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Abstract
The logistic regression estimator is known to inflate the magnitude of its coef-
ficients if the sample size n is small, the dimension p is (moderately) large
or the signal-to-noise ratio 1/σ is large (probabilities of observing a label are
close to 0 or 1). With this in mind, we study the logistic regression estimator
with p � n/ log n, assuming Gaussian covariates and labels generated by the
Gaussian link function, with a mild optimization constraint on the estima-
tor’s length to ensure existence. We provide finite sample guarantees for its
direction, which serves as a classifier, and its Euclidean norm, which is an
estimator for the signal-to-noise ratio. We distinguish between two regimes.
In the low-noise/small-sample regime (σ � (p logn)/n), we show that the
estimator’s direction (and consequentially the classification error) achieve
the rate (p log n)/n - up to the log term as if the problem was noiseless. In
this case, the norm of the estimator is at least of order n/(p logn). If instead
(p log n)/n � σ � 1, the estimator’s direction achieves the rate

√
σp log n/n,

whereas its norm converges to the true norm at the rate
√

p logn/(nσ3). As
a corollary, the data are not linearly separable with high probability in this
regime. In either regime, logistic regression provides a competitive classifier.

AMS (2000) subject classification. Primary Statistics; Secondary Linear
inference regression 62J12, Generalized linear models.
Keywords and phrases. Binary classification, probit, ridge regularization,
halfspace learning, small sample, nonasymptotic.

1 Introduction

We study a binary classification problem, where the covariates xi are stan-
dard Gaussian and the labels yi stem from a probit model. More precisely,
let x1, . . . , xn be independent copies of a standard Gaussian random vari-
able taking values in R

p. The results readily generalize to arbitrary covari-
ance matrices Σ. Fix an unknown β∗ ∈ Sp−1 := {β ∈ R

p : ‖β‖2 = 1}, and
for i ∈ {1, . . . , n} define yi := sign(xT

i β∗ + σεi), where εi are independent
standard Gaussians, and σ > 0 is a fixed, unknown parameter - the noise-to-
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signal ratio. In the statistics literature, the domain of the labels yi is often
{0, 1}. Moreover, it is common to fix σ = 1 and allow the length of β∗ to be
unknown. This leads to the same model, taking ‖β∗‖2 := 1/σ. If both 1/σ
and ‖β∗‖2 were unknown, the model would not be identifiable. Those two
quantities should be understood as a single parameter, the signal-to-noise
ratio, in our case 1/σ.

To make the parameter σ more tangible, we mention that it determines
the probability of observing a ‘wrong’ label, i.e. sign(xT β∗) �= y. For exam-
ple, if σ = 1, then P[y �= sign(xT β∗)] = 1/4. Moreover, for small σ, the
probability of observing a wrong label behaves as σ up to multiplicative
constants.

The classical choice to estimate β∗/σ would be maximum-likelihood esti-
mation, the probit model, which is a generalized linear model (McCullagh
and Nelder, 1989). The logistic regression estimator has very nice mathe-
matical properties, which pair well with the probit model. For this reason,
we will use it to estimate β∗ and σ. The logistic regression estimator γ̂ is a
solution to the following objective:

arg min
γ∈Rp

n∑

i=1

log(1 + exp(−yix
T
i γ)). (1)

The estimator γ̂ can be decomposed into its length τ̂ := ‖γ̂‖2, and
its direction β̂ := γ̂/‖γ̂‖2. The label predicted by γ̂ at a point x ∈ R

p is
sign(xT γ̂), which coincides with sign(xT β̂). In other words, the classifica-
tion error is only dependent on the orientation β̂. On the other hand, τ̂ serves
as a natural estimate of the signal-to-noise ratio 1/σ.

Logistic regression is perhaps the canonical classification method in
statistics, it has been studied for several decades. Nonetheless, it has not
ceased to challenge and surprise theoreticians and practitioners alike. In the
following, we look into a few problems that this setup poses.

1.1 Problems of Logistic Regression
1.1.1 Linear Separation. The first problem which is encountered in

theory and practice is linear separation. We say that the data are linearly
separable, if there exists a γ ∈ R

p, such that for all i ∈ {1, . . . , n}, yix
T
i γ > 0.

In this case, Eq. 1 has no solution in R
p. To see this, take any γ′ which sep-

arates the data. As we multiply γ′ with a positive scalar tending to infinity,
the loss function in Eq. 1 vanishes.

To develop a rigorous non-asymptotic analysis of logistic regression, one
must specify how linear separation is dealt with. If one is solely interested
in estimating the direction β∗ and not the signal-to-noise ratio 1/σ, one can
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allow for infinite values ‖γ̂‖2 → ∞. In this case, given linear separation,
the set of solutions to Eq. 1 are all estimators, which separate the data.
Alternatively, one can modify the objective (1). For example, Agresti (2015)
suggests Bayesian methods or penalized likelihood functions. We constrain
the estimator to a Euclidean ball of radius M > 0, BM := {γ ∈ R

p : ‖γ‖2 ≤
M}:

arg min
γ∈BM

n∑

i=1

log(1 + exp(−yix
T
i γ)). (2)

In our analysis, we allow the radius M to be arbitrarily large - but finite.
Consequentially, we could choose M so large, that it coincides with the
unconstrained objective (1), but for the case where the data are linearly sepa-
rable. This is the least intrusive modification of the logistic regression, which
still enforces that it takes finite values with probability 1. By Lagrangian
duality, there exists a λ ≥ 0, such that (1) with ridge penalty +λ‖γ‖2

2 coin-
cides with Eq. 2 (this is also known as �2- or Tikhonov-regularization). When-
ever λ > 0, the coefficients of the ridge estimator γ̂ are biased towards zero,
which is not the case for Eq. 2. On the other hand, if λ = 0, we have Eq. 1,
and the problem of linear separation appears again. Hence, we prefer (2),
the constrained form.

In some settings, linear separation occurs with vanishingly small proba-
bility and hence can be neglected. This is the case in the classical asymp-
totic literature (van der Vaart, 2000). In the high-dimensional asymptotic
setting, where both p and n tend to infinity, Candès and Sur (2020) have
shown that the data are linearly separable, if and only if the ratio p/n
in the limit is lower than a constant, depending on the signal-to-noise
ratio 1/σ. They study logistic noise. This result has been generalized in
Montanari et al. (2019), which for example includes the Gaussian noise model
(probit). For finite n and p, Cover (1965) showed that if there is no signal
(y and x are independent, i.e. σ → ∞), that the probability of linear sep-
aration is exactly 2n−1

∑p−1
k=0

(
n−1

k

)
. However, for finite n the literature on

linear separability in generalized linear models is still lacking.
Although we are primarily concerned with providing guarantees for

the estimated signal strength ‖γ̂‖2 and the estimated direction γ̂/‖γ̂‖2,
our results allow conclusions for the linear separation problem. From
Theorem 2.1.1, we derive an upper bound for the probability of linear sep-
aration. Namely, if p log(n)/n � σ � 1, the data are not linearly separable
with large probability (see Proposition 2.3.1).
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1.1.2 Overestimating Coefficient Magnitude. Logistic regression
appears to overestimate the signal-to-noise ratio 1/σ in some settings. In
other words, the magnitude of the coefficients |γ̂j | is too large, there is a
bias away from zero. For example, this was observed in Nemes et al. (2009)
in a simulation where this upward bias was especially present for smaller
sample sizes. A similar observation was made in a simulation in Sur and
Candès (2019). They performed a simulation with n = 4000, p = 800 and
σ = 1/5 (using logistic noise). Moreover, they proved that under some regu-
larity conditions in a high-dimensional asymptotic setting (letting n, p → ∞
at a constant ratio), the estimator γ̂ does not converge to β∗/σ, but instead
fluctuates around α∗β∗/σ, where α∗ > 1. In other words, the magnitude of
the coefficients is overestimated.

In Theorem 2.2.1, we see that if σ � (p log n)/n, the estimate of the
signal-to-noise ratio τ̂ is at least of order n/(p log n), although it may be
larger. On the other hand, we see in Theorem 2.1.1 that if σ � (p log n)/n,
the deviation of τ̂ from its target is of order no larger than

√
(p log n)/(nσ3).

Our findings suggest that in the regime σ � (p log n)/n the magnitude of
the coefficients can be reliably estimated.

1.1.3 Inadequacy of Classical Asymptotic Approximations. It is known
that as n → ∞, for fixed p and σ, the logistic regression estimator converges
in distribution to a normally distributed random variable. This is exploited
in statistical software, such as the function glm in the R-package ‘stats’, to
provide approximate p-values.

However, classical asymptotic approximations can be very poor in logistic
regression. A famous early reference for this is Hauck Jr and Donner (1977),
who showed that the Wald statistic is unreliable if the signal-to-noise ratio
is large. A more recent example is Candès et al. (2016), who observed in a
simulation with n = 500, p = 200 and no signal (y independent of x, in our
language σ → ∞), that the p-values from asymptotic maximum likelihood
theory for the global null-hypothesis are left-skewed. The same observation
was made in Sur and Candès (2019) with n = 4000, p = 800.

An attempt to overcome these shortcomings is to use a different regime,
such as high dimensional asymptotics (Montanari et al., 2019, Sur and
Candès, 2019). While in this regime, the bias of the coefficients becomes
visible, it only applies when the maximum likelihood estimator exists asymp-
totically almost surely, i.e. when the data are not linearly separable. For a
finite number of samples, however, there is no way around dealing with pos-
sible linear separability.
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1.2 Related Results The literature for finite sample guarantees for
unregularized logistic regression in the regime p < n is still lacking, in par-
ticular for the case of small noise σ. We consider the case p 	 n/ log n. There
are finite sample results for logistic regression in high dimensions p > n (with
Lasso penalty, e.g. van de Geer (2008), and �0-penalty, e.g. Abramovich and
Grinshtein (2018)).

In the noiseless case, if the radius M is large enough, the logistic regres-
sion estimator always separates the data. Hence, it is also a minimizer of the
0/1-loss. It is known that in the noiseless case, the optimal rate for estimat-
ing β∗ is p/n (Long, 1995), which is achieved by any such minimizer of the
0/1-loss (Long, 2003). We show that logistic regression obtains the same rate
- up to the log term as if the problem were noiseless - even in the presence
of a little noise, namely σ � (p log n)/n. If instead (p log n)/n � σ � 1, the
classification error achieves the parametric rate

√
(σp log n)/n.

Some state-of-the-art finite-sample rates for logistic regression can be
obtained in Ostrovskii and Bach (2021).1 They show the rate

√
(1 + 1/σ3)p/n

for ‖γ̂ − γ∗‖2. In the regime 1 � 1/σ � n/(p log n), we obtain the same rate
with a logarithmic factor (see Theorem 2.1.1 and Lemma 3.3.1). In the regime
σ � p log(n)/n, such a control without further constraints is generally not
possible. To see why, note that if σ is small enough, the probability of linear
separability is close to 1. Consequentially, for small enough σ, ‖γ̂ − γ∗‖2 =
+∞ with large probability.

Our analysis exposes that this slow dependence
√

(1 + 1/σ3)p/n on
the signal-to-noise ratio 1/σ is only present when estimating the signal
strength τ∗ := ‖γ∗‖2 ∼ 1/σ, and not when performing classification. In fact,
Theorems 2.1.1 and 2.2.1 show that the classifier of logistic regression
β̂ := γ̂/‖γ̂‖2 converges faster to the target classifier β∗ = γ∗/‖γ∗‖2, if
the signal-to-noise ratio is larger, with rates ‖β̂ − β∗‖2 �

√
σp log(n)/n

if p log(n)/n � σ � 1 and ‖β̂ − β∗‖2 � p log(n)/n if σ � p log(n)/n. To
obtain these results, it was crucial in our analysis to treat the estimated
signal-to-noise ratio τ̂ := ‖γ̂‖2 and the estimated classifier β̂ separately.

Shortly after the appearance of the first draft of this work, Hsu and
Mazumdar (2024) appeared. They study finite sample classification with

1 The work Ostrovskii and Bach (2021) does not deal with linear separation, while assuming
that the parameter space is a subset of R

p. So, for their results to apply, one technically needs
to assume that τ∗ and τ̂ are bounded. Otherwise, the estimator is not well-defined with positive
probability. However, the statistician then needs to know an upper bound on the length of the
target ‖γ∗‖2 ∼ 1/σ. We do not need to make such an assumption on τ∗. However, we impose
that τ̂ ≤ M , where M ≥ n/(p log(n) + t). Although this is a technical contribution of our work,
we suppose that such an argument could be added to works avoiding the discussion of linear
separability, such as Ostrovskii and Bach (2021).
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logistic noise. Their parameter space is Sp−1, so they estimate only the
direction β∗, not the signal-to-noise ratio τ∗ ∼ 1/σ. Although they study
logistic noise, while we study Gaussian noise, the results should be compa-
rable. They also consider the case σ � 1, which is out of the scope of this
work. Moreover, they provide upper bounds that match their lower bounds
up to constant factors, but with estimators other than the logistic regression
estimator.

They show that in order to achieve a rate ε for ‖β∗ − β̂‖2, at least
n � σp/ε2 samples are needed, and if σ � ε then n � p/ε samples are
needed (ignoring a logarithmic factor in ε). Up to logarithmic terms, this
matches our upper bounds in Theorems 2.1.1 and 2.2.1.

1.3 Outline In this paper, we prove guarantees for the estimated
signal-to-noise ratio τ̂ := ‖γ̂‖2 and the estimated direction β̂ := γ̂/‖γ̂‖2,
for the logistic regression estimator constrained to the Euclidean ball of
radius M > 0, see Eq. 2. We distinguish between two regimes. The first
regime covers the case σ � (p log n)/n, whereas the second regime cov-
ers σ � (p log n)/n, the “large noise case” and the “small noise case”. We
prove two theorems, one for each case. They are presented in Section 2
(Theorems 2.1.1 and 2.2.1). There, we provide sketches of the two proofs,
along with a consequence for the probability of linear separability
(Proposition 2.3.1). The proofs of the main theorems are given in
Section 6, where we prove two slightly more general statements
(Theorems 6.1.1 and 6.2.1). Sections 3, 4, 5, as well as Appendix A all lead
up to the proof of the main theorems, see Fig. 1.

Section 3 establishes the relationships between classification and
Euclidean geometry, the noise-to-signal ratio σ and the length of the tar-
get τ∗ := ‖γ∗‖2, and introduces the ∗-norm, which is used to quantify the
distance d∗(γ̂) between the estimator γ̂ and its target γ∗ in the large noise
case.

Throughout our analysis, we decompose the logistic loss as follows:

log(1 + exp(−yxT γ)) = log(1 + exp(−|xT γ|)) + |xT γ|1{yxT γ < 0}.

Introducing some notation, we re-state this equality as:

l(γ, x, y) = b(γ, x) + u(γ, x, y).

We refer to b as the ‘bounded term’ and call u the ‘unbounded term’.
Thanks to this decomposition, we can prove strong upper bounds on their
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Figure 1: This figure shows the structure of the paper. The main results are
given in Section 2 and are proved in 6. These proofs rely on Sections 3, 4
and 5. Appendices A.1 and A.2 contain supporting inequalities for Sections 4
and 5

empirical processes in Sections 4 and 5, which in turn gives us a strong
control of the empirical process of l.

1.4 Notation

• n is the number of observations and p < n is the dimension of the
problem.

• x ∼ N (0, Ip) are the observed covariates.

• ε ∼ N (0, 1) is unobserved noise independent of x.

• Sp−1 := {β ∈ R
p : ‖β‖2 = 1} is the unit sphere. For δ > 0 and

β′ ∈ Sp−1, we use the notation S(δ, β′) := {β ∈ Sp−1 : ‖β − β′‖2 ≤ δ}
for a spherical cap.

• For r > 0, Br := {γ ∈ R
p : ‖γ‖2 ≤ r} is the closed Euclidean ball of

radius r. We use the notation B◦
r for the open ball of radius r > 0.

• β∗ ∈ Sp−1 is the unknown orientation we want to learn.

• σ > 0 is the noise-to-signal ratio.

• y = sign(xT β∗ + σε) are the observed labels.

• M > 0 is a known hyperparameter, chosen by the statistician. It deter-
mines the upper bound on the Euclidean norm of the estimator, defined
below.
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• We use P to denote the expectation and Pn to denote the average. More
formally, Pn is the expectation with respect to the empirical measure,
that is n−1

∑n
i=1 δ(xi,yi).

• The logistic loss function is the following mapping:

l : Rp × R
p × {−1, 1} → (0, ∞), (γ, x, y) �→ log(1 + exp(−yxT γ)).

• Our estimator is:

γ̂ := arg min
γ∈BM

n∑

i=1

log(1 + exp(−yix
T
i γ)) = arg min

γ∈BM

Pnl(γ, x, y).

• The target of the estimator is:

γ∗ := arg min
γ∈Rp

Pl(γ, x, y).

• We will frequently decouple a vector γ into its orientation β := γ/‖γ‖2

and its length τ := ‖γ‖2. This may seem like an abuse of notation, as
β∗ would both denote the unknown orientation generating the data, and
γ∗/‖γ∗‖2. However, we will see in Lemma 3.2.3 that those two coincide.
As a side remark, we will also see that 1/σ and τ∗ := ‖γ∗‖2 generally do
not coincide (Lemma 3.2.1).

• We write the logistic loss as the function l : Rp × R
p × {−1, 1} → R,

mapping (γ, x, y) �→ log(1 + exp(−yxT γ)). Occasionally, we omit the
arguments x, y, writing simply l(γ).

• The loss function l can be decomposed into two parts. One is bounded
b, the other unbounded u:

log(1 + exp(−yxT γ)) = log(1 + exp(−|xT γ|)) + |xT γ|1{yxT γ < 0}

=: b(γ, x) + u(γ, x, y).

If clear from context, we omit the arguments x and y, writing simply b(γ)
and u(γ). We will frequently use the (un)bounded term, subtracting the
term evaluated at γ∗:

b̃(γ) :=
b(γ) − b(γ∗)

log 2
.
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When studying the large noise case, we will use the notation, ũ(γ) :=
u(γ)−u(γ∗) whereas in the small noise case, we use ũ(β) := u(β)−u(β∗).
Moreover, we define the following set of functions:

B :=
{

b̃(γ) : γ ∈ R
p
}

.

• We use ej ∈ R
p to denote the j-th coordinate unit vector. For example,

e1 = (1, 0, . . . , 0).

• We define a weighted Euclidean norm:

‖ · ‖∗ : Rp+1 → [0, ∞), (τ, β) �→
√

|τ |2
τ∗3

+ τ∗ ‖β‖2
2.

• We define a metric, to quantify the distance between a vector γ and γ∗

in terms of the norm ‖ · ‖∗:

d∗ : Rp \ {0} → [0, ∞), γ �→
∥∥∥∥

(
‖γ‖2,

γ

‖γ‖2

)
− (τ∗, β∗)

∥∥∥∥
∗
.

• We define the ball of radius δ in the ‖ · ‖∗-norm, centered at (τ∗, β∗) as:

B∗
δ := {γ ∈ R

p \ {0} : d∗(γ) ≤ δ}.

• For the ‘peeling’ argument, we will define the ‘peels’ B∗
r,R := B∗

R \ B∗
r

for r, R > 0.

• In some occasions, to compare two quantities f, g, we use the notation
f � g. By this, we mean that there exists an absolute constant C > 0,
not depending on any model parameters such as n, p, σ, β∗, etc, such that
f ≤ Cg. If f � g and g � f , we write f ∼ g.

2 Main Results

Here, we state the main results of the paper: Theorems 2.1.1 and 2.2.1. We
start with the regime where (p log n)/n � σ � 1, and continue with the
regime σ � (p log n)/n. The proofs of both theorems are given in Section 6,
although we provide a sketch for each in this section. Finally, we show that
the data are not linearly separable with large probability in the first regime,
which follows from the behavior of the logistic regression estimator.
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2.1 Regime 1 (“Large Noise”)
2.1.1 Statement of the Result. We state the main result for regime 1,

where the noise is ‘large’. The proof is given in Section 6, where we prove the
slightly stronger Theorem 6.1.1. The exact universal constants can be found
in the proof. Recall that β̂ := γ̂/‖γ̂‖2 and τ̂ := ‖γ̂‖2, where γ̂ is the logistic
regression estimator constrained to a Euclidean ball of radius M , see Eq. 2.
Theorem 2.1.1 For any t > 0, if

p log n + t

n
� σ ≤ 1√

6
, M ≥ n

p log n + t
,

then, with probability at least 1 − 4 exp(−t),

‖β̂ − β∗‖2 �
√

σ
p log n + t

n
, |τ̂ − τ∗| �

√
1
σ3

p log n + t

n
.

In other words, as long as σ is not too small (or n is very large) and M is
large enough, up to a factor involving σ, we get the rate

√
(p log n)/n both

for the estimates of the orientation as well as the signal-to-noise ratio (for
the relationship between τ∗ and 1/σ, see Lemmas 3.2.1 and 3.2.2).

The result translates into a bound for ‖γ̂−γ∗‖2 of order
√

τ∗3(p log n)/n,
using Lemma 3.3.1. This matches the rate in Ostrovskii and Bach (2021).
Theorem 2.1.1 reveals a more subtle insight into how the signal-to-noise
ratio (SNR) 1/σ affects the estimated orientation β̂ and the estimated SNR
τ̂ . As the noise level is smaller, it is easier to classify, but harder to make
statements about the SNR, see also our discussion in Section 3.3.

The assumption σ ≤ 1/
√

6 is made due to technical reasons. In other
words, the probability of observing a wrong label (y �= sign(xT β∗)) is no
more than arccos(1/

√
1 + 1/6)/π ≈ 0.123 (see Eq. 4). We rely on this

assumption in particular when using lower bounds on Gaussian integrals, see
Appendix A.1. Observe that in the case where σ ≥ 1/

√
6 does not grow with

n, p, t, we are back in the classical regime, where Ostrovskii and Bach (2021)
provides the optimal rate of

√
p/n.

2.1.2 Idea of the Proof. The proof of Theorem 2.1.1 is given in
Section 6. Here, we provide a sketch of the main ideas. To obtain a fast
rate, we use localization. In other words, we exploit that the empirical pro-
cess of the excess risk is smaller if γ̂ is closer to γ∗. To exploit this, we first
create a convex combination γ̃ := αγ̂+(1−α)γ∗. Here, α is chosen such that
on the one hand ‖γ̃ − γ∗‖2 ≤ τ∗/6, but on the other hand once ‖γ̃ − γ∗‖2

is small enough, ‖γ̂ − γ∗‖2 ≤ 2‖γ̃ − γ∗‖2. Moreover, as we assume τ∗ ≤ M ,
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it holds that Pnl(γ̃) ≤ Pnl(γ∗). By convexity, also Pnl(γ̃) ≤ Pnl(γ∗). The
separate Lemma 6.1.5 shows that for such γ̃, the distance of γ̃ to γ∗ in the
∗-norm is small with high probability, i.e. d∗(γ̃) �

√
(p log(n) + t)/n. On

this event of large probability, it follows that γ̃ does not deviate from γ∗

by more than τ∗/6 in Euclidean distance. It follows that ‖γ̂ − γ∗‖2 ≤ τ∗/6
too. So, we can apply Lemma 6.1.5 again, with γ̂ taking the role of γ̃, which
allows us to conclude the proof.

So, the heart of the proof is Lemma 6.1.5. It states that the localization
‖γ̃ − γ∗‖2 ≤ τ∗/6, together with the condition that the empirical loss of
γ̃ is smaller than the empirical loss of γ∗ allows to conclude that d∗(γ̃) �√

(p log(n) + t)/n. This expression d∗(γ̃) occurs naturally from the Taylor
expansion of the excess risk. It provides a lower bound for the latter, which
in turn can be bounded by the empirical process:

d∗(γ̃)2 :=
|τ̃ − τ∗|2

τ∗3
+τ∗‖β̃−β∗‖2

2 � P (l(γ̃) − l(γ∗)) ≤ (P −Pn) (l(γ̃)−l(γ∗)) .

Here, as throughout this paper, we use the notation τ̃ := ‖γ̃‖2 and β̃ :=
γ̃/‖γ̃‖2. This step already relies on the localization argument through the
condition |τ̃ − τ∗|2 ≤ τ∗/6. Moreover, it requires that τ̃ , τ∗ ≥

√
6 +

√
51.

These conditions appear throughout the proof of the large noise case. They
stem from lower bounds on Gaussian integrals, see Appendix A.1.

To upper bound the empirical process, we split the loss into the bounded
and unbounded parts. These two are controlled with Bousquet’s and Bern-
stein’s inequality, together with covering and peeling arguments. In both
parts, we rely on the localization and that τ∗ � 1 in several parts of the
proof, for the same reasons as when proving the margin condition. These
calculations are given in Sections 4 and 5. We look at two cases, depend-
ing on whether the bounded or unbounded term dominates. By doing so, we
arrive at a bound that allows us to conclude that d∗(γ̃) �

√
(p log(n) + t)/n,

which completes the proof.

Remark 2.1.1 In the part of the proof where we assume that the bounded
term dominates, the logarithmic factor log(en/p) would be sufficient. In the
unbounded part, however, we incur the logarithmic factor log(p). Together,
this is equivalent to the factor log(n) = log(n/p) + log(p). The same holds
for the small noise case.
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2.2 Regime 2 (“Small Noise”)
2.2.1 Statement of the Result. We state the main result for regime 2,

where the noise is ‘small’. The proof is given in Section 6. There, we provide
a slightly more general version of the theorem.

Theorem 2.2.1 For any t > 0, if

σ ≤ p log n + t

n
� 1, M ≥ n

p log n + t
,

then, with probability at least 1 − 6 exp(−t),

‖β̂ − β∗‖2 � p log n + t

n
, τ̂ � n

p log n + t
.

We remark that the constants can be chosen, such that there is no gap
between the two regimes. The more general Theorem 6.2.1 allows arbitrary
values σ � 1. Hence, instead of σ ≤ (p log n + t)/n, one could impose the
condition σ ≤ c(p log n + t)/n, with a constant c matching the universal
constant in the large noise case Theorem 2.1.1. We chose c = 1 here for
aesthetic reasons.

The first interpretation of this result is, that if σ is close to zero, the
classifier β̂ achieves the fast rate (p log n)/n. This is the same rate as a
minimizer of the 0-1 loss obtains in the noiseless case, up to the factor log n
(see Long (2003)). Thus, in some sense, Theorem 2.2.1 tells us that if σ ≤
(p log n)/n, the logistic regression classifier performs as if there was no noise.

There is another viewpoint, that may be interesting from a practical
standpoint. The condition could be rewritten as n/ log(n) ≤ p/σ. Informally,
this suggests collecting data until regime 1 is reached, as improving the
classifier is ‘cheaper’ in regime 2. Moreover, the first regime also brings the
benefit that the signal-to-noise ratio can be estimated with τ̂ , whereas here
we only get a lower bound. We note that this small sample conclusion which
Theorem 6.2.1 allows is of a more philosophical than practical nature since
the constants in the theorem are too large to be interesting for small sample
sizes.

2.2.2 Idea of the Proof. The proof of Theorem 2.2.1 is given in
Section 6. Here, we provide a sketch of the main ideas. In the small noise
regime, we cannot hope to estimate 1/σ ∼ τ∗ (see e.g. the discussion in
Section 3.3). However, we should be able to classify well and thus estimate
β̂. Furthermore, we can show that τ̂ := ‖γ̂‖2 is somewhat large.
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The big technical obstacle is, that we have no lower bound on the noise-
to-signal ratio σ. The first problem this brings is that no matter how large
we choose M , since we do not know σ it may be that ‖γ∗‖2 > M . If so,
then potentially Pnl(τ̂ β̂) > Pnl(τ∗β∗). However, Pnl(τ̂ β̂) ≤ Pnl(τ̂β∗) still
holds. While comparing τ̂ β̂ to τ̂β∗ is not enough to estimate ‖γ̂ − γ∗‖2, this
is not our ambition here in the first place. It is enough to allow us to make
statements about ‖β̂ − β∗‖2 and τ̂ , which is all that we want.

Therefore, we compare τ̂ β̂ with τ̂β∗. Here, the excess risk is directly
linked to the Euclidean distance as follows:

τ̂‖β̂ − β∗‖2
2 ∼ P (u(τ̂ β̂) − u(τ̂β∗)) = P (l(τ̂ β̂) − l(τ̂β∗)).

If we had access to a good lower bound on τ̂ , we would be close to being
finished. However, at this point no lower bound for τ̂ is available (although
our proof eventually provides such a lower bound). A strategy to overcome
this obstacle is given by the inequality of arithmetic and geometric means:

‖β̂ − β∗‖2 =

√
1
τ̂

√
τ̂‖β̂ − β∗‖2

2 ≤ 1
2τ̂

+
τ̂‖β̂ − β∗‖2

2

2
.

This shows that if we could get the extra summand 1/τ̂ , then we could
upper bound the distance between β̂ and β∗ with the empirical process of
the loss function. We obtain this extra summand using that:

1
τ̂

∼ Pb(τ̂ β̂) − Pb(2τ̂β∗). (3)

Simultaneously, the unbounded term is homogeneous in τ̂ , and easy to
control for small σ. This brings us to the comparison of τ̂ β̂ with 2τ̂β∗.
Unfortunately, it is too early to celebrate. Now we face the issue that possibly
2τ̂ > M , which we wanted to avoid in the first place. However, this can be
resolved with a case distinction: We either consider the case M/2 ≤ τ̂ ≤ M
or τ̂ ≤ M/2.

In case 1 we assume M/2 ≤ τ̂ ≤ M , so we have excellent control on
τ̂ ∼ M . We then use that:

1
τ̂

� Pb(τ̂ β̂) − Pb(2τ̂β∗) � Pb(τ̂ β̂) − Pb(τ̂β∗) +
1
M

.

Since we require that the radius M is large, this term is fine. We are
back to comparing τ̂ β̂ with τ̂β∗, so we can use that Pnl(τ̂ β̂) ≤ Pnl(τ̂β∗). We
proceed to upper bound the bounded and unbounded terms separately, using
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Bousquet’s inequality and Bernstein’s inequality. In these upper bounds, we
benefit from the assumption that σ is small, to get fast rates.

In case 2, we can directly compare τ̂ β̂ with 2τ̂β∗ since 2τ̂ ≤ M and so
Pnl(τ̂ β̂) ≤ Pnl(2τ̂β∗). The upper bounds on the bounded and unbounded
terms are proved similarly as in case 1. Although here, we additionally need
to prove that τ̂ is lower bounded by n/(p log(n) + t). This is possible since
1/τ̂ is a lower-bound for the expectation of the difference Pl(τ̂ β̂)−Pl(2τ̂β∗),
which we show is small.

There is a final complication, which we have not mentioned yet. For the
lower bound in the trick (3) to work, we need to assume that τ̂ is somewhat
large. Since if τ̂ is upper-bounded by a constant (say

√
6), then in fact:

τ̂ ∼ Pb(τ̂ β̂) − Pb(2τ̂β∗),

see Lemma A.1.6. This is a problem, as we intended to use (3) to show that τ̂
cannot be too small. What saves us is that the event τ̂ � 1 occurs with small
probability, if n is large and τ∗ is large. Intuitively, as γ̂ ‘converges to’ γ∗,
it cannot stay in a ball with a small constant radius with large probability,
if the target γ∗ lies outside this ball. We thus show that the event τ̂ ≤ √

6
does not occur with large probability if n is somewhat large. To do so, we
show that on the event τ̂ ≤ √

6, with large probability,

√
p log(n) + t

n
� Pl(τ̂ β̂) − Pl(2

√
6β∗) ≥ Pl(

√
6β∗) − Pl(2

√
6β∗) ∼ 1.

Here, we use that the signal-to-noise ratio is large, in particular τ∗ >
√

6.
This leads to a contradiction as soon as n is large enough, so this case cannot
occur. The proof is thereby completed.

2.3 A Consequence About Linear Separation Theorem 2.1.1 also allows
a consequence for linear separation. In particular, Proposition 2.3.1 below
shows that in regime 1 the data are not linearly separable with large proba-
bility. This means, for example, that logistic regression in its original formu-
lation can be applied, as the classical optimization problem (1) is well-posed
with large probability. This is a step towards a non-asymptotic analog of the
results in Candès and Sur (2020).
Proposition 2.3.1 For any t > 0, if:

p log n + t

n
� σ ≤ 1√

6
,
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then, the data are linearly separable with probability at most 4 exp(−t).
The proof is given in Section 6.3.

3 Geometry & Fisher Consistency

In this section, we introduce some results which are fundamental in several
parts of the proofs. First, we state Grothendieck’s identity, which provides
us with a duality between the classification error and the Euclidean distance.
Second, we show how to recover the unknown parameters β∗ and σ, given
that we have a misspecified model. Third, we introduce a new metric, which
is tailored to our problem, allowing us to lower-bound the excess risk with
a distance between our estimator and its target.

3.1 The Classification Error and the Euclidean Distance Here, we
recall the duality between the classification error for linear classifiers and
the angle between two vectors, which is given by Grothendieck’s identity.
We show how to translate this to Euclidean distances. Finally, we exploit
this equivalence and the Gaussianity of the vector (xT , ε)T to control the
probability of observing a “wrong” label.

The label predicted by a linear classifier γ ∈ R
p \ {0} at location x ∈ R

p

is sign(xT γ)2. Note that scaling γ by a positive factor does not change this
prediction. Consequentially, it suffices to study vectors on the sphere Sp−1.
Grothendieck’s identity states that the probability that two vectors disagree
about the label at a random position x ∼ N (0, Ip) is proportional to their
angle. It is originally due to (Grothendieck, 1956, p. 50), who used it to prove
Grothendieck’s inequality (see e.g. Vershynin, 2018).
Theorem 3.1.1 Let a, b ∈ R

p \ {0} and x ∼ N (0, Ip). It holds that:

P[aT xxT b ≤ 0] =
1
π

arccos
(

aT b

‖a‖2‖b‖2

)
.

We now know how the disagreement between two vectors a, b ∈ Sp−1

about the label at a point x relates to the angle between, the two vectors,
i.e. their geodesic distance on Sp−1. Part of our analysis, later on, is of
Euclidean nature, hence we would prefer to measure with the Euclidean
distance. Fortunately, the geodesic and Euclidean distances are bilipschitz
equivalent.

2 We note that sign(z) is not defined if z = 0. As the distribution of our covariates x are
absolutely continuous with respect to the Lebesgue measure, these events occur with probability
zero. Hence, we ignore this issue.
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Proposition 3.1.1 For any β, β′ ∈ Sp−1,

‖β − β′‖2 ≤ arccos(βT β′) ≤ π

2
‖β − β′‖2.

Using that σε is a centred Gaussian with variance σ2, the probability of
observing a wrong label is:

P[yxT β∗ < 0] =
1
π

arccos
(

1√
1 + σ2

)
, (4)

by Grothendieck’s identity. One easily verifies that:

σ

π(1 + σ2)
≤ P[yxT β∗ < 0] ≤ σ

π
. (5)

3.2 Fisher Consistency and Misspecification Our loss function (2)
minimizes an empirical risk. We will exploit techniques from M-estimation
(see e.g. van de Gee, 2000) to prove that this empirical risk minimizer con-
verges to the minimizer of the ‘true risk’, i.e.

γ∗ := arg min
γ∈Rp

P log(1 + exp(−yxT γ)).

Here and throughout, we use P to denote the expectation. If γ∗ equals the
parameter of interest β∗/σ, we say that our estimator is Fisher consistent.

Recall that our data comes from a probit model, a generalized linear
model with the Gaussian link function. To estimate β∗/σ, we use the logistic
link function, so we cannot exploit maximum likelihood theory to conclude
that γ∗ = β∗/σ. In fact, this turns out to be false. However, there is a one-
to-one correspondence between τ∗ and σ, so that finding τ∗ is equivalent to
finding σ. We start by establishing this relationship. Then, we show that the
estimator is Fisher consistent in direction, i.e. β∗. Finally, we show that up
to constant factors, ‖γ∗‖2 behaves like 1/σ, aiding us in our calculations.

3.2.1 Fisher Consistency for the Signal-to-noise Ratio. Recall the
notation τ∗ := ‖γ∗‖2. As hinted before, the signal-to-noise ratio 1/σ and
the length of the target vector τ∗ := ‖γ∗‖2 are generally not equal. Yet, they
are in a one-to-one correspondence. This follows from the next lemma.
Lemma 3.2.1 Let σ > 0 and z ∼ N (0, 1). Then:

P
|z|

1 + exp(τ∗|z|) =
1√
2π

(
1 − 1√

1 + σ2

)
.
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Proof We recall:

log(1 + exp(−yxT γ)) = log(1 + exp(−|xT γ|)) + |xT γ|1{yxT γ < 0}.

Let R : (0, ∞) → R, τ �→ P log(1 + exp(−yxT (τβ∗))). Differentiating R
twice, we see that R is strictly convex. So, it reaches its minimum (if at all)
at a root of its derivative. This gives us the following condition:

P
|xT β∗|

1 + exp(τ∗|xT β∗|) = P |xT β∗|1{yxT β∗ < 0}.

Since xT β∗ ∼ N (0, 1), the left-hand side is equal to the left-hand side in
the conclusion. The result now follows from Corollary A.2.1. ��

Using Lemma 3.2.1, we can show that τ∗ and 1/σ behave similarly, up
to multiplicative constants.
Lemma 3.2.2 For σ ∈ (0, 1/

√
2],

1 ≤ στ∗ ≤
√

2π.

Proof We first prove the lower bound. By Lemma 3.2.1, if σ ≤ 1/
√

2 then
τ∗ >

√
6. Therefore, by Lemma A.1.2, Lemma 3.2.1 and since 1− 1√

1+σ2 ≤ σ2

2 ,

1√
2π

1
2τ∗2

≤
√

1
2π

1
τ∗2

(
1 − 3

τ∗2

)
≤ P

|z|
1 + exp(τ∗|z|)

=
1√
2π

(
1 − 1√

1 + σ2

)
≤ 1√

2π

σ2

2
.

For the upper bound, we use Lemma A.1.2, Lemma 3.2.1 and that for
σ ≤ 1/

√
2, σ2/π ≤ 1 − 1√

1+σ2 , which gives:

√
2
π

1
τ∗2

≥ P
|z|

1 + exp(τ∗|z|) =
1√
2π

(
1 − 1√

1 + σ2

)
≥ 1√

2π

σ2

π
.

��
3.2.2 Fisher Consistency of Orientation. Here, we show that the logis-

tic regression estimator achieves Fisher consistency in our model for the
direction, for any fixed length. The proof is readily generalized to centrally
symmetric distributions, non-identity covariance matrices, and other mono-
tone loss functions.
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Lemma 3.2.3 Fix an element β∗ ∈ Sp−1. Then,

β∗ = arg min
β∈Sp−1

Pl(yxT β).

Proof Fix any β ∈ Sp−1 and define the corresponding label ŷ := sign(xT β),
as well as y′ := sign(xT β∗ − sign(xT β∗)ε). Since ε is independent of x and
ε has the same distribution as −ε, y and y′ have the same distribution.
Moreover, yxT β and y′xT β have the same distribution. To simplify notation,
define the auxiliary function L(z) := l(−|z|) − l(|z|). We find:

Pl(yxT β) = Pl(y′xT β)

= Pl(|xT β|) (1{y′ = y∗}1{y∗ = ŷ} + 1{y′ �= y∗}1{y∗ �= ŷ})

+Pl(−|xT β|) (1{y′ �= y∗}1{y∗ = ŷ} + 1{y′ = y∗}1{y∗ �= ŷ})

= Pl(|xT β|) ((1 − 1{y′ �= y∗})(1 − 1{y∗ �= ŷ}) + 1{y′ �= y∗}1{y∗ �= ŷ})

+Pl(−|xT β|) (1{y′ �= y∗}(1 − 1{y∗ �= ŷ}) + (1 − 1{y′ �= y∗})1{y∗ �= ŷ})

= P1{ŷ �= y∗}(1 − 2 · 1{y′ �= y∗})L(xT β) + Pl(|xT β|) + PL(xT β)1{y′ �= y∗}
(i)
= P1{ŷ �= y∗}(1−2Φ(−|xT β∗|))L(xT β)+Pl(|xT β|)+PL(xT β)1{|xT β∗| ≤ ε}.

Equality (i) follows after conditioning on x, and recalling that {y′ �=
y∗} = {|xT β∗| ≤ ε}. Note that if β = β∗, this reads,

Pl(yxT β∗) = Pl(|xT β∗|) + PL(xT β∗)1{|xT β∗| ≤ ε}. (6)

Since l is strictly decreasing, L(xT β) > 0 almost surely. So, if instead
β∗ �= β, using that by rotational invariance, Pl(|xT β|) = Pl(|xT β∗|),

Pl(yxT β) − Pl(|xT β∗|) > PL(xT β)1{|xT β∗| ≤ ε}

= PL(xT β)1{|xT β∗| ≤ ε}1{|xT β| ≤ ε} + L(xT β)1{|xT β∗| ≤ ε}1{|xT β| > ε}
(ii)
> PL(xT β∗)1{|xT β∗| ≤ ε}1{|xT β| ≤ ε} + L(xT β∗)1{|xT β∗| ≤ ε}1{|xT β| > ε}

= PL(xT β∗)1{|xT β∗| ≤ ε}.

Inequality (ii) follows since in the first summand, by rotational invariance
we may exchange xT β and xT β∗, while in the second one, |xT β| > |xT β∗|.
By Eq. 6, we conclude that for any β �= β∗, Pl(yxT β) > Pl(yxT β∗). ��
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3.3 Introducing the ∗-Norm In the proof for the large noise case, we
establish an upper bound on the excess risk P (l(γ̂) − l(γ∗)). In the end,
however, we want to show that γ̂ is close to γ∗. Ideally, we would want to
lower-bound the excess risk with the (squared) Euclidean distance (this is
sometimes referred to as the margin condition). This is not generally possible
in our setting, as we argue below. Yet, we introduce a new metric, for which
we can prove such a margin condition.

Before we introduce the metric we will use, let us consider an example
that shows why the Euclidean distance fails. In a data set of realistic sample
size, we see the correct labels with high probability, whether γ∗ is equal to
1010e1, or 1020e1. So, both these vectors would give us the same observations
with high probability. However, the Euclidean distance between these two
vectors is of order 1020. Therefore, attempting to explain the behavior of
logistic regression with the Euclidean distance is hopeless, at least in the
absence of bounds on the signal-to-noise ratio (SNR).

We will overcome this issue by separately comparing the vector’s lengths
and orientations. We will invoke a distance over R

p \ {0} × R
p \ {0}, or

alternatively a norm on R
p+1:

‖ · ‖∗ : Rp+1 → [0, ∞), (τ, β) �→
√

|τ |2
τ∗3

+ τ∗ ‖β‖2
2.

The reader will already anticipate from our notation that the first dimen-
sion is used to compare the length of two vectors γ, γ′, and the remaining
p dimensions are used to compare orientations. In particular, we apply this
norm as follows:

‖(τ, β) − (τ∗, β∗)‖∗ =

√
|τ − τ∗|2

τ∗3
+ τ∗ ‖β − β∗‖2

2.

As we will primarily employ this norm to quantify the distance between
γ and γ∗, we use the following, more compact notation:

d∗ : Rp \ {0} → [0, ∞), γ �→
∥∥∥∥

(
‖γ‖2,

γ

‖γ‖2

)
− (τ∗, β∗)

∥∥∥∥
∗
.

If the SNR τ∗ is large, more weight is given to the orientation. The latter
can still be estimated in this case. On the other hand, if the SNR is small, it
can be estimated, and so the ‖ · ‖∗-norm gives more weight to the difference
between the two lengths of the vectors.
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Although this will not play a role in our analysis, we briefly comment in
what sense ‖·‖∗ is a norm. As it is just a weighted Euclidean norm, it is itself
a norm on R

p+1. However, if understood as the function R
p \ {0} → [0, ∞),

mapping γ �→ ‖(‖γ‖2, γ/‖γ‖2)‖∗, it is not a norm, as it is not absolutely
homogeneous, and not defined at γ = 0. From this viewpoint, it is quickly
verified that this function still is a metric for the space R

p \ {0}.
In the following, we show that the ‖ · ‖∗-norm and the Euclidean dis-

tance behave similarly, up to a constant depending on τ∗. We again use the
notation τ := ‖γ‖2 and β := γ/τ for an arbitrary vector γ ∈ R

p.
Lemma 3.3.1 If τ∗ := ‖γ∗‖2 ≥ 1, then for all γ ∈ R

p \ {0, γ∗},
√

τ∗

3
≤ ‖γ − γ∗‖2

d∗(γ)
≤

√
2τ∗3.

Proof We prove the upper bound. Using a triangular inequality, Jensen’s
inequality, and that τ∗ ≥ 1, we find:

‖γ − γ∗‖2 ≤ |τ − τ∗| + τ∗‖β − β∗‖2

(i)

≤
√

2
√

|τ − τ∗|2 + τ∗‖β − β∗‖2
2 ≤

√
2τ∗3

√
|τ − τ∗|2

τ∗3
+ τ∗‖β − β∗‖2

2.

This proves the upper bound. For the lower bound, we combine two
triangular inequalities, namely ‖γ − γ∗‖2 ≥ |τ − τ∗| and ‖γ − γ∗‖2 ≥ τ∗‖β −
β∗‖2 − |τ − τ∗|. Using that τ∗ ≥ 1, we find:

3‖γ − γ∗‖2 ≥ τ∗‖β − β∗‖ + |τ∗ − τ | ≥
√

τ∗
(√

τ∗‖β − β∗‖2 +
|τ∗ − τ |
τ∗3/2

)
.

The inequality a + b ≥ √
a2 + b2, which holds for any positive scalar

a, b > 0, completes the proof. ��

4 Concentration for the Bounded Term

In this section, we control the empirical process of the bounded term. We
define the bounded term as:

b : Rp × R
p → (0, log 2], (γ, x) �→ log(1 + exp(−|xT γ|)).

We often omit the argument x, and write b(γ), which is to be understood
as the random variable b(γ, x). Moreover, we are often interested in the
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difference of the bounded term evaluated at γ with the same term evaluated
at γ∗, which we give the notation b̃(γ) := (b(γ) − b(γ∗))/ log 2.

4.1 Bousquet’s Inequality We will use Bousquet’s inequality to control
the bounded term’s empirical process. It was introduced in (Bousquet, 2002,
Theorem 2.3).
Theorem 4.1.1 (Bousquet (2002)) Let X1, . . . , Xn be identically distributed
random variables with values in X . Let F be a countable class of measurable
mappings X → R. Suppose that there exists a ς > 0, such that for all f ∈ F ,
V ar[f(X1)] ≤ ς2 and ‖f‖∞ ≤ 1. Define:

Z := sup
f∈F

|(Pn − P )f |.

For t > 0, with probability at most exp(−t),

Z ≥ PZ +

√
2t(ς2 + 2PZ)

n
+

t

3n
.

We will use two simplifications for this lower bound. Using the sub-
additivity of the square root and the inequality between arithmetic and
geometric means (AM-GM),

PZ +

√
2t(ς2 + 2PZ)

n
+

t

3n
≤ 2PZ + ς

√
2t

n
+

4t

3n
.

On the other hand, for any λ > 0, by AM-GM,

PZ +

√
2t(ς2 + 2PZ)

n
+

t

3n
≤ PZ(1 + λ−1) +

ς2

2λ
+

t(λ + 1/3)
n

.

The reader will already anticipate that we will choose F as a subset of
all functions b̃(γ) := (b(γ) − b(γ∗))/ log 2, which we denote by3:

B :=
{

b̃(γ) : γ ∈ R
p
}

.

In particular, due to our localization argument, we will only need to
control the terms b̃ indexed by γ, which are somewhat close to γ∗. Moreover,
recall that in the end, our goal is to prove that some γ are close to γ∗.

3 Bousquet’s inequality requires that the set F is countable to avoid measurability issues. We
will omit this technical discussion.
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Therefore, we do not need to control terms indexed by γ which are very
close to γ∗, as for such γ there is nothing left to prove from the beginning.
This will allow us to apply the peeling technique, see e.g. van de Geer (2000).

4.1.1 Expectation of the Supremum of the Empirical Process. Here, we
bound the term PZ, as introduced in Bousquet’s inequality. In the proof, we
will take a covering with respect to the L1(Pn)-norm. Since Pn is a random
measure, we will bound the covering number with the largest L1(Q)-covering
number, where Q is any probability measure on R

p. This is possible with the
help of Vapnik-Chervonenkis (VC) theory. We denote the set of all probabil-
ity measures over R

p by Π, and a minimal covering of a set S ⊂ B by balls
of radius ε in the L1(Q)-norm by N (ε, S, L1(Q)).
Lemma 4.1.1 For any ε > 0, and any probability measure Q on R

p,

|N (ε, B, L1(Q))| ≤ 2e(p + 2.5)
(

4e

ε

)2(p+2)

.

This result follows from Vapnik-Chervonenkis theory. If ν is the VC-index
of the hypographs of B, then by (Haussler, 1995, Corollary 3), for any ε > 0,

|N (ε, B, L1(Q))| ≤ eν

(
4e

ε

)ν−1

.

Using elementary properties of the VC-index (van der Vaart and
Wellner, 1996, Lemma 2.6.17-18), we can bound ν from above with 2(p +
2) + 1.

We now turn to the bound for the expectation of the supremum of the
empirical process of the bounded term b̃(γ) := (b(γ) − b(γ∗))/ log(2). We
recall that this is a stepping stone for Bousquet’s inequality, which gives us
a tail-bound for the supremum of the empirical process. In the following, for
a set S ⊂ B, by b̃−1(S) := {γ ∈ R

p : b̃(γ) ∈ S} we mean the pre-image of S
through the mapping R

p → B, γ �→ b̃(γ).
For any subset S ⊂ B, and ε > 0, we define:

Nr(S) := sup
Q∈Π

|N (r, S, L1(Q))|, ςS := sup
γ∈b̃−1(S)

√
P b̃(γ)2.

Proposition 4.1.1 Let S ⊂ B. Then,

E sup
γ∈b̃−1(S)

|(Pn − P )b̃(γ)| ≤ 2r +
16 log(2Nr(S))

n
+ 8ςS

√
log 2Nr(S)

n
.
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This proposition presupposes that we have good control over the covering
number Nr(S) and the wimpy variance ςS . The covering number can be
controlled with Lemma 4.1.1, and the wimpy variance will later be bounded
using Lemma 4.1.2.
Proof The proof uses standard steps from empirical process theory. The first
step is symmetrization (see e.g. van der Vaart and Wellner, 1996, Lemma
2.3.1). Let ε1, . . . , εn be Rademacher, independent of each other and inde-
pendent of (x1, y1), . . . , (xn, yn). Then,

E

(
sup

γ∈b̃−1(S)

|(Pn − P )b̃(γ)|
)

≤ 2E

(
sup

γ∈b̃−1(S)

|Pnεb̃(γ)|
)

,

where Pnεb̃(γ) := n−1
∑n

i=1 εib̃(γ, xi). Next, we discretize. There exists a
covering N := N (r, S, L1(Pn)) with cardinality N ≤ Nr(S). So,

2E

(
sup

γ∈b̃−1(S)

|Pnεb̃(γ)|
)

= 2E

(
sup

γ∈b̃−1(S)

min
b̃′∈N

|Pnεb̃(γ) − Pnεb̃′ + Pnεb̃′|
)

≤ 2E

(
sup

γ∈b̃−1(S)

min
b̃′∈N

|Pnε(b̃(γ) − b̃′)| + max
b̃′∈N

|Pnεb̃′|
)

≤ 2r + 2Emax
b̃′∈N

|Pnεb̃′|.

The next step is concentration. Let Pε be the conditional expectation
with respect to ε1, . . . , εn, i.e. conditional on x1, . . . , xn. By
(Dümbgen et al. 2010, Lemma 3.4),

Pε max
b̃′∈N

|Pnεb̃′| ≤
√

2 log 2N

n

√
max
b̃′∈N

Pnb̃′2.

Adding and subtracting the expectation, and by sub-additivity of the
square root,

√
2 log 2N

n

√
max
b̃′∈N

Pnb̃′2 ≤
√

2 log 2N

n

(√
max
b̃′∈N

|(Pn − P )b̃′2| +
√

max
b̃′∈N

P b̃′2
)

≤ 4 log 2N

n
+

1
8

max
b̃′∈N

|(Pn − P )b̃′2| + ςS

√
4 log 2N

n
.

In the last inequality, we used that the second summand is bounded by
ςS and that by the inequality of arithmetic and geometric means, for all
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x, x′ ≥ 0,
√

xx′ ≤ x/8 + 2x′.
Finally, we take the expectation and rearrange the expressions. Using that
N is bounded by the deterministic Nr(S), we conclude that:

Emax
b̃′∈N

|Pnεb̃′| ≤ 4 log 2Nr(S)
n

+
1
8
Emax

b̃′∈N
|(Pn − P )b̃′2| + ςS

√
4 log 2Nr(S)

n

(i)

≤ 4 log 2Nr(S)
n

+
1
8
4Emax

b̃′∈N
|Pnεb̃′| + ςS

√
4 log 2Nr(S)

n
.

Inequality (i) follows from symmetrization (see e.g. van der Vaart and
Wellner, 1996, Lemma 2.3.1), as well as the contraction principle (see e.g.
Boucheron et al., 2013, Theorem 11.6), noting that the mapping z �→ z2/2
is a contraction on [−1, 1]. We subtract Emaxb̃′∈N |Pnεb̃′|/2 from both sides
and conclude the proof. ��

4.1.2 Bounding the Wimpy Variance. Here, we bound the supremum
of the variances of the bounded terms. We call this the wimpy variance, in
line with the terminology used in Boucheron et al. (2013). It turns out, that
this expression is smaller, the closer the γ are to γ∗, which pairs very well
with our localization. The first result will be for the large-noise case and the
second for the small-noise case.

Large noise In the large noise case, we measure the proximity of γ to
γ∗ using the ∗-norm, respectively d∗(γ), as introduced in Section 3.3. We
use that τ∗ � 1 and τ � τ∗. This is possible due to the localization step
in the proof of Theorem 6.1.1, which gives ‖γ − γ∗‖2 � τ∗. If it were that
τ, τ∗ � 1, then the term P (b(τβ) − b(τ∗β))2 would behave differently, see
Lemma A.1.7.

Lemma 4.1.2 Fix γ ∈ R
p \ {0} and define τ := ‖γ‖2 and β := γ/τ . If

τ∗ ≥ 6/5 and τ ≥ τ∗5/6 then:

√
P b̃(γ)2 ≤ 3.57d∗(γ).

Proof We start with a triangular inequality:

√
P (b(γ) − b(γ∗))2 ≤

√
P (b(τβ) − b(τ∗β))2 +

√
P (b(τ∗β) − b(τ∗β∗))2.
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We bound the first term with Lemma A.1.7. If τ∗ ≥ τ , using that τ ≥
τ∗5/6,

√
P (b(τβ) − b(τ∗β))2 ≤

(
1

25π

)1/4 |τ − τ∗|
τ

√
2
τ

+
3

4τ3

≤
(

1
25π

)1/4 |τ − τ∗|
τ3/2

√
2 +

3
4

≤
√

11
4

√
1

25π

(
6
5

)3/2 |τ − τ∗|
τ∗3/2

.

If instead τ ≥ τ∗, we directly get:

√
P (b(τβ) − b(τ∗β))2 ≤

√
11
4

√
1

25π

|τ − τ∗|
τ∗3/2

.

The second term is bounded with Lemma A.1.8, again using τ∗ ≥ 1.
Then,

√
P (b(τ∗β) − b(τ∗β∗))2 ≤

√
2

⎛

⎝ 1
(2π)1/4

+

√
11
8

√
2
π

⎞

⎠√
τ∗‖β − β∗‖2.

Since:
√√√√√11

4

√
1

25π

(
6
5

)3

+ 2

⎛

⎝ 1
(2π)1/4

+

√
11
8

√
2
π

⎞

⎠
2

≤ 3.57 log(2),

it follows from Cauchy-Schwarz that:

√
P (b(τβ) − b(τ∗β))2 +

√
P (b(τ∗β) − b(τ∗β∗))2 ≤ 3.57 log(2)d∗(γ).

This completes the proof. ��
Small noise Controlling the wimpy variance in the case where the noise

is small is analogous to the large noise case. Thanks to the case distinction
in the proof of Theorem 6.2.1, we will only need to compare τβ with kτβ∗,
where k ≥ 1 is some constant factor and τ ≥ 1 is arbitrary. For δ > 0, we
define the spherical cap of radius δ centered at β∗ as S(δ, β∗) := {β ∈ Sp−1 :
‖β − β∗‖2 ≤ δ}.
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Lemma 4.1.3 Let τ ≥ 1, k ≥ 1 and δ > 0. Then:

sup
β∈Sp−1\S(δ,β∗)

√

P

(
b(τβ) − b(kτβ∗)

log(2)

)2

≤ 5.37δ
√

τ + 0.76
(k − 1)√

τ
.

Proof To bound the wimpy variance, we use that by the triangular inequality,
for any β ∈ Sp−1,

√
P (b(τβ) − b(kτβ∗))2 ≤

√
P (b(τβ) − b(τβ∗))2 +

√
P (b(τβ∗) − b(kτβ∗))2.

By Lemma A.1.8, since τ ≥ 1 and
√

2((2π)1/4 +
√

11/8
√

2/π) ≤
log(2)5.37, we have:

√
P (b(τβ) − b(τβ∗))2 ≤ 3.72

√
τ‖β − β∗‖2.

Next, by Lemma A.1.7, since τ ≥ 1, the second term is bounded by:

P (b(τβ∗) − b(kτβ∗))2 ≤ 11
4

√
1

25π

(k − 1)2

τ
≤ 0.76 log(2)

(k − 1)2

τ
.

The proof is complete. ��
4.2 The Empirical Process of the Bounded Part
4.2.1 The Large Noise Case. We consolidate our results so far to give

local control of the empirical process of the bounded part b with Bousquet’s
inequality (Theorem 4.1.1). We prove a local result, in a ‖ · ‖∗-ball of radius
R > 0 around the ground truth (τ∗, β∗). This allows us to get a faster rate: if
d∗(γ) is small, so is the wimpy variance (see Lemma 4.1.2), and consequen-
tially also the expectation of the supremum of the empirical process (see
Proposition 4.1.1). For the peeling argument to work, we remove a small
ball of radius r > 0 from the supremum. This does not affect our results in
the end, since if d∗(γ) � r for r a small enough, the desired result already
holds. Moreover, as we controlled the wimpy variance for τ ≥ τ∗5/6, we
exclude all γ with ‖γ‖2 < τ∗5/6 from the supremum.

In the following, Bδ denotes the Euclidean ball of radius δ, and for the
∗-norm, we define the ball B∗

δ := {γ ∈ R
p \ {0} : d∗(γ) ≤ δ}. Moreover, for

r, R > 0 we define the ‘peels’ B∗
r,R := B∗

R \ B∗
r .
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Proposition 4.2.1 Let R > 0 and r ∈ (0, 1), and suppose that τ∗ ≥ 6/5.
Let t′ := t + log�log R/r�. With probability at least 1 − exp(−t),

sup
γ∈B∗

r,R\Bτ∗5/6

|(Pn − P )b̃(γ)| − 4r − 32(3p+4) log(4e/r)+ 4
3
t′

n

d∗(γ)e16 · 3.57
√

2(3p+4) log(4e/r)+t′

n

≤ 1.

Proof We prepare the use of Bousquet’s inequality (Theorem 4.1.1). Since
r ≤ 1, by Lemma 4.1.1:

N := |N (r, B, L1(Q))| ≤ 2e(p + 2.5) (4e/r)2(p+2) ≤ 1
2

(4e/r)3p+4 .

Moreover, by Lemma 4.1.2,

ς := sup
γ∈B∗

δ \Bτ∗5/6

√
P b̃(γ)2 ≤ 3.57δ.

By Proposition 4.1.1,

E sup
γ∈B∗

δ \Bτ∗5/6

|(Pn − P )b̃(γ)| ≤ 2r +
16 log(2N)

n
+ 8ς

√
log(2N)

n

≤ 2r +
16(3p + 4) log(4e/r)

n
+ 8 · 3.57δ

√
(3p + 4) log(4e/r)

n
.

We now use Bousquet’s inequality (Theorem 4.1.1). On an event with
probability at least 1 − exp(−t),

sup
γ∈B∗

δ \Bτ∗5/6

|(Pn − P )b̃(γ)|

≤ 4r +
32(3p + 4) log(4e/r) + 4

3 t

n
+ 16 · 3.57δ

√
2(3p + 4) log(4e/r) + t

n

=: ψb(t) + ψ
b
(δ, t).

Equivalently,

sup
γ∈B∗

δ \Bτ∗5/6

|(Pn − P )b̃(γ)| − ψb(t)
ψ

b
(δ, t)

≤ 1. (7)
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We now apply the peeling technique (see e.g. van de Geer (2000)),
to replace δ by d∗(γ). We partition B∗

r,R into the disjoint union B∗
r,R =

∪J−1
j=0 B∗

rej ,rej+1 , with J = �log R/r�. Then,

P

⎡

⎣
⋃

γ∈B∗
r,R\Bτ∗5/6

|(Pn − P )b̃(γ)| − ψb(t + log J)
ψ

b
(ed∗(γ), t + log J)

> 1

⎤

⎦

≤
J−1∑

j=0

P

⎡

⎢⎣
⋃

γ∈B∗
rej,rej+1\Bτ∗5/6

|(Pn − P )b̃(γ)| − ψb(t + log J)
ψ

b
(ed∗(γ), t + log J)

> 1

⎤

⎥⎦

≤
J−1∑

j=0

P

⎡

⎢⎣
⋃

γ∈B∗
rej,rej+1\Bτ∗5/6

|(Pn − P )b̃(γ)| − ψb(t + log J)
ψ

b
(rej+1, t + log J)

> 1

⎤

⎥⎦

(ii)

≤ J exp(−t − log J) = exp(−t).

The inequality (ii) follows from Eq. 7. The proof is complete. ��
4.2.2 Small Noise Case. Here, we prove two bounds for the empirical

process of the bounded term in the case of small noise, based on Bousquet’s
inequality. We will prove a tail bound on:

sup
β∈Sp−1\S(δ,β∗)

|(P − Pn)(b(τβ) − b(kτβ∗))|.

We will use different k in the proof of the main theorem. For part 1 of
the proof (M/2 ≤ τ̂ ≤ M), we will use k = 1, for part 2 (1 ≤ τ̂ ≤ M/2),
we will use k = 2. In the following, we use the notation b̃k(τβ) := (b(τβ) −
b(kτβ∗))/ log 2.
Proposition 4.2.2 Fix k, τ, λ ≥ 1 as well as r ∈ (0, 1) and t > 0 and define
t′ := t + log�log 2/r�. With probability at least 1 − exp(−t),

sup
β∈Sp−1\S(r,β∗)

|(P − Pn)b̃k(τβ)|

≤ 13851
‖β − β∗‖2

2τ

λ
+ 4r + 30

(k − 1)2

λτ
+

λ34(3p + 4) log(4e/r) + t′(λ + 1
3)

n
.
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Proof From Lemma 4.1.1, it follows that to cover the set of functions {(b(γ)−
b(kτβ∗))/ log(2) : γ ∈ R

p} with L1(Q)-balls of radius r for any probability
measure Q, one needs at most N balls, where log 2N ≤ (3p + 4) log(4e/r),
arguing as in the proof of Proposition 4.2.1. With Lemma 4.1.3, the wimpy
variance can be bounded as follows:

ς := sup
β∈Sp−1\S(δ,β∗)

√
P b̃k(τβ)2 ≤ 5.37δ

√
τ + 0.76

(k − 1)√
τ

.

By Proposition 4.1.1,

E sup
β∈S(δ,β∗)\S(δ,β∗)

∣∣∣(P − Pn)b̃k(τβ)
∣∣∣

≤ 2r +
16 log(2N)

n
+ 8

ς√
λ

√
λ

log 2N

n

≤ 2r + 16
ς2

λ
+

λ17 log(2N)
n

≤ 2r + 16
ς2

λ
+

λ17(3p + 4) log(4e/r)
n

.

By Bousquet’s inequality (Theorem 4.1.1), with probability at least 1 −
exp(−t),

sup
β∈Sp−1\S(δ,β∗)

∣∣∣(P − Pn)b̃k(τβ)
∣∣∣ ≤ 2PZ +

ς2

2λ
+

t(λ + 1/3)
n

≤ 4r + 32.5
ς2

λ
+

λ34(3p + 4) log(4e/r) + t(λ + 1/3)
n

≤ 65 · 5.372

λ
δ2τ +4r+

65 · 0.762

λ

(k − 1)2

τ
+

λ34(3p + 4) log(4e/r)+t(λ + 1/3)
n

=: δ2ψ′
b
+ ψ

′
b(t).

In other words,

P

[
sup

β∈Sp−1\S(δ,β∗)

|(P − Pn)b̃k(τβ)| − ψ
′
b(t)

δ2ψ′
b

> 1

]
≤ exp(−t). (8)

Now, we use the peeling device. For a, b > 0, define: S∗
a,b := {β ∈ Sp−1 :

a ≤ ‖β − β∗‖2 ≤ b}. Note that for any β ∈ Sp−1, ‖β − β∗‖2 ≤ 2. So, letting
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J := �log 2/r�, we find: Consequentially, for r > 0,

Sp−1 \ S(r, β∗) =
J−1⋃

j=0

S∗
rej ,rej+1 .

We want to upper bound:

P

[
sup

β∈Sp−1\S(r,β∗)

|(P − Pn)b̃k(τβ)| − ψ
′
b(t + log J)

e2‖β − β∗‖2
2ψ

′
b

> 1

]

≤
J−1∑

j=0

P

[
sup

β∈S∗
rej,rej+1

|(P − Pn)b̃k(τβ)| − ψ
′
b(t + log J)

e2‖β − β∗‖2
2ψ

′
b

> 1

]

≤
J−1∑

j=0

P

[
sup

β∈S∗
0,rej+1

|(P − Pn)b̃k(τβ)| − ψ
′
b(t + log J)

e2r2e2jψ′
b

> 1

]
.

≤ J exp(−t − log J) = exp(−t).

The last inequality follows from Eq. 8. In the final result, we use that
65 · 5.372e2 ≤ 13851, as well as the approximation 65 · 0.762 ≤ 30. The proof
is complete. ��

5 Concentration for the Unbounded Term

Here, we give two concentration inequalities for the empirical process of the
unbounded term:

u : Rp \ {0} × R
p × {−1, 1} → R, (γ, x, y) �→ |xT γ|1{yxT γ < 0}.

We will omit the dependence of u on x, y, if it is clear from context, and
write u(γ) instead of u(γ, x, y). Moreover, we are frequently interested in the
difference between the unbounded term evaluated at some point γ and the
parameter γ∗, for which we use the notation:

ũ(γ) := u(γ) − u(γ∗).

The first is for the “large noise”-regime and the second is for the “small
noise”-regime. In the former, we can exploit that due to localization, ‖γ −
γ∗‖2 � τ∗ ∼ 1/σ, which is not too large. In the small noise case, this is not
helpful, as 1/σ may be arbitrarily large. However, since we do not have the
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ambition to estimate τ∗ in that case, we only need to compare β and β∗.
Moreover, we can exploit that σ is vanishingly small.

Both results are based on Bernstein’s inequality. In both cases, we pro-
ceed as follows: First, we show that Bernstein’s condition is satisfied, in a
small region around the true parameter. Second, we use a covering argument
to control the empirical process. Third, we apply peeling, to obtain a fast
global rate, exploiting the good control locally around the true parameter.

5.1 Bernstein’s Inequality & Covering Although we need two separate
results for the large and the small-noise cases, there are some results we can
use in both cases. One is Bernstein’s inequality itself, and the second is the
covering argument.

5.1.1 Bernstein’s Inequality. Bernstein’s inequality is a classical con-
centration inequality for the tail of sub-exponential random variables. It
states that under the “Bernstein condition”, the average of centered random
variables concentrates around zero. Bernstein’s condition dictates that the
moments of the random variable may not grow too fast. The parameters in
Bernstein’s condition may reflect, that the moments of the random variables
are small. For example, if the second moment is small, κ can be chosen as
small (simply take m = 2 to see this). We will exploit this, to obtain a fast
convergence rate.
Definition 5.1.1 Let {zi}i∈[n] be a sequence of random variables. We say
that {zi}i∈[n] satisfies Bernstein’s condition with constants {κi}n

i=1 and K,
if for all i ∈ [n], Pzi = 0, and for all m ∈ {2, 3, . . .},

P |zi|m ≤ m!
2

Km−2κ2
i .

Bernstein’s inequality is formulated for centered random variables. How-
ever, it is sometimes easier to verify Bernstein’s condition for a sequence of
random variables {zi}i∈[n], instead of their centered version {zi − Pzi}i∈[n].
In the following remark, we show that this suffices, at the cost of a constant
factor.
Remark 5.1.1 Note that:

P (2|zi|)m = 2m−1P (|zi|m + P |zi|m)

(i)

≥ 2m−1P (|zi|m + |Pzi|m)
(ii)

≥ P (|zi| + | − Pzi|)m
(iii)

≥ P |zi − Pzi|m.

Here, (i) and (ii) follow from Jensen’s inequality, while (iii) follows from
the triangular inequality. So, Bernstein’s condition is met for zi − Pzi with
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constants {κi}n
i=1 and K, if for all m ∈ {2, 3, . . . , }:

P |zi|m ≤ m!
2

(
K

2

)m−2 (κi

2

)2
.

We will need a Bernstein-type inequality for a supremum of an empirical
process. To this end, we use a covering argument and a finite union bound.
Lemma 5.1.1 Let L ∈ N. For l ∈ [L], let {zi,l}i∈[n] be a sequence of random
variables with Pzi,l = 0, satisfying Bernstein’s condition with Kl ≤ K and
κi,l ≤ κ. Let t > 0. With probability at least 1 − 2 exp(−t):

max
l∈[L]

|Pnzl| ≤ κ

√
2(t + log L)

n
+ K

t + log L

n
.

Proof By Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10), for
all l ∈ [L], with probability at most 2 exp(−t),

|Pnzl| ≥ κ

√
2t

n
+ K

t

n
.

In particular, with probability at most 2 exp(−t − log L),

|Pnzl| ≥ κ

√
2(t + log L)

n
+ K

t + log L

n
=: ψ.

Using a union bound,

P

[
max
l∈[L]

|Pnzl| ≥ ψ

]
≤ 2L exp(−t − log L) = 2 exp(−t).

The proof is complete. ��
5.1.2 Covering. To apply Bernstein’s inequality (Lemma 5.1.1), which

is for a maximum over a finite set, we use a covering argument. For the
unbounded terms u, we introduce an integrable envelope U , which dominates
them pointwise. Such an envelope can be found with the Cauchy-Schwarz
inequality. However, an upper bound on ‖γ‖2 will be needed, so we will
assume that for some r > 0, it holds that ‖γ‖2 ≤ r. This is not a problem,
as we can assume ‖γ − γ∗‖2 � τ∗ in the large noise case, and use r = 1 in
the small noise case. We define:

U : Rp × (0, ∞) → R, (x, r) �→ r‖x‖2.
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For any subset S ⊂ R
p \ {0}, we define:

U(S) := {u(γ) : γ ∈ S}, U(S)/Ur :=
{

u(γ)
U(·, r) : γ ∈ S

}
.

Note that for any γ, γ′ ∈ R
p, it holds that u(γ) − u(γ′) = ũ(γ) − ũ(γ′).

So, a covering for u is equivalent to a covering for ũ.
With Lemma 5.1.2, we show that a covering of U(S)/Ur with the

supremum norm does not impair the rate of our empirical process signif-
icantly. It then remains to calculate the covering number. After a technical
Lemma 5.1.3, we see that u/U can be upper bounded by a quantity resem-
bling the ‖ · ‖∗-norm in Lemma 5.1.4. From there, we can derive a covering
number using an upper bound for the covering number of the Euclidean unit
ball in R

p+1.

Lemma 5.1.2 Fix r > 0. Let S ⊂ R
p \ {0} and N ⊂ S be sets such that

U(N )/Ur is an ε-covering of U(S)/Ur in the supremum-norm. With proba-
bility at least 1 − exp(−t),

sup
γ∈S

|(Pn − P )ũ(γ)| ≤ sup
γ∈N

|(Pn − P )ũ(γ)| + εr

(√
2t

n
+ 2

√
p

)
.

Proof Fix any γ ∈ S and an ε-neighbour γε ∈ N . By a triangular inequality,

|(Pn − P )ũ(γ)| ≤ |(Pn − P )(ũ(γ) − ũ(γε))| + |(Pn − P )ũ(γε)| .

All that is left is to upper bound the first summand on the right-hand
side. Note that ũ(γ)−ũ(γε) = u(γ)−u(γε). Using another triangular inequal-
ity,

|(Pn − P )(u(γ) − u(γε))| ≤ (Pn + P )U
∣∣∣∣
u(γ) − u(γε)

U

∣∣∣∣

≤ ε(Pn + P )U = ε ((Pn − P )U + 2PU) .

Now, we use a concentration result. The random variable U(·, r)/r is a
1-Lipschitz function of a Gaussian random variable. So, using concentration
for 1-Lipschitz functions of normally distributed random variables (see e.g.
Boucheron et al., 2013, Theorem 5.5]), we find that on an event with proba-
bility at least 1− exp(−t), it holds that (Pn −P )U(·, r)/r ≤ √

2t/n. On this
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event,

ε ((Pn − P )U + 2PU) ≤ ε

(
r

√
2t

n
+ 2PU

)
≤ εr

(√
2t

n
+ 2

√
p

)
.

This completes the proof. ��
Before we turn our attention to controlling the supremum distance over

U(S)/Ur, we state an auxiliary result.

Lemma 5.1.3 Let v1, v2 ∈ Sp−1. Then:

sup
α∈Sp−1:αT v2≤0

αT v1 ≤ ‖v1 − v2‖2.

Proof Choose any α ∈ Sp−1. First, suppose that vT
1 v2 ≤ 0. Then, it holds

that ‖v1 − v2‖2 ≥ √
2 > 1 ≥ αT v1. Now suppose that vT

1 v2 ≥ 0. Expand:

αT v1 = αT v2v
T
2 v1 + αT (I − v2v

T
2 )v1

(i)

≤ ‖(I − v2v
T
2 )v1‖2

=
√

vT
1 (I − v2vT

2 )v1 =
√

1 − (vT
1 v2)2 ≤

√
2 − 2vT

1 v2 = ‖v1 − v2‖2.

In (i), we used that vT
1 v2 ≥ 0 for the first term and Cauchy-Schwarz for

the second. The proof is complete. ��
Here, we prove an upper bound for the supremum norm in terms of the

orientation β and the length τ . As a consequence, we obtain a bound for the
covering number.

Lemma 5.1.4 Let r > 0 and define τ1, τ2 ∈ (0, r] as well as β1, β2 ∈ Sp−1.
Then:

sup
(x,y)∈Rp×{−1,1}

∣∣∣∣
u(τ1β1, x, y) − u(τ2β2, x, y)

U(x, r)

∣∣∣∣ ≤ ‖β1 − β2‖2 +
|τ1 − τ2|

r
.

Consequentially, it takes at most (12/ε)p+1 many elements to cover
U(Br)/Ur with balls of radius ε in the supremum distance.
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Proof Fix any (x, y) ∈ R
p × {−1, +1}. For j ∈ {1, 2}, we define 1{Aj} :=

1{sign(xT βj) �= y}. We write out the numerator:

|τ1|xT β1|1{A1} − τ2|xT β2|1{A2}| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|τ1|xT β1| − τ2|xT β2|| if A1 ∩ A2

τ1|xT β1| if A1 ∩ Ac
2

τ2|xT β2| if Ac
1 ∩ A2

0 else.

If A1 ∩ A2, then:

|τ1|xT β1| − τ2|xT β2||
‖x‖2r

≤ ‖τ1β1 − τ2β2‖2

r
≤ τ1‖β1 − β2‖2 + |τ1 − τ2|

r
.

Now suppose A1 ∩ Ac
2 holds. By Lemma 5.1.3:

τ1|xT b1|
‖x‖2r

≤ τ1‖β1 − β2‖2

r
.

The case Ac
1 ∩ A2 is analogous. To upper bound the covering number,

take any τ1β1, τ2β2 ∈ U(Br)/Ur. We just established that:

∥∥∥∥
u(τ1β1) − u(τ2β2)

U(·, r)
∥∥∥∥

∞
≤ 2

√(‖β1 − β2‖2
2

2
+

|τ1 − τ2|2
2r2

)
.

Note that on the right-hand side, we have the Euclidean distance over
the set {(β/2, t/2) : (β, t) ∈ Sp−1 × [0, 1]}, which is a subset of the Euclidean
unit ball in R

p+1. To cover the unit ball with elements in itself takes at most
(3/ε)p+1 balls, so to cover a subset of it with elements in itself takes at most
(6/ε)p+1 elements. Taking care of the extra factor 2 completes the proof. ��

5.2 The Large Noise Case Here we provide an inequality for the empir-
ical process of the unbounded term, in the case where the noise is large. Due
to a localization argument, we can assume that ‖γ − γ∗‖2 � τ∗ throughout,
i.e. γ ∈ Br(γ∗), where r � τ∗. After verifying Bernstein’s condition locally, in
terms of the ‖·‖∗-norm, we use Lemma 5.1.1, based on Bernstein’s inequality,
to control the empirical process.

5.2.1 Local Verification of Bernstein’s Condition. The following
lemma is an intermediate step to verify Bernstein’s condition. We do not
yet exploit any localization.
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Lemma 5.2.1 Let γ ∈ R
p \ {0}, τ := ‖γ‖2 and β := γ/τ . Then, for all

m ∈ {2, 3, . . .},
P |ũ(γ)|m

Γ
(

m+1
2

)
2m−1

≤ (
√

32τ‖β − β∗‖2)m
(
‖β − β∗‖2 +

σ

4π3/2

)
+

σ

4π
(
√

8πσ|τβT β∗ − τ∗|)m.

Proof Define y∗ := sign(xT γ∗). To start, note that:

|ũ(γ, x, y)|m =
∣∣∣∣
|xT γ| − yxT γ − (|xT γ∗| − yxT γ∗)

2

∣∣∣∣
m

=
∣∣∣∣
|xT γ| − y∗xT γ

2
− (y − y∗)xT (γ − γ∗)

2

∣∣∣∣
m

(i)

≤ 2m−1

(
|xT γ|m1{βT xxT β∗ < 0} +

|(y − y∗)xT (γ − γ∗)|m
2

)
.

Inequality (i) follows from Jensen’s inequality, and the observation that
the term ||xT γ|−y∗xT γ|/2 is equal to |xT γ|1{βT xxT β∗ < 0}. We proceed to
upper bound the expectations of those two summands separately. The left
term can be bounded using Corollary A.2.1:

P |xT γ|m1{βT xxT β∗ < 0} ≤ τm 1√
2π

Γ(m/2 + 1)
m + 1

(
π√
2
‖β − β∗‖2

)m+1

(ii)

≤ τm 1√
2π

Γ
(

m + 1
2

)(
π√
2
‖β − β∗‖2

)m+1

.

In (ii), we used that Γ(m/2+1)/(m+1) ≤ Γ((m+1)/2). The right term
is bounded with Lemma A.2.1:

P
|(y − y∗)xT (γ − γ∗)|m

2

≤ σ

4π
Γ
(

m + 1
2

)(
1√
π

(
√

32τ‖β − β∗‖2)m + (
√

8π|τβT β∗ − τ∗|σ)m

)
.

Combining these bounds we find:

P |ũ(γ)|m
Γ
(

m+1
2

)
2m−1

≤ (τ‖β − β∗‖2)m

((
π√
2

)m+1 ‖β − β∗‖2√
2π

+
√

32
m σ

4π3/2

)
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+
σ

4π
(
√

8πσ|τβT β∗ − τ∗|)m

≤ (
√

32τ‖β − β∗‖2)m
(
‖β − β∗‖2 +

σ

4π3/2

)
+

σ

4π
(
√

8πσ|τβT β∗ − τ∗|)m.

The proof is complete. ��
In the following, we assume that τ � τ∗, which is the case if ‖γ − γ∗‖2 �

τ∗. This assumption allows us to express Lemma 5.2.1 in terms of the ‖ · ‖∗-
norm, giving us nice constants for Bernstein’s condition. Moreover, we use
that τ∗σ � 1, which holds true for σ � 1, see Lemma 3.2.2.
Proposition 5.2.1 Suppose that σ ≤ 1/

√
2. Let β ∈ Sp−1 and τ > 0 such

that |τ − τ∗| ≤ τ∗/6. Then, Bernstein’s condition is met for ũ(τβ)−Pũ(τβ)
with constants:

K := 28
√

τ∗d∗(τβ), κ := 2K

√
d∗(τβ)√

τ∗ + 0.13σ.

Proof The result follows from Lemma 5.2.1. Since τ ≤ τ∗7/6,

|τβT β∗ − τ∗| = τ |βT β∗ − 1| + |τ − τ∗| ≤ 7
6
τ∗ ‖β − β∗‖2

2

2
+ τ∗3/2 |τ − τ∗|

τ∗3/2

≤ 7
6

√
τ∗√τ∗‖β − β∗‖2 + τ∗3/2 |τ − τ∗|

τ∗3/2

(i)

≤ √
τ∗
√

49
36

+ τ∗2d∗(τβ) ≤
√

2τ∗3d∗(τβ).

Inequality (i) follows from the Cauchy-Schwarz inequality. In the last
inequality we recall from Lemma 3.2.1 that σ ≤ 1/

√
2 implies τ∗ >

√
6.

Now, using the upper bound τ‖β − β∗‖2 ≤ 7/6
√

τ∗d∗(τβ) we can write the
bound in Lemma 5.2.1 as:

P |ũ(τβ)|m
Γ
(

m+1
2

)
2m−1

≤ (
√

τ∗d∗(τβ))m

((√
32

7
6

)m (
‖β − β∗‖2 +

σ

4
√

π3

)
+

σ

4π
(4πστ∗)m

)

(ii)

≤ (
√

τ∗d∗(τβ))m

((√
32

7
6

)m (
‖β − β∗‖2 +

σ

4
√

π3

)
+

σ

4π

√
32π3

m
)

≤ (
√

32π3/2
√

τ∗d∗(τβ))m

(
‖β − β∗‖2 + σ

(
1

4
√

π3
+

1
4π

))
.
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Finally, we use that ‖β − β∗‖2 ≤ d∗(τβ)/
√

τ∗ and simplify the constants
2
√

32π3/2 < 26 and 1/(4
√

π3) + 1/(4π) < 0.13. To find the constants in
Bernstein’s condition, note that Γ((m+1)/2) ≤ m!/2 for m ≥ 2. Recall that
an extra factor of 2 is necessary, as ũ is not centered. The proof is complete.

��
5.2.2 Controlling the Empirical Process. All ingredients are prepared

to prove an upper bound for the empirical process of the unbounded term,
in the large noise case. We will exploit Bernstein’s inequality, or actually, the
derived Lemma 5.1.1, using the constants from Proposition 5.2.1, and making
use of the discretization result (Lemma 5.1.4). To exploit that the constants
in Proposition 5.2.1 are better if d∗(γ) is small, we start the proof with a
local bound, and then move on to a global bound with peeling. Recall the
definition of the δ-ball for the Euclidean distance Bδ := {γ ∈ R

p : ‖γ‖2 ≤ r},
as well as for the ‖ · ‖∗-norm: B∗

δ := {γ ∈ R
p \ {0} : d∗(γ) ≤ δ}.

Proposition 5.2.2 Suppose that σ ≤ 1/
√

2. Let R > 0, r ∈ (0, 1), fix t > 0
and define t′ := t+log�log R/r�. Then, with probability at least 1−3 exp(−t),

sup
γ∈Sr,R

|(Pn − P )ũ(γ)| − Δ(t′)
ψu(ed∗(γ), t′)

≤ 1.

Here,

Sr,R :=
{

γ ∈ R
p \ {0} : r ≤ d∗(γ) ≤ R, |‖γ‖2 − τ∗| <

τ∗

6

}
,

ρ(t) :=
2(t + (p + 1) log(12τ∗/r))

n
, Δ(t) :=

7r

6

(√
2t

n
+ 2

√
p

)
,

ψu(δ, t) := 28
√

τ∗δ

(
2

√

ρ(t)
(

δ√
τ∗ + 0.13σ

)
+ ρ(t)

)
.

Proof Let δ > 0 be arbitrary. We start with discretization. Let N ⊂ Sr,δ

be such that U(N )/Uτ∗7/6 is a covering of U(Sr,δ)/Uτ∗7/6 in the supremum
norm of radius r/τ∗. By Lemma 5.1.4, N can be chosen so that it has at
most (12τ∗/r)p+1 elements. We apply Lemma 5.1.2 with radius τ∗7/6 and
approximation error r/τ∗. On an event with probability at least 1−exp(−t),

sup
γ∈Sr,δ

|(Pn − P )ũ(γ)| ≤ sup
γ∈N

|(Pn − P )ũ(γ)| + Δ(t).
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By Proposition 5.2.1, {ũ(τβ) − Pũ(τβ) : β ∈ Sr,δ} satisfies Bernstein’s
condition with constants:

K := 28
√

τ∗δ, κ := 2K

√
δ√
τ∗ + 0.13σ.

Therefore, by Lemma 5.1.1, on an event with probability at least 1 −
2 exp(−t),

sup
γ∈N

|(Pn − P )ũ(γ)| ≤ 28
√

τ∗δ

(
2

√

ρ(t)
(

δ√
τ∗ + 0.13σ

)
+ ρ(t)

)
= ψu(δ, t),

where ρ and ψu are defined above. We conclude that for any δ > 0,

P

⎡

⎣
⋃

γ∈Sr,δ

|(Pn − P )ũ(γ)| − Δ(t)
ψu(δ, t)

> 1

⎤

⎦ ≤ 3 exp(−t).

Now we use peeling, to replace the dependency on δ with a dependency
on d∗(γ). Define J := �log R/r� and t′ := t + log J . Then:

P

⎡

⎣
⋃

γ∈Sr,R

|(Pn − P )ũ(γ)| − Δ(t′)
ψu(ed∗(γ), t′)

> 1

⎤

⎦

≤
J−1∑

j=0

P

⎡

⎣
⋃

γ∈Srej,rej+1

|(Pn − P )ũ(γ)| − Δ(t′)
ψu(ed∗(γ), t′)

> 1

⎤

⎦

≤
J−1∑

j=0

P

⎡

⎣
⋃

γ∈Srej,rej+1

|(Pn − P )ũ(γ)| − Δ(t′)
ψu(rej+1, t′)

> 1

⎤

⎦

≤ J3 exp(−t − log J) = 3 exp(−t).

The proof is complete. ��
5.3 The Small Noise Case We provide an upper bound for the

unbounded term, in the case where the noise is small. Compared to the
large noise case, we do not have any upper bound for τ∗. On the other hand,
we can exploit that σ is very small. Moreover, the proof for the small noise
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case only requires that we control ‖β − β∗‖2, which simplifies the expres-
sions considerably. As before, we first verify Bernstein’s condition. In this
subsection, we use the notation:

ũ(β) := u(β) − u(β∗).

5.3.1 Local Verification of Bernstein’s Condition. Similarly to the
large noise case, we verify Bernstein’s condition. The verification is somewhat
more straightforward, as we can compare β on the sphere with β∗ directly.
Lemma 5.3.1 Let β ∈ Sp−1. Bernstein’s condition is met for ũ(β) − Pũ(β)
with constants:

K :=
(

π√
2

)
(‖β − β∗‖2 + 2σ) , κ := K

√
‖β − β∗‖2 + 2σ.

Proof It holds that:

P ||xT β∗|1{yxT β∗ < 0} − |xT β|1{yxT β < 0}|m

≤ P |xT β∗|m1{yxT β∗ < 0} + |xT β|m1{yxT β < 0}.

We first consider the summand with β. To control it, we use Corollary A.2.1.
If x̃ ∼ N (0, Ip+1):

P |xT β|m1{yxT β < 0} = P |xT β|m1{(β, 0)T x̃x̃T (β∗, σ) < 0}
(i)

≤ 1√
2π

Γ(m/2 + 1)
m + 1

(
π√
2

∥∥∥∥(β, 0) − 1√
1 + σ2

(β∗, σ)
∥∥∥∥

2

)m+1

(ii)

≤ 1
2

Γ(m/2 + 1)
m + 1

(
π√
2

)m

(‖β − β∗‖2 + σ)m+1

(iii)

≤ m!
2

(
π√
8

)m

(‖β − β∗‖2 + σ)m+1 .

In (i), we used Corollary A.2.1. In (ii), we used the triangular inequality
and that 1 − 1√

1+σ2 ≤ σ2

2 . In (iii), we used that or m ≥ 2 it holds that
Γ(m/2+1)/(m+1) ≤ m!/2m. We can apply the same reasoning to the term
P |xT β∗|m1{yxT β∗ < 0} by choosing β as β∗. Exploiting the fact that integer
monomials are superadditive over positive scalars, we find:

P |ũ(β)|m ≤ m!
2

(
π√
8

)m

(‖β − β∗‖2 + 2σ)m+1 .
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This gives constants for Bernstein’s condition. Recall the extra factor 2,
since ũ are not necessarily centered. The proof is complete. ��

5.3.2 Controlling the Empirical Process. Here, we prove a high prob-
ability upper bound for the empirical process of the unbounded term, in
the small noise case. The procedure is analogous to the large noise case. We
recall the notation S(δ, β′) := {β ∈ Sp−1 : ‖β − β′‖2 ≤ δ} for δ > 0 and
β′ ∈ Sp−1.

Proposition 5.3.1 Let r, R > 0. Fix any t > 0 and let t′ := t+log�log R/r�.
With probability at least 1 − exp(−t),

sup
β∈S(R,β∗)\S(r,β∗)

|(Pn − P )ũ(β)| − Δ(t′)
π√
2
ξ(β)(

√
ξ(β)ρ(t′) + ρ(t′))

≤ 1.

Here,

Δ(t) := r

(√
2t

n
+ 2

√
p

)
, ρ(t) :=

t + (p + 1) log
(

12
r

)

n
,

ξ(β) := e‖β − β∗‖2 + 2σ.

Proof Let δ > 0 be arbitrary. We start with discretization. By Lemma 5.1.4,
it takes at most (12/r)p+1 balls of radius r to cover {ũ(β)/U(x, 1) : β ∈ Sp−1}
with elements in itself in the supremum norm. Let N ⊂ S(δ, β∗)\S(r, β∗) be
such a covering of S(δ, β∗)\S(r, β∗). We use Lemma 5.1.2 with bound 1 and
covering radius ε := r. On an event with probability at least 1 − exp(−t),

sup
β∈S(δ,β′)\S(r,β∗)

|(Pn − P )ũ(β)| ≤ sup
β∈N

|(Pn − P )ũ(β)| + Δ(t).

By Lemma 5.3.1, the centered ũ with parameters in S(δ, β′) \ S(r, β∗)
satisfy Bernstein’s condition, with parameters K := π√

2
(δ + 2σ) and κ :=

K
√

δ + 2σ. By Lemma 5.1.1, with probability at least 1 − 2 exp(−t),

sup
β∈N

|(Pn − P )ũ(β)|
π√
2
(δ + 2σ)

≤
√

(δ + 2σ)ρ(t) + ρ(t).
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We use peeling to replace the dependency on δ with dependency on
‖β − β∗‖2. Define J := �log R/r� and t′ := t + log J .

P

⎡

⎣
⋃

β∈S(R,β∗)\S(r,β∗)

|(Pn − P )ũ(β)| − Δ(t′)
π√
2
ξ(β)(

√
ξ(β)ρ(t′) + ρ(t′))

> 1

⎤

⎦

(i)

≤ J3 exp(−t − log J) = 3 exp(−t).

As in the large noise proof, (i) follows from peeling, i.e. a union bound
over a partition of the form S(ej+1r, β∗)\S(ejr, β∗). The proof is complete.��

6 Proofs of the Main Theorems

6.1 Large Noise Case In this subsection, we prove the main theorem
for the case where σ is large. As a final auxiliary step, we prove the margin
condition. It provides a lower bound for the excess risk Pl(γ) − Pl(γ∗) in
terms of d∗(γ). Once this result is established, we are ready to prove the
main result.

6.1.1 The Margin Condition. Recall our notation γ ∈ R
p \ {0} and

τ := ‖γ‖2, as well as β := γ/τ . To derive bounds on ‖β̂ − β∗‖2 and |τ̂ − τ∗|
from our bounds on the excess risk, we would like to have an inequality of
the following type, for some α1, α2 > 0:

α1|τ̂ − τ∗| + α2‖β̂ − β∗‖2 ≤ Pl(γ) − Pl(γ∗).

This is what we call the margin condition. It was originally introduced in
Mammen and Tsybakov (1999). The statement we use is reminiscent of the
version in (Bühlmann and van de Geer, 2011, Chapter 6.4). In the following,
we show that indeed the margin condition is satisfied, with:

d∗(γ)2 := ‖(τ, β) − (τ∗, β∗)‖2
∗ � Pl(γ) − Pl(γ∗).

This result is the motivation for our introduction of the ∗-norm (see
Section 3.3).

Re-parametrization As the signal strength 1/σ ∼ τ∗ grows, it becomes
more difficult to estimate τ∗ but easier to estimate β∗. A lower bound on
the excess risk must reflect this. Hence, in our attempt to derive such a
bound, we re-parametrize γ into its length τ := ‖γ‖2 and its orientation
β := γ/‖γ‖2. We will not work with β directly but rather exploit that β
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lives in a p − 1-dimensional manifold. To do so, we re-parametrize β in the
following.

We find an orthonormal basis, which includes β∗ as one of its elements.
For any β∗ ∈ Sp−1, there exists a set {b1, . . . , bp−1} ⊂ Sp−1, such that the
collection {β∗, b1, . . . , bp−1} forms an orthonormal basis. So, we can find the
Fourier expansion of any vector v ∈ R

p as:

v = vT β∗β∗ +
p−1∑

i=1

vT bibi.

We write this more compactly for vectors on Sp−1. Let V be the p×(p−1)
matrix, whose columns are the vectors {b1, . . . , bp−1}. For any v ∈ R

p, we
define the coefficient vector h(v) := (vT b1, . . . , v

T bp−1). So, for any β ∈ Sp−1,

β = sign(βT β∗)
√

1 − ‖h(β)‖2
2β

∗ + V h(β). (9)

The following result shows that the Euclidean norm of h(β) behaves as
the distance between β and β∗, up to a constant factor.
Lemma 6.1.1 For any β∗, β ∈ Sp−1 with βT β∗ ≥ 0, it holds that:

‖h(β)‖2 ≤ ‖β − β∗‖2 ≤
√

2‖h(β)‖2.

Proof Fix β ∈ Sp−1. To reduce notation, we write h := h(β). By definition,

‖β − β∗‖2
2 =

(
1 −

√
1 − ‖h‖2

2

)2

+ ‖h‖2
2 = 2

(
1 −

√
1 − ‖h‖2

2

)
.

From this, the lower bound already follows. For the upper bound, mul-
tiply out the first term, simplify, and then use that 1 −

√
1 − ‖h‖2

2 =
‖h‖2

2/(1 +
√

1 − ‖h‖2
2) ≤ ‖h‖2

2. This completes the proof. ��
We now re-write the true risk (the expectation of the loss function) at a

point γ ∈ R
p \ {0}. For γ ∈ R

p such that γT γ∗ ≥ 0, we write the ‘true risk’
as:

P log(1 + exp(−yxT γ))

= P log
(

1 + exp
(

−τyxT

(√
1 − ‖h(β)‖2

2β
∗ + V h(β)

)))
.

The expansion (9) shows that on the hemisphere H := {b ∈ Sp−1 :
bT β∗ > 0}, the map β �→ h(β) is injective. So, we can reparametrize (τ, β) ∈
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(0, ∞) × H with (τ, h) ∈ (0, ∞) × B◦
1 , where B◦

1 is the open Euclidean unit
ball, and write the true risk as:

P log
(

1 + exp
(

−τyxT

(√
1 − ‖h‖2

2β
∗ + V h

)))
=: R(τ, h). (10)

The mapping R : (0, ∞) × B◦
1 → R is twice continuously differentiable.

In the following, we will study its Hessian.
The Hessian of the re-parametrized risk

Lemma 6.1.2 Let z ∼ N (0, 1). For any τ > 0 and any h ∈ B◦
1 , we have:

R̈(τ, h) :=

⎛

⎝
P |z|2

(exp(τ |z|/2)+exp(−τ |z|/2))2 , − 1√
2π(1+σ2)

√
1−‖h‖2

2

hT

− 1√
2π(1+σ2)

√
1−‖h‖2

2

h, τ√
2π(1+σ2)

√
1−‖h‖2

2

(I + hhT

1−‖h‖2
2
)

⎞

⎠ .

Proof Fix τ > 0 and h ∈ B◦
1 . Let β ∈ Sp−1 be the unique vector such that

βT β∗ > 0 and the identity (9) holds. Let γ := τβ. We use the decomposition
log(1 + exp(−yxT γ)) = log(1 + exp(−|γT x|)) + |xT γ|1{yxT γ < 0}. Using
Corollary A.2.2 for the right summand, we find:

R(τ, h) = P log(1 + exp(−τ |z|)) + τ
1√
2π

(
1 − βT β∗

√
1 + σ2

)
.

By construction of β, it holds that βT β∗ =
√

1 − ‖h‖2
2. Differentiating

twice, we find the expression stated in the claim. The proof is complete. ��
We now give a lower bound on the second-order term of the Taylor expan-

sion of R near γ∗, i.e. (τ∗, 0). At this moment, the ∗-norm appears in our
calculation.
Lemma 6.1.3 Let τ, τ∗ ≥

√
6 +

√
51 and κτ > 0 such that |τ − τ∗| ≤ κττ

∗.
Let (τ̄ , h̄) be a convex combination of (τ, h) and (τ∗, 0). Then,

(
τ − τ∗

h

)T

R̈(τ̄ , h̄)
(

τ − τ∗

h

)
≥ 1√

8π

(
1

(1 + κτ )3
∧ 1 − 3κτ√

1 + σ2

)
d∗(τβ(h))2.

Proof We make use of the expression given in Lemma 6.1.2. We bound each
term separately. First, by Lemma A.1.5,

P
|z|2

(eτ̄ |z|/2 + e−τ̄ |z|/2)2
(τ − τ∗)2 ≥

√
1
8π

(τ − τ∗)2

τ̄3
≥
√

1
8π

(τ − τ∗)2

(τ∗(1 + κτ ))3
.
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For the cross terms,

hT R̈((τ̄ , h̄))21(τ − τ∗) = − τ − τ∗
√

2π(1 + σ2)
h̄T h√

1 − ‖h̄‖2
2

(i)

≥ − |τ − τ∗|√
2π(1 + σ2)

‖h‖2
2√

1 − ‖h̄‖2
2

≥ − κττ
∗

√
2π(1 + σ2)

‖h‖2
2√

1 − ‖h̄‖2
2

.

In (i), we used that h̄ is an intermediate point between h and 0, ‖h̄‖2 ≤
‖h‖2. The inequality then follows from Cauchy-Schwarz. The last product
gives:

hT R̈(θ̄)22h ≥ τ̄√
2π(1 + σ2)

‖h‖2
2√

1 − ‖h̄‖2
2

≥ τ∗(1 − κτ )√
2π(1 + σ2)

‖h‖2
2√

1 − ‖h̄‖2
2

.

Together with the two cross terms, this is:

τ∗(1 − 3κτ )√
2π(1 + σ2)

‖h‖2
2√

1 − ‖h̄‖2
2

≥ τ∗(1 − 3κτ )√
2π(1 + σ2)

‖h‖2
2.

By Lemma 6.1.1, ‖h‖2
2 ≥ ‖β − β∗‖2

2/2. Combining these lower bounds,
we find:

1√
8π

(
1

(1 + κτ )3
(τ − τ∗)3

τ∗3
+

1 − 3κτ√
1 + σ2

τ∗‖β − β∗‖2
2

)

≥ 1√
8π

(
1

(1 + κτ )3
∧ 1 − 3κτ√

1 + σ2

)
d∗(τβ)2.

The proof is complete. ��
Proof of the margin condition

Lemma 6.1.4 Let τ, τ∗ ≥
√

6 +
√

51 and κτ > 0 such that |τ − τ∗| ≤ κττ
∗.

Suppose that β, β∗ ∈ Sp−1 such that βT β∗ > 0. Then,

Pl(τβ) − l(τ∗β∗) ≥ 1√
32π

(
1

(1 + κτ )3
∧ 1 − 3κτ√

1 + σ2

)
d∗(τβ)2.
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Proof Using the re-parametrization, we have Pl(τβ)−l(τ∗β∗) = R(τ, h(β))−
R(τ∗, 0). By Taylor’s Theorem, there exists a convex combination of (τ, h(β))
and (τ, h(β)), say (τ̄ , h̄), such that:

R(τ, h(β))−R(τ∗, 0) ≥ Ṙ(τ∗, 0)T

(
τ − τ∗

h

)
+

1
2

(
τ − τ∗

h

)T

R̈(τ̄ , h̄)
(

τ − τ∗

h

)
.

By convexity and the definition of τ∗β∗, Ṙ(τ∗, 0) = 0. The result now
follows from Lemma 6.1.3. ��

6.1.2 Proof of Large Noise Theorem. Here, we prove Theorem 2.1.1.
In fact, we prove Theorem 6.1.1, which is a slightly more general version, as it
allows for a weaker restriction on the choice of M . Moreover, it is marginally
less restrictive on σ, as with Lemma 3.2.1 one can verify that σ ≤ 1/

√
6

implies τ∗ > 6
5

√
6 +

√
51.

Theorem 6.1.1 Let γ̂ be a solution to Eq. 2. There exists universal con-
stants C > 0 and 0 < c < 1, such that for any t > 0, if:

6
5

√
6 +

√
51 < τ∗ ≤ c

n

p log n + t
≤ M,

then with probability at least 1 − 4 exp(−t),

d∗(γ̂) ≤ C

√
p log n + t

n
.

We refer the reader to Section 2 for a sketch of the proof.
Proof We define:

α :=
1

1 + 6‖γ̂−γ∗‖2

τ∗

, γ̃ := αγ̂ + (1 − α)γ∗

We show that we can apply Lemma 6.1.5 to γ̃. By construction of γ̃,

‖γ̃ − γ∗‖2 = α‖γ̂ − γ∗‖2 ≤ τ∗

6
.

By convexity, Pnl(γ̃) ≤ Pnl(γ∗) holds on an event with probability 1. So,
by Lemma 6.1.5, there exists a constant C ′ > 0, such that on an event Bt
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with probability at least 1 − 4 exp(−t),

d∗(γ̃) ≤ C ′
√

p log(n) + t

n
.

By Lemma 3.3.1, it follows that:

‖γ̃ − γ∗‖2 ≤
√

2τ∗3C ′
√

p log(n) + t

n
≤ c · C ′√2 · τ∗ (i)

≤ τ∗

12
.

The inequality (i) holds if c ≤ 1/(C ′12
√

2), which we require. If so, after
rearranging we find:

‖γ̂ − γ∗‖2 =
‖γ̃ − γ∗‖2

1 − 6‖γ̃−γ∗‖2

τ∗

≤ 2‖γ̃ − γ∗‖2.

Consequentially, ‖γ̂ − γ∗‖2 ≤ τ∗/6. So, by Lemma 6.1.5 on the event Bt,

d∗(γ̂) ≤ C ′
√

p log(n) + t

n
.

The proof is complete. ��
Lemma 6.1.5 Let μ := p log(n)+t

n and suppose that:

6
5

√
6 +

√
51 ≤ τ∗ ≤ 1

μ
.

There exists a universal constant C > 0 and for any t > 0 an event
Bt with probability at least 1 − 4 exp(−t), such that the following is true.
Let γ̃ be any random vector in R

p which satisfies ‖γ̃ − γ∗‖2 ≤ τ∗/6 and
Pnl(γ̃) ≤ Pnl(γ∗) on an event A. Then, on A ∩ Bt, it holds that:

d∗(γ̃) ≤ C
√

μ.

Proof We will apply the margin condition (Lemma 6.1.4) with κτ = 1/6,
which gives us:

1√
27π

d∗(γ̃)2√
1 + σ2

≤ Pl(γ̃) − l(γ∗) ≤ (P − Pn)l(γ̃) − l(γ∗)

= (P − Pn) log(2)b̃(γ̃) + ũ(γ̃).
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In the following, we distinguish whether the bounded or unbounded term
dominates. Suppose that the bounded term dominates. If so, we apply Propo-
sition 4.2.1. Henceforth, we borrow its notation. Since ‖γ̃ − γ∗‖2 ≤ τ∗/6, we
have τ̃ := ‖γ̃‖2 ≥ τ∗5/6 and by Lemma 3.3.1 d∗(γ̃) ≤ √

τ∗/2. So, we may
choose the bigger radius in Proposition 4.2.1 as R :=

√
τ∗/2. Moreover, we

choose r := μ. By Proposition 4.2.1, there exists a universal constant Cb

such that on an event Bb, which has probability at least 1 − exp(−t),

(P − Pn)b̃(γ̃) � μ +
√

μd∗(γ̃).

Distinguishing whether the first or second term dominates, we obtain
d∗(γ̃) � μ. Here, we used that σ � 1 by Lemma 3.2.2 and since τ∗ � 1.

Now suppose instead that the unbounded term dominates. We apply
Proposition 5.2.2, borrowing its notation. The radii are chosen as r := μ/

√
p

and R :=
√

τ∗/2. We see that Δ(t′) � μ and ρ(t′) � μ, as well as:

ψu(d∗(γ̃), t′) �
√

τ∗d∗(γ̃)

(√(
d∗(γ̃)√

τ∗ + σ

)
μ + μ

)
.

So, by Proposition 5.2.2, on an event Bu with probability at least 1 −
3 exp(−t),

(P − Pn)ũ(γ̃) � d∗(γ̃)3/2√μτ∗1/4 + d∗(γ̃)
√

μτ∗σ + d∗(γ̃)μ
√

τ∗ + μ

� d∗(γ̃)3/2μ1/4 + d∗(γ̃)
√

μ + μ.

Here, we used Lemma 3.2.2 to simplify στ∗ � 1. Whichever term domi-
nates, we obtain d∗(γ̃) � √

μ.
If we denote the event Bb ∩ Bu by Bt, the event Bt has probability at

least 1 − 4 exp(−t), and on A ∩ Bt, the event d∗(γ̃) � μ holds. The proof is
complete. ��

6.2 Proof for Small Noise In this subsection, we prove Theorem 2.2.1,
the main result for the case where the noise is small. In fact, we prove the
slightly stronger Theorem 6.2.1, which neither requires that M ≥ n/(p log n+
t) nor that σ ≤ (p log n+ t)/n. Let γ̂ be a solution to Eq. 2. Define τ̂ := ‖γ̂‖2

and β̂ := γ̂/τ̂ . It can be verified that almost surely τ̂ �= 0. Consequentially,
β̂ is well-defined.



Finite Sample Rates for Logistic Regression...

Theorem 6.2.1 Fix t > 0 and let μ := (p log(n) + t)/n. Assume σ ≤ 1/
√

7
and require M > 2

√
6 and:

0.051 >

√
9t + 3p(2 + log(3

√
6n))

n
. (11)

Then, with probability at least 1 − 6 exp(−t),

‖β̂ − β∗‖2 � 1
M

∨ σ ∨ μ, (12)

and:

M ∧ 1
σ

∧ 1
μ

� τ̂ . (13)

As a direct consequence of Theorem 6.2.1, we get Theorem 2.2.1, which
was stated in Section 2. To recover its statement, we require σ ≤ μ and
M ≥ 1/μ. We point the reader to Section 2 for a sketch of the proof.
Proof of Theorem 6.2.1 The proof is divided into 3 cases. Case 3 describes
τ̂ ≤ √

6, which we show happens only with small probability. Cases 1-2
capture τ̂ >

√
6. In case 1, we additionally assume M/2 < τ̂ ≤ M , whereas

in case 2 we assume
√

6 < τ̂ ≤ M/2. On these events, we show that with
large probability, Eqs. 12 and 13 hold.

Case 1: M/2 ∨ √
6 ≤ τ̂ ≤ M . In case 1, Eq. 13 follows directly by

assumption, so we only need to prove (12). By the lower bound in Lemma
A.1.6, using that τ̂ ≥ √

6,

1
8
√

2π

1
τ̂

≤ P (b(τ̂β∗) − b(2τ̂β∗))
(i)
= P

(
b(τ̂ β̂) − b(2τ̂β∗)

)

(ii)

≤ P
(
b(τ̂ β̂) − b(τ̂β∗)

)
+

1
τ̂

√
2
π

(iii)

≤ P
(
b(τ̂ β̂) − b(τ̂β∗)

)
+

1
M

√
8
π

.

The equality in (i) follows from rotational invariance, whereas the
inequality (ii) follows from the upper bound in Lemma A.1.6. Inequality
(iii) follows from the assumption M/2 ≤ τ̂ . It turns out that this is the only
step where the assumption

√
6 ≤ τ̂ ≤ M would not be enough in the proof

of part 1. On the other hand, Corollary A.2.2 gives:

P
(
u(τ̂ β̂) − u(τ̂β∗)

)
=

τ̂√
8π(1 + σ2)

‖β̂ − β∗‖2
2.
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Together, this gives:

1
8
√

2π

1
τ̂

+
τ̂√

8π(1 + σ2)
‖β̂ − β∗‖2

2 ≤ P
(
b(τ̂ β̂) − b(τ̂β∗) + u(τ̂ β̂) − u(τ̂β∗)

)

+
1
M

√
8
π

.

If the term 1/M dominates the right-hand side, using the inequality of
arithmetic and geometric means we get:

1√
8π

‖β̂ − β∗‖2

(1 + σ2)1/4
≤ 1

8
√

2π

1
τ̂

+
τ̂√

8π(1 + σ2)
‖β̂ − β∗‖2

2 ≤ 2
M

√
8
π

.

Additionally, since τ∗ � 1, we have σ � 1 by Lemma 3.2.2. We conclude
that the inequality (12) holds. If instead, the other terms dominate, we have
the inequality:

1
16

√
2π

1
τ̂

+
τ̂

2
√

8π(1 + σ2)
‖β̂−β∗‖2

2 ≤ P
(
b(τ̂ β̂) − b(τ̂β∗) + u(τ̂ β̂) − u(τ̂β∗)

)

(iv)

≤ (P − Pn)
(
b(τ̂ β̂) − b(τ̂β∗) + u(τ̂ β̂) − u(τ̂β∗)

)
.

In (iv) we used that the estimator τ̂ β̂ minimizes the empirical risk over
a Euclidean ball of radius M , and ‖τ̂β∗‖2 = τ̂ ≤ M . We distinguish whether
the bounded or the unbounded term dominates. Suppose first that the
unbounded term dominates. Then, we use Proposition 5.3.1. We borrow its
notation henceforth. Let R := 2, since ‖β̂ − β∗‖2 ≤ 2, and r := μ2/

√
p. This

choice of r is possible since if ‖β̂ − β∗‖2 ≤ μ2/
√

p holds then (12) is true.
We note that ρ(t′) � μ and Δ(t′) � μ2. On an event A1,u with probability
at least 1 − exp(−t),

1
4
√

8π(1 + σ2)
‖β̂ − β∗‖2

2 ≤ (P − Pn)
(
u(β̂) − u(β∗)

)
= (P − Pn)ũ(β̂)

� (‖β̂ − β∗‖2 + σ)
(√

(‖β̂ − β∗‖2 + σ)μ + μ

)
+ μ2

(v)

� ‖β̂ − β∗‖2

√
μ‖β̂ − β∗‖2 + μ2.
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In (v) we assume that ‖β̂−β∗‖2 ≥ σ∨μ, otherwise (12) is true. Whichever
of the two terms dominates in this expression (12) is true.

Next, suppose that the bounded term dominates. We will use
Proposition 4.2.2 with k = 1. Taking r = μ, if ‖β̂ − β∗‖2 ≤ μ, Eq. 12
holds. Else, there exist constants c1, c2 > 0, such that on an event A1,b with
probability at least 1 − exp(−t),

1
4 log 2

(
1

8
√

2π

1
τ̂

+
τ̂√

8π(1 + σ2)
‖β̂ − β∗‖2

2

)
≤ (P − Pn)

b(τ̂ β̂) − b(τ̂β∗)
log 2

≤ c1
‖β̂ − β∗‖2

2τ̂

λ
+ c2λμ.

Choosing λ := 2c1 log(2)4
√

8π(1 + σ2), we get:

1
4 log 2

(
1

8
√

2π

1
τ̂

+
τ̂

2
√

8π(1 + σ2)
‖β̂ − β∗‖2

2

)
� μ.

Using the inequality of arithmetic and geometric means, we get ‖β̂ −
β∗‖2 � μ, so Eq. 12 holds. This concludes case 1.

Case 2:
√

6 ≤ τ̂ ≤ M/2. As in case 1, we get:

1
8
√

2π

1
τ̂

≤ P
(
b(τ̂ β̂) − b(2τ̂β∗)

)
,

as well as:

τ̂√
8π(1 + σ2)

‖β̂ − β∗‖2
2 = P

(
u(τ̂ β̂) − u(τ̂β∗)

)

= P
(
u(τ̂ β̂) − u(2τ̂β∗) + u(τ̂β∗)

) (i)

≤ P
(
u(τ̂ β̂) − u(2τ̂β∗)

)
+

τ̂σ2

√
8π

.

