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Abstract A search for a doubly-charged Higgs boson in
pp collisions at

√
s = 7 TeV is presented. The data corre-

spond to an integrated luminosity of 4.9 fb−1, collected by
the CMS experiment at the LHC. The search is performed
using events with three or more isolated charged leptons of
any flavor, giving sensitivity to the decays of pair-produced
triplet components Φ++Φ−−, and Φ++Φ− from associated
production. No excess is observed compared to the back-
ground prediction, and upper limits at the 95 % confidence
level are set on the Φ++ production cross section, under spe-
cific assumptions on its branching fractions. Lower bounds
on the Φ++ mass are reported, providing significantly more
stringent constraints than previously published limits.

1 Introduction

The existence of non-zero neutrino masses may represent a
signal of physics beyond the standard model (SM) [1]. The
observation of a doubly-charged scalar particle would es-
tablish the type II seesaw mechanism as the most promising
framework for generating neutrino masses [2]. The minimal
type II seesaw model [3–6] is realized with an additional
scalar field that is a triplet under SU(2)L and carries U(1)Y
hypercharge Y = 2. The triplet contains a doubly-charged
component Φ++, a singly-charged component Φ+ and a
neutral component Φ0. In this paper, the symbols Φ++ and
Φ+ are used to refer also to the charge conjugate states Φ−−
and Φ−. In the literature Δ and H have also been used. Our
choice of the symbol Φ for the triplet components avoids
possible confusion with the minimal supersymmetric model
(MSSM) H+ boson.

The Φ++ particle carries double electric charge, and de-
cays to same-sign lepton pairs �+

α �+
β with flavor indices α,β ,

where α can be equal to or different from β . The Φ++
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Yukawa coupling matrix YΦ is proportional to the light neu-
trino mass matrix. The measurement of the Φ++ → �+

α �+
β

branching fractions would therefore allow the neutrino mass
generation mechanism to be tested [7]. In this scenario, mea-
surements at the Large Hadron Collider (LHC) could shed
light [8–11] on the absolute neutrino mass scale, the mass
hierarchy, and the Majorana CP-violating phases. The lat-
ter are not measurable in current neutrino-oscillation exper-
iments.

In this article the results of an inclusive search for a
doubly-charged Higgs boson at the Compact Muon Solenoid
(CMS) experiment are presented, based on a dataset corre-
sponding to an integrated luminosity of 4.93 ± 0.11 fb−1.
The dataset was collected in pp collisions at

√
s = 7 TeV

during the 2011 LHC running period. Both the pair-
production process pp → Φ++Φ−− → �+

α �+
β �−

γ �−
δ [12, 13]

and the associated production process pp → Φ++Φ− →
�+
α �+

β �−
γ νδ [14, 15] are studied. It is assumed that the

Φ++ and Φ+ are degenerate in mass. However, as the
singly-charged component is not fully reconstructed, this
requirement impacts only the cross section, as long as the
mass splitting is such that cascade decays (e.g. Φ++ →
Φ+W+∗ → Φ0W+∗W+∗) are disfavored [16]. The relevant
Feynman diagrams and production cross sections, calcu-
lated following [13], are presented in Figs. 1 and 2. The
Φ++ → W+W+ decays are assumed to be suppressed. In
the framework of type II seesaw model [3–6], where the
triplet is used to explain neutrino masses, this is a natural
assumption: the decay width to the W+W+ channel is pro-
portional to the vacuum expectation value of the triplet (vΦ )
and, as the neutrino masses are determined from the prod-
uct of the Yukawa couplings and vΦ , then large enough vΦ

values would require unnaturally small Yukawa couplings.
The search strategy is to look for an excess of events in

one or more flavor combinations of same-sign lepton pairs
coming from the decays Φ++ → �+

α �+
β . Final states contain-

ing three or four charged leptons are considered.
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Fig. 1 Feynman diagrams for pair and associated production of Φ++

Fig. 2 Production cross sections for pair and associated production processes at
√

s = 7 TeV

In addition to a model-independent search in each final
state, where the Φ++ is assumed to decay in 100 % of the
cases in turn in each of the possible lepton combinations
(ee,μμ, ττ, eμ, eτ,μτ ), the type II seesaw model is tested,
following [9], at four benchmark points (BP), that probe
different neutrino mass matrix structures. BP1 and BP2 de-
scribe a neutrino sector with a massless neutrino, assuming
normal and inverted mass hierarchies, respectively. BP3 rep-
resents a degenerate neutrino mass spectrum with the mass
taken as 0.2 eV. The fourth benchmark point BP4 represents
the case in which the Φ++ has an equal branching fraction
to each lepton generation. This corresponds to the following
values of the Majorana phases: α1 = 0, α2 = 1.7. BP4 is the
only case in which α2 is non-vanishing. For all benchmark
points, vanishing CP phases and an exact tri-bimaximal
neutrino mixing matrix are assumed, fixing the values of
the mixing angles at θ12 = sin−1(1/

√
3), θ23 = π/4, and

θ13 = 0. The four benchmark points, along with the model-
independent search, encompass the majority of the parame-
ter space of possible Φ++ leptonic decays. The values of the
neutrino parameters at the benchmark points are compatible
with currently measured values within uncertainties. The re-
cent measurement of a non-zero θ13 angle [17, 18] is the
only exception, and influences the branching fractions at the
benchmark points by a maximum of a few percent [9]. The
branching fractions at the benchmark points are summarized
in Table 1.

