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ABSTRACT: Tailored enzymes are crucial for the transition to a sustainable
bioeconomy. However, enzyme engineering is laborious and failure-prone due to its
reliance on serendipity. The efficiency and success rates of engineering campaigns may
be improved by applying machine learning to map the sequence-activity landscape
based on small experimental data sets. Yet, it often proves challenging to reliably
model large sequence spaces while keeping the experimental effort tractable. To
address this challenge, we present an integrated pipeline combining large-scale
screening with active machine learning, which we applied to engineer an artificial
metalloenzyme (ArM) catalyzing a new-to-nature hydroamination reaction. Combin-
ing lab automation and next-generation sequencing, we acquired sequence-activity
data for several thousand ArM variants. We then used Gaussian process regression to
model the activity landscape and guide further screening rounds. Critical character-
istics of our pipeline include the cost-effective generation of information-rich data sets,
the integration of an explorative round to improve the model’s performance, and the inclusion of experimental noise. Our approach
led to an order-of-magnitude boost in the hit rate while making efficient use of experimental resources. Search strategies like this
should find broad utility in enzyme engineering and accelerate the development of novel biocatalysts.

■ INTRODUCTION
Biocatalysis and metabolic engineering offer sustainable
production routes for many compounds of interest and thus
hold the potential to transform various industries. However,
extensive enzyme engineering is typically required to obtain a
suitable biocatalyst for a desired application. This is often a
time-consuming, empirical process whose outcome is subject
to chance, as classical methods are agnostic to the topology of
the underlying sequence-activity landscape. Engineering
strategies that incorporate machine learning to model this
landscape could render enzyme engineering more efficient and
increase the likelihood of identifying an optimal solution.
Accordingly, machine learning-assisted directed evolution
(MLDE) has attracted significant attention in recent years.1−3

In general, MLDE starts with an initial screening round in
which both sequence and activity are recorded for a number of
enzyme variants. These sequence-activity data are then used to
train a machine learning model, with the objective of
predicting the activity of untested variants directly from their
sequence. If successful, such models can suggest variants that
are likely to be highly active and thus support further screening
rounds by in silico library design.1 Further, the model can be
iteratively updated with new data to improve its predictive
performance, a strategy referred to as active learning. While
several studies have demonstrated the general feasibility of
such approaches,4−12 there are still various challenges that

need to be addressed to maximize the success rate and
efficiency of MLDE and enable its widespread implementation.
This pertains to various aspects such as library design,
experimental data acquisition, model development, and the
strategy for sampling the sequence space.
With regard to library design, the crucial challenge is to

create a library that is as information-dense as possible to allow
for the development of accurate models while keeping the
screening effort manageable. In the initial stages of model
development, this calls for libraries that exhibit a high degree of
sequence diversity to provide adequate information on the
underlying sequence space, while at the same time containing a
sufficient number of active mutants.13 These requirements can
be difficult to reconcile, as simultaneous randomization of
multiple residues commonly results in a large fraction of
inactive mutants, from which little to no meaningful
information for model training can be extracted.
Once a library has been generated, it is often challenging to

measure a sufficiently large set of sequence-activity data. In
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Figure 1. Engineering strategy and library design for ArMs catalyzing hydroamination. a. Illustration of the active learning strategy for ArM
engineering. An iterative process of library design, cloning, large-scale screening, and machine learning was used to model the sequence-activity
landscape and identify improved ArMs. Crucial steps and considerations are highlighted and are explained in the main text. b. Illustration of whole-
cell biocatalysis using an ArM in the periplasm of E. coli. Sav is exported to the periplasm by means of an N-terminal OmpA signal peptide, where it
binds the biotinylated cofactor (Biot-NHC)Au1. The resulting ArM converts 2-ethynylaniline to indole in a new-to-nature hydroamination
reaction. Indole can subsequently be quantified using a colorimetric assay. c. Single site-saturation mutagenesis to identify influential amino acid
residues with respect to ArM activity. Starting from the reference variant Sav S112F K121Q, 20 residues in Sav were individually mutated using
degenerate NDT codons. The activity of the resulting variants is displayed relative to the mean activity of the reference variant (“ref”). Dashed lines
indicate one standard deviation around the mean activity of the reference variant, which was measured in triplicate in each 96-well plate. A strain
lacking Sav, i.e., containing an empty vector (“ev”), was included as a control (n = 3 per 96-well plate). The five positions selected for combinatorial
randomization are highlighted in bold. Note that no improvement was expected at positions 112 and 121, as the reference variant had already been
optimized with regard to these positions.40 d. Residues selected for randomization (highlighted in orange) in a ribbon model of Sav harboring a
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some cases, high-throughput assays such as fluorescence-
activated cell sorting can be combined with deep sequencing to
obtain very large data sets.14,15 However, most enzymatic
reactions of industrial relevance require more laborious
analytical procedures to obtain a readout for activity.
Moreover, the need to also obtain sequence information on
all tested variants can lead to prohibitive costs if conventional
Sanger sequencing is used. Consequently, most studies to date
have relied on small data sets (101−102 variants).4−10 While
this has led to several successful demonstrations of MLDE,
larger data sets are likely to lead to more accurate machine
learning models and improve the chances of identifying
variants with the desired properties,11 particularly as the
search space increases in size.
Beyond these experimental considerations, several critical

decisions have to be made regarding the machine learning
strategy. Prominent examples in this regard include the
encoding strategy for the protein sequences and the choice
of a suitable machine learning algorithm. Many encoding
strategies have been suggested for creating a meaningful
representation of protein variants, ranging from simple one-hot
encoding and descriptors based on amino acid properties16−18

to structure-based descriptors19,20 and learned embed-
dings.21,22 Similarly, various machine learning algorithms
have been employed or suggested for MLDE, including linear
regression,23−25 Gaussian processes,4,7−9,25,26 and neural net-
works.12 While the best strategy depends on the data set and
task at hand, Gaussian processes have repeatedly revealed their
utility for active learning.8,9,25

