

Capacity planning for demandresponsive multimodal transit

Presentation

Author(s): Martin-Iradi, Bernardo (D; Corman, Francesco (D; Geroliminis, Nikolas

Publication date: 2024-05

Permanent link: https://doi.org/10.3929/ethz-b-000676216

Rights / license: In Copyright - Non-Commercial Use Permitted

Funding acknowledgement: 181210 - DADA - Dynamic data driven Approaches for stochastic Delay propagation Avoidance in railways (SNF)

Capacity planning for demandresponsive multimodal transit

Bernardo Martin-Iradi, ETH Francesco Corman, ETH Nikolas Geroliminis, EPFL

DADA closing event 31. May 2024

Challenges in mobility & logistics

Aging infrastructure and fleet

Rising customer expectations

Growing congestion

Environmental footprint

Innovation and opportunities

Vehicles: IoT, electrification

Business models: digital platforms

→ Coordination opportunities to create economies of scale, and consolidate operations across mobility systems

"How": analytics and optimization capabilities to support emerging innovations in transportation and logistics

On-demand multimodal transit in the mobility landscape

On-demand multimodal transit systems enhance public transport with the flexibility of demand-responsive services

On-demand multimodal transit system (ODMTS)

- Transit-centric system integrated with on-demand services
- Potential for:
 - Reducing costs
 - Improving service level
 - Alleviating congestion and pollution

Doing "more" with "less"

On-demand multimodal transit (ODMTS)

Contributions

On-demand multimodal transit planning and operations	
Model formulation	Two-stage stochastic integer optimization formulation with tight network-based second-stage structure
Double decomposition	Double decomposition approach: Benders decomposition and column generation
Computational scalability	Scalability of the algorithm: high-quality solutions in otherwise intractable instances
Practical impact: win-win outcomes	Benefits toward efficient, equitable and sustainable urban mobility

Problem statement

Second-stage problem: Demand-responsive operations

Mode choices: (1) Only transit, (2) Transit + OD service, (3) OD door-to-door

Time-space network for passenger trip planning

Decision variables

First-stage problem: Transit planning and fleet sizing

 $q_{lfbp} = \begin{cases} 1 \text{ if line } l \text{ runs with freq } f \text{ using vehicles } b \text{ on schedule } p, \\ 0 \text{ otherwise.} \end{cases}$

 $z_{dl} = \begin{cases} 1 \text{ if passengers from origin-destination } d \in OD \text{ use line } l, \\ 0 \text{ otherwise.} \end{cases}$

 v_d = number of first/last mile services to cover demand on origin–destination $d \in OD$.

Second-stage problem: Demand-responsive operations

 $y_{ras} = \begin{cases} 1 \text{ if arc } a \text{ is used for passenger trip } r \text{ in scenario } s, \\ 0 \text{ otherwise.} \end{cases}$

Capacity planning for demand-responsive multimodal transi

Solution algorithm

Case study: Zurich's bus and tram network

3-10 bus/tram lines

+100 stops

+1000 OD pairs

5-20 demand scenarios

1 hour horizon

Travel times from Google Maps, Uber, and OpenStreetMap

Scalability of algorithm

- Direct models
 - Fast for the smallest instances: **3** lines, and **5** demand scenarios
 - But scales very poorly (~50k nodes and ~100k arcs)
- Benders decomposition
 - Scales better: 5 lines, and 10 demand scenarios (~80k nodes and ~150k arcs)
 - Still relies on full variable enumeration
- **Double** decomposition (Benders and column generation)
 - Scales best: **10** lines and **20** demand scenarios, and probably **more** (+120k nodes and +200k arcs)
 - Tight relaxations with few columns

Benefits of stochastic optimization

Out-of-sample evaluation of our model and a deterministic equivalent (mean scenario).

Value of the stochastic solution (average across all instances): **Overall objective -6%**

ETH zürich

Benefits of multimodal integration

Out-of-sample evaluation of our model and a non-integrated equivalent (no first/last mile services).

Value of the multimodal solution (average across all instances): **Overall objective -8%**

Results in the same direction but more emphasized

Benefits of fleet heterogeneity

Out-of-sample evaluation of **our model** and a **homogeneous fleet equivalent** (single transit vehicle type).

Value of the heterogenous fleet solution (average across all instances): **Overall objective -1%**

Milder differences in solutions

Work in progress

- Stress-test case study:
 - Real-life data on demand
 - Pareto frontier: Sensitivity analysis and parameter calibration
- Strengthen formulation:
 - On-demand service pooling
- Practical viability:
 - Analysis of benefits and incentives for integration and collaboration.

Conclusions

On-demand multimodal transit planning and operations	
Model formulation	Two-stage stochastic integer optimization formulation with tight network-based second-stage structure
Double decomposition	Double decomposition approach: Benders decomposition and column generation
Computational scalability	Scalability of the algorithm: high-quality solutions in otherwise intractable instances
Practical impact: win-win outcomes	Benefits toward efficient, equitable and sustainable urban mobility

Institut für Verkehrsplanung und Transportsysteme

Thank you!

Dr. Bernardo Martin-Iradi Postdoctoral researcher – Transport Systems <u>bernardo.martin-iradi@ivt.baug.ethz.ch</u>

ETH Zürich Institute for Transport Planning and Systems (IVT) Stefano-Franscini-Platz 5 8093 Zurich

www.ivt.ethz.ch