The first limits on the Φ++ mass were derived based
on the measurements done at PEP and PETRA experi-
ments [19–24]. Next, the Φ++ was searched for at the
MARK II detector at SLAC [25], the H1 detector at HERA
[26] and the LEP experiments [27–30]. The latest results are

Table 1 Branching fractions of Φ++ at the four benchmark points

Benchmark point ee eμ eτ μμ μτ ττ

BP1 0 0.01 0.01 0.30 0.38 0.30
BP2 1/2 0 0 1/8 1/4 1/8
BP3 1/3 0 0 1/3 0 1/3
BP4 1/6 1/6 1/6 1/6 1/6 1/6

from the Tevatron and ATLAS [31–33] experiments, which
set lower limits on the Φ++ mass between 112 and 355 GeV,
depending on assumptions regarding Φ++ branching frac-
tions. In all previous searches, only the pair-production
mechanism, and only a small fraction of the possible final
state combinations, were considered. The addition of asso-
ciated production and all possible final states significantly
improves the sensitivity and reach of this analysis.

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter with a 3.8 T
field. Within the field volume are a silicon pixel and strip
tracker, a crystal electromagnetic calorimeter (ECAL) and a
brass/scintillator hadron calorimeter. Muons are measured in
gas-ionization detectors embedded in the steel return yoke.
Extensive forward calorimetry complements the coverage
provided by the barrel and endcap detectors.

CMS uses a right-handed coordinate system, with the
origin at the nominal interaction point, the x axis point-
ing to the center of the LHC ring, the y axis pointing
up (perpendicular to the LHC ring), and the z axis along
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the counterclockwise-beam direction. The polar angle, θ , is
measured from the positive z-axis and the azimuthal angle,
φ, is measured in the x–y plane.

The inner tracker measures charged particles within the
pseudorapidity range |η| < 2.5, where η = − ln[tan(θ/2)]. It
consists of 1440 silicon pixel and 15 148 silicon strip detec-
tor modules, and is located in the superconducting solenoid.
It provides an impact parameter resolution of ∼15 µm and
a transverse momentum (pT) resolution of about 1.5 % for
100 GeV particles. The electromagnetic calorimeter con-
sists of 75 848 lead tungstate crystals which provide cov-
erage in pseudorapidity |η| < 1.479 in the barrel region and
1.479 < |η| < 3.0 in two endcap regions (EE). A preshower
detector consisting of two planes of silicon sensors inter-
leaved with a total of three radiation lengths of lead is lo-
cated in front of the EE. The muons are measured in the
pseudorapidity range |η| < 2.4, with detection planes made
using three technologies: drift tubes, cathode strip cham-
bers, and resistive plate chambers. Matching the muons to
the tracks measured in the silicon tracker results in a trans-
verse momentum resolution between 1 and 5 %, for pT val-
ues up to 1 TeV. The detector is highly hermetic, ensuring
accurate measurement of the global energy balance in the
plane transverse to the beam directions.

The first level of the CMS trigger system, composed
of custom hardware processors, uses information from the
calorimeters and muon detectors to select, in less than 1 µs,
the most interesting events. The High Level Trigger pro-
cessor farm further decreases the event rate from around
100 kHz to around 300 Hz, before data storage. A detailed
description of the CMS detector may be found in Refer-
ence [34].

3 Experimental signatures

The most important experimental signature of the Φ++ is
the presence of two like-charge leptons in the final state,
with a resonant structure in their invariant mass spectrum.
In this final state the background from SM processes is ex-
pected to be very small. For the four-lepton final state from
Φ++Φ−− pair production, both Higgs bosons may be re-
constructed, giving two like-charge pairs of leptons with
similar invariant mass.

Like-charge backgrounds arise from various SM pro-
cesses, including di-boson events containing two to four lep-
tons in the final state. The Z + jets and tt + jets, with lep-
tonic W decays, contribute to the non-resonant background
through jet misidentification as leptons, or via genuine lep-
tons within jets. The W + jets and QCD multijet events are
examples of large cross section processes which potentially
contribute to the SM background. However, the requirement
of multiple isolated leptons with high transverse momentum
almost entirely removes the contribution from these pro-
cesses.