Less attention has been devoted to other aspects of the
machine learning process, such as the handling of experimental
noise or the sampling strategy during ML-guided screening
rounds, both of which are critical to the success and efficiency
of MLDE. With regard to the sampling strategy, many studies
have relied on a single training phase followed by greedy
sampling of the top predictions of the resulting model. Due to
inevitable biases in library generation and the limitations in
generating sufficient sequence-activity data, this is unlikely to
result in a comprehensive and accurate representation of the
sequence-activity landscape. Consequently, such models may
be “blind” for promising regions of the sequence space, leading
to suboptimal outcomes such as low hit rates. Active learning
strategies that improve the model in iterative cycles of
experiments and machine learning may help to develop a
better representation of the sequence-activity landscape, as
these can converge to the optimal solution over time.27

However, the aforementioned bottleneck in experimental data
generation makes performing many iterations undesirable.
Thus, resources invested into model improvement (i.e.,
exploration) must be carefully weighed against the focus on
regions of the sequence space that are likely to contain active
variants but might only comprise local optima (exploitation).
In addition, activity may not be the only selection criterion
during exploitation. Instead, it is often desirable to sample
various potential optima to obtain a diverse set of variants,

which requires more elaborate approaches than simple greedy
selection of top predictions.28 Hence, smart sampling strategies
for active learning are required to maximize the chances of
success at a given experimental budget.
In this study, we introduce an integrated experimental and

computational pipeline that addresses critical limitations in the
MLDE of enzymes. Specifically, we combine informed library
design with large-scale screening and a novel active machine-
learning strategy. As an impactful testbed, we selected an
artificial metalloenzyme (ArM) for gold-catalyzed hydro-
amination, a new-to-nature reaction for atom-economical C−
N bond formation. We simultaneously engineered five crucial
amino acid residues in this ArM, corresponding to a search
space of 3 200 000 possible variants. To sample this space, we
combined lab automation with a cost-efficient next-generation
sequencing (NGS) strategy, which allowed us to acquire
sequence-activity data on more than 2000 ArM variants.
Furthermore, we developed a machine learning model based
on Gaussian process regression that incorporates optimized
descriptors and estimates of experimental noise to efficiently
navigate the sequence space. Guided by the model’s
uncertainty estimates, we performed a second screening
round focused on exploration and model refinement.
Importantly, our results demonstrate that this targeted
exploration substantially improved the model’s performance.
The optimized model reliably proposed highly active ArM
variants in a final exploitation round, as illustrated by a 12-fold
increased hit rate compared to the initial library.

■ RESULTS
Design of an Information-Dense ArM Library. ArMs

are hybrid catalysts that promise to significantly increase the
number of reactions available in biocatalysis by equipping
enzymes with the catalytic versatility of abiological transition
metal cofactors.29 ArMs have been created for a variety of
natural and non-natural reactions,30−35 and some have
demonstrated catalytic prowess comparable to that of natural
enzymes.36−39 However, most ArMs initially display a low
activity, and extensive protein engineering is required to
identify catalytically proficient variants. This engineering is
typically a labor-intensive and slow process. Therefore, ArMs
represent an impactful yet challenging use case for MLDE.
A particularly versatile strategy for creating ArMs is to

incorporate an organometallic cofactor into the tetrameric
protein streptavidin (Sav) using a biotin moiety as the anchor.
Using this approach, we have previously engineered an ArM
for gold-catalyzed hydroamination by exhaustively screening a
library of 400 Sav double mutants (Sav S112X K121X) using a
whole-cell assay in 96-well plates.40 While this represents an
attractive starting point, extending the search space to more
positions offers the opportunity to achieve further improve-
ments, which will be crucial for adapting ArMs for real-world
applications. However, exhaustive screening quickly becomes
intractable in this case, and smart heuristics for the efficient

Figure 1. continued

metathesis catalyst (PDB 5IRA). For clarity, only two biotin-binding sites of two opposing Sav monomers (a so-called functional dimer) are
displayed. e. Effect of different multisite randomization strategies on the activity distribution of ArM libraries. Starting from the reference variant,
either two, three, four or five residues among positions 111, 112, 118, 119, and 121 were randomized simultaneously. Hydroamination activity is
displayed relative to the average activity of the reference variant (“ref”, n = 3 per 96-well plate) for 90 variants from each library. A strain containing
an empty vector (“ev”) was included as a control (n = 3 per 96-well plate).
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Figure 2. Large-scale acquisition of sequence-activity data for ArMs. a. Depiction of the critical automated steps in the screening workflow. Colony
picking, ArM assembly, reaction setup, and product quantification were performed on a lab automation platform. The less labor-intensive protein
expression protocol was performed manually. In parallel to the activity assay, samples of the starter cultures were processed further for NGS. b.
PCR-based barcoding strategy for cost-effective sequencing of Sav variants in 96-well plates by NGS. First, the mutated region of the Sav gene is
amplified using primers with row- (BCrow) and column-specific (BCcolumn) DNA barcodes. This step is performed in PCR plates using heat-treated
bacterial cultures as templates. After pooling all samples from one plate, a second PCR is performed to add two plate-specific barcodes (BCplate) as
well as adapters required for Illumina sequencing (a1 and a2). Subsequently, all samples are pooled and sequenced via paired-end reading to cover
all barcodes and mutation sites. c. Cell-specific hydroamination activity of 2164 ArM variants from the initial library obtained by automated
screening of 32 96-well plates. Only variants that were included for model training are displayed. Controls (empty vector and reference variant) are
displayed with their standard deviation in red. d. Fraction of amino acids at the five randomized positions in Sav. Note that the amino acids of the
reference variant (Sav 111T 112F 118N 119A 121Q, abbreviated Sav TFNAQ) are the most abundant, as the library was derived from this variant
and contained at most four amino acid substitutions per variant.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.4c00258
ACS Cent. Sci. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acscentsci.4c00258?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00258?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00258?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00258?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.4c00258?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


exploration of the underlying sequence-activity landscape are
essential.41

To navigate the sequence-activity landscape of the ArM, we
devised an iterative active learning cycle involving library
design, cloning, screening, and machine learning (Figure 1a).
With regard to library design, the first step is to choose the
target residues and a randomization scheme. To maximize the
potential impact of the screening campaign, we aimed to find
important positions in Sav besides the previously identified
residues S112 and K121.40 Thus, we individually randomized
the 20 residues closest to the biotinylated gold cofactor in Sav
S112F K121Q, which is the most active variant we had
observed before40 (referred to as “reference variant” herein).
Randomization was performed using degenerate NDT (N = A,
C, G or T; D = A, G or T) codons, which encode 12 amino
acids covering all chemical classes of amino acids, a strategy
that has revealed high success rates at a reduced screening
effort.40 Subsequently, we measured hydroamination activity
using our previously established protocol relying on
periplasmic catalysis in Escherichia coli (Figure 1b).40 We
tested 36 clones per randomized position to achieve a
statistical library coverage of approximately 95%.42 As
expected, most variants displayed reduced activity compared
to the reference variant (Figure 1c). Notably, positions 111,
118, and 119 revealed the highest potential for improvement
upon mutagenesis, with several variants outperforming the
reference variant. Consequently, we selected these positions for
further engineering. In addition, we chose to also randomize
positions 112 and 121 again, as our observations had indicated
that epistatic effects play an important role in highly active
ArM mutants.40

Next, we sought to create a combinatorial library of the five
selected positions (111, 112, 118, 119, and 121, Figure 1d),
which, upon full randomization, corresponds to a search space
of 205 = 3 200 000 variants. This greatly exceeds the capacity of
typical activity assays and well plate-based screenings. Thus,
navigating the underlying sequence-activity landscape repre-
sents a significant challenge. In order to model this space for
MLDE, it is crucial to design a library that offers a good
coverage of the targeted sequence space and at the same time
maintains a sufficient proportion of active variants.13 While
simultaneous randomization of all five residues would fulfill the
first criterion, we anticipated that the high mutational load
would likely lead to a large fraction of inactive variants. This
would not only diminish the chances of identifying improved
variants but also, importantly, would be uninformative for
machine learning. Upon initial tests, we indeed observed a
marked drop in the activity distribution when randomizing
more than three of the five positions simultaneously (Figure
1e). Accordingly, we set out to construct a library with three to
four mutations distributed across the five target residues as a
good compromise between high sequence-diversity and
sufficient residual activity. In other words, the constructed
library covers all five target positions, but individual variants
contain at most four amino acid substitutions relative to the
reference variant Sav S112F K121Q, which served as the
parent of the library (Figure S1 of the Supporting
Information). This was achieved by site-directed mutagenesis
PCR using various sets of primers containing degenerate NNK
(K = G or T) codons at different positions and subsequent
mixing of the resulting sublibraries (see Methods).

Large-Scale Acquisition of Sequence-Activity Data.
Our previously established whole-cell screening protocol for

ArMs relied on periplasmic Sav expression, ArM assembly, and
catalysis in 96-well plate format. By combining this protocol
with conventional Sanger sequencing, we were able to obtain
sequence-activity data for a few hundred variants.40 Although
this platform was more flexible and simpler than comparable
screening strategies involving protein purification, it still
required considerable manual labor, particularly for product
quantification. Additionally, when larger data sets are required,
Sanger sequencing rapidly leads to prohibitively high
sequencing costs. To facilitate the generation of larger data
sets for MLDE, we thus sought to minimize manual
intervention in the activity assay and develop more cost-
efficient means of obtaining the sequence information for each
functionally characterized variant.
First, we automated all steps in the assay protocol that are

labor-intensive (and thus limiting in terms of throughput) or
critical for reproducibility. Specifically, we made use of a Tecan
EVO 200 platform for all steps from colony picking to product
quantification, with the exception of Sav expression in 96-deep
well plates, which only requires a small number of pipetting
steps (Figure 2a). The most important addition to our
previous semiautomated pipeline40 is the photometric
quantification of the product indole. While this is a laborious
procedure when carried out manually, the automated version
simplifies screenings and proved to be very reproducible
(Figure S2). As the robotic platform can handle up to eight 96-
well plates at the same time, it greatly accelerates the
acquisition of large data sets.
Besides the activity assay, another critical barrier to

obtaining sufficiently large sets of sequence-activity data can
be the cost of sequencing. Obtaining the sequences of several
thousand protein variants by Sanger sequencing typically costs
more than USD 10 000, which is prohibitive for most academic
laboratories. In principle, the cost per variant can be reduced
significantly by relying on NGS, which quickly becomes more
cost-efficient than Sanger sequencing as the library size
increases. However, in NGS all variants are sequenced in
bulk, which means a method to retroactively link each
sequence to the corresponding activity measurement is
required. Previously, the use of DNA barcodes has been
suggested to enable NGS of protein variants distributed across
96-well plates.43−45 Building on these strategies, we established
a two-step PCR protocol for the barcoding of Sav variants that
is compatible with the Illumina NGS platforms (Figure 2b). In
the first step, which is carried out in 96-well plates, the
randomized region of the Sav gene is amplified using primers
that append a well-specific barcode combination as well as
constant regions to the ends of the PCR products. This is
achieved using eight forward (representing the plate‘s rows)
and 12 reverse primers (representing the columns). For
simplicity, heat-treated samples of bacterial cultures serve as
templates, avoiding the need for laborious and costly plasmid
purification.
Subsequently, PCR products are pooled by plate, and each

pool is gel-purified and used as a template for a second PCR.
In this step, primers binding to the previously added terminal
constant regions are used for amplification. These primers
contain overhangs to append plate-specific barcodes as well as
the adapters required for NGS. Through the combination of
well- (1st step) and plate-specific (2nd step) barcodes, it is
possible to sequence thousands of variants from multiple plates
in a single, low-cost NGS run and to assign the obtained
sequences to the corresponding activity value obtained in the
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functional assay. In our specific case, paired-end sequencing of
40 bp from one end and 110 bp from the other end of the final
PCR product was sufficient to read all well- and plate-specific
barcodes as well as the five mutation sites in the Sav gene at a
high read coverage (average of >100-fold per variant) and low
cost (see Discussion).
Relying on the combination of automated activity assay and

NGS, we screened 32 96-well plates containing variants from
the aforementioned library of Sav. As each plate contained six
controls (empty vector and reference variant in triplicate), this
amounts to a total of 2880 variants. Excluding mutants that
failed to grow, we obtained activity data on 2790 variants.
Most of these displayed an intermediate activity between the

background level of cells lacking Sav (empty vector) and the
reference variant Sav S112F K121Q (Figure 2c). Notably,
approximately 3% of all mutants were more active than the
reference. Using the NGS-based strategy, we retrieved the
sequences for 2663 out of 2880 wells containing Sav mutants.
After excluding variants with nonsense mutations and wells
containing more than one variant, sequence-activity data for
2164 clones were obtained, of which 2035 were distinct
variants. Notably, for variants appearing in multiple wells, the
deviation between these replicate activity measurements was
generally low, corroborating the high robustness of the assay
(Figure S3). Importantly, the library displayed a high degree of
sequence diversity, with every amino acid appearing in every

Figure 3. Development of the initial GP model. a. Overview of the machine learning pipeline. Initially, the standard deviation of the activity
measurements was estimated to account for experimental noise. Subsequently, three feature sets were calculated and reduced sets were obtained by
applying LASSO and Bayesian evidence maximization. The resulting descriptors were then used to train GP models. Model selection and model
fitting were benchmarked using cross-validation. Ultimately, the GP model can be used to navigate the sequence space in active learning cycles. b.
Histogram of the deviation between replicates in the initial library. The distribution of residuals can be conservatively approximated by a normal
distribution with a specific variance (orange). c. Influence of the noise estimate on the predictive performance of the resulting GP model. The value
chosen based on Figure 3b is highlighted in orange. The models used here were based on chemical descriptors with 20 features (see Figure 3d) and
were evaluated using 15-fold cross-validation. The box plots display the 25th, 50th, and 75th percentile with whiskers denoting the 1.5-fold
interquartile range. d. Influence of feature number (x-axis), model type (fill pattern), and descriptors (color) on the performance of machine
learning models analyzed by 15-fold cross-validation. The box plots display the 25th, 50th, and 75th percentile with whiskers denoting the 1.5-fold
interquartile range. A comparison of linear models based on different descriptors can be found in Figure S8. e. Performance of the GP model using
chemical descriptors and 20 features on an exemplary cross-validation split. The measurement uncertainty (one standard deviation) is displayed in
red, while the uncertainty of the model is in black. The R2 value of this particular cross-validation split is displayed.
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position (Figure 2d) and an average Hamming distance of 4.3
between the mutants. Note that the amino acids of the
reference variant were the most abundant in each position, as
we did not randomize all five positions simultaneously. Thus,
the library exhibited a high degree of variability both in terms
of activity distribution (including a low fraction of inactive
variants) as well as sequence diversity. This indicated that the
aforementioned design goals for the library were met,
providing a promising data basis for modeling the sequence-
activity landscape by machine learning.
As we had previously recorded sequence-activity data for

400 Sav double mutants (S112X K121X) that are part of the
same sequence space,40 we added these older data to the
measurements obtained herein. As a result, a total of 2992 data
points covering 2435 distinct ArM variants were available as
initial training data for machine learning.