Inequality (i) follows from Corollary A.2.2 and that 1 − 1√
1+σ2 ≤ σ2

2 .
Together, this gives:

1
8
√

2π

1
τ̂

+
τ̂√

8π(1 + σ2)
‖β̂ − β∗‖2

2

≤ P
(
b(τ̂ β̂) − b(2τ̂β∗) + u(τ̂ β̂) − u(2τ̂β∗)

)
+

τ̂σ2

√
8π

.
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If the last summand on the right-hand side dominates, we conclude that
Eqs. 12 and 13 hold. If not, we can use that τ̂ β̂ minimizes the empirical risk
over a Euclidean ball of radius M and that ‖2τ̂β∗‖2 ≤ M . We remark that
this was not true in case 1. It follows that:

1
8
√

2π

1
τ̂

+
τ̂√

8π(1 + σ2)
‖β̂ − β∗‖2

2

≤ 2(P − Pn)
(
b(τ̂ β̂) − b(2τ̂β∗) + u(τ̂ β̂) − u(2τ̂β∗)

)
.

Again, we make a case distinction. If the unbounded term dominates, we
try to control:

1
4 · 8

√
2π

1
τ̂

+
τ̂

4
√

8π(1 + σ2)
‖β̂ − β∗‖2

2 ≤ (P − Pn)
(
u(τ̂ β̂) − u(2τ̂β∗)

)

= τ̂(P − Pn)ũ(β̂) − τ̂(P − Pn)u(β∗).

Here, ũ(β̂) := u(τ̂ β̂)−u(τ̂β∗). If the right term dominates, we can directly
use Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10). With
Corollary A.2.1, we see that Bernstein’s condition is met with constants
K � σ and κ � σ3/2. Therefore, by Bernstein’s inequality, on an event A2,u

with probability at least 1 − exp(−t), it holds that:

−τ̂(P − Pn)u(β∗) � σ3/2√μ + σμ ≤ σ2 ∨ μ2.

So, both Eqs. 12 and 13 hold. If instead the term in ũ(β̂) dominates, we
use Proposition 5.3.1 to bound it. So, as in case 1, we find that on the event
A1,u which has probability at least 1 − exp(−t),

τ̂

4
√

8π(1 + σ2)
‖β̂ − β∗‖2

2 � τ̂

(
‖β̂ − β∗‖2

√
μ‖β̂ − β∗‖2 + μ2

)
.

So, Eq. 12 holds. Consequentially, on the event A1,u, we also have:

1
4 · 8

√
2π

1
τ̂

� τ̂

(
‖β̂ − β∗‖2

√
μ‖β̂ − β∗‖2 + μ2

)
� τ̂μ2.

So, Eq. 13 is true.
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Now suppose that the bounded term dominates. Then:

1
4
√

8π

1
τ̂

+
τ̂

4
√

8π(1 + σ2)
‖β̂ − β∗‖2

2 ≤ (P − Pn)
(
b(τ̂ β̂) − b(2τ̂β∗)

)
.

As in case 1, we use Proposition 4.2.2 with r := μ, although now with
k = 2. There are absolute constants c1, c2, c3 > 0, such that on the event
A2,b which has probability at least 1 − exp(−t),

(P − Pn)
b(τ̂ β̂) − b(2τ̂β∗)

log 2
≤ c1

‖β̂ − β∗‖2
2τ̂

λ
+ c2

1
λτ̂

+ c3λμ.

We choose λ := 2 max{c14
√

8π(1 + σ2), c24 · 8
√

2π}, so that we get:

1
8
√

8π

1
τ̂

+
τ̂

8
√

8π(1 + σ2)
‖β̂ − β∗‖2

2 � μ.

Ignoring the second summand on the left-hand side, we see that Eq. 13
is met. By the inequality of arithmetic and geometric means, we see that
Eq. 12 is met. This concludes case 2.

Case 3: τ̂ ≤ √
6. Before we start with case 3, we show that assumption

(11) implies:

Pl(
√

6β∗) − Pl(min{τ∗, M}β∗) >

√
9t + 3p(2 + log(3

√
6n))

n
(14)

Let τ � := min{τ∗, M}. From Lemma 3.2.2 and σ ≤ 1/
√

7 we get τ∗ ≥
2
√

6. It follows that τ � ≥ 2
√

6, as we assumed M ≥ 2
√

6. By Corollary A.2.2,

P
(
l(

√
6β∗) − l(τ �β∗)

)
= P

(
b(

√
6β∗)−b(τ �β∗)

)
−τ � − √

6√
2π

(
1 − 1√

1 + σ2

)
.

≥ P
(
b(

√
6β∗) − b(2

√
6β∗)

)
− τ∗ − √

6√
2π

(
1 − 1√

1 + σ2

)

≥ P
(
b(

√
6β∗) − b(2

√
6β∗)

)
− τ∗ − √

6√
2π

σ2

2

(i)

≥ P
(
b(

√
6β∗) − b(2

√
6β∗)

)
−

√
2πσ − 6σ2

√
8π

(ii)

≥ 0.051.
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In (i) we used Lemma 3.2.2. Inequality (ii) follows from our bound on
σ, the constant is found by simulation of the integrals. Consequentially,
assumption (11) implies (14).

Now we start with case 3. First, by Lemma 3.2.3, Pl(γ̂) ≥ Pl(τ̂β∗).
Moreover, since τ̂ ≤ 6, by convexity Pl(τ̂β∗) ≥ Pl(

√
6β∗). Therefore,

P
(
l(γ̂) − l(τ �β∗)

)
≥ P

(
l(

√
6β∗) − l(τ �β∗)

) (iii)

≥
√

9t + 3p(2 + log(3
√

6n))
n

.

Inequality (iii) follows from Eq. 14. By Lemma 6.2.1, this event together
with τ̂ ≤ 6 occurs on an event Ac

3, which has probability at most 2 exp(−t).
This concludes case 3.

We conclude that Eqs. 12 and 13 are true on the event A1,u ∩ A1,b ∩
A2,u ∩ A2,b ∩ A3, which has probability at least 1 − 6 exp(−t). The proof is
complete. ��

The following result was used in the proof of case 3 in Theorem 6.2.1.
There, we use it with γ� as Mβ∗ or τ∗β∗. The idea is, that two events are
unlikely to occur together. The first one states that τ̂ ≤ r, and the second one
states that the excess risk is larger than

√
(t + p log(n))/n up to constant

factors. In Theorem 6.2.1, we assume that this lower bound is small, implying
that the second statement holds. Consequentially, τ̂ > r must be true with
high probability.
Lemma 6.2.1 Fix r > 0, and γ� ∈ R

p \ {0} such that ‖γ�‖2 ≤ M . Let A be
the event that ‖γ̂‖2 ≤ r. Moreover, let B be the event that:

P
(
l(γ̂) − l(γ�)

)
>

√
9t + 3p(2 + log(3r

√
n))

n
.

Then, P[A ∩ B] ≤ 2 exp(−t).
Proof Let Br be the Euclidean ball of radius r centered at zero. We start by
bounding the following expression with high probability:

sup
γ∈Br

(P − Pn)
(
l(γ) − l(γ�)

)
.

The ball Br can be covered with at most (3r/ε)p balls of radius ε ∈ (0, 1).
Let N ⊂ Br be such a covering.

sup
γ∈Br

(P − Pn)
(
l(γ) − l(γ�)

)
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= inf
γ′∈N

sup
γ∈Br

(P − Pn)(l(γ) − l(γ′)) + (P − Pn)(l(γ′) − l(γ�))

≤ inf
γ′∈N

sup
γ∈Br

(P − Pn)(l(γ) − l(γ′)) + sup
γ′∈N

(P − Pn)(l(γ′) − l(γ�)). (15)

To bound the first summand, we proceed as in the proof of Lemma 5.1.2.

inf
γ′∈N

sup
γ∈Br

∣∣∣∣(P − Pn)‖x‖2
l(γ) − l(γ′)

‖x‖2

∣∣∣∣ ≤ inf
γ′∈N

sup
γ∈Br

(P + Pn)‖x‖2

∣∣∣∣
l(γ) − l(γ′)

‖x‖2

∣∣∣∣

(i)

≤ ε(P + Pn)‖x‖2 ≤ ε ((Pn − P )‖x‖2 + 2P‖x‖2) .

In (i), we used that the function l(·, yx) : Rp → R, mapping γ �→ l(γ, yx)
is ‖x‖2-Lipschitz. By concentration for 1-Lipschiz functions of standard nor-
mally distributed random variables (see e.g. Boucheron et al. 2013, Theorem
5.6), with probability at most exp(−t), it holds that (Pn −P )‖x‖2 >

√
2t/n.

By Jensen’s inequality, P‖x‖2 ≤ √
p. We conclude that with probability at

least 1 − exp(−t),

inf
γ′∈N

sup
γ∈Br

∣∣∣∣(P − Pn)‖x‖2
l(γ) − l(γ′)

‖x‖2

∣∣∣∣ ≤ ε

(√
2t

n
+ 2

√
p

)
.

For the second term in Eq. 15, we use that the function R
p → R, mapping

γ �→ l(γ, yx) − l(γ�) takes values in (− log(2), log(2)). So, by Hoeffding’s
inequality (see e.g. Boucheron et al. 2013, Theorem 2.8), for any γ′ ∈ N ,

P

[
(P − Pn)(l(γ′) − l(γ�)) >

√
t

n

]
≤ exp

(
− t

2 log(2)2

)
≤ exp(−t).

Moreover, by a union bound,

P

[
max
γ′∈N

(P − Pn)(l(γ′) − l(γ�)) >

√
t + log |N |

n

]
≤ exp (−t) .

Moreover, by choice of N , it holds that log |N | ≤ p log(3r/ε). Altogether,
we find that with probability at least 1 − 2 exp(−t),

sup
γ∈Br

(P − Pn)
(
l(γ) − l(γ�)

)
≤ ε

(√
2t

n
+ 2

√
p

)
+

√
t + p log(3r/ε)

n
.
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Choosing ε := 1/
√

n and Jensen’s inequality gives:

sup
γ∈Br

(P − Pn)
(
l(γ) − l(γ�)

)
≤

√
2t

n
+ 2

√
p

n
+

√
t + p log(3r

√
n)

n

≤
√

9t + 3p(2 + log(3r
√

n))
n

.

Denote this event by C. So, we concluded that P[C] ≥ 1 − 2 exp(−t).
Now suppose that A ∩ B occurs. Since B occurs,

√
9t + 3p(2 + log(3r

√
n))

n
< P

(
l(γ̂) − l(γ�)

)
.

Since ‖γ�‖2 ≤ M , Pnl(γ̂) ≤ Pnl(γ�). Consequentially,

P
(
l(γ̂) − l(γ�)

)
≤ (P − Pn)

(
l(γ̂) − l(γ�)

)
.

Since A occurs, τ̂ ≤ r. So:

≤ sup
γ∈Br

(P − Pn)
(
l(γ) − l(γ�)

)
.

We conclude that A ∩ B implies Cc. Consequentially, P[A ∩ B] ≤ 1 −
P [C] ≤ 2 exp(−t). The proof is complete. ��

6.3 Proof of the Consequence for Linear Separation Here, we provide
a proof of Proposition 2.3.1.
Proof of Proposition 2.3.1 Let AM be the event with probability at least
1 − 4 exp(−t) on which the conclusion in Theorem 2.1.1 holds, for a valid
choice of M . Let B be the event that the data are linearly separable. We
show that if M is chosen large enough, the event AM ∩ B is empty. Hence,
P[B] ≤ P[Ac

M ] ≤ 4 exp(−t). We start with the observation that on B, it
holds that τ̂ = M . So, on B, by a triangular inequality,

d∗(γ̂) ≥ M − τ∗

τ∗3/2
.

By Theorem 2.1.1, on AM the quantity d∗(γ̂) is upper bounded by a
deterministic expression c > 0 not depending on M . So, if M > cτ∗3/2 + τ∗,
we reach a contradiction, meaning that the event AM ∩ B is empty. The
proof is complete. ��
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A Approximations for the (un)bounded Term

A.1 Approximations for Bounded Term In this subsection, we provide
approximations for several quantities related to the bounded term.

A.1.1 Gaussian Integrals of Exponential Functions
Lemma A.1.1 Let τ > 0 and z ∼ N (0, 1). We have:

√
2
π

(
1
τ

− 1
τ3

)
≤ P exp(−τ |z|) ≤

√
2
π

1
τ
.

The result follows from completing the square and repeated integration
by parts.
Lemma A.1.2 Let z ∼ N (0, 1). Then, for τ > 0,

√
1
2π

1
τ2

(
1 − 3

τ2

)
≤ P

|z|
1 + exp(τ |z|) ≤

√
2
π

1
τ2

.

Proof Since τ > 0,

P
|z|

2 exp(τ |z|) ≤ P
|z|

1 + exp(τ |z|) ≤ P
|z|

exp(τ |z|) .

We continue working with the expression for the lower bound. The deriva-
tion for the upper bound is the same, with a factor 2. It holds that:

P
|z|

2 exp(τ |z|) = 2
∫ ∞

0

z

2
√

2π
exp

(
−τz − z2

2

)
dz

=

√
1
2π

eτ2/2

(∫ ∞

0

(z + τ) exp
(

− (z + τ)2

2

)
dz −

∫ ∞

0

τ exp
(

− (z + τ)2

2

)
dz

)
.

=

√
1
2π

(
1 − eτ2/2τ

∫ ∞

τ
exp

(
−z2

2

)
dz

)
(16)

Repeated integration by parts shows:

1
τ

− 1
τ3

≤ eτ2/2

∫ ∞

τ
exp

(
−z2

2

)
dz ≤ 1

τ
− 1

τ3
+

3
τ5

. (17)

Inserting these bounds in Eq. 16 completes the proof.
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Lemma A.1.3 Let z ∼ N (0, 1). Then, for τ > 0,
√

2
π

(
2
τ3

− 12
τ5

− 15
τ7

)
≤ P

|z|2
exp(τ |z|) ≤

√
2
π

(
2
τ3

+
3
τ5

)
.

The lower bound is non-zero if τ >
√

3 +
√

33/2 ≈ 2.657.
Proof We decompose the integral into two parts, with I1 and I2 defined
below.

P
|z|2

exp(τ |z|) =

√
2
π

∫ ∞

0
z2 exp

(
−τz − z2

2

)
dz =:

√
2
π

(I1 − I2).

To evaluate the first integral I1, we use integration by parts.

I1 := eτ2/2

∫ ∞

0
(z + τ)2 exp

(
−(z + τ)2

2

)
dz

= eτ2/2

([
(z + τ)

(
− exp

(
−(z + τ)2

2

))]∞

0

+
∫ ∞

0
exp

(
−(z + τ)2

2

)
dz

)

= τ + eτ2/2

∫ ∞

τ
exp

(
−z2

2

)
dz.

The second integral is:

I2 := eτ2/2

∫ ∞

0
(2zτ + τ2) exp

(
−(z + τ)2

2

)
dz

= 2τ

(
1 − τeτ2/2

∫ ∞

τ
exp

(
−z2

2

)
dz

)
+ τ2eτ2/2

∫ ∞

τ
exp

(
−z2

2

)
dz

= 2τ − τ2eτ2/2

∫ ∞

τ
exp

(
−z2

2

)
dz.

We conclude that:

P
|z|2

exp(τ |z|) =

√
2
π

(I1 − I2) =

√
2
π

(
eτ2/2

∫ ∞

τ
exp

(
−z2

2

)
dz(1 + τ2) − τ

)
.

Repeated integration by parts shows:

1
t

− 1
t3

+
3
t5

− 15
t7

≤ exp
(

t2

2

)∫ ∞

t
exp

(
−x2

2

)
dx ≤ 1

t
− 1

t3
+

3
t5

.
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Inserting this concludes the proof. ��
A.1.2 A First-Order Bound

Lemma A.1.4 Suppose that x ∼ N (0, I) and γ, γ′ ∈ R
p \ {0}. Moreover,

define ρ := γT γ′/(‖γ‖2‖γ′‖2). Then:

√

P
|xT (γ − γ′)|2
exp(2|γ′T x|)

≤ ‖γ‖2

√
1√
2π

(1 − ρ2)
‖γ′‖2

+ |ρ‖γ‖2 − ‖γ′‖2|
√√

2
π

(
1
4

1
‖γ′‖3

2

+
3
32

1
‖γ′‖5

2

)
.

If ‖γ′‖2 ≥ 1, we can bound this term as:

√

P
|xT (γ − γ′)|2
exp(2|γ′T x|) ≤ ‖γ‖2

√
1√
2π

(1 − ρ2)
‖γ′‖2

+

√
11
32

√
2
π

|ρ‖γ‖2 − ‖γ′‖2|
‖γ′‖3/2

2

.

In addition, suppose that ‖γ‖2 = ‖γ′‖2 = τ , and define β := γ/τ as well
as β′ := γ′/τ . Since 1 − ρ2 ≤ 2(1 − ρ) = ‖β − β′‖2

2, we have:

√

P
|xT (γ − γ′)|2
exp(2|γ′T x|) ≤

√
τ√
2π

‖β − β′‖2 +

√
11
32

√
2
π

‖β − β′‖2
2√

τ
.

Proof Let Πγ′ := γ′γ′T /‖γ′‖2
2 be the projection onto the span of γ′. Then,

xT (γ − γ′) = xT ((I − Πγ′)γ + Πγ′(γ − γ′)).

By the triangular inequality,

√

P
|xT (γ − γ′)|2
exp(2|γ′T x|) ≤

√

P
|xT (I − Πγ′)γ|2

exp(2|γ′T x|) +

√

P
|xT Πγ′(γ − γ′)|2

exp(2|γ′T x|) .

We start with the first term on the right-hand side. The random vari-
ables γ′T x and xT (I − Πγ′)γ are uncorrelated. Since x is Gaussian, they are
independent. So:

√

P
|xT (I − Πγ′)γ|2

exp(2|γ′T x|) =
√

P exp(−2|γ′T x|)P |xT (I − Πγ′)γ|2.
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By Lemma A.1.1, P exp(−2|γ′T x|) ≤ 1/(
√

2π‖γ′‖2). Moreover, by defi-
nition of ρ, we have: P |xT (I − Πγ′)γ|2 = ‖γ‖2

2(1 − ρ2). So, the first term is
bounded by:

√
P exp(−2|γ′T x|)P |xT (I − Πγ′)γ|2 ≤ ‖γ‖2

√
1√

2π‖γ′‖2

(1 − ρ2).

The second term can be bounded as follows:
√

P
|xT Πγ′(γ − γ′)|2

exp(2|γ′T x|) = |ρ‖γ‖2 − ‖γ′‖2|
√

P
(|xT γ′|/‖γ′‖2)2

exp(2|γ′T x|)

(i)

≤ |ρ‖γ‖2 − ‖γ′‖2|
√√

2
π

(
2

(2‖γ′‖2)3
+

3
(2‖γ′‖2)5

)

= |ρ‖γ‖2 − ‖γ′‖2|
√√

2
π

(
1
4

1
‖γ′‖3

2

+
3
32

1
‖γ′‖5

2

)
.

In (i), we used Lemma A.1.3. The proof is complete. ��
A.1.3 A Second-Order Bound

Lemma A.1.5 Let f : R → R be the mapping τ �→ P log(1 + exp(−τ |z|)),
where z ∼ N (0, 1). Suppose that for some κ >

√
3 +

√
33/2, we have

min{τ, τ∗} ≥ κ. Then, for all τ̄ ∈ [τ, τ∗] ∪ [τ∗, τ ],

1√
8π

(
2 − 12

κ2
− 15

κ4

)
1
τ̄3

≤ f̈(τ̄).

In particular, if min{τ, τ∗} ≥
√

6 +
√

51,

√
1
8π

1
τ̄3

≤ f̈(τ̄).

Proof Using Lebesgue’s dominated convergence theorem, we find for any
t > 0,

f̈(t) = P
z2 exp(t|z|)

(1 + exp(t|z|))2 ≥ P
z2

4 exp(t|z|) .
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Since τ̄ is an intermediate point of τ and τ∗, it holds that τ̄ ≥ κ. Conse-
quentially, by Lemma A.1.3,

√
2
π

(
2 − 12

κ2
− 15

κ4

)
1
τ̄3

≤ P
|z|2

exp(τ̄ |z|) .

The proof is complete. ��
A.1.4 Differences Between Bounded Terms

Lemma A.1.6 Let k > 1, and z ∼ N (0, 1). Then,

1√
2π

k − 1
k2τ

(
1 − 3

τ2

)
≤ P log

(
1 + e−τ |z|

1 + e−kτ |z|

)
≤ k − 1

τ

√
2
π

.

Additionally, if τ ≤ l,

1√
2π

τ(k − 1)
k2l2

(
1 − 3

k2l2

)
≤ P log

(
1 + e−τ |z|

1 + e−kτ |z|

)
≤ τ(k − 1)√

2π
.

For τ ≤ √
3, the first lower bound is void. In this case, we can use the

second lower bound, with a large enough bound l, to make the bound non-
trivial. In the first lower bound, one could assume τ >

√
6, to get a nicer

lower bound.
Proof Let hz : (0, ∞) → (0, log 2) be the mapping τ �→ log(1 + exp(−τ |z|)).
By the mean value theorem, for some (random) tz ∈ [τ, kτ ],

Phz(τ) − hz(kτ) = τ(1 − k)Ph′
z(tz) = τ(k − 1)P

|z|
1 + exp(tz|z|) .

For the upper bound, by Lemma A.1.2:

τ(k − 1)P
|z|

1 + exp(tz|z|) ≤ τ(k − 1)P
|z|

1 + exp(τ |z|) ≤
√

2
π

k − 1
τ

.

On the other hand, since τ |z| > 0,

τ(k − 1)P
|z|

1 + exp(τ |z|) ≤ τ(k − 1)P
|z|
2

≤ τ(k − 1)√
2π

.

For the first lower bound, by Lemma A.1.2:

τ(k − 1)P
|z|

1 + exp(tz|z|) ≥ τ(k − 1)P
|z|

1 + exp(kτ |z|) ≥ 1√
2π

k − 1
k2τ

(
1 − 3

k2τ2

)
.
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For the second lower bound, use that since τ ≤ l, tz ≤ kl. Using
Lemma A.1.2,

τ(k − 1)P
|z|

1 + exp(tz|z|) ≥ τ(k − 1)P
|z|

1 + exp(kl|z|)

≥ 1√
2π

τ(k − 1)
k2l2

(
1 − 3

k2l2

)
.

��
Lemma A.1.7 Let k > 1, and z ∼ N (0, 1). Then,

P

(
log

1 + e−τ |z|

1 + e−kτ |z|

)2

≤ (k − 1)2 min

{√
1

25π

(
2
τ

+
3

4τ3

)
,
τ2

4

}
.

Additionally, if τ ≤ l,

τ2(k − 1)2
1√
27π

(
1
l3

− 3
2l5

− 15
25l7

)
≤ P log

(
1 + e−τ |z|

1 + e−kτ |z|

)2

.

Note that in the lower bound, we may simply take l = τ to match the
upper bound if τ is large.
Proof Let hz : (0, ∞) → (0, log 2) be the mapping τ �→ log(1 + exp(−τ |z|)).
By the mean value theorem, for some tz ∈ [τ, kτ ],

P (hz(τ) − hz(kτ))2 = τ2(1 − k)2Ph′
z(tz)

2 = τ2(k − 1)2P
|z|2

(1 + exp(τ |z|))2 .

For the upper bound, by Lemma A.1.3:

τ2(k − 1)2P
|z|2

(1 + exp(τ |z|))2 ≤ τ2(k − 1)2P
|z|2

exp(2τ |z|) .

≤ τ2(k − 1)2
√

2
π

(
2

23τ3
+

3
25τ5

)
≤
√

1
25π

(k − 1)2
(

2
τ

+
3

4τ3

)
.

On the other hand, since τ |z| > 0,

τ2(k − 1)2P
|z|2

(1 + exp(τ |z|))2 ≤ τ2(k − 1)2P
|z|2
22

≤ τ2(k − 1)2

4
.
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For the lower bound, since τ ≤ l,

τ2(k − 1)2P
|z|2

(1 + exp(τ |z|))2 ≥ τ2(k − 1)2P
|z|2

22 exp(2l|z|)

(i)

≥ τ2(k − 1)2
1√
27π

(
1
l3

− 3
2l5

− 15
25l7

)
.

Inequality (i) follows from Lemma A.1.3. The proof is complete. ��
Lemma A.1.8 Fix β, β′ ∈ Sp−1 and τ ≥ 1. Then,

P

(
log

1 + exp(−τ |xT β|)
1 + exp(−τ |xT β′|)

)2

≤ 2‖β − β′‖2
2

⎛

⎝
√

τ√
2π

+

√
11
8

√
2
π

1√
τ

⎞

⎠
2

.

Proof Let h : (0, ∞) → (0, log 2) be the mapping z �→ log(1 + exp(−τ |z|)).
There exists a |z| ∈ [min{|xT β|, |xT β′|}, max{|xT β|, |xT β′|}], such that:

P
(
h(|xT β|) − h(|xT β′|))2 = P

(
|xT (β − β′)| τ

1 + exp(τ |z|)
)2

(i)

≤ τ2

(
P

|xT (β − β′)|2
exp(2τ |xT β|) + P

|xT (β − β′)|2
exp(2τ |xT β′|)

)
= 2P

|xT (τβ − τβ′)|2
exp(2τ |xT β|) .

In (i), we used that the derivative of a convex function is increasing, so
it reaches its maximum on the boundary of its domain. By Lemma A.1.4,
the right-hand-side is bounded from above by:

2

⎛

⎝√
τ

√
1√
2π

‖β − β′‖2 +

√
11
32

√
2
π

‖β − β′‖2
2√

τ

⎞

⎠
2

= 2‖β − β′‖2
2

⎛

⎝
√

τ√
2π

+ 2

√
11
32

√
2
π

1√
τ

⎞

⎠
2

.

��
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A.2 Approximations and Identities for Unbounded Term Recall the def-
inition of the unbounded term u(γ, x, y) = |xT γ|1{yxT γ < 0}. Here we
derive several results to control u. The Gaussian distribution proves very
handy here, as we can obtain sharp upper and lower bounds, in some cases
even identities. As u is positivey homogeneous, for all β ∈ Sp−1 and τ > 0,
it holds that u(τβ) = τu(β). Consequentially, we restrict our attention to
the domain Sp−1.

A.2.1 A Trigonometric Argument and its Consequences The following
identity is the core of our analysis of the unbounded term. An approximation
of its right-hand side will serve us to derive the parameters for Bernstein’s
inequality. The case m = 1 will form the basis of lower and upper bounds for
the excess risk. The integral of the sine function raised to the m-th power
can be calculated using some trigonometry and basic integration techniques.
However, we will only calculate the case m = 1, while for m > 1, we will use
the bound sin(x) ≤ x for x ≥ 0.
Proposition A.2.1 Let x ∼ N (0, I) and β, β′ ∈ Sp−1. Let m ∈ N. Then,

P |xT β|m1{βT xxT β′ < 0} = 21+m/2Γ(1 + m/2)
∫ arccos(βT β′)

0
sin(α)m dα

2π
.

Remark A.2.1 (Non-identity covariance matrix) We prove Proposition A.2.1
and related results for x ∼ N (0, I). Yet, the conversion to x ∼ N (0, Σ) with
Σ �= I is straightforward: Since Σ is a covariance matrix, it is positive definite.
Consequentially, there exists a unique positive definite matrix

√
Σ, such that

Σ =
√

Σ
√

Σ. So, x =
√

Σz, where z ∼ N (0, I). Therefore, xT β = zT (
√

Σβ).
So, Proposition A.2.1 gives us:

P |xT β|m1{βT xxT β′ < 0}

= (βT Σβ)m/221+m/2Γ(1 + m/2)
∫ arccos(βT Σβ′)

0
sin(α)m dα

2π
.

Note that the expression is no longer symmetric in β, β′, but for specific
choices of Σ.
Proof There are two special cases: β ∈ {β′, −β′}. They follow from continuity
or separate verification. Excluding those two cases, β, β′ are in general posi-
tion. We show that we may take p = 2. Let Π : Rp → R

p be the orthogonal
projection of Rp onto the span of β and β′. Then:

P |xT β|m1{βT xxT β′ < 0} = P |xT (Πβ)|m1{(Πβ)T xxT (Πβ′) < 0}
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= P |(Πx)T β|m1{βT (Πx)(Πx)T β′ < 0}.

Note that Πx, restricted to the span of β and β′, has a standard Gaussian
distribution on a 2-dimensional linear subspace. Consequentially, we may
take p = 2, as claimed.

Now we assume p = 2. Let x̃ := x/‖x‖2. Then:

P |xT β|m1{βT xxT β′ < 0} = P‖x‖m
2

∣∣x̃T β
∣∣m 1{βT x̃x̃T β′ < 0}.

Since x is Gaussian, ‖x‖2 is independent of x̃. Moreover, since x is Gaus-
sian, ‖x‖2 follows a χ-distribution, with p = 2 degrees of freedom. Therefore,
P‖x‖m

2 = 2m/2Γ(1 + m/2). Consequentially:

= 2m/2Γ(1 + m/2)P
∣∣x̃T β

∣∣m 1{βT x̃x̃T β′ < 0}.

Note that x̃ is uniformly distributed on S1. By symmetry, P[βT x̃x̃T β′ <
0] = 2P[βT x̃ > 0 ∩ x̃T β′ < 0]. So,

P
∣∣x̃T β

∣∣m 1{βT x̃x̃T β′ < 0} = 2P |x̃T β|m1{βT x̃ > 0 ∩ x̃T β′ < 0}.

The random variable x̃ follows a uniform distribution on S1. Consequen-
tially, by rotational invariance, we may assume that β = e1.

P |x̃T β|m1{βT x̃ > 0 ∩ x̃T β′ < 0} = P |x̃1|m{x̃1 > 0 ∩ x̃T β′ < 0}.

Let C := {z ∈ S1 : zT β > 0 ∩ zT β′ < 0}. Note that the kernel of a
non-zero vector in R

2 is spanned by a 90-degree rotation R of the vector. So,
the boundaries of the cap C := {z ∈ S1 : zT β > 0 ∩ zT β′ < 0} are given by
Rβ and Rβ′. Since angles are preserved under rotation, the arc length of C
is arccos((Rβ)T (Rβ′)) = arccos(βT β′). Hence:

P |x̃1|m{x̃1 > 0 ∩ x̃T β′ < 0} =
∫ arccos(βT β′)

0
sin(α)m dα

2π
.

This proves the result for β, β′ in general position. The proof is complete.
��

As a consequence of Proposition A.2.1, we obtain the following identity.
Corollary A.2.1 Let x ∼ N (0, I) and β, β′ ∈ Sp−1. Then,

P |xT β|1{βT xxT β′ < 0} =
‖β − β′‖2

2√
8π

.
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Moreover,

P |xT β|m1{βT xxT β′ < 0} ≤ 1√
2π

Γ(m/2 + 1)
m + 1

(
π√
2
‖β − β′‖2

)m+1

.

Proof The first identity follows directly from Proposition A.2.1, applied with
m = 1. To see why, note that:

∫ arccos(βT β′)

0
sin(α)

dα

2π
=

1
2π

(− cos(arccos(βT β′)) + 1
)

=
1
2π

(−βT β′ + 1
)

=
1
4π

‖β − β′‖2
2.

Using that Γ(3/2) =
√

π/2 establishes the identity. For m > 1, we use
the bound sin(x) ≤ x for x ≥ 0. Therefore:

∫ arccos(βT β′)

0
sin(α)m dα

2π
≤ 1

m + 1
arccos(βT β′)m+1 1

2π

(i)

≤ 1
m + 1

(π

2
‖β − β′‖2

)m+1 1
2π

.

In (i), we upper bounded the geodesic distance on Sp−1 with the
Euclidean distance as in Proposition 3.1.1.

The bound now follows from Proposition A.2.1. ��
The following result gives a closed-form solution for the expectation of

the unbounded term. This identity relies on the assumption that (xT , ε) is
standard Gaussian. This motivates the assumption of the probit model in
conjunction with the logistic loss.
Corollary A.2.2 Let x ∼ N (0, I), ε ∼ N (0, 1), β, β∗ ∈ Sp−1 and σ ≥ 0.
Then,

P |xT β|1{yxT β < 0} =
1√
2π

(
1 − βT β∗

√
1 + σ2

)
.

In particular,

P |xT β∗|1{yxT β∗ < 0} =
1√
2π

(
1 − 1√

1 + σ2

)
.
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Consequentially:

P |xT β|1{yxT β < 0} − |xT β∗|1{yxT β∗ < 0} =
1√

8π(1 + σ2)
‖β − β∗‖2

2.

Proof Apply Proposition A.2.1 with x̃ := (x, ε) ∼ N (0, Ip+1) and β̃ := (β, 0),
as well as β̃′ := (β, σ)/

√
1 + σ2. Note that y is the sign of x̃T β̃′. ��

A.2.2 A Projection-Based Argument In the following, we see another
bound for the unbounded term. We use it in the verification of Bern-
stein’s condition. Even in the proof of this result, we use Proposition A.2.1.
Recall that σ, τ∗ > 0, β∗ ∈ Sp−1, (x, ε) ∼ N (0, Ip+1), γ∗ := τ∗β∗ and
y := sign(xT β∗ + σε). Moreover, we define y∗ := sign(xT β∗), as well as for
a fixed γ ∈ R

p \ {0}, β := γ/‖γ‖2 and τ := ‖γ‖2.
Lemma A.2.1 For any γ ∈ R

p \ {0} and m ∈ N, it holds that:

P |(y − y∗)xT (γ − γ∗)|m

≤ σ

2π
Γ
(

m + 1
2

)(
1√
π

(
√

32τ‖β − β∗‖2)m + (
√

8π|τβT β∗ − τ∗|σ)m

)
.

Proof Let Π := β∗β∗T be the orthogonal projection onto the span on β∗,
and let Π⊥ := I − Π be the orthogonal projection to its kernel. We write:

γ − γ∗ = τβ − τ∗β∗ = τΠ⊥β + τΠβ − τ∗β∗ = τΠ⊥β + (τβT β∗ − τ∗)β∗.

Let Φ : R → [0, 1] be the cumulative distribution function of a standard
Gaussian random variable. Then, after conditioning on x, we have:

P |(y − y∗)xT (γ − γ∗)|m = P2mΦ
(

−|xT β∗|
σ

)
|xT (γ − γ∗)|m

(i)

≤ 22m−1PΦ
(

−|xT β∗|
σ

)(∣∣∣τxT Π⊥β
∣∣∣
m

+
∣∣(τβT β∗ − τ∗)xT β∗∣∣m

)
. (18)

The inequality (i) follows from Jensen’s inequality, which implies that
for any positive scalars a, b > 0 we have (a/2 + b/2)m ≤ am/2 + bm/2.

We bound the two terms in the expression (18) separately. We start with
the left term. Since x is Gaussian and β∗ is orthogonal to Π⊥β, it follows
that xT β∗ and xT Π⊥β are independent. Consequentially,

PΦ
(

−|xT β∗|
σ

) ∣∣∣τxT Π⊥β
∣∣∣
m

= P

[
Φ

(
−|xT β∗|

σ

)]
P
∣∣∣τxT Π⊥β

∣∣∣
m

.
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The first term can be bounded using (5):

P

[
Φ
(

−|xT β∗|
σ

)]
= P[y �= y∗] ≤ σ

π
.

To bound the second term, note that the random variable βT Π⊥x is
Gaussian with mean zero and variance 1−(βT β′)2 ≤ 2(1−βT β′) = ‖β−β′‖2

2.
Using that the m-th absolute moment of the a standard Gaussian random
variable is

√
2

m
Γ((m + 1)/2)/

√
π, we find:

P
∣∣∣τxT Π⊥β

∣∣∣
m ≤ τm

(√
2‖β − β∗‖2

)m
Γ
(

m + 1
2

)
1√
π

.

Now for the right term in expression (18). It carries the deterministic
factor |τβT β∗ − τ∗|m, which we omit in the following calculation. We define
the unit vectors β̃∗ := (β∗T , 0)T ∈ Sp and β̃∗ := (β∗T , σ)T /

√
1 + σ2 ∈ Sp

and a standard Gaussian x̃ ∼ N (0, Ip+1). Then:

PΦ
(

−|xT β∗|
σ

) ∣∣xT β∗∣∣m = P1{β̃T x̃x̃T β̃∗ < 0}
∣∣∣x̃T β̃

∣∣∣
m

.

We bound this expression with Corollary A.2.1 and use that 1− 1√
1+σ2 ≤

σ2

2 , which gives ‖β̃ − β̃∗‖2 ≤ σ. To make the expression comparable with the
first term, we use that Γ(m/2 + 1)/(m + 1) ≤ Γ((m + 1)/2). We conclude:

P1{β̃T x̃x̃T β̃∗ < 0}
∣∣∣x̃T β̃

∣∣∣
m ≤ 1√

2π
Γ
(

m + 1
2

)(
π√
2
σ

)m+1

.

Combining these bounds completes the proof. ��
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Alexandre Grothendieck. Résumé de la théorie métrique des produits tensoriels

topologiques. Soc. de Matemática de São Paulo, 1956.
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Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer Science & Business Media, 2011.

Peter McCullagh and John A Nelder. Generalized Linear Models, Vol. 37 of Monographs
on Statistics and Applied Probability London. 1989.

Philip M Long. An upper bound on the sample complexity of pac-learning halfspaces with
respect to the uniform distribution. Information Processing Letters, 87 (5): 229–234,
2003.

Philip M Long. On the sample complexity of pac learning half-spaces against the uniform
distribution. IEEE Transactions on Neural Networks, 6 (6): 1556–1559, 1995.

Pragya Sur and Emmanuel J Candès. A modern maximum-likelihood theory for high-
dimensional logistic regression. Proceedings of the National Academy of Sciences, 116
(29): 14516–14525, 2019.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science, volume 47. Cambridge University Press, 2018.

Sara A van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge University
Press, 2000.

Sara A van de Geer. High-dimensional generalized linear models and the lasso. The Annals
of Statistics, pages 614–645, 2008.

Szilard Nemes, Junmei Miao Jonasson, Anna Genell, and Gunnar Steineck. Bias in odds
ratios by logistic regression modelling and sample size. BMC Medical Research Method-
ology, 9: 1–5, 2009.

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition. IEEE Transactions on Electronic Computers,
(3): 326–334, 1965.

Walter W Hauck Jr and Allan Donner. Wald’s test as applied to hypotheses in logit
analysis. Journal of the American Statistical Association, 72 (360a): 851–853, 1977.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Felix Kuchelmeister and Sara van

de Geer
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