4 Monte Carlo simulations

The multi-purpose Monte Carlo (MC) event generator
PYTHIA 6.4.24 [35] is used for the simulation of signal
and background processes, either to generate a given hard
interaction at leading order (LO), or for the simulation of
showering and hadronization in cases where the hard pro-
cesses are generated at next-to-leading order (NLO) out-
side PYTHIA, as in the case of top quark related back-
grounds. The TAUOLA [36] program is interfaced with
PYTHIA to simulate τ decay and polarization. Signal sam-
ples in the associated production mode are generated by us-
ing CALCHEP 2.5.2 [37], as PYTHIA only contains the
doubly-charged particle. The diboson and Drell–Yan events
are generated using MADGRAPH 5.1.1.0 [38] and TAUOLA.
Samples of tt + jets and single-top production are generated
by using POWHEG [39–41] and PYTHIA.

The signal processes were simulated at 16 mass points:
130, 150, 170, 200, 225, 250, 275, 300, 325, 350, 375, 400,
450, 500, 600 and 700 GeV.

5 Event selection

5.1 Trigger

Collision events are selected through the use of double-
lepton (ee, eμ, μμ) triggers. In the case of the ee and eμ
triggers, a minimum pT of 17 and 8 GeV is required of the
two leptons respectively. In the case of the μμ trigger, the
muon pT thresholds changed during the data-taking period
because of the increasing instantaneous luminosity. A 7 GeV
pT threshold was applied to each muon during the initial
data-taking period (the first few hundred pb−1). The thresh-
olds were later raised to 13 and 8 GeV for the two muons,
and then to 17 and 8 GeV. The trigger efficiency is in excess
of 99.5 % for the events passing the selection defined below.

5.2 Lepton identification

The electron identification uses a cut-based approach in
order to reject jets misidentified as electrons, or electrons
originating from photon conversions. Electron candidates
are separated into categories according to the amount of
emitted bremsstrahlung energy; the latter depends on the
magnetic field intensity and the large and varying amount
of material in front of the electromagnetic calorimeter.
A bremsstrahlung recovery procedure creates superclusters
(i.e. groups of clusters), which collect the energy released
both by the electron and the emitted photons. Transverse
energy (ET) dependent and η-dependent selections are ap-
plied [42].

Selection criteria for electrons include: geometrical
matching between the position of the energy deposition in
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the ECAL and the direction of the corresponding electron
track; requirements on shower shape; the impact parameter
of the electron track; isolation of the electron; and further
selection criteria to reject photon conversions. To reduce
contamination in the signal region, electrons must pass a
triple charge determination procedure based on two different
track curvature fitting algorithms and on the angle between
the supercluster and the pixel hits. In addition, electrons are
required to have pT > 15 GeV and |η| < 2.5.

Muon candidates are reconstructed using two algorithms.
The first matches tracks in the silicon detector to segments
in the muon chambers, whereas the second performs a com-
bined fit using hits in both the silicon tracker and the muon
systems [43]. All muon candidates are required to be suc-
cessfully reconstructed by both algorithms, and to have
pT > 5 GeV and |η| < 2.4.

Isolation of the final state leptons plays a key role in sup-
pressing backgrounds from tt and Z + jets. A relative isola-
tion variable (RelIso) is used, defined as the sum of the pT of
the tracks in the tracker and the energy from the calorimeters
in an isolation cone of size 0.3 around the lepton, excluding
the contribution of the lepton candidate itself, divided by the
lepton pT. A typical LHC bunch-crossing at high instanta-
neous luminosity results in overlapping proton-proton col-
lisions (‘pileup’). The isolation variable is corrected for en-
ergy deposition within the isolation cone by pile-up events,
by means of the FASTJET energy-density algorithm [44, 45].
A description of the performance of the isolation algorithm
in collision data can be found in [42, 43].

In order to reconstruct hadronic τ candidates (τh), the
‘hadron plus strips’ (HPS) algorithm [46] is used, which is
based on particle flow (PF) [47] objects. One of the main
tasks in reconstructing hadronically-decaying τ is deter-
mining the number of π0 mesons produced in the decay.
The HPS method combines PF electromagnetic objects into
‘strips’ at constant η to take into account the broadening of
calorimeter deposits due to conversions of π0 decay pho-
tons. The neutral objects are then combined with charged
hadrons to reconstruct the τh decay.

The τh candidates are required to have pT > 15 GeV
and |η| < 2.1. Additional criteria are applied to discriminate
against e and μ, since these particles could be misidentified
as one-prong τh. The τh candidates in the region 1.460 <

|η| < 1.558 are vetoed, owing to the reduced ability to dis-
criminate between electrons and hadrons in the barrel-to-
endcap transition region.

In the following, the term lepton is used to indicate
both light leptons (e, μ) and the τ -lepton before decay
(τ ). It is not possible to distinguish between leptonic τ de-
cay products and prompt light leptons. Therefore, in sce-
narios that include a τ the light lepton contribution is as-
sumed to be a mixture of prompt and non-prompt parti-
cles and selection criteria are tuned accordingly. Beyond

that there is no attempt to distinguish the origin of the light
leptons. As a result, a final state e+e+τ−

h could arise from
Φ++Φ− → e+e+τ−νμ → e+e+τ−

h ντ νμ as well as from
Φ++Φ− → e+τ+τ−νμ → e+e+ντ νeτ

−
h ντ νμ. In both sce-

narios we look for a resonance in the e+e+ invariant mass,
which is narrow in the case of direct signal decay to light-
leptons and wide in the case of the presence of a τ in the
intermediate state. Because of the reconstruction efficiency
we treat the B(Φ++ → τ+τ+) = 100 % assumption sepa-
rately and optimize the selection criteria accordingly. How-
ever a given event may be assigned to more than one signal
type if it matches the corresponding final state (the above
mentioned example event would contribute to all scenarios
where eτ , ττ branching fractions are non-zero assuming the
event passes the respective selection criteria).

5.3 Pre-selection requirements and signal selection
optimization method

In order to select events from well-measured collisions,
a primary vertex pre-selection is applied, requiring the num-
ber of degrees of freedom for the vertex fit to be greater
than 4, and the distance of the vertex from the center of the
CMS detector to be less than 24 cm along the beam line,
and less than 2 cm in the transverse plane. In case of multi-
ple primary vertex candidates, the one with the highest value
of the scalar sum of the total transverse momentum of the
associated tracks is selected [48].

Data and simulated events are preselected by requiring
at least two final-state light leptons, with pT > 20 GeV and
pT > 10 GeV respectively. If pairs of light leptons with in-
variant mass less than 12 GeV are reconstructed, neither
of the particles is considered in the subsequent steps of
the analysis. This requirement rejects low-mass resonances
and light leptons from B meson decays. In order to reduce
the background contribution from QCD multijet produc-
tion and misidentified leptons, the two least well-isolated
light leptons are required to have summed relative isola-
tion (

∑
RelIso) less than 0.35. In case of the B(Φ++ →

τ+τ+) = 100 % assumption, the requirement is tightened to
less than 0.25.

In addition, the significance of the impact parameter,
SIP� = ρPV/ΔρPV, is required to be less than four for the re-
constructed light leptons except for the B(Φ++ → τ+τ+) =
100 % assumption; here ρPV denotes the distance from the
lepton track to the primary vertex and ΔρPV its uncertainty.

The remaining event sample is divided into two cate-
gories, based on the total number of final state lepton can-
didates. The search is then performed in various final state
configurations for a set of pre-determined mass hypotheses
for the Φ++. For each mass point, the selection criteria de-
scribed in Sect. 6 are optimized using simulations, by max-
imizing the signal significance by means of the following
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significance estimator:

ScL = √
2(s + b) ln(1 + s/b) − 2s,

where s is the signal expectation and b is the background
expectation. The estimator comes from the asymptotic ex-
pression of significance Z = √

2 logQ, where Q is the ratio
of Poisson likelihoods P(obs|s +b) and P(obs|b). The esti-
mator ScL applies in the case of a counting experiment with-
out systematic errors. We do not consider systematic errors
at this stage as we select optimal cuts within the top 10 %
of the significance across mass points and the small vari-
ations coming from systematic uncertainties do not change
the optimization significantly. The c and L subscripts refer to
counting experiment and likelihood, respectively. The size
of the mass window is a part of the optimization procedure
and is limited by the mass resolution of the signal.

6 Analysis categories

The analysis is separated into categories based on the total
number of light leptons and τh in the reconstructed events.

The decay channel with B(Φ++ → ττ) = 100 % is han-
dled separately, since the event topology is somewhat differ-
ent from the final states with prompt decays to light leptons.
In particular, the Φ++ reconstructed mass peak has a much
larger width due to final-state neutrinos, which affects the
choice and optimization of the event selection criteria.

The final signal efficiency depends on the Φ++ produc-
tion mechanism, decay channel and chosen mass point. For
pair-production process and 200 GeV Φ++ mass the selec-
tion efficiency varies from about 62 % in the eμ channel to
16 % in �τ channels and only 4 % in the ττ channel. Lower
efficiency in decay channels that involve τ -leptons results
from the tau ID efficiency, tighter selection criteria and the
requirement of two light leptons at the trigger level. The ef-
ficiencies slightly increase at higher mass assumptions. For
associated production process the selection efficiencies are
decreased by about a factor of two.