Development of an Initial Machine Learning Model
of ArM Activity. To construct a model that can reliably
predict the activity of untested ArM variants and guide further
screening rounds, we relied on Gaussian process (GP)
regression.46 This machine learning technique can capture
highly nonlinear relationships and has the distinct advantage of
being probabilistic, which means that it predicts a probability
distribution rather than a point estimate, and thus provides an
estimate for the confidence of each prediction. This feature can
not only help users assess the uncertainty of individual
predictions, but also is ideally suited for active learning
strategies. In this scenario, the model’s uncertainty estimates
can be used to guide subsequent screening rounds toward
uncertain regions of sequence space with the goal of improving
the model (i.e., exploration), before suggesting highly active
variants in later rounds (i.e., exploitation).
GPs are characterized by a mean and a covariance function,

which is commonly referred to as kernel. In our case, as we
operate on the space of protein sequences, the kernel measures
the similarity between different ArM variants. Since the
selection of a suitable kernel is of paramount importance for
good performance and sample efficiency (i.e., predicting
accurately with little data), we performed a benchmarking
process and found that the nonlinear Mateŕn kernel46

performed best in our case (see Methods).
Moreover, our model development pipeline included steps

to account for experimental noise and to select suitable
descriptors (Figure 3a). Considering the inherent noise in
biological experiments during modeling is crucial to ensure
that decisions are not influenced by random fluctuations. To
distinguish the genuine signal from these fluctuations, it is
necessary to define a probabilistic model for data generation,
known as the likelihood. This step involves specifying the
likelihood and its parameters, which is essential for applying
Bayes’ theorem to calculate the posterior distribution (see
Methods). To elucidate the form of the likelihood, we relied
on the variants appearing multiple times in the screening. This
revealed that the deviation of these replicates from the per-
variant mean closely follows a log-normal distribution, which
can be viewed as a conservative estimate of the experimental
noise in the data (Figure 3b). Considering the log-transformed
values, this implies a Gaussian likelihood. Next, we used the
replicate measurements to determine a standard deviation,
which is a key element in defining the data likelihood. We
made the simplifying assumption that the variance of the
measurement remains constant across the different ArM
variants and repeated this analysis after each round of

screening. As illustrated in Figure 3c, under- or overestimating
the experimental noise leads to a drastically reduced perform-
ance of the resulting model, likely due to overfitting to noise in
the data. In contrast, the procedure applied here results in a
robust performance in the face of noisy data.
With regard to the descriptors that represent the ArM

variants during training, we considered features that reflect
chemical properties of amino acids11 as well as features that
were extracted from Sav mutant structures predicted with the
Rosetta software.47 The latter included both geometric features
(e.g., solvent accessible surface area, number of hydrogen
bonds, partial charge, dihedral angles, etc.) and energy terms.
Note that the geometric descriptors were compiled to be strict
supersets of the chemical descriptors (i.e., they also included
the chemical descriptors), and similarly the energy-based
descriptors are strict supersets of the geometric descriptors.
Given the large number of features (125 chemical, 682
geometric, and 161 energy features), we sought to select
subsets that are parsimonious while still highly predictive to
ensure data efficiency and eliminate redundancy. To this end,
we relied on Bayesian evidence maximization (see Methods).
Due to the nonlinearity of the optimization challenge, we first
reduced the feature sets using LASSO, which performed best
in a benchmarking test (Figure S4). More precisely, we fitted a
linear model and selected features with nonzero coefficients for
automatic relevance detection using Bayesian evidence max-
imization with a Gaussian process. This allowed us to reduce
the initial pool of features to 20−100 and speed up the
evidence maximization step, which required multiple opti-
mization restarts to ensure that an adequate maximum was
achieved.
Finally, we trained GP models using the different reduced

feature sets on the available sequence-activity data and
evaluated model performance using 15-fold cross-validation.
For comparison, we included a linear and an additive,
nonlinear model based on chemical descriptors. The latter is
restricted to treating potentially nonlinear effects on the
activity additively and is therefore not capable of modeling
epistatic effects. Notably, the linear and additive models
performed considerably worse than the GP models (Figure
3d), confirming that advanced methods such as GP models are
required to accurately capture the sequence-activity relation-
ships in the data. Interestingly, the chemical, geometric, and
energy-based descriptors displayed a comparable performance,
and a set of 20 features proved to be sufficient in all cases. The
most influential features based on automatic relevance
detection are listed in Table S1 (see Figure S5 for an analysis
of their influence).
As computationally expensive structural calculations are

required to generate the geometric and energy-based features
and no clear benefit over models relying only on chemical
descriptors was observable, we chose to continue with the
subset of 20 chemical features as our primary encoding strategy
for further modeling. The resulting model displayed a good
predictive performance, with a median R2 of 0.54 based on 15-
fold cross-validation (see Figure 3e and Figure S6 for
exemplary validation splits). While leaving room for improve-
ment, this degree of correlation has previously been shown to
be suitable for guiding directed evolution campaigns.11

Moreover, the median Spearman correlation of 0.68 demon-
strates that the relative ranking of variants was largely
reproduced by the model (Figure S7), which is important
for confident selection of high-activity variants.
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Model Refinement by Active Learning. The aforemen-
tioned performance parameters indicate that the initial GP
model can predict ArM activity with reasonable accuracy.
However, due to the vast sequence space, the random sampling
from this space during the generation of training data, as well
as inevitable biases in experimental library construction, it is
likely that this initial model will not generalize well across the
entire sequence-activity landscape. Consequently, it may be
“blind” for certain underexplored regions containing highly
active ArMs. Therefore, we performed a second, exploratory
screening round with the goal of improving the model’s
accuracy and ability to generalize across the entire sequence
space. To this end, we designed a new library consisting of 720
variants that were primarily selected to be “informative”.
Specifically, we utilized the uncertainty estimates of the GP
model and selected the variants with the highest uncertainty in

the predicted activity among all 3.2 million mutants.48,49 This
selection was performed in an iterative manner, meaning the
uncertainty was recalculated every time after selecting a single
variant (see Methods).
We generated these variants based on a pool of

oligonucleotides obtained through commercial synthesis on
arrays, a method that allows for the cost-efficient construction
of large and targeted libraries50 and is therefore highly useful
for active learning with large batch sizes. After cloning the
oligonucleotides into the Sav expression plasmid, we screened
the resulting exploration library relying on the automated
pipeline in combination with NGS as described above. This
exploratory round yielded sequence-activity data on 465
additional variants. It should be noted that this library also
contained chimeric variants with amino acid combinations that
were not planned in the computational design, likely due to

Figure 4. ArM engineering by means of active learning. a. Activity distributions in the three screening rounds displayed as violin plots. The 20 most
active variants in each round are depicted as diamonds. Activity is displayed relative to the reference variant (Sav TFNAQ). b. Normalized
histograms of the standard deviations of predictions across all 3.2 million variants after the first and second round of screening. c. Hit rate in the
three screening rounds. Here, any variant with a higher cell-specific activity than the reference variant is considered a hit. The hit rate represents the
fraction of hits among all variants screened in the respective round. Note that the hit rate in the initial library was calculated based on the triple and
quadruple mutants, excluding the double mutants that had been tested previously.40 In the third round, chimeric variants that were not part of the
computationally designed library were excluded to provide a better analysis of the models‘ performance. d. The five most active variants from each
screening round were tested again in four replicates. The five-letter codes denote the amino acids in positions 111, 112, 118, 119, and 121 for the
respective variants.
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PCR-mediated recombination between variants.51,52 While
unintended, these additional variants can also be used to
augment the machine learning model and were therefore
included for training. If desired, chimera formation can be
minimized by optimizing the PCR conditions.51,52

The exploration library displayed a similar activity
distribution as the initial training data (Figure 4a), which is
in line with the focus on informative instead of active variants.
Importantly, these new data led to a decrease in the standard
deviation of the predictions, most prominently for variants that
had previously exhibited a high uncertainty (Figure 4b). While
this observation alone is not a proof of increased accuracy, it
hints toward an improved representation of previously

underexplored regions of the sequence space, which we
examined in more detail in subsequent analyses (see below).

Active Learning Increases the Efficiency of Directed
Evolution. Following model refinement in the exploration
round, we set out to test whether our model-guided approach
can indeed aid in the discovery of active ArMs. With this goal
in mind, we designed a third library of 720 variants predicted
to be of high activity. Additionally, we employed an in silico
diversification step to avoid choosing only variants with highly
similar sequences. This provides a safeguard against
inaccuracies in the top predictions and increases the likelihood
of obtaining variants with diverse properties besides activity
(e.g., thermostability, solubility, or activity under alternative

Figure 5. Enhanced sequence-activity mapping through active learning. a. t-SNE visualization of the sequence space. ArM variants that were tested
in the three screening rounds are highlighted in different colors. To generate this visualization, all 3.2 million mutants were considered, and a
uniform subsample of untested variants was plotted in gray. The similarity metric used was derived from the GP model (see Methods for details). b.
t-SNE visualization of the sequence space with color encoding the activity of experimentally tested variants. The clustering is identical to that in
Figure 5a. c. Precision in identifying hits and mean squared error (MSE) of predictions as a function of the size of the training data set. The dark-
blue bars in the upper graph indicate the average precision of models that were trained on different fractions of the initial data set (screening round
1). The diamond at 1.0 represents the precision of the model used to inform experiments. The light-blue bar on the right represents the model
refined by model-guided exploration (screening round 2). Note that the precision is not identical to the experimentally determined hit rate (see
Methods). The lower graph depicts the size of the data sets used to train the respective models.
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conditions). To this end, we used a notion of diversity known
as determinantal point processes (DPPs),48,49 which use the
GP kernel to determine which variants are similar to each
other (see Methods and Figure S9a). In short, this approach
treats the descriptors of the Sav variants as vectors in Euclidian
space and attempts to select a set of vectors that are as
orthogonal to each other as possible. We applied this process
to a set of variants with the highest predicted activity to obtain
a subset of active and yet sequence-diverse variants. This led to
a more diverse set of variants compared to a simple greedy
selection of the variants with the highest predicted activity as
assessed by three different metrics of diversity (Figure S9b).
Note that this procedure was not required in the exploration
round, as the iterative selection of informative variants
naturally leads to a diverse set of mutants.
As described for the exploration round, we obtained the

designed library based on an oligonucleotide pool and acquired
experimental data for 349 distinct variants. Gratifyingly, this
third library displayed a clear shift toward higher activities
compared to the first two rounds, both in terms of the average
as well as the top activities (Figure 4a). We further analyzed
the hit rate in the screening rounds, which we define here as
the fraction of ArM variants with higher activity than the
reference variant, which is the most active variant identified in
a previous study.40 While only 3% of the initial library were
hits, this rate reached 38% in the exploitation phase,
amounting to an approximately 12-fold increase (Figure 4c).
This demonstrates that the model acquired a meaningful
representation of the activity landscape and can reliably predict
active ArMs.
To confirm the results from the different screening rounds,

which were performed in single measurements, we tested the
most promising variants from all three rounds again in four
replicates (Figure 4d). This revealed that Sav 111C 112T
118N 119L 121 V (abbreviated Sav CTNLV) was the most
active variant, reaching an 18-fold higher cell-specific hydro-
amination activity than the wild type (Sav TSNAK) and a 3-
fold higher cell-specific activity than the reference variant (Sav
TFNAQ). In addition, we purified the most active variants
from our whole-cell screening to test whether they also display
an increased total turnover number in vitro, which was the case
for five of the seven variants tested (Figure S10). As observed
before,40 the ranking of the variants changed in vitro, which
can be expected due to the different reaction environments and
varying expression levels in the periplasmic screening.
Notably, the Sav CTNLV mutant does not retain the S112F

K121Q mutations that were found to be optimal in the
previous double mutant screening.40 Likewise, all other
variants evaluated in the validation experiment (Figure 4d)
retain neither or only one of these two mutations. This
highlights the importance of epistatic effects, which can only be
adequately considered through combinatorial library designs
and nonadditive models. Strikingly, several highly active
variants contain a cysteine at position 111, which seems
counterintuitive as cysteine has been repeatedly shown to have
a pronounced inhibitory effect on gold-catalyzed hydro-
amination.53 However, residue 111 is pointed away from the
metal, presumably preventing the thiol from interfering with
catalysis. Notably, the beneficial impact of this mutation was
not obvious from the initial data set, but became increasingly
apparent in subsequent rounds. This indicates that active
learning can traverse the mutational space more broadly than

alternative methods and enable the identification of counter-
intuitive effects on activity.
To further corroborate this hypothesis, we performed more

detailed analyses to investigate whether the active learning
strategy with a model-guided exploration round indeed led to a
better representation of the available sequence space. We
visualized the sequence space (using t-SNE54 on the kernel
matrix, see Methods) to analyze how the tested variants are
distributed across this space (Figure 5a, b). While care must be
taken when interpreting such low-dimensional projections, this
analysis indicates that the initial library did indeed not cover
the sequence space uniformly. The subsequent exploration
round filled in several of the “gaps” in accordance with the
design goal of this phase. The exploitation phase focused on a
number of regions of high activity, indicating that the selection
criteria of high activity and sequence diversity were met. The
emergence of multiple clusters of active variants is compatible
with the notion of a “rugged” activity landscape with many
local optima. Such landscapes can be challenging to navigate
using classical methodologies, which frequently follow a single
“uphill” trajectory. In contrast, the GP model developed here
acquires a holistic understanding of the entire space of 3.2
million ArM variants and allows us to sample various potential
optima, increasing the chances of finding suitable variants.
Lastly, we sought to quantify the effect of the applied

sampling strategy in relation to the size of the training data set.
A crucial question in this regard is whether the active learning
strategy suggested here provides a significant benefit over a
comparable increase in the size of the training data set by
random sampling of variants. To investigate this, we trained
models on different fractions of the initial data set using the
same model development pipeline as before. As a proxy for an
experimentally determined hit rate, we analyzed the models’
precision in identifying hits among the variants tested in the
exploitation phase (i.e., the percentage of true hits among
variants predicted to be hits). As illustrated in Figure 5c, this
analysis indicates that acquiring training data by random
sampling is accompanied by strong diminishing returns:
Approximately 40% of the initial data set size (equivalent to
∼1200 data points) is sufficient to achieve a similar
performance (in terms of precision and mean squared error
(MSE)) as a model trained on the entire initial data set
(∼3000 data points). This suggests that additional random
screening rounds of similar size would not have led to
noteworthy improvements of the model. In contrast, the
model-guided exploration round, which consisted of only 564
additional data points (an increase of less than 20% in data
volume), improved the precision in identifying hits from ∼20%
to 48%. This increase is significantly beyond any improvement
that can be anticipated due to the mere increase in data
volume, emphasizing the fact that this round was substantially
more informative than random sampling. This confirms the
validity of the suggested active learning and model-guided
exploration strategies, pointing to a high potential for
enhancing MLDE campaigns while at the same time
minimizing the experimental effort.

■ DISCUSSION
MLDE is a highly promising strategy for engineering enzymes
and other proteins.1−3,11 However, the success and efficiency
of such engineering campaigns hinges on the ability to generate
sufficiently large and informative data sets, the use of smart
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sampling strategies, and the choice of suitable machine
learning techniques that optimally leverage the resulting data.
Many studies on MLDE have relied on small data sets4−10

and a single training phase,4,5,10,55,56 which may be attributed
to experimental limitations. This bears the risk that the
resulting models do not accurately represent the sequence
space, and thus are likely to leave significant potential hidden
within this space untapped. Here, we applied lab automation
and NGS to acquire large data sets in a simple and cost-
efficient manner, and directed our sampling to the most
informative data by means of advanced active learning
techniques.
Lab automation greatly increases the throughput of

screenings and is, at the same time, highly adaptable to
various reactions and target proteins. In this study, we
performed some experimental steps manually, but a fully
automated workflow could also be implemented. Similarly, the
computational pipeline is largely automated, and thus it is
conceivable to conduct ArM engineering with minimal human
intervention, as was recently demonstrated for the thermo-
stability of a natural enzyme.57 Importantly, recent develop-
ments such as academic biofoundries and cloud laboratories
are making such approaches more widely accessible.58

The NGS strategy employed here enables the sequencing of
thousands of protein variants for the cost of a small Illumina
run and PCR reagents. The former is available for a few
hundred dollars (e.g., MiSeq Nano, yielding approximately 1
million reads) and will likely continue to get cheaper. If
combined with other samples and run on an instrument with a
large capacity, the prorated costs may even be in the range of a
few dollars. Regarding the PCR reagents, primer synthesis
costs are low as only 20 primers are required to address all 96
positions in a well plate. Similarly, the use of two plate
barcodes means that 12 primers for the second PCR are
sufficient to distinguish 36 plates. Thus, the required number
of primers is lower than in alternative barcoding strategies,45

leading to improved scalability. Nonetheless, other methods
may be advantageous in specific cases (e.g., when several target
genes need to be sequenced). Overall, this workflow enables
sequencing at a cost of less than one cent per variant.
Combined, automation and NGS are ideally suited to

generate large data sets for MLDE. At the same time, it is also
crucial to design information-dense libraries to maximize the
efficiency of experimental screening rounds. In the initial
round, we achieved this by optimizing the mutational load in
the library, which is a straightforward and broadly applicable
strategy. Alternatively, zero-shot methods, for example based
on ΔΔG calculations,13 can be applied as well. In subsequent
rounds, library design can be guided by the machine learning
model. While it may seem attractive to apply an exploitation-
focused strategy to quickly identify active variants, we
hypothesized that a model-guided exploration round could
substantially improve the predictive performance and thus
increase the chances of identifying suitable variants in a
subsequent round. Indeed, we observed that the exploration
round improved the model’s ability to identify active variants
far beyond what would be expected due to the increase in data
volume alone. This demonstrates that active learning is a
highly effective and efficient strategy for developing accurate
models of sequence-activity landscapes. Moreover, the
separation into exploration and exploitation phases provides
a transparent and practical solution to the exploration-
exploitation dilemma, as it allows for a clear and plannable

resource allocation. In addition, our study introduces DPP
sampling as a strategy for diversifying the selection of active
variants, which increases the robustness of MLDE to possible
model inaccuracies and may be beneficial with regard to
secondary properties beyond activity.
Active learning with large batch sizes, as employed here, may

be most attractive when navigating large, rugged sequence-
activity landscapes, which is challenging using conventional
methodologies. If the screening throughput is limited, for
example because of costly reagents or slow analytical
procedures, smaller batch sizes can also be used with our
methodology. In this case, additional rounds could be
performed to increase the predictive performance and the
chance of identifying promising variants.
In terms of the machine learning approach, this study

corroborates that Gaussian process regression is an attractive
choice for MLDE, particularly when strong epistatic effects are
present in the sequence-activity landscape. Moreover, it is well-
suited for active learning strategies, as the uncertainty
quantification is computationally simple, which constitutes an
advantage over alternative methods such as deep learning. Our
results demonstrate that simple and computationally efficient
descriptors are sufficient for nontrivial improvements to
engineering campaigns, which is in line with other literature
on the subject.59,60 Nonetheless, it might be possible to further
boost the predictive performance, for example by employing
improved structure prediction algorithms or descriptors from
modern protein language models.61,62 Lastly, our results
highlight that accurately accounting for experimental noise is
crucial during model development, an aspect that has
frequently been neglected.63

The application of these strategies to the engineering of
ArMs for gold-catalyzed hydroamination led to the identi-
fication of a variant with 18-fold higher cell-specific activity
than the wild type. Compared to our previous screening of
double mutants,40 extending the search space to five positions
led to a 3-fold improvement. Further rounds of active learning
could potentially lead to the discovery of even more active
variants. Moreover, the strategies developed here could be
used to target additional positions. In this case, minor
modifications to the established methods may be required.
Most importantly, when engineering more than approximately
seven residues simultaneously, the computational search for
the most informative or most active variants needs to be
restricted (e.g., based on Hamming distance to a parent
variant), as exhaustive calculations become impossible due to
the exponential increase in the number of possible amino acid
combinations. It should be noted that this ArM is likely a
challenging engineering target due to the relatively exposed
location of the cofactor in Sav. Therefore, applying this
engineering strategy to alternative scaffolds with a more
shielded active site might enable larger improvements.64

Currently, artificial (metallo)enzymes are typically limited
by their rather modest activity. Thus, the field could profit
greatly from advanced machine learning-guided engineering
strategies, as demonstrated here. Similarly, the active learning
approach described here could be applied to tailor natural
enzymes for industrial applications, or to engineer other
proteins such as antibodies, biosensors, or transporters.
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