
Advancing Software Reliability
from Code to Compilation

Shaohua Li

DISS. ETH NO. 30279

DOCTORAL THESIS

diss . eth no. 30279

A D VA N C I N G S O F T WA R E R E L I A B I L I T Y

F R O M C O D E T O C O M P I L AT I O N

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S
(Dr. sc. ETH Zürich)

presented by

S H A O H UA L I

M. eng., University of Science and Technology of China

born on 8 December 1994

accepted on the recommendation of

Prof. Dr. Zhendong Su, examiner

Prof. Dr. Mathias Payer, co-examiner

Prof. Dr. Andreas Zeller, co-examiner

2024

Shaohua Li: Advancing Software Reliability from Code to Compilation, © 2024

A B S T R A C T

Software takes charge of every critical aspect of our modern society, in-
cluding communication, finance, transportation, and many more. It is thus
crucial to ensure the reliability of software systems. Yet, guaranteeing that
non-trivial software systems are free of defects is extremely difficult, if not
impossible. Consequently, modern software systems are full of bugs, such
as security vulnerabilities, semantic bugs, performance issues, etc.

The motivating question of this thesis is: where can software go wrong? Soft-
ware development is an intricate process with many different procedures
in the pipeline. Beyond the source code written by developers, there are
many other tools involved, such as code analysis tools used for identifying
defects and compilers used for translating source code into machine code.
Unfortunately, they can all go wrong. In this thesis, we study the reliability
problem from three different levels: code, code analysis, and code compilation.
At a high level, we design new methodologies to identify and detect bugs
at all of these levels.

For the reliability of code, we focus on eliminating undefined behavior,
a major source of reliability bugs such as buffer-overflow and use-after-free,
in modern C/C++ software. We develop a general detection approach to
identify undefined behaviors practically and effectively. To improve de-
tection efficiency, we further present two novel concepts to accelerate the
existing detection frameworks. For the reliability of code analysis, we aim
to validate existing bug detection tools for undefined behaviors. We propose
and design the first program generator that can automatically produce a
large number of programs with various undefined behaviors. We then use
this generator to validate sanitizers, one of the most popular toolsets for
undefined behavior detection. For the reliability of code compilation, we
concentrate on solidifying the modern compiler implementations. We intro-
duce a novel data-driven program generation technique that can generate
expressive and well-formed programs based on real-world code snippets.

At the conceptual level, this thesis highlights the prevalence of reliability
problems in the software development pipeline, from code to compilation.
At the technical level, this thesis presents five new tools for detecting
software defects in source code, code analysis tools, and compilers.

iii

Z U S A M M E N FA S S U N G

Software kontrolliert jeden Aspekt unserer modernen Gesellschaft, wie
Kommunikation, Finanzen, Verkehr und vieles mehr. Es ist daher entschei-
dend, die Zuverlässigkeit von Softwaresystemen zu gewährleisten. Es ist
jedoch schwierig, oft unmöglich, die Zuverlässigkeit von nicht-trivialer
Software aufgrund ihrer enormen Komplexität zu garantieren. Als Ergebnis
sind moderne Softwaresysteme voller Bugs, wie z.B. Sicherheitslücken, se-
mantische Bugs oder Leistungsprobleme. Die Leitfrage dieser Dissertation
lautet: Was kann bei Software schiefgehen? Softwareentwicklung ist ein
komplexer Prozess mit vielen verschiedenen Abläufen. Neben dem von Ent-
wicklern geschriebenen Quellcode sind viele andere Hilfsmittel involviert,
wie Codeanalysetools und Compiler, die zur Identifizierung von Defekten
im Quellcode respektive zur Übersetzung von Quellcode in Maschinen-
code verwendet werden. Alle diese Hilfsmittel können Bugs enthalten. In
dieser Dissertation untersuchen wir die Zuverlässigkeitsprobleme auf drei
verschiedenen Ebenen: Code, Codeanalyse und Codekompilierung. Auf
konzeptioneller Ebene entwerfen wir neue Methoden, um Fehler auf all
diesen Ebenen zu identifizieren und zu erkennen. Um die Zuverlässigkeit
des Codes zu verbessern, konzentrieren wir uns auf Undefined Behavior.
Undefined Behavior ist eine der Hauptquellen für Zuverlässigkeitsfehler
wie Buffer Overflows und use-after-free Bug in modernen C/C++ Soft-
ware Systemen. Wir entwickeln eine allgemeine Erkennungsmethode, um
Undefined Behavior effektiv zu identifizieren. Um die Erkennungseffizi-
enz zu verbessern, präsentieren wir zusätzlich zwei neue Strategien zur
Beschleunigung der bestehenden Erkennungsmethode. Für die Zuverläs-
sigkeit der Codeanalyse zielen wir darauf ab, die Robustheit vorhandener
Bugerkennungstools für Undefined Behavior zu validieren. Wir entwerfen
und entwickeln den ersten Programmgenerator, der automatisch eine grosse
Anzahl von Programmen mit verschiedenen Arten von Undefined Behavior
produzieren kann. Anschließend verwenden wir diesen Generator, um Sani-
tizer, eines der gängigsten Toolsets zur Erkennung von Undefined Behavior,
zu validieren. Für die Zuverlässigkeit der Codekompilierung konzentrieren
wir uns darauf, die moderne Compilerinfrastruktur zu verbessern. Wir
präsentieren eine neuartige daten-basierte Programmgenerierungstechnik,
die vielfältige, komplexe und wohlgeformte Programme erzeugen kann, mit
denen wir moderne Compiler testen. Auf konzeptioneller Ebene hebt diese

v

Dissertation die Verbreitung von Zuverlässigkeitsproblemen im Software-
entwicklungsprozess hervor, insbesondere von Code bis zur Kompilierung.
Auf technischer Ebene präsentiert diese Dissertation fünf neue, öffentlich
verfügbare Tools zur Erkennung von Softwaredefekten in Quellcode, Code-
analysewerkzeugen und Compilern.

vi

A C K N O W L E D G E M E N T S

Five years ago, I landed in Zurich, thousands of miles away from my home-
town, filled with excitement and dreams. Now, I stand at the completion
of my doctorate journey at ETH Zurich. It has been both bitter and sweet,
exhausting and exciting, tough and rewarding. Looking back, I feel a deep
sense of satisfaction and thankfulness. This thesis is not just my work; it is
a collection of countless pieces of advice, support, and encouragement that
I got directly and indirectly from many people along the way. I would like
to use this page to thank them all.

First and foremost, my deepest appreciation goes to my advisor, Zhen-
dong Su, whose advice, encouragement, and unwavering support have been
the cornerstone of this journey. His insight, vision, attitude, and approach to
research have shaped not just this work but my growth as an independent
researcher and thinker. Working with him has been an honor, a privilege,
and a joy.

I would also like to extend my sincere thanks to Andreas Zeller and
Mathias Payer for dedicating your time to be part of my defense committee.

Being a part of the AST Lab has been an amazing ride. I want to express
my gratitude to my colleagues, past and present, who have fueled and in-
spired my research with hours-long discussions and brainstorming sessions:
Manuel Rigger, Zu-Ming Jiang, Chengyu Zhang, Theodoros Theodoridis,
Dominik Winterer, Yann Girsberger, Michel Weber, Hao Sun, Heqing Huang,
and Thodoris Sotiropoulos. Also, a warm thank you to all my friends and
colleagues in the lab with whom I have shared both time and memories.

A special word of thanks goes to the administrative team in our lab:
Ariane Nake, Tracy Ewen, and Christian Rossi. Ari, your assistance during
my early days in Zurich was invaluable. Tracy, thank you for arranging
various teaching stuff and supporting my visa applications. Chris, thank
you for handling all my reimbursement requests and keeping us stocked
with coffee and tea.

Finally, I want to thank my family for their constant support. Most
importantly, I want to express my heartfelt thank you to my partner, Yujia
Liu, for her enduring support and endless love over the past eleven years.
Without you, I would not have reached where I am now. Thank you for
being by my side for every up and down.

vii

P U B L I C AT I O N S

This thesis is based on the following publications:

• Shaohua Li, Zhendong Su.
Finding Unstable Code via Compiler-Driven Differential Testing.
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2023.

• Shaohua Li, Zhendong Su.
Accelerating Fuzzing through Prefix-guided Execution.
ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), 2023.

• Shaohua Li, Zhendong Su.
UBFuzz: Finding Bugs in Sanitizer Implementations.
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2024.

• Shaohua Li, Theodoros Theodoridis, Zhendong Su.
Boosting Compiler Testing by Injecting Real-world Code.
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2024.

• Ziqiao Kong∗, Shaohua Li∗, Heqing Huang, Zhendong Su.
SAND: Decoupling Sanitization from Fuzzing for Low Overhead.
arXiv preprint arXiv:2402.16497, 2024. (∗Equal contributions.)

The following publication was part of my doctorate research, but is not
covered in this thesis:

• Jue Wang, Yanyan Jiang, Ting Su, Shaohua Li, Chang Xu, Jian Lu,
Zhendong Su.
Detecting Non-crashing Functional Bugs in Android Apps via Deep-State
Differential Analysis.
ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE),
2022.

ix

C O N T E N T S

1 Introduction 1

1.1 Background . 3

1.2 Reliability of Code . 4

1.2.1 Contribution: CompDiff 5

1.2.2 Contribution: PGE . 5

1.2.3 Contribution: Sand . 8

1.3 Reliability of Code Analysis . 10

1.3.1 Contribution: UBfuzz 12

1.4 Reliability of Code Compilation 13

1.4.1 Contribution: Creal . 13

I Reliability of Code
2 Finding Unstable Code via Compiler-Driven Differential Testing 19

2.1 Illustrative Examples . 22

2.2 Approach . 25

2.2.1 Compiler-Driven Differential Testing 26

2.2.2 CompDiff-AFL++ . 29

2.3 Evaluation . 30

2.3.1 Effectiveness of CompDiff in Benchmark Programs . . 31

2.3.2 Impact of Reducing #Compiler Implementations . . . 36

2.3.3 CompDiff-AFL++ . 37

2.4 Discussion . 45

2.5 Related Work . 47

3 Accelerating Fuzzing through Prefix-Guided Execution 49

3.1 Observations on CGF . 50

3.2 Approach . 57

3.2.1 Fuzzing with PGE . 57

3.2.2 Prefix Execution . 59

3.2.3 Prefix Analysis . 61

3.2.4 Prefix Length Search . 61

3.3 Evaluation . 64

3.3.1 RQ1: Accuracy of Prefix Length Estimation at Differ-
ent Sampling Ratios. 65

3.3.2 RQ2: Overhead of Prefix Length Search 67

xi

xii contents

3.3.3 RQ3: Distributions of Prefix Length on Different Re-
call Settings . 68

3.3.4 RQ4: Early Terminated Tests as A Percentage of All
Tests . 69

3.3.5 RQ5: Ratio of Executing Interesting Tests to All Full
Executions . 70

3.3.6 RQ6: Bug-Finding Evaluation 72

3.3.7 RQ7: Coverage Evaluation 75

3.3.8 Finding Bugs in Latest Applications 77

3.3.9 Discussion . 78

3.4 Threats to Validity . 80

3.5 Related Work . 80

4 Decoupling Sanitization from Fuzzing for Low Overhead 83

4.1 Observation and Illustration . 85

4.1.1 High Overhead of Sanitizers 85

4.1.2 Rareness of Bug-triggering Inputs 88

4.1.3 Illustrative Examples . 88

4.2 Approach . 90

4.2.1 Preliminary: Execution Path and its Proxy 90

4.2.2 Sanitization-decoupled Fuzzing 93

4.2.3 Implementation . 97

4.3 Evaluation . 98

4.3.1 Experimental Setup . 98

4.3.2 Effectiveness of Execution Pattern 100

4.3.3 Bug-Finding Capability 101

4.3.4 Fuzzing Throughput . 107

4.3.5 Code Coverage . 108

4.3.6 Hash in Sand . 110

4.4 Discussion . 111

4.5 Related work . 112

II Reliability of Code Analysis
5 Finding Bugs in Sanitizer Implementations 117

5.1 Illustrative Examples . 120

5.1.1 UB Program Generation 120

5.1.2 Crash-Site Mapping as the Test Oracle 122

5.2 Approach . 124

5.2.1 UB Conditions and Shadow Statement 124

5.2.2 UB Program Generator 125

5.2.3 Crash-site Mapping as the Test Oracle 130

contents xiii

5.3 Empirical Evaluation . 131

5.3.1 Implementation and Evaluation Setup 132

5.3.2 RQ1: Bug Finding . 133

5.3.3 RQ2: Effectiveness of UB Program Generator 136

5.3.4 RQ3: Effectiveness of Crash-Site Mapping 139

5.3.5 RQ4: Code Coverage . 141

5.3.6 Case Study . 141

5.3.7 Discussion on Approach Generality 143

5.4 Related Work . 144

III Reliability of Code Compilation
6 Boosting Compiler Testing by Injecting Real-world Code 147

6.1 Illustrative Examples . 149

6.2 Approach . 152

6.2.1 Function Database . 153

6.2.2 Algorithmic Sketch . 153

6.2.3 Expression Matching . 156

6.2.4 Program Profiling . 156

6.2.5 Function Call Synthesis 157

6.2.6 Implementation . 161

6.3 Constructing Function Database 162

6.3.1 Extracting and Transforming Functions 162

6.3.2 Constructing Function Database with I/O 164

6.4 Evaluation . 165

6.4.1 Experimental Setup . 166

6.4.2 Quantitative Results: Bug-Finding 167

6.4.3 Bug Characteristics . 169

6.4.4 Code Coverage and Generation Speed 172

6.4.5 Significance of Function Database 173

6.4.6 Comparison of Creal v.s. Hermes 175

6.4.7 Case Study . 175

6.4.8 Discussion . 177

6.5 Related Work . 178

7 Conclusion and Future Directions 181

7.1 CompDiff Beyond C/C++ . 182

7.2 Faulty Execution Detection based on PGE and Sand 183

7.3 Validating Bug Detectors via UBfuzz 183

7.4 Universal Program Generation based on Creal 184

1
I N T R O D U C T I O N

Software has taken every critical aspect of our modern society, such as com-
munication, transportation, entertainment, education, finance, and many
more. Due to the indispensability of software, we are increasingly valuing
its reliability. Software reliability problems have led to considerable prob-
lems in our modern society. For instance, a public report [24] from The
Consortium for IT Software Quality (CISQ) group in 2022 comments that
“we estimate that the cost of poor software quality in the US has grown
to at least $2.41 trillion.” Software reliability problems often result from
various software defects, such as functional bugs, security vulnerabilities,
and runtime faults, to name a few. These defects can lead to errors in many
aspects of software systems, including correctness, security, performance,
etc. To tackle this ever-growing problem, countless efforts are made in both
academia and industry to effectively and efficiently detect software de-
fects. Unfortunately, it is hard, often impossible, to guarantee the complete
correctness of modern software systems due to their high complexity.

motivation The motivation question of this thesis is: where can software
go wrong? Suppose we are now developing a new piece of software. We start
by writing code for it. Then, in order to improve or ensure the correctness
of our code, we may utilize powerful code analysis tools, such as bug
detectors, to analyze our code to identify potential defects. After we fix all
the reported issues, we consider the code to be ready for deployment. We
then use a compiler to translate our code written in high-level programming
languages into low-level machine code so that it can be deployed and run on
different platforms or hardware. Suppose there is a defect in our software,
if we look at the whole software development pipeline, we may wonder
where can our software go wrong? Unfortunately, this thesis will show that all
of the above processes, from code to compilation, can be wrong.

contributions In this thesis, we study the software reliability problem
from three different levels: code, code analysis, and code compilation. At a high
level, we (1) introduce novel detection methodologies for effectively and
efficiently identifying software defects and (2) reveal previously unknown

1

2 introduction

SOURCE CODE

SANITIZER

COMPDIFF

BINARY

COMPILER

BINARY

Instrumentation
& Compilation

FUZZER

Input Feedback

Fuzzing

Chapter 2

Chapter 5

Chapter 3 & 4

Chapter 6

Figure 1.1: Overview of chapters.

or overlooked reliability problems. Specifically, the contributions of this
thesis can be summarized as follows:

• Reliability of code (Chapter 2, Chapter 3, and Chapter 4): At the code
level, we introduce CompDiff, a new and novel compiler-driven differ-
ential testing oracle for effectively detecting a wide range of undefined
behaviors in software. To accelerate the efficiency of CompDiff as
well as other oracles, we further propose PGE and Sand, two acceler-
ation frameworks to reduce the execution or sanitization redundancy
during fuzzing.

• Reliability of code analysis (Chapter 5): At the code analysis level, we
reveal the false negative problems of sanitizers, a set of the most
popular dynamic bug detectors that are broadly applied to detect
security vulnerabilities. We present the first validation framework,
UBfuzz, to validate sanitizers’ reliability on various automatically
generated programs that contain security vulnerabilities.

• Reliability of code compilation (Chapter 6): At the code compilation level,
we propose a novel data-driven program generation approach, Creal,
for extensively testing compilers. Creal breaks the constraints of
existing random program generators and boosts their expressiveness
by injecting real-world code snippets into random seed programs.

Overall, this thesis presents a set of new methodologies for detecting
various software defects to improve the reliability of our modern software

1.1 background 3

systems. Figure 1.1 shows the connections between chapters or contribu-
tions. In the following, we first introduce the background knowledge and
then provide a brief overview of each contribution.

1.1 background

undefined behaviors Some programming languages, such as C/C++,
designate a set of code constructs as having undefined behavior (UB) to
simplify the compiler implementation. For example, the C17 standard [14]
lists 211 circumstances for which it invokes undefined behavior. According
to the standard, permissible undefined behavior results in “ignoring the
situation completely with unpredictable results”. Compilers can assume
that undefined behavior will never occur in the program, which allows
for many optimization opportunities. Undefined behaviors in the source
code have notoriously led to catastrophic software reliability problems. For
example, six of Mitre’s CWE top 25 most dangerous software weaknesses
in 2023 were undefined behaviors [114]. Well-known undefined behaviors
include buffer-overflow, use-after-free, integer-overflow, etc. Practitioners
in both academia and industry have put significant efforts into designing
various static [127, 104] and dynamic tools [130, 107, 13] for the detection
of undefined behaviors. Yet, it remains an unsolved problem.

sanitizers Sanitizers are crucial in enabling the large-scale detection of
security vulnerabilities caused by UB [131, 132]. Popular sanitizers include
Address Sanitizer (ASan) [130] for memory access errors, Undefined Behav-
ior Sanitizer (UBSan) [88] for various undefined behaviors, and Memory
Sanitizer (MSan) [136] for uninitialized memory uses. Technically, sanitizers
are integrated into compilers. When a sanitizer is enabled, various checks
are inserted into a program during compilation. If a check is violated at
run-time, an error is reported. Owing to their superior capability and us-
ability, sanitizers have assisted developers in discovering numerous critical
vulnerabilities.

fuzzing Although tools like sanitizers are useful in reporting undefined
behaviors, they require specific inputs that can reach the buggy code and
trigger the undefined behaviors. Fuzzing [1, 96] is an effective way of
generating inputs to trigger undefined behaviors. For instance, by fuzzing
with sanitizers, the Google OSS-Fuzz project has reported over 20K UBs
in hundreds of open-source projects [30, 49]. The bottom left of Figure 1.1

4 introduction

illustrates the high-level fuzzing workflow. A fuzzer first generates/mutates
an input and then executes the target binary on it. If the target binary
crashes on the input or sanitizers report the error, we successfully identify
a bug. State-of-the-art fuzzing efforts center on coverage-guided fuzzing
(CGF), e.g., American Fuzzy Lop (AFL) [161]. CGF works by generating a
large number of tests from mutating seed inputs. All tests are executed on
a target binary, and those coverage-increasing tests will be added to the
seed pool for further exploration.

compilers Compilers are among the most fundamental and critical
components in the software ecosystem. They should not crash and are ex-
pected to translate valid input programs faithfully. However, compiler bugs
can cause crashes or, even worse, miscompilations. Decades of research and
engineering efforts have been put into improving compilers’ reliability [17].
Random compiler testing has proven to be effective in discovering compiler
bugs. One noticeable contribution is Csmith [159], a pioneering C program
generator. By generating random programs, Csmith has helped discover
many bugs in C compilers. A more recent generator YARPGen [85] and the
follow-up YARPGen v.2 [86], featuring a set of generation policies, target
at scalar and loop optimizations and have successfully identified many
bugs missed by previous generators. In addition to generator-based tools,
mutation-based compiler testing techniques are also effective in finding
compiler bugs. The most representative approach is equivalence modulo in-
puts (EMI) [66]. EMI techniques [67, 139] mutate a program by removing or
inserting random code while maintaining the input/output behaviors of the
program. This line of research has achieved a surprising result: discovering
a considerable number of additional bugs in mature and well-established
compilers, such as GCC and LLVM.

1.2 reliability of code

Software is usually developed in one or multiple programming languages.
At the source code level, there can be different types of software defects,
such as semantic bugs and security bugs. In this part, we focus on undefined
behavior (UB) and its detection.

1.2 reliability of code 5

1.2.1 Contribution: CompDiff

Exiting UB detectors like sanitizers, although powerful, can only cover a
small range of common UBs. For example, ASan, UBSan, and MSan together
only support around 20 kinds of UBs. However, as discussed above, the C17

standard [14] lists 211 kinds of UBs. How to detect a more diverse range of
UBs is still an open problem.

key idea Our idea is based on the fact that undefined behaviors can
lead to different binary semantics across compilations. This conforms to
the standard that compilers can, in principle, do arbitrary optimizations on
such erroneous code. In this thesis, we use this fact and propose a simple,
straightforward, yet effective approach for finding undefined behaviors.
Our approach involves three steps. First, we compile the target program
with different compiler implementations to get a set of binaries. Second,
run these binaries on the same set of test inputs and collect their outputs.
Finally, compare outputs produced by different binaries on the same input
and report discrepancies. For a program with deterministic output, i.e.,
repeated executions on the same input always yield the same output,
output discrepancy over the same input implies the presence of unstable
code. We call our approach compiler-driven differential testing (CompDiff).

implementation We implement CompDiff for C/C++ programs by in-
tegrating two compilers, i.e., gcc and clang. Each compiler is configured with
five different optimization levels, i.e., -O0, -O1, -Os, -O2, and -Os. Together,
there are ten compiler configurations in CompDiff. To improve CompDiff’s
practicality and detect undefined behaviors in real-world software, we inte-
grate CompDiff into AFL++ [34], the most widely-used general-purpose
fuzzer. Our evaluation shows that, on the Juliet benchmark tests, Com-
pDiff uniquely identified 1,409 bugs that sanitizers failed to. On 23 popular
open-source C/C++ projects, CompDiff-AFL++ discovered 78 new bugs,
66 of which were confirmed, and 52 were fixed by the developers. Of these
new bugs, 36 were not detected by sanitizers. The artifact for CompDiff,
including all source code and data, is permanently available [72].

1.2.2 Contribution: PGE

As introduced before, fuzzers can generate and execute a large number
of test inputs to find bugs in the target software. However, executing all

6 introduction

mutated test inputs incurs significant performance penalties— Many pre-
vious efforts have shown that only a tiny fraction of the generated tests
increase code coverage, e.g., fewer than 1 in 10,000 [105]. Significant research
efforts have targeted this inefficiency, such as (1) seed scheduling [95, 97]:
effectively select seed-to-mutate from the seed pool to prioritize seeds
that are likely coverage-increasing or bug-triggering, (2) tracing-cost reduc-
tion [105, 106, 167]: reduce the cost of coverage tracing with sophisticated
designs, and (3) new mutations [68, 133]: perform targeted instead of random
mutations to increase the likelihood of covering new regions. However, they
still need to execute a large amount of non-coverage-increasing tests fully.
Thus, avoiding executing non-coverage-increasing tests can significantly
improve fuzzing efficiency. The key challenge is how to make this deter-
mination at a low cost effectively. Indeed, if we can decide whether or not
a test increases coverage at a lower cost than a full test execution, we can
reduce execution overhead and thus improve fuzzing efficiency.

key idea Determining if an input increases code coverage without actu-
ally executing it is beneficial but a paradoxical challenge. We introduce the
notion of prefix-guided execution (PGE) to tackle this challenge. PGE lever-
ages two key observations: (1) Only a tiny fraction of the mutated inputs
increase coverage, thus requiring full execution, and (2) whether an input
increases coverage may be accurately inferred from its partial execution.
PGE monitors the execution of an input and applies early termination when
the execution prefix indicates that the input is unlikely to increase coverage.

Generally, a program execution is a temporal transition sequence of
program states. Code coverage metrics abstract over both program states
and transitions. We refer to full execution as the complete temporal sequence,
while execution prefix as the contiguous subsequence from the program
entry. PGE is based on the hypothesis that whether a full execution leads
to increased coverage can be effectively inferred from its prefix. Suppose
that a short execution prefix suffices for accurately inferring whether the
corresponding full execution increases code coverage, we can speed up
fuzzing by focusing on only fully executing those coverage-increasing tests.

Example. Figure 1.2 illustrates the intuition behind PGE with a constructed
code snippet. Figure 1.2(a) shows the constructed function foo. To maximize
code coverage, e.g., line coverage, a fuzzer needs to generate tests to reach
lines 6, 10, 13, 15, and 19, all of which rely on earlier program executions.
For instance, reaching line 19 requires the satisfaction of three guards and
the referred variables being suitably used/updated by previous statements.

1.2 reliability of code 7

 1 int foo(int a, int b)
 2 {
 3 int ret = 0;
 4 while (a < 1)
 5 {
 6 a++, ret++;
 7 }
 8 if (b == 1)
 9 {
10 a--;
11 }

12 if (a + b >= 0) {
13 ret++;
14 if (ret == 2)
15 ret++;
16 }
17 if (a==0 && b==1
18 && ret==3) {
19 ret = 0;
20 }
21 return ret;
22 }

(a) A constructed code snippet.

21

19

21

17

15

14

13

12 10

8 6

4

6 8

4

17

15

14

13

12

21

4

17

14

13

12

8

21

10

19

17

14

13

12

12

21

17

14

13

10

21

17

14

13

12

(b) Execution traces of inputs mutated from foo(1, 0). (c) Prefix tree of traces.

foo(0, 0) 4, 6, 4, 8,12,13,14,15,17,21⇒

foo(0, 1) 4, 6, 4, 8,10,12,13,14,15,17,19,21⇒

foo(0, -1) 4, 6, 4, 8,12,13,14,15,17,21⇒

foo(1, 0) 4, 8,12,13,14,17,21⇒

foo(-1, 0) 4, 6, 4, 6, 4, 8,12,13,14,17,21⇒

foo(1, 1) 4, 8,10,12,13,14,17,21⇒

foo(-1, 1) 4, 6, 4, 6, 4, 8,10,12,13,14,17,19,21⇒

foo(1, -1) 4, 8,12,13,14,17,21⇒

foo(-1, -1) 4, 6, 4, 6, 4, 8,12,13,14,17,21⇒

Prefix of length 4

Figure 1.2: Motivation example for the intuition of PGE.

8 introduction

Figure 1.2(b) lists execution traces of tests mutated from the seed (1,0)

in a top-down manner. Rectangular frames highlight coverage-increasing
tests. Out of the eight mutated tests, three increased line coverage. We
also build the corresponding prefix tree for these traces in Figure 1.2(c).
From this prefix tree, we can see that, to differentiate all full execution traces,
prefixes of length 7 are needed (indicated by the second dotted line). To
separate coarser-grained coverage-increasing traces, prefixes of length at
most 4 are then sufficient (indicated by the first dotted line). Figure 1.2(b)
highlights in grey the first occurrences of unique prefixes of length 4.
We can find that these unique prefixes cover all interesting tests, namely
the seed and coverage-increasing tests. Suppose that a fuzzer monitors
execution prefixes (with a fixed length of 4) and terminates an execution
immediately whenever its prefix has occurred before. Fuzzing foo with
tests in Figure 1.2(b) would result in 4 full executions on prefix-unique
tests and 5 partial executions on the rest. The execution overhead is thus
reduced on 5 out of the 9 tests. In practice, a large fraction of tests generated
by fuzzers are neither coverage-increasing nor prefix-interesting. Guiding
executions with such prefixes in fuzzing can potentially lead to significant
cost reduction.

implementation To demonstrate the potential of PGE, we implement
a prototype on top of AFL++, which we call AFL++-PGE. We evaluate
AFL++-PGE on Magma [52], a ground-truth benchmark set that consists
of 21 programs from nine popular real-world projects. Our results show
that, after 48 hours of fuzzing, AFL++-PGE finds more bugs, discovers bugs
faster, and achieves higher coverage. Prefix-guided execution is general and
can benefit the AFL-based family of fuzzers. The artifact for PGE, including
all source code and data, is permanently available [74].

1.2.3 Contribution: Sand

Sanitizers provide robust test oracles for fuzzing to detect various secu-
rity vulnerabilities related to undefined behavior effectively. Fuzzing on
sanitizer-enabled programs has been the best practice to find software bugs.
Since sanitizers need to instrument a target program to insert runtime
checks heavily, sanitizer-enabled programs have much higher overhead
compared to normally built programs.

1.2 reliability of code 9

1
_TIFFfree(*read_ptr);

2 ...
3 read_buff = *read_ptr;
4 if (!read_buff) {
5 read_buff = limitMalloc(buffsize);
6 }
7 else {
8 if (prev_readsize < buffsize) {
9 new_buff = _TIFFrealloc(read_buff, buffsize);

10 if (!new_buff) {
11 free(read_buff);
12 read_buff = limitMalloc(buffsize);
13 }
14 else
15 read_buff = new_buff;
16 }
17 }
18 read_buff[buffsize] = 0;

Figure 1.3: A simplified Use-after-Free bug from CVE-2023-26965. Line 18

triggers it as “read_buff” is never reallocated after being freed in line 1.

key idea Since sanitizers provide the security oracle for execution,
all current fuzzers execute sanitizer-enabled programs on every fuzzer-
generated input to verify validity. We now raise this question: Can we decide
whether an input triggers a bug without truly executing a sanitizer-enabled pro-
gram? Theoretically, it seems paradoxical and infeasible as only by executing
an input can we know if the input is bug-triggering. However, our empirical
evaluation will substantiate its feasibility. The key insight is that bugs are
strongly connected to execution paths. For instance, Figure 1.3 shows a sim-
plified code snippet from CVE-2023-26965, which contains a Use-after-Free
bug in line 18. Normal and most execution paths are {1 → 3 → 5 → 18},
{1 → 3 → 9 → 11 → 12 → 18}, or {1 → 3 → 9 → 15 → 18}, where the
freed buffer read_buff in line 1 is correctly re-allocated. However, when the
execution path is {1 → 3 → 18}, the freed buffer read_buff is incorrectly
used in line 18. This buggy execution has a unique path not seen in other
normal executions.

Since triggering such control-flow sensitive bugs requires exercising
unique execution paths, our intuition is that we can encapsulate inputs with
unique execution paths by executing them on normally built programs, then

10 introduction

only feed these inputs into sanitizer-enabled programs to reduce overall
sanitization overhead. Conceptually, our intuition can effectively tackle
control-flow sensitive bugs, e.g., Use-after-Free bugs, since triggering such
kinds of bugs needs to exercise a unique execution path, e.g., from the
free point to the use point. For other bugs, such as Buffer-Overflow and
Use-of-Uninitialized-Memory, they are more “data sensitive”. For example,
triggering a Buffer-Overflow bug often requires significantly changing the
buffer offset value. Nevertheless, such data-flow changes can often result
from or be reflected by control-flow information [54]. As our illustration in
Chapter 4 will show, Buffer-Overflow bugs are often control-flow related,
such as unusual loop iterations, and thus can be identified via unique
execution paths. In fact, previous studies [63, 145] have also implicitly
shown that bugs correlate highly to executions.

Based on the above analysis, we present Sand, a new fuzzing framework
that decouples sanitization from the fuzzing loop. Sand performs fuzzing
on a normally built program and only invokes sanitizer-enabled programs
when input is shown to be interesting. Since most of the generated inputs
are not interesting, i.e., not bug-triggering, Sand allows most of the fuzzing
time to be spent on the normally built program. To identify interesting
inputs, we introduce execution pattern for a practical execution analysis on
the normally built program. Note that the PGE introduced before works at
the early execution stage while Sand works after the execution has been
completed. Thus, these two approaches are orthogonal and can, in principle,
be used together.

implementation We realize Sand on top of AFL++ and evaluate it on
12 real-world programs. Our extensive evaluation highlights its effectiveness:
on a period of 24 hours, compared to fuzzing on ASan/UBSan-enabled
and MSan-enabled programs, Sand respectively achieves 2.6x and 15x
throughput and detects 51% and 242% more bugs.

1.3 reliability of code analysis

To improve the reliability of our code, we typically adopt code analysis tools,
such as bug detectors, to analyze and report issues in our code. For example,
in the above-mentioned fuzzing process, whether or not the execution of
an input results in a crash relies on the underlying bug detectors. That is,
fuzzers only generate inputs, while the underlying detectors are the key to
telling the fuzzer if an input triggers a bug or not. One of the most widely

1.3 reliability of code analysis 11

1 struct a { int x };
2 struct a b[2];
3 struct a *c=b, *d=b;
4 int k = 0;
5 int main() {
6 *c = *b;
7 k = 2;
8 *c = *(d+k);
9 return c->x;

10 }

(command line)
$ gcc -O0 -fsanitize=address a.c
$./a.out
==1==ERROR: AddressSanitizer:
stack-buffer-overflow in a.c:8
$

(command line)
$ gcc -O2 -fsanitize=address a.c
$./a.out
$

Figure 1.4: Line 8 in a.c contains a stack-buffer-overflow (left). GCC ASan
at -O0 successfully detects it (top right). GCC’s Asan at -O2, however,
overlooks it (bottom right). [43]

used detectors for undefined behaviors is sanitizers. While substantial
research and engineering efforts have been made toward devising efficient
fuzzers [105, 106] and reducing sanitizer costs [62, 163, 165], the robustness
and reliability of sanitizers — essential for detection effectiveness — have
received little attention from both academia and industry. In this part, we
focus on the reliability of sanitizers.

Both GCC and LLVM, the two most popular C/C++ compilers, support
sanitizers. Over the past five years, there were only 29 bug reports related
to sanitizer correctness in the bug trackers of GCC and LLVM. Most of
these reports (66%) were false positive issues, where sanitizers did not
miss UBs but instead incorrectly reported correct executions as containing
UB. False positive issues are indeed easy to be noticed in practice. For
example, typical compiler testing work [66, 85, 159] involves generating
valid programs as input, which can be trivially adapted to identify false
positive issues. Conversely, false negative bugs in sanitizers typically result
in a UB being missed and are thus difficult to observe.

Figure 1.4 illustrates a code snippet that triggers a false negative bug in
GCC ASan. Since d points to the starting location of b[2], the dereference
*(d+k) at line 8 will cause a stack-buffer-overflow. When we compile and
run this code with GCC ASan at -O0, ASan crashes the execution and
generates a report as expected (Figure 1.4 top right). However, at -O2,
it unexpectedly misses this UB (Figure 1.4 bottom right). This is a false
negative bug of GCC ASan. As a UB detection tool, false negative bugs

12 introduction

in sanitizers lead to missing UBs, thereby significantly impeding their
effectiveness.

1.3.1 Contribution: UBfuzz

In this thesis, we introduce the first effective testing framework for finding
false negative (FN) bugs in sanitizers. The sanitizer bug shown in Figure 1.4
was discovered by our new framework.

key idea At a high level, the general workflow of our new framework is
(1) generating a UB program, i.e., a program exhibiting undefined behavior,
and (2) compiling it with sanitizers and executing the compiled binary. If
no sanitizer report on a UB program is produced, a potential sanitizer bug
is detected. However, there are two main challenges in designing such a
testing framework.

Challenge 1. The UB programs used for testing sanitizers need to be (1)
diverse, i.e., exercising different types of UB; (2) complex, i.e., containing
non-trivial syntax and semantics; and (3) easy-to-reduce, i.e., can be easily
reduced into a small problem suitable for reporting to sanitizers’ developers.
Unfortunately, there is no existing program generator that can produce
such programs. To tackle this challenge, we introduce Shadow Statement
Insertion, a general and effective approach for introducing UB into a valid
seed program. The generated UB programs are subsequently utilized for
differential testing of multiple sanitizer implementations.

Challenge 2. As has been discussed in CompDiff, given an input UB
program, compilers may optimize away the UB in the program. Sanitizers
are implemented as a component of a compiler. The actual programs
that sanitizers take as input have been optimized by the compiler. Thus,
missed reports can also be due to aggressive compiler optimizations instead
of sanitizer FN bugs. To tackle this challenge, we introduce a novel test
oracle, namely crash-site mapping, to accurately discern whether a discrepant
sanitizer report stems from sanitizer FN bugs or compiler optimizations.

implementation We have incorporated our techniques into UBfuzz,
a practical tool for testing sanitizers. Over a five-month testing period,
UBfuzz successfully found 31 bugs in both GCC and LLVM sanitizers.
These bugs reveal the serious false negative problems in sanitizers, where
certain UBs in programs went unreported. This research paves the way for

1.4 reliability of code compilation 13

further investigation in this crucial area of study. The artifact for UBfuzz,
including all source code and data, is permanently available [75].

1.4 reliability of code compilation

Suppose you have written a piece of perfect code that is fully correct, does
that mean your software is fully correct? Or, in other words, is source code
correctness equivalent to software correctness? Compilers help us translate the
code written by us in a high-level programming language into low-level
machine code that can be run on different platforms. In this thesis, we show
that due to compiler bugs, the binary or low-level machine code can be
buggy even if the source code is correct.

1.4.1 Contribution: Creal

To find compiler bugs, the best present practice is to design a generator to
randomly produce a large number of valid programs. Existing generation-
and mutation-based generators introduce a fundamental limitation: They
are rule-based generators and, thus, are unable to produce programs with
features beyond the underlying rules. These approaches rely on predefined
syntactical and semantic rules in constructing programs. For example, to avoid
undefined behavior, Csmith resorts to heavy-handed safe wrappers, which
limits the expressiveness of the generated programs [31]; to guarantee
termination, Csmith only generates constant-bounded loops, meaning that
all loop conditions are constant; EMI-based mutators [67, 139] augment
generator-produced programs with random code and thus inherit the
limitations. Due to these constraints, experience shows that all random
program generators will eventually saturate and find very few bugs [2].
Extending the scope of current approaches by integrating more rules is
theoretically feasible but is challenging and labor-intensive in practice.

key idea We propose using code from real-world projects for compiler
testing. The core idea is first to extract code snippets from real-world
projects and then inject them into a seed program to enrich its code features.
Our key observation is that real-world code exercises a diverse range of
syntactical and semantic code features, which are often hard for random
program generators or mutators to support. Figure 1.5a shows a loop from

14 introduction

1 src = data + offsetp;
2 do {
3 b = *src++;
4 ret |= ((b & 0x7f) << shift);
5 (*offsetp)++;
6 shift += 7;
7 } while ((b & 0x80) != 0);

a. A loop from the FreeBSD
project.

1 for (p_1 = 0; p_1 <= 6; p_1 -= 8) {
2 int32_t l_6 = 0x2E2B9C6;
3 l_3 ^= (p_1 > (l_5[0] ^ l_6));
4 } // Csmith

1 for(i0=var1;i0 < arr2[0]%var3; i0+=1){
2 var4 ^= arr5[i6] << (var3+1);
3 } // YarpGen v.2

b. Loops taken from Csmith and
YARPGen v.2.

Figure 1.5: Loops from real-world project, Csmith, and YARPGen v.2.

FreeBSD 1, a UNIX-like OS written in C. This code contains an unbounded
while loop, where the loop index “b” is modifiable at both lines 3 and 5. This
code helped us find a latent miscompilation bug in LLVM. Figure 1.5b shows
two common loops from Csmith and YARPGen v.2, respectively. The first
loop is from Csmith. It is constant-bounded, which is true for all Csmith-
produced loops. The second loop is from YARPGen v.2 and has more
complex loop indexes such as i0 and arr2. However, unlike Figure 1.5a,
all these variables are not modifiable in the loop body. Generators need
to capture code semantics at generation time to generate well-formed
programs, which is hard for complex loops.

To use real-world code, we begin by extracting well-formed functions
from real-world projects. Next, we inject function calls into seed programs
to establish vigorous connections between real-world functions and the seed
program. Our code injection technique ensures that all produced programs
are well-formed. There are three main benefits of using real-world code
at the function level: (1) most compiler optimizations work at the func-
tion level [89, 41], ensuring real-world functions can already exercise rich
features, (2) it is relatively painless to guarantee the validity of extracted
functions in terms of undefined behavior, and (3) it requires moderate
changes to the seed program, making it uncomplicated to maintain the
validity of the resulting program. An alternative technique is to inject code
chunks directly into seed programs. However, this requires extensive mod-
ifications to both the extracted real-world code and the seed programs,
which can easily result in invalid programs. Nonetheless, we consider this
orthogonal approach to be an interesting future work. Our evaluation will
show that using real-world functions as building blocks can effectively

1 https://github.com/freebsd/freebsd-src/blob/main/contrib/elftoolchain/libdwarf/
libdwarf_rw.c

https://github.com/freebsd/freebsd-src/blob/main/contrib/elftoolchain/libdwarf/libdwarf_rw.c
https://github.com/freebsd/freebsd-src/blob/main/contrib/elftoolchain/libdwarf/libdwarf_rw.c

1.4 reliability of code compilation 15

explore various code features. Note that the expressiveness of our approach
depends on both the seed programs and the function database. Therefore,
(1) Creal does not replace existing program generators but rather comple-
ments them by boosting their expressiveness. Generators like Csmith [159],
YARPGen [86], or EMI-based tools [66] can all be used to provide the seed
programs; (2) since the function database has a limited size, our approach
will eventually saturate until new functions or extensions are developed.

implementation We implement our idea in a tool named Creal. Since
our approach is data-hungry, we need a diverse range of functions from
real-world projects to fuel Creal. We develop a function extractor, with
which we construct a function database containing more than 51,000 real-
world functions from 146 popular open-source projects, such as Git, Linux
Kernel, and OpenSSL, to name a few. With this database, we evaluate Creal

by stress-testing the latest versions of C compilers, namely GCC and LLVM.
In a nine-month testing period, our tool identified 132 compiler bugs. Of
those, 121 were confirmed, and 97 were fixed by the compiler developers. It
is worth noting that most of the bugs were miscompilations, which are the
most harmful and difficult-to-detect compiler bugs. The artifact for Creal,
including all source code and data, is permanently available [73].

Part I

R E L I A B I L I T Y O F C O D E

2
F I N D I N G U N S TA B L E C O D E V I A C O M P I L E R - D R I V E N
D I F F E R E N T I A L T E S T I N G

In this chapter, we focus on detecting undefined behaviors in C/C++ pro-
grams. As has been discussed in Chapter 1, compilers can assume that
undefined behavior will never occur in the input program, which allows
many optimization opportunities. A consequence of such an assumption is
for code that contains undefined behavior, different compiler implementa-
tions may generate semantically different binaries. Previous study [151, 152]
has shown that undefined behaviors may cause optimization-unstable code,
code that could be unexpectedly discarded by compiler optimizations. In
this chapter, we refer to code that has inconsistent semantics across compiler
implementations due to undefined behavior as unstable code. We introduce
compiler-driven differential testing (CompDiff), a simple yet effective ap-
proach for finding unstable code in C/C++ programs.

The work in this chapter was published in [77].

Example of unstable code. Listing 1 shows an example of unstable code,
where the if guard in line 9 tries to handle possible integer overflow.
But offset+len can never be less than offset unless undefined behavior,
i.e., signed integer overflow, occurs. According to the C17 standard [14],
compilers can do arbitrary optimizations with the assumption that un-
defined behavior never occurs. The consequence is that an optimizing
compiler (e.g., clang-O2) optimizes away the second if branch (lines 9-
11) while a less optimizing compiler (e.g., clang-O0) keeps it. That means
the compiled binaries have different semantics. For example, if we call
dump_data(INT_MAX-100, 101), the optimized binary will dump the buffer
starting from data+INT_MAX-100 and return 0, while the unoptimized bi-
nary will dump nothing and return -1. On one hand, this issue leads to a
security hole in the optimized binary, as a large range of illegal memory
data could be dumped. On the other hand, it breaks the functional cor-
rectness of the code as its binaries compiled by different compilers may
produce divergent outputs.

Key idea. From the above example, we can observe that unstable code
leads to different execution semantics across compilations once undefined

19

20 finding unstable code via compiler-driven differential testing

1 /* dump a chunk of buffer*/
2 int dump_data (int offset, int len) {
3 char *data = /* buffer head */;
4 int size = /* size of buffer*/;
5 if (offset + len > size ||
6 offset < 0 || len < 0) {
7 return -1;
8 }
9 if (offset + len < offset) {

10 return -1;
11 }
12 /* dump from data+offset
13 to data+offset+len */
14 dump(data+offset, len);
15 return 0;
16 }

Listing 1: The second if guard in line 9 got optimized away by clang because it would
only be evaluated to true when a signed integer overflow happened.

behavior has been triggered. This conforms to the standard that compilers
can, in principle, do arbitrary optimizations on such erroneous code. In
this thesis, we make use of this fact and propose a simple, straightforward,
yet effective approach for finding unstable code. Our approach involves
three steps. First, compile the target program with different compiler im-
plementations to get a set of binaries. We consider different compilers
and optimizations as different compiler implementations. For example,
gcc-O0, gcc-O2, and clang-O2 are three different compiler implementations.
Second, run these binaries on the same set of test inputs and collect their
outputs. Finally, compare outputs produced by different binaries on the
same input and report discrepancies. For a deterministic program, i.e.,
repeated executions of the program on the same input always yield the
same output, discrepant outputs on the same input imply the presence of
unstable code or undefined behavior. We call our approach compiler-driven
differential testing (CompDiff). For the example in Listing 1, CompDiff

can successfully detect the issue because of the divergent outputs on the
same input. For non-deterministic or multi-threaded programs, they may
have non-deterministic internal execution traces. But as long as they have
deterministic output, they can be analyzed with CompDiff. Note that,
CompDiff assumes compiler implementations are bug-free. Compiler bugs,

finding unstable code via compiler-driven differential testing 21

Table 2.1: Scopes of sanitizers and CompDiff.

Approach Scope

ASan Memory errors (e.g. buffer-overflow)
UBSan Miscellaneous UBs (e.g. division-by-zero)
MSan Use of uninitialized memories.

CompDiff A diverse range of UBs.

which are rare for mature compilers [101], may indeed cause divergent
outputs and thus be caught by CompDiff. As will be shown in our evalua-
tion, compiler bugs are rarely encountered in real-world software. Once it
happens, developers are willing to diagnose and report it.

CompDiff’s design also covers bugs that are not due to undefined be-
havior. As long as a bug results in output discrepancy across compiler
implementations, it will be detected by CompDiff. Our evaluation will
show that CompDiff indeed finds real bugs that are not undefined behavior.
We consider this as an additional benefit of CompDiff.

Existing work. Industry and academics have proposed a plethora of static
and dynamic tools for finding frequently occurring undefined behaviors
such as buffer overflow, integer overflow, division by zero, etc. Static
tools [152, 104, 25] analyze source code without executing it to detect
certain types of errors. They typically build upon heuristics and suffer from
both false positives and false negatives. Dynamic tools [13, 107], on the
contrary, perform analysis of concrete executions and normally incur no
false positives. Sanitizers, such as AddressSanitizer (ASan) [130], Unde-
finedBehaviorSanitizer (UBSan) [88], and MemorySanitizer (MSan) [136],
are widely used in practice. They insert checks into necessary program
locations to detect undefined behaviors at run-time. For the example in
Listing 1, UBSan would insert a check around each offset+len to verify
whether or not its value exceeds INT_MAX. Thanks to their strong bug detec-
tion ability, sanitizers have become de facto state-of-the-art for discovering
UBs, especially in fuzzing.

Sanitizers cover many frequently occurring UBs. Each sanitizer is de-
signed for certain classes of UBs. Table 2.1 lists scopes of three widely
used sanitizers and our CompDiff. On the one hand, CompDiff covers a
broader range of UB even than the combination of these sanitizers. The

22 finding unstable code via compiler-driven differential testing

reason is that our design stems from unstable code, a common consequence
of UB. Sanitizers contrarily design customized checks for each kind of UB.
Since not all UBs have applicable checks, some UBs cannot be detected by
sanitizers. We will show in Section 2.1 three examples where sanitizers fail
to detect them. On the other hand, sanitizers have high bug coverage for
UBs, which they specialize in. CompDiff, however, may miss many of them.
We argue that CompDiff is not to replace sanitizers but to complement
them by covering extra UBs.

To improve CompDiff’s practicality and detect unstable code in real-
world software, we integrate CompDiff into AFL++ [34], the most widely-
used general-purpose fuzzer. Our evaluation shows that, on the Juliet
benchmark tests, CompDiff uniquely identified 1,409 bugs that sanitizers
failed to. On 23 popular open-source C/C++ projects, CompDiff-AFL++
discovered 78 new bugs, 66 of which were confirmed, and 52 were fixed by
the developers. Of these new bugs, 36 were not detected by sanitizers. Our
evaluation also confirms the strong detection ability of sanitizers on certain
classes of bugs.

Main contributions. In summary, the main contributions are summarized
as follows:

• We propose CompDiff, a simple, straightforward, yet effective approach
for finding unstable code.

• We integrate CompDiff into the popular fuzzer AFL++.

• We evaluate CompDiff on both benchmark and real-world programs.
The results show that CompDiff significantly complements sanitizers.

The artifact for CompDiff, including all source code and data, is perma-
nently available [72].

2.1 illustrative examples

This section illustrates three real-world examples, which we use to demon-
strate how CompDiff enables the discovery of unstable code and why
sanitizers fail to detect them.

Example 1: Invalid pointer comparison. Listing 2 shows a piece of unstable
code found by CompDiff in Binutils. The pointer comparison in line 5

2.1 illustrative examples 23

1 int display_debug_frames (...) {
2 char *saved_start=/*point to object A*/;
3 char *look_for =/*point to object B*/;
4 ...
5 if (look_for <= saved_start) {...}
6 else {...}
7 }

Listing 2: A pointer comparison UB found by CompDiff in binutils/dwarf.c.
The if check in line 5 is evaluated differently (either true or false)
across compiler implementations (https://sourceware.org/bugzilla/
show_bug.cgi?id=27836).

is UB as look_for and saved_start are pointing to different objects. The
standard [14] (§6.5.8) describes that such undefined behavior happens when

“Pointers that do not point to the same aggregate or union (nor just beyond the same
array object) are compared using relational operators.” None of the sanitizers
can detect this kind of UB because it remains unknown how to design a
proper check for it. CompDiff can easily detect this issue because the if

guard will be evaluated differently across compiler implementations, and
thus divergent outputs will be observed.

Example 2: Evaluation order of subexpressions with conflict side ef-
fects. Listing 3 shows an example of unstable code in the well-known
network packet analyzer Tcpdump [140]. The function ND_PRINT (line 9)
dumps formatted network information. In this code snippet, developers
try to dump fields p1 (line 10) and p2 (line 11) by calling the function
GET_LINKADDR_STRING twice. These two calls are also arguments to the func-
tion ND_PRINT. According to the standard, compilers can evaluate function
arguments in any order. However, “If there are multiple allowable orderings
of the subexpressions of an expression, the behavior is undefined if such an unse-
quenced side effect occurs in any of the orderings.” [14] (§6.5.0). This example
matches the definition of this undefined behavior and becomes unstable.
First, the function GET_LINKADDR_STRING uses a static char array buffer to
store the resulting string. The memory region pointed to by buffer will
be shared across function calls. Since there are two calls to this function,
the result of the first call, which is stored in buffer, will be overwritten by
the second call. Thus in the dumped string, the two fields who-is and tell

will always be the same. Second, since the language specification poses no
restriction on the evaluation order of function arguments, different compil-

https://sourceware.org/bugzilla/show_bug.cgi?id=27836
https://sourceware.org/bugzilla/show_bug.cgi?id=27836

24 finding unstable code via compiler-driven differential testing

1 char * GET_LINKADDR_STRING(int8_t *p) {
2 static char buffer[BUF_SIZE];
3 /* write *p to buffer */
4 ...
5 return buffer;
6 }
7 void arp_print(...) {
8 ...
9 ND_PRINT("who-is %s tell %s",

10 GET_LINKADDR_STRING(p1),
11 GET_LINKADDR_STRING(p2));
12 ...
13 }

Listing 3: An example of unstable code simplified from tcpdump/print-arp.c. The
two calls to GET_LINKADDR_STRING are arguments to the function ND_PRINT
(https://github.com/the-tcpdump-group/tcpdump/issues/919).

ers may evaluate these two GET_LINKADDR_STRING calls in a different order.
If we compile Tcpdump with gcc and clang separately, the obtained two
binaries will evaluate the arguments of ND_PRINT in reverse order, leading
to inconsistent dump strings. Specifically, clang evaluates the arguments
from the first to the last, i.e., p2 will be dumped to both who-is and tell;
while gcc evaluates the arguments from the last to the first, i.e., p1 will be
dumped to both attributes.

To discover this issue, we need to have at least two compiled tcpdumps
from gcc and clang, respectively, and tests that can reach the unstable
program location. We identified this issue with our CompDiff-AFL++ tool,
where CompDiff was configured to compile a target with multiple compiler
implementations from both gcc and clang. The back-end AFL++ generated
tests that reached the target location.

All sanitizers currently do not support the detection of this type of issue.
Extending sanitizers to support such detection requires the design of a
new checker that could examine whether or not multiple subexpressions
have side effects on conflict memory regions. It remains unknown how to
implement such a checker.

Example 3: Uninitialized memory usage. Listing 4 shows a piece of unsta-
ble code due to the use of an uninitialized variable. The developers might
think that although the variable l is uninitialized, its initial random value

https://github.com/the-tcpdump-group/tcpdump/issues/919

2.2 approach 25

1 std::ostream& CanonMakerNote::print0x000c(
2 std::ostream& os, const Value& value) {
3

4 std::istringstream is(value.toString());
5 uint32_t l;
6 is >> l;
7 return os << std::hex
8 << ((l & 0xffff0000) >> 16);
9 }

Listing 4: A use of uninitialized variable in exiv2 where l stays uninitialized even
after line 6 when is is an empty string (https://github.com/Exiv2/
exiv2/issues/1717).

should be overwritten in line 6 with the content in is. However, in a corner
case where is is an empty string the variable l will remain unchanged.
The uninitialized value will then be used for the rest of the execution, in
this case printing out to ostream. As the value of the uninitialized variable
is indeterminate [14] (§6.7.9) and depends on run-time memory layout,
different compilers and optimizations may allocate different values to it.

MemorySanitizer supports the detection of uninitialized memory usage,
where uninitialized values have to be used to determine code branches, e.g.,
an if guard relies on an uninitialized value. To avoid false positives, it does
not support cases such as the one shown in the example.

CompDiff-AFL++ can detect this issue because 1) the back-end AFL++
can generate tests that cause the variable is to be empty and thus l to be
different across binaries; 2) CompDiff captures divergent outputs.

Limitations. Although CompDiff can cover extra bugs than sanitizers, it
cannot detect as many issues as sanitizers for certain kinds of UBs. The
reasons are twofold. First, some UBs do not lead to unstable code. Although
compilers in theory could generate arbitrary binaries for code having UB,
they in practice may not exploit the UB or generate semantically equivalent
binaries. Second, Even if a program contains unstable code, the erroneous
behavior may not propagate to the final outputs.

2.2 approach

This section details our approach to finding unstable code. Section 2.2.1
formalizes unstable code and presents our proposed compiler-driven differ-

https://github.com/Exiv2/exiv2/issues/1717
https://github.com/Exiv2/exiv2/issues/1717

26 finding unstable code via compiler-driven differential testing

ential testing for the detection of unstable code. Section 2.2.2 demonstrates
the implementation details of integrating CompDiff into AFL++.

2.2.1 Compiler-Driven Differential Testing

Both C [14] and C++ [15] standards pose no requirements on how a com-
piler behaves on code fragments that invoke undefined behavior. A compiler
implementation w.r.t. the programming language specification can thus in
principle do arbitrary transformations and optimizations on such erroneous
code fragments. Intuitively, for a program with deterministic output, i.e.,
repeated executions of the program on the same input always yield the
same output, if the binaries compiled by any two legal and correct com-
piler implementations produce different outputs on some input, there has
erroneous code fragment in the program. We call such erroneous code
fragments leading to divergent outputs across compilations unstable code.

To formalize unstable code, let Ca and Cb be any two legal compiler
implementations. For a program P with deterministic output, Ca and Cb
compile program P to binaries Ba and Bb, respectively. With these notations,
we introduce unstable code from a dynamic testing perspective as follows:

Definition 1 (Unstable Code). P has unstable code if there exists an input such
that executing Ba and Bb on the input produces different outputs.

This definition shows that enumerating inputs on binaries compiled by
all possible compiler implementations may help us to find unstable code.
Based on this intuition, we propose compiler-driven differential testing
(CompDiff) for detecting unstable code in real-world programs. For a
program P , the general workflow of CompDiff is as follows:

1) Find a set of legal compiler implementations Ci, i ∈ [1, 2, · · · , k].

2) Compile P with each Ci to obtain binaries Bi, i ∈ [1, 2, · · · , k].

3) Find an input set I for P .

4) For each input t ∈ I , run each Bi on it and obtain outputs oi. If there
exists i, j ∈ [1, · · · , k] and i ̸= j such that oi ̸= oj, report t as bug-
triggering input.

The above workflow shows three key factors in CompDiff, i.e., compiler
implementations, input set, and output examination. In the following, we
will discuss each of these factors in detail.

2.2 approach 27

Compiler implementations. Ideally, we could find only two compiler imple-
mentations that always behave differently on unstable code. However, such
ideal compilers do not exist. In practice, we should utilize a set of concrete
compiler implementations. For a given target, there are typically plenty of
metamorphic compiler implementations. For instance, clang has hundreds
of optimization passes available for developers to choose from, which re-
sults in a combinatorial explosion of possible compiler implementations.
Popular compilers, such as gcc [42] and clang [90], feature well-engineered
optimization levels (i.e., -O0, -O1, -O2, -O3, and -Os) for users to choose
from. For open-source C/C++ projects, developers often use different com-
pilers and optimization levels when developing, testing, and releasing code.
Users may also freely choose their own preferences when compiling code.
These compilers and optimization levels offer us a good collection of com-
piler implementations for CompDiff. The reason is twofold. First, each of
these compiler implementations uses a different set of transformations and
optimizations, which increase the possibility of exploiting unstable code
across them. Second, all of these compiler implementations are widely used
in real-world cases by either developers or users. As long as CompDiff

discovers a discrepancy, the issue is likely affecting real users and thus
persuading.

Input set. Since CompDiff is a dynamic testing approach, concrete exe-
cution is required to detect bugs. One can use a test suite provided by
developers or generated with existing test generation tools. Fuzzing is one
of the most popular automated testing techniques for discovering software
defects due to its simplicity and effectiveness. By generating a tremendous
amount of mutated inputs with feedback guidance, the fuzzer is powerful
in finding interesting program paths. In this thesis, we use a fuzzer as the
test generation tool to power CompDiff. Section 2.2.2 will demonstrate
how we integrate CompDiff into AFL++ for finding unstable code in real-
world software. Note that CompDiff has no particular requirements on the
underlying fuzzer and is generally applicable to other fuzzers.

Output examination. Conceptually, our definition of unstable code shows
that finding them in a program requires verifying the semantic equivalence
of its compiled binaries. Full verification is infeasible due to its complexity
and undecidability [28, 125]. To practically reason about semantic equiva-
lence, our design only concerns final outputs of binaries on a concrete input.
There are two reasons behind our choice. First, it is easy and cost-efficient
to obtain input/output pairs in practice. Unlike other techniques like sani-
tizers, such design requires no modification or instrumentation to the target

28 finding unstable code via compiler-driven differential testing

Algorithm 1: CompDiff-AFL++
Input: Seed pool S .

1 while ¬Abort() do
2 s← SelectSeed(S)
3 s′ ← Mutate(s)
4 _← Execution(s′,B f uzz)

5 if s′ causes failure on B f uzz then
6 save s′ to disk

7 if s′ increases coverage on B f uzz then
8 add s′ to S

/* CompDiff: Run s′ on each Bi and examine output

consistency. */

9 for i = 1 to k do

10 oi ← Execution(s′,Bi)

11 if ! (o1 = o2 = · · · = ok) then

12 save s′ to disk

program. Second, it is convincing as proof of the presence of unstable
code. Since all compiler implementations are used in the real world, any
discrepancy in the final outputs indicates that the functional correctness
of the program has been affected in at least one compiler implementation.
Unfortunately, such a design will miss bugs when the erroneous state does
not propagate to the final output. One may argue that instead of only
examining final outputs, we can check programs’ intermediate results, e.g.,
return values from all functions, to extend CompDiff’s capability. However,
it 1) may incur many false positives due to compilers’ optimizations such as
inlining, 2) is less persuading than final outputs in motivating developers
to fix the error, and 3) requires significant and non-trivial implementation
efforts in obtaining intermediate results at run-time. It is, however, worth
further exploration in the future.

2.2 approach 29

2.2.2 CompDiff-AFL++

We here demonstrate integration details of CompDiff-AFL++. Since Com-
pDiff is orthogonal to fuzzers, we hope our demonstration can guide the
future adoption of CompDiff in other fuzzers.

In CompDiff-AFL++, there are multiple binaries compiled from the
target program P . The first one is B f uzz, which is compiled by the fuzzer-
configured compiler C f uzz. The compiler C f uzz injects instrumentation code
into P such that the fuzzer can collect coverage feedback from the re-
sulting binary B f uzz. If sanitizers are enabled, C f uzz also insert sanitizer
checks to B f uzz. Note that B f uzz is compiled the same as in normal AFL++.
The remaining binaries are all for CompDiff. As has been discussed in
Section 2.2.1, we recommend the use of compilers gcc and clang with
different optimization levels to form the set of compiler implementa-
tions Ci, i ∈ [1, · · · , k]. Each Ci compiles P to binary Bi. We inject some
lightweight instrumentation code into each Bi for efficient execution. We
will discuss the instrumentation on Bi after introducing the algorithmic
sketch of CompDiff-AFL++.

Algorithm 1 shows the high-level workflow of CompDiff-AFL++. The
unhighlighted part describes AFL++’s main process:

1) (line 2) Select a seed input from the seed pool.

2) (line 3) Mutate the input with one of the available mutation operators.

3) (line 4) Execute the program on the mutated input and collect the
feedback, such as code coverage from the execution.

4) (line 5-8) If the new input causes a crash, save it to disk; if it increases
coverage, add it to the seed pool; otherwise, drop it. Then go to step 1).

The highlighted part in Algorithm 1 shows where and how CompDiff

works in AFL++. It first runs the new input on each Bi (lines 9-10), then
cross-checks their outputs and saves the input if a divergence is found
(lines 11-12). The workflow illustrates that CompDiff does not interfere
with AFL++’s normal procedures but only augments it with the extra test
oracle provided by CompDiff. Thus, other fuzzing enhancements to AFL++
are compatible with CompDiff-AFL++. For example, sanitizers work by
instrumenting B f uzz to expose more bugs, and thus, they can be normally
used in CompDiff-AFL++. Next, we will discuss key implementation details
in CompDiff-AFL++.

30 finding unstable code via compiler-driven differential testing

Instrumentation on Bi. Each compiler implementation Ci primarily spec-
ifies the used compiler and optimization level. For instance, in our de-
fault setting, the compiler C1 uses CC=clang CXX=clang++ CFLAGS="-O0"

CXXFLAGS="-O0" and compiler C2 uses CC=clang CXX=clang++ CFLAGS="-O1"
CXXFLAGS="-O1". To reduce the burden of launching target binaries Bi, we
also inject forkserver [162] instrumentations into them. Forkserver has been
widely used in many fuzzers for the same purpose. At a high level, when
the fuzzer needs to execute an input on Bi, it first writes the input to shared
memory, then notifies the forkserver in Bi. After the forkserver receives
the notification, it forks itself, runs the input on the forked child process,
and informs the fuzzer when it is done. Interested readers can find further
details in [162].

Output examination. AFL++, by default, drops all outputs emitted from
the binary. To obtain output from each Bi, we redirect output, as well as
error, from each Bi to a file using dup2(). We then compare the checksum
values of these files to find discrepancies. We reuse the MurmurHash3 [3]
hash function supported by AFL++ for the checksum.

Bug-triggering inputs. We save all inputs that triggered output discrep-
ancies into a separate directory “diffs/” for future diagnosis. Similar to
crash-triggering inputs in normal fuzzing, there are many inputs that trigger
the same bug. It is non-trivial to automatically identify unique discrepan-
cies, especially in the context of differential testing. We currently rely on
manual analysis of reported discrepancies to triage bug reports. Automated
triage, as well as debugging, are discussed further in Section 2.4.

2.3 evaluation

In our evaluation, we use gcc 11.1.0 and clang 13.0.1, the latest stable
versions at the beginning of our evaluation, as the back-end compilers in
CompDiff and CompDiff-AFL++. These two compilers are selected because
of their widespread adoption in open-source C/C++ projects. To thoroughly
understand the capability of different optimization levels, we utilize all
frequently used ones, i.e., -O0, -O1, -O2, -O3, and -Os in both compilers. The
combination gives us 10 different compiler implementations. Our CompDiff-
AFL++ is implemented atop AFL++ version 3.15a. All experiments are done
in a server equipped with an AMD Ryzen Threadripper 3990X 64-Core
2.9GHz CPU and 256 GB RAM, and run on Ubuntu 20.04.3 LTS.

We evaluate the effectiveness and practicality of CompDiff and Com-
pDiff-AFL++. To understand the capability of CompDiff in finding unstable

2.3 evaluation 31

code, we evaluate it on a collection of benchmark programs from the Juliet
test suite. These programs contain a diverse range of undefined behav-
iors, and the ground truth is available. We then use 23 well-maintained
open-source C/C++ projects to evaluate the bug-finding ability of Com-
pDiff-AFL++ in real-world software. There are a plethora of static and
dynamic tools for detecting common UBs. We evaluate three popular and
widely-used C/C++ static analyzers, i.e., Coverity [127], Cppcheck [25], and
Infer [104], on the Juliet test suite. These tools implement state-of-the-art
techniques for detecting various program issues and were used in previous
study [83, 60]. Since CompDiff is a dynamic analysis tool, we also com-
pare it with sanitizers, the state-of-the-art dynamic analysis tools, on both
the Juliet test suite and real-world software. Other dynamic tools such as
Valgrind [107] and Dr.Memory [13] do not have better detection ability than
sanitizers when source code is available [29]. Thus we compare CompDiff

with sanitizers only. Specifically, we compare our tool with three widely-
used sanitizers, i.e., AddressSanitizer (ASan), UndefinedBehaviorSanitizer
(UBSan), and MemorySanitizer (MSan).

2.3.1 Effectiveness of CompDiff in Benchmark Programs

The Juliet test suite C/C++ [109] released by NIST contains a collection
of test cases, which are classified based on MITRE’s Common Weakness
Enumeration (CWE) classification system. This test suite has been widely
used to evaluate both static analysis tools [83, 104] and dynamic testing
approaches [29]. Each test case can run as an independent program and
contains two variants: a bad variant that contains a flaw and a good that does
not. All bad variants can be used to evaluate the bug detection rate of a tool
while good variants can be used to evaluate the false positive rate of a tool.

Not all CWEs are due to undefined behaviors, many of which are insecure
or unsafe operations such as hard-coded passwords (CWE-256). In order
to evaluate the effectiveness of CompDiff in finding unstable code, we
manually analyzed each CWE category and selected CWEs that represent
bugs due to undefined behavior. Since we only deal with programs that have
deterministic output, we excluded tests that deliberately change outputs
per run. We also removed tests that timed out after 5 seconds [29]. This
extraction gave us 18,142 tests spanning 20 CWEs. Table 2.2 shows an
overview of the selected CWEs.

We analyze each test with Coverity, Cppcheck, Infer, ASan, UBSan, and
MSan, in addition to our tool, CompDiff. For clear presentation, we merge

32 finding unstable code via compiler-driven differential testing

Table 2.2: Overview of selected CWEs.

CWE-ID Description #Tests

CWE-121 Stack Based Buffer Overflow 2,951

CWE-122 Heap Based Buffer Overflow 3,575

CWE-124 Buffer Underwrite 1,024

CWE-126 Buffer Overread 721

CWE-127 Buffer Underread 1,022

CWE-415 Double Free 820

CWE-416 Use After Free 394

CWE-475 Undefined Behavior for Input to API 18

CWE-588 Access Child of Non Struct. Pointer 80

CWE-590 Free Memory Not on Heap 2,280

CWE-685 Function Call With Incorrect #Args. 18

CWE-758 Undefined Behavior 523

CWE-190 Integer Overflow 1,564

CWE-191 Integer Underflow 1,169

CWE-369 Divide by Zero 437

CWE-476 NULL Pointer Dereference 306

CWE-680 Integer Overflow to Buffer Overflow 196

CWE-457 Use of Uninitialized Variable 928

CWE-665 Improper Initialization 98

CWE-469 Use of Pointer Sub. to Determine Size 18

Total 18,142

2.3 evaluation 33

Ta
bl

e
2.
3:

Bu
g

de
te

ct
io

n
ra

te
s

(%
)

an
d

fa
ls

e
po

si
ti

ve
ra

te
s

(%
)

on
th

e
Ju

lie
t

te
st

s.
Th

e
hi

gh
es

t
bu

g
de

te
ct

io
n

ra
te

s
ar

e
hi

gh
lig

ht
ed

in
gr

ee
n

.F
al

se
p

os
it

iv
e

ra
te

s
of

st
at

ic
to

ol
s

ar
e

sh
ow

n
in

co
lu

m
ns

FP
.S

in
ce

al
l

sa
ni

ti
ze

rs
an

d
C

o
m

p
D

i
f
f

ha
ve

no
fa

ls
e

po
si

ti
ve

on
th

e
Ju

lie
t

te
st

s,
w

e
om

it
th

ei
r

FP
va

lu
es

.T
he

la
st

co
lu

m
n

(#
U

ni
qu

e)
lis

ts
th

e
nu

m
be

r
of

bu
gs

th
at

ar
e

un
iq

ue
ly

de
te

ct
ed

by
C

o
m

p
D

i
f
f

co
m

pa
re

d
to

sa
ni

ti
ze

rs
.

C
W

E-
ID

s
D

es
cr

ip
ti

on
St

at
ic

To
ol

s
Sa

ni
ti

ze
rs

C
om

pD
if

f

C
ov

er
it

y
FP

C
pp

ch
ec

k
FP

In
fe

r
FP

A
Sa

n
U

BS
an

M
Sa

n
To

ta
l

D
et

ec
te

d
#U

ni
qu

e

1
2

1
∼

1
2

7
1

2
7
,

4
1

5
,4

1
6

,5
9

0
M

em
or

y
er

ro
r

3
9

%
4
6

%
1

3
%

6
%

3
7
%

2
1

%
9

4
%

✗
✗

9
4
%

6
3
%

1
3

7

4
7

5
U

B
fo

r
in

pu
t

to
A

PI
1

0
0

%
0
%

1
0

0
%

0
%

0
%

0
%

1
0

0
%

✗
✗

1
0

0
%

1
0

0
%

0

5
8

8
Ba

d
st

ru
ct

.p
oi

nt
er

3
2

%
2
1

%
0

%
4
%

2
%

2
%

4
9
%

✗
✗

4
9

%
9

9
%

4
0

6
8

5
Ba

d
fu

nc
ti

on
ca

ll
1

0
0

%
0
%

1
0

0
%

0
%

0
%

0
%

1
0

0
%

✗
✗

1
0

0
%

1
0

0
%

0

7
5

8
U

B
1

0
0

%
4
%

0
%

3
5
%

0
%

0
%

3
6
%

✗
✗

3
6

%
9

2
%

2
9

3

1
9

0
,1

9
1

,6
8

0
In

te
ge

r
er

ro
r

2
2

%
2
1

%
0

%
2
%

4
9
%

2
5

%
✗

3
3
%

✗
3

3
%

1
1
%

3
1

3
6

9
D

iv
id

e
by

ze
ro

5
4

%
2
3

%
8

%
3
%

3
%

7
%

✗
5

4
%

✗
5

4
%

2
9
%

5

4
7

6
N

ul
lp

oi
nt

er
de

re
f.

6
9

%
9
%

2
9

%
3
%

7
7
%

6
9

%
✗

9
2
%

✗
9

2
%

9
3

%
3

4
5

7
,6

6
5

U
in

it
ia

liz
ed

m
em

or
y

4
4

%
5
6

%
2

4
%

1
5
%

9
%

1
3

%
✗

✗
7
%

7
%

9
2

%
8

8
2

4
6

9
U

B
of

po
in

te
r

Su
b.

0
%

0
%

0
%

0
%

0
%

0
%

✗
✗

✗
0

%
1

0
0

%
1

8

34 finding unstable code via compiler-driven differential testing

tests with similar causes. We use bad (buggy) variant of each test. We
evaluate the bug detection rate and the false positive rate of each tool.
Bug detection rate (or recall) is the percentage of all real bugs detected
by the tool. False positive rate is the percentage of incorrect reports (or
false alarms) out of all reports produced by a tool. Table 2.3 shows the
bug detection rates (%) and false positive rates (%) of each tool. Since all
sanitizers and CompDiff do not have false positive reports on the Juliet
test suite, we omit their false positive columns for better presentation. The
last column shows the number of bugs that can be uniquely discovered
by CompDiff compared to sanitizers. We next discuss five findings on the
results.

➤ Finding 1: Static tools have non-negligible false positive rates and
relatively lower bug detection rates compared to CompDiff.

All static tools show non-negligible false positive rates. Coverity, Cp-
pcheck, and Infer have 0% ∼ 46%, 0% ∼ 35%, and 0% ∼ 69% false positive
rates, respectively. On the contrary, CompDiff has zero false positive rate.
Cppcheck can detect the same number of bugs as sanitizers and CompDiff

on CWE-475 and CWE-685. Infer detects the most number of bugs on
CWE-190∼680 while still having a 25% false positive rate. For the rest of the
bug categories, CompDiff has significantly higher bug detection rates than
Cppcheck and Infer. For example, on CWE-588, CompDiff detects 99% of
bugs while Cppcheck and Infer only detect 0% and 2% of bugs, respectively.
On most of the CWEs, CompDiff detects more bugs than Coverity. For bugs
from “UB”, “Integer error”, and “Divide by zero”, Coverity has higher bug
detection rates. However, Coverity has 4% to 23% false positive rates on
these bugs.

Overall, CompDiff shows stronger bug detection ability than static analy-
sis tools. In practice, static and dynamic tools have complementary strengths
and should be used together to maximize the bug detection rate.

➤ Finding 2: CompDiff complements sanitizers by discovering many
extra bugs. CompDiff complements sanitizers’ bug detection ability from
three perspectives. First, for some kinds of bugs, CompDiff has a higher
detection rate than the combined sanitizers. For example, on CWE-588 and
CWE-758, CompDiff detects 99% and 93% of bugs while sanitizers in total
only detect 49% and 36% of them. On CWE-457 and 665, although MSan in
sanitizers specializes in detecting uninitialized variable uses, it only covers
7% of bugs while CompDiff identifies 92% of them. Second, even CompDiff

fails to detect as many bugs as sanitizers in some classes of tests, it still
discovers unique bugs that are missed by sanitizers. For example, for the

2.3 evaluation 35

memory errors shown in the first row, sanitizers detect 94% of bugs while
CompDiff only achieves 63% detection rate. But there are 137 bugs that can
only be covered by CompDiff. Third, CompDiff covers UBs that are not
yet supported by sanitizers. None of the sanitizers discovers any bug on
CWE-469, CompDiff, however, exposes them all.

➤ Finding 3: CompDiff has the highest bug coverage compared to each
individual sanitizer. Compared to the results shown in columns “ASan”,
“UBSan”, and “MSan”, the second-to-last column shows that CompDiff can
detect a diverse range of unstable code. On the contrary, each sanitizer only
specializes in certain kinds of bugs. For example, MSan is only designed
for uses of uninitialized variables and thus it cannot detect all other bugs.
CompDiff’s design, however, stems from the general consequence of UBs
and thus has a higher overall bug coverage in principle.

➤ Finding 4: CompDiff misses certain kinds of bugs. Since sanitizers
are designed for specific classes of bugs, they work better than CompDiff

on them. For instance, UBSan reaches higher coverage than CompDiff in
bugs related to integer errors and divide-by-zero. Because CompDiff only
concerns a program’s final output, an erroneous state resulting from these
errors may not propagate to the output. This weakness is expected from
the design choice of CompDiff. As we have been emphasizing, CompDiff

is not to replace sanitizers but to complement them to cover more bugs.

➤ Finding 5: CompDiff has no false positive. To measure whether or not
CompDiff reports any false positive, we also run CompDiff on good variant
of each test. The result shows that CompDiff has no false positive, which
is also the reason why we do not use a separate table for the result. For
programs with deterministic output and correct compiler implementations,
it is expected that outputs from the same input are identical across different
compilations.

Summary. The above findings suggest that CompDiff is effective in detect-
ing bugs related to UBs and has the highest overall bug coverage. Our
results also confirm the strong discovery rate of each sanitizer on certain
kinds of bugs. Compared to the combined sanitizers, on some of the UBs,
CompDiff cannot detect as many bugs as them but still discovers additional
unique bugs. We position CompDiff as a complementary tool to sanitizers.
One should use both techniques to maximize the bug detection rate in
practice.

36 finding unstable code via compiler-driven differential testing

Figure 2.1: Number of bugs could be detected by each subset of compiler
implementations.

2.3.2 Impact of Reducing #Compiler Implementations

By default, there are ten compiler implementations used in CompDiff,
i.e., gcc and clang with their respective optimization levels -O0, -O1, -O2,
-O3, and -Os. In order to understand if it is necessary to use all of them in
practice, we evaluate the number of bugs that can be detected by each subset
of compiler implementations. We use the same Juliet tests as the previous
evaluation. For each subset, e.g., {gcc-O0, gcc-O1, clang-O2}, we modify
CompDiff’s configuration so that it only checks outputs from compiler
implementations in the subset. We enumerate all possible subsets with sizes
ranging from 2 to 10, and each subset does not contain duplicate compiler
implementations.

The results are shown in Figure 2.1. We organize subsets according to
their sizes. The X-axis means the size of each subset, i.e., the number of
compiler implementations in the subset. The Y-axis shows the number
of bugs detected by each subset. We can find that with the increase of
#compiler implementations, more bugs can be detected overall. For subsets
of the same size, their detection ability varies a lot. For instance, when
the number of compiler implementations equals 2, we have 45 subsets in
combination. The number of bugs detected by them has a great difference,
as shown in the first box in Figure 2.1. As annotated in the figure, the best

2.3 evaluation 37

performing subset with size=2 is {gcc-O0, clang-O3}. Intuitively, these two
compiler implementations maximize compilation differences: both from
different compilers, one is an unoptimizing compiler while the other is
an aggressively optimizing compiler. The worst performing subset with
size=2 is {gcc-O2, gcc-O3}. The reason is that they have the same basic
compiler, and their optimizations are relatively similar. CompDiff’s default
setting achieves the best performance. Some small subsets, e.g., 9, 8, or even
5, could detect nearly the same number of bugs as the default full size.
We argue that this is due to the limited types of bugs in the Juliet tests.
Discarding any compiler implementation risks missing bugs in practice.

Although the detection capability of small subsets may not be as good as
the full size, they have lower run-time costs. For instance, using {gcc-O0,
clang-O3} can detect ∼98% bugs compared to the full size, however, only
has ∼20% run-time costs. If there are resource or time constraints, our
results suggest that one can equip CompDiff with a smaller subset of
compilers but should at least include two instances using different compilers
and unoptimizing/(aggressively) optimizing optimizations.

2.3.3 CompDiff-AFL++

In this part, we evaluate the bug detection capability of CompDiff-AFL++
in real-world software.

Target projects. Table 2.4 lists details of all selected target projects. All these
targets are well-studied and frequently used in the fuzzing community. They
cover a broad range of functionalities, including network packet analyzers,
binary file analyzers, multimedia file processing, programming language
implementations, compression algorithms, etc. The sizes of these projects
range from 10KLoC to 4.6MLoC, further emphasizing their diversity.

Experimental setting. We used the same experimental environment as
previous experiments. To comprehensively evaluate CompDiff-AFL++’s
capability, we equipped CompDiff with all ten compiler implementations.
The initial seeds for targets are from their official test suites. Seeds of type
images and videos are expanded with Mozilla Fuzzdata [129]. After a bug
was found, we reported it to developers and relied on their feedback to
triage all reports. As has been discussed, automated triage is challenging in
the context of differential testing; we will discuss it further in Section 2.4.
To compare with sanitizers, we compiled each program with ASan/UBSan
and MSan to obtain sanitizer-enabled binaries. We then ran AFL++ on each

38 finding unstable code via compiler-driven differential testing

Table 2.4: Details of selected target projects.

Target Input type Version Size(LoC)

tcpdump Network packet 4.99.1 99K

wireshark Network packet 3.4.5 4.6M

objdump Binary file 2.36.1 74K

readelf Binary file 2.36.1 72K

nm-new Binary file 2.36.1 55K

sysdump Binary file 2.36.1 10K

openssl Binary file 3.0.0 702K

ClamAV Binary file 0.103.3 239K

libsndfile Audio 1.0.31 66K

libzip Compress tool v1.8.0 29K

brotli Compress tool v1.0.9 55K

php PHP 7.4.26 1.4M

MuJS JavaScript 1.1.3 18K

pdftotext PDF 4.03 130K

pdftoppm PDF 21.11.0 203K

jq json 1.6 46K

exiv2 Exiv2 image 0.27.5 384K

libtiff Tiff image 4.3.0 37K

ImageMagick Image 7.1.0-23 655K

grok JPEG 2000 9.7.0 127K

libxml2 XML 2.9.12 458K

curl URL 7.80.0 13K

gpac Video 2.0.0 597K

2.3 evaluation 39

Table 2.5: Bugs detected by CompDiff-AFL++ on 23 open-source C/C++
projects.

Unstable code due to
undefined behavior LINE Misc. Total

Ev
al

O
rd

er

U
ni

ni
tM

em

In
tE

rr
or

M
em

Er
ro

r

Po
in

te
rC

m
p

Reported 2 27 8 13 1 6 21 78

Confirmed 2 19 8 13 1 5 17 65

Fixed 2 15 6 12 1 5 9 52

binary and collected crashes found by sanitizers. All fuzzers had 24 hours
timeout threshold and we repeated each fuzzing campaign 10 times.

Summary. Table 2.5 summarizes the number of bugs detected by CompDiff-
AFL++. We categorize bugs based on their root causes. In total, CompDiff-
AFL++ reported 78 bugs, 65 of which were confirmed by developers, and
52 were already fixed. The results demonstrate that CompDiff-AFL++ is
effective and useful for identifying unstable code. Interestingly, as shown
in the “LINE” and “Misc.” columns, CompDiff-AFL++ detected not only
undefined behaviors but also other real bugs due to various issues. We next
analyze these bugs in detail. We guide our analysis with six consecutive
research questions.

➤ RQ1: What kinds of unstable code does CompDiff-AFL++ find?
As shown in the “Unstable code due to undefined behavior” column in

Table 2.5, we classify the found unstable code by their root causes into five
categories. Note that unstable code that can be covered CompDiff-AFL++
is, in principle, not limited to these categories. For example, we did not
find any bug related to CWE-469, on which CompDiff has shown its strong
detection ability in Table 2.3. We anticipate CompDiff-AFL++ can detect a
broader range of unstable code when evaluating more software. Next, we
will show our analysis of each category.

40 finding unstable code via compiler-driven differential testing

EvalOrder. When the evaluation order of subexpressions has conflict side
effects, the result becomes unstable. An example has been shown in Listing 3

in Section 2.1. These two bugs are all found in Tcpdump. After we reported
these issues, the tcpdump developers quickly fixed it. They also manually
diagnosed that the other 7 locations potentially had the same issue and
fixed them as well. The developer commented that their fixes are just for
“less disruptive” to the current code base and “We should consider the cleaner
long-term mechanism for 5.0 or later to get rid of static buffers”.

UnitMem. Bugs due to uninitialized memories are classified into this
category. We have shown an example in Listing 4 in Section 2.1. UnitMem
bugs appear the most. The reason is that values of uninitialized variables
depend on run-time memory layout, which often changes per binary. Some
bugs in this category could be detected by MSan as well. We will compare
our CompDiff with MSan on these bugs in RQ3.

IntError. Integer overflow/underflow can cause unstable code. The example
in Listing 1 shows a case where a code fragment is discarded due to integer
overflow. Sometimes, integer overflow may lead to inconsistent results
across compiler implementations. For instance, the following code

1 int a, b;

2 long x, y;

3 ...

4 x = y + a * b;

contains a potential signed integer overflow in line 4 when a*b exceeds the
range of int. In most cases, a*b is first calculated, and the result is then
represented and stored to an int. However, some compiler implementations
such as clang-O1 first cast both a and b into long and then do the calculation.
These two routines store different results to x when a*b overflows and thus
becomes unstable.

MemError. Bugs in this category are caused by memory-related errors
such as buffer-overflow and use after free. On the one hand, compilers
can assume these errors never occur and transform code having MemError
arbitrarily at compile time. On the other hand, these errors cause corrupted
memory states and thus unstable program states. These bugs can be de-
tected by ASan in principle. We will compare our CompDiff with ASan on
these bugs in RQ3.

PointerCmp. Comparing pointers pointing to different objects / unions
/ structs is undefined. The comparison result can be either true or false,

2.3 evaluation 41

depending on the compiler’s choice. CompDiff-AFL++ detected one such
bug in readelf. We have discussed this bug in Listing 2 in Section 2.1.

LINE. The C17 standard specifies multiple permissible behaviors for the
macro __LINE__ [14] (§6.10.4). Interestingly, the interpretation of __LINE__
is implementation-defined behavior, meaning that different compiler imple-
mentations may have divergent interpretation results. CompDiff-AFL++ de-
tected such inconsistencies in programs including readelf, ImageMagick,

Wireshark, libtiff, and php. For instance, for the following PHP code
with the bug in line 3,

1 <?php

2 $a = 0;

3 var_dump($b::class);

4 ?>

some php interpreters compiled from different compilers incorrectly label
line 2 instead of 3 as buggy.

Miscellaneous. Surprisingly, CompDiff-AFL++ detected 21 real bugs that
are not due to undefined behavior. Their root causes are miscellaneous. One
interesting category is compiler bugs/issues, where compilers instead of
application programs are blamed for the divergent output. We will further
discuss this kind of bug in the next RQ. CompDiff detected many other
program-specific issues including, but not limited to, bad random value
(libtiff), printing pointer address instead of value (objdump), and even
unknown reasons (wireshark). All of these issues lead to divergent outputs
on the same input, and thus none of them are false positives. These bugs
demonstrate CompDiff’s strong ability in exposing unstable issues.

➤ RQ2: Did CompDiff-AFL++ detect any compiler bug or issue?
In our CompDiff’s design, we assume compilers are bug-free. In practice,

compiler bugs rarely affect real-world programs’ integrity [101]. According
to our unstable code definition, compiler bugs or issues can indeed cause
divergent program outputs and thus be caught by CompDiff. On the 23

real-world programs, we found 3 compiler bugs due to miscompilation and
4 compiler issues due to floating point imprecision. Next, we discuss them
in detail.

Compiler miscompilation. CompDiff reported two compiler miscompila-
tions in gcc and one in clang, all of which were found during fuzzing MuJS.
Unlike other bugs introduced by program developers, compilers are blamed
for these bugs. After we reported these bugs, the MuJS quickly confirmed

42 finding unstable code via compiler-driven differential testing

these issues and proposed solutions to avoid compiler miscompilations in
their code temporarily. Although compiler issues have been detected, we
do not anticipate CompDiff can be used to find compiler miscompilations
intensively. Nevertheless, these issues are real bugs that affect program
correctness. CompDiff helps identify them and guarantees the program’s
integrity across compilations.

Floating-point imprecision. Different compilers or optimizations may use
different strategies to calculate floating point data. For example, clang-O3
sometimes transforms pow() to the more efficient exp2() libcall and has
different decimal results from others. Rounding strategies in different com-
piler implementations may also cause divergent results. Strictly speaking,
this is not a program bug but a compiler issue. We reported four such
cases, and developers confirmed three of them. Only brotli’s developers
committed to fixing the reported bug, which was because floating-point
imprecision affected the internal state of a compression algorithm, mak-
ing the compressed file different across compiler implementations. We do
not consider any of these bugs to be false positives because they indeed
lead to inconsistent results across compilations. Compared to other bugs,
floating-point imprecision is relatively less serious in most cases.

➤ RQ3: How many bugs found by CompDiff-AFL++ can be covered by
sanitizers?

Some of the detected bugs can, in principle, be captured by sanitizers.
Specifically, MemError by ASan, IntError by UBSan, and UninitMem by MSan.
For each bug detected by CompDiff, we check if it can be discovered by
sanitizers. Recall that AFL++ with ASan, UBSan, and MSan were run on
each target 10 times, and we collected all the reports they produced. For
each bug reported by CompDiff, we performed manual analysis to identify
whether or not sanitizers’ reports cover it. Table 2.6 shows the summarized
result. Out of 78 bugs detected by CompDiff, 42 of them can also be covered
by sanitizers. The left 36, however, cannot. Specifically, for MemError and
IntError, ASan and UBSan successfully detected all of them. MSan, however,
only exposed 21 out of 27 UninitMem bugs. In fact, we also observed that
many bugs detected by sanitizers during fuzzing cannot be detected by
CompDiff, either. The observation is aligned with our findings in the Juliet
tests. As we have been emphasizing, CompDiff is not to replace sanitizers
but to complement them in exposing more bugs in practice. The unique 36

bugs detected by CompDiff support our claim.

➤ RQ4: Impact of #compiler implementations in CompDiff-AFL++.

2.3 evaluation 43

Table 2.6: Of all the bugs detected by CompDiff, the number of bugs that
can also be discovered by sanitizers.

Sanitizers
CompDiff

ASan UBSan MSan Total

MemError 13 - - 13 13

IntError - 8 - 8 8

UninitMem - - 21 21 27

Remaining bugs - - - 0 30

Total 42 78

We have analyzed on the Juliet tests the impact of different subsets of
compiler implementations in CompDiff. To examine if a consistent tendency
can be observed in CompDiff-AFL++, we also evaluate each subset of
compiler implementations on the 78 real bugs. Figure 2.2 presents the
results. Compared to our previous results in Figure 2.1, similar conclusions
can be drawn: More compiler implementations bring higher bug detection
rates in CompDiff-AFL++; different compilers with unoptimizing and
aggressively optimizing levels can bring us the best performance while
similar compiler implementations are less effective.

➤ RQ5: Handling non-deterministic or multi-threaded programs in Com-
pDiff-AFL++.

Recall that CompDiff-AFL++ is designed to find unstable code in pro-
grams with deterministic output. Non-deterministic programs are typically
concurrent or multi-threaded programs. They can have either deterministic
outputs, i.e., running the program on the same input always emits the
same output, or inconsistent outputs, i.e., outputs may change per run. For
non-deterministic or multi-threaded programs, CompDiff can handle them
as long as they have deterministic output. In fact, among our evaluated 23

real-world programs, 6 of them are non-deterministic or multi-threaded pro-
grams, i.e., tcpdump, wireshark, MuJS, ImageMagick, grok, and gpac. In total,

44 finding unstable code via compiler-driven differential testing

Figure 2.2: Number of bugs could be detected by each subset of compiler
implementations by CompDiff-AFL++.

CompDiff-AFL++ found 23 bugs in them, which shows that CompDiff is
capable of handling non-deterministic programs that have deterministic
outputs.

For non-deterministic programs without deterministic output, our ex-
perience is that many of the non-determinism happen when programs
deliberately include random numbers or timestamps in their outputs. Such
non-determinism can be easily eliminated with a post-processing script on
the program’s output. For example, the output of wireshark includes the
timestamp when it generates warnings:

10:44:23.405830 [Epan WARNING]

Different binaries are thus emitting inconsistent warning messages. To
filter out these values, we used a regular expression to match and remove
all these timestamps in its outputs.

➤ RQ6: False positives of CompDiff-AFL++.
Theoretically, CompDiff has no false positives since all test inputs saved

by CompDiff are guaranteed to trigger discrepancies across at least two
compiler implementations. However, we still need to deal with cases where
some but not all binaries timeout. For efficiency reasons, AFL++ deliber-
ately terminates a binary after a timeout threshold. Such terminations will
inevitably truncate a binary’s output, causing output discrepancy between

2.4 discussion 45

terminated binary and timed-out binary. In our CompDiff-AFL++, when
a generated input times out on partial binaries, we let CompDiff-AFL++
save it first and then increase its timeout threshold until it terminates. It
is theoretically possible that a binary hangs forever. However, our experi-
ence is that as long as one of the compiled binaries terminates, others will
terminate eventually but may have a longer execution time.

As we discussed before, false positives are also possible when using
CompDiff on non-deterministic programs that do not have deterministic
output. We have shown in RQ5 that many of the non-determinism in the
output have fixed patterns such as random number and timestamp and can
thus be eliminated. We consider the general handling of programs with
non-deterministic output as a limitation of CompDiff and discuss further
in Section 2.4.

2.4 discussion

Fault localization and bug report. When a program failure is found, it
is beneficial to automatically and accurately localize the root cause in the
source code. Fault localization techniques, in general, although extensively
studied [154], are not yet practical [11, 117]. Sanitizers provide function
stack traces to help developers pinpoint the root causes of crashes. Since
bugs found by CompDiff do not necessarily lead to crashes, such stack
trace-based approaches are not applicable. As all tests reported in Com-
pDiff result in different outputs across binaries, it is possible to compare
execution traces from different binaries to pinpoint the root cause. Aligning
executions on two binaries is challenging in general. Although CompDiff

has the advantage that all binaries are compiled from the same source
code, compilers, especially optimizations, will result in huge differences in
control flows and variable values. It would be interesting for future work
to explore how to accurately and efficiently align and compare multiple
execution traces.

Although we do not analyze the root cause of bugs with CompDiff, our
current bug reports are useful for developers to diagnose and fix bugs. In
our bug reports, we include the following information: 1) test input that
triggers the bug, 2) two or more compiler configurations that can be used to
reproduce the bug, and 3) the divergent outputs on the provided test input.
With our current reports, at the time of writing, 52 out of the 78 reported
bugs had already been fixed by developers. Thus, there is clear evidence

46 finding unstable code via compiler-driven differential testing

that our reports are useful as developers are able to use them to diagnose
these issues quickly.

Limitations. CompDiff has detected many unknown bugs in real-world
software. All these bugs lead to inconsistent/incorrect outputs. CompDiff

incurs no false positive in programs with deterministic output. Although
all UBs, by definition, could lead to unstable code, existing compiler imple-
mentations may not exploit all of them. Thus, CompDiff cannot detect all
UBs in practice. For unstable code, CompDiff cannot discover all of them
for two reasons. First, not all erroneous states of unstable code propagate
to final outputs. Since CompDiff concerns output only, there is no way to
detect vanishing errors. Second, not all unstable code leads to inconsistent
behaviors. At run-time, binaries may enter the same erroneous state, e.g.,
choosing the same uninitialized value, and emitting identical but incorrect
output. Extending CompDiff to a program’s internal states would incur
huge analysis overhead and might be generally infeasible and impractical.
The succinct design of CompDiff guarantees its generality and scalability.
Another limitation of CompDiff is in handling non-deterministic programs
that have non-deterministic output. An example is a multi-threaded pro-
gram where multiple threads concurrently print into the standard output
while there is no requirement on the order. In such cases, divergent outputs
across runs are normal, and thus CompDiff will not be useful in detecting
errors. However, during our testing, we did not encounter such cases, and
all our targeted non-deterministic programs have deterministic output.

Overhead. Our experimental results suggest that we should enable all ten
compiler implementations when using CompDiff in practice. The run-time
overhead is roughly 10x normal execution. However, our evaluations on
the Juliet tests and real-world software also reveal the fact that a smaller
subset of compiler implementations can give us a similar bug detection rate.
For example, using only clang-O0 and gcc-Os in CompDiff-AFL++ can
discover 69 out of total 78 bugs. The run-time overhead can be reduced from
roughly 10x to 2x normal execution. When using CompDiff in practice,
we suggest users enable as many compiler implementations as possible
to maximize its bug-finding capability. If resources are constrained, users
should enable at least different compilers with diverse optimization levels.

Improvements and future work. The current design of CompDiff-AFL++
keeps the fuzzer’s core logic and applies differential testing on each gener-
ated input. Its effectiveness largely depends on the quality of test inputs.

2.5 related work 47

AFL++ utilizes code coverage feedback from executions to guide its muta-
tion strategies. If we incorporate the divergence observed from different
binaries into the feedback, AFL++ could potentially generate more unsta-
ble code-triggering test inputs. NEZHA [119] takes a similar approach by
exploiting behavioral asymmetries between multiple programs to improve
AFL’s efficacy in generating inputs that are likely to trigger semantic bugs.
Its design is for different implementations on the same specification such as
OpenSSL and LibreSSL. In CompDiff, binaries are compiled from the same
source code. Aligning execution paths and finding execution divergence
is much easier than NEZHA’s situation. Integrating execution divergence
into fuzzers’ feedback may enable CompDiff to find a lot more unsta-
ble code. We believe this will be an interesting future work to enhance
compiler-driven differential testing further.

2.5 related work

Differential testing. Researchers have leveraged differential testing to find
semantic bugs across many types of programs, such as database manage-
ment systems [126], Java Virtual Machine (JVM) implementations [23], REST
APIs [47], and compilers [66]. Incorporating different testing into fuzzing
engines is also gaining more and more interest in discovering functional
bugs. For example, HeteroFuzz [164] detects platform-dependent diver-
gence for heterogeneous applications running on both CPU and FPGA.
DifFuzz [108] discovers side-channel leakages by analyzing two executions
on the same binary. DIFUZZRTL [59] finds CPU bugs by differentially
comparing multiple CPU RTLs. It develops a novel register coverage for
higher fuzzing efficiency and efficacy.

Each of these differential fuzzing efforts focuses on one specific domain.
In contrast, CompDiff utilizes a generally applicable test oracle that con-
cerns a totally different kind of bugs, i.e., unstable code. Another notable
difference is that most of them incorporate new designs for fuzzers in
order to improve the possibility of discovering bugs. CompDiff does not
make changes to fuzzers core logic and has been proven to be effective in
finding interesting bugs. Designing new feedback for CompDiff should be
an interesting research direction for future exploration.

N-version programming. The concept of N-version programming (NVP)
was first introduced in 1978 by Chen and Avizienis [18]. It aims to im-
prove software fault tolerance by having N independent individuals or

48 finding unstable code via compiler-driven differential testing

groups implement the same specification. Recent and practical applications
of NVP include opportunistically leveraging existing diverse software im-
plementations. For example, Frost [142] executes multiple replicas with
complementary thread schedules to protect a program from data race errors;
Varan [56] utilizes system call level synchronisation to realize N-version
execution systems; many differential testing approaches discussed earlier
are also instances of NVP, such as Chen et al. [23] that leverages differ-
ent JVM implementations like Oracle’s HotSpot and IBM’s J9. CompDiff

employs different compiler implementations to obtain N-version binaries
of a program. We do not require any modification to a program’s source
code or its execution environment. In contrast to many differential testing
approaches, where additional implementations of a target program are
necessary, CompDiff, however, is not subject to this requirement. We argue
that our employment of compiler implementations to get multiple replicas
is novel and unique compared with the existing NVP schemes.

Finding undefined behavior. Undefined behavior in C/C++ covers a wide
range of illegal program states. Apart from sanitizers, there are also many
other popular tools such as Dr. Memory [13] and Valgrind [107] that require
no compile-time instrumentation and detect errors at the binary level.
Static tools such as STACK [152], Infer [104], and Cppcheck [25] cal also
cover frequently occurring UBs. CompDiff is orthogonal to them as 1) as a
dynamic tool, CompDiff discovers bugs that are beyond the reach of static
tools, and 2) developers can always use static tools, as well as dynamic
tools, in different development stages for finding more bugs.

3
A C C E L E R AT I N G F U Z Z I N G T H R O U G H P R E F I X - G U I D E D
E X E C U T I O N

As the evaluation in Chapter 2 has shown, an effective undefined behavior
detection requires not only the underlying test oracle like CompDiff but
also a fuzzer to generate and execute numerous test inputs. The most
widely used and effective general-purpose fuzzer is coverage-guided fuzzer
(CGF) [1, 96], such as AFL [161] and its advanced version AFL++[35]. CGF
executes all mutated tests from seed inputs to expose coverage-increasing
tests. However, executing all mutated tests incurs significant performance
penalties—most of the mutated tests are discarded because they do not
increase code coverage [105]. Thus, determining if a test increases code
coverage without actually executing it is beneficial but a paradoxical challenge.
In this chapter, we introduce the notion of prefix-guided execution (PGE) to
tackle this challenge.

The work in this chapter was published in [76].

Key idea. PGE leverages two key observations: (1) Only a tiny fraction of
the mutated tests can increase coverage, thus requiring full execution, and
(2) whether a test increases coverage may be accurately inferred from its
partial execution. PGE monitors the execution of a test and applies early
termination when the execution prefix indicates that the test is unlikely to
increase coverage. At a high level, for a CGF-style fuzzer, PGE works as a
replacement for the fuzzer’s execution engine. Instead of fully executing all
tests, PGE selects prefix-interesting ones to execute them fully and discards
all the others. A proper prefix length is crucial for the performance of PGE.
However, for a general target, it is challenging to determine a prefix length
that can identify coverage-increasing tests while being as small as possible.
Utilizing static/symbolic analysis to reason about constraints between
different program locations and decide a proper prefix length, although
plausible in theory, is difficult to (1) scale to complex real-world code (which
is why fuzzing is much more widely adopted) and (2) handle low-level
code (e.g., binaries) for settings where source code is unavailable. To tackle
this challenge, we propose a sampling-based search algorithm to infer
prefix lengths with low overhead dynamically. Our algorithm simulates the

49

50 accelerating fuzzing through prefix-guided execution

current fuzzing loop and finds the prefix length that can recall a desired
amount of interesting tests.

As Section 3.1 will show, a relatively short execution prefix can help
identify a large proportion of coverage-increasing tests. Since finding bugs
is the ultimate goal of fuzzers, we will also show that execution prefixes
can also effectively identify bug-triggering tests.

Main contributions. Our contributions are summarized as follows:

• We study the correlation between execution prefixes and the coverage
increasingness of tests by quantifying their strong connection across
nine real-world projects.

• We propose the novel, general technique of prefix-guided execution
(PGE) to speed up and improve fuzzing by early terminating execu-
tions that are unlikely to increase coverage.

• We present a simple prefix length search algorithm for finding a
proper prefix length to guide PGE effectively.

• We realize PGE in AFL++-PGE, a prototype on top of AFL++, and
extensively evaluates AFL++-PGE to demonstrate its utility in terms
of fuzzing cost reduction, coverage increasing, and bug detection.

The artifact for PGE, including all source code and data, is permanently
available [74].

3.1 observations on cgf

This section introduces several key observations on coverage-guided fuzzing
(CGF) that PGE builds upon. Without loss of generality, given a target binary
and an initial seed pool, the high-level workflow of a fuzzer is as follows:

(1) Seed selection. Select one seed from the seed pool according to
predefined strategies.

(2) Test generation. Mutate the seed to generate a large number of tests.

(3) Execution and feedback collection. Execute each of the tests on the
target binary and collect coverage feedback, queue a test to the seed
pool if it increases coverage, and report it when it causes an execution
failure, e.g., crash.

3.1 observations on cgf 51

Table 3.1: Rates of Coverage-increasing Tests Out of All Tests Generated in
One Hour By AFL++.

lib
pn

g

lib
sn

dfi
le

lib
tif

f

lib
xm

l2

lu
a

op
en

ss
l

ph
p

po
pp

le
r

sq
lit

e3

avg.

0.03% 0.05% 0.11% 0.21% 0.24% 1.00% 0.25% 2.12% 0.11% 0.46%

(4) Go to step (1) and repeat.

The workflow shows that coverage-guided fuzzers work in a loop. In each
loop, the selected seed will be mutated and blindly executed a tremendous
amount of times to filter out those coverage-increasing ones. However, as
has been reported by previous work [105], the overwhelming majority of
test cases are non-coverage-increasing. Although executing the target binary
on them wastes most of the allocated resources, fuzzers still have to do
so as it is, by now, the only way to understand whether a test increases
coverage.

However, as we will show in this section, it is possible to infer coverage-
increasing property without full test execution accurately — partial exe-
cution suffices in most cases. We use 21 programs from nine real-world
projects in Magma benchmark [52] to demonstrate the key observations that
our design relies on. We averaged the results of programs from the same
project. We choose, as our target fuzzer, the most popular coverage-guided
fuzzer AFL++ [34] on which many fuzzers are built. All experiments are
run with the same setup as that for our later performance evaluation.

Observation 1: Only a tiny fraction of tests are coverage-increasing.

We run AFL++ on each program for an hour. All experiments are repeated
12 times with different initial seeds. We log the total number of generated
tests during fuzzing. The number of coverage-increasing tests is learned by
counting the new seeds that AFL++ appends into the seed pool. In AFL++,
a test is interesting when it reaches new edges or significantly increases
edge counts. We treat both cases as coverage-increasing. Table 3.1 shows
the averaged rates of coverage-increasing tests during one hour of fuzzing.
On seven out of nine projects, less than 1% of tests generated by AFL++

52 accelerating fuzzing through prefix-guided execution

increased coverage. On average, AFL++ has 0.46% coverage-increasing tests
out of all tests in each one-hour trial. That means during the first hour
of fuzzing, averagely only 4 out of 1000 tests are actually interesting and
worth executing. If we are able to choose only those interesting ones, the
execution cost of the remaining large number of tests can be saved.

Observation 2: Execution prefixes correlate highly with a test’s cover-
age increasingness.

Mainstream coverage-guided fuzzers use basic block edges as their cover-
age metrics (26 out of 27 as reported in [106]), so our study focuses on edge
coverage as well. For a coverage-guided fuzzer, we denote an execution
trace Tk as an ordered temporal sequence Tk = ⟨ek

0, ek
1, . . . , ek

n−1⟩, where
ek

i , i ∈ [0, n) is the i-th edge this execution accessed. Tracing all temporal
execution traces during fuzzing is extremely costly. Instead, AFL++ uses a
global coverage bitmap with counts to store the accessed edges such that
an execution is identified by Ek = multiset(Tk) = {ek

0, ek
1, . . . , ek

n−1}2, where
the item ordering is ignored and duplicated edges are included. Before
introducing our observation, we first define the notion of execution prefix
used in this work.

Definition 2 (Execution Prefix). Given an execution trace Tk of length n and
predefined prefix length l ≤ n, the execution prefix of Tk is defined as Πk(l) =
multiset(⟨ek

0, ek
1, . . . , ek

l−1⟩) = {e
k
0, ek

1, . . . , ek
l−1}.

This definition shows that an execution prefix Πk(l) is a subset of the
corresponding full execution Ek. This feature allows us to reuse the bitmap
structure in AFL++ and obtain Πk(l) by terminating the execution when
accessing the l-th edge (See technical details in Section 3.2.2). AFL++ con-
siders a test interesting when it increases coverage. Since our goal here is to
discover the connection between execution prefixes and such interestingness
of full executions, we define next the notion of interesting execution prefix.

Definition 3 (Interesting Execution Prefix). Given a predefined prefix length
l, m seen executions E = {E0, E1, . . . , Em−1}, and their execution prefixes P =
{Π0(l), Π1(l), . . . , Πm−1(l)}. The subsequent execution prefix Πm(l) of Em is
interesting iff Πm(l) /∈ P .

2 A multiset contains duplicated items while item ordering is ignored (https://en.wikipedia.
org/wiki/Multiset).

https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Multiset

3.1 observations on cgf 53

Figure 3.1: Recall of coverage-increasing executions from interesting execu-
tion prefixes.

This definition shows that when determining whether an execution prefix
Πm(l) is interesting or not, each seen execution prefix in P is taken into
account. In our implementation, we cached the hash values of all execution
prefixes for such lookups (Technical details in Section 3.2.3). Suppose that
an execution Em is interesting w.r.t. code coverage implies its prefix Πm(l)
is also interesting w.r.t. Definition 3. We could then use execution prefixes to
filter out all uninteresting tests without fully executing them. Since it takes
less time to obtain execution prefixes than full executions, this strategy can
potentially boost fuzzers’ efficiency.

We now empirically validate this assumption to understand how com-
monly it holds in practice. Execution prefixes can be obtained with a
modified AFL++, which terminates an execution when it reaches a pre-
defined prefix length limit. Technical details will be shown in Section 3.2.
Experiments on each program are done 12 rounds with different initial
seeds. For each round of experiment on a program, we choose one seed
and follow the steps below:

1. Run AFL++ on one seed with a one-hour timeout and collect all
generated tests. Identify the length of each execution and label all
coverage-increasing executions.

2. Set the max prefix length lmax as the average length of the collected
executions. In principle, as long as setting 1.0 · lmax as the prefix length

54 accelerating fuzzing through prefix-guided execution

can retrieve nearly all interesting tests, the selected metric for lmax is
eligible. Our preliminary experiments show that setting both mean
and median prefix lengths as lmax is qualified. In our implementation,
we choose to use the mean value because, unlike the median, it does
not need to track all intermediate values.

3. Select 10 evenly distributed prefix lengths l ∈ {0.1 · lmax, 0.2 · lmax, . . .
, 1.0 · lmax}. For each prefix length, rerun AFL++ on the same set
of tests to collect their execution prefixes. Identify all interesting
execution prefixes.

4. Out of all coverage-increasing executions, count how many of them
also have interesting execution prefixes, i.e., the recall of coverage-
increasing executions by interesting prefixes.

Figure 3.1 shows the average recall of coverage-increasing executions
by interesting execution prefixes. The top six curves demonstrate that for
these six projects, recall rates grow exponentially with the increase of prefix
length. Short prefixes are less effective on lua and sqlite3, but longer
prefixes still do. This experimental result reveals that a short execution
prefix suffices to locate most of the coverage-increasing tests. On six out of
nine projects, achieving 70% recall on average needs prefixes ≤ 4

10 in length
of the full executions, and ≤ 6

10 for libxml2. Suppose that the prefix length
to achieve a high recall is known to a fuzzer. It can partially execute most
tests while only fully executing those with interesting prefixes.

Observation 3: Not all bug-triggering tests are coverage-increasing.

For all tests mutated from one seed, suppose that an ideal fuzzer is able
to identify coverage-increasing ones and only executes them. This fuzzer
would achieve the same code coverage as executing them all. However,
finding bugs is the ultimate goal of a fuzzer. We cannot guarantee that this
ideal fuzzer can find the same number of bugs unless bug-triggering tests
are also coverage-increasing.

To find out if bug-triggering tests could also increase coverage, we run
AFL++ on the same set of programs for 48 hours, then collect all coverage-
increasing tests (placed in “queue” directory) as well as unique crash-
triggering tests (placed in “crashes” directory). We then rerun AFL++ on all
these tests according to their creation timestamps to simulate the fuzzing

3.1 observations on cgf 55

Table 3.2: The Number of Selected Tests Out of All Bug-triggering Tests by
Different Metrics.

lib
png

lib
sn

dfile
lib

tif
f

lib
xm

l2
lu

a
op

en
ss

l

php pop
pler

sq
lit

e3

Total 62 32 252 921 6 18 34 212 68

Coverage 8 6 10 377 2 4 5 52 14

Pattern 62 32 250 900 4 18 34 211 66

process and check if a bug-triggering test increased code coverage at their
creation time.

The “Total” row in Table 3.2 lists the average number of bug-triggering
tests found in each project. Of those, the “Coverage” row shows the num-
ber of coverage-increasing tests. We can see that only a small fraction of
bug-triggering tests increased code coverage. In this case, executing only
coverage-increasing tests during fuzzing may miss many bugs. To address
this issue, we need to relax the restrictions on interesting executions, which
should contain not only coverage-increasing tests but bug-triggering tests
as well. We choose to use the whole execution pattern, which can be viewed
as an execution prefix with the maximum prefix length (i.e., l = n in Defini-
tion 2). Such patterns meet all of our requirements since (1) theoretically a
coverage-increasing execution always implies its execution pattern being
interesting, i.e., never being seen; (2) empirically the “Pattern” row in Ta-
ble 3.2 shows that most of the bug-triggering tests also have interesting
patterns.

Recall Observation 2 discussed earlier. Since we relaxed the scope on
interesting executions, we now need to validate if execution prefixes still
have a strong connection with new execution patterns. We run the same
experiments as in Observation 2 but change target executions from coverage-
increasing to pattern-interesting. Figure 3.2 shows the results. Execution
prefixes keep the correlation tendency across projects but have relatively
lower recall values. This is inevitable due to our relaxations but does not
affect the overall effectiveness.

As will be detailed in Section 3.2.4, the whole execution pattern for
each execution will only be used in the prefix search procedure of PGE.

56 accelerating fuzzing through prefix-guided execution

Figure 3.2: Recall of pattern-interesting executions from interesting execu-
tion prefixes.

All tests

Full pattern-interesting

Coverage-increasing Bug-triggering

Prefix-interesing

Figure 3.3: Illustrative relations from observations.

During prefix search, PGE evaluates each prefix by its recall capability of
all pattern-interesting whole executions.

Summary: The above observations empirically show the relationships be-
tween coverage-increasing executions, bug-triggering tests, pattern-interesting
full executions, and prefix-interesting executions. Figure 3.3 illustrates their
relations pictorially. The target of our proposed PGE is to identify prefix-
interesting tests and execute fully on them instead of all tests. Note that

3.2 approach 57

Seed Selection

Seed Prefix Length
Search

Mutation

Done

Fuzzing Loop

Y

N

Prefix Execution

Prefix Analysis
Interesting

Non-interesting

Execution
& Monitor

Seed Pool

Prefix length

Figure 3.4: Overview of a coverage-guided fuzzer augmented with prefix-
guided execution.

this figure is only for conceptual illustration. Size ratios in the figure do not
reflect their real values.

3.2 approach

This section introduces technical details for prefix-guided execution (PGE)
and how we augment a coverage-guided fuzzer with PGE.

3.2.1 Fuzzing with PGE

Figure 3.4 shows the high-level workflow of a coverage-guided fuzzer
augmented with PGE. The three grey blocks highlight the key extensions
that we make to the standard coverage-guided grey-box fuzzing. This new
workflow illustrates that the fuzzing framework has not been altered and
the PGE extension is generally applicable.

Prefix Execution is used to obtain the execution prefix of a test. Given
a test and prefix length l, this module executes the target binary and
terminates it whenever the execution visits l edges. As long as l is smaller

58 accelerating fuzzing through prefix-guided execution

than the actual execution length, such early termination reduces the time
required for execution. This is a logic module that exists in the form of extra
instrumentation code in the target binaries. (See details in Section 3.2.2.)

Prefix Analysis is for analyzing whether or not a given execution prefix is
interesting. Interesting prefixes refer to those that have never been observed
since the start of the current fuzzing loop. Only tests showing interesting
prefixes will be fully executed, while tests with non-interesting prefixes will
be discarded (See details in Section 3.2.3).

Prefix Length Search estimates a proper prefix length for the current fuzzing
loop. Recall the observations in Section 3.1. Different prefix lengths corre-
spond to different recall rates of pattern-interesting executions. When vali-
dating the observations, the concrete relationships between prefix lengths
and recalls are from the post-processing of fuzzing loops. Now, when em-
ploying them in fuzzing, we need to learn such relationships before the
start of a fuzzing process. We propose a sampling-based search algorithm
to find an appropriate prefix length that can reach a given recall rate. (See
details in Section 3.2.4).

Algorithm 2: Fuzzing with PGE

Input: Seeds S , Recall rate r .
1 while ¬Abort() do
2 s← SelectSeed(S)
3 l ← PrefixLengthSearch(s, r) // Search for prefix length

4 p← AssignEnergy(s)
5 for i from 0 to p do
6 s′ ← Mutate(s)

7 Πs′(l)← PrefixExecution(s′, l) // Get execution prefix

8 if PrefixAnalysis(Πs′(l)) == interesting then

9 Es′ ← FullExecution(s′) // If new execution prefix

10 if IsInteresting(Es′) then
11 add s′ to S

12 else
13 continue

3.2 approach 59

Algorithm 2 shows an algorithmic sketch of how fuzzing with PGE works.
The grey boxes highlight our extensions. The fuzzer is provided with a
set of seeds S and a target recall rate r. During each fuzzing loop (the
top while loop), a seed s is selected from S (line 2). All tests generated
within the present fuzzing loop are derived from this seed. The fuzzer then
searches for the smallest possible prefix length l that may reach the recall
rate r, which is implemented in PrefixLengthSearch (line 3). An energy p
is assigned to the seed, which represents the number of tests that will be
generated according to the defined mutation operators (lines 4-6). For each
new test s′, the fuzzer partially executes the target binary, collects execution
prefix Πs′(l) of length l (line 7), and goes to different branches:

1. If Πs′(l) is interesting, i.e., having never been seen in the current
fuzzing loop, the fuzzer invokes the normal execution and monitor
procedures to, e.g., add s′ to S if it increases code coverage, or cache
s′ if it results in a unique crash/hang. (lines 8-11)

2. Otherwise, the fuzzer continues with the next test. (line 13)

According to the observations from Section 3.1, only a tiny fraction of
tests explored in a fuzzing loop are interesting, i.e., coverage-increasing
or bug-triggering. If there were an ideal procedure that could select in-
teresting tests without any execution overhead, a fuzzer, when equipped
with such a procedure, could be dramatically more efficient. Such an ideal
procedure certainly does not exist. PrefixExecution and PrefixAnalysis

are designed to obtain a practical instance of such a procedure with partial
execution overhead. For each test with an interesting execution prefix, the
execution overhead increases from FullExecution to “PrefixExecution +
FullExecution”; while for each test with an uninteresting execution prefix,
the execution overhead decreases from FullExecution to PrefixExeuction.
The efficacy of prefix-guided execution critically depends on the proportion
of interesting prefixes.

As will be shown in the evaluation, for most generated tests, AFL++ with
PGE will execute the second branch above, i.e., discarding the tests. A large
proportion of uninteresting prefixes make the fuzzer discard most tests
without fully executing them, thus improving fuzzing efficiency.

3.2.2 Prefix Execution

Given a prefix length l, PrefixExecution is able to terminate the target
binary when it visits l edges. This is achieved by augmenting the standard

60 accelerating fuzzing through prefix-guided execution

void

__sanitizer_cov_trace_pc_guard(uint32_t *guard) {

 __afl_area_ptr[*guard]++;

}

void

__sanitizer_cov_trace_pc_guard(uint32_t *guard) {

 __afl_area_ptr[*guard]++;
 // Update the global prefix counter.

 __afl_prefix_cntr++;

 // Terminate the execution
 // when reaching the given prefix length.

 if (__afl_prefix_cntr == __afl_prefix_len)

 _exit(0);

}

(a) Original AFL instrumentation code

(b) Extended AFL-PGE instrumentation code

Figure 3.5: Original and extended AFL++-PGE instrumentation codes for
edge coverage.

coverage-tracing instrumentation. Next, we will use AFL++ as the target
fuzzer to show how to support prefix execution in AFL++ instrumentation.

We use the “trace-pc-guard” mode in AFL++ for edge coverage tracing.
This mode is back-ended by LLVM SanitizerCoverage [94], which can
insert calls to user-defined functions at the level of basic block edges.
Figures 3.5 (a) and (b) show, respectively, the user-defined functions used
in AFL++ and AFL++-PGE. In AFL++, edge coverage is reported by calling
the function __sanitizer_cov_trace_pc_guard() with a unique identifier
guard to increment the corresponding entry in __afl_area_ptr coverage
map.

To count the number of edges visited, the extended instrumentation
code increments a global counter __afl_prefix_cntr which is initialized
to 0 at the start of an execution. The target prefix length is passed to
__afl_prefix_len via a shared memory between the fuzzer and the target
binary. When __afl_prefix_cntr reaches the limit, i.e. __afl_prefix_len,
the ongoing execution will be terminated. At this moment, the coverage
map __afl_area_ptr stores the execution prefix.

3.2 approach 61

Note that the extended AFL++-PGE instrumentation code also supports
full execution by setting __afl_prefix_len=-1, making the termination
code unreachable. So, PrefixExecution and FullExecution in Alg. 2, in
fact, share the same instrumented target binary.

3.2.3 Prefix Analysis

We use a global hashmap prefixMap to record all prefixes that have been
observed in the current fuzzing loop. For each new execution prefix,
PrefixAnalysis first calculates its hash3 value to index prefixMap: If the
indexed entry is 1, it returns non-interesting; if the indexed entry is 0, it
sets it to 1 and returns interesting. Note that, for every newly selected
seed, prefixMap is emptied and rebuilt, which is due to the fact that the
coverage map changes over time, and the proper prefix length for the same
seed may change accordingly. Because prefix lengths are not identical for
different seeds, it is less meaningful to share prefixMap among them.We
also use another such hashmap fullMap to record all pattern-interesting
full executions. Since interesting full executions can be shared across seeds,
different from prefixMap, the fullMap is only initialized at the beginning
of fuzzing.

3.2.4 Prefix Length Search

To benefit from prefix-guided execution, a proper prefix length w.r.t. target
recall r should be learned before fuzzing starts. The recall r describes
the capability of a prefix in selecting interesting tests. A prefix length with
higher recall implies that it is likely to select more interesting tests. However,
for a recall r, the ground-truth minimal prefix length can only be learned
by fully executing all candidate tests, thus it has no practical value.

To practically estimate a proper prefix length, we propose a sampling-
based search algorithm. Instead of running all tests, the algorithm samples
a tiny fraction, say 5%, runs them both fully and partially, and learns the
recall capabilities of different prefix lengths. Alg. 3 details the prefix length
search algorithm. It consists of three main stages:

1. Same as the common fuzzing procedure, energy is assigned to the
given seed but is reduced by a factor sr (line 1). Tests from p times
mutations are then cached (lines 2-4).

3 We use the MurmurHash3 [3] hash function supported by AFL++.

62 accelerating fuzzing through prefix-guided execution

Algorithm 3: Prefix Length Search
Global Config: Sampling ratio sr.
Input: Seed s, Recall rate r.
Output: Prefix length l.

/* (1) Sampling tests with ratio sr */

1 p←− sr ·AssignEnergy(s)
2 inputCache←− [∅ . . . ∅]p
3 for i from 0 to p do
4 inputCache[i] ←− Mutate(s)

/* (2) Identify if each full execution is interesting or

not, and record average execution length. */

5 arrFull, avgLen←− BatchPrefixExecution(fullMap, inputCache,
−1)

/* (3) Binary search the minimal prefix length that reaches

target recall r. */

6 left←− 0
7 right←− avgLen

8 l′ ←− right, l ←− −1
9 while left < right do
10 InitializeHashMap(prefixMap)
11 arrPrefix, _←− BatchPrefixExecution(prefixMap,

inputCache, l′)
12 if CalculateRecall(arrFull, arrPrefix) ≥ r then
13 right, l ←− l′

14 else
15 left←− l′

16 l′ ←− (left + right) / 2

17 return l

3.2 approach 63

Algorithm 4: BatchPrefixExecution

Input: hashMap, inputCache, prefix length l.
Output: An array of interestingness arrIntsg, average execution

length avgLen.

1 p ←− LengthOf(inputCache)
2 arrIntsg←− [0 . . . 0]p
3 avgLen←− 0
4 for i from 0 to p do
5 Πi(l), len←− PrefixExecution(inputCache[i], l)
6 avgLen←− avgLen+ len

7 hi ←− Hash(Πi(l))
8 if hashMap[hi] == 0 then
9 hashMap[hi]←− 1

10 arrIntsg[i]←− 1

11 else
12 arrIntsg[i]←− 0

13 avgLen←− avgLen / p
14 return arrIntsg, avgLen

2. Before performing prefix length search, the interestingness of each full
execution is learned via BatchPrefixExecution with prefix length
l = −1 (recall __afl_prefix_len=-1 in Section 3.2.2). The hashmap
fullMap records hashes of all visited executions. arrFull is a binary
array of size p, where arrFull[i] = 1 indicates inputCache[i] being
interesting. avgLen is the average execution length.

3. From 0 to avgLen, we binary search for the minimal prefix length that
reaches the target recall r. During each round of search, prefixMap
is initialized first. With the same prefix length l′, we learn the inter-
estingness of each execution prefix via BatchPrefixExecution. The
binary array arrPrefix stores such information just as arrFull. The
function CalculateRecall calculates the recall rate of l′. The final
prefix length l will be updated to l′ when its recall rate is ≥ r.

Function BatchPrefixExecution is described in Alg. 4. Each of the tests
(line 4) first gets the execution prefix of length l (full execution when l = −1).
The hash of the execution prefix is calculated (line 7) to index the given
hashmap (line 8). If the indexed entry is 0, i.e., this is a new prefix, mark it as

64 accelerating fuzzing through prefix-guided execution

seen (line 9) and set arrIntsg[i] to 1 (line 10). Otherwise, set arrIntsg[i] to
0, i.e., non-interesting (line 12). The variable avgLen accumulates execution
length (line 6) and reports the average value finally (line 13). The returned
array arrIntsg records whether execution prefixes of tests are interesting
or not.

Function CalculateRecall calculates the recall as follows:

r =
∑

p−1
i=0 (arrFull[i] ∧ arrPrefix[i])

∑
p−1
i=0 arrFull[i]

.

Intuitively, this formula calculates to what percentage of the 1’s in arrFull

are also marked as 1 in arrPrefix.

3.3 evaluation

This section details our extensive evaluation of PGE to demonstrate its
effectiveness in improving fuzzing performance. Our evaluation will answer
the seven research questions as shown below. The first three RQs are
module-only evaluations on the key component PrefixLengthSearch,
which adds extra fuzzing overhead. The rest of the RQs focus on PGE’s
overall performance.

RQ1. Accuracy of prefix length estimation at different sampling ratios,

RQ2. Overhead of the PrefixLengthSearch module,

RQ3. Distributions of prefix length on different recall settings,

RQ4. Early terminated tests as a percentage of all tests,

RQ5. Ratio of executing interesting tests to all full executions,

RQ6. Effectiveness of fuzzing in terms of bug finding and

RQ7. Effectiveness of fuzzing in terms of code coverage.

Experimental Setup. We used AFL++ 4.01c [35], the latest version at the
time of writing, as the reference fuzzer to study the benefits of PGE. We refer
to our augmented AFL++ as AFL++-PGE. We chose to use the most recent
fuzzing benchmark Magma v1.2 [52], the latest version at the time of writing.
Magma consists of 21 programs from nine popular real-world projects,

3.3 evaluation 65

Table 3.3: Magma targets.

Target Drivers Version File type

libpng libpng_read_fuzzer 1.6.38 PNG

libsndfile sndfile_fuzzer 1.0.31 Audio

libtiff tiff_read_rgba_fuzzer, tiffcp 4.3.0 TIFF

libxml2 xml_read_memory_fuzzer,xmllint 2.9.12 XML

lua lua 5.4.3 LUA

asn1, asn1parse, bignum, Binary
openssl

server, client, x509

3.0.0
blobs

json, exif, parser,
php

unserialize
8.1.0alpha3 Various

poppler pdf_fuzzer, pdfimages, pdftoppm 21.07.0 PDF

sqlite3 sqlite3_fuzz 3.37.0 SQL

which were selected for their diverse functionalities. Table 3.3 details these
targets. Due to our implementation limitation, we cannot support persistent
fuzzing, and thus, all persistent targets such as pd f _ f uzzer are using AFL
driver with N = 1.

To test PGE’s effectiveness against other fuzzing throughput boosters,
we compare it with HeXcite [106], the state-of-the-art coverage-guided
tracer for coverage-guided fuzzers. HeXcite improves fuzzing throughput
by restricting instrumentation overhead to coverage-increasing tests only. It
extends Untracer [105] with the support of edge coverage.

We performed our experiments on two servers, each equipped with an
AMD Ryzen Threadripper 3990X 64-Core 2.9GHz CPU and 256 GB RAM,
and running Ubuntu 20.04.3 LTS. Following Klees et al.’s [65] standard we
performed each fuzzing campaign for 48 hours and repeated it 12 times.

3.3.1 RQ1: Accuracy of Prefix Length Estimation at Different Sampling Ratios.

Given a target recall, PrefixLengthSearch simulates fuzzing with sam-
pling data points to estimate an appropriate prefix length that can achieve

66 accelerating fuzzing through prefix-guided execution

Figure 3.6: Estimation accuracy of different sampling ratios.

it. To understand what sampling ratio is required for an accurate estimate
for each program and a target recall, we

1. randomly select a seed,

2. set the sampling ratio sr = 100% to get the ground truth prefix pgt,

3. set sr again from 1% to 50% with step 2% and estimate the prefix pi,
and

4. for each pi, calculate its normalized distance to pgt with di =
|pi−pgt |

pgt
.

We select 6 recalls spanning evenly from 0% to 100%, namely 10%, 30%,
50%, 70%, and 90%. Each experiment is repeated 12 times, and we report
the averaged results across programs in Figure 3.6. A higher sampling
ratio indicates a more precise approximation of prefix length but a higher
overhead due to the increased number of tests. When sr > 5%, the distance
to the ground truth prefix decreases slowly for all recalls. For example,
extending sr from 5% to 20% only reduces the distance to less than 0.05 · pgt.
Since higher sr indicates higher overhead, we conclude that sr = 5% is
a good balance between the estimation accuracy and overhead. In our
implementation of AFL++-PGE, we set sr = 5% as default.

In order to understand whether or not PGE can maintain target recalls
with a sampling rate 5%, for each target recall, we reuse the above experi-
ment meta-data as follows:

1. estimate the prefix length p with 5% sampled executions,

2. for all executions, count the number of pattern-interesting full execu-
tions N f ull ,

3.3 evaluation 67

Figure 3.7: Achieved recall vs. target recall with sampling ratio 5%.

3. for all executions, collect their prefixes of length p and then count the
number of interesting prefixes Npre,

4. and calculate the true achieved recall rate Npre
N f ull

.

Figure 3.7 shows the distribution of achieved recalls on all programs. The
X-axis refers to the target recall set for PGE, and the Y-axis is the achieved
recall. Each box shows the distribution of achieved recalls on all programs.
We can find that for every target recall, PGE with 5% sampling rate can
always achieve it in more than 75% of cases. The short length of each box
indicates that the achieved recalls are concentrated around the target recalls.
Overall, PGE with a 5% sampling rate has successfully searched for proper
prefixes.

3.3.2 RQ2: Overhead of Prefix Length Search

Since prefix length search, i.e., function PrefixLengthSearch, brings extra
overhead to the fuzzing loops, we first need to understand its cost in
time against the overall fuzzing overhead. If AFL++-PGE took much time
in searching for a prefix length, even though it could benefit from prefix
execution, its overall performance would still be severely affected. To answer
this question, we recorded time spent executing PrefixLengthSearch

during the fuzzing campaigns.
AFL++-PGE needs an extra input parameter, recall rate r, for guiding Pre-

fixLengthSearch. We select 6 different recalls spanning evenly from 0% to
100%, namely r = 10%, 30%, 50%, 70%, and 90%. For each target program,
we ran AFL++-PGE with different recalls and averaged their PrefixLength-

68 accelerating fuzzing through prefix-guided execution

Figure 3.8: Per-program relative overhead of
PrefixLengthSearch in 48h.

Search time. The final averaged overhead is reported in Figure 3.8. The
last bar in Figure 3.8 shows that during 48 hours of fuzzing campaign, the
average time spent executing PrefixLengthSearch is less than 5%, approx-
imately two hours. For most programs, PrefixLengthSearch overhead is
negligible. Projects libpng, openssl, and php have relatively larger overhead
but all below 10%. Overall, the extra overhead from PrefixLengthSearch

did not hinder AFL++-PGE’s efficiency.

3.3.3 RQ3: Distributions of Prefix Length on Different Recall Settings

Prefix length is crucial for the efficiency of PrefixExecution. Intuitively,
a shorter prefix length means a faster PrefixExecution. Understanding
what the distributions of prefix length would be on different recall settings
is thus essential to understanding the overall performance of AFL++-PGE.

For each trial on a program, we logged the searched prefix lengths and
execution lengths. Note that, for some seeds, PrefixLengthSearch may
return −1, meaning that there is no effective prefix length, and the fuzzer
should continue with the original FullExecution for this seed. This is
because sometimes even the maximal prefix (i.e., average full execution
length) cannot achieve the target recall. For seeds with effective prefix
length, we average their relative prefix lengths w.r.t. execution lengths on

3.3 evaluation 69

Figure 3.9: Distributions of prefix lengths and proportion of seeds with
prefix.

the program-level granularity. Distributions of relative prefix lengths are
shown as the solid boxes in Figure 3.9. As expected, a higher recall needs
larger prefix lengths. We also show the proportion of seeds with effective
prefix length as the hollow boxes in Figure 3.9. Inversely, the number of
seeds with effective prefix length is less for a higher recall. For instance,
when targeting the 50% recall rate, on average, more than 45% seeds can
be run with PrefixExecution, among which the searched prefix lengths
are approximately one-third to full execution lengths. Although lower
recall rates come with shorter prefix lengths, they, by design, have higher
probabilities of missing interesting tests. Section 3.3.6 and 3.3.7 will show
the trade-off.

3.3.4 RQ4: Early Terminated Tests as A Percentage of All Tests

With prefix-guided execution, a fuzzer saves execution time by only par-
tially executing tests. We now aim to answer how many tests would be
early terminated by AFL++-PGE. An early terminated test means that it
has been only partially executed. Figure 3.10 shows the mean ratios of
early terminated executions per benchmark. We can observe that lower
recall settings have a relatively higher percentage of early terminated tests.
Intuitively, a lower recall allows PGE to search for a shorter prefix, which is

70 accelerating fuzzing through prefix-guided execution

Figure 3.10: Percentage of early terminated executions in AFL++-PGE.

less sensitive compared to longer prefixes and thus results in more early
terminated tests. AFL++-PGE with recall 10% early terminated more than
90% tests on programs “asn1”, “json”, and “unserialize”. As will be shown
in Section 3.3.6 and 3.3.7, such a low recall, however, enables PGE to dis-
cover more bugs and achieve higher coverage on these benchmarks. On
average, AFL++-PGE with different recalls have 40% to 60% of tests being
early terminated. For the fully executed tests, the majority of them are from
seeds where PGE does not find effective prefixes.

3.3.5 RQ5: Ratio of Executing Interesting Tests to All Full Executions

We have shown in Section 3.1 that most of the fuzzer-generated tests are not
interesting, i.e., in the first hour of fuzzing, only 0.46% tests are coverage-
interesting. This observation motivated our PGE design. Ideally, PGE should
be more concentrated than a vanilla fuzzer on executing interesting tests.
To measure such concentration, we define the interesting ratio as follows:

r =
#coverage-increasing tests

#fully executed tests
.

For AFL++, all tests are fully executed. In AFL++-PGE, only partial tests
are fully executed since many of the generated tests are early terminated
by PGE. We calculate the interesting ratios for each fuzzer on each program

3.3 evaluation 71

Figure 3.11: AFL++-PGE’s ratio of executing coverage-increasing tests to
all full executions relative to AFL++. Each ratio is calculated by #coverage-
interesting tests / #full executions. Each solid bar indicates that the cor-
responding AFL++-PGE has a significantly higher ratio than AFL++ (i.e.,
Mann-Whitney U test p < 0.05).

and average the ratios across all trials. We use Mann-Whitney U-test to
measure the statistical significance compared to AFL++. Figure 3.11 shows
the mean relative ratios of AFL++-PGE to AFL++ on each program. We can
see that on 18 out of 21 programs, at least one of the AFL++-PGE has a
significantly higher interesting ratio than the vanilla AFL++. On 12 out of
21 programs, all AFL++-PGE have significantly higher interesting ratios.
For programs “libpng_read_fuzzer”, “x509”, “json”, “exif”, “unserialize”,
and “parser”, AFL-PGE have 3x to 11x higher interesting ratios.

Note that, the interesting ratios do not directly reflect the effectiveness
of the fuzzers. For example, although AFL++-PGE-r90 has a relatively low
ratio on “sqlite3”, as shown in Section 4.6, AFL++-PGE-r90 can find 3 bugs
on it while the vanilla AFL++ can only find 1 bug. The main reason for
the relatively low interesting ratios of AFL++-PGE on some programs is
that after 48 hours of fuzzing, AFL++-PGE saturates on some programs,
which leads to a significant increase in the total number of full executions,
while the increase in coverage is subtle due to saturation, resulting in a
less significant interesting ratio r. As shown in Section 3.3.3, PGE can not
always find an effective prefix. For these programs, all PGE instances have

72 accelerating fuzzing through prefix-guided execution

turned back to the normal fuzzing procedure on some seeds, which results
in the same ratios on these seeds.

3.3.6 RQ6: Bug-Finding Evaluation

The ability to discover bugs is the golden metric for fuzzing performance.
We evaluate the bug detection capability of each fuzzer with bug survival
time, which is proposed in the Magma. This metric uses the time required
to trigger a bug to measure bug-finding speed. Due to the highly stochastic
nature of fuzzing, the time-to-bug might differ dramatically across repeated
attempts. To mitigate the high variations in bug discovery time, Magma
recommends the use of survival analysis to infer how long a bug “survives”
in a fuzzing campaign. It adopts Wagner’s approach [144] and uses the
Kaplan-Meier estimator [64] to estimate a bug’s survival time, i.e., staying
undiscovered, within a given time (48 hours in our evaluation). A shorter
survival time means better fuzzing performance. We also use the log-rank
test [99, 53] to compare bug survival times statistically. The log-rank test’
p-value<0.05 implies statistical significance. Table 3.4 summarizes the bugs
found in Magma and the mean survival time. We omit programs when
none of the fuzzers were able to find any bugs in them and bugs when
all fuzzers were able to find them without statistical significance. Due to
HeXcite’s lack of support for the persistent mode that most programs use,
we were only able to run it on five programs.

Versus AFL++: In total, AFL++ was able to find 25 bugs, and all AFL++-
PGE together uniquely discovered 10 more. Specifically, AFL++-PGE with
recall 10%, 30%, 50%, 70%, and 90% covered 4, 6, 5, 2, and 7 more bugs
than vanilla AFL++. Of all these bugs4, these AFL++-PGE were faster than
AFL++, respectively, on 8, 11, 9, 9, and 11 of them, and slower, respectively,
on 5, 6, 4, 3, and 2 of them. Overall, AFL++-PGE-r90 was the best in terms
of bug-finding ability.

An interesting fact is that a very low recall still has a strong ability to
discover bugs. For instance, AFL++-Pge with recall 30Intuitively, a lower
recall indicates that the searched prefix length has a higher probability of
missing interesting tests. However, on one hand, we observed from Magma’s
intermediate logs that nearly all bugs, if being triggered, would be triggered
more than once. Suppose that for some bug, multiple triggering tests are

4 When we compare AFL++-PGE-rXX with AFL++, only bugs triggered by at least one of these
two fuzzers are included.

3.3 evaluation 73

Table 3.4: Mean survival time in 48 hours. Bugs that have never been
found are marked by “⊤”. Survival times either statistically better than
AFL++ (p-val < 0.05) or uniquely identified by AFL++-PGE are highlighted
in green. “✗” means the program is incompatible with the fuzzer.

AFL++-PGE

Program Bug AFL++ r10 p-val r30 p-val r50 p-val r70 p-val r90 p-val HeXcite p-val

PNG001 ⊤ ⊤ – ⊤ – 48h – ⊤ – 45h – ✗ –
libpng

PNG007 31h 19h 0.08 6h 0.00 8h 0.00 10h 0.00 9h 0.00 ✗ –

SND001 0.4h 0.2h 0.14 0.2h 0.43 0.3h 0.62 0.3h 0.58 0.4h 0.77 47h 0.00

SND005 0.9h 1h 0.60 2h 0.73 1.0h 0.54 0.5h 0.01 0.7h 0.22 0.8h 0.48libsndfile

SND024 0.6h 0.4h 0.01 0.2h 0.00 0.2h 0.00 0.3h 0.00 0.4h 0.05 ⊤ –

TIF002 38h 47h 0.05 ⊤ – ⊤ – 45h 0.17 47h 0.04 ✗ –
libtiff-
tiff_read
_rgba TIF008 42h ⊤ – 47h 0.23 ⊤ – ⊤ – ⊤ – ✗ –

TIF006 22h 32h 0.13 38h 0.02 32h 0.21 39h 0.01 36h 0.08 18h 0.81

TIF007 0.1h 0.1h 0.45 0.1h 0.17 0.1h 0.64 0.0h 0.88 0.0h 0.40 32h 0.00
libtiff
-tiffcp

TIF014 2h 1h 0.22 2h 0.02 2h 0.16 1h 0.29 2h 0.27 ⊤ –

XML001 1h 0.4h 0.00 0.8h 0.01 2h 0.22 1h 0.89 2h 0.47 ✗ –

XML009 2h 1h 0.13 3h 0.67 1h 0.02 0.8h 0.01 2h 0.77 ✗ –

libxml2-
xml_read
_memory

XML012 ⊤ ⊤ – ⊤ – 48h – ⊤ – 48h – ✗ –

XML001 44h ⊤ – 48h 0.04 47h 0.15 47h 0.29 45h 0.55 ⊤ –

XML002 ⊤ ⊤ – 46h – ⊤ – ⊤ – ⊤ – ⊤ –
libxml2
-xmllint

XML009 1.0h 3h 0.03 2h 0.18 0.9h 0.86 2h 0.22 3h 0.03 ⊤ –

openssl
-asn1

SSL001 ⊤ 10h – 5h – 4h – 10h – 4h – ✗ –

SSL002 0.2h 0.2h 0.00 0.2h 0.00 0.2h 0.00 0.2h 0.00 0.2h 0.00 ✗ –openssl
-server SSL020 45h 28h 0.02 40h 0.32 41h 0.32 29h 0.02 30h 0.04 ✗ –

php PHP009 1h 13h 0.00 14h 0.00 6h 0.02 10h 0.00 3h 0.57 ✗ –

PDF008 46h ⊤ – 44h 0.95 ⊤ – 47h 0.95 45h 0.95 ⊤ –

PDF014 ⊤ ⊤ – 46h – ⊤ – ⊤ – 45h – ⊤ –

PDF018 5h 36h 0.00 27h 0.00 25h 0.00 27h 0.00 15h 0.16 ⊤ –

poppler
-pdfimages

PDF021 43h 40h 0.40 39h 0.57 40h 0.63 ⊤ – 45h 0.93 ⊤ –

74 accelerating fuzzing through prefix-guided execution

Table 3.5: (Continuous) of Table 3.4

AFL++-PGE

Program Bug AFL++ r10 p-val r30 p-val r50 p-val r70 p-val r90 p-val HeXcite p-val

PDF010 2h 1h 0.11 1h 0.21 1h 0.17 0.8h 0.01 1h 0.12 31h 0.10

PDF011 45h 46h 0.95 46h 0.62 47h 0.95 44h 0.95 41h 0.55 37h 0.01

PDF018 11h 36h 0.00 28h 0.02 36h 0.02 17h 0.71 18h 0.54 ⊤ –

poppler
-pdftoppm

PDF019 ⊤ 46h – 45h – 47h – ⊤ – ⊤ – ⊤ –

PDF011 ⊤ 46h – ⊤ – ⊤ – ⊤ – 44h – ✗ –

PDF014 ⊤ ⊤ – 48h – ⊤ – ⊤ – ⊤ – ✗ –

PDF018 11h 42h 0.00 37h 0.00 44h 0.00 26h 0.08 21h 0.14 ✗ –

poppler
-pdf_fuzzer

PDF021 46h 41h 0.32 ⊤ – 47h 0.55 43h 0.86 44h 0.86 ✗ –

SQL012 47h ⊤ – ⊤ – 47h 0.95 ⊤ – 48h 0.95 ✗ –

SQL013 ⊤ ⊤ – 46h – 47h – ⊤ – 48h – ✗ –sqlite3

SQL020 ⊤ 45h – 44h – ⊤ – 41h – 46h – ✗ –

generated during fuzzing. Even if every single test has a low probability
of being executed, the probability that this bug is triggered at least once
is still high according to the chain rule [128] in probability theory. But the
triggering time might be delayed. For example, AFL++-PGE-r10 triggered
“PHP009” much later than many others. On the other hand, Section 3.3.4
has shown that AFL++-PGE-r10 has the largest fuzzing throughput, which
allows it to explore some new paths within the time constraint.

Versus HeXcite: HeXcite has the fastest discovery speed on “PDF011

(pdftoppm)”. For the rest of the 5 bugs it discovered, AFL++-PGE-r90

is faster on 3 of them. On the 5 programs it supports, it missed 8 bugs
compared to AFL++, and AFL++-PGE-r90 found 9 more bugs than it
with statistical significance. Intuitively, HexCite should be able to boost
fuzzing efficiency since it improves overall throughput. However, it does
not guarantee that all critical edges that are important to path exploration
will be traced. As its empirical evaluation revealed, HexCite only tracks
89% of such edges, which inevitably limits its path-discovering capability.
Moreover, hit count coverage in HexCite is limited to loops only. Hit counts
refer to edge execution frequencies. Due to its high overhead in tracking

3.3 evaluation 75

all hit counts, HexCite focuses only on loops, which further hinders the
exhaustiveness of its exploration.

3.3.7 RQ7: Coverage Evaluation

Code coverage is a common and popular evaluation metric for fuzzing
when ground-truth bugs are not available. Previous work [65, 80] argued
that higher coverage does not necessarily indicate better bug-finding capa-
bility. Nevertheless, for the thoroughness of comparison, we report branch
coverage achieved by each fuzzer. We measure each trial’s edge coverage
with afl-showmap utility and compute the average coverage across all tri-
als. We use Mann-Whitney U-test to measure the statistical significance
compared to AFL++. Table 3.6 summarizes the coverage results, where
statistically higher coverage than AFL++ (i.e., p-value < 0.05) is highlighted
in green.

Versus AFL++: As Table 3.6 shows, of the total 21 programs, AFL++-
PGE with recall 10%, 30%, 50%, 70%, and 90% achieve statistically higher
coverage than AFL++ respectively on 10, 10, 10, 10 and 11 of them, and the
same on the left. Intuitively, a lower recall indicates that PGE would have a
higher probability of missing interesting tests. However, all PGE achieve
nearly the same coverage at the end of 48h fuzzing. The main reason is that
all PGE have become saturated on these benchmarks. No matter how many
new tests are explored, the overall improvements in coverage will be subtle.
Thus, although PGE boosts the overall fuzzing speed substantially, it results
in relatively small coverage improvements. For example, for recalls 10%
and 30%, although they can explore more tests as shown in Section 3.3.4,
their coverage performance does not surpass others. The highest recall
90% performed the best, which is aligned with its strongest bug-finding
capability as shown in Section 3.3.6.

Higher coverage does not necessarily mean a stronger bug-finding capa-
bility. For instance, as shown in Section 3.3.6, AFL++-PGE-r50 statistically
found more bugs than AFL++ in libpng and sqlite3, however, it achieves
lower coverage than AFL++. As the bug-finding capability is the most
important measure in fuzzing, PGE’s significance in this measurement has
shown its effectiveness in boosting fuzzing performance.

Versus HeXcite: For the five programs that HeXcite supports, it has
statistically lower coverage than AFL++ on 4 of them and never outperforms
AFL++. The best performing AFL++-PGE-r90 achieves higher coverage on

76 accelerating fuzzing through prefix-guided execution

Table 3.6: Edge coverage (%) achieved by fuzzers. Coverages statistically
higher than AFL++ are highlighted in green. “✗” means the program is
incompatible with the fuzzer.

AFL++-PGE

Program AFL++ r10 MWU r30 MWU r50 MWU r70 MWU r90 MWU HeXcite MWU

libpng_read
_fuzzer 24.6 24.3 0.77 24.6 0.58 24.3 0.76 24.6 0.45 24.4 0.67 ✗ –

sndfile_fuzzer 22.2 22.1 0.94 22.1 0.89 22.2 0.61 22.2 0.57 22.3 0.22 17.3 0.00

xml_read
_memory 18.5 18.2 1.00 18.3 1.00 18.4 1.00 18.5 0.59 18.6 0.00 ✗ –

xmllint 16.3 15.9 1.00 16.1 1.00 16.2 1.00 16.2 1.00 16.2 0.96 11.3 0.00

lua 81.5 80.6 0.93 80.9 0.94 81.6 0.27 81.4 0.56 81.3 0.60 ✗ –

asn1 10.5 11.7 0.00 11.8 0.00 11.8 0.00 11.8 0.00 11.8 0.00 ✗ –

asn1parse 1.4 2.0 0.00 2.0 0.00 2.0 0.00 2.0 0.00 2.0 0.00 ✗ –

bignum 1.2 1.9 0.00 1.9 0.00 1.9 0.00 1.9 0.00 1.9 0.00 ✗ –

server 15.3 16.9 0.00 16.9 0.00 16.9 0.00 16.9 0.00 16.9 0.00 ✗ –

client 15.1 17.1 0.00 17.1 0.00 17.1 0.00 17.1 0.00 17.1 0.00 ✗ –

x509 11.6 12.4 0.00 12.4 0.00 12.4 0.00 12.4 0.00 12.4 0.00 ✗ –

tiff_read_rgba 36.0 32.6 1.00 34.0 1.00 34.1 1.00 34.7 1.00 34.9 1.00 ✗ –

tiffcp 41.0 39.8 1.00 40.1 1.00 39.6 1.00 40.4 0.89 40.4 0.91 41.0 0.23

json 0.7 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00 ✗ –

exif 0.9 1.7 0.00 1.8 0.00 1.8 0.00 1.8 0.00 1.8 0.00 ✗ –

unserialize 1.0 1.8 0.00 1.8 0.00 1.8 0.00 1.8 0.00 1.8 0.00 ✗ –

parser 4.9 5.3 0.00 5.4 0.00 5.5 0.00 5.5 0.00 5.5 0.00 ✗ –

pdf_fuzzer 38.8 38.3 1.00 38.4 1.00 38.7 0.86 38.7 0.59 38.7 0.63 ✗ –

pdfimages 45.7 44.8 1.00 45.1 1.00 45.2 1.00 45.5 0.93 45.7 0.22 36.7 0.00

pdftoppm 39.2 38.6 1.00 38.7 1.00 39.0 0.90 39.0 0.90 39.0 0.83 31.8 0.00

sqlite3_fuzz 42.6 40.3 1.00 40.3 1.00 41.3 0.98 42.4 0.53 43.3 0.11 ✗ –

3.3 evaluation 77

Table 3.7: Bugs detected by AFL++ and AFL++-PGE-r90.

AFL++ AFL++-PGE-r90

Target File Type Version Found New Fixed Found New Fixed

ffmpeg Video 4.4 1 0 0 1 0 0

cflow C 1.6.92 0 0 0 1 0 0

mp42aac MP4 1.6.0 2 0 0 4 2 0

objdump Binary 2.36.1 8 8 8 10 10 9

readelf Binary 2.36.1 5 5 5 5 5 5

nm-new Binary 2.36.1 8 7 7 12 11 10

Total 24 20 20 33 28 24

4 of them. Although HeXcite is able to improve fuzzing throughput by
design, as has been analyzed in Section 3.3.6, it trades its efficacy for speed
by discarding many instrumentations. As reported in HeXcite, it is more
significant in black-box settings and achieves nearly equivalent or worse
performance in grey-box settings. Our evaluation confirmed this fact.

3.3.8 Finding Bugs in Latest Applications

Evaluations on the Magma benchmark programs have already shown the
superiority of AFL++-PGE. In order to test if AFL++-PGE is able to boost
AFL++’s bug-finding capability on real-world applications, we selected
6 up-to-date programs with diverse types. All programs have been well-
fuzzed in the fuzzing community [145, 6, 58, 21]. We used their official
test suites as the initial seeds for ffmpeg, objdump, readelf, and nm-new.
Seeds for the remaining two programs are from UNIFUZZ [80]. We set
recall for AFL++-PGE to 90% as suggested by our evaluations on Magma.
All experiments were done on the same environments as discussed in
Section 3.3 with a timeout of 48 hours. Table 3.7 reports the number of bugs
found by each fuzzer. We manually inspected and triaged all unique crashes
to identify unique bugs. In summary, AFL++-PGE-90 discovered more bugs
than AFL++ in 4 out of the 6 programs. All bugs found by AFL++ were also
discovered by AFL++-PGE-r90, which means that PGE did not miss any

78 accelerating fuzzing through prefix-guided execution

bugs in these real-world applications. AFL++-PGE-r90 in total discovered
28 previously unknown bugs, 40% more than AFL++. We reported these
bugs to the developers, and 24 of them have already been fixed. We can
thus conclude that PGE significantly improves AFL++’s performance in
finding bugs in real-world applications.

3.3.9 Discussion

Impact of recall in PGE. As can be learned from Sections 3.3.3 and 3.3.4,
a lower recall rate means a shorter prefix and higher execution speed but
also means a higher probability of missing interesting tests. As a result,
we should avoid selecting a recall that is too small. On the other hand,
experimental results in Section 3.3.7 and 3.3.6 showed that higher recall
did not always mean more effective performance. For example, AFL++-
PGE-r90 performed better than AFL++-PGE-r50 in both code coverage
and bug survival time. Although AFL++-PGE-r10 and r30 did not outper-
form AFL++-PGE-r90 overall, they found additional bugs in xmllint and
pdftoppm. In summary, it is a trade-off to balance execution speed and
bug-triggering probability. We conclude that the higher execution speed
of relatively low recall compensated its low bug-triggering probability. A
proper target recall in PGE should be neither too large nor too small. Recall
90% is the best-performing one considering both of our measures and can
be a good choice in practice.

Orthogonality of PGE to various CGF efforts. At a high level, PGE is
a surrogate module for full executions and does not affect other parts
of a coverage-guided fuzzer. Algorithm 2 in Section 3.2.1 has shown the
algorithmic sketch for a coverage-guided grey-box fuzzer (CGF) and our
PGE extensions to it. Various CGF efforts try to improve different aspects
of the fuzzing process and share the same CGF workflow. For instance,
seed scheduling schemes such as AFLFast [10] optimize the SelectSeed

(line 2) and AssignEnergy (line 4) functions. Mutator scheduling methods
such as MOPT [95] improve the Mutate function. AFL++ [34] integrates
many advances into AFL while still maintaining the same CGF workflow.
PGE does not alter any of these optimized functions and only conditions
full executions w.r.t. their prefixes. PGE is therefore orthogonal to these
efforts. Our extensive evaluation has shown a significant performance
improvement of PGE to AFL++. We believe the integration of PGE to other
fuzzers will boost their performance as well. When integrating PGE into a
new fuzzer, the main efforts are to update two components coordinately: For

3.3 evaluation 79

PrefixExecution, if the new fuzzer does not use AFL-style instrumentation,
one needs to add a global counter and a guard for prefix collection in the
instrumentation code; For PrefixLengthSearch, mutation strategies should
be aligned with the new fuzzer.

Support of stateful fuzzing. It is crucial to find security vulnerabilities in
stateful and persistent targets such as network services. Stateful fuzzing,
however, is difficult. Vanilla CGF fuzzers like AFL++ are limited in their
abilities to support stateful targets like network services. Since PGE is
built atop AFL++, it inherits this limitation. There is some interesting
work that attempts to address this limitation. One representative effort is
AFLNet [120], which augments AFL to make it state-aware. In principle,
PGE could be integrated into it since AFLNet treats a message sequence
as an input seed in a normal fuzzing scenario while still maintaining state
information. Early termination in AFLNet would not lose the target state.

Compatibility to other fuzzing boosting schemes. An interesting and
orthogonal boosting approach for fuzzing is checkpoint-based resume [135].
The key insight is that kernel fuzzers frequently execute similar test cases
with the same prefixes. To avoid redundant prefix executions, checkpoints
are used to save states for hot prefixes. All future test cases with prefixes
being cached can then resume from checkpoints. In principle, this scheme
could be augmented with PGE. The augmented fuzzer can start collecting
prefixes from a resumed checkpoint and terminate a subsequent execution
when its prefix is uninteresting. Since this scheme is applied in kernel
fuzzing and PGE is initially designed for application fuzzing, it remains
challenging and unknown how PGE would perform on top of it.

Limitations and future work. PGE opens up a new and orthogonal research
direction for improving fuzzing efficiency by early terminating executions.
In our current design, we make use of the coverage information from
executions as the indicator for early termination. Although it has shown a
superior performance, our current PGE cannot use a hundred percent recall
since it would require a longer, thus less effective prefix. This is mainly
due to the limited expressiveness of the coverage pattern as the indicator
for early termination. It would be an exciting and interesting future work
to explore other more expressive indicators such as data flows [39] and
variable states [33]. Such indicators may have the potential to predict an
execution’s coverage increasingness in a much earlier stage and thus need
a shorter prefix.

80 accelerating fuzzing through prefix-guided execution

3.4 threats to validity

Here, we discuss potential threats to the validity of our results and conclu-
sions.

Threats to external validity. One threat to external validity is the bench-
marking programs we used for our evaluation. To reduce this threat, we
chose the Magma benchmark, which consists of 21 programs from nine real-
world projects. All of them have been widely used for evaluating fuzzers’
performance in the fuzzing community. These programs were carefully
selected by the Magma authors according to their diversity in functionality.
Another threat to external validity is the randomness in fuzzing. Due to the
highly stochastic nature of fuzzing, different trials on the same benchmark
may differ significantly. To deal with this issue, we repeated all our exper-
iments 12 times and used the log-rank test and Mann-Whitney U-test to
draw statistically significant conclusions.

Threats to conclusion validity. This threat to validity relates to the reliability
of the chosen measurements and the used statistical tests. We measured
the significance of our PGE with bug-finding capability and edge coverage.
Both measurements are widely used in the fuzzing community. For the
adopted statistical tests, we followed many existing fuzzers.

3.5 related work

Coverage-guided Grey-box Fuzzing. Since the success of AFL, there is a
large body of work that incorporates techniques such as taint analysis [4, 19,
20, 102, 123], symbolic execution [111, 112, 137, 148, 160], static analysis [22,
79, 118], and deep learning [48, 122, 134, 147], to improve the performance
of grey-box fuzzing. However, all of them still have to fully execute all
generated tests and, to the best of our knowledge, PGE is the first extension
to grey-box fuzzing for reducing execution overhead via early termination.

Improving Fuzzing Performance. Since the success of AFL [161], the
fuzzing community has seen a broad range of new fuzzer developments. In
particular, coverage-guided grey-box fuzzers such as AFL++ [34], AFLFast [9],
and AFLGo [8] are the most widely adopted and studied fuzzing techniques.
Researchers have also put great efforts into optimizing various aspects of
fuzzing, such as seed scheduling [7], mutation strategies [4, 95], and path
explorations [58, 137]. In theory, all these improvements are not related to

3.5 related work 81

sanitizer-enabled programs and, therefore, are orthogonal to us. In practice,
AFL++ has internally integrated many advances such as RedQueen [4] and
MOpt [95].

Reducing Coverage Collection Overhead. Some researchers point out that
coverage collection in fuzzing brings extra overhead. Untracer [105] and
HexCite [106] remove instrumentation code in visited code edges to re-
duce coverage collection overhead. Zeror [167] shifts between diversely
instrumented binaries to achieve low coverage collection overhead on most
executions. Odin [149] dynamically recompiles a binary when the instru-
mentation requirement changes. Because all these approaches need to
modify the coverage bitmap, our approach is not compatible with them.
INSTRIM [57] utilizes the existence of common program structures to instru-
ment a small fraction of basic blocks for reconstructing coverage. However,
it becomes less useful after LLVM incorporates a similar but more efficient
functionality in its PCGUARD mode [94]. At the system level, Xu. et al. [157]
implement three operating primitives specialized for fuzzing to solve the
scalability bottlenecks in file I/O and system calls.

These research efforts are related to prefix-guided execution as they all
target reducing overhead introduced by fuzzing itself. PGE tackles this
problem from an orthogonal and new perspective.

Reachability Prediction in Targeted Grey-box Fuzzing. There is a large
body of work [16, 155, 170] on guiding fuzzers toward target locations since
AFLGo [8]. Among them, two are particularly related to PGE as they share
a similar philosophy. FUZZGUARD [170] trains a deep learning model for
each target location and predicts if each test can reach the target location
without executing them. It hypothesizes that tests reaching the same target
location have common syntactic patterns. Wüstholz. et al. [155] present an
online static look-ahead analysis to determine if an execution prefix can
reach a target location. These two efforts both avoid unnecessary full execu-
tions. Their effectiveness is guaranteed by the high concentration of tests
in targeted grey-box fuzzing both syntactically and semantically. Although
they have different application scenarios from PGE, it is nevertheless in-
teresting future work to explore if deep learning and static analysis are
applicable in reducing full executions for general fuzzing.

4
D E C O U P L I N G S A N I T I Z AT I O N F R O M F U Z Z I N G F O R
L O W O V E R H E A D

Although Chapter 2 presents CompDiff for detecting more kinds of unde-
fined behaviors, it cannot beat sanitizers in detecting specific undefined
behaviors, such as buffer overflow and use after free. At compile-time, when
sanitizers are enabled, compilers will heavily instrument the target program
to insert various checks. At runtime, violations of these checks will result
in program crashes. Fuzzing on sanitizer-enabled programs is thus more
effective in discovering software bugs. To date, the most widely-used sani-
tizers include AddressSanitizer (ASan) [130], UndefinedBehaviorSanitizer
(UBSan) [88], and MemorySanitizer (MSan) [136].

Sanitizers, despite their extraordinary bug-discovery capability, have two
main drawbacks. First, sanitizers bring significant performance overhead
to fuzzing. As our evaluation in Section 4.1.1 will show, ASan, UBSan, and
MSan averagely slow down fuzzing speed by a factor of 3.6x, 2.0x, and 46x,
respectively. Since fuzzing is computationally intensive, such high sanitizer
overheads inevitably impede both the performance of fuzzers and the
adoption of sanitizers. Many approaches have been proposed to reduce the
run-time overhead of sanitizers. For example, Debloat [165] optimizes ASan
checks via sound static analysis. SanRazor [163] removes likely redundant
ASan and UBSan checks through dynamic profiling. FuZZan [62] designs
dynamic metadata structure to improve the performance of ASan and
MSan. Notwithstanding these optimization efforts, the overhead imposed
by sanitizers remains considerable. For instance, as our evaluation will show,
the state-of-the-art effort, Debloat, can only reduce less than 10% run-time
cost of ASan. Moreover, all these schemes require significant modifications
to the existing sanitizer code base, which hinders its compatibility with
diverse infrastructures.

The second drawback is that some sanitizers are mutually exclusive. For
instance, because ASan and MSan maintain the same metadata structure,
they can not be used together. Consequently, a fuzzer has to fuzz the
ASan-enabled program and MSan-enabled program separately.

Key idea. In this chapter, we introduce a new fuzzing framework that
decouples sanitization from the fuzzing loop for acceleration. In the frame-

83

84 decoupling sanitization from fuzzing for low overhead

work, the fuzzer (1) performs fuzzing on a binary that is built normally,
i.e., without enabling sanitizers, then (2) selects inputs that have unique
execution paths and runs them on the sanitizer-enabled binaries to check if
they trigger any bugs. Take the program shown in Figure 1.3 as an example:
During fuzzing, when we first encounter an input that has the execution
path {1 → 3 → 5 → 18}, we re-execute the input on the sanitizer-enabled
binary. The result is that this input does not trigger any bug. We will not
validate all future inputs that have the same execution path on the sanitizer-
enabled binary. When we first encounter an input that has the execution
path {1 → 3 → 18}, similarly, we re-execute the input on the sanitizer-
enabled binary. The result is that this input triggers a Use-after-Free bug.
As long as only (1) a small fraction of inputs have unique execution paths
and (2) the buggy execution reliably has a unique execution path, we can
significantly reduce the sanitization overhead during fuzzing. As our evalu-
ation in Section 4.3 will show, only less than 2% of inputs on average have
unique execution paths, and more than 96% of buggy executions have a
unique execution path.

There is a key challenge in our approach: How to efficiently obtain
execution path during fuzzing? Previous research has demonstrated that
obtaining fine-grained execution information like execution path is too
costly to be practical [40, 146]. In our design, we tackle this problem by
designing an efficient and scalable execution pattern to approximate the
execution path. Execution pattern discards the order information in the
execution path as a trade-off for efficiency. For instance, for the execution
path {1 → 3 → 18}, its execution pattern is {1, 3, 18} meaning that code
regions 1, 3 and 18 are executed. Although such approximation may cause
imprecision in theory, our evaluation will demonstrate that this design is
accurate enough to identify unique execution paths.

Our idea is generally applicable to the grey-box fuzzer family. Since
AFL++ [34] is the most popular grey-box fuzzer in both academia and
industry, we realized our idea on top of it and implemented a tool named
Sand. We use 12 real-world programs widely used by the fuzzing commu-
nity to evaluate Sand. Our evaluation shows that in 24 hours, compared to
traditional fuzzing on ASan/UBSan-enabled and MSan-enabled programs,
Sand respectively achieves 2.6x and 15x throughput and detects 51% and
242% more bugs. In the meantime, compared to fuzzing on normally built
programs, Sand can achieve nearly the same level of throughput while
covering 258% more bugs.

4.1 observation and illustration 85

Main contributions. In summary, we make the following contributions:

• We identify that bugs are strongly connected with unique execution
paths and further design an approximate yet accurate execution pattern
to obtain execution path information during fuzzing efficiently.

• We propose a novel fuzzing framework that decouples sanitization from
the fuzzing loop by selectively feeding fuzzer-generated inputs into
sanitizers.

• We implement our idea in a tool named Sand. We conduct in-depth
evaluations to understand its effectiveness in terms of bug-finding,
throughput, and coverage.

4.1 observation and illustration

In this section, we first introduce our observations on the high overhead
introduced by sanitizers and the rarity of bug-triggering inputs. Then, we
use three real-world bug examples to illustrate the strong connections
between bugs and execution paths.

4.1.1 High Overhead of Sanitizers

Despite the fact that sanitizers are highly effective in exposing software
bugs, they are initially designed for software developers to conduct in-house
testing rather than fuzzing. To benchmark sanitizer overhead in fuzzing,
we use all 12 benchmark programs from our evaluation section. For each
program, we compile five versions of it, i.e., native program, ASan-enabled
program, Debloat-enabled program, UBSan-enabled program, and MSan-
enabled program. The native program refers to a normally built program
without using any sanitizers. Since Debloat [165] achieves the state-of-the-
art optimization for ASan, we include it to understand the significance of its
improvement. We use AFL++ as the default fuzzer, and for each program:

Step (1) Use AFL++ to fuzz the native program and collect the first one
million generated inputs to the program. All these inputs are saved into
disk5 for future utilization.

5 We use tmpfs [157] to reduce I/O overhead.

86 decoupling sanitization from fuzzing for low overhead

Tab
le

4.1:
E

xecu
tion

sp
eed

,
i.e.,

nu
m

ber
of

execu
tions

p
er

second
,

of
native

p
rogram

s
and

sanitizer-enabled
program

s.The
colum

n
"Slow

dow
n"

refers
to

the
ratio

of
the

native
speed

to
the

sanitizer
speed.Itis

calculated
by

dividing
the

native
speed

by
the

sanitizer
speed.

✗
indicates

a
com

pilation
failure.

Program
s

N
ative

A
San

D
ebloat

U
B

San
M

San

Speed
Speed

Slow
dow

n
Speed

Slow
dow

n
Speed

Slow
dow

n
Speed

Slow
dow

n

im
ginfo

2,
9

6
4

8
6

9
3.

4
9

0
7

3.
3

1,
9

6
8

1.
5

4
3

6
8.

4

infotocap
2,

6
7

6
6

8
5

3.
9

✗
✗

1,
9

6
2

1.
4

4
3

6
2.

1

jhead
2,

9
6

3
8

5
9

3.
5

8
8

8
3.

3
2,

6
5

2
1.

1
4

5
6

6.
1

m
p

3gain
1,

4
8

8
6

2
7

2.
4

6
3

4
2.

4
9

1
7

1.
6

4
2

3
5.

3

m
p

4
2aac

1,
9

1
7

4
7

2
4.

1
✗

✗
6

8
2

2.
8

4
2

4
6.

1

m
ujs

1,
4

9
1

4
2

5
3.

5
4

4
0

3.
4

6
8

5
2.

2
4

2
3

5.
9

nm
2,

2
0

9
5

8
6

3.
8

✗
✗

1,
5

9
7

1.
4

4
3

5
0.

8

objdum
p

5
7

3
2

1
2

2.
7

✗
✗

2
5

0
2.

3
3

8
1

5.
1

pdftotext
4

1
0

1
5

1
2.

7
✗

✗
1

9
2

2.
1

3
5

1
1.

7

tcpdum
p

1,
7

5
4

4
3

2
4.

1
4

9
3

3.
6

5
6

1
3.

1
4

2
4

2.
0

tiffsplit
2,

0
9

3
6

6
5

3.
2

✗
✗

1,
2

4
7

1.
7

4
3

4
8.

7

w
av

2sw
f

2,
7

5
7

4
8

6
6.

0
5

1
7

5.
5

1,
2

1
1

2.
5

4
3

6
3.

6

A
verage

1,
9

4
1

5
3

9
3.

6
-

-
1,

1
6

0
2.

0
4

2
4

5.
5

4.1 observation and illustration 87

Table 4.2: Ratio of bugger-triggering inputs.

Programs Executions Bug-triggering Ratio

imginfo 8.4M 92,345 1.1%

infotocap 14.0M 23,784 0.2%

jhead 16.7M 468,202 2.8%

mp3gain 13.9M 105,349 0.8%

mp42aac 4.6M 16 <0.01%

mujs 13.5M 19,134 0.1%

nm 11.6M 517 0.0%

objdump 10.4M 328,546 3.2%

pdftotext 7.3M 1,358 <0.01%

tcpdump 8.6M 10,980 0.1%

tiffsplit 11.6M 23,017 0.2%

wav2swf 7.7M 563,588 7.3%

Average 10.7M 136,403 1.3%

Step (2) Run AFL++ again on the native program to benchmark its running
time on the saved one million inputs. The AFL++ here is slightly modified
to fetch inputs from the disk instead of generating them.

Step (3) Repeat Step(2) on four sanitizer-enabled programs to collect their
running time on the same set of inputs.

We ran the above experiment 10 times and reported the average fuzzing
speed. All experimental settings are the same as our later evaluation in
Section 4.3.1. Table 4.1 presents the average speed, i.e., number of executions
per second, of each program. Compared to native programs, ASan, UBSan,
and MSan averagely reduce the speed by 3.6x, 2.0x, and 45.5x, respectively.
Specifically, ASan reduces the speed by 2.4x∼6.0x, UBSan by 1.1x∼3.1x,
and MSan by 11.7x∼68.4x. Even for the best ASan optimization Debloat,
its improvement over ASan is rather insignificant compared to the native
program. Such huge sanitizer overheads inevitably hinder the fuzzing
throughput. Because sanitizers bring fuzzing a significantly stronger bug-
detection capability, current fuzzers have to bear the following speed loss.

88 decoupling sanitization from fuzzing for low overhead

Suppose that we have a way to reduce or even eliminate sanitizers’ overhead
while still keeping their bug-detection capability, fuzzing would then benefit
significantly from it.

4.1.2 Rareness of Bug-triggering Inputs

Fuzzers typically generate a large body of inputs for a target program. It
is intuitive that bug-triggering inputs are rarely met during fuzzing. To
understand the ratio of bug-triggering inputs to all the generated inputs,
we count the total number of bug-triggering inputs and all generated
inputs during 24 hours of fuzzing. The experimental data is from our later
evaluation in Section 4.3.3.

Table 4.2 lists the number of total generated inputs, the number of bug-
triggering inputs, and the ratio. We can find that averagely only 1.3% of
inputs are bug-triggering. For some programs, it is even rarer. For instance,
on pdftotext, less than 1 out of 104 inputs trigger bugs. We can conclude
that Only a tiny fraction of fuzzer-generated inputs are bug-triggering. Blindly
sanitizing all of them is thus a huge waste of resources.

4.1.3 Illustrative Examples

In this section, we present examples of real-world bugs to demonstrate
that inputs that trigger bugs follow distinct execution paths not seen with
normal inputs, further reinforcing the rationale behind our approach.

Buffer-Overflow. A Buffer-Overflow bug is triggered when buffer access
exceeds the allocated range of stack or heap memory. Figure 4.1 shows a real-
world Buffer-Overflow bug from wav2swf in CVE-2017-11099. The buggy
buffer access is located in line 8. When the two for loops iterate a significant
number of times, the offset pos2+j exceeds the buffer range of dest->data.
The original cause is from the large values of both src->size and fill. But
these unusual data subsequently lead to a unique execution path, i.e., a
long chain of executions {1→ 4→ 7→ 8→ 9→ 8→ 9→ · · · → 4→ 7→
8→ 9→ · · · }. In practice, we observe that data-sensitive bugs like Buffer-
Overflow often accompany control-flow changes that normal executions
do not exercise. Thus, using unique execution path as the indicator for
sanitization can help us encapsulate bug-triggering inputs. The many Buffer-
Overflow bugs identified by Sand in our evaluation will further confirm
this rationale.

4.1 observation and illustration 89

1 int wav_convert2mono(struct WAV *dest, int rate)
2 {
3 ...
4 for(i=0; i < src->size; i += channels) {
5 int j;
6 int pos2 = ((int)pos)*2;
7 for(j=0;j < fill; j += 2) {
8 dest->data[pos2+j+0] = 0;
9 dest->data[pos2+j+1] = src->data[i]+128;

10 }
11 pos += ratio;
12 }
13 ...
14 }

Figure 4.1: A simplified Buffer-Overflow bug from wav2swf in CVE-2017-
11099. Line 8 triggers a buffer overflow when the two for loop iterations
significantly change the buffer offset “pos2+j”.

1 void JBIG2Stream::
2 readTextRegionSeg(Guint segNum, ...)
3 {
4 ...
5 numSyms = 0;
6 for (i = 0; i < nRefSegs; ++i) {
7 if ((seg = findSegment(refSegs[i]))) {
8 if (seg->getType()==jbig2SegSymbol) {
9 numSyms += seg->getSize();

10 } else if (seg->getType() == jbig2Se) {
11 codeTables->append(seg);
12 }
13 ...
14 syms = (JBIG2Bitmap **)gmallocn(numSyms);
15 ...
16 }

Figure 4.2: A simplified Integer-Overflow bug from xpdf (containing pdfto-
text) in CVE-2022-38171. Line 9 triggers an integer overflow in numSyms
when the if branch in line 8 is evaluated to True many times.

90 decoupling sanitization from fuzzing for low overhead

Integer-Overflow. Figure 4.2 shows an Integer-Overflow bug in line 9,
where the variable numSyms overflows its valid range when the if guard
in line 8 is frequently evaluated to true. Although integer overflow is a
locally data-sensitive bug type, it can be identified through unusual control-
flow visits. In this example, the overflowed value in numSyms subsequently
causes a small allocated buffer in line 14, which leads to buffer overflow
and dramatic control-flow changes in the rest of the execution.

Use-of-Uninitialized-Memory. Figure 4.3 shows a Use-of-Uninitialized-
Memory bug in line 24, where the while loop is conditioned on an unini-
tialized memory pointed to by tmp. The buffer tmp is obtained via the
function call to _nc_tic_expand(), which returns an allocated buffer. Nor-
mally, buffer will be initialized either in line 9 or in lines 11 and 13.
The corresponding (partial) execution paths are {7 → 9 → 18 → 24},
{7→ 11→ 18→ 24}, and {7→ 13→ 18→ 24}. Buggy executions, however,
jump from line 7 to line 15 without initializing buffer. The corresponding
buggy execution path is {7 → 15 → 18 → 24}, which is different from all
normal executions.

We have illustrated that both control-flow-related and data-sensitive bugs
can result from/in unusual execution paths. This observation motivates
us to utilize the execution path for determining whether the expensive
sanitizer checks should be invoked.

4.2 approach

This section introduces the design of our new fuzzing framework Sand. Sec-
tion 4.2.1 defines execution path and its proxy approximation, execution pat-
tern. Section 4.2.2 describes our proposed fuzzing framework. Section 4.2.3
clarifies the technical details of the implementation.

4.2.1 Preliminary: Execution Path and its Proxy

Our illustrative bugs exemplify that bug-triggering inputs have unique
execution paths. We formally define the execution path as follows:

Definition 4 (Execution Path). Given an execution E , the execution path of
E is defined as ΠE = [e1, e2, · · · , en], where ei is the unique id of the code edge
executed by E . Note that, ΠE is ordered meaning that ei is executed before ej if
i < j.

4.2 approach 91

1 char *
2
_nc_tic_expand(const char *src, bool tic_format)

3 {
4 static char *buffer;
5 ...
6 buffer = typeRealloc(char, length, buffer);
7 int bufp = 0;
8 if (ch == '%' && REALPRINT(str + 1))
9 buffer[bufp++] = *str++;

10 else if (ch == 128)
11 buffer[bufp++] = '\\';
12 } else if (ch == '\033')
13 buffer[bufp++] = '\\';
14 else
15 bufp += 4;
16 str++;
17 ...
18 return buffer;
19 }
20

21 int fmt_entry(...) {
22 ...
23 char *tmp = _nc_tic_expand(boxchars, 1);
24 while (*tmp != '\0') {
25 ...
26 }
27 }

Figure 4.3: A simplified Use-of-Uninitialized-Memory bug from infotocap
in CVE-2019-17595. The buffer *tmp in line 24 is uninitialized when the
execution jumps from line 7 to line 15.

92 decoupling sanitization from fuzzing for low overhead

Execution path is a temporal transition sequence of all executed code when
executing an input on the target program. It contains the full information
on control-flow visits. For instance, the buggy execution in Figure 4.3
{7→ 15→ 18→ 24} has the execution path as [7, 15, 18, 24]. Execution path
is order-sensitive meaning that [7, 15, 18, 24] ̸= [15, 7, 18, 24]. Unfortunately,
obtaining the execution path of execution is too expensive to be practical in
fuzzing [40, 146]. Since throughput is a key factor in fuzzing effectiveness,
we cannot directly use execution path in fuzzer design. In this thesis, we
propose to use execution pattern as an approximate yet accurate proxy for
the execution path. We define execution pattern as follows:

Definition 5 (Execution Pattern). Given an execution E , the execution pattern
of E is defined as TE = {e1, e2, · · · , em}, where ei ̸= ej(i ̸= j) and ei is the
unique id of the code edge reached by E . Note that, TE is order-insensitive, e.g.,
{e1, e2, e3} = {e2, e3, e1}.

Execution pattern records all executed code edges of an execution. For
instance, the buggy execution in Figure 4.3 {7 → 15 → 18 → 24} has the
execution pattern as {7, 15, 18, 24}. Execution pattern is order-insensitive,
e.g., {7, 15, 18, 24} = {15, 7, 18, 24}. Intuitively, the execution pattern inevitably
loses precision in approximating the execution path. But it still captures
the uniqueness of buggy executions. For the bug in Figure 4.3, normal exe-
cution patterns are {7, 9, 18, 24}, {7, 11, 18, 24}, and {7, 13, 18, 24}. The buggy
execution pattern {7, 15, 18, 24}, although containing no ordering informa-
tion, is distinct from normal ones. Our evaluation in Section 4.3.2 will use
extensive experiments to demonstrate that execution patterns can precisely
encapsulate buggy executions.

An essential benefit of the execution pattern is its ease of acquisition
during fuzzing. Fuzzers like AFL++, by default, utilize an efficient data
structure, bitmap, to collect visited code edges of an execution. Figure 4.4
shows an example of this procedure. The bitmap is initialized to all zeros
for a new execution. For the execution path [5, 3, 9, 7], the corresponding
positions in the bitmap are marked. This bitmap is then used to update a
global coverage map with a logic OR. For the next execution [1, 7, 9, 2], a
similar bitmap is initialized and then marked. The coverage map is then
cumulatively updated to record all code edges visited by all previous execu-
tions. The design of execution pattern allows us to obtain it effortlessly from
the bitmap of execution, as shown in the middle of Figure 4.4. Although
the execution pattern might lose precision in modeling the execution path,
we view it as a trade-off for performance. Furthermore, our evaluation will

4.2 approach 93

{1, 2, 7, 9}

0 1 2 3 4 5 6 7 8 9

[5, 3, 9, 7] 0 0 0 1 0 1 0 1 0 1

[1, 7, 9, 2]

0 0 0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9

Bitmap Coverage map

⇒

⇒

Executions

{3, 5, 7, 9}

[1, 7] 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1⇒
{1, 7}

Execution
Pattern

Figure 4.4: Executions (left) are monitored through bitmaps (middle), which
are used in AFL++ to update the coverage map (right). Our execution
patterns (bottom right) can be derived from these bitmaps.

highlight that execution pattern is accurate enough in encapsulating buggy
executions.

4.2.2 Sanitization-decoupled Fuzzing

Based on the above formalization to execution patterns, we introduce our
new fuzzing framework design. We first describe the general workflow of
a coverage-guided fuzzer (CGF). The gray area in Figure 4.5 outlines the
high-level fuzzing sketch of a CGF. Before fuzzing starts, the fuzzer compiles
the target program with fuzzer instrumentation and/or sanitizers. Then, it fuzzes
the target as follows:

(1) Seed selection. Select one seed from the seed pool according to
predefined strategies.

(2) Mutation. Mutate the seed to generate new test inputs.

(3) Executing on the target program. Execute a test input on the target
program.

(4) Coverage and execution analysis. Collect coverage feedback from the
execution. If the execution increases coverage, save it to the seed pool;
if the execution results in a crash, report the corresponding input as
bug-triggering and save it to the disk; otherwise, discard it.

As one can see, CGFs rely on the execution result of the target program
to detect bugs. In order to maximize bug detection capability, current

94 decoupling sanitization from fuzzing for low overhead

Target
Program

Queue

0 1 0 1 1 1
Coverage Bitmap

Bugs

Unique Execution Pattern

CGF loop

Mutation

Crash ASan
Enabled
Program

New bits MSan
Enabled
Program

Our augmentation

Crash Crash

…

(1)

(2)

(3)

(4)
(5)

Figure 4.5: Sand fuzzing loop.

CGFs usually compile the target program with sanitizers enabled. This
routine significantly slows down fuzzing speed due to the high overhead
of sanitizers.

In this thesis, we tackle this problem by decoupling sanitization from
the conventional fuzzing loop. The green part in Figure 4.5 highlights our
approach. Before fuzzing starts, the fuzzer compiles multiple versions of
the same program: (1) a normally built program without any sanitizer
enabled (denoted as P f uzz), on which the fuzzer performs fuzzing, and (2) a
set of sanitizer-enabled programs, e.g., ASan-enabled program (PASan) and
MSan-enabled program (PMSan). The fuzzer follows the same steps as a
CGF to fuzz the normally built program. But, after each execution of the
target program, we introduce a new step:

(5) Conditional sanitization. Extract the execution pattern of the execution
from its bitmap. If the execution pattern has been observed before, i.e.,
not unique, discard it. Otherwise, the current input is identified as
sanitization-required. The fuzzer executes this input on each sanitizer-
enabled program (PASan, PMSan, etc.) and reports any discovered
crashes.

4.2 approach 95

{3, 5, 7, 9}

{1, 2, 7, 9, 10}

{6, 4, 2, 3, 5}

Execution Pattern

{3, 5, 7, 9}

{1, 2, 7, 9, 10}

{6, 4, 2, 3, 5}

{1, 2, 7, 9, 10}

{3, 5, 7, 9}

(Sanitization-required)

(Sanitization-required)

(Sanitization-required)

Unique

Unique

Unique

Figure 4.6: Out of all eight consecutive executions from top to bottom, three
are identified as unique and require sanitization.

Example. Figure 4.6 illustrates the process of identifying sanitization-
required inputs. Starting from the first execution with pattern {3, 5, 7, 9},
the fuzzer identifies it as a unique execution pattern and thus sanitization-
required. The second execution has the same pattern as before; thus, saniti-
zation is unnecessary. Similarly, the third and fifth executions have unique
patterns not seen before and thus require sanitization. Our hypothesis is
that all input triggering unique bugs also have unique execution patterns.
Assuming that the fifth execution {6, 4, 2, 3, 5} is buggy, the fuzzer can suc-
cessfully identify the bug during sanitization. Since executions holding the
same execution path are likely to have similar semantics, e.g., exercising
the same functionality or triggering the same bug, we only need to sanitize
one buggy execution from the same set of unique execution paths to iden-
tify the bug. In this example, the first time we sanitize the execution with
pattern {6, 4, 2, 3, 5}, we can discover the bug. For all future executions with
the same pattern, they are likely to trigger the same bug and do not need
sanitization. Our evaluation in Section 4.3.3 will support this claim.

This newly introduced conditional sanitization does not alter the stan-
dard fuzzing logic. The execution pattern is obtained from the already-
available bitmap collected on the normally built target program. To deter-
mine whether or not an execution pattern has been observed before, we
use a hash table to store all observed execution patterns (see details in
Section 4.2.3).

Algorithm 5 sketches the implementation pseudo-code of our new fuzzing
framework. In each fuzzing loop (line 1), the fuzzer first selects a seed s

96 decoupling sanitization from fuzzing for low overhead

Algorithm 5: The New Fuzzing Loop of Sand

Input: Seed pool S .
1 while ¬Abort() do
2 s← SelectSeed(S) // Seed selection

3 s′ ← Mutate(s) // Generate input

4 ret, bitmap ← Execute(s′,P f uzz)

5 TE ← GetExecutionPattern(bitmap)
6 if IsUnique (TE) then
7 foreach Psan ∈ {PASan,PMSan, · · · } do
8 retsan ← SanExecute(s′,Psan)

9 if retsan == crash then
10 ret = crash

11

// Our augmentation

if ret == crash then // Crash?

12 save s′ to disk

13 if covers new code then // New coverage?

14 add s′ to S

and mutates it to generate a new input s′ (lines 2-3). Next, it executes the
normally built program P f uzz on the input to collect its execution return
ret and bitmap bitmap (line 4). Then, the fuzzer extracts the execution pat-
tern TE from bitmap (line 5) and determines whether or not this execution
pattern has been observed (line 6). If TE is new, the fuzzer labels it as
sanitization-required and executes each of the available sanitizer-enabled
programs Psan on the input s′ (lines 7-8). Meanwhile, TE will be added to
the hash table. If any execution crashes, meaning the input s′ triggers a bug,
the fuzzer sets the return status to crash (lines 10-11). Finally, the fuzzer
continues the original procedure: save the new input as bug-triggering if
the execution return status is crash (lines 11-12); or queue it to the seed pool
if it increases coverage (lines 13-14).

Our new fuzzing framework decouples sanitization from standard fuzzing
logic. It has the following main advantages:

• Orthogonal to CGFs. We only introduce an orthogonal step to execute
sanitizer-enabled programs on inputs with unique execution patterns.
In theory, any AFL-family fuzzers can be augmented by our approach
without modifying their main fuzzing logic.

4.2 approach 97

Algorithm 6: Identify unique execution patterns

1 IsUnique(TE):

2 cksum ← Hash(TE)
3 if HashTable[cksum] ̸= 1 then

4 HashTable[cksum] = 1

5 return True;

6 return False;

• Sanitizer inclusive. Normally, some sanitizers like ASan and MSan are
mutually exclusive, meaning that they cannot be enabled on the same
program. Current fuzzers can only perform fuzzing on a program with
only one of such sanitizers enabled. In our new framework, multiple
sanitizer-enabled programs can be used for sanitization simultaneously.
We will provide additional technical details in Section 4.2.3 to explain
how we support multiple sanitizers.

• Effective. Our evaluation will show that only a small fraction (averagely
≤ 2%) of inputs have unique execution patterns and require sanitization,
thus significantly improving fuzzing throughput.

• Practical. First, sanitizers are directly used for instrumentation, and thus,
we do not need to change their code base. Second, the only modification
we applied to a fuzzer is the augmented new step after each execution.
Other parts of the fuzzer are not touched.

4.2.3 Implementation

Unique Execution Pattern Analysis. We obtain the execution pattern of
an execution from its bitmap. In our implementation, we use the function
simplify_trace() in AFL++ to achieve this goal. This design and imple-
mentation allow us to efficiently get execution patterns during fuzzing. To
identify unique execution patterns, we calculate checksums of all observed
execution patterns and use a hash map to store them. Algorithm 6 details
the pseudocode of the process. The hash table HashTable is initialized to
all zeros at the start of fuzzing. In our implementation, we use XXH32

98 decoupling sanitization from fuzzing for low overhead

hashing algorithm[158] because of its fast speed. The size of HashTable is
set to 32-bit, which supports a maximum of 4, 294M different checksums.
Our evaluation in Section 4.3.6 demonstrates that the cost of hashing is
negligible, and no instances of hash collision are observed.

Note that normal executions can also have unique execution patterns,
such as the first and third executions in Figure 4.6. Our approach is efficient
as long as the overall ratio of unique execution patterns during fuzzing is
low. As our evaluation in Section 4.3.4 shows, the average ratio is < 2%.

Program Instrumentation in Sand. The fuzz target P f uzz is instrumented
by Sand to include the necessary instrumentation code for coverage col-
lection. Since all the sanitizer-enabled programs are used for sanitization
only, no such instrumentation is needed. Thus, we directly use the LLVM
compiler to compile the program with different sanitizers. Because ASan
and MSan are mutually exclusive, we combine them in Sand. By default,
we use two sanitizer-enabled programs, i.e., ASan/UBSan-enabled program
(PASan/UBSan) and MSan-enabled program (PMSan). To reduce the burden
of invoking PASan/UBSan and PMSan, we utilize the forkserver[161] mode to
create one forkserver to communicate with all sanitizer-enabled programs
efficiently during fuzzing.

4.3 evaluation

We implemented Sand based on AFL++-4.05c [34], the latest version
at the time of implementation. AFL++ is the state-of-the-art grey-box
fuzzer and has been widely used as the baseline fuzzer in many pre-
vious study [12, 84, 100]. Our evaluation first evaluates the accuracy of
execution pattern (Section 4.3.2) in encapsulating buggy executions and
then extensively evaluates the end-to-end fuzzing performance of Sand in
terms of bug-finding (Section 4.3.3), throughput (Section 4.3.4), and code
coverage (Section 4.3.5).

4.3.1 Experimental Setup

Benchmark. We use real-world programs from the benchmarking test
platform UniFuzz for our evaluation. We use the provided seeds from
UniFuzz for all fuzzing campaigns. To maximally understand Sand’s
capability in different sanitizers, we use all three popular sanitizers, i.e.,

4.3 evaluation 99

Table 4.3: All 12 real-world programs from UniFuzzused in the evaluation.

Type Program

Image

imginfo

jhead

tiffsplit

Audio
mp3gain

wav2swf

Video mp42aac

Type Program

Text

infotocap

mujs

pdftotext

Binary
nm

objdump

Network tcpdump

ASan, UBSan, and MSan. Due to the compatibility issue of MSan, we failed
to instrument 8 out of 20 programs with MSan. We thus exclude them from
our evaluation. Our full evaluation is done on the remaining 12 programs.
These programs Table 4.3 lists the details. These programs cover a diverse
range of input types, including image (e.g., imginfo), audio (e.g., wav2swf),
video (e.g., mp42aac), text (e.g., infotocap), binary (e.g., objdump), and
network packet (e.g., tcpdump).

Baseline. Since ASan and UBSan are compatible with each other, we com-
bine them together when building binaries. For each program fuzzed in
Sand, we compile a normally built binary P f uzz and two sanitizer-enabled
binaries, i.e., PASan/UBSan and PMSan.

We choose AFL++ as the baseline fuzzer and use it to fuzz (1) normally
built programs (denoted as “AFL++-Native”), (2) ASan/UBSan-enabled
programs (denoted as “AFL++-ASan/UBSan”), and (3) MSan-enabled pro-
grams (denoted as “AFL++-MSan”). All fuzzers and programs are built
with LLVM-14, the latest stable version at the time of implementation.

To understand if Sand can surpass the existing sanitizer optimiza-
tion schemes, we also choose the state-of-the-art ASan optimization tech-
nique, Debloat [165]. Because Debloat optimizes ASan, it can also be used
together with UBSan. To maximize its bug detection capability, we let
AFL++ to fuzz on Debloat/UBSan-enabled program (denoted as “AFL++-
Debloat/UBSan”). All programs instrumented with Debloat are built with
LLVM-12 because this is the highest LLVM version that Debloat sup-
ports. Since compiling infotocap, mp42aac, nm, objdump, and pdftotext

100 decoupling sanitization from fuzzing for low overhead

Table 4.4: Ratios of inputs that have unique execution patterns. “All” refers
to the ratio of all generated inputs that have unique execution patterns.
“Bug” refers to the ratio of bug-triggering inputs that have unique execution
patterns.Ratios of inputs that have unique execution patterns. “All” refers
to the ratio of all generated inputs that have unique execution patterns.
“Bug” refers to the ratio of bug-triggering inputs that have unique execution
patterns.

Programs All Bug

imginfo 0.22% 72.8%

infotocap 8.11% 98.3%

jhead 1.44% 91.6%

mp3gain 0.18% 98.2%

mp42aac 0.04% 100.0%

mujs 5.34% 99.0%

Programs All Bug

nm 0.35% 100.0%

objdump 1.30% 100.0%

pdftotext 4.82% 100.0%

tcpdump 2.09% 100.0%

tiffsplit 1.17% 99.2%

wav2swf 0.01% 100.0%

Average 2.09% 96.58%

with Debloat results in compilation failures, we exclude them for AFL++-
Debloat/UBSan.

Hardware and Setup. We conduct all experiments on a machine equipped
with an AMD 3990x CPU and 256G memory running Ubuntu 22.04. Follow-
ing Klee’s [65] standard we repeated all experiments 10 times and ran all
fuzzing campaigns for 24 hours. We apply the Mann-Whitney U-test [103]
to our results to understand their statistical significance.

4.3.2 Effectiveness of Execution Pattern

To understand if unique execution patterns can accurately encapsulate
bug-triggering inputs/executions, we extensively analyze all executions
during fuzzing. Specifically, we conduct the following experiments on the
12 programs:

Step (1) Use AFL++ to fuzz the normally built program.

4.3 evaluation 101

Step (2) For each generated input, we first obtain its execution pattern,
then examine whether or not this execution pattern is unique, i.e., has been
observed before.

Step (3) For each input, no matter whether or not its execution pattern
is unique, we run it on ASan- and UBSan-enabled programs to test if it
triggers a bug.

We ran the experiments for 24 hours and repeated them ten times. Because
we need to run through sanitizer-enabled programs for every input in order
to gather a sufficiently large number of inputs, we exclude MSan due to
its deficient speed. With this set of experiments, we want to answer Q1:
out of all executions in Step (2), how many of them are marked as having
unique execution patterns? Q2: out of all bug-triggering inputs/executions
in Step (3), how many of them are also marked as having unique execution
patterns in Step (2)?

The first question Q1 can tell us the ratio of unique execution patterns
during fuzzing. A smaller ratio indicates that sanitization is required less
frequently, resulting in higher speed. The second question Q2 can inform
us how effective the unique execution pattern is in encapsulating bug-
triggering inputs. Table 4.4 shows the result. The second column shows
that, on average, only 2% inputs have unique execution patterns. For more
than half of the programs, the ratio is even below 1%. We can thus con-
clude that Only a small fraction of fuzzer-generated inputs have unique execution
patterns. The third column shows that more than 96% of bug-triggering
inputs have unique execution patterns. This means that if we only pass
inputs with unique execution patterns to sanitizer-enabled programs, we
can successfully sanitize 96% of the buggy inputs. Note that we do not
deduplicate all bug-triggering inputs here; most of them are, in fact, dupli-
cates. Considering the same bug can be triggered multiple times during
fuzzing, 96% accuracy can already ensure, with a high probability, that
no bugs will be missed in practice. Our upcoming evaluation will provide
extensive end-to-end evaluation results to confirm this high precision.

4.3.3 Bug-Finding Capability

Finding bugs is the ultimate goal of fuzzing. In this section, we evaluate the
bug-finding capability of all fuzzers. In particular, we would like to answer
the following two questions:

Q1 Does Sand find more bugs compared to other fuzzers?

102 decoupling sanitization from fuzzing for low overhead

0

5

10
imginfo

0.0

2.5

5.0

7.5
infotocap

X 0.0

2.5

5.0

7.5
jhead

0

5

10

mp3gain

0

2

4
mp42aac

X 0.0

2.5

5.0

7.5

mujs

0

2

4

nm

X 0

2

4
objdump

X 0

2

4

pdftotext

X 0

5

10

15
tcpdump

0

5

10

15
tiffsplit

X 0
5

10
15

wav2swf

AFL-Native AFL++-ASan/UBSan AFL++-Debloat/UBSan AFL++-MSan SAND

Figure 4.7: The number of unique bugs detected by fuzzers across repeti-
tions. ✗indicates a compilation failure.

Table 4.5: The mean number of unique bugs across repetitions. The ✗
indicates a compilation failure. The largest mean numbers are highlighted
in green .

Programs
AFL++-

Sandp-valNative ASan/
UBSan

Debloat/
UBSan MSan

imginfo 0 7.9 7.7 0.4 8.3 0.18

infotocap 0.3 5.1 ✗ 1.7 6.4 0.03

jhead 0.8 5.7 4.8 6.4 7.1 0.03

mp3gain 4.5 8.1 7.9 1.1 7.8 0.71

mp42aac 0 2 ✗ 0 3 0.00

mujs 0 7.9 8.1 2.7 7.8 0.75

nm 0 1.3 ✗ 0 3.5 0.00

objdump 1 4 ✗ 1.2 3.3 1.00

pdftotext 3.1 2.5 ✗ 1 3.7 0.09

tcpdump 0 6.2 6.6 3.5 12.3 0.00

tiffsplit 4.3 7.3 ✗ 2 13.7 0.00

wav2swf 7.2 12.3 12.8 4 16.8 0.03

Average 1.8 5.9 - 2.0 7.8

4.3 evaluation 103

AFL++

AFL++-ASan/UBSan

AFL++-Debloat/UBSan

AFL++-MSan

SAND

14

6 13

12

4 1

7

7

29

6

17

4

34

Figure 4.8: Unique bugs found by fuzzers.

Q2 Does Sand miss any bugs found by other fuzzers?

To answer these questions, we collect all crashes found by each fuzzer.
We triage all crashes according to their root causes to quantify the number
of unique bugs each fuzzer finds. Our deduplication is done with both the
stack frame information from GDB [80] and manual analysis.

Number of Unique Bugs. We plot the number of unique bugs in every
repetition in Figure 4.7. Table 4.5 aggregates the results and reports the
mean number of unique bugs. On average, Sand finds 32% more (7.8) bugs
than the second-best fuzzer (5.9 in AFL++-ASan/UBSan). On 7 out of 12

programs, Sand found more bugs than all other fuzzers with statistical
significance (i.e., p-value < 0.05). On some programs, Sand can cover signif-
icantly more (> 50%) bugs. For instance, on tcpdump, Sand can averagely
find 12.3 bugs, while the next-best fuzzer AFL++-Debloat/UBSan only finds
6.6 bugs. For the remaining five programs, Sand finds statistically the same
(p-value > 0.05) number of unique bugs. In summary, our result answers
Q1: Sand has a significantly stronger bug-finding capability than all other fuzzers.

Compared to AFL++-Native, ASan, as well as Debloat and UBSan, has
positive effects on 11 out of 12 programs. MSan finds fewer bugs on four
programs, which is due to its extremely low fuzzing speed. An interesting
case is pdftotext, where AFL++-Native can detect more bugs than other
fuzzers except for Sand. The main reason is that all bugs in pdftotext can
be triggered without sanitizers, while AFL++-Native has higher throughput
than all other fuzzers. Nevertheless, the overall result confirms the necessity
of using sanitizers during fuzzing.

104 decoupling sanitization from fuzzing for low overhead

Table 4.6: Accumulative number of unique bugs. ✗indicates a compilation
failure. “All” refers to the number of unique bugs found together by all
other fuzzers except for Sand.

Programs
AFL++-

All Sand
Native ASan/

UBSan
Debloat/
UBSan MSan

imginfo 0 10 10 1 11 11

infotocap 1 8 ✗ 3 9 10

jhead 5 9 8 10 10 12

mp3gain 10 12 12 2 12 14

mp42aac 0 2 ✗ 0 2 4

mujs 0 9 9 3 9 10

nm 0 2 ✗ 0 2 7

objdump 1 4 ✗ 2 4 4

pdftotext 5 3 ✗ 3 5 5

tcpdump 0 12 15 9 23 36

tiffsplit 8 9 ✗ 2 11 18

wav2swf 13 22 21 10 22 23

Sum 43 102 - 45 120 154

4.3 evaluation 105

Heap Buffer Overflow
21%

Integer Overflow
27%

Stack Buffer Overflow
2%

Unknown Segmentfault
3%

Null Pointer Dereference
1%

Global Buffer Overflow
3%

Misc. Undefined Behaviors
9%

Memcpy Overlap
1%

Use Of Uninitialized Value
29%

Use After Free
1%

Float Point Exception
1%

Out Of Memory
2%

45

32

5

2

5

41

1

1

4

3

1

Figure 4.9: The distribution of diverse types of bugs found by Sand.

Accumulative Number of Unique Bugs. To understand the overlaps of
bugs found by different fuzzers, we accumulate all unique bugs found by
each fuzzer in each repetition. Figure 4.8 illustrates the unique bug sets of
different fuzzers through a Venn diagram. It shows that Sand covers all bugs
discovered by all other fuzzers. Moreover, Sand finds 34 additional bugs
that all other fuzzers can not cover. Table 4.6 breaks down the total number
of bugs discovered by each fuzzer. Compared to other fuzzers, Sand finds
more bugs on all programs. The second-to-last column “All” lists the total
number of bugs found by all other fuzzers together. Even compared to “All”,
Sand can still find more bugs in each program. On some programs, Sand

can even cover 2x ∼ 3x more bugs. For instance, Sand discovers 2x more
bugs on mp42aac and 3.5x more bugs on nm. In summary, we can answer
Q1 and Q2: Sand does not miss any bugs and can find significantly more bugs.

Number of Unique Bugs Reported by Sanitizer-enabled Programs. Of all
the 154 unique bugs identified by Sand, more than 75% of them are not
detectable on the normally built programs. These bugs are reported after
invoking sanitizer-enabled programs in Sand.

Bug Types. Our approach relies on the control-flow information to identify
sanitizer-required inputs. Our observation, as illustrated with bug examples
in Section 4.1.3, is that data-sensitive bugs like buffer overflow and integer
overflow usually result from/in control-flow changes. Figure 4.9 reports

106 decoupling sanitization from fuzzing for low overhead

im
gin

fo

inf
oto

cap jhe
ad

mp3
ga

in

mp4
2a

ac
mujs nm

ob
jdu

mp

pd
fto

tex
t

tcp
du

mp
tiff

spl
it

wav
2sw

f

Av
era

ge
0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
Th

ro
ug

hp
ut

X X X X X X

AFL++-Native

AFL++-ASan/UBSan AFL++-Debloat/UBSan AFL++-MSan SAND

Figure 4.10: Relative throughput normalized to AFL++-Native. ✗indicates
a compilation failure. "Average" refers to the average throughput of all
programs.

the types of bugs found by Sand. Firstly, Sand can indeed find many
control-flow-related bugs, such as the use of uninitialized memory (45 bugs)
and use after free (2 bugs). The small number of use-after-free bugs is
because they are indeed relatively rare in practice [80]. Secondly, Sand can
find a large number of data-sensitive bugs, such as heap buffer overflow
(32 bugs) and integer overflow (41 bugs). This outstanding result confirms
our assumption that data-sensitive bugs can be captured by control-flow
information. Given that Sand does not miss any bugs and finds both
control-flow and data-sensitive bugs, we can conclude that our approach
generally applies to all kinds of sanitizer-detectable bugs.

False Negatives. Despite the outstanding performance of Sand, we have
no guarantee that Sand can cover all bugs. Theoretically, Sand may have
false negatives where certain bugs are missed. This false negative impact
can be inferred from the mujs performance in Table 4.5, where Sand has a
slightly lower mean number of bugs (7.8) than AFL++-ASan/UBSan (7.9)
and AFL++-Debloat/UBSan (8.1). The reason is that one bug in mujs was
not triggered in all repetitions of Sand, but in all repetitions in the other
two fuzzers. The execution pattern for this bug can sometimes be seen in
normal executions, which leads to the less frequent discovery in Sand. Due
to the stochastic nature of fuzzing, triggering a bug only once is sufficient
for Sand to detect it in practice. Given the overall superior performance of
Sand, we believe that the moderate false negative issue is acceptable and
does not impede its general effectiveness.

4.3 evaluation 107

0 4 8 12 16 20 24
Hours

0
2

5

10

15
R u

ni
qu

e (
%

)
infotocap
mp42aac
objdump
mp3gain
mujs
tiffsplit
pdftotext
tcpdump
nm
wav2swf
jhead
imginfo

Figure 4.11: The trend of Runqiue, i.e., the unique execution pattern ratio,
over time during fuzzing.

4.3.4 Fuzzing Throughput

We now analyze the end-to-end fuzzing throughput, i.e., the total number
of inputs generated and executed during fuzzing. Figure 4.10 shows the
average throughput of each fuzzer normalized to AFL++-Native.

Compared to Sanitizers-enabled Fuzzers. Sand achieves an average of 2.6x,
2.1x, and 150x throughput than AFL++-ASan/UBSan, AFL++-Debloat/UBSan,
and AFL++-MSan, respectively. Moreover, Sand has significantly higher
throughput on all programs. On some of the programs, the speedup rate
is even higher. For instance, on nm, Sand executes 4x and 303x more in-
puts than AFL++-ASan/UBSan and AFL++–MSan, respectively. It is worth
mentioning that Sand is equipped with all three sanitizers, including the slowest
MSan. All other fuzzers, on the other hand, only support one or two sanitizers.

Compared to AFL++-Native. Overall, Sand achieves 75% of AFL++-Native’s
throughput. On 4 out of 12 programs, Sand achieves more than 90% of
AFL++-Native’s throughput. The result shows that Sand successfully increases
the speed of fuzzing on sanitizer-enabled programs to a near-native level.

Unique Execution Pattern Ratio. Intuitively, a smaller unique execution
pattern ratio means that sanitizer-enabled programs are less frequently

108 decoupling sanitization from fuzzing for low overhead

invoked and, consequently, have a higher throughput. To understand how
this ratio changes during fuzzing, we track the unique execution pattern
ratio every 40 seconds. Figure 4.11 plots the results. As expected, at the
start of fuzzing, the ratio is relatively high because many execution patterns
are new. With the fuzzing going on, more and more inputs have duplicate
execution patterns, and thus, the ratio becomes significantly smaller. This
tendency is analogous to the saturation situation of code coverage. Overall,
Sand has less than 2% ratio on 10 out of 12 programs, meaning that only less
than 2% of inputs are fed into sanitizer-enabled programs for sanitization.
Although a slightly higher ratio is observed on infotocap and mujs, these
ratios are eventually all less than 5%. According to the throughput data in
Figure 4.10, Sand has indeed relatively lower speedup rates on these two
programs.

4.3.5 Code Coverage

We use the afl-showmap utility in AFL++ to collect the code coverage.
Table 4.7 presents the average code coverage achieved by each fuzzer on
each program.

Compared to Sanitizers-enabled Fuzzers. Sand achieves statistically higher
code coverage on 9 out of 12 programs. For the other three programs, Sand

has higher code coverage but with no statistical significance. Intuitively,
since Sand has a much higher throughput than all other sanitizer-enabled
fuzzers, Sand executes more inputs and thus achieves higher code coverage.

Compared to AFL++-Native. On 6 out of 12 programs, there is no significant
coverage difference between AFL++-Native and Sand. For the remaining
six programs, Sand achieves almost the same code coverage as AFL++-
Native, with an average of 0.53% less coverage. As analyzed before, Sand

can achieve 75% throughput of AFL++-Native, which accounts for the
coverage drop in some programs. Since bug-finding capability is the golden
measuring metric for fuzzing, although AFL++-Native can achieve relatively
higher code coverage, it has the worst bug-finding rate and thus is less
favorable in practice.

4.3 evaluation 109

Ta
b

le
4.
7:

C
od

e
co

ve
ra

ge
(%

)
of

fu
zz

er
s.

✗
in

d
ic

at
es

a
co

m
p

ila
ti

on
fa

ilu
re

.“
D

if
f”

is
th

e
d

if
fe

re
nc

e
co

m
p

ar
ed

to
A

FL
++

-N
at

iv
e.

T
he

hi
gh

es
t

co
de

co
ve

ra
ge

co
m

pa
re

d
to

A
FL

++
-N

at
iv

e
is

hi
gh

lig
ht

ed
in

gr
ee

n
.

Pr
og

ra
m

s
A

FL
++

-N
at

iv
e

A
FL

++
-

Sa
nd

A
Sa

n/
U

B
Sa

n
D

eb
lo

at
/U

B
Sa

n
M

Sa
n

C
ov

p-
va

l
D

if
f

C
ov

p-
va

l
D

if
f

C
ov

p-
va

l
D

if
f

C
ov

p-
va

l
D

if
f

im
gi

nf
o

1
3

.3
6

11
.8

9
0.

00
-1

.4
7

11
.3

6
0.

00
-2

.0
0

8.
88

0.
00

-4
.4

8
1

2
.9

4
0.

04
-0

.4
2

in
fo

to
ca

p
1

9
.4

2
%

17
.8

5
0.

03
-1

.5
7

✗
✗

14
.0

5
0.

03
-5

.3
7

1
8

.7
4

0.
27

-0
.6

8

jh
ea

d
1

4
.9

6
14

.9
4

0.
37

-0
.0

2
14

.9
0

0.
00

-0
.0

6
14

.8
5

0.
37

-0
.1

1
1

4
.9

6
1.

00
0

.0
0

m
p3

ga
in

4
1

.5
7

38
.5

2
0.

00
-3

.0
5

38
.6

0
0.

00
-2

.9
7

34
.4

7
0.

00
-7

.1
0

3
9

.8
8

0.
00

-1
.6

9

m
p4

2
aa

c
7

.1
5

6.
80

0.
00

-0
.3

5
✗

✗
6.

78
0.

00
-0

.3
7

7
.0

4
0.

16
-0

.1
1

m
uj

s
2

7
.9

7
21

.0
4

0.
00

-6
.9

3
20

.7
9

0.
00

-7
.1

8
21

.1
8

0.
00

-6
.7

9
2

7
.2

6
0.

00
-0

.7
1

nm
7

.8
0

7.
27

0.
00

-0
.5

3
✗

✗
6.

69
0.

00
-1

.1
1

7
.5

3
0.

01
-0

.2
7

ob
jd

um
p

6
.9

8
5.

10
0.

00
-1

.8
8

✗
✗

6.
60

0.
00

-0
.3

8
6

.6
7

0.
00

-0
.3

1

pd
ft

ot
ex

t
1

6
.6

9
13

.0
7

0.
00

-3
.6

2
✗

✗
14

.7
7

0.
00

-1
.9

2
1

5
.1

8
0.

00
-1

.5
1

tc
pd

um
p

1
8

.3
6

16
.7

7
0.

21
-1

.5
9

17
.2

5
0.

38
-1

.1
1

12
.2

0
0.

21
-6

.1
6

1
7

.3
3

0.
47

-1
.0

3

ti
ff

sp
lit

2
0

.9
6

17
.9

3
0.

00
-3

.0
3

✗
✗

13
.3

4
0.

00
-7

.6
2

2
0

.5
9

0.
47

-0
.3

7

w
av

2
sw

f
2

.0
4

1.
96

0.
00

-0
.0

8
1.

89
0.

00
-0

.1
5

1.
60

0.
00

-0
.4

4
2

.0
0

0.
37

-0
.0

4

110 decoupling sanitization from fuzzing for low overhead

Table 4.8: The hash overhead and collision in Sand.

Programs
NoHash Sand-Hash

Speed Speedp-val Overhead Collision
imginfo 3,114 3,100 0.65 0.47% 0

infotocap 3,011 2,982 0.15 0.96% 0

jhead 3,327 3,327 0.94 0.00% 0

mp3gain 1,929 1,915 0.43 0.73% 0

mp42aac 1,702 1,688 0.21 0.87% 0

mujs 1,841 1,812 0.01 0.58% 0

nm 2,421 2,389 0.26 0.36% 0

objdump 1,279 1,266 0.36 0.05% 0

pdftotext 408 405 0.00 0.66% 0

tcpdump 2,018 2,004 0.52 0.73% 0

tiffsplit 2,335 2,334 0.94 0.02% 0

wav2swf 2,830 2,817 0.36 0.48% 0

Average 2,185 2,170 0.74% 0

4.3.6 Hash in Sand

As the Algorithm 5 indicates, Sand utilizes a hash table to store hash
checksums for each execution pattern. In this section, we evaluate the hash
overhead of Sand and the potential hash collision risk in the hash table.

Hash Overhead. We modified Sand to two versions to precisely evaluate
the hash overhead. First, NoHash, where lines 6-11 in Algorithm 5 are
removed so that no hash operations are performed. Second, Sand-Hash,
where lines 8-11 in Algorithm 5 are removed so that hash operations
are performed as the normal Sand, but no sanitizer-enabled programs
are invoked. We use the same random seed for both modified fuzzers to
generate an identical set of inputs on the same initial seed pool. We run
both fuzzers on each program ten times and record the total fuzzing time
on the first one million inputs. The second and third columns in Table 4.8
report the average speed of both fuzzers. On 10 out of 12 programs, both
fuzzers do not have statistically differentiable (p-val < 0.05) speed. Only
on mujs and pdftotext, Sand-Hash is slightly slower at a rate of 1.6% and

4.4 discussion 111

0.7% while averagely Sand-Hash only incurs 0.7% penalty. We can then
conclude that hashing operations in Sand have negligible overhead to fuzzing.

Hash Collision. Hash collision can happen when two different execution
patterns either have the same hash checksum or result in the same index
in the hash table. Because the effectiveness of Sand relies on the accurate
identification of unique execution patterns, hash collisions may potentially
harm the performance. To evaluate the hash collision rate of Sand, we use
the Sand-Hash and expand it to save all execution patterns (rather than
checksums) to disk. When an execution pattern is marked as observed,
we compare this execution pattern with the saved execution pattern byte
to byte. Any difference in the comparison signifies a hash collision. The
last column in Table 4.8 lists the number of hash collisions for the first
one million inputs. The result shows that none hash collision was detected.
The main reason is that unique execution patterns are rare (averagely 2%
according to Section 4.1.2), making the hash table sparse and hard to have
collisions.

4.4 discussion

Compatibility to Other Advanced Fuzzers. Sand does not touch the main
fuzzing logic of a CGF. It is orthogonal to many other fuzzer advances.
For example, new mutation strategies [4, 95], effective seed scheduling
schemes [9, 7], and hybrid fuzzing techniques [58, 137] can all be normally
integrated into a CGF fuzzer, which Sand can further build upon. At a
high level, in the sequence of all mutated inputs during fuzzing, Sand’s
effectiveness depends on the fact that bug-triggering inputs are mostly
likely to have unique execution patterns. Therefore, different mutation
strategies may affect Sand’s performance. To understand Sand’s general
applicability, we port it to an alternative fuzzer MOpt [95], which uses a
different mutation scheduling strategy and can be manually turned on in
AFL++. We include the details in the appendix.

Alternative Test Oracles. Sanitizers essentially provide test oracles for
executions. These test oracles are customized for security vulnerabilities.
In practice, many other test oracles exist for different application scenar-
ios. For instance, when fuzzing Javascript JIT compilers [5], a semantic

112 decoupling sanitization from fuzzing for low overhead

correctness test oracle is usually provided. Differential test oracles are ap-
plied to find incorrect outputs, such as wrong implementations [119] and
platform-dependent divergences [164]. All these test oracles are usually
expensive. Applying our idea to selectively feed inputs into the costly test
oracle checkers could be beneficial and requires further verification and
exploration.

Incompatibility to Coverage-guided Tracing. Our current execution pat-
tern is collected from the coverage bitmap. Some research efforts are trying
to reduce coverage collection overhead, such as HexCite [106] and Un-
Tracer [105]. Such approaches break the coverage map and thus cannot
be used together with Sand. However, we would like to highlight that
the coverage collection overhead is much smaller compared to sanitizers.
Researchers [149] have shown that the latest coverage collection approach
used in AFL++ only brings a median of 15% overhead. Sanitizers like
ASan and MSan can incur 237∼6,836% overhead. Even if these approaches
can entirely eliminate coverage tracing overhead, the overall benefit when
sanitizers are used is small.

Limitations. Despite that Sand brings significant improvement to fuzzing,
it also comes with a few limitations. The first limitation is the gap between
the unique execution pattern ratio and the bug-triggering input ratio. Our
empirical evaluation in Section 4.1.2 has shown that many bug-triggering
input ratios are below 0.5%, which is lower than the average unique exe-
cution pattern ratio of 2%. This gap indicates that there is still space for
improvement. Designing more effective execution abstraction is an inter-
esting future work. The second limitation is that although our evaluation
has confirmed that Sand did not miss any bugs, we can not provide a
theoretical guarantee. It would be interesting and useful to explore sound
execution analysis to eliminate this concern.

4.5 related work

Reducing Sanitizer Overhead. Some research efforts exist to reduce san-
itizer overhead. ASAP [143] removes sanitizer checks to meet a required
performance budget. FuZZan [62] dynamically selects the most optimal
metadata structure for both ASan and MSan to reduce sanitization over-
head fuzzing. SanRazor [163] and Debloat [165] remove redundant sani-
tization checks via either static or dynamic analysis. SanRazor supports

4.5 related work 113

both ASan and UBSan while Debloat only supports ASan. All of these
techniques require significant modifications to sanitizer implementations,
which inevitably hinders their practical adoption. Sand, on the other hand,
uses sanitizers without any modification. This feature further brings the
orthogonality of Sand to these efforts. For instance, we can replace the
ASan-enabled program with Debloat-enabled program to benefit from the
improvement of Debloat.

Bug Pattern. Igor [63] observes that all bug-triggering inputs have some
unusual execution behavior. For specific bug types, UAFL [145] intuitively
prioritizes memory operations of longer sequences to detect User-After-
Free bugs effectively. Dowser [51] selectively checks instructions that access
arrays in a loop for discovering buffer overflow bugs. ParmeSan [116]
leverages the knowledge from sanitizer instrumentations to discover certain
types of bugs faster. Our PGE [76] finds that bug-triggering executions
correlate with execution prefixes. At a high level, the findings or insights
behind these approaches share similar motivations to our execution pattern,
i.e., bug-triggering inputs tend to have unique execution features.

Improving Fuzzing Performance. These related efforts have been previ-
ously discussed in Section 3.5 of Chapter 3.

Part II

R E L I A B I L I T Y O F C O D E A N A LY S I S

5
F I N D I N G B U G S I N S A N I T I Z E R I M P L E M E N TAT I O N S

Sanitizers are crucial in enabling the large-scale detection of security vul-
nerabilities caused by certain undefined behaviors [131, 132], such as buffer
overflow, use after free, etc. The most commonly used sanitizers include
Address Sanitizer (ASan) [130] for memory access errors, Undefined Behav-
ior Sanitizer (UBSan) [88] for various undefined behaviors, and Memory
Sanitizer (MSan) [136] for uninitialized memory uses. While substantial
research and engineering efforts have been made toward devising efficient
fuzzers [105, 106] and reducing sanitizer costs [62, 163, 165], the reliability
of sanitizers — essential for detection effectiveness — have received little
attention from both academia and industry.

In this chapter, we aim to validate sanitizer implementations by detecting
bugs in them. Specifically, we are interested in false negative (FN) bugs,
where sanitizers fail to report undefined behaviors in the target program
due to their own implementation issues. False negative bugs in sanitizers
can significantly break their overall detection effectiveness and thus be
considered highly harmful. Despite its criticality and importance, to the best
of our knowledge, no work has systematically investigated this problem.

The work in the chapter was published in [78].

Key idea. We introduce the first effective testing framework, UBfuzz, for
finding FN bugs in sanitizers. At a high level, the general testing workflow is
(1) generating a UB program, i.e., a program exhibiting undefined behavior,
and (2) compiling it with sanitizers and executing the compiled binary. If
no sanitizer report on a UB program is produced, a potential sanitizer bug
is detected. Two main challenges exist, which we will discuss next.

Challenge 1: UB program generation.
In order to detect FN bugs, abundant and diverse UB programs should be
available. The automated generation of valid programs for compiler testing
has been extensively researched. Tools like Csmith [159] can generate a wide
variety of valid C programs that are free from UB. However, the generation
of programs exhibiting various types of UB, which is essential for sanitizer
testing, remains unexplored. For instance, to test ASan, programs with
memory safety bugs such as buffer-overflow, use-after-free, use-after-scope,
etc., are needed. One might consider randomly mutating a valid program,

117

118 finding bugs in sanitizer implementations

for example, deleting statements or altering variable values, to introduce
UBs. As we will demonstrate in our evaluation in Section 5.3.3, this naive
mutation-based method is ineffective in generating UB programs—most
of the mutated programs do not have UB. Furthermore, the generated
programs encompass only a few UB types and are unable to find any FN
bugs in sanitizers.

Our solution: Shadow Statement Insertion.
We propose a general approach for introducing UB into a valid program.
Given a program and a target UB such as buffer overflow, our approach
first applies static and dynamic analysis to learn the program’s runtime
state and identify a specific program location where the target UB can be
introduced. Subsequently, we insert a new statement into the program such
that the chosen program location triggers a UB. We term our approach
shadow statement insertion. For instance, the original program of Figure 1.4
does not have line 7 and is thus free of UB. To introduce a buffer overflow,
our tool analyzes the code and identifies that the pointer d points to the
stack buffer b of size 8 bytes. It then inserts k=2 to overflow the buffer access
at line 8. As will be detailed in Section 5.2, following the same framework,
our design can be generalized to other UB types.

Challenge 2: Compiler optimization significantly complicates sanitizer testing.
Given an input UB program, a natural approach is to examine whether a
compiler’s sanitizer such as “gcc -O2 -fsanitize =address” can detect
the UB. If no report is produced, one might assume that “a sanitizer FN
bug is discovered”. However, this is not true due to compiler optimizations.

Sanitizers are implemented as passes in the compilers’ pipeline. Fig-
ure 5.1 illustrates the high-level pipeline in GCC compilation with ASan
enabled. The ASan pass collaborates with other optimizer passes to compile
a program. Previous research [61, 152] has shown that compiler optimizers
always presume that the input program does not contain UB, resulting in
the elimination of certain UBs by optimizer passes. Figure 5.2 provides an
example where both d[1]=1 at line 4 and *b at line 5 trigger stack-buffer-
overflow UB. Nonetheless, if we compile it with ASan at -O2 (gcc -O2

-fsanitize=address), no UB report will be produced. Different from the pre-
vious example in Figure 1.4, this is not a sanitizer bug. The reason is that early
optimization passes at GCC -O2 optimize away all the UB code, as depicted
on the right side of Figure 5.2. Since there is no UB present in the input IR
to the ASan pass, ASan cannot uncover the UB in the source code. As there
is no UB in the final compiled binary, ASan is not considered buggy in this
example.

finding bugs in sanitizer implementations 119

Source

Code

gcc

frontend

Optimizer

passes

ASan

pass BackendOptimizer

passes
BinaryIR IR IR IR

Figure 5.1: The high level compilation pipeline of ASan in GCC/gcc.

⟹GCC -O2

Figure 5.2: GCC -O2 optimizes away the UB code, thus ASan cannot discover
the UB.

A natural follow-up question is can we only consider unoptimized compilers
such as with -O0? The answer is no for two main reasons. First, even with
-O0, some basic optimizations, such as constant folding, may still optimize
away the UB code. Second, many sanitizer FN bugs only exist at higher
optimization levels, as demonstrated in Figure 1.4. Testing sanitizers only
at -O0 may fail to detect many critical FN bugs. In practice, a lot of existing
real-world use cases use sanitizers with optimizations to obtain high binary
execution speed. For example, Google Chrome recommends turning on
sanitizers with optimizations in release mode. The OSS-Fuzz project [49],
which is a continuous fuzzing platform for open-source projects and has
more than 8k stars on GitHub as of today, by default uses sanitizers with
-O1 to fuzz all projects.

Similarly, differential testing across different compilers is ineffective as
it is impossible to determine whether a discrepant report is caused by a
sanitizer FN bug or merely due to compiler optimizations. For instance,
although GCC ASan at -O0 and -O2 produce different results in both
Figure 1.4 and 5.2, the latter is caused by compiler optimizations.

Our solution: Crash-site mapping as the test oracle.
We introduce a novel test oracle, crash-site mapping, to accurately discern
whether discrepant sanitizer reports stem from sanitizer FN bugs or com-
piler optimizations. Given two binaries, bc and bn, compiled by two compil-
ers such as GCC ASan at -O0 and -O2, executing bc results in a crash while
executing bn exits normally. Here, the crash of bc means that the sanitizer

120 finding bugs in sanitizer implementations

successfully reports the UB, while the normal exit of bn means that the
sanitizer does not report the UB. Our primary approach involves using a
debugger to trace the execution of both binaries. If the crash location in bc
is also executed by bn, we can infer that the compiler does not eliminate
the UB, and thus, it is highly probable that a sanitizer FN bug is present. A
more detailed example will be provided in Section 5.1. As our evaluation
will demonstrate, our crash-site mapping oracle can effectively identify
discrepancies caused by compiler optimizations.

We realized our solutions in a tool named UBfuzz. It can automatically
generate a substantial number of UB programs and accurately identify
sanitizer FN bugs. The example we showcased in Figure 1.4 was found by
UBfuzz. We reported this FN bug to the GCC team, who confirmed and
fixed it. The root cause is that in some cases, GCC ASan would “forget”
to insert checks to specific memory accesses, thus resulting in missed UB
reports. During a five-month testing period, UBfuzz uncovered a total of 31

new FN bugs in ASan, UBSan, and MSan from both GCC and LLVM.

Main contributions. In summary, we make the following contributions:

• We introduce a general approach, Shadow Statement Insertion, for gener-
ating UB programs.

• We design crash-site mapping as an effective oracle for sanitizer testing.

• Based on the proposed UB generator and test oracle, we develop the
automated tool UBfuzz for testing sanitizers.

• We report our extensive evaluation of UBfuzz, which successfully iden-
tified 31 sanitizer FN bugs.

The artifact for UBfuzz, including all source code and data, is perma-
nently available [75].

5.1 illustrative examples

This section illustrates (1) how UBfuzz generates UB programs for a target
UB, and (2) how our crash-site mapping test oracle works.

5.1.1 UB Program Generation

The uncolored (black) code in Figure 5.3 is the seed program. We now
demonstrate how we mutate this seed program to the UB program in

5.1 illustrative examples 121

1 struct a { int x };
2 struct a b[2];
3 struct a *c = b, *d = b;
4 int k = 0;
5 int main() {

LOG_BufRange(&b[0], sizeof(b)); 1⃝

6 *c = *b;

k = 2; 3⃝
LOG_BufAccess(d+k); 2⃝

7 *c = *(d+k);
8 return c->x;
9 }

Figure 5.3: Code instrumentation for UB insertion.

Figure 1.4, with the goal of introducing a stack-buffer-overflow UB. Our
generator works as follows:
Step 1. Insert profiling statements for all stack buffers. Since there is only
one global stack buffer b[2] in this seed program, a single profiling state-
ment is inserted as indicated by 1⃝. Next, identify all code constructs with
the potential to exhibit the target UB. Given that our target UB is stack-
buffer-overflow, we statically locate all memory accesses. All the pointer
dereferences *b, *c, and *(d+k) at lines 6 and 7 are eligible. For the simplic-
ity of presentation, we only show the profiling statement 2⃝ for *(d+k).

Step 2. After the instrumentation, we compile and execute the code to
obtain its runtime information, including the memory range of buffer b and
the memory address of d+k.

Step 3. To introduce a stack-buffer-overflow for *(d+k) at line 7, we mutate
the value of k such that it overflows the pointed-to buffer. Since we have
learned that the buffer b has a size of 8 bytes and d points to the starting
location of b, we insert the shadow statement k=2 3⃝ to introduce a stack-
buffer-overflow at line 7. One might question whether setting k to an
arbitrarily large enough value would also introduce a buffer overflow.
However, due to the design limitation of ASan, it can only detect overflows
of up to 32 bytes. Consequently, the valid range of overflowed addresses

122 finding bugs in sanitizer implementations

... #line,offset
andl %r8d, %esi #10,8
movq %rax, %rdi #10,8
callq 0x10e0 #10,8

a. The last three executed instruc-
tions in bc.

movq ptr(%rip),%rax #10,3
movl $0xfff,(%rax) #10,8

b. The executed instructions are
from line 10 in bn.

Figure 5.4: Partial executed instructions in bc and bn. The comment shows
the corresponding line and offset in the source code.

falls between 8 ∼ 32 bytes beyond b. Our precise runtime analysis enables
us to precisely mutate d+k such that it falls within this range.

Finally, all logging statements 1⃝ 2⃝ are removed while the shadow state-
ment 3⃝ is kept. The resulting UB program is identical to the one presented
in Figure 1.4.

5.1.2 Crash-Site Mapping as the Test Oracle

After a UB program is generated, we use at least two compilers with
sanitizer enabled to compile it. We then execute the compiled binaries to
examine whether there is a discrepant report. If one of the binaries crashes
while the other does not, we need to determine if the discrepancy is caused
by compiler optimizations. We refer to the crashing binary as bc and the
non-crashing binary as bn. For the code snippet in Figure 5.3, bc is compiled
by GCC ASan at -O0, while bn is from -O2. Our crash-site mapping works
as follows:
Step 1. Analyze bc: We utilize a debugger6 to track the execution of bc and
obtain the last executed site, i.e., the crash-site. Figure 5.4a shows the last
three executed instructions of bc, the last of which indicates the crash-site
is at (line 10, offset 8). This means that executing the instruction compiled
from (line 10, offset 8) in the source code results in a crash, i.e., a sanitizer
report.

Step 2. Analyze bn: Once again, we use the debugger to track the execution
of bn. Since we have learned the crash-site in Step 1, we only need to
monitor if the crash-site is also executed in bn. Figure 5.4b shows a part of

6 In our implementation, we use LLDB and its Python API to automate our analysis. More
details in the evaluation section.

5.1 illustrative examples 123

Ta
b

le
5.
1:

U
B

co
nd

it
io

ns
an

d
sh

ad
ow

st
at

em
en

ts
.

T
he

fi
rs

t
th

re
e

co
lu

m
ns

d
es

cr
ib

e
th

e
co

nd
it

io
ns

fo
r

ce
rt

ai
n

co
d

e
co

ns
tr

u
ct

s
no

t
to

ha
ve

th
e

ta
rg

et
U

B
.

T
he

fo
u

rt
h

co
lu

m
n

d
em

on
st

ra
te

s
th

e
lo

ca
ti

on
w

he
re

ou
r

sh
ad

ow
st

at
em

en
ts

w
ill

be
in

se
rt

ed
.T

he
fif

th
co

lu
m

n
pr

es
en

ts
th

e
ef

fe
ct

of
ea

ch
sh

ad
ow

st
at

em
en

t.
T

he
la

st
co

lu
m

n
lis

ts
th

e
in

st
an

tia
tio

n
of

ea
ch

sh
ad

ow
st

at
em

en
ti

n
ou

r
im

pl
em

en
ta

tio
n.

H
er

e,
x,

x̂,
y,

ŷ,
ĉ

ar
e

(n
+

1)
-b

it
in

te
ge

rs
;p

,q
ar

e

po
in

te
rs

;a
is

an
ar

ra
y

w
it

h
ca

pa
ci

ty
A

r
r

a
y

Si
z

e
(a

);
lh

s
va

l
−→

rh
s

re
pr

es
en

ts
th

e
va

lu
e

of
lh

s
is

rh
s.

U
B

C
od

e
C

on
st

rc
ut

Su
ffi

ci
en

t
co

nd
it

io
n

fo
r

no
t

ha
vi

ng
th

e
U

B
Sh

ad
ow

St
at

em
en

t
∆

(·)
Ef

fe
ct

of
∆

(·)
In

st
an

ti
at

io
n

Bu
f.

O
ve

rfl
ow

(A
rr

ay
)

a[
x]

0
≤

x
<

A
r

r
a

y
Si

z
e
(a

)
∆
(

x)
;

S
t
m
t
{

a[
x]
}
;

x
va

l
−→

v
an

d
(v

<
0
∨

v
≥

A
r

r
a

y
Si

z
e
(a

))
x̂
=

v
−

x;
S
t
m
t
{

a[
x
+

x̂]
}
;

Bu
f.

O
ve

rfl
ow

(P
oi

nt
er

)
∗p

p
∈

Bu
f
f
e

r
R

a
n

g
e
(p

)
∆
(

p)
;

S
t
m
t
{
∗p

}
;

p
va

l
−→

q
an

d
q

/∈
Bu

f
f
e

r
R

a
n

g
e
(p

)
ĉ
=

q
−

p;
S
t
m
t
{
∗(

p
+

ĉ)
}
;

U
se

A
ft

er
Fr

ee
∗p

∀
fr

ee
(q
),

!a
lia

s(
p,

q)
∆
(

p)
;

S
t
m
t
{
∗p

}
;

p
va

l
−→

q
an

d
q

is
fr

ee
d

fr
ee
(p
);

S
t
m
t
{
∗p

}
;

U
se

A
ft

er
Sc

op
e
∗p

Sc
o

p
e
(∗

p)
∈

Sc
o

p
e
(p

)
∆
(

p)
;

S
t
m
t
{
∗p

}
;

p
va

l
−→

q
an

d
Sc

o
p

e
(∗

q)
ou

t
of

Sc
o

p
e
(p

)
p
=

q;
S
t
m
t
{
∗p

}
;

N
ul

lP
tr

.D
er

ef
.
∗p

p
̸=

N
u

l
l

∆
(

p)
;

S
t
m
t
{
∗p

}
;

p
va

l
−→

N
u

l
l

p
=

0;
S
t
m
t
{
∗p

}
;

In
te

ge
r

O
ve

rfl
ow

x
op

y
x

op
y
∈
[−

2n
,2

n
−

1]
∆
(

x,
y)

;
S
t
m
t
{

x
op

y}
;

x
va

l
−→

v 0
,y

va
l
−→

v 1
an

d
v 0

op
v 1

/∈
[−

2n
,2

n
−

1]
x̂
=

v 0
−

x,
ŷ
=

v 1
−

y;
S
t
m
t
{
(x

+
x̂)

op
(y

+
ŷ)
}

Sh
if

t
O

ve
rfl

ow
x
≪

y
or

x
≫

y
0
≤

y
<

n
∆
(

y)
;

S
t
m
t
{

x
≪

y}
;

y
va

l
−→

v
an

d
v
<

0
∨

v
≥

n
ŷ
=

v
−

y;
S
t
m
t
{

x
≪

(y
+

ŷ)
}
;

D
iv

id
e

by
Z

er
o

x/
y

or
x%

y
y
̸=

0
∆
(

y)
;

S
t
m
t
{

x/
y}

;
y

va
l
−→

0
ŷ
=
−

y;
S
t
m
t
{

x/
(y

+
ŷ)
}
;

U
se

of
U

ni
ni

t.
M

em
or

y
i
f
(

x)
or

w
h
i
l
e
(

x)
x

is
un

in
it

ia
liz

ed
∆
(

x)
;

S
t
m
t
{

x}
;

x
va

l
−→

un
in

it
.m

em
or

y
in

t
x̂;

S
t
m
t
{

x
+

x̂}
;

124 finding bugs in sanitizer implementations

int a[5]; int x=1; int a[5]; int x=1;
a[x] = 1; =⇒ x = 5; //∆(x);

a[x] = 1;

Figure 5.5: The expression x = 5 is inserted as the shadow statement to
introduce a buffer overflow in a[x].

the execution in bn. We can observe that (line 10, offset 8) is executed as
well.

Step 3. Mapping: Since the crash-site from bc is also executed in bn, we
classify this program as triggering a sanitizer FN bug. Otherwise, the
discrepancy would be classified as being caused by compiler optimizations.

For the program shown in Figure 5.2, the crash site from GCC ASan-
O0 is not present in GCC ASan-O2, which indicates that the inconsistent
sanitizer reports are caused by compiler optimizations. Our evaluation
in Section 5.3.4 will demonstrate that crash-site mapping can accurately
identify discrepancies resulting from compiler optimizations.

5.2 approach

We first analyze sufficient conditions for a valid program to be free from
UB, which motivates the design of our shadow statement insertion method.
Then, we introduce the proposed UB program generation approach. Finally,
we present the crash-site mapping as the test oracle for sanitizer testing.

5.2.1 UB Conditions and Shadow Statement

Code constructs that are free of UB. To generate UB programs, we need
first to understand how UB is triggered. The first three columns in Table 5.1
list the conditions for certain code constructs to not have the UB, as specified
in the C standard [14]. For instance, the first shown UB is buffer-overflow.
For an array access a[x] to be free from this UB, the index x should be
positive and less than the array size. Another example is signed integer
overflow. As long as the calculation of x op y falls within the range of
[−2n, 2n − 1], it is free from this UB. We can conclude that for a code
construct that has the adventure of a UB, as long as the given condition is
met, it is free from the UB.

5.2 approach 125

Code constructs that have UB. Since we now understand the conditions
for having UBs in certain code constructs, we can simply find a way to
break the condition to introduce a UB. In this thesis, we utilize shadow
statements to achieve this purpose. For a valid program P that contains a
code construct expr, we introduce a UB by placing a shadow statement
∆(expr) before the code construct as follows:

∆(expr);
Stmt{expr};

The shadow statement ∆(expr) is designed to change the evaluation value
of expr such that when executing Stmt{expr}, the UB condition is triggered.
The fourth and fifth columns in Table 5.1 list the shadow statements and
their effects. For example, to introduce a buffer overflow to a[x], the inserted
shadow statement ∆(x) changes the value of x to v, which is out of the
range of array a. Figure 5.5 illustrates a concrete example where the shadow
statement x = 5 is inserted before the array access.
There are two key questions. The first is how to understand the target effect
of Stmt{expr}. In the above example, we need to know the concrete range of
array a, which our generator uses dynamic analysis to obtain. The second is
how to instantiate the shadow statement. Once we know the target effect of
Stmt{expr}, there are plenty of ways to instantiate it. In the above example,
we can also choose x = x + 4 or x = x ∗ 4 + 1 as the shadow statement,
which results in the same effect as x = 5. The last column in Table 5.1 lists
the instantiations we used in our implementation. Details will be discussed
next.

5.2.2 UB Program Generator

Algorithm 7 shows the general process of generating UB programs. Given
a seed program P and an associated input I , our goal is to generate UB
programs that contain the target UB type U on the input I . Our generator
works as follows:
Step 1. Expression Matching (line 2): find all expressions in P that have the
target code constructs for the given UB. For example, given buffer overflow,
according to Table 5.1, this procedure will find all array accesses i.e., a[x],
and pointer dereferences i.e., ∗p.

Step 2. Program Profiling (line 3): instrument and run P on the input I to
collect an execution profile that contains the required runtime information
such as the allocated buffers and pointer addresses.

126 finding bugs in sanitizer implementations

Algorithm 7: UB program generation

1 procedure Generator(Program P , Input I , UBType U):
// find all matched expr to a given UB

2 E← GetMatchedExpr(P , U)
3 p̂rof ← Profile(P , I , U , E) // profiling

4 PUB ← []

5 foreach expr ∈ E do
// synthesize a shadow statement

6 ∆(expr)← SynShadowStmt(expr, p̂rof , U)
// insert the shadow statement

7 P ′ ← Insert(P , ∆(expr))
// append the new UB program

8 PUB.append(P ′)

9 return PUB

Step 3. Shadow statement synthesis and insertion (lines 6-7): for each target
expr, query the execution profile to synthesize a shadow statement and
insert it into the seed program to obtain a UB program.

As indicated by the algorithm, our generator has the following features:

• Target UB type needs to be specified when being invoked. For every invoca-
tion, our generator will generate a set of UB programs that all have
the same target UB type.

• Only one UB in every generated program. Lines 6-8 in Algorithm 7 show
that for every matched expression, the generator generates a UB
program with shadow statement insertion. Consequently, there is a
single UB for each generated program.

• Multiple UB programs for one invocation. The for loop (line 5) signifies
that a UB program is generated for each of the matched expressions.
Ultimately, the generator returns a set of UB programs, all containing
the same UB type.

Next, we detail each of the above steps.

5.2 approach 127

5.2.2.1 Expression Matching — GetMatchedExpr(·)

Given a seed program and a target UB, we statically scan the program to
find all expressions that match the code constructs as specified in Table 5.1.
For example, suppose our target UB is signed integer overflow. We will
find all expressions that have the form of x op y, where op is an arithmetic
operator such as +, −, and ∗. After scanning, all matched expressions will
be saved into E, each item in which contains the matched expression and
its location in P .

5.2.2.2 Program Profiling — Profile(·)

An execution profile provides runtime information about the program,
which is essential for our shadow statement synthesis. We define the execu-
tion profile p̂rof as follows.

Definition 6 (Execution Profile). Given a program P , an input I , and the
target expression list E, the execution profile p̂rof records the following information
during running P with I : (1) all the values of expressions in E observed, and (2)
all the allocated and freed stack and heap memory address ranges.

To facilitate easy access to the execution profile, let e denote expr, we
define the following queries to obtain concrete information from p̂rof :

• Qliv(p̂rof , e): return true if e is in the live region; otherwise, return
false. This information is inferred by checking if e has a value in p̂rof .
If it does, then it is located in the live region; otherwise, p̂rof is unable
to obtain its value.

• Qval(p̂rof , e): return the value of e.

• Qmem(p̂rof , e): e is a pointer or an array. Return the memory range that
e points to. If the memory has already been freed, return false.

• Qscp(p̂rof , e): return the scope of e. We extend p̂rof with scope infor-
mation obtained from Clang’s LibTooling.

In our implementation, given a new seed program, we first obtain its
execution profile p̂rof and then synthesize UB programs. Thus, the profiling
overhead for all UB types is identical. This is an implementation choice
because when testing sanitizers, UBfuzz, by default, generates all the
supported UB programs for one seed program.

128 finding bugs in sanitizer implementations

5.2.2.3 Shadow Statement Synthesis and Insertion
— SynShadowStmt(·) & Insert(·)

For a target UB, the synthesized shadow statement should have the effect as
shown in the fifth column in Table 5.1. In theory, there are numerous ways
to instantiate a shadow statement. For instance, as previously illustrated
in Figure 5.5, expressions like x = 5, x = x + 4, x = x ∗ 4 + 1, and many
others, all satisfy the requirement. In our implementation, for each shadow
statement, we choose the simplest instantiation to minimize changes to the
seed program. The last column in Table 5.1 lists the instantiations. Details
are as follows:

• Buffer overflow (array): We introduce an auxilary variable x̂ to the
original expression to obtain a[x + x̂]. ∆(expr) is x̂ = v− x. The value
of v is obtained by calculating the memory size from Qmem(p̂rof , a);
the value of x is obtained via Qval(p̂rof , x). This instantiation does not
change any other program semantics except for our target expression.

• Buffer overflow (pointer): Similarly, we first introduce an auxilary vari-
able x̂ to obtain ∗(p + x̂). ∆(expr) is x̂ = q− p, where values of q and
p are obtained via Qmem(p̂rof , p) and Qval(p̂rof , p), respectively.

• Use after free: ∆(expr) is f ree(p).

• Use after scope: ∆(expr) is p = q, where Qscp(p̂rof , ∗q) is not within the
scope of Qscp(p̂rof , p).

• Null pointer dereference: ∆(expr) is p = (void∗)0.

• Integer overflow: We first introduce auxiliary variables x̂ and ŷ to the
original expression to obtain (x + x̂) op (y + ŷ). Then the shadow
statement is set to x̂ = v0 − x, ŷ = v1 − y. The values of x and y are
obtained via Qval(p̂rof , x) and Qval(p̂rof , y). To find the proper values
v0 and v1, we adopt Monte Carlo to sample from [−2n, 2n − 1] such
that (x + x̂) op (y + ŷ) exceeds the range of an (n + 1)-bit integer.

• Shift overflow: We first introduce an auxiliary variable ŷ to obtain
x ≪ (y + ŷ) or x ≫ (y + ŷ), and then set the shadow statement to
ŷ = v − y. The value of y is obtained via Qval(p̂rof , y) and v is a
random value satisfying v < 0 ∨ ≥ n.

5.2 approach 129

• Divide by zero: We first introduce an auxiliary variable ŷ to obtain
x/(y + ŷ), and then set the shadow statement to ŷ = −y. The value
of y is obtained via Qval(p̂rof , y).

• Use of uninitialized memory: We first introduce an auxiliary variable x̂
to obtain x + x̂, and then set ∆(expr) to int x̂. Since x̂ is uninitialized,
x + x̂ becomes uninitialized as well.

Some of the above operations, such as Buffer overflow (pointer), need to
know the precise pointer information to synthesize shadow statements
accurately. Such pointer information can be obtained via Qmem(p̂rof , e),
which achieves this goal by logging all allocated pointers’ addresses and
used pointers (see the example in Section 5.1.1 Step 1). Thus, we do not
need any separate pointer analysis.

5.2.2.4 Discussions

As the evaluation will demonstrate, our generator can effectively generate
interesting UB programs for sanitizer testing. Despite its effectiveness, it
also comes with certain limitations. First, our UB program generator relies
on seed programs. If seed programs are not expressive enough, UBfuzz

cannot generate useful UBs. Fortunately, seed program generators like
Csmith have proven effective in exercising rich language features [66, 159].
Second, the list of UB in UBfuzz is non-exhaustive. The C17 standard [14]
lists 219 UB types. Not all UBs are supported by sanitizers. We selected
UBs that are (1) supported by at least one sanitizer and (2) included in
the CWE list [113], which enumerates all common weaknesses in C by the
MITRE community. Our supported UBs cover all UBs studied by the related
work [61, 152]. Generally, each UB comes with a root cause and can be
represented in a generic pattern, as demonstrated in our approach. For
instance, using pointer subtraction to determine size is UB if two pointers
point to different objects [110]. Realizing this UB in UBfuzz would require
knowledge of the address ranges of each object and pointer, which can be
easily obtained through dynamic profiling. We chose not to realize this UB
because none of the existing sanitizers support its detection.

For each seed program, as a new UB is introduced, its semantics is conse-
quently altered. We clarify that preserving the seed program’s semantics
is not necessary in our application scenario because we only require the
resulting program to contain the desired UB. Second, all UB programs
have invalid, often nondeterministic semantics because (1) their semantics
rely on how the compiler deals with UBs, and (2) the compiler has full

130 finding bugs in sanitizer implementations

Algorithm 8: Crash-Site Mapping

1 procedure IsBug(Binary bc, Binary bn):
2 Sc ← GetExecutedSites(bc)

3 Sn ← GetExecutedSites(bn)

4 if Sc[−1] ∈ Sn then
5 return True

6 else
7 return False

8 procedure GetExecutedSites(Binary b):
9 S← []

10 debugger.Init(b)
11 while debugger.IsAlive() do
12 l ← debugger.curr_line
13 o ← debugger.curr_o f f set
14 S.append((l, o))
15 debugger.NextInstruction()

16 return S

freedom in handling code with UBs. Nevertheless, UBFuzz still preserves
the runtime semantics of a seed program up to the mutation site.

5.2.3 Crash-site Mapping as the Test Oracle

With the generated UB programs, we employ differential testing across
multiple compilers to find sanitizer FN bugs. Without loss of generality,
assume that we have two compilers Cc and Cn with the same sanitizer
enabled, e.g., GCC ASan at -O1 and LLVM ASan at -O1. The corresponding
compiled binaries are bc and bn. Suppose that executing bc results in a
crash while bn exits normally. Here, the crash in bc means that the sanitizer
in Cc successfully reports the UB; the normal exits of bn means that the
sanitizer in Cn does not report any UB. As analyzed at the beginning of
this chapter, the discrepancy can arise from a sanitizer FN bug or merely
compiler optimizations. Our crash-site mapping can identify the true cause
of the discrepancy. Before introducing our approach, we formally define
crash site.

5.3 empirical evaluation 131

Table 5.2: UB types supported by each sanitizer.

UB Sanitizer

Buf. Overflow(Array) ASan, UBSan

Buf. Overflow(Pointer) ASan

Use After Free ASan

Use After Scope ASan

Null Ptr. Deref. UBSan

UB Sanitizer

Integer Overflow UBSan

Shift Overflow UBSan

Divide by Zero UBSan
Use of Uninit.
Memory MSan

Definition 7 (Crash Site). A binary bi is compiled from program P and running
bi results in a crash. We denote the last executed instruction as înst. If înst
corresponds to the line l and offset o in P , then the crash site of bi is (l, o).

Our key insight is that if the crash site in bc is also executed by bn, the
compiler Cn does not optimize away the UB-triggering expression in P ;
thus the discrepancy is caused by a sanitizer FN bug in Cn. Algorithm 8

details our approach.
We first obtain the executed sites of both bc and bn, i.e., all the executed

(line, offset) in P (line 2-3). If the last executed site in bc, i.e., the crash
site, is also present in bn’s executed sites, return true (line 4-5). Otherwise,
return false (line 7). To obtain all executed sites in a binary, we utilize a
debugger to track the execution. The procedure GetExecutedSites() provides
the necessary steps. Note that when the debugger reaches an instruction,
the debugger.curr_line and debugger.curr_offset return the line and offset in
the source program that the instruction corresponds to. The effectiveness
of crash-site mapping depends on its accuracy in identifying discrepancies
caused by compiler optimizations. Our evaluation in Section 5.3.4 will show
that it can achieve near-perfect accuracy.

5.3 empirical evaluation

Our evaluation is based on the following research questions:
RQ1 Bug-finding: Is UBfuzz effective in finding FN bugs in sanitizers?

RQ2 UB generator: How effective is our UB program generator in con-
structing interesting UB programs?

132 finding bugs in sanitizer implementations

RQ3 Crash-site mapping: How accurate is the crash-site mapping test
oracle in identifying discrepancies caused by compiler optimizations?

RQ4 Code coverage: Can UBfuzz improve code coverage?

5.3.1 Implementation and Evaluation Setup

Implementation. Our realization of UBfuzz consists of ∼2,000 lines of C++
and ∼4,400 lines of Python. We use Clang’s LibTooling [81] to implement
expression matching in Section 5.2.2.1 and program instrumentation for
execution profiling in Section 5.2.2.2. We utilize LLDB [87] as the debugger
in crash-site mapping and use its Python API to automate the analysis
process. Our UBfuzz can run in a fully automated manner in testing
sanitizers, including UB program generation, crash-site mapping, and de-
bugging procedures. Once launched, our tool will automatically generate
UB programs and use the crash-site mapping algorithm to find FN bugs.

Compilers and sanitizers. Sanitizers are integrated into compilers. We used
UBfuzz to test the latest development versions of both GCC and LLVM,
which support the most widely-used sanitizers, namely ASan, UBSan, and
MSan. Note that MSan is not yet supported by GCC. Since sanitizers are
typically used with optimizations, we enabled the most frequently used
optimization levels, namely -O0, -O1, -Os, -O2, and -O3, in both compilers
for differential testing.

Seed programs. We use Csmith [159] — a random C program generator —
to produce valid seed programs. There are three main reasons:
(1) Csmith is adopted by a lot of compiler testing work [139, 141, 150] and
has become the de facto default program generator in testing C compilers;

(2) Csmith can generate complex programs with rich features (e.g., pointer
and integer operations), thus offering UBfuzz abundant opportunities to
generate diverse UB programs and

(3) programs generated by Csmith are self-contained, meaning that they
do not take inputs and can be executed.

Hardware. We conducted all our evaluations on two Linux servers running
Ubuntu 20.04 LTS. Both are equipped with an AMD EPYC 7742 64-Core
CPU and 256GB RAM.

5.3 empirical evaluation 133

Table 5.3: Status of the reported bugs in GCC and LLVM.

Status
GCC LLVM

Total

ASan UBSan ASan UBSan MSan

Reported 9 7 6 8 1 31

Confirmed 8 7 2 2 1 20

Fixed 3 3 0 0 0 6

Invalid 1 0 0 0 0 1

Testing process. Our testing process is fully automated and runs continu-
ously. We first use Csmith to generate a well-formed seed program. Then,
for each of the supported UB, we apply UBfuzz to generate UB programs
from the seed. For each of the UB programs, as we know their UB type, we
use compilers with the corresponding sanitizer enabled to compile and run
it. Table 5.2 lists the supported sanitizers for each UB. Once a discrepancy
is found, we apply crash-site mapping to decide if it is a sanitizer FN bug.
If so, we use C-Reduce to reduce the UB program and report the reduced
program to the respective bug tracker. During a period of five months, we
sporadically tested the sanitizers. UBfuzz generated around 130 million
UB programs. Note that since our work focuses on in-house testing, we
assume no adversary is present. Thus, successful sanitization always results
in a crash.

5.3.2 RQ1: Bug Finding

Table 5.3 summarizes the sanitizer bugs we discovered during our testing
period. Overall, we reported 31 bugs. The developers have confirmed 20

of them as previously unknown, real bugs. This highlights the significant
bug-finding capability of UBfuzz. Of all these bugs, 6 of them have been
fixed and all the fixed bugs are in GCC. The relatively high number of
unfixed bugs could be attributed to the fact that many of the reported bugs
are introduced since the launch of sanitizers and affect all stable compiler
versions. Our later analysis will show this fact. We also experienced that
the LLVM developers were less responsive than GCC and mostly only

134 finding bugs in sanitizer implementations

Figure 5.6: Number of bugs trig-
gered by each kind of UB.

1 int a, b;
2 int main() {
3 int *s = &a;
4 for(b=0;b<=3;b++){
5 int i = *s;
6 s = &i;
7 }
8 *s = b;
9 }

Figure 5.7: A use-after-scope UB at
line 8.

labeled our reports as sanitizer bugs without further diagnosis. We are
strict in marking a bug as confirmed — only if the developers have clearly
diagnosed it and responded to us. This causes, although UBfuzz found
nearly the same number of bugs in GCC and LLVM, most confirmed and
all fixed bugs are found in GCC.

Figure 5.6 shows the number of bugs triggered by each kind of UB. Since
both ASan and UBSan support the detection of buffer overflow, we split the
found bugs into BufOverflow (ASan) and BufOverflow (UBSan). We can
observe that buffer overflow programs triggered the most number of bugs
in ASan. Notably, UBfuzz detected bugs in all UB types, which highlights
its strong bug detection capability and the importance of extensively testing
sanitizers. Of the 31 bugs, 29 are sanitizer FN bugs, meaning that sