describe a well-connected
system, as it is usually the case for porous media, given that generally N < C
(Lester et al. 2016). Equation 3.2 can be expressed alternatively as a function of
the number of voxels (nc), faces (nf), edges (ne), and vertices (nv) that form the
3D binary image representing the target geometrical domain (Michielsen and
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De Raedt 2001), which in our case corresponds to the liquid wetting phase of
every experiment. This results in

χ = −nc + nf − ne + nv. (3.3)

We used an optimized algorithm based on the immediate vicinity of every single
voxel in the 3D binary tomogram of the segmented liquid phase, together with
binary decision diagrams (Blasquez and Poiraudeau 2003) for the computation
of χ according to Eq. 3.3.

3.3.3 Helicity density

To further explore the impact of the liquid phase topology on flow streamlines,
we also study the formation of secondary flows. In particular, we focus on
the occurrence of helicity, a kinematical property that provides a quantitative
measure of the spatial complexity of flow fields and that remains constant
despite fluid deformation (Moffatt 1992; Sposito 2001). We quantify it through
the helicity density h, which is expressed as the scalar product of the velocity
vector (⃗v) and the vorticity vector (ω⃗) fields

h = v⃗ · ω⃗. (3.4)

Both the velocity and vorticity fields were obtained from the numerical simu-
lations of flow. The spatial distribution of both the resultant velocity magnitude
and the vorticity magnitude over the entire pore space for all experiments are
presented in Figures 3.9 and 3.10 of Appendix 3.B, respectively.

3.3.4 Q-Criterion

To further investigate the mechanisms controlling mixing in unsaturated porous
media, we studied the control that the liquid phase saturation exerts on the
interplay between the flow’s shear deformation and the rotational one. The
former results from local velocity differences along neighbouring streamlines,
whereas the latter is induced by the occurrence of helical flow. For such purpose,
we computed the Q-criterion (Hunt et al. 1988), an index that allows for vortex
identification, suitable for the case of steady non-rotational flows (Haller 2005).
It is expressed using the invariants of the 3D velocity gradient tensor, ∇v⃗, i.e.,
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the deformation rate tensor. It identifies a vortex whenever the second invariant,
Q, of ∇v⃗ is larger than zero, that is

Q =
1
2
(
∥ Ω ∥2 − ∥ S ∥2) > 0, (3.5)

where ∥ · ∥ indicates the Frobenius norm, Ω is the non-symmetric portion of
∇v⃗, i.e., the vorticity tensor, and S is the symmetric counterpart of ∇v⃗, i.e., the
shear strain rate tensor (Hunt et al. 1988). Therefore, it can be used to locally
quantify the excess of the rotation strain rate relative to the shear strain rate,
hence hinting at the main mechanism behind local solute plume deformation. In
addition, the Q-criterion also requires the pressure to be minimal compared to
the ambient pressure inside the region identified as a vortex, as this guarantees
that the neighbouring streamlines are indeed curved (Hunt et al. 1988).

3.4 results and discussion

3.4.1 Lower saturation enhances mixing via a stronger solute front deformation

Results from five experiments are reported in this work, which cover saturation
degrees spanning from 0.75 to 0.92 and tracer injection flow rates (q) ranging
from 0.125 mm3 s−1 to 0.50 mm3 s−1. The latter values correspond to Péclet num-
bers, Pe, ranging from Pe = 1.69 to Pe = 7.28, respectively, where Pe represents
the ratio between the characteristic time of diffusion and the characteristic time
of advection over a characteristic length. It can be expressed as Pe = v̄ξ̄2/2Dat,
where v̄ is the mean flow velocity of every experiment; D = 1.929 × 10−9 m2s−1

is the average diffusion coefficient of the KI solution in the range of concentra-
tions used in the experiment (Dunlop and Stokes 1951); ξ̄ = 30 µm is the average
pore size, computed from the distribution of pore sizes shown in Appendix 3.E,
Figure 3.11; and at ≈ 15 µm is the average pore throat size, approximated as
one-fourth of the average glass beads diameter (Glover and Déry 2010). Table 3.1
summarizes the Pe numbers obtained for every experiment. Note that we have
adopted ξ̄ as the characteristic length for advection, and at as the corresponding
one for diffusion (Jiménez-Martínez et al. 2015; Markale et al. 2022). Figure 3.1b
depicts the reconstructed concentration field for an experiment performed at
Sw = 0.82 and at q = 0.25 mm3 s−1 at time t = 50.4 s after the tracer entered
the sample, i.e., around 1/3 of the total experiment duration (refer to Movie
S1 in the Supplementary Material, Appendix 3.D, for the entire time series).
The combined effect of the porous medium heterogeneity and the presence of
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Sw [−] q [mm3 s−1] v̄ [×10−4 m s−1] Pe [−] Ca [×10−6] PV [−]

1.00 0.250 1.49 2.32 1.78 -
0.92 0.250 1.85 2.88 2.21 5.13
0.89 0.250 1.49 2.31 1.77 5.00
0.82 0.250 1.96 3.05 2.34 5.44
0.76 0.500 4.68 7.28 5.58 7.84
0.75 0.125 1.09 1.69 1.30 3.33

Table 3.1: Summary of the flow characterization for all experiments reported in this
study, and additionally also for the case Sw = 1.00, which was built up from
the combination of the segmented tomograms of the liquid (KI solution) and
the gas (air) phase. Values reported here were computed from the numerical
flow simulations. Flow descriptors include the injection flow rate, q, the mean
fluid flow velocity, v̄, the Péclet number, Pe, the capillary number, Ca, and the
total number of injected pore volumes during the entire experiment, PV. For
the computation of both Pe and Ca, we used the average properties of the KI
solution over the range of concentrations chosen for the experiments (0.06 M
to 0.90 M) and at a temperature of 25 ° C.

an immiscible-immobile phase manifests itself in the formation of preferential
pathways, as highlighted in Figure 3.1b, which are usually referred to as the
backbone of preferential flow (de Gennes 1983). This flow structure consists of
channels of high velocity that allow for faster displacement of the tracer and for
most of its transport.

We relied on the variance of the concentration field σ2
c (Dentz et al. 2022; Jha

et al. 2011) to quantify and compare the mixing behavior across experiments.
Figure 3.1c shows the variation in σ2

c −σ2
c,t=0 over time, for all experiments, where

σ2
c,t=0 is the variance of the concentration field at time t = 0 s. This subtraction

was applied to correct for some remaining noise in the tomograms at lower
concentration values, right before starting the transport experiments, causing
σ2

c at t = 0 s to slightly deviate from zero, i.e., when the entire porous space is
occupied by the resident solution only. The results show an overall enhancement
of mixing at lower Sw. All cases exhibit two clear phases. In the first phase at
early times, both advection and diffusion contribute to solute transport, with
the former controlling the increasing segregation of the two mixing liquids as
the tracer enters the sample. This is reflected in an increase of σ2

c over time.
Note here that the plume does not enter as a sharp front, since already some
diffusion occurred at the inlet. A second phase begins at the stage of maximum
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Figure 3.1: Concentration field and mixing quantification from synchrotron X-ray micro-
tomography experiments. a) 3D reconstruction of the tested porous medium.
Only three-quarters of the sample are displayed to allow the visualization of
the gas phase (air, shown in cyan) inside of the pore space for the experiment
performed at Sw = 0.82. b) Concentration field expressed in units of mole
per unit of volume (molar concentration, M) for the experiment performed
at Sw = 0.82 with a flow rate q = 0.25 mm3 s−1 at time t = 50.4 s after the
tracer entered the sample. All concentration values lower than 0.15 M are not
displayed for improved visualization. For the same purpose, the air phase
is also not shown, whereas the solid phase of borosilicate glass grains is
shown as grey transparency. Only three-quarters of the sample are displayed
to better visualize the concentration differences inside the pore space. The
white arrow indicates the main flow direction. The formation of a backbone
of preferential flow is indicated on the upper right portion of the sample. c)
Evolution of the variance of the concentration field, σ2

c , in time for all five
transport experiments. The values of σ2

c have been corrected by the variance
at time t = 0 s, σ2

c,t=0. d) Rate of change of σ2
c over time, ∂(σ2

c − σ2
c,t=0)/∂t, as

computed from the results shown in panel c). For panels c) and d), different
line types correspond to different injection flow rates, whereas different
line colors correspond to different saturation degrees. Note that, in that
regard and for facilitating experiment comparison, we have grouped together
Sw = 0.76 and Sw = 0.75 given their very similar saturation degree.



76 phase saturation control on vorticity enhances mixing

C
h

a
p
t
e
r

3

segregation, i.e., highest σ2
c − σ2

c,t=0, promoting the mixing of both tracer and
resident solution. This reflects itself in a decreasing σ2

c in time. Results show that
for the same q, lower Sw leads to smaller σ2

c , hence it induces a faster smoothing
of the concentration gradients formed in the pore space during the transport
process. At very similar Sw (less than 1% difference, i.e., cases Sw = 0.76 and
Sw = 0.75), a higher q reduces the transit time of the solute, allowing for a
more segregated condition to build up in the pore volume. This reflects itself
in higher σ2

c values at early times, after which σ2
c rapidly decreases towards

a well-mixed condition. Reducing q allows for diffusion to more effectively
smooth out concentration gradients in the system before the plume has been
largely dispersed. The latter point is better depicted when plotting σ2

c − σ2
c,t=0

against the dimensionless time τ = t/tadv, where the advective time, tadv = ξ̄/v̄,
is the time required for the flow to bridge the average pore size ξ̄ at the average
flow velocity v̄. This is shown in Appendix 3.E, Figure 3.13a, in which, after an
identical increase of σ2

c − σ2
c,t=0 in time for both Sw = 0.76 and Sw = 0.75, the

latter case describes a lower maximum σ2
c .

The mixing analysis described so far can be further explained by taking a
look at the derivative in time of the variance of concentration, ∂(σ2

c − σ2
c,t=0)/∂t,

i.e., to the rate of change of segregation in time, as shown in Figure 3.1d.
Under the same q, lower Sw described the lowest absolute ∂σ2

c /∂t values among
all cases tested experimentally, both in the phase of initial segregation and
in the following diffusion dominated phase. The former can be explained by
concentration gradients being enhanced in the liquid phase at lower Sw (Jiménez-
Martínez et al. 2015; Markale et al. 2021) already at early times, resulting in a
larger diffusive flux counteracting the segregation effect induced by advection.
The latter is associated to incomplete mixing, i.e., the formation of not-fully
mixed regions behind the plume’s front, in which transport is mainly driven by
diffusion, and whose formation is enhanced as saturation decreases (Markale
et al. 2021).

The mechanism behind this mixing behavior is explained by looking at the
evolution in time of the interface between the injected and the resident solution,
i.e., at the plume’s front where diffusion takes place. This interface between
both mixing solutions can be analogously represented by the isosurface of 50%
concentration (c = 0.48 M for the range of concentrations used in this study).
Figure 3.2a shows such surface for Sw = 0.92 and q = 0.25 mm3 s−1 at two
specific time steps, t = 30 s shown in light red and t = 60 s shown in yellow
(see Movie S2 in the Supplementary Material, Appendix 3.D, for the entire time
series). The latter depicts an increase in the isosurface deformation as it moves
through the sample, compared with an initial condition depicted by the former,
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(a) (b)
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Figure 3.2: Analysis of the solute front deformation over time, as a function of the
saturation degree. a) Deformation over time of the plume’s advancing front,
here represented by the isosurface of 50% of concentration, shown at the time
instants t = 30 s (in light red) and t = 60 s (in yellow), for the experiment
performed at Sw = 0.92 and flow rate q = 0.25 mm3 s−1 (refer to Movie S2 in
the Supplementary Material, Appendix 3.D, for a visualization of the entire
time series). The solid phase of borosilicate glass grains is not displayed
to improve the visualization, while the gas phase (air) is shown in semi-
transparent cyan. The white arrow indicates the main flow direction. b)
Temporal evolution of the area of the advancing front, A, normalized by the
area computed at the initial time of the deformation analysis, A0. Different
line types correspond to different injection flow rates, whereas different
line colors correspond to different saturation degrees. Note that, in that
regard and for facilitating experiment comparison, we have grouped together
Sw = 0.76 and Sw = 0.75 given their very similar saturation degree. The
respective power law fitting curves are displayed with dot lines for all cases
except for Sw = 0.92, which is the only case that reaches a plateau at later
times. Scalings for both a ballistic (A/A0 ∼ t1) and a Fickian (A/A0 ∼ t0.5)
regime are displayed for visual reference.

when almost no deformation is visible. This feature is analyzed quantitatively
in Figure 3.2b, which shows, for all experiments, the increase in time of the area,
A, of the isosurface over the sample’s imaged length. For comparison, A has
been divided by the corresponding value at the first time step considered in the
analysis, A0. Note the shorter time range used for this analysis compared to the
entire duration of the experiment, as reported in Figure 3.1c. That is because
only time instants, at which the entire 50% concentration isosurface can be found
inside the sample, are considered. Figure 3.2b shows that at high Sw = 0.92,
the system still remains fairly homogeneous, causing a piston-like movement
of the isosurface after some initial deformation has occurred, as indicated by
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the plateau reached at long times (after t ∼ 11 s) (Jiménez-Martínez et al. 2015).
For lower Sw and under a constant q, we observed an enhancement of the
isosurface deformation over time, manifested both in a larger maximum relative
deformation and in a larger power-regression exponent (refer to Appendix 3.C,
Table 3.2, for the magnitude of these exponents). The larger the volume of
air in the pore space, the more the number of obstacles to be bypassed by the
solute’s plume to move through the system, enhancing the plume’s dispersion
and stretching. At very similar Sw, an increase of q leads to a higher rate
of deformation in time. We hypothesize that the isosurface deformation will
eventually reach a plateau at late times for all cases, given both the effect of
diffusion recovering some of the deformation that occurred as the plume moves
through the system and the finite size of the tested domain. In summary, both
lower Sw and higher q enhance front deformation, increasing at a higher rate the
interface area where mixing between the resident and the injected solution occurs.
This translates into increased diffusive flux and enhanced mixing efficiency, i.e.,
smaller σ2

c (Jiménez-Martínez et al. 2015; Jiménez-Martínez et al. 2017). The
results here reported show a super-diffusive scaling of A with time, in all cases,
which highlights the non-Fickian nature of transport in unsaturated porous
media (Jiménez-Martínez et al. 2017; Velásquez-Parra et al. 2022). Detailed
information on the estimation and magnitude of the power-regression scalings
shown in Figure 3.2b can be found in Appendix 3.C.

3.4.2 Dependence of mixing on hydrodynamics and air clusters volume

The different mixing regimes as a function of Sw can be further described by
looking at the liquid flow velocities in the pore space. Figure 3.3a shows the
probability density function (PDF), p(v), obtained for the liquid flow velocity
magnitude, v, as estimated for all cases from numerical simulations of flow.
Further details on the numerical simulations are presented in the Methods
section and in Appendix 3.B, where also a full visualization of the scalar field
v is presented (see Figure 3.9). The velocity magnitude PDFs are characterized
by two regimes, a power law-like behavior for low-velocity magnitudes, and an
exponential scaling for high v-values, in agreement with both experimental and
numerical results already reported in the literature (Datta et al. 2013; Guédon et
al. 2019; Souzy et al. 2020; Velásquez-Parra et al. 2022). Note here the power law
behavior obtained for the low-velocity range under fully saturated conditions,
which reflects the role of the solid phase heterogeneity in leading to velocity
magnitude PDFs that differ from those obtained in the presence of Poiseuille
velocity distributions, as it is often the case in 2D analyses performed under
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(b)(a)

µ

µ

Figure 3.3: Hydrodynamic characterization and air clusters volume distribution as a
function of saturation degree. a) Probability density function (PDF) of the
liquid flow velocity magnitude, p(v), computed in each case via 3D flow
Finite Elements Method (FEM)-based numerical simulations. p(v) has been
normalized by the corresponding average velocity magnitude value, v̄. p(v)
for the additional case Sw = 1.00 is also included. The Log-Log scale
highlights the scaling of the low-velocity magnitudes, with exact power-law
scalings also shown for visual reference only. A semi-Log plot is shown in
the inset to display the exponential behavior at high-velocity magnitudes.
b) PDF of the volume of air clusters, p(Va), for all experiments. p(Va) is
expressed in units of µm3. The minimum volume considered corresponds
to that of an average pore of size ξ̄ = 30 µm. The power-law scaling V−2

a is
shown for visual reference. In both panels, different line types correspond
to different injection flow rates, whereas different line colors correspond to
different saturation degrees. Note that, in that regard, we have grouped
together Sw = 0.76 and Sw = 0.75 given their very similar saturation degree.

idealized conditions (de Anna et al. 2017). Lower Sw leads to a broader p(v),
characterized both by larger maximum velocities under constant q and by a larger
p(v)-value at lower velocity magnitudes. This reflects an enhancement of the so-
called backbone, where large velocities are reached and through which most of
the solute is transported, and of the so-called dead-ends of low velocities, which
are less accessible for the solute (de Gennes 1983; Velásquez-Parra et al. 2022).
Transport in these dead-ends is strongly influenced by molecular diffusion, as it is
the main control on the solute’s long residence times experienced in the presence
of such low flow velocities. The enhancement of these two flow structures
(backbone and dead-ends) translates into larger concentration gradients at
their interface, in correspondence of lower Sw (Jiménez-Martínez et al. 2015),
increasing the diffusive flux between them and further explaining the mixing
enhancement.
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Single differences in the trend described so far for p(v) as a function of Sw

are obtained for Sw = 0.89, which displays a less negative power law scaling for
low velocities than Sw = 0.92. This difference is explained by the volume of air
clusters inside the pore space, whose PDF p(Va) is shown in Figure 3.3b. Only
volumes equal to or larger than the volume of an average pore, assumed equal
to that of a sphere with a diameter equal to the estimated average pore size
ξ̄ = 30 µm, were considered, since they represent the gas phase hosted in the
system by capillary forces. We observe a change in the p(Va) scaling at an air
cluster volume Va ∼ 1 × 106 µm3, after which p(Va) shows for all cases a power
law distribution with a scaling p(Va) ∼ V−2

a that very well matches previously
published results obtained for 2D conditions (Jiménez-Martínez et al. 2017;
Tallakstad et al. 2009b). This volume corresponds to that of a cluster with a size of
approximately three average pore sizes. Counter-intuitively, Figure 3.3b depicts
a narrower distribution for Sw = 0.89 than for Sw = 0.92, which translates into
smaller air clusters in spite of the overall larger relative volume of air inside the
pore space. This denotes a weaker effect of the air clusters at blocking the flow,
leading to less enhancement of preferential pathways and dead-ends than for
Sw = 0.92, as observed in its p(v). For the remaining cases, a reduction of Sw

leads to larger air cluster volumes as expected. These results point out the non-
uniqueness of these multiphase systems and highlight the importance of both
the air cluster volumes and their spatial distribution for defining the system’s
heterogeneity. These two elements further explain differences in the final area A
of the 50%-concentration isosurface achieved under similar saturation degrees
(Sw ∼ 0.75; Figure 3.2b).

3.4.3 Backbone formation promotes helicity

To explain the mechanisms behind the isosurface deformation reconstructed
from the experiments and presented in Figure 3.2a, we first characterise the
liquid phase connectivity using as an index the Euler characteristic χ (see Eq. 3.2).
Figure 3.4 shows a linear decrease of χ with decreasing Sw for the range of
Sw considered in this work. Lower Sw thus improves the system’s capacity for
joining initially separated entities, due mainly to the formation of new redundant
loops, i.e., larger C in Eq. 3.2. This promotes the spatial convergence of flow
streamlines, increasing their tortuosity, as they now follow these newly opened
loops and can connect to other distant pathways. Consequently, the formation
of the preferential flow backbone is enhanced, as also shown by the increase of
high velocities in the inset of Figure 3.3a. Similar variations of χ as a function of
Sw have been observed for the connectivity of the non-wetting phase (Armstrong



C
h

a
p
t
e
r

3

3.4 results and discussion 81

Figure 3.4: Euler characteristic, χ, of the liquid phase, as a function of saturation degree
Sw, computed for every experiment at a single time step chosen at about half
of its duration. Results were obtained in each case from binary tomographic
images of the liquid phase of the entire sample (liquid phase mask, see
Figure 3.7 in Appendix 3.A). A fully saturated condition Sw = 1.00 is
also displayed for comparison. The best fitting line is displayed black
dotted. The color criteria used for the markers follows the same one used in
Figures 3.1c, 3.1d and 3.2b.

et al. 2016; Schlüter et al. 2016; Xu et al. 2020) and also of the wetting phase
under imbibition-drainage cycles (Schlüter et al. 2016), although in simplified 3D
geometries obtained with packed spherical (instead of irregularly shaped) glass
beads. They also suggest an increase of χ at very low saturation degrees (not
reached in this study) once non-wetting clusters start isolating portions of the
wetting phase (Schlüter et al. 2016), i.e., increase in N in Eq. 3.2. Figure 3.4 also
shows significant differences in χ for very similar saturation degrees (Sw ∼ 0.75),
further highlighting the topological non-uniqueness of unsaturated systems in
spite of overall similar Sw.

The impact of the liquid phase connectivity changes expressed by χ on the
flow streamlines is better understood by analysing the occurrence of secondary
flows, i.e., helical flow, which we quantify by computing the helicity density h
using Eq. 3.4. The scalar field h is directly related to the topology of the vorticity
field itself (Moffatt 1992), as it reflects the linkage of vortex lines under a given
flow field. This is of paramount importance for the analysis of streamlines
deformation, as vorticity induces local rotation on streamlines around an axis
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specified by the direction of ω⃗, depending on the local orientation of the velocity
field in reference to the vorticity one (Batchelor 2000; Sposito 2001). In particular,
h has been used in Darcy-scale studies as a topological measure to showcase
the occurrence of helical flow under anisotropic hydraulic conductivity fields
both in homogeneous and heterogeneous porous media (Chiogna et al. 2016;
Chiogna et al. 2014).

Figure 3.5a presents the absolute helicity density ⟨|h|⟩, averaged over the
entire liquid phase, as a function of saturation degree. We have expanded our
data set by performing additional numerical simulations to generate the flow
field of every experimental saturation degree and also of the case Sw = 1.00 for
every injection flow rate tested (keeping Ca < 1.0). Note that, for this purpose,
we have grouped together Sw = 0.75 and Sw = 0.76 given their very similar
magnitude, creating only one additional case for Sw = 0.76 at q = 0.25 mm3 s−1.
All additional cases are displayed with circular markers, whereas the conditions
tested experimentally are displayed with squared markers. Results indicate
a linear increase of ⟨|h|⟩ as Sw decreases for the range of saturation degrees
presented in this work. This indicates that the heterogeneity added to the system
by the air clusters enhances the occurrence of helical flow in the liquid phase,
which translates into an enhanced role of vortexes in deforming flow streamlines.
Figures 3.5b and 3.5c depict the case Sw = 0.75 and q = 0.125 mm3 s−1 as
an example, where streamlines have been colored based on the local absolute
helicity density and the air phase is shown in cyan. In Figure 3.5b, the occurrence
of strong braiding is visible in the vicinity of an air bubble (see twisted ribbon
arrow), which is linked to large |h|-values. In contrast, streamlines travelling
through the middle section of the nearby flow backbone describe low local |h|,
showcasing no braiding and low deformation. Similarly, Figure 3.5c shows the
convergence of two backbones into one common pore throat, with one group of
streamlines experiencing large braiding and folding while bypassing air clusters,
whereas the other group shows no distinctive deformation patterns and low
|h|. Both cases illustrate the impact of the increased heterogeneity of the system
and of the enhanced spatial convergence of streamlines, associated with lower
Sw, on streamlines deformation, through mechanisms that have been described
as main drivers of enhanced mixing and chaotic mixing behavior (Aref et al.
2017; Thiffeault and Finn 2006), namely braiding and folding. In particular, the
occurrence of braiding has been strongly linked to the existence of non-zero
helicity fields (Aref et al. 2017) and reflects characteristics of the flow topology
(Thiffeault and Finn 2006). The occurrence of more twisted streamlines evidences
the control of topology changes driven by saturation, as described in Figure 3.4,
on the flow field.
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Figure 3.5: Analysis of the occurrence of helical flow in the pore space. a) Variation
of the average absolute helicity density, ⟨|h|⟩, with Sw, for the three experi-
mental injection flow rates q = 0.125, 0.25, and 0.50 mm3 s−1. The conditions
investigated experimentally are displayed with squared markers, whereas ad-
ditional numerically simulated conditions are shown with circular markers.
The dotted lines describe the linear trend obtained for the variation of ⟨|h|⟩
with Sw. The color criteria corresponds to that of Figures 3.1c, 3.1d and 3.2b.
b) and c) show different streamlines deformation patterns induced by the
occurrence and enhancement of helical flow in the system. These results cor-
respond to the experiment performed at Sw = 0.75 and q = 0.125 mm3 s−1,
with numerically generated streamlines colored based on the absolute local
helicity (log10(|h|)) and with the air phase imaged experimentally displayed
in semi-transparent cyan. The borosilicate glass grains are not displayed to
improve visibility. White ribbon arrows describe the deformation pattern
common to the different groups of streamlines: b) depicts the braiding of
streamlines in the neighbourhood of an air bubble (see red streamlines on
the left) and the absence of it for streamlines travelling along a backbone
(see grey streamlines on the right); c) depicts the convergence of two groups
of streamlines into the same backbone, with one group experiencing strong
braiding and folding (red tones) and the other one showcasing no strong
streamline deformation (grey tones).
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Results also show an increase of ⟨|h|⟩ with increasing injection flow rate for
a given saturation degree. In contrast, this dependency is not linear, given
the larger growth rate of ⟨|h|⟩ with decreasing Sw for larger q. This trend can
be deduced from Eq. 3.4, in which v⃗ grows linearly, in the same proportion,
with q, following the continuity equation. The increment of v⃗ by a constant
scalar function thus results in a linear growth of ω⃗ in the same proportion.
From the definition of h in Eq. 3.4, this renders the growth of ⟨|h|⟩ proportional
to the square of the relative increase in q. Note also the narrower range of
change in ⟨|h|⟩ for the data set corresponding to Sw = 0.89 (light blue markers)
compared to the remaining cases. This is a consequence of the air clusters
volume distribution shown in Figure 3.3b. Smaller air clusters impose fewer
constraints on the flow field, hence causing less streamlines deformation.

3.4.4 Larger shear- and vorticity-dominated deformation at lower saturation degree

We now study the interplay between shear and rotational deformation on
the local solute plume deformation by employing the Q-criterion (Hunt et
al. 1988). We evaluated the scalar field Q expressed in Eq. 3.5, using the
computed flow field. This allowed us to identify the regions where Q > 0, i.e.,
vorticity-dominated deformation, and those where Q < 0, i.e., shear-dominated
deformation. Figure 3.6a reports the average of these two ensembles of positive
and negative Q-values (⟨Q⟩), respectively, over the entire liquid phase, as a
function of saturation, for all tested injection flow rates. As previously explained
for the computation of ⟨|h|⟩ in Figure 3.5a, we have included additional cases
derived from numerical flow simulations, to obtain an estimate of Q for every
experimental Sw at all three experimental q values. Note that we did not
explicitly test the minimum pressure condition for every computed Q-value,
since the curvature of flow streamlines is implicit in the occurrence of helical
flow, as confirmed in Figure 3.5a.

The results show both a linear increase in the average positive Q-value and a
linear decrease in the average negative Q-value with a reduction in saturation,
similar to the behavior observed for ⟨|h|⟩ (Figure 3.5a). This indicates that
the heterogeneity added by the presence of air in the system increases the
magnitude of both shear strain rate and vorticity tensors. However, the increase
of negative ⟨Q⟩ happens at a faster rate, pointing out a stronger enhancement
of the shear strain deformation portion of the local deformation rate tensor.
To complement these observations, Figure 3.6b shows the PDF of Q-values,
p(Q), for the experimental cases only, together with the case Sw = 1.00. Lower
saturation degrees display a broader p(Q), with larger positive and negative
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(b)(a)

Figure 3.6: Impact of the saturation degree on how topology controls the solute plume
deformation. a) Average positive and negative Q-criterion, ⟨Q⟩, as a function
of Sw, for the three experimental injection flow rates, q = 0.125, 0.25, and
0.50 mm3 s−1. The conditions investigated experimentally are displayed with
squared markers, whereas additional conditions, created numerically only,
are shown with circular markers. The dotted lines describe the linear trends
obtained for the variations of the respective indexes as a function of Sw.
b) PDF of the Q-criterion, p(Q), for the experimental cases only, plus the
case Sw = 1.00, included for comparison. Different line types correspond
to different injection flow rates, whereas different line colors correspond
to different saturation degrees. Note that, in this regard, we have grouped
together Sw = 0.76 and Sw = 0.75 given their very similar saturation degree.
In both panels, we have indicated with grey shaded areas the range of Q-
values associated to vorticity-dominated deformation.

values, which further confirms the behavior observed for ⟨Q⟩. p(Q) also depicts
a distribution skewed towards negative magnitudes that persists for all Sw

considered in this work. From the two input variables, Sw and q, strong and
non-monotonic variations in the skewness were observed only upon varying Sw,
and not when varying q on the same system (see Appendix 3.E, Figure 3.14).
Therefore, the system’s heterogeneity arising from the presence and distribution
of air is the main control on the relative occurrence of shear strain and vorticity-
induced deformation. The skewness can even vary largely for very similar
saturation degrees, as it occurs for the two cases Sw = 0.75 and Sw = 0.76. The
former case displays a less skewed distribution, indicating that the solute plume
deformation is no longer mainly associated to shear-induced stretching, but
that more intensive bending is also taking place. This is reflected in the larger
deformation of the 50%-concentration isosurface (plume’s front deformation)
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for Sw = 0.75 compared to Sw = 0.76 in spite of the very similar saturation (see
Figure 3.2b). This interplay between shear-dominated and vorticity-dominated
deformation corresponds to the stretching and folding deformation patterns
that explain the occurrence of chaotic advection, as observed in previous studies
on fully saturated conditions (Heyman et al. 2020; Lester et al. 2013).

Both shear- and vorticity-dominated deformations enhance the growth in
time of the interface area between the resident and the injected solution, which
contributes to a more efficient mixing through a faster dilution of the solute in
the resident liquid phase. Both similar and contrasting mechanisms have been
reported at the Darcy scale under fully saturated conditions. On the one side,
numerical studies on 2D systems with heterogeneous permeability fields have
pointed out the dominant role of shear-dominated regions in controlling solute
plume dilution, while vorticity-dominated regions contributed significantly less
(de Barros et al. 2012). On the other side, numerical 3D studies on anisotropic
porous media have highlighted the role of folding and faster helical motion
in enhancing dilution (Chiogna et al. 2016). Our results point out a combined
effect of both shear-dominated and vorticity-dominated deformation regions on
mixing enhancement. This is characterized by a generally larger contribution
from shear, regardless of saturation, and by an increasing importance of vorticity
as saturation decreases. These results agree with previous numerical studies at
large scale that have shown the combined role of shear- and vorticity-dominated
deformation regions on enhanced solute transport dynamics, highlighting the
dominant role of pore-scale processes on large-scale observations (Geng et al.
2020). We further emphasize that the relative change in the indexes ⟨|h|⟩ and ⟨Q⟩
to a given relative change in saturation, as shown in Figures 3.5a and 3.6, is not
unique, since it ultimately changes with heterogeneity, i.e., with the arrangement
of material phases in the pore space. This has been shown in the non-unique
change of connectivity in the system for very similar saturation degrees (see
Figure 3.4 for Sw = 0.75 and Sw = 0.76). However, the trends shown here for
the change of χ to Sw, and for ⟨|h|⟩ and ⟨Q⟩ as function of Sw, are expected to
persist for the range of saturation degrees considered in this study. Figure 3.15

in Appendix 3.E further illustrates this point by comparing both ⟨|h|⟩ and ⟨Q⟩
to changes in χ based on the results plotted in Figures 3.4 to 3.6.

3.5 conclusions

Taking advantage of 4D X-ray micro-tomography, performed with very high
spatial and temporal resolutions at a synchrotron radiation X-ray imaging
beamline, and of an extensive analysis of concentration and velocity vector fields
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from both the respective experimental datasets and corresponding ones obtained
from pore-scale numerical simulations, we have disentangled the mechanisms
controlling mixing dynamics in unsaturated porous media under conditions
relevant for natural systems. We reveal an enhancement of the mixing efficiency
for lower saturation degrees, explained by the development of stronger helical
flow. Lower saturation enhances the formation of the backbone of preferential
flow via the convergence of different flow paths into preferential channels,
resulting in more twisted streamlines, as reflected in a larger helicity density.
By Q-criterion computations, we have shown that a lower wetting liquid phase
saturation induces an enhancement of both shear- and vorticity-dominated
deformation regions, with the former increasing at a faster rate and the latter
becoming more relevant at lower saturation. This hints at the interplay between
stretching and folding mechanisms (Heyman et al. 2020; Lester et al. 2013),
especially at lower saturation degrees, as the main driver of the solute front
deformation observed experimentally. Note also the strong impact of slightly
unsaturated conditions on the solute front deformation and the mixing presented
in this work. Further research will allow considering the effect of saturation
degrees below the so-called critical saturation (Raoof and Hassanizadeh 2013),
which are characterized by both a lower dispersivity (Raoof and Hassanizadeh
2013) and an increasing Euler characteristic (Schlüter et al. 2016) with decreasing
Sw, on solute’s deformation and mixing. We hypothesise contrasting trends to
those presented here for such a range, i.e., weaker solute’s front deformation
and less efficient mixing as Sw decreases. Our results also indicate that the flow
rate, i.e., fluid flow velocity magnitudes, is less relevant in the process of solute
plume deformation and therefore a secondary control on mixing.

Solute mixing is relevant in natural and industrial systems, with applications
ranging from soil remediation (Burauel and Baßmann 2005) to chemical reactors
(Valdés et al. 2022). Our findings can contribute to the understanding of natural
systems and assist in the design of industrial processes. The experimental
and numerical framework we present can be a significant starting point to
study the control of phase saturation on mixing dynamics with multiphase
flow conditions (Berg et al. 2013), i.e., with the simultaneous displacement of
both immiscible phases. While multiphase flow is expected to enhance mixing
because of a new flow phenomenon, the control of phase saturation on mixing,
documented and characterized in this study, is expected to persist. In particular,
the inter-dependency between wetting and non-wetting phase topology and its
variation in time has to be considered when addressing such flow conditions.
The possibility to study dynamic processes within the ubiquitous multiphase
systems at the relevant spatial and temporal scale using X-ray micro-tomography
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opens up new research opportunities in further and more realistically studying
similar systems under conditions that are very relevant in nature and for a wide
spectrum of industrial applications. Aspects, such as temporal resolution, require
special consideration and could potentially be further improved compared to
the setup presented in this study, e.g., by enabling constant sample rotation
during image acquisition and/or with the usage of more advanced sample
rotation stages, allowing even faster rotation rates. However, for the purpose
of vortex identification, the experiment design should consider any eventual
additional rotational components to the flow derived from such conditions,
demanding the use of rotation invariant vortex identification criteria (Haller
2005). In addition, newer technical advances could allow for a better compromise
between the imaged field of view and achieved spatial resolution. Moreover,
further optimization in the experimental protocol applied in this type of studies
would contribute to optimizing beamtime usage, enabling both the accurate
acquisition of replicates and the exploration of more experimental conditions
(e.g., lower saturation degrees as those presented here). This would enrich the
uncertainty quantification on similar data sets and applications. A robust image
analysis protocol is also of paramount importance. We are confident that the
protocol outlined in this study, and described in detail in Appendix 3.A, can find
wider application for the correct visualization and segmentation of similar X-ray
micro-tomography data sets involving real-time imaging of several material
phases and/or a transported solute. Finally, while the porous geometry used in
this study provided significant insights on mixing in unsaturated flows, further
research on different geometries with additional sources of heterogeneity is
still needed to understand the implications of our pore-scale findings on the
response of large-scale systems. We believe that the scientific results and the
novel experimental applications shown in this study will motivate the further
study of similar processes, enriching our understanding of flow and transport
in porous systems.
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Aref, H., J. R. Blake, M. Budišić, S. S. Cardoso, J. H. Cartwright, H. J. Clercx,
K. El Omari, U. Feudel, R. Golestanian, E. Gouillart, G. F. Van Heijst, T. S.
Krasnopolskaya, Y. Le Guer, R. S. MacKay, V. V. Meleshko, G. Metcalfe, I.
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Xu, R., M. Prodanović, and C. Landry (2020). “Pore-scale study of water adsorp-
tion and subsequent methane transport in clay in the presence of wettability
heterogeneity.” In: Water Resources Research 56, e2020WR027568.

Yu, Y., G. Chiogna, O. A. Cirpka, P. Grathwohl, and M. Rolle (2015). “Experi-
mental evidence of helical flow in porous media.” In: Physical Review Letters
115, p. 194502.



C
h

a
p
t
e
r

3

S U P P L E M E N TA RY M AT E R I A L T O C H A P T E R 3

This appendix has been published as Supplementary Material to: Velásquez-Parra, A., F. Marone,
R. Kaufmann, M. Griffa, & J. Jiménez-Martínez (2024). ”Phase saturation control on vorticity
enhances mixing in porous media”. In: Water Resources Research 60, e2023WR036628. http:

//doi.org/10.1029/2023WR036628.

This Supplementary Material provides additional insights into the post-
processing of the experimental results and numerical results reported in Chap-
ter 3. Appendix 3.A presents a detailed description of the concentration cali-
bration for the proper interpretation of the tomographic datasets. In addition,
Appendix 3.B presents further details on the 3D numerical simulations of flow,
while Appendix 3.C explains the power-law regression method performed for
the evolution of the isosurface deformation, i.e., solute plume’s front deforma-
tion. Figures 3.7 to 3.15 and Table 3.2 expand on the experimental protocol and
on the post-processing of the experimental results, and show a summary of the
results obtained from the numerical simulations. Furthermore, a description
of the two Movies belonging to the Supplementary Material, which show the
evolution in time of both the solute mixing and of the isosurface deformation
as obtained from the 4D synchrotron X-ray micro-tomography experiments, is
presented.

3.a experimental concentration calibration

The experiment calibration aimed at establishing a direct relationship between
the concentration of KI in the liquid phase and the phase contrast values on
the voxels of the reconstructed tomograms. This allows estimating the tracer’s
concentration at any location inside the pore space region occupied by the
liquid phase and at any given time during the transport experiments. Note
that the procedure described here could also be applied for calibrating the KI
concentration to the adsorption values of the reconstructed tomograms. To
achieve a calibration curve, we performed fourteen tomographic measurements
of the entire sample, in each case after full saturation with an aqueous KI solution
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at a different concentration, ranging between 0.06 M and 1.81 M. Thirteen of those
were further used for creating the calibration curve, covering the range 0.06 M to
0.90 M. The difference between the two latter values was the chosen concentration
difference between the resident solution and the tracer. In correspondence with
each concentration solution, the phase contrast tomogram was reconstructed
and post-processed using the same image analysis protocol described within the
article and summarized graphically in Figure 3.7. With such a protocol, we could
extract the 3D information of the liquid phase regions alone. The protocol led to
a final data set of approximately 3 × 108 voxel values per calibration tomogram.
Note here that certain regions of the resulting tomograms were excluded from
this data set, in order not to jeopardize the calibration curve generation, as they
would introduce additional uncertainty. These included regions occupied by
the paraffin used to coat the flow cell, located at the borders of the sample,
which were wrongly clustered by the K-means algorithm as part of the liquid
phase. Additionally, we also excluded the first layer of voxels located at the
boundaries with the solid phase, which contained spurious artifacts common in
phase contrast tomograms at the boundaries between distinct material phases
(so-called edge enhancement artifacts).

We used the procedure described in Lavin et al. (2018) and Bevington and
Robinson (2003) to create a calibration curve via linear regression of the obtained
calibration data, according to the model

V = ac + b, (3.6)

where V is the tomographic voxel value (i.e., phase contrast intensity), c is the
solute concentration, and a and b are the parameters of the linear regression
model. We also relied on the statistical calibration approach described in Lavin
et al. (2018) to quantify the uncertainty of the concentration values derived
from the calibration curve. In both cases, we considered the liquid phase
voxel values obtained from each calibration tomogram as a set of independent,
measured signal realizations (measured statistical ensemble). We characterized
every calibration point by the mean (Vi) and standard deviation (SVi ) of such an
ensemble (see Figure 3.8a). We also defined a representative statistical sample
size (n) for this ensemble, i.e., the number of voxels that, after random sampling,
could be considered representative of the entire population. For this purpose,
we adopted the median absolute deviation from the median value (MAD) as the
statistical metric for the representativeness decision criterion, given its smaller
sensitivity to statistical sample outliers. We computed the increase in the MAD
of a sample of voxel values as a function of the sample size for every tomogram
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Phase contrast tomogram 
(32-bit floating point)
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Figure 3.7: Graphical summary of the image analysis protocol used for the post-
processing and quantitative evaluation of the reconstructed transport ex-
periments. The protocol was also used for the analysis of the calibration
tomograms. All processes depicted here were performed in 3D, i.e., consider-
ing all slices in the image stack representing every tomogram, hence taking
into account 3D connectivity and continuity of the different material phases.
For every step, both the software used and the corresponding plugin(s) are
listed.
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independently. Such statistical samples were created by randomly choosing
voxels from the corresponding liquid phase calibration tomogram. The results
are presented in Figure 3.8b for all calibration experiments. They indicate that
the MAD stabilizes and reaches a plateau around a sample size of 500 voxels,
for all cases, which allowed us to define n = 500 voxels.

The parameterization of the linear relationship between voxel value and con-
centration was achieved by minimizing the weighted sum of the deviations
between the sample and the fitted values, i.e., a traditional least-squares fit.
Here we assumed that the uncertainty of the concentrations, i.e., the uncertainty
associated with the preparation of the injected solution, was negligible, com-
pared to that resulting from the tomographic acquisition. For each calibration
tomogram, we also hypothesized that the voxel value of the liquid phase, as a
random variable, followed a Gaussian distribution, i.e., that the representative
statistical sample of size n was drawn from a Gaussian distribution. We used
the Kolgomorov-Smirnov test to provide some ground for this hypothesis. The
null hypothesis was in this case that the measured liquid phase voxel values
were independent samples from a Gaussian distribution. The results of such a
test indicate a Kolgomorov-Smirnov metric equal to zero for all concentration
cases. In addition, the corresponding p-values reached values not lower than
0.2 in all cases, which are considerably larger than 0.05, the significance level
we chose (95% confidence interval used in the hypothesis test). Thus, with
such a confidence interval, the null hypothesis could not be rejected in any
concentration case. These results helped us reinforce our assumption that the
sampled values were as if actually drawn from a Gaussian distribution.

The linear regression parameters a and b are defined for a total of N calibration
points (i.e., in this case, tomograms) as

a =
1
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V = 1.81x10-6c+1.18x10-6

c [M]

(a) (b)

Figure 3.8: Summary of the experiment calibration process. a) Calibration curve re-
lating the tomographic voxel value (i.e., phase contrast intensity), V, and
the solute concentration, c, obtained following the procedure described in
Appendix 3.A. All thirteen pairs of points used for the calibration are shown
in blue markers and represent the average voxel value of the calibration
tomogram, Vi, and their corresponding concentration values. The error bars
represent the standard deviation of the voxel values, SVi , for every calibration
tomogram. The obtained linear relationship is shown in the magenta dashed
line. Red dashed lines represent the 99% confidence intervals obtained for
the concentration estimation. The resulting linear equation is also shown. b)
Variation in the median absolute deviation from the median value (MAD)
of a sample of voxel values, with the increasing number of sampled voxels.
This was used for estimating the representative statistical sample size, to be
used for defining the confidence intervals shown in a). MAD-values stabilize
around a value of 500 voxels for all cases.

where ci is the concentration of the i-th calibration tomogram and | · | denotes the
determinant of the resulting matrix. Such calculation resulted in the following
calibration curve

V = 1.81 × 10−6c + 1.18 × 10−6, (3.10)

which was further used to convert the voxel values in the experimental tomogram
into their corresponding concentrations ones.

The uncertainty of any concentration value calculated by Eq. 3.10, (uc), was
estimated by standard error propagation calculation (Lavin et al. 2018). We
considered the uncertainties, ua and ub, of the regression parameters (refer to
Lavin et al. (2018) for their full expressions) as well as that of the voxel values,
uV , to be plugged into the calibration curve. The latter uncertainty can be
expressed as the standard error of the mean, i.e., uV = SV/n. Given that we do
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not have replicates of every experiment, we estimated uV using the calibration
data set, since we can assume every calibration voxel value as an independent
measurement. We chose SV as the maximum of the standard deviations of the
thirteen calibration data sets, given their slightly heteroscedastic nature, and we
adopted n = 500 as explained from Figure 3.8b. Based upon all these working
definitions, we could compute uc as

uc = k

 1
a

√
SV

n
+ u2

b +

(
b − y

a

)2

u2
a + 2

(
y − b

a

)
uaubr(a, b)

 , (3.11)

where k = 3, to set a confidence interval of 99%, and r(a, b) represents the
correlation coefficient between the parameters a and b.

Figure 3.8a depicts the calibration curve obtained from the procedure de-
scribed so far. The data from the calibration tomograms exhibited a very clear
voxel value versus concentration linear relationship, with a Pearson’s correlation
coefficient of 0.9996. The depicted error bars represent the standard deviation
of every calibration point, SVi. The confidence intervals (red dashed line) result
from adding and subtracting uc to any given concentration value in the ana-
lyzed range. The results show slightly larger uncertainties toward the extreme
concentration values.

3.b numerical flow simulations

Numerical simulations of steady-state flow through the liquid phase were
performed for every case analyzed experimentally, and additionally also for
the fully saturated condition. They were performed using the Finite-Elements-
Method (FEM) software COMSOL Multiphysics 6.0. Given the steady-state flow
conditions imposed in the experiment, only one tomogram per experiment was
employed to build up the simulation spatial domain. This is further supported
by the observation of no significant variations in the liquid phase geometry
during the experiment, as the saturation degree was preserved in each case at
all imaged time instants. An experiment tomogram at approximately half of the
whole experiment duration was thus chosen for this purpose.

The computational spatial domain was created based on the liquid phase
binary mask obtained for the chosen tomogram (see Figure 3.7). We generated a
finite element tetrahedral mesh based on this tomographic data set using the
open-source algorithm fTetWild (Hu et al. 2020). To reduce the computational
demands, we decreased the resolution of the input binary masks by a factor
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Figure 3.9: Scalar fields of the resultant velocity magnitude in the liquid phase obtained
from the steady-state Stokes flow simulations, displayed as the logarithm of
the velocity magnitude v, log10(v). The color bar is common to all panels,
with lighter colors depicting larger velocity magnitudes. Regions where
log10(v) < −7.0 are depicted in black and those where log10(v) > −2.5 are
shown in the brightest yellow. All five experimental cases are shown together
and described by their corresponding liquid phase saturation degree Sw and
injection flow rate q. The fully saturated case Sw = 1.00 is also shown for
reference. Three-quarters of the sample are displayed in all cases to better
visualize the inner flow structures. The white arrows indicate the main flow
direction.
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Figure 3.10: Scalar fields of the vorticity magnitude ω in the liquid phase obtained from
the steady-state Stokes flow simulations. The color bar is common to all
panels, with lighter colors depicting larger vorticity magnitudes. Regions
where ω > 100 s−1 are shown in the brightest yellow. All five experimental
cases are shown together and described by their corresponding liquid phase
saturation degree Sw and injection flow rate q. The fully saturated case
Sw = 1.00 is also shown for reference. Three-quarters of the sample are
displayed in all cases to visualize the inner scalar field magnitudes better.
The white arrows indicate the main flow direction.
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of five, i.e., a final voxel size of 13.75 µm in all three principal directions. This
was supported by comparing results obtained from simulations built up with
meshes generated with higher-resolution binary masks. In particular, these did
not expose significant variations in the probability density functions of the target
variables. The final meshes were then imported into COMSOL Multiphysics,
where a Stokes flow simulation was set up. This aimed at simulating the exact
same flow conditions present during the experiment. We did this by assigning
a constant velocity at the inlet, resulting from the relationship between the
injection flow rate used during the corresponding experiment and the pore
space cross-section area at the bottom of the sample. In addition, we also
defined a pressure difference inside the sample, i.e., between the inlet and outlet,
equal to the constant pressure measurement registered during the tracer injection
phase of the experiment. This amounts to a pressure difference ranging from
∆p = 0.31 Pa for the injection flow rate q = 0.125 mm3 s−1 up to ∆p = 1.23 Pa for
q = 0.50 mm3 s−1. We used a no-slip boundary condition at the interface between
all material phases, i.e., the fluid velocity was set to zero at the boundaries. The
use of this boundary condition at the interface liquid-gas has been demonstrated
to have a negligible impact, both in 2D and in 3D, on fluid flow velocities in
porous media (Guédon et al. 2019; Triadis et al. 2019). The resulting velocity and
vorticity fields (magnitude thereof) are shown in Figures 3.9 and 3.10 for all six
cases, respectively. Such renderings depict the strong local velocity variations
caused by the porous medium’s local heterogeneity. The effects of a lower
saturation degree on the flow field are also visible. The development of a clearer
backbone of preferential pathways (see, for example, the Sw = 0.82 case), as well
as the development of larger and more abundant dead-ends of low velocities
(see more abundant darker regions for the Sw = 0.75 case), are recognized.

The main outputs of the numerical flow simulations included local values of
the liquid velocity magnitude, the velocity tensor, the vorticity tensor, the shear
rate tensor, and the pressure fields. They were extracted at a scale of 11 µm, i.e.,
four times smaller spatial resolution than that of the experiments.

3.c power function regression of the evolution in time of the

solute plume’s front deformation

The experimental results allowed the reconstruction of the solute plume’s front
at every time instant imaged during the experiments, for all conditions tested.
The front was represented by the isosurface of the 50% of concentration, whose
area, A, was computed and plotted against time, t, as shown in Section 3.4.1,
Figure 3.2b. The results indicate a power law increase of A/A0 in time, where
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A0 corresponds to the isosurface area at time t = 0 s. This occurs for all cases,
except for the experiment performed at a saturation degree Sw = 0.92 and an
injection flow rate q = 0.25 mm3 s−1, which shows a plateau at late times. We
performed a regression on the data series displaying a power law trend to follow
the function

Y = βtα, (3.12)

where Y = A/A0, and β and α are the power function parameters. The regres-
sion was performed using the least-squares method over the linear equation

ln Y = ln β + α ln t, (3.13)

that is, over the logarithmic values of Y and t. Considering Ỹ = ln Y and t̃ = ln t,
the regression parameters β and α can then be expressed as

α =

(
n ∑n

i=1 Ỹi t̃i − ∑n
i=1 Ỹi ∑n

i=1 t̃i
)(

n ∑n
i=1 t̃i

2 − (∑n
i=1 t̃i)

2
) , (3.14)

β =

(
∑n

i=1 Ỹi − α ∑n
i=1 t̃i

)
n

, (3.15)

where n is the total number of data points included in the regression. The results
of the regression for all experimental cases are summarized in Table 3.2. They
describe an increase in the exponent α both for a decrease in Sw under constant
q, and also for an increase in q at very similar Sw (less than 1% difference, i.e.,
cases Sw = 0.76 and Sw = 0.75). This indicates a faster isosurface deformation
in time for such conditions.

3.d movie captions

3.d.1 Movie S1.

Evolution in time of the concentration field for the transport experiment per-
formed at Sw = 0.82 with a flow rate q = 0.25 mm3 s−1. The video depicts
initially the spatial distribution of the three material phases, with the liquid
phase shown in blue, the air phase shown in cyan, and the solid phase displayed
in light grey. Subsequently, the entrance and movement of the tracer inside the
pore space is depicted as a concentration field, expressed in units of mole per
unit of volume (molar concentration, M). All concentration values lower than
0.15 M are not displayed for improved visualization. For the same purpose, the



C
h

a
p
t
e
r

3

3.D movie captions 107

Sw [−] q [mm3 s−1] β α R2

0.89 0.250 0.270 0.848 0.961
0.82 0.250 0.268 0.883 0.965
0.76 0.500 0.387 1.019 0.998
0.75 0.125 0.209 0.842 0.963

Table 3.2: Results of the regression performed for the evolution in time of the area
A of the isosurface of 50% of concentration, i.e., solute plume’s front. The
regression follows the equation Y = βtα, where Y = A/A0, being A0 the
isosurface area at time t = 0 s, and β and α are the parameters of the power
function. The regression was performed using the least-squares method
over the logarithmic values of Y and t, that is, over the linear equation
ln Y = ln β + α ln t (see Appendix 3.C). The Pearson correlation coefficient, R2,
obtained in every case for the regression is also reported. Results indicate
an increase in the power law scaling, α, due to both a decrease in saturation
degree, Sw, under constant injection flow rate of the solute, q, and an increase
in q at very similar Sw.

air phase is also not shown, whereas the solid phase of borosilicate glass grains
is shown as grey transparency. Note that only 3/4 of the sample is displayed to
observe concentration gradients inside of the sample. The white arrow indicates
the main flow direction.

3.d.2 Movie S2.

Deformation over time of the plume’s advancing front, here represented by the
isosurface of 50% of concentration, for the experiment performed at Sw = 0.92
and flow rate q = 0.25 mm3 s−1. The video depicts initially the spatial distribu-
tion of the three material phases, with the liquid phase shown in blue, the air
phase shown in cyan, and the solid phase displayed in light grey. Subsequently,
the plume’s advancing front is shown, starting from an almost undeformed
condition close to the inlet, in which the plane covers the cross-section of the
liquid phase, transitioning to conditions of increased deformation at later times,
up until the isosurface reaches the outlet. Different surface colors represent dif-
ferent time steps. The solid phase of borosilicate glass grains is not displayed to
improve the visualization, while the gas phase (air) is shown in semi-transparent
cyan. The white arrow indicates the main flow direction.
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Figure 3.11: Probability density function, p(ξ), of the pore size, ξ, computed for the
porous medium made of sintered irregularly shaped borosilicate glass
grains, used in all transport experiments. A 3D rendering of the tomo-
graphic reconstruction of the entire sample is shown in Figure 3.12b. The
distribution was obtained by using the Pore Size Distribution algorithm,
available on the Xlib plugin library (Münch 2022) on the free-source soft-
ware ImageJ. From this distribution, we computed the average pore size,
ξ̄ = 30 µm.
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Figure 3.12: Setup for the transport experiments + X-ray tomography measurements,
as implemented at the TOMCAT beamline of the Swiss Light Source (SLS),
Paul-Scherrer Institute (Villigen, Switzerland). a) Shows a schematic repre-
sentation of the experimental setup, with an indication of the two injection
lines, and the installation of pressure sensors both at the inlet and at the
outlet lines. b) Shows, in the upper panel, the general setup and the porous
medium sample location relative to the X-ray beam. The lower right panel
shows a close-up of the flow cell, with the gas and liquid injection lines
at the bottom, the outlet line at the top, and the central cylindrical part
containing the sample. A 3D rendering of the tomographic reconstruction
of the entire sample is shown in the lower left panel, depicting the heteroge-
neous shape of the solid grains, with the whole sample resembling a sandy
soil in terms of grain size and bulk porosity.
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(a) (b)

Figure 3.13: Alternative representation of the experimental results. a) Variance of the
concentration field, σ2

c , against the dimensionless time, τ, for all five trans-
port experiments. The values of σ2

c have been corrected by the variance at
time t = 0 s, σ2

c,t=0. τ is expressed as τ = t/tadv, where the advective time
tadv = ξ̄/v̄ is the time required for the flow to bridge the average pore size
ξ̄ at the average flow velocity v̄. b) Evolution over the dimensionless time τ
of the area of the advancing front, A, normalized by the area computed at
the initial time of the deformation analysis, A0. The respective power law
fitting curves are displayed with dot lines for all cases except for Sw = 0.92,
which is the only case that reaches a plateau at later times. On both panels,
different line types correspond to different injection flow rates, whereas
different line colors correspond to different saturation degrees. Note that,
in that regard and for facilitating experiment comparison, we have grouped
together Sw = 0.76 and Sw = 0.75 given their very similar saturation de-
gree.
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Figure 3.14: Skewness, γ1,p(Q), of the probability density function of the Q-criterion as a
function of the liquid phase saturation degree Sw. Cases tested experimen-
tally are displayed with squared markers. Additional cases derived from
numerical flow simulations to generate one flow field for every combination
of saturation degree and injection flow rate, q, tested experimentally are
included and shown in circular markers. Note that, for this purpose, we
have grouped together Sw = 0.75 at q = 0.50 mm3 s−1 and Sw = 0.76 at
q = 0.125 mm3 s−1 given their very similar saturation degree, meaning that
we simulated only one additional case for Sw = 0.76 at q = 0.25 mm3 s−1.
This grouping is also reflected in the color criteria of the markers, which
corresponds to that used in Section 3.4 (see Figure 3.6) and represents the
saturation degree plotted on the x-axis. However, Sw = 0.75 and Sw = 0.76
are not considered identical conditions in terms of saturation, given the
different spatial arrangement of air clusters inside the pore space obtained
in both cases. Results indicate that γ1,p(Q) is exclusively controlled by the
saturation degree, i.e., the spatial heterogeneity of the porous medium,
whereas changes in the imposed flow conditions on the same system do
not affect the skewness of the distribution. The latter behavior is observed
in the overlapping between the squared and circular markers. This con-
cludes on the exclusive control of saturation, and in particular of the spatial
distribution of the gas phase (air) in the pore space, on defining the main
mechanism locally deforming the solute plume as it spreads through the
pore space, i.e., shear-dominated or vorticity-dominated deformation.
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(a)

(b)

Figure 3.15: Variations in the mechanisms of flow deformation as function of connectiv-
ity. a) Variation of the average absolute helicity density, ⟨|h|⟩, with the Euler
characteristic χ, for the three experimental injection flow rates q = 0.125,
0.25, and 0.50 mm3 s−1. b) Average positive and negative Q-criterion, ⟨Q⟩,
as a function of χ, for the three experimental injection flow rates, q = 0.125,
0.25, and 0.50 mm3 s−1. The grey shaded area indicates the range of Q-
values associated with shear-dominated deformation. On both panels, the
conditions investigated experimentally are displayed with squared mark-
ers, whereas additional numerically simulated conditions are shown with
circular markers. The dotted lines describe the linear trend obtained for
the variation of both metrics with χ. The color criteria corresponds to that
employed in Section 3.4.
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abstract

Unsaturated porous media, characterized by the combined presence of
several immiscible fluid phases in the pore space, are highly relevant
systems in nature, as they control the fate of contaminants and the

availability of nutrients in the subsoil. However, a full understanding of the
mechanisms controlling mixing in such systems is still missing. Using fully
resolved 3D numerical simulations of flow and transport, based on X-ray to-
mograms of a porous medium at different degrees of liquid (wetting) phase
saturation, we show the occurrence of chaotic dynamics in the deformation
of the solute’s plume, as characterized by computed chaos metrics (Lyapunov
exponents), and in the mixing of the injected solute. This is enhanced at lower
saturation and is sustained even under diffusion-relevant conditions over the
medium’s length, in which case it is also strengthened by larger flow velocities.
Our results highlight the dominant role of the system’s spatial heterogeneity,
increased by the presence of an immiscible phase (e.g., air), on the solute’s
mixing efficiency. This represents a stepping stone for the assessment of mixing
and reactions in unsaturated porous media.

plain language summary

The unsaturated region of soils, located between the soil surface and the ground-
water level, mediates the effects of processes taking place in the atmosphere
on the subsoil and on the groundwater sources located deeper in the ground.
Gaining a better understanding of the mechanisms controlling the transport
and mixing dynamics of solutes in that region is thus essential for assessing
and predicting the fate of contaminants and nutrients entering the pore space.
Here, we present a numerical investigation of both the control of the saturation
degree, i.e., the fraction of the pore volume occupied by water, and the imposed
flow conditions on the solute plume’s deformation and on the solute’s degree
of mixing with the resident pore water. We identify chaotic dynamics for these
two metrics, characterized by exponential growths with travel distance. They
are strengthened both upon reduction in the degree of saturation and upon
increase in the magnitude of the imposed flow, i.e., liquid flow velocities. This
highlights the dominant role of the system’s spatial heterogeneity, increased by
the presence of air, on the solute’s mixing efficiency, with strong implications for
the assessment of chemical reactions in subsurface environments.
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4.1 introduction

Natural processes occurring in the atmosphere, together with anthropogenic
actions mainly related to agricultural and industrial activities, are the main
contributors to the entry of solutes into the subsoil. This includes both nutrients
and contaminants, whose fate is largely controlled by processes taking place in
the unsaturated region of soils, i.e., the uppermost soil layer, which is charac-
terized by the presence of more than one material phase (water and air) in the
pore space. This region is thus of paramount importance for a wide range of
environmental and industrial applications, including groundwater and soil re-
mediation (Cunningham et al. 2003; Lahav et al. 2010; Sebilo et al. 2013; Williams
et al. 2009), radioactive waste disposal (Winograd 1981), and energy storage
(Barbier 2002). A full assessment of these applications and further technical
advances for their optimization have remained elusive due to the still incomplete
understanding of the mechanisms controlling the mixing of solutes under such
so-called unsaturated conditions. In particular, the control of the degree of liquid
phase saturation, i.e., the fraction of pore volume occupied by the liquid phase,
on both the solute’s plume stretching and the associated dilution within the
resident aqueous phase remains unknown. This is largely due to the highly
complex physical heterogeneity and spatial organization of the fluid phases, i.e.,
the liquid- or gas-filled voids, at the pore scale, which ultimately control mixing
(Dentz et al. 2011; Li et al. 2017; Valdés et al. 2022), and which are not accounted
for in classical transport formulations at the continuum (Darcy) scale (Simunek
et al. 2008).

Recent studies (Lester et al. 2013) have unveiled how the inherent nature
of porous media promotes chaotic flow dynamics, changing the paradigm of
porous media transport for both environmental and industrial applications.
This dynamics is characterized by fluid tracer particles whose distance diverges
exponentially in time under the presence of a given flow field, resulting in
complex fluid particle trajectories (Aref 1984; Aref et al. 2017; Ottino 1989). This
causes large deformation in the advected solute, enhancing mixing through a
rapid generation of small-scale structures over which diffusive mass transfer
occurs more efficiently (Aref 2002). Signs of chaotic advection and chaotic
mixing in porous media have been observed at the Darcy scale, both from
experimental (Yu et al. 2015) and numerical studies (Chiogna et al. 2015; Chiogna
et al. 2016; Chiogna et al. 2014; Cirpka et al. 2015; de Barros et al. 2012; Ye et
al. 2020) performed on fully saturated systems. They have highlighted the
occurrence, under the presence of an anisotropic permeability tensor, of helical
flow and twisting streamlines (Bakker and Hemker 2004; Chiogna et al. 2014;
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Yu et al. 2015), which have resulted in both enhanced plume deformation, i.e.,
larger surface for diffusive mass transfer, and faster dilution. They have been
complemented by direct quantification of solute plume deformation. This has
been achieved, on the one side, via vortex identification indexes (de Barros
et al. 2012), which allow discerning between shear- and vorticity-dominated
deformation flow regions in the pore space. On the other side, streamlines
deformation has been directly quantified through kinematic metrics (Chiogna
et al. 2015; Chiogna et al. 2016; Cirpka et al. 2015; Ye et al. 2020), leading
to the identification of stretching and folding events along single streamlines,
both of which are hallmarks of chaotic advection. While all these studies
have considered steady-state flow conditions, enhanced mixing resulting from
chaotic solute deformation has also been identified on experimental Darcy-scale
investigations under oscillatory flow (Zhang et al. 2009), aiming at improving
contaminant remediation. The high environmental relevance of this chaotic
dynamics has also been exposed in large-scale studies, in which the optimal
in situ flow conditions required for inducing chaotic flow in the subsoil have
been investigated, with the aim of both optimizing groundwater remediation
(Cho et al. 2019; Mays and Neupauer 2012; Neupauer et al. 2014) and improving
biodegradation (Bagtzoglou and Oates 2007).

For long time, the study of chaotic mixing in porous media at the pore scale
has been predominantly centered around numerical analyses, given the difficulty
of experimentally accessing and probing these systems at the required spatial
and temporal scales. Recently, high-resolution laser imaging, via high-precision
refractive-index matching, was applied successfully for imaging the evolution
of a low-diffusivity fluorescent dye in a 3D column of transparent borosilicate
spheres, allowing for the reconstruction of the plume deformation over distance
(Heyman et al. 2021; Heyman et al. 2020). Results revealed the key role of
grain contacts in inducing intense stretching and folding of the solute plume,
leading to chaotic advection. A similar technique was also employed recently
for the experimental reconstruction of velocity fields through high-resolution
particle tracking. These experimentally determined fields were further applied
for the numerical investigation of the stretching history of fluid material lines,
which are defined as segments joining non-diffusive tracers initially located
close to each other (Souzy et al. 2020). Results revealed the exponential growth
over time of these material lines, characteristic of chaos. Purely numerical
investigations have further cast light on the physical mechanisms controlling
this chaotic behavior in porous media. They have highlighted the role of the
intrinsic topological complexity of 3D porous systems in inducing continuous
separation and reattachment of the advected fluid at the contacts with solid
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interfaces, which induces local stretching and folding events (Lester et al. 2014;
Lester et al. 2016a). This is specifically related to the formation of stagnation
points of zero skin friction on the surface of those interfaces, giving place to
both stable and unstable manifolds, which induce considerable fluid stretching
downstream (Lester et al. 2014; Lester et al. 2016a). More recent numerical
pore-scale investigations have addressed further implications of chaotic mixing
on reactive processes, more specifically on heterogeneous (liquid-solid) reactions
(Aquino et al. 2023). They have emphasized the role of chaos in allowing the
solute to efficiently explore the pore space, which thus renders reaction at
the liquid-solid interfaces more efficient. All pore-scale studies summarised
so far have exclusively focused on the study of fully saturated systems. To
our knowledge, similar pore-scale studies on the occurrence of chaos under
the presence of more than one material phase in the pore space, such as the
unsaturated region of soils, have not been reported yet. Recent findings have
been able to characterize the impact of the saturation degree on the occurrence
of helical flow in the pore space, and have highlighted its important role in
altering the associated vorticity field and enhancing streamlines deformation in
the form of intense folding and braiding (Velásquez-Parra et al. 2024). However,
an investigation of the systematic impact of liquid phase saturation on chaotic
advection and chaotic mixing through direct quantification of chaotic stretching
and mixing rates has not been reported yet.

Here, we present a numerical investigation of chaotic advection and chaotic
mixing in unsaturated porous media at the pore scale. We take advantage of im-
ages obtained from previous synchrotron X-ray micro-tomography experiments
of a porous medium resembling a sandy soil (Marone et al. 2020; Velásquez-Parra
et al. 2024) to build up realistic numerical simulations of flow and transport. We
investigate the occurrence of chaotic advection and chaotic mixing under differ-
ent saturation degrees and different flow rates, both under low-diffusivity and
diffusion-relevant conditions. We identify a previously unknown dependency
of the strength of chaotic advection on liquid phase saturation, expressed both
by an increasing rate of the exponential stretching of the injected plume with
travel distance and by a larger Lyapunov exponent, as the degree of liquid phase
saturation decreases. This behavior reflects itself in an enhanced mixing across
the sample, which persists even in the presence of relevant diffusion rates over
the sample’s length, leading to sustained chaotic mixing. We also analyze the
dependency of mixing on the imposed flow conditions, with larger flow rates
inducing larger exponential mixing rates with travel distance. Our results reveal
important features of the control of liquid phase saturation on chaotic advection
and chaotic mixing in porous media, which represents a stepping stone for
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better understanding and predicting solute transport and mixing under relevant
conditions for environmental and industrial systems.

4.2 materials and methods

The present work is based on 3D numerical simulations of steady flow and
transport, i.e., unchanging in time, which are rooted in 4D synchrotron X-ray
micro-tomography experiments performed in previous investigations for the
analysis of mixing in unsaturated porous media (Marone et al. 2020; Velásquez-
Parra et al. 2024). From those experiments, we obtained 3D high-resolution (in
space and time) tomographic datasets of a porous medium resembling a sandy
soil at different saturation degrees, Sw. See Marone et al. (2020) and Velásquez-
Parra et al. (2024) for details about both the porous medium cylindrical sample
itself (a packing of sintered borosilicate glass particles), the aqueous solution
occupying its pore space, and the time-lapse X-ray micro-tomography settings.
The imaged portion of the sample was approximately 3 mm high (along the
flow direction) and had a diameter of 4 mm, with a relatively homogeneous
pore size distribution (Velásquez-Parra et al. 2024), a bulk porosity of 0.28, an
intrinsic permeability of 10−10 m2, and an average pore size, ξ̄, of 30 µm. By post-
processing the obtained images, we were able to create the binary tomograms of
the three single material phases forming the tested sample (solid, liquid, and
gas) at high spatial resolutions (with a voxel size of 2.75 µm) (Marone et al. 2020;
Velásquez-Parra et al. 2024). The numerical simulations were set up using only
the binary tomograms of the aqueous liquid phase, whose geometry reflects
the spatial arrangement of both the solid phase (the irregular borosilicate glass
particles) and the gas phase (air clusters) trapped in the pore space. To reduce
the computational demands of our numerical investigation, these tomograms
were downsampled by a factor of four, compared to the initial voxel size,
for a final spatial discretization with a voxel size of 11 µm. Finite element
tetrahedral meshes were generated from these final images using the fTetWild
algorithm (Hu et al. 2020), for a total of five distinct conditions, representing
Sw = 1.00, 0.92, 0.89, 0.82 and 0.76.

The 3D numerical simulations were performed using the Finite Elements
Method software Comsol Multiphysics. Flow simulations were based on the
solution of the steady-state Stokes equation, which is valid for flows exclusively
controlled by viscous dissipation, i.e., Reynolds numbers, Re ≪ 1.0. We set
boundary conditions that aimed at mimicking the experimental conditions
employed in the reference study (Velásquez-Parra et al. 2024). They included
a fixed inflow velocity at the inlet located on one end of the sample, which
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Figure 4.1: Main outputs from the two steady-state transport scenarios solved numer-
ically. Results for a porous medium with a saturation degree Sw = 0.82
and with an injection flow rate q1 = 0.125 mm3s−1 are displayed. a) Solute’s
plume deformation, i.e., deformation of the isosurface of the 1% of concen-
tration, 3D-rendered in yellow, as reconstructed from the low-diffusivity
transport scenario (DS = 1× 10−12 m2s−1). In addition, the air phase volume
is 3D-rendered in transparent cyan and the porous medium boundaries are
shown as a transparent cylinder. The pore space boundaries on the inlet’s
cross section are highlighted in white, with the surface region of the chosen
injection pore on the inlet’s cross-sectional plane highlighted in magenta. b)
Solute’s concentration field inside the sample, expressed in units of solute
moles per unit of volume (molar concentration, M), as obtained from the
diffusive transport scenario (DH = 1.929 × 10−9 m2s−1). All concentration
values below 0.01 M are displayed in the darkest blue. In addition, only the
solid phase’s volume is 3D-rendered in transparent grey. Only three-quarters
of the sample are displayed to improve the visualization of the concentration
gradients inside the sample. In both panels, the white arrow indicates the
main flow direction. See Figures 4.5, 4.7 and 4.8 in the Appendix, for the
remaining cases.

was computed from the relationship between the injected flow rate, q, and the
pore-space cross-sectional area at the inlet. A total of three flow conditions,
q1 = 0.125, q2 = 0.250 and q3 = 0.500 mm3s−1 were simulated for each Sw. We
also set a constant pressure at the outlet, as measured during the reference
experiments and ranging from ∆P = 0.31 Pa for q1 to ∆P = 1.23 Pa for q3. A
no-slip boundary condition (zero velocity at the boundary) was also set at all
material interfaces. The use of the latter at the interface liquid-gas has been
demonstrated to have a negligible impact, both in 2D and in 3D, on fluid flow
velocity distributions in porous media (Guédon et al. 2019; Triadis et al. 2019).
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Steady-state transport simulations employed the flow fields obtained from
the Stokes flow simulations. They were aimed at observing the steady-state
spreading and mixing of a solute plume inside the unsaturated porous sample.
The simulated resident (low potassium iodine concentration) and injected (higher
potassium iodine concentration) solutions corresponded to those employed in
the reference experiments. The higher concentration solution was punctually
injected with a constant concentration c0 = 1.0 M, over the area of a pore body
located towards the center of the sample’s inlet. For every combination of Sw and
q, we simulated two mixing scenarios, (i) a low-diffusivity case, characterized by
the solute’s diffusion coefficient, DS = 1 × 10−12 m2s−1 (one order of magnitude
smaller than that previously used for the study of chaotic advection; (Heyman
et al. 2020)), and (ii) a diffusive case with DH = 1.929 × 10−9 m2s−1, the latter
of which matched the conditions tested in the reference experiment (Dunlop
and Stokes 1951; Velásquez-Parra et al. 2024). These two scenarios allowed us
to study the occurrence of chaotic advection and chaotic mixing under both
low-diffusivity and diffusion-relevant conditions, respectively. The numerical
work presented here thus amounts to a total of thirty 3D steady-state simulations
of flow and transport.

4.3 results and discussion

The two transport scenarios considered in the numerical simulations allowed the
investigation of the impact of the system’s heterogeneity, characterized through
Sw, and of the imposed flow conditions, as expressed by q, on the solute’s plume
deformation and mixing in the pore space. A 3D visualization of both these
results is shown in Figure 4.1 for the case Sw = 0.82 with q1 = 0.125 mm3s−1.
Figure 4.1a shows the deformation of the solute plume in its travel through
the unsaturated porous medium from the point of injection, as reconstructed
from the low-diffusivity transport simulations (see Appendix 4.A, Figure 4.5,
for the remaining cases), whereas Figure 4.1b depicts the concentration field
inside the pore space as obtained from the diffusive transport scenario (see
Appendix 4.B, Figures 4.7 and 4.8 for a comparison of such fields for the
remaining Sw under low, q1, and high, q3, flow rates). Both these scenarios, for
every combination of Sw and q tested, can be characterized by the Péclet number,
Pe, where Pe represents the ratio between the characteristic time of diffusion
and the characteristic time of advection over a characteristic length. It can be
expressed as Pe(Di) = v̄ξ̄2/2Diat, where v̄ is the mean flow velocity of every
tested condition, Di is either DS or DH, depending on the simulated scenario,
and at ≈ 15 µm is the average pore throat size, approximated as one-fourth of
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Sw [−]
q1 q2 q3

v̄ Pe(DH) Pe(DS) v̄ Pe(DH) Pe(DS) v̄ Pe(DH) Pe(DS)

1.00 0.753 1.17 2259 1.506 2.34 4519 3.012 4.68 9036
0.92 0.931 1.45 2794 1.862 2.89 5587 3.724 5.79 11173
0.89 0.769 1.20 2309 1.539 2.40 4617 3.078 4.79 9234
0.82 1.016 1.58 3048 2.027 3.15 6082 4.067 6.33 12202
0.76 1.153 1.79 3454 2.302 3.58 6908 4.604 7.16 13813

Table 4.1: Summary of the flow and transport characterization for all thirty conditions
reported in this study based on results of the numerical flow simulations.
These conditions are characterized by the saturation degree, Sw, the injection
flow rate, q, with q1 = 0.125, q2 = 0.250 and q3 = 0.500 mm3s−1, and the
diffusion coefficient, Di, where DH/DS ≈ 2000. Reported descriptors include
the mean fluid flow velocity, v̄, expressed in units of ×10−4m s−1, and the di-
mensionless Péclet numbers, Pe(DH) and Pe(DS), linked to the two transport
scenarios defined by DH and DS, respectively.

the average glass beads diameter (Glover and Déry 2010). Note that we have
adopted ξ̄ as the characteristic length for advection, and at as the corresponding
one for diffusion (Jiménez-Martínez et al. 2015; Markale et al. 2022). Values for v̄
and Pe are summarized in Table 4.1 for all tested conditions.

4.3.1 Solute plume deformation as a function of saturation

The solute’s plume deformation was investigated based on the results from
the low-diffusivity simulations, i.e., using DS, Pe(DS) > 2000. They allowed
observing the changes in the plume’s shape, both in longitudinal (along the
z-axis) and transversal direction, induced by the action of stretching and folding,
which could be preserved given the negligible role of diffusion. We represented
the plume’s deformation by reconstructing the concentration field’s isosurface
at a value of 1% of the injected tracer concentration (1.0 M) using the computed
concentration field (refer to Appendix 4.A for further details on the isosurface
generation). We use this isosurface as an approximation of the solute’s front
where both the injected and the resident solutions meet. As an example, Fig-
ure 4.1a shows the case Sw = 0.82 and q1 (refer to Appendix 4.A, Figure 4.5,
for a visualization of the remaining conditions), in which the location of the air
clusters in the pore space is also shown. The trapped air clusters act as obstacles
for the flow, increasing the system’s heterogeneity and altering its connectivity
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Figure 4.2: Evolution of the relative length of the solute’s plume front, ℓ/ℓ0, with travel
distance along the z-axis, for all pairs of conditions Sw-q considered in this
study. All the results stemmed from the low-diffusivity simulations, i.e.,
performed with a diffusion coefficient DS = 1 × 10−12 m2s−1, in which no
variation in ℓ/ℓ0 upon changes in q for the same Sw was observed. The
plume’s front is represented through the isosurface of the concentration field
with value equal to 1% of the injection concentration (1.0 M). ℓ represents the
plume’s length over an x-y cross-sectional plane at a certain z. The results
have been expressed as a relative deformation by dividing ℓ by the isosurface
length at z = 0 µm, ℓ0. This explains the offset along the y-axis for all the
curves. Results for every observation plane are shown as markers, whereas
the corresponding exponential regressions are shown as continuous lines.
Different colors correspond to different saturation degrees. In both panels,
the type of scaling described by ℓ/ℓ0 as a function of z is displayed.

and flow field (Velásquez-Parra et al. 2024). The results show a strong deforma-
tion of the solute’s plume, visible already right below the injection point, which
leads to a rapid increase of the surface area of the mixing interface along the
main flow direction.

We quantified the plume’s transversal deformation for every condition Sw-q.
For this purpose, we sliced the reconstructed isosurface (see Figure 4.1a) with an
x-y plane moving along z at a spatial step equal to the voxel size of the reference
tomograms (2.75 µm). We then computed the length of the isosurface, ℓ, on each
one of these cross-sectional planes, by adding together the length of the single
curve elements resulting from this intersection (refer to Appendix 4.A, Figure 4.6,
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for a schematic of this process). The ensemble of all ℓ-values quantified for
every moving plane reflects the occurrence of plume’s transversal stretching
and folding, as the solute moves along the main longitudinal flow direction
(Heyman et al. 2020). Figure 4.2 shows the evolution of ℓ/ℓ0 along z for all tested
conditions, where ℓ0 is the isosurface length at the inlet plane, i.e., at z = 0
µm. The offset of the data sets along the y-axis of such plot, especially visible
for Sw = 0.89, is due to the different ℓ0, i.e., different injection pore, obtained
for every saturation degree. Note that the data sets have been truncated at
the z-coordinate at which the plume has touched the outer boundaries of the
sample, since this constrained the growth of ℓ further downstream. For all cases,
the results describe an exponential increase of ℓ/ℓ0 over z, which sets in after
an initial fast increase of ℓ/ℓ0 over the length of a few pores. This exponential
trend indicates the occurrence of chaotic dynamics in the stretching of the solute
plume, as it moves through the pore space. We quantify this trend by performing
an exponential regression on the obtained results (shown as a continuous line in
Figure 4.2a) following the equation

Y = βeαz, (4.1)

where Y represents the studied quantity, and β and α are the corresponding
regression parameters. Refer to Appendix 4.B for a detailed description of
the regression procedure. In general, ℓ/ℓ0 increases faster with decreasing
Sw, reflecting the effect of the larger spatial heterogeneity in the pore space
at lower saturation degrees in inducing a larger solute’s plume deformation.
The latter effect of Sw is already known and has been described in previous
studies. However, such studies did not focus on assessing the presence or the
absence of chaotic deformation scalings, either because they concerned non-
chaotic systems (Jiménez-Martínez et al. 2015) or because they did not account
for the the plume’s transversal stretching (Velásquez-Parra et al. 2024) in such
assessment. The latter is essential for quantifying the effects of the connected
pore branches and mergers (Lester et al. 2013), responsible for fluid separation
and fluid convergence, respectively, and of their transverse orientation to each
other, on the stretching history of material lines. They are associated with the
occurrence of stable an unstable manifolds (Lester et al. 2013), whose transverse
intersection is a condition for the generation of chaotic advection (Metcalfe et al.
2022). Our results also showed no variation in ℓ/ℓ0 upon variation in q for any
given Sw. This is explained by the large Pe, thus confirming that the computed
isosurface deformation was not affected by diffusive effects, preserving the
plume’s stretching and folding events occurring in the pore space.
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4.3.2 Solute mixing as function of saturation

We explored the effects of the plume’s exponential stretching on mixing by
quantifying the increase of the mixing volume along the main flow direction.
The mixing volume was defined as the pore volume occupied by the injected
solute, i.e., where the concentration c satisfied the condition 0.01 < c < 0.99
(de Anna et al. 2014). We plotted the area of the intersection of the mixing
volume with the x-y plane at any z position, called in the following MV. We
observed that the exponential growth identified for the plume’s stretching under
low-diffusivity conditions is sustained also for the growth of the associated
mixing volume, MV(DS). This is shown in Figure 4.3a, which also depicts an
increasing rate of exponential growth of MV(DS) with a saturation decrease,
as determined using Eq. 4.1 and also observed for ℓ/ℓ0 (Figure 4.2). These
results reflect the close relationship of both processes and expose the control
of saturation on chaotic mixing. A stronger solute plume’s stretching increases
the interface area between both miscible solutions (the resident and the injected
one), enhancing the diffusive flux across it and rendering mixing more efficient.
As also observed for ℓ/ℓ0, q did not seem to impact at all the growth of MV(DS),
given the large Pe numbers considered.

Next, we investigated the effects of diffusion on the mixing volume. Diffusion
might counteract the strong plume deformation shown before, by inducing
coalescence of the stretched solute lamellas, thus impacting the mixing efficiency
in the system. We did this by analyzing the results of the numerical simulations
performed under diffusion-relevant conditions, i.e., using DH, and by comparing
them to those discussed before for the low-diffusivity scenario. Figures 4.3b
and 4.3c show the increase of MV(DH) along z for Sw = 0.92 and Sw = 0.76,
respectively. We only present these two cases for simplicity (see Appendix 4.B,
Figure 4.9, for the remaining Sw values). However, the analysis described in
the following applies to the remaining saturation degrees as well. The results
indicate an asymptotic exponential growth of the mixing volume over the
longitudinal travel distance for this diffusive scenario as well. The already
discussed impact of Sw on MV(DS) (see Figure 4.3a) persists also for MV(DH),
characterized by a larger increase in MV at lower saturation degrees. This
chaotic scaling for mixing also exists upon variations in the flow field induced by
changes in q (see Figures 4.3b and 4.3c), albeit with changes in the exponential
scaling. In general, lower q induces larger values for the mixing volume over the
entire sample. This is expected, since lower q increases the transit time of the
solute inside the pore space, allowing diffusion to more effectively smooth out
concentration gradients. This leads to a larger volume occupied by the solute
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Figure 4.3: Mixing analysis for the two transport scenarios considered in this work. a)

Evolution of the mixing volume, MV(DS), along the main flow direction,
z, for all tested Sw cases based on the transport scenario defined by DS =
1 × 10−12 m2s−1. Values for MV have been computed over an x-y cross-
section plane moving along z. Different colors correspond to different
Sw values. b) and c) Evolution of MV(DH) along z for Sw = 0.92 and
Sw = 0.76, respectively, based on results for the transport scenario defined
by DH = 1.929 × 10−9 m2s−1. Results for the three tested flow rates are
shown in different colors. In addition, the evolution of MV along z for
the low-diffusivity case DS (i.e., MV(DS)) is shown also in each panel for
comparison. In all panels, results for every observation plane along z are
shown as markers, whereas the corresponding exponential regressions are
shown as continuous lines.

plume along the main flow direction. In both panels, the increase of MV for the
corresponding DS case is shown as a reference. As expected, all cases simulated
with DH present, at almost any z, higher MV values than those obtained in the
corresponding DS cases.

4.3.3 Control of saturation on the chaos strength

We now assess quantitatively the impact of the saturation degree on the chaotic
dynamics exposed in Sections 4.3.1 and 4.3.2. This is done by comparing the
dependency of the exponential regression parameter α, computed from Eq. 4.1
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for the regressions shown in Figures 4.2 and 4.3, on the saturation degree. The
results are presented in Figures 4.4a to 4.4c for all conditions tested. Note that
variation in α upon a change in q was only obtained for MV(DH), as seen in
Figure 4.3b and 4.3c. Overall, we observe an increase in α with decreasing Sw

for all three metrics, although the range of variation across metrics is different.
αℓ/ℓ0 , associated to the solute plume’s deformation, shows a far smaller range
of change upon the same relative change in saturation compared to αMV(DS)

and αMV(DH). This indicates that only a small relative increase in the plume
stretching rate can induce far larger changes in the mixing rate. This point
is further illustrated in Appendix 4.C, Figure 4.10, where αMV(DS) has been
plotted against αℓ/ℓ0 for all Sw-values. It can be explained by the larger plume’s
deformation inducing an increase of both the interface area between the injected
and the resident solution and the concentration gradients across this interface
(Heyman et al. 2020; Jiménez-Martínez et al. 2015; Le Borgne et al. 2013), both of
which contribute to the enhancement of the diffusive flux across the system.

The control of the flow conditions on the exponential scalings is observed only
in Figure 4.4c for MV(DH), i.e., for low Pe, where every q has been assigned a
different marker. Results show that αMV(DH) increases with q for the range of
saturation degrees considered in our study. In addition, the relative difference in
scaling over the range of flow rates analyzed also becomes larger as Sw decreases.
Both of these results can be explained by the interplay between the advective and
the diffusive time upon change in q, whose effect can be seen in the evolution
of MV(DH) in Figures 4.3b and 4.3c. On the one hand, larger advective times
associated with lower q translate into a stronger effect of diffusion at increasing
the volume occupied by the solute after a given travel length. This is visible
already after short travel distances from the inlet. On the other hand, larger
q increases the advective travel length associated with the diffusive time over
a measurable characteristic length, e.g., the size of a voxel. This allows for
a stronger stretching of the interface before being smoothed out by diffusion,
leading to an increased diffusive flux at larger z. Both of these effects reflect
themselves in the difference of MV(DH) for different q values under constant
Sw, as z increases. Note also the occurrence of exponential growth in MV(DH)

for Péclet numbers as low as 1.17 (see Table 4.1 for Sw = 1.00 and q1). This Pe
is lower than that reported by Heyman et al. (2020) as a lower bound for the
development of incomplete pore-scale mixing and chaotic advection, as defined
for a porous medium composed of spherical glass beads of different sizes. Our
results highlight the strong impact on the development of chaotic dynamics of
the intrinsic spatial heterogeneity of our porous medium, which is composed
of irregularly shaped glass particles, resembling natural porous media. For the
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(a) (b) (c) (d)

µ 

µ µ
 

Figure 4.4: Variation of the exponential scaling rate parameter, α, as function of the
saturation degree, Sw, for the different injection flow rates, q, as obtained
from the regression performed on the results of the numerical simulations
of transport for a) the relative increase in plume’s deformation (isosurface
transversal deformation), ℓ/ℓ0, b) the mixing volume for the low-diffusivity
scenario, MV(DS), and c) the mixing volume for the diffusive scenario,
MV(DH). d) Variation in the Lyapunov exponent, λ, as function of Sw and q,
computed from the data in a) as λ = αℓ/ℓ0 v̄. The color labelling corresponds
to that employed in Figures 4.2 and 4.3. Different markers are assigned to
different flow rates.

unsaturated cases, not only the saturation but also the spatial distribution of
the air clusters can explain the chaos strength. For instance, the slightly smaller
growth rate of MV with z for Sw = 0.89 compared to Sw = 0.92 is a consequence
of the narrower distribution of air cluster volumes of the former, as shown in
Velásquez-Parra et al. (2024) (see Chapter 3, Figure 3.3b). The gas phase is
less effective at blocking the advance of the plume, inducing an overall slower
exponential increase in the mixing volume across the sample.

To better characterize the chaotic behavior exhibited from our results, we use
our plume deformation data to compute the Lyapunov exponent, λ. This index
measures the rate of exponential growth of a material line with time (Ottino
1990), serving as a proxy for characterizing the strength of chaotic dynamics in
the system (Lester et al. 2016a). It is expressed as

λ = lim
t→∞

1
t

ln
ℓ(t)
ℓ0

, (4.2)
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that is, based on the variation of ℓ/ℓ0 with time. We can express our results as
a function of time by employing the mean flow velocity v̄ of each case, such
that t = z/v̄. Following Eq. 4.1, we can then rewrite the Lyapunov exponent as
λ = αℓ/ℓ0 v̄. Figure 4.4d shows the obtained values for λ for all saturation degrees
and flow rates tested. We observe a strong impact of the saturation degree on
the strength of chaos, with λ increasing largely as Sw decreases for the range of
saturation degrees considered in our study. This further reinforces the strong
impact of an increase in the system’s spatial heterogeneity on the development
of chaos in the pore space. In contrast to αℓ/ℓ0 , λ displays a dependency on
the flow rate, with values ranging from 0.075 for Sw = 1.00 and q1, up to 0.994
for Sw = 0.76 and q3. In addition, the range of λ values upon variation in q
increases significantly with decreasing Sw. That is because v̄ strongly increases
with decreasing Sw. To our knowledge, this is the first time that Lyapunov
exponents for transport studies in unsaturated porous media have been reported.
Previous studies have focused exclusively on the occurrence of chaos under
fully saturated conditions. They have reported values for λ ranging from 0.18
and 0.21, which were derived from an experimental study performed with a
similar tracer injection to that implemented in our study (Heyman et al. 2021;
Heyman et al. 2020), up to values of 0.47, estimated based on the stretching rate
of material lines advected numerically on an experimentally resolved flow field
(Souzy et al. 2020). Both of these studies employed a discrete porous system
consisting of spherical glass beads, less heterogeneous than the porous medium
used in this study. We obtained Lyapunov exponents between 0.075 and 0.294
for Sw = 1.00 for the range of flow rates tested, in close agreement with the
range of values reported in Heyman et al. (2021).

Previous studies have also reported Lyapunov exponents calculated with
respect to the number of coupled pore branches bridged by the flow, λb (Carrière
2007; Lester et al. 2013), instead of time. λb can be expressed as

λb = λ∆tb, (4.3)

where ∆tb is the average residence time of the solute in a pore branch, i.e.,
locations of critical separation of fluid lines commonly found in the vicinity of
solid boundaries (Lester et al. 2016b). These are linked together according to the
system’s topology, thus largely influencing solute transport and mixing (Lester
et al. 2016a). We approximate the average branch size, ab, as function of the
average pore size, ξ̄, as ab ≈ 2ξ̄, leading to ∆tb ≈ 2ξ̄/v̄. This yields values for
λb ranging as low as 0.06 for Sw = 1.00 and q1, up to 0.13 for Sw = 0.76 and
q3, which are in line with previously reported values of λb = 0.1178 for open
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porous networks formed by randomly connected pore branches and mergers
(Lester et al. 2013). Note that this approximation is based on the average pore
size, which was defined from the pore space under full saturation. A more
rigorous derivation of λb would require an exact estimation of ab, which takes
into account the larger variability in the local branch size resulting from the
presence of air clusters of different sizes across the pore space. These are known
to block sections of the pore space, leading to the formation of stagnation zones
of low flow velocity (de Gennes 1983; Jiménez-Martínez et al. 2015; Velásquez-
Parra et al. 2022), which increase the streamlines’ tortuosity and can lead to the
formation of larger pore branches compared to those approximated based on ξ̄.
Furthermore, future investigations should also focus on the design of numerical
or experimental protocols for the uncertainty quantification of these exponents
with the goal of offering a more quantitative validation of the occurrence and
strength of chaos in porous media.

4.4 conclusions and outlook

In this work, we present a systematic study of the impact of a second immiscible
(non-wetting) phase in the pore space on the transport dynamics of an injected
solute. We have focused both on the deformation experienced by the solute’s
plume as it is advected by the underlying flow field, characterized by stretching
and folding of the plume’s front, and on the mixing dynamics (between the
injected solute and the resident solution) resulting from that deformation. The
results reveal an exponential growth with travel distance for both cases. The
occurrence of chaos, typically studied under low-diffusivity conditions (Heyman
et al. 2020; Souzy et al. 2020), persists even in the presence of diffusion-relevant
conditions for the length scale of the whole porous medium studied. In addition,
the growth rates of deformation and of mixing increase upon a decrease of
saturation, for the range of Sw values here reported. This reveals stronger
chaotic dynamics of the transported solute due to the increase in heterogeneity
arising from the presence and distribution of air within the porous space. This
translates into more efficient mixing under unsaturated conditions. In addition, a
higher mean fluid flow velocity, as expressed here by an increase in the imposed
flow rates, also leads to stronger exponential growth of the mixing volume. These
results are in line with those obtained from the reference transport experiments,
from which the images used to set up this numerical analysis were obtained,
and where an increase in the mixing efficiency both for lower Sw and larger q
under diffusion relevant conditions were reported (Velásquez-Parra et al. 2024).
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Further research should aim at understanding these dynamics at saturation
degrees even lower than those considered here, which are also of high relevance
for several natural systems. In particular, the impact of large changes in pore
space topology below the so-called critical saturation, under which the sys-
tem’s dispersivity has been shown to decrease (Raoof and Hassanizadeh 2013),
should be investigated. At very low Sw, the flow field is strongly channelized by
very dominant preferential pathways, through which most of the solute will be
transported. This could inhibit the solute’s plume deformation and the develop-
ment of chaotic dynamics in the pore space. In addition, similar investigations
under multiphase flow conditions, i.e., under the simultaneous movement of
the wetting and immiscible non-wetting phase, would further contribute to
understanding the chaotic dynamics under conditions commonly found in the
subsoil and in several other applications. We believe that the results presented
here will find application in the assessment and prediction of homogeneous and
heterogeneous reactions in unsaturated porous media. In particular, they can
be exploited in large-scale groundwater remediation (Cho et al. 2019; Mays and
Neupauer 2012; Neupauer et al. 2014) and biodegradation processes (Bagtzoglou
and Oates 2007), in which first advances on the successful application of chaotic
mixing have been reported. We believe that our results will motivate further
research of similar processes under even more complex systems and conditions.
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This appendix has been submitted as Supplementary Material to: Velásquez-Parra, A., F. Marone, M.
Griffa, & J. Jiménez-Martínez (2024). ”Chaotic transport of solutes in unsaturated porous media”. In:
Environmental Science and Technology.

This Supplementary Material presents additional results obtained from the
numerical transport simulations, with the aim of allowing further comparison
of the main outputs of the study for the different saturation degrees, Sw, and
injection flow rates, q, tested. Appendix 4.A presets detailed information on
the reconstruction and quantification of the solute’s plume deformation, while
Appendix 4.B provides details on the exponential regressions applied for most
of the numerical results of this study. These results are further summarized in
Figures 4.5 to 4.10, and include: (i) the reconstruction of the injection plume’s
deformation for all Sw, as obtained from the low-diffusivity transport simula-
tions, together with a schematic of the methodology used for its quantification,
(ii) the concentration fields obtained for every Sw at different q-values, resulting
from the simulations performed for the diffusive transport scenario, and (iii) the
evolution of the mixing volume over distance for all Sw-q combinations. Finally,
Tables 4.2 and 4.3 summarize the results of the exponential regressions.

4.a reconstruction and quantification of the solute’s plume

deformation

In order to asses the deformation of the solute plume along the main longitudinal
flow direction (z-axis, see Figure 4.5), starting from the point of injection, we
reconstructed the interfacial surface (or manifold) that outlines the plume. This
corresponds to the interface between the injected, more concentrated solution,
and the resident, less concentrated one, where both solutions meet and mix with
each other. We represent this interface by the isosurface of the concentration
scalar field characterized by a concentration, c, of 1% of the value c0 = 1.0 M
at the injection region, i.e., isosurface of 1% of concentration. This threshold
thus acts as the lowest concentration bound for the region where mixing can
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occur, helping delineate the volume occupied by the plume across the pore
space (de Anna et al. 2014). We reconstruct this isosurface using the results of
the numerical simulations performed for the low-diffusivity transport scenario,
i.e., with a diffusion coefficient DS = 1 × 10−12 m2s−1. Under these conditions,
we guarantee that the longitudinal and transversal deformation components
of the plume are preserved over the length of the sample, i.e., diffusion has
not yet smoothed out the plume’s front. This is further confirmed by the high
Péclet numbers achieved (Pe ≥ 2259 for all low-diffusivity conditions tested,
see Section 4.3, Table 4.1), reflecting the overall larger diffusive times over the
length of a pore throat compared to the corresponding advective times over
the characteristic length of a pore body. This diffusive time is even larger than
the average travel time across the entire length of the sample for all simulated
conditions. To reconstruct this isosurface, we exported the concentration field
obtained from the simulation for any of the tested Sw-q combinations, at a
spatial resolution of 11 µm in all three principal directions. We then extracted
all positions displaying a concentration in the range 0.9% − 1.1% of the injected
value c0. We created an analysis pipeline, implemented in Matlab, first to
interpolate the obtained point cloud and to generate a continuous surface. We
proceeded to correct this continuous surface by removing all locations occupied
by either the solid or the gas phase, through comparison with the tomograms of
the liquid phase. They were the images used for creating the input geometries of
the numerical simulations (Marone et al. 2020; Velásquez-Parra et al. 2024). We
finally triangulate the resulting isosurface using a moving observation window
of the same size as the spatial resolution of the concentration fields. Triangulation
also allowed the generation of single *.stl files for representing the corrected
isosurface, as shown in Figure 4.5 for all five saturation degrees tested.

The quantification of the solute’s plume deformation was performed based
on the isosurfaces generated with the aforementioned methodology. It aimed at
estimating the amount of transverse deformation experienced by the solute as it
spread and dispersed across the pore space. We performed this by slicing the
reconstructed isosurfaces with a x-y plane moving along the main longitudinal
direction (z-axis) at fixed space steps equal to the pixel resolution of the reference
tomographs (2.75 µm). This yields a set of x-y planes containing single curve
elements resulting from this intersection, which, as an ensemble, represent
the amount of transversal deformation, i.e., transverse stretching and folding,
experienced by the solute’s plume over travel distance. The length of every
single curve element is computed by counting the number of grid points in
the concentration field that form it, for which an unitary size equal to the
resolution of the concentration fields (11 µm) can be defined. The total solute



C
h

a
p
t
e
r

4

4.A solute’s plume deformation 139

z

y x

1 mm

z

y
x

1 mm z
yx

1 mm

z
yx

1 mm

Sw = 0.76

z

y x

1 mm

Sw = 1.00

Sw = 0.89

Sw = 0.92

Sw = 0.82

Figure 4.5: Solute’s plume deformation, i.e., deformation of the isosurface of the 1% of
concentration, as reconstructed from the numerical simulations performed
for the low-diffusivity transport scenario (DS = 1 × 10−12 m2s−1), for all
five saturation degrees considered in this study. In all cases, the air phase
is shown in cyan transparency, the sample boundaries are shown as a
transparent cylinder, and the inlet’s cross section at the top is shown in white,
where the injection pore is highlighted in magenta. The color assigned to
every isosurface in each panel corresponds to the color map employed in
Section 4.3 for every saturation degree. The white arrows represent the main
flow direction.
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Figure 4.6: Graphical summary of the quantification of the solute’s plume deformation,
i.e., deformation of the isosurface of the 1% of concentration. a) Isosurface
generated for the porous medium characterized by a saturation degree
Sw = 0.92. The systems bounds are depicted as a transparent cylinder, and
three x-y planes, located along z at 198 µm (purple), 1300 µm (blue), and
2642 µm (green) from the injection point, are displayed. The white arrow
represents the main flow direction. b), c), and d) show the 2D sections
resulting from the intersection of these three x-y planes with the porous
medium, respectively. They show the resulting pore space cross section as
white lines, and the intersection with the isosurface of the 1% of concentration
as single curves in the same color as the corresponding plane. The ensemble
of these single curves represent the transverse deformation of the plume
across the pore space. The length scale in panel b) is common for panels b),
c), and d).
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plume’s deformation for a given x-y plane is then the sum of the length of these
single elements. Figure 4.6 shows a schematic of the this pipeline. Figure 4.6a
depicts the isosurface generated for the porous medium with a saturation
degree Sw = 0.92, and three x-y planes located at three different z-coordinates.
Figures 4.6b to 4.6d show the 2D intersections resulting from slicing the system
with each one of these three planes. The transverse isosurface deformation on
each case is represented by the single colored curve elements located inside
some of the intersected pore bodies.

4.b exponential function regressions

The post-processing of the numerical simulations allowed the quantification of
both the deformation of the solute’s plume and of the mixing volume across the
sample. Results showed an exponential trend for the growth of both variables
as a function of the travel length along the main longitudinal flow direction.
We characterize this trend by performing exponential function regressions on
both of these data sets for all the simulated conditions, that is, for all Sw-q
combinations both for the low-diffusivity and the diffusive transport scenarios.
The exponential function can be written as

Y = βeαz, (4.4)

where β and α are the corresponding regression parameters, and Y represents the
target quantity, which, in this study, could represent the isosurface deformation
ℓ/ℓ0 or the mixing volume MV. The corresponding regression was obtained by
applying the least-squares method over a linearization of Eq. 4.4, expressed as

ln Y = ln β + αz, (4.5)

that is, considering the logarithmic values of Y. By adopting Ỹ = ln Y, the
regression parameters α and β can be written as

α =

(
n ∑n

i=1 Ỹizi − ∑n
i=1 Ỹi ∑n

i=1 zi
)(

n ∑n
i=1 z2

i − (∑n
i=1 zi)

2
) , (4.6)

β =

(
∑n

i=1 Ỹi − α ∑n
i=1 zi

)
n

, (4.7)

where n is the total number of data points per data set. We applied Eqs. 4.6
and 4.7 to the evolution over distance of: (i) the isosurface deformation ℓ/ℓ0 for
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Sw [−]
ℓ/ℓ0 MV(DS)

αℓ/ℓ0 βℓ/ℓ0 sMAPE αMV(DS) βMV(DS) sMAPE

1.00 0.0010 86.94 0.097 0.0015 4.77 0.105
0.92 0.0012 59.87 0.093 0.0029 1.14 0.111
0.89 0.0014 4.470 0.082 0.0022 3.30 0.096
0.82 0.0020 30.80 0.121 0.0042 2.04 0.203
0.76 0.0022 79.99 0.121 0.0063 1.76 0.132

Table 4.2: Summary of the exponential regression (see Eq. 4.4) performed on the results
obtained from the numerical simulations for the low-diffusivity transport
scenario, for all saturation degrees considered. Two main data sets are
included, namely, the isosurface deformation, ℓ/ℓ0, and the mixing volume,
MV(DS). Both of them did not show any dependency on the injection flow
rate, q, given the high Péclet numbers achieved, Pe(DS) > 2000. Reported
variables include the exponential regression parameters αℓ/ℓ0 and αMV(DS)

[µm−1], and βℓ/ℓ0 [-] and βMV(DS)
[×104 µm2], and also the dimensionless

symmetric Mean Absolute Percentage Error (sMAPE).

the low-diffusivity scenario, (ii) the mixing volume for the low-diffusivity sce-
nario, MV(DS), and (iii) the mixing volume for the diffusive transport scenario,
MV(DH), for all five saturation degrees considered in this study. Note that only
the latter case showed a dependency on the injection flow rate, q, given the lower
Péclet numbers achieved (see Figures 4.7 and 4.8 for a 3D visualisation of these
concentration fields for the highest and the lowest injection flow rate considered).
Therefore, the regression for MV(DH) as a function of z was applied for each
combination Sw-q, as presented in Figure 4.9. Tables 4.2 and 4.3 summarize the
regression parameters obtained for both ℓ/ℓ0 and MV for the low-diffusivity and
diffusive transport scenarios, respectively. They also summarize the values of
symmetric Mean Absolute Percentage Error (sMAPE), used as Goodness-of-Fit
measure for evaluating the regressions. It is expressed as

sMAPE =
1
n

n

∑
i=1

|Yi,f − Yi|
|Yi,f|+ |Yi|

, (4.8)

where | · | denotes the absolute value, and Yi,f is the predicted value for the
variable Yi. Note that the large spatial heterogeneity of the pore space led to
constant oscillations in the evolution of both ℓ/ℓ0 and MV(DH) over the course
of a few pores, as observed in Figures 4.2 and 4.3 in Section 4.3, which reflected
itself in the regression.
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Figure 4.7: Concentration field inside of the porous medium, expressed in units of mole
per unit of volume (M), for the saturation degrees Sw = 1.00, 0.92, and 0.89,
as obtained from the numerical simulations performed for the diffusive
transport scenario (DH = 1.929 × 10−9 m2s−1). For all cases, results for
the highest flow rate, q1 = 0.500 mm3s−1, an for the lowest one, q3 =
0.125 mm3s−1, are shown in the left and the right column, respectively. The
color bar is common to all panels, where all concentration values below 0.01
M are displayed in the darkest blue. In addition, only the solid phase is
show in grey transparency, and only three-quarters of the sample are shown
to better visualize the concentration gradients inside the sample. The white
arrows represent the main flow direction.
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Figure 4.8: Concentration field inside of the porous medium, expressed in units of
mole per unit of volume (M), for the saturation degrees Sw = 0.82 and
0.76, as obtained from the numerical simulations performed for the diffusive
transport scenario (DH = 1.929 × 10−9 m2s−1). For all cases, results for
the highest flow rate, q1 = 0.500 mm3s−1, an for the lowest one, q3 =
0.125 mm3s−1, are shown in the left and the right column, respectively. The
color bar is common to all panels, where all concentration values below 0.01
M are displayed in the darkest blue. In addition, only the solid phase is
show in grey transparency, and only three-quarters of the sample are shown
to better visualize the concentration gradients inside the sample. The white
arrows represent the main flow direction.
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Figure 4.9: Evolution of the mixing volume, MV(DH), along the main flow direction, z,
for all five saturation degrees considered in the study, based on the results
of the numerical simulations for the diffusive transport scenario defined by
DH = 1.929 × 10−9 m2s−1. Values for MV(DH) have been computed over
a x-y cross-section plane moving along z, and are displayed as markers
in every panel. The corresponding exponential regressions are shown as
continuous lines. In each panel, results for the three tested flow rates are
shown in different colors. In addition, the evolution of MV along z for the
low-diffusivity case DS is also shown for comparison in each case.
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Sw [−]

MV(DH)

q1 = 0.125 mm3s−1 q2 = 0.250 mm3s−1 q3 = 0.500 mm3s−1

αMV(DH) βMV(DH) sMAPE αMV(DH) βMV(DH) sMAPE αMV(DH) βMV(DH) sMAPE

1.00 0.0012 10.24 0.086 0.0013 7.50 0.095 0.0014 6.22 0.099
0.92 0.0023 2.62 0.111 0.0024 2.07 0.112 0.0026 1.62 0.121
0.89 0.0018 7.30 0.115 0.0018 5.98 0.099 0.0020 4.84 0.082
0.82 0.0030 5.68 0.159 0.0033 4.29 0.167 0.0035 3.40 0.181
0.76 0.0043 4.46 0.103 0.0047 3.66 0.113 0.0052 3.08 0.122

Table 4.3: Summary of the exponential regression (see Eq. 4.4) performed on the results
obtained from the numerical simulations for the diffusive transport scenario,
namely, the mixing volume, MV(DH). Results for all five saturation degrees,
Sw, and for all three injection flow rates, q1, q2, and q3, considered in the
study are reported. For each data set, the exponential regression parameters,
αMV(DH) [µm−1], and βMV(DH) [×104 µm2], together with the dimensionless
symmetric Mean Absolute Percentage Error (sMAPE), are reported.

4.c additional supplementary material

µ

µ

Figure 4.10: Comparison between the computed exponential regression parameters αℓ/ℓ0
and αMV(DS)

, obtained from the isosurface deformation ℓ/ℓ0, and the mixing
volume, MV(DS), data sets for every saturation degree, respectively. Both
data sets are linked to the low-diffusivity transport scenario. The dashed
line corresponds to the linear equation of unitary slope. Results expose
the large variation induced on the exponential growth rate of the mixing
volume over travel distance upon a small change in the corresponding
growth rate of the isosurface deformation.
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5
D I S C U S S I O N , C O N C L U S I O N S A N D O U T L O O K

This chapter summarizes and discusses the key findings of this Doctoral thesis,
highlighting the main scientific contributions leading to answering the research
questions proposed in Chapter 1 and positioning them in the context of the
current research in the field. In addition, future research ideas based on these
main outputs and on the state-of-the-art summarized in Chapter 1 are discussed.

5.1 general discussion

5.1.1 Control of liquid phase saturation on both fluid flow and solute dispersion in
porous media

Research Question No. 1 was addressed primarily based on the methodology
and results outlined in Chapter 2. The performed numerical analysis of fluid flow
in a 2.5D porous medium at different saturation degrees (Sw = 1.00, 0.83, 0.77
and 0.71) allowed identifying the main mechanisms shaping the flow field and
controlling solute dispersion under unsaturated conditions. The well-known
double flow structure (de Gennes 1983; Holzner et al. 2015), characterized by the
combined presence in the pore space of a backbone of preferential flow and dead-
end regions of low velocity, was observed in our studies and showed to be clearly
enhanced at lower saturation. This enhancement was mainly visible in a stronger
backbone formation, as hinted from the larger flow velocities displayed in the
PDF of Eulerian velocities (pE(v)) with lower Sw, and in larger dead-end regions,
as revealed in the sharp transition in the power-law scaling of the low-velocity
magnitudes observed in pE(v) after only a slight desaturation. In particular,
these low-velocity zones were identified as a key morphological feature shaping
the flow and transport response in the system, and were characterized by the
PDF of the area of dead-end regions in all tested systems. Furthermore, particle
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tracking simulations also exposed the non-stagnant nature of these regions, since
particles reaching them still experienced purely advective flow motions over
the time-scale of the analysis. This agrees with more recent studies that have
exposed the vortex-like flow patterns inside these regions (Bordoloi et al. 2022).
As a consequence of this highly heterogeneous flow field, particle spreading
exhibited super-diffusive non-Fickian scalings over more than five time-decades
for all tested conditions. These power-law scalings were also impacted upon
changes in saturation, increasing from a quasi-Fickian scaling for Sw = 1.00 up
to a quasi-ballistic trend for Sw = 0.71. This mechanism, by which the saturation
degree conditions the formation of high- and low-velocity regions, consequently
shaping the flow and transport response in the system, was exploited in the
formulation of a theoretical framework for the prediction of the flow distribution
and, ultimately, of the dispersion scalings as a function of saturation. This
theoretical model stemmed from the simple hypothesis that the entire PDF of
flow rates across the system, pQ(q), must originate from the added contributions
of the backbone, pb

Q(q), and of the dead-ends, pd
Q(q), whose combination is

controlled by the ratio of the total area occupied by dead-ends relative to the
entire pore space area. This basic linear combination, expanded with both power-
law definitions for the distribution of dead-end areas and an analytical solution
for describing the velocity profile within a pore throat, allowed the successful
prediction of pE(v) and pQ(q) as a function of saturation. Its main feature lies in
its dependency on only a few parameters describing the pore space morphology,
such as the average pore throat width, the relative occupancy of dead-ends in the
pore space, and the scaling of the dead-ends area PDF. Therefore, it represents a
major contribution to the prediction of flow in unsaturated porous media from
structural properties of the pore space. The model’s versatility is highlighted
in its application in combination with a Continuous Time Random Walk model
(Berkowitz et al. 2006; Cortis and Berkowitz 2004; Dentz et al. 2016) for the
successful prediction of the scaling of superdiffusive particle dispersion as a
function of saturation. The aforementioned large variation of the latter from a
quasi-Fickian to a quasi-ballistic trend was very well captured by the proposed
formulation.

The results here presented consider purely advective transport, hence allow-
ing for particles trapped in dead-end regions to only leave such zones because
of the action of very low flow velocities. In practice, the action of diffusion
would eventually control the long-term response of the system by introducing
low-velocity cutoffs that would define the residence time of particles in such
locations (de Gennes 1983). As a consequence, the long-time dispersion scaling
for all tested saturation degrees will eventually reach a Fickian condition. Never-
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theless, the non-Fickian dispersion regimes here presented remain relevant over
considerable time scales, especially as saturation decreases and the associated
heterogeneous flow field allows for larger solute dispersion to develop over a
given time scale. This has strong implications for additional processes, such as
chemical reactions. For cases characterized by reaction times larger than the
solute advective time over a characteristic length, the strong solute dispersion
achieved at early and middle time scales would increase the interface where
reactants would meet, conditioning the reaction product formation, both for
homogeneous (liquid-liquid) and heterogeneous (liquid-solid) reactions. In the
case of faster reactions, the enhanced dispersion would effectively lead to a
larger spreading of the reaction front (Markale et al. 2021). We also hypothesize
changes in the obtained trends when reaching very low saturation degrees,
following previous studies that have hinted at a decrease in dispersivity below a
so-called critical saturation (Raoof and Hassanizadeh 2013; Zhuang et al. 2021).
Very low Sw values would dramatically enhance the flow separation in the sys-
tem in the form of larger flow backbones and dead-ends, causing the pore space
to resemble a fully saturated system, in which both flow and advective transport
are mainly occurring along a few clearly differentiated pathways. Nevertheless,
the power-law PDF of dead-end areas obtained in our study is expected to
persist under such low saturation conditions. This is suggested by studies that
have addressed the non-wetting phase cluster size distributions for systems
with values of saturation as low as Sw = 0.11, which preserve the power-law
dependency identified also at higher Sw values (Iglauer et al. 2012; Iglauer et al.
2010; Scheffer et al. 2021). Moreover, the proposed theoretical framework excels
by its versatility in case a different functional form is identified, since it provides
the means to quantify and to integrate such new dependency in the flow and
transport prediction.

5.1.2 Control of saturation on solute mixing and solute plume deformation

Chapter 2 dealt with the study of transport from a purely advective approach,
which allowed gaining a mechanistic understanding of the impact of an ad-
ditional immiscible gas phase in the pore space on the liquid flow field, and
ultimately on the dispersion of a solute in the liquid phase. To provide a full de-
scription of solute transport, we focused our attention on the process of mixing
in the remaining of the doctoral thesis, keeping in mind the insights inferred
from our 2.5D study. In particular, Research Question No. 2 is addressed based
on the experimental and numerical results presented and discussed in Chap-
ter 3. Synchrotron X-ray micro-tomography allowed observing experimentally
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the evolution in time of a miscible solute injected in a nature-like porous sys-
tem at different saturation degrees (Sw = 0.92, 0.89, 0.82, 0.76, and 0.75) and
at different solute flow rates (q = 0.125, 0.25, and 0.50 mm3s−1). The results
evidenced the enhancement of the mixing efficiency in the system upon both a
decrease in the saturation degree and an increase in the injection flow rate. The
same dependency was observed in the deformation experienced by the solute
front, which directly conditions the rate of mixing, as it represents the surface
where the diffusive mass flux between the miscible solutions occurs. This close
interplay between solute front deformation and mixing rates matches previous
findings reported on 2.5D fully saturated (de Anna et al. 2014) and unsaturated
systems (Jiménez-Martínez et al. 2015). It was also found in the results presented
in Chapter 4 based on numerical transport simulations performed on the same
geometries here discussed, albeit after adopting a punctual injection. The latter
depicted an increase in the rate of growth of the mixing volume upon a decrease
in saturation, which was also reflected in a similar trend for the growth rate of
plume’s transversal deformation over travel distance. This interplay also very
well reflects the insights gained from Chapter 2 on the impact of saturation on
the flow field and solute dispersion. Lower saturation enhances solute dispersion
through the stronger formation of backbones of preferential flow and dead-ends
of low velocity, as hinted from the reconstructed experimental concentration
fields and confirmed by the corresponding Stokes flow numerical simulations.
This induces a larger solute front deformation, resulting in a larger mixing
interface and, thus, in a faster smoothing out of the concentration gradients
formed in the pore space. As a consequence of this mechanism, systems tested
at the same injection flow rate showcased an overall smaller segregation of the
mixing fluids, i.e., a smaller variance of the concentration field, upon a decrease
in Sw. The control of the residence time of the solute in the system on mixing
was visible when comparing experiments performed at the same Sw but at
different q. Larger injection flow rates reduced the residence time of the solute
in the sample, allowing for a larger solute dispersion before diffusion effectively
smoothed out concentration differences over a measurable characteristic length.
This reflected itself in a larger segregation between both miscible fluids at early
times compared with lower q-values, which then dropped faster towards a fully
mixed condition as diffusion took over.

The topological investigation carried out on the tested porous media helped
unveil the physical mechanisms behind the experimental observations, as moti-
vated by recent studies concluding on the dominant role of pore-space topology
on shaping flow and transport in porous systems (Lester et al. 2013; Lester
et al. 2016). This was based on both an analysis of the tomographic datasets
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generated for the liquid phase only, and on the numerical Stokes flow simula-
tions performed for every condition tested experimentally. This investigation
exposed the strong impact of the pore space heterogeneity on solute transport.
Lower saturation translated into changes in the pore space connectivity through
the formation of new redundant loops, i.e., possible pathways connecting two
locations in the pore space (Vogel 2002), as reflected in the decreasing Euler
characteristic, χ, upon reduction in Sw. This improved the system’s capac-
ity to join initially separated entities through the formation of more tortuous
pathways, leading to enhanced streamlines convergence and explaining the
stronger backbone formation characteristic of low saturation degrees. Further
analysis into this mechanism led to the identification of an enhancement of
secondary flow motions in the pore space as a result of this increased conver-
gence. This was revealed by quantification of the helicity density across the
system, using the velocity and vorticity fields generated from the numerical flow
simulations. Results revealed a linear increase in the average absolute helicity
density, ⟨|h|⟩, in the pore space with decreasing Sw, for the range of saturation
degrees considered in our study. Moreover, an increase in the injection flow
rate also resulted in enhanced ⟨|h|⟩. These results led to the conclusion that
the increased convergence of streamlines promotes the occurrence of helicity
in the pore space. The numerical analysis also indicated that large values of
⟨|h|⟩ were linked with locations close to air clusters, where strong streamline
deformation in the form of folding and braiding was observed. This hinted at
the local occurrence of different fluid flow deformation mechanisms across the
system in relation to the increased heterogeneity added by the air phase. The
quantification of vortex identification criteria, such as the Q-criterion (Hunt et al.
1988), allowed addressing this aspect, with the aim of explaining the enhanced
solute plume deformation observed experimentally at lower Sw. Q-criterion
computations showed both a linear increase in the average positive Q values
across the system, i.e., vorticity-dominated deformation, and a linear decrease in
the average negative Q, i.e., shear-dominated deformation, at lower saturation
degrees, for the range of Sw considered in our study. This translates into an
enhancement of both the vorticity and the shear strain rate component of the
local deformation tensor as a result of the increased heterogeneity in the system.
However, the increase in the latter occurred at a faster rate, indicating a more
dominant role of shear in inducing flow and solute deformation in the pore
space. This was also inferred from the PDF of Q values in the liquid phase,
which depicted a distribution skewed towards negative values for all conditions
tested. Nevertheless, this skewness reduced at the lowest Sw tested, hinting at
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the increased importance of rotational deformation, i.e., in the form of folding
and braiding, as saturation keeps decreasing.

The results reported in Chapter 3 helped answer Research Question No. 2 by
providing an extensive investigation of the physical mechanisms behind solute
mixing in unsaturated porous media. In summary, the increase in heterogeneity
in the pore space at lower saturation degrees altered the connectivity in the
system, enhancing streamlines convergence and promoting the backbone for-
mation. The resulting larger tortuosity and more twisted streamlines promoted
helicity across the system, with large values of helicity density linked to intense
braiding and folding, as observed locally along streamlines. This suggested the
co-existence of different deformation mechanisms in the pore space, which was
quantified through Q-criterion computations. Results revealed a larger contribu-
tion of shear to the overall deformation of the solute, regardless of saturation,
and an increasing importance of vorticity-dominated deformation as saturation
decreased. This interplay explains the larger solute plume deformation quanti-
fied from the experiments, and thus, the enhanced mixing efficiency measured
at lower Sw. Similar investigations on fully saturated conditions at the Darcy
scale had reported either a dominant role of shear (de Barros et al. 2012) or of
vorticity (Chiogna et al. 2016) on both solute deformation and enhanced dilution.
Our results point out a combined effect of both deformation mechanisms, as also
suggested from studies performed at large scale (Geng et al. 2020), highlighting
the role of pore-scale processes driving large-scale observations.

5.1.3 Chaotic advection and chaotic mixing in unsaturated porous media

The folding and braiding patterns observed in the streamlines generated from
the numerical flow simulations discussed in Section 5.1.2 suggested the occur-
rence of chaotic dynamics on the spreading and mixing of the solute plume.
These two types of deformation have been closely associated with non-zero
helicity fields (Aref et al. 2017) and with the occurrence of exponential stretching
of traverse materials lines (Metcalfe et al. 2022). In addition, chaotic dynamics
have been shown to be inherent to the high topological complexity of porous
media (Lester et al. 2013). However, the solute plume deformation quantified
from the synchrotron X-ray micro-tomography experiments and shown in Chap-
ter 3 depicted an algebraic scaling over time. This is explained by the type of
solute injection carried out in these experiments. A mass entry in the system
distributed over the entire inlet’s cross-section constrained the solute plume’s
front deformation analysis from the experimental data to the quantification of
mainly longitudinal components of deformation. As some reference studies have
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suggested (Heyman et al. 2020; Lester et al. 2013; Metcalfe et al. 2022; Yu et al.
2015), transversal plume deformation and lateral mass exchange are relevant
elements to be considered in chaos investigations.

To answer Research Question No. 3 and to provide a full picture of the
mechanisms leading to enhanced mixing in unsaturated porous media, we
complemented our experimental study with steady-state numerical simulations
of flow and transport (see Chapter 4). They addressed the aforementioned
shortcoming in our experimental analysis by implementing a punctual injection
towards the middle of the inlet, allowing the quantification of the lateral de-
formation component of the plume (Heyman et al. 2020). The latter was also
achieved by adopting low-diffusivity conditions, implemented numerically by
choosing a low diffusion coefficient for the mixing solutions. Results indicated
the occurrence of exponential growth rates for the solute’s plume deformation
over travel distance. This rate was enhanced by a reduction in the saturation de-
gree of the system, revealing not only the occurrence of chaotic advection under
unsaturated conditions, but also the enhancement of such dynamics upon loss of
saturation. Using the mixing volume, MV, as a proxy for mixing quantification,
results revealed the same exponential growth scaling for the evolution of MV

over travel distance. This scaling was sustained even under diffusion-relevant
conditions for the dimensions of the tested domain, which were investigated
in a second set of simulations by mimicking the conditions of the reference
experiments (see Chapter 3). In addition, the exponential growth rate of MV

also increased at lower Sw. These results confirmed the impact of the pore space
heterogeneity in inducing chaotic dynamics in the solute’s mixing. Adopting
diffusion-relevant conditions, i.e., low Péclet numbers, also allowed addressing
the dependency of the chaotic mixing dynamics on the imposed flow condi-
tions. For systems at the same saturation degree, results showed an increasing
exponential growth rate of the mixing volume over distance with increasing
flow rate. Overall, the numerical analysis of chaos further confirmed the same
dependencies observed from the experimental work discussed in Chapter 3,
that is, both mixing and solute deformation are enhanced upon both a decrease
in saturation and an increase in the injection flow rate. The dominant role of
the pore space heterogeneity in controlling the transport response is further
highlighted in these results, specifically in how the short-ranged increase in the
exponential growth rate of the solute plume’s deformation as Sw decreased led
to a far larger increase in the growth rate of the mixing volume.

The quantification of the solute plume’s deformation under low-diffusivity
conditions allowed yielding values for the Lyapunov exponents, λ, expressed
as a function of time. They served as a direct measure of the strength of chaos
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in the system and allowed comparing some of our results with those already
reported in literature (Heyman et al. 2021; Heyman et al. 2020; Lester et al. 2013;
Souzy et al. 2020). In contrast to the growth rate of solute plume deformation
over distance, λ displayed a stronger increase upon a reduction in the saturation
degree and it showed a dependency on the injection flow rate, increasing with
larger q under constant saturation. Our results indicated the occurrence of
chaos already at Péclet numbers smaller than those reported as lower bound
for the occurrence of incomplete pore-scale mixing and chaotic advection, as
defined from a simplified porous system composed of spherical glass beads
(Heyman et al. 2020). This suggested the strong impact of the intrinsic pore
space heterogeneity of the porous medium, which in our study had a closer
resemblance to a natural porous system than in the reference studies (Heyman
et al. 2020; Souzy et al. 2020), on the development of this chaotic dynamics. To
our knowledge, this study represents the first time that a systematic study of
the impact of saturation on the strength of chaotic dynamics in porous systems
is reported. The obtained results further expand our understanding of the
mechanisms behind solute transport and mixing in such conditions, and could
support the application of chaotic mixing on large-scale problems involving the
unsaturated regions of soils, such as groundwater remediation (Cho et al. 2019;
Mays and Neupauer 2012; Neupauer et al. 2014) and biodegradation (Bagtzoglou
and Oates 2007).

5.2 conclusions and contributions to the research field

This doctoral thesis presents and discusses exciting results in the study of flow
and transport in unsaturated porous media, which contribute largely to the
current state of the research in the field. The focus of the present thesis on both
the physical mechanisms controlling these processes and their quantification
provides the means for extending their application beyond the particular porous
systems here tested. This includes for example fully saturated systems; porous
systems also hosting a liquid and a gas phase in the pore space, albeit at lower
degrees of saturation; or porous media containing fluids different than those
explored in this study both for the non-wetting phase and the wetting phase,
such as oil-brine systems relevant in CO2 sequestration and injection (Jiménez-
Martínez et al. 2016), or non-Newtonian fluids often encountered in industrial
and medical applications (Seybold et al. 2021).

In the context of fluid flow analyses, some studies have attempted to effectively
predict flow redistribution in porous media (Alim et al. 2017; de Anna et al. 2017;
Holzner et al. 2015), with no particular studies addressing the case of unsaturated
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conditions. The theoretical model shown in Chapter 2 attempts to bridge this
gap by providing a theoretical framework for the prediction of flow and velocity
probability density functions based on morphological characteristics of the pore
space, among other parameters reflecting the control of heterogeneity on flow. It
also outlines the physical mechanisms controlling such flow distributions, which
serve as a foundation for further investigations that might focus on porous media
of different characteristics and on different conditions than those tested here,
i.e., different pore size distributions, lower porosity, or lower saturation degrees.
This thesis also expands on the successful application of well-established models,
such as the Continuous Time Random Walk model (Berkowitz et al. 2006; Cortis
and Berkowitz 2004; Dentz et al. 2016), for the prediction of solute advective
transport in unsaturated systems.

The present work also offers important advances in the mechanistic under-
standing of mixing in unsaturated porous media. In particular, the control of
liquid phase saturation on both the occurrence and the strength of chaos has
not been reported before. Furthermore, both the enhancement of secondary
flow motions, i.e., helical flow, and the interplay between shear and rotational
deformation components enhancing solute plume deformation as a function of
saturation provide an integral description of the impact of pore space hetero-
geneity on flow and transport. These findings can find wider application across
different scales. This includes millifluidic and/or pore-scale studies addressing
additional physical processes, such as homogeneous or heterogeneous chemical
reactions (Aquino et al. 2023; Markale et al. 2021) and solute transport under
multiphase flow conditions, i.e., with simultaneous movement of several phases
within the pore space. Also the optimization in the design of static mixers, often
operated under laminar flow conditions (Valdés et al. 2022), and large-scale
applications, such as groundwater remediation (Mays and Neupauer 2012; Neu-
pauer et al. 2014) and biodegradation (Bagtzoglou and Oates 2007), in which
the optimization of the mixing efficiency in the subsoil is desired, could benefit
from the findings here reported.

Finally, this doctoral thesis presents a very important contribution to the use
of synchrotron X-ray micro-tomography for the study of flow and transport
in porous media. The high temporal resolutions achieved by the use of high-
energy synchrotron radiation enabled the real-time imaging of solute spreading
and mixing, contributing to the very small number of studies addressing such
processes with similar methodologies (Chen et al. 2021; Hasan et al. 2020).
Our experimental protocol could also be extended to studies carried out in
laboratory X-ray facilities, in which high-resolution steady-state analysis could
also be performed based on the current technical advances in X-ray imaging.
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Additionally, the image analysis pipeline outlined in Chapter 3 could find wider
application in the post-processing of synchrotron data involving the imaging
of several material phases, being effectively implemented using open-source
software. Moreover, this study further showcases the compatibility of combined
experimental and numerical investigations for an integral approach to the study
of complex physical processes in challenging natural and industrial systems.

5.3 outlook and possible future research directions

The investigation presented in this doctoral thesis opens the door for the study
of additional research questions and processes of high environmental and in-
dustrial relevance in natural and industrial porous media. This relates both
to the scientific output presented here and to the experimental and numerical
tools successfully applied for the observation and quantification of flow and
transport under unsaturated conditions. The results presented in Chapters 2, 3,
and 4 shared the commonality of investigating these processes in systems with
saturation degrees as low as Sw ∼ 0.70. Only a few similar transport studies
at the pore scale have achieved lower saturation values. Markale et al. (2021)
report values as low as 0.43 on an experimental investigation using Magnetic
Resonance Imaging, whereas Hasan et al. (2020) achieved saturation degrees as
low as 0.53 also using synchrotron X-ray micro-tomography, albeit on a simpler
porous medium composed of spherical glass beads. Even though the saturation
degree achieved experimentally is ultimately conditioned by the morphological
characteristics of the tested porous medium, as its percolation threshold is ap-
proached, the study of saturation degrees lower than those reported here could
provide additional insights on flow and transport on conditions very relevant
in nature and industry. In particular, numerical and experimental investigations
have reported a decrease in dispersivity below a so-called critical saturation
(Raoof and Hassanizadeh 2013; Zhuang et al. 2021), which could translate into
changes in the trends and scalings reported in this work. Such an investigation
would benefit from the adoption of 3D conditions, in which potentially lower
Sw-values could be reached. This would require the implementation of opti-
mized techniques to induce desaturation in the sample, potentially different
from those outlined in the experimental protocol of this study. Pore-scale studies
using synchrotron X-ray micro-tomography for two-phase flow investigations
(Armstrong et al. 2016; Schlüter et al. 2016) have reported on the use of fractional
flow during the saturation phase, allowing reaching saturation values as low as
Sw ∼ 0.10. In addition, methods derived from soil triaxial testing to control the
sample’s degree of saturation based on a combination of back pressure, applied
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directly to the pore volume, and an isotropic cell pressure, applied externally
on the sample, could be further explored, since they would allow knowing the
exact saturation degree of the tested sample prior to the injection of the solute.

An additional common feature of the experimental and numerical analyses
presented here is the consideration of the non-wetting gas (air) phase as a fixed
additional obstacle for flow, altering the heterogeneity of the system. This is a
condition commonly found on deeper layers of the unsaturated region of soils,
which are less disturbed by atmospheric processes. However, the consideration
of multiphase flow conditions, in which all fluid phases hosted in the pore
space move simultaneously, represents a natural progression from the study
here presented. This would mimic the behavior of upper soil layers shortly
after rain following dry periods, in which the incoming liquid phase would
interact with and displace the existing air phase. It also represents processes
commonly found in deeper aquifers, where CO2 sequestration is commonly
carried out, albeit in the presence of an oil phase. Several of the research
questions here addressed remain open for the case of multiphase flow. The
simultaneous movement of both fluid phases would induce transient conditions
on the heterogeneity of the system, resulting in different fluid flow dynamics
than those described here. This will potentially lead to stronger intermittent
flow across the pore space, which is known to dominate the transport response
of the system (de Anna et al. 2013; Kang et al. 2014). As a consequence, both the
solute deformation dynamics and the resulting mixing efficiency in the system
would likely be further enhanced. Particular attention should be given to the
strength of chaos under such conditions, given the additional degree of freedom
associated with locally transient flow regimes. Addressing these research gaps,
either through numerical or experimental 2.5D or 3D studies, also opens the
door for the investigation of chemical reactions between the different material
phases in the system in the presence of simultaneously moving fluid phases.
This would allow assessing additional processes directly derived from solute
mixing, providing also an indirect proxy for mixing quantification and solute
plume deformation, and expanding on previous research both on homogeneous
(Markale et al. 2021) and heterogeneous (Aquino et al. 2023; Markale et al. 2022)
chemical reactions. The investigations proposed here are linked to numerous
experimental and numerical challenges. From an experimental point of view,
the application of techniques such as X-ray micro-tomography would require
extensive preliminary work for the proper selection of the injected wetting and
non-wetting phases, and of their corresponding concentrations, such that the
contrast between all imaged material phases is preserved over time. Other types
of imaging techniques such as MRI would be required for reactive transport
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experiments, as previous studies have successfully implemented (Markale et al.
2021). Additional tuning parameters include the ratio between the injection flow
rates of both fluid phases, such that the target processes can be captured within
the temporal resolutions available from the experimental setup. This applies
also to the selection of adequate reaction kinetics in the case of reactive transport
experiments. The high computational demands for the numerical investigation
of multiphase flow on 3D systems should also be considered.

Further research should also aim at the up-scaling and/or application of
some of the findings here reported on large-scale systems. For the particular
case of chaotic advection and chaotic mixing, some studies have reported ad-
vances on the generation of chaotic flow conditions in the subsoil from large-scale
investigations, aimed both at groundwater remediation (Mays and Neupauer
2012; Neupauer et al. 2014) and at biodegradation (Bagtzoglou and Oates 2007).
The numerical and experimental investigations performed in these studies have
relied on the assumption of fully saturated conditions. The enhancement in
the strength of chaos at lower saturation degrees reported here could motivate
further research at the field scale aimed at taking advantage of the unsaturated
region of soils for the aforementioned applications.

The achieved goal of this doctoral thesis, consisting of providing a mechanistic
understanding of the control of saturation on both fluid flow and solute transport
and mixing in porous media, has provided valuable tools for carrying out similar
investigations across spatial scales and will likely motivate further research of
related processes on other complex systems of high environmental and industrial
relevance.
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