6.1 ��� and ��τh final states

These final states are relevant for both Φ++ production
mechanisms. The associated production process yields three
charged leptons and a neutrino. The pair-production process
can contribute to this category if one of the four leptons is
lost due to lepton identification inefficiency or detector ac-
ceptance.

In order to separate signal from background, a set of se-
lection criteria is optimized for significance for various com-
binations of final states and mass hypotheses. Three main
categories of final states are considered: Φ++ decays to light
leptons (ee, eμ and μμ), Φ++ decays to a light-lepton and

a τ -lepton (eτ , μτ ) and Φ++ decay to τ -leptons (ττ ). Both
hadronic and leptonic τ decays are considered. At least two
light leptons in the final state are required because of trigger
considerations.

Because of the high mass of the Φ++, its decay products
are very energetic, allowing for signal separation through re-
quirements on the scalar pT sum of the three leptons (

∑
pT)

as a function of mΦ . In addition, as a number of impor-
tant background processes contain a Z boson, events with
opposite-sign same-flavor light lepton combinations are re-
jected if |m(�+�−) − mZ| is below a channel-dependent
threshold.

A selection on the opening angle between the same-
charge leptons, Δϕ, is also applied. Background processes,
such as the production of a Z boson recoiling from a jet
misidentified as a lepton, yield leptons with a larger open-
ing angle than those originating from Z decay. For the pair-
production of two signal particles we expect both lepton
pairs to be boosted and the opening angle to be smaller.

A loose requirement on the missing transverse energy
(Emiss

T ), defined as the negative vectorial momentum sum of
all reconstructed particle candidates, is applied in the eτ,μτ

and ττ channels in order to further reduce the background
contributions, especially from Drell–Yan processes.

Finally, the mass window (mlower, 1.1mΦ ) is defined. The
lower bound, mlower, depends on the final state. The mass
windows are chosen by requiring high efficiency for signal
events across a variety of final states (including τ leptonic
decays, which contribute significantly in some scenarios),
while keeping the analysis independent of the assumed rel-
ative branching fractions. The selection criteria used in this
category are summarized in Table 2.

For the 100 % branching fraction scenarios, both sig-
nal and background events are filtered based on the lep-
tonic content. For example, when showing results for 100 %
branching fraction to electrons, only events containing elec-
trons are used. For the four benchmark points, the contribu-
tions from all possible lepton combinations are taken into
account and added to the relevant distributions according to
the relative branching fractions. The selection criteria of eτ
and μτ channel are used for the four benchmark points to
account for various final state signatures.

After the application of the selection criteria, the event
yields observed in data are in reasonable agreement with the
sum of the expected contributions from backgrounds. The
mass distributions for the simulated total background and
the hypothesized BP4 benchmark point signal after applying
the pre-selections are shown in Fig. 3, along with the mea-
sured yields. The event yield evolution as a function of the
selections applied is also shown. For the final analysis, the
background estimate is derived from data, using the methods
described in Sect. 7.
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Table 2 Selections applied in the three-lepton final states

Variable ee, eμ, μμ eτ , μτ ττ

∑
pT >1.1mΦ + 60 GeV >0.85mΦ + 125 GeV >mΦ − 10 GeV

or >200 GeV

|m(�+�−) − mZ| >80 GeV >80 GeV >50 GeV

Emiss
T None >20 GeV >40 GeV

Δϕ <mΦ/600 GeV + 1.95 <mΦ/200 GeV + 1.15 <2.1

Mass window [0.9mΦ ;1.1mΦ ] [mΦ/2;1.1mΦ ] [mΦ/2 − 20 GeV;1.1mΦ ]

Fig. 3 Left: Like-charge invariant mass distribution for the ��� and
��τh final state for the MC simulation and data after pre-selection.
Where τ decay products are present in the final state, a visible mass is
reconstructed that does not include the contribution of neutrinos. The

expected distribution for a Φ++ with a mass of 350 GeV for the bench-
mark point BP4 is also shown. Right: Event yields as a function of the
applied selection criteria. Δϕ column includes both Δϕ and Emiss

T se-
lections

Table 3 Selections applied in various four-lepton final states

Variable ee, eμ, μμ eτ , μτ ττ

∑
pT >0.6mΦ + 130 GeV >mΦ + 100 GeV or >400 GeV >120 GeV

|m(�+�−) − mZ0 | None >10 GeV >50 GeV

Δϕ None None <2.5

Mass window [0.9mΦ ;1.1mΦ ] [mΦ/2;1.1mΦ ] None

6.2 ����, ���τh and ��τhτh final states

The requirement of a fourth lepton substantially reduces the
background. The Z veto is not applied for scenarios involv-
ing only light-leptons because of low signal efficiency.

A mass window around the doubly charged Higgs boson
mass hypothesis is defined. It consists of a two-dimensional
region in the plane of m(�+�+) vs. m(�−�−), where
m(�+�+) and m(�−�−) denote the reconstructed same-sign
dilepton masses. The window boundaries are the same as in
Sect. 6.1. Because of the large width of the reconstructed
mass peak, the mass window is not selected in the case of
B(Φ++ → τ+τ+) = 100 % in order to keep the signal effi-
ciency high. The selection criteria used in this category are

summarized in Table 3. The resulting mass distributions are
shown in Fig. 4. Good agreement is seen between the event
yields observed in the data and the expected background
contributions.

7 Background estimation from data

7.1 Sideband method

A sideband method is used to estimate the background con-
tribution in the signal region. The sideband content is deter-
mined by using same-charge di-leptons with invariant mass
in the ranges (12 GeV, mlower) and (1.1mΦ,500 GeV) for
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Fig. 4 Left: Like-charge invariant mass distribution for the four-lepton
final state for MC simulation and data after pre-selection. Where τ

decay products are present in the final state, a visible mass is re-
constructed that does not include the contribution of neutrinos. The

expected distribution for a Φ++ with a mass of 350 GeV for the
benchmark point BP4 is also shown. Right: Event yields as a function
of the applied selection criteria

the three-lepton final state selection. In the case of the four-
lepton final state, the sidebands comprise the Φ++ and Φ−−
two-dimensional mass plane with dilepton invariant masses
between 12 GeV and 500 GeV, excluding the candidate mass
region. The upper bound of 500 GeV is chosen due to the
negligible expected yields for both signal and background at
higher masses, for the data sample used.

The sideband content is determined after the preselec-
tion requirements in order to ensure a reasonable number
of events. For each Φ++ mass hypothesis, the ratio of the
event yields in the signal region to those in the sideband, α,
is estimated from the sum of all SM background MC pro-
cesses:

α = NSR

NSB
,

where NSR and NSB are the event yields in the signal
and sideband regions respectively, estimated from simulated
event samples. Modifications to this definition are made in
the case of very low event counts:

– If NSB = 0, then α = NSR is assumed
– If NSR is less than the statistical uncertainty, then the sta-

tistical uncertainty of the simulated samples is used as an
estimate for the signal region.

With an observation of NData
SB in a sideband, the prob-

ability density function for the expected event rate is the
Gamma distribution with mean (NData

SB + 1) and dispersion
√

NData
SB + 1 [49]. The predicted background contribution in

the signal region is given by:

NBGSR = α · (NData
SB + 1

)
,

with a relative uncertainty of 1/

√
NData

SB + 1, where NBGSR

is the number of background events in the signal region es-
timated from the data, and NData

SB is the total number of data
events in the sidebands after applying the preselection re-
quirements. Where the background estimate in the signal
region is smaller than the statistical uncertainty of the MC
prediction, then it is assumed that the background estimate
is equal to its statistical uncertainty.

Independently of this method, control regions for major
backgrounds (tt, Z + jets) are defined to verify the reliabil-
ity of the simulation tools in describing the data, and good
agreement is found.

7.2 ABCD method

As a mass window is not defined for the 4τ analysis, and
comprises too large an area in the background region for the
3τ analysis with mΦ++ < 200 GeV, the sideband method
cannot be used for these modes. Instead, we use the ‘ABCD
method’, which estimates the number of background events
after the final selection (signal region A) by extrapolat-
ing the event yields in three sidebands (B, C and D). The
signal region and three sidebands are defined using a set
of two observables x and y, that define four exclusive re-
gions in the parameter space. The requirement of negligi-
ble correlation between x and y ensures that the probabil-
ity density function of the background can be factorized as
ρ(x, y) = f (x)g(y). It can be shown that the expectation
values of the event yields in the four regions fulfill the rela-
tion λA/λB = λD/λC . The quantities λX are the parameters
of the Poisson distribution, which for one measurement cor-
respond to the event counts NX . The estimated number of
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background events in the signal region is then given by

NA = NB · ND

NC

.

The variables
∑

RelIso and |m(�+�−) − mZ| for the 3τ

analysis and
∑

RelIso and
∑

pT for the 4τ analysis are cho-
sen based on their low correlation and the available amount
of data in the sidebands. High values of RelIso populate
the sidebands with background events, where jets have been
misidentified as leptons. Failing the |m(�+�−) − mZ0 | >

50 GeV requirement gives mainly background contributions
from the Drell–Yan and di-boson processes, whereas low
values of

∑
pT can probe various background processes that

possibly contain genuine leptons, but do not belong to the
signal phase space.

The estimated number of background events agrees well
with both the prediction from simulation and the number of
data events observed in the signal region.

8 Systematic uncertainties

The impact on the selection efficiency of the uncertainties
related to the electron and muon identification and isolation
algorithms, and the relevant mis-identification rates, detailed
in [42, 43, 46, 50, 51], are estimated to be less than 2 % us-
ing a standard ‘tag-and-probe’ method [52] that relies upon
Z → �+�− decays to provide an unbiased and high-purity
sample of leptons. A ‘tag’ lepton is required to satisfy strin-
gent criteria on reconstruction, identification, and isolation,
while a ‘probe’ lepton is used to measure the efficiency of
a particular selection by using the Z mass constraint. The
2 % uncertainty that is assigned to lepton identification com-
prises also the charge misidentification uncertainty. The ra-
tio of the overall efficiencies as measured in data and simu-
lated events is used as a correction factor in the bins of pT

and η for the efficiency determined through simulation, and
is propagated to the final result.

The τh reconstruction and identification efficiency via
the HPS algorithm is also derived from data and simula-
tions, using the tag-and-probe method with Z → τ+(→
μ+ + νμ + ντ )τ

−(→ τh + ντ ) events [46]. The uncertainty
of the measured efficiency of the τh algorithms is 6 % [46].
Estimation of the τh energy-scale uncertainty is also per-
formed with data in the Z → ττ → μ + τh final state, and
is found to be less than 3 %. The τh charge misidentification
rate is measured to be less than 3 %.

The theoretical uncertainty in the signal cross section,
which has been calculated at NLO, is about 10–15 %, and
arises because of its sensitivity to the renormalization scale
and the parton distribution functions (PDF) [13].

The ratio α used to estimate the background contribu-
tion in the signal region is affected by two main uncer-
tainties. The first is based on the uncertainty of the ratio

Table 4 Impact of systematic uncertainties

Lepton (e or μ) ID and isolation 2 %

τh ID and isolation 6 %

τh energy scale 3 %

τh misidentification rate 3 %

Trigger and primary vertex finding 1.5 %

Signal cross section 10 %

Luminosity 2.2 %

Statistical uncertainty of signal samples 1–7 %

Ratio used in background estimation 5–100 %

Statistical uncertainty of observed data events in sideband 10–100 %

of the simulated event yields in the sideband and the sig-
nal regions, and is related to the size of the kinematic re-
gion defined by the selection criteria. This uncertainty is
dominated by the PDF and renormalization scale, in addi-
tion to the lepton energy scales. The combined uncertainty
is 5 % [53]. The other component comes from the statisti-
cal uncertainty of the small event content of the sidebands.
This uncertainty is as high as 100 % if no events are ob-
served in data. The luminosity uncertainty is estimated to be
2.2 % [54].

The systematic uncertainties are summarized in Table 4.
The first eight rows in the table concern the signal and the
final two rows the background processes. Correlations of
systematic uncertainties within a given decay mode and be-
tween different modes are taken into account in the limit
calculations.

9 Results and statistical interpretation

The data and the estimated background contributions are
found to be in reasonable agreement for all final states.
Only a few events are observed with invariant masses above
200 GeV, consistent with SM background expectations. The
dataset is used to derive limits on the doubly-charged Higgs
mass in all decay channels. A CLS method [55] is used to
calculate an upper limit for the Φ++ cross section at the
95 % confidence level (CL), which includes the systematic
uncertainties summarized in Table 4. As the systematic un-
certainties are different for each final state, the signal and
background yields are separated into five orthogonal cate-
gories, based on the number of light leptons and τ -leptons.
As an example, event yields in four mass points for BP4 can
be found in Table 5. A full list of mass points considered for
the limit calculation is given in the end of Sect. 4. When set-
ting limits on ‘muon and electron only’ channels, we only
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Table 5 Background estimation from simulation and data, observed number of events, and signal yields for BP4

Mass Final state MC estimate Estimate from data Observed events Pair-production Associate production

200 GeV ��� 0.99 ± 0.43 1.32 ± 0.64 ± 0.02 2 9.35 ± 0.07 33.17 ± 0.15

200 GeV ��τh 0.52 ± 0.07 0.50 ± 0.10 ± 0.01 1 3.05 ± 0.04 8.02 ± 0.08

200 GeV ���� 0.05 ± 0.02 0.07 ± 0.04 ± 0.01 0 17.25 ± 0.07 0.01 ± 0.01

200 GeV ���τh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 4.55 ± 0.05 0.04 ± 0.01

200 GeV ��τhτh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.57 ± 0.02 0.0 ± 0.0

300 GeV ��� 0.22 ± 0.03 0.30 ± 0.06 ± 0.01 0 2.06 ± 0.02 7.07 ± 0.04

300 GeV ��τh 0.12 ± 0.04 0.12 ± 0.04 ± 0.01 0 0.62 ± 0.01 1.52 ± 0.02

300 GeV ���� 0.03 ± 0.02 0.04 ± 0.03 ± 0.01 0 3.06 ± 0.02 0.0 ± 0.0

300 GeV ���τh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.78 ± 0.01 0.0 ± 0.0

300 GeV ��τhτh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.10 ± 0.01 0.0 ± 0.0

400 GeV ��� 0.19 ± 0.04 0.26 ± 0.07 ± 0.01 1 0.60 ± 0.01 1.94 ± 0.01

400 GeV ��τh 0.06 ± 0.02 0.06 ± 0.03 ± 0.01 0 0.17 ± 0.01 0.4 ± 0.01

400 GeV ���� 0.03 ± 0.02 0.04 ± 0.03 ± 0.01 0 0.70 ± 0.01 0.0 ± 0.0

400 GeV ���τh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.18 ± 0.01 0.0 ± 0.0

400 GeV ��τhτh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.02 ± 0.01 0.0 ± 0.0

450 GeV ��� 0.14 ± 0.04 0.19 ± 0.06 ± 0.03 1 0.32 ± 0.01 1.04 ± 0.01

450 GeV ��τh 0.04 ± 0.02 0.04 ± 0.03 ± 0.00 0 0.08 ± 0.01 0.21 ± 0.01

450 GeV ���� 0.03 ± 0.02 0.04 ± 0.03 ± 0.01 0 0.36 ± 0.01 0.0 ± 0.0

450 GeV ���τh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.09 ± 0.01 0.0 ± 0.0

450 GeV ��τhτh 0.03 ± 0.02 0.02 ± 0.02 ± 0.01 0 0.01 ± 0.0 0.0 ± 0.0

Fig. 5 Lower bound on Φ++ mass at 95 % CL for B(Φ++ → e+e+) = 100 %

distinguish the cases of three and four leptons with no τh

involved. The limits are interpolated linearly. The results of
the exclusion limit calculations are reported in Figs. 5–14,
and summarized in Table 6.

The cross section limits significantly improve on previ-
ously published lower bounds on the Φ++ mass. New limits
are also set on the four benchmark points, probing a large
region of the parameter space of type II seesaw models.
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Fig. 6 Lower bound on Φ++ mass at 95 % CL for B(Φ++ → e+μ+) = 100 %

Fig. 7 Lower bound on Φ++ mass at 95 % CL for B(Φ++ → μ+μ+) = 100 %

Fig. 8 Lower bound on Φ++ mass at 95 % CL for B(Φ++ → e+τ+) = 100 %
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Fig. 9 Lower bound on Φ++ mass at 95 % CL for B(Φ++ → μ+τ+) = 100 %

Fig. 10 Lower bound on Φ++ mass at 95 % CL for B(Φ++ → τ+τ+) = 100 %

Fig. 11 Lower bound on Φ++ mass at 95 % CL for BP1. On the left hand plots the B2 means B(Φ++ → �+
α �+

β )B(Φ++→�+
γ �+

δ ) summed over
all possible flavor combinations
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Fig. 12 Lower bound on Φ++ mass at 95 % CL for BP2. On the left hand plots the B2 means B(Φ++ → �+
α �+

β )B(Φ++→�+
γ �+

δ ) summed over
all possible flavor combinations

Fig. 13 Lower bound on Φ++ mass at 95 % CL for BP3. On the left hand plots the B2 means B(Φ++ → �+
α �+

β )B(Φ++→�+
γ �+

δ ) summed over
all possible flavor combinations

Fig. 14 Lower bound on Φ++ mass at 95 % CL for BP4. On the left hand plots the B2 means B(Φ++ → �+
α �+

β )B(Φ++→�+
γ �+

δ ) summed over
all possible flavor combinations
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Table 6 Summary of the 95 % CL exclusion limits

Benchmark point Combined 95 % CL
limit [GeV]

95 % CL limit for pair
production only [GeV]

B(Φ++ → e+e+) = 100 % 444 382

B(Φ++ → e+μ+) = 100 % 453 391

B(Φ++ → e+τ+) = 100 % 373 293

B(Φ++ → μ+μ+) = 100 % 459 395

B(Φ++ → μ+τ+) = 100 % 375 300

B(Φ++ → τ+τ+) = 100 % 204 169

BP1 383 333

BP2 408 359

BP3 403 355

BP4 400 353

10 Summary

A search for the doubly-charged Higgs boson Φ++ has been
conducted using a data sample corresponding to an inte-
grated luminosity of 4.93 ± 0.11 fb−1collected by the CMS
experiment at a center-of-mass energy of 7 TeV. No evi-
dence for the existence of the Φ++ has been found. Lower
bounds on the Φ++ mass are established between 204 and
459 GeV in the 100 % branching fraction scenarios, and be-
tween 383 and 408 GeV for four benchmark points of the
type II seesaw model, providing significantly more stringent
constraints than previously published limits.
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