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Challenges in mobility & logistics
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Environmental footprint

Aging infrastructure and fleet Growing congestion

Rising customer expectations



Innovation and opportunities

3Capacity planning for demand-responsive multimodal transit

Business models: digital platformsVehicles: IoT, electrification

“How”: analytics and optimization capabilities to support

emerging innovations in transportation and logistics

→ Coordination opportunities to create economies of scale, and 

consolidate operations across mobility systems
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On-demand multimodal transit in the mobility landscape
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October 11, 2019 June 4, 2021

Who’s Afraid of  a Transit 

Desert? 

Why Your Uber Ride Is 

Suddenly Costing a Fortune

On-demand multimodal transit systems enhance public 

transport with the flexibility of demand-responsive services
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On-demand multimodal transit system (ODMTS)

• Transit-centric system integrated with on-demand services

• Potential for:

− Reducing costs

− Improving service level

− Alleviating congestion and pollution
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Doing “more” with “less”



On-demand multimodal transit (ODMTS)
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Fixed transit system

Homogeneous fleet

Static demand

Transit scheduling

Heterogenous fleet

Stochastic demand

Existing work Proposed model
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Contributions
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Two-stage stochastic integer optimization formulation 

with tight network-based second-stage structure

Double decomposition approach: Benders decomposition 

and column generation

Scalability of the algorithm:

high-quality solutions in otherwise intractable instances

Computational 

scalability

Double 

decomposition

Model formulation

Benefits toward efficient, equitable and sustainable urban 

mobility

Practical impact: 

win-win outcomes

On-demand multimodal transit planning and operations
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20’
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10’ x4

15’ x3

Problem statement
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First-stage problem: 

Transit planning and fleet sizing

Second-stage problem: 

Demand-responsive operations

#?
#?
#?

Walking

Origin

Waiting

Transit

Transfer
On-demand first-

mile

Waiting

Direct taxi trip

Destination

On-demand last-

mileWaiting

Walking
Passenger

Time-space network
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Second-stage problem: Demand-responsive operations
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Walking
Origin

Waiting
Transit

TransferOn-demand 

first-mile Waiting

Direct taxi trip

Destination

On-demand 

last-mileWaiting

Walking

Time-space network for passenger trip planning

Mode choices: (1) Only transit, (2) Transit + OD service, (3) OD door-to-door
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Decision variables

𝑞𝑙𝑓𝑏𝑝 = ቊ
1 if line 𝑙 runs with freq 𝑓 using vehicles 𝑏 on schedule 𝑝,

0 otherwise.

𝑧𝑑𝑙 = ቊ
1 if passengers from origin−destination 𝑑 ∈ 𝑂𝐷 use line 𝑙,

0 otherwise.

𝑣𝑑 = number of first/last mile services to cover demand on origin−destination 𝑑 ∈ 𝑂𝐷.

𝑦𝑟𝑎𝑠 = ቊ
1 if arc 𝑎 is used for passenger trip 𝑟 in scenario 𝑠,

0 otherwise.
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First-stage problem: Transit planning and fleet sizing

Second-stage problem: Demand-responsive operations
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Two-stage stochastic optimization
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Mode choice costs Transit planning costs Passenger travel costs

Transit scheduling

Line capacity 

Passenger routing

Linking 

constraints

Vehicle capacity

First-stage

Second-stage
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Solution algorithm
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Benders main 

problem
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Benders’ enhancements:

- Two-phase approach

- Pareto-optimal cuts
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Case study: Zurich’s bus and tram network
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3-10 bus/tram lines

+100 stops

+1000 OD pairs

5-20 demand scenarios

1 hour horizon

Travel times from Google Maps, Uber, 

and OpenStreetMap

31.05.2024



Scalability of algorithm

• Direct models

− Fast for the smallest instances: 3 lines, and 5 demand scenarios

− But scales very poorly (~50k nodes and ~100k arcs)

• Benders decomposition

− Scales better: 5 lines, and 10 demand scenarios (~80k nodes and ~150k arcs)

− Still relies on full variable enumeration

• Double decomposition (Benders and column generation)

− Scales best: 10 lines and 20 demand scenarios, and probably more (+120k nodes and +200k arcs)

− Tight relaxations with few columns
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Benefits of stochastic optimization

Out-of-sample evaluation of our model and a deterministic equivalent (mean scenario).

Value of the stochastic solution (average across all instances): Overall objective -6%
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Transit

Higher costs to serve more 

passengers

OD service

Mode switch leading to 

total operational savings

Passenger

Reductions in travel costs 

while maintaining service

Fleet costs F/L mile costs Cost of travel+28% +41% -9%

Ridership x5 Distance -6%

Utilization +8% Direct trips -12%

Arrival delay +4%



Benefits of multimodal integration
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Out-of-sample evaluation of our model and a non-integrated equivalent (no first/last mile services).

Value of the multimodal solution (average across all instances): Overall objective -8%

Results in the same direction but more emphasized

31.05.2024

Transit OD service Passenger

Fleet costs Cost of travel+37% -9%

Ridership x6

Distance -6%

Utilization +9%

Direct trips -14% Arrival delay +44%



Benefits of fleet heterogeneity
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Out-of-sample evaluation of our model and a homogeneous fleet equivalent (single transit vehicle type).

Value of the heterogenous fleet solution (average across all instances): Overall objective -1%

Milder differences in solutions

31.05.2024

Transit OD service Passenger

Fleet costs F/L mile costs Cost of travel+10% +11% -0.2%

Ridership x1.8 Distance -1%

Utilization +1% Direct trips -2%

Arrival delay -2%



Work in progress

• Stress-test case study:

− Real-life data on demand

− Pareto frontier: Sensitivity analysis and parameter calibration

• Strengthen formulation: 

− On-demand service pooling

• Practical viability: 

− Analysis of benefits and incentives for integration and collaboration.
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Conclusions
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Two-stage stochastic integer optimization formulation 

with tight network-based second-stage structure

Double decomposition approach: Benders decomposition 

and column generation

Scalability of the algorithm:

high-quality solutions in otherwise intractable instances

Computational 

scalability

Double 

decomposition

Model formulation

Benefits toward efficient, equitable and sustainable urban 

mobility

Practical impact: 

win-win outcomes

On-demand multimodal transit planning and operations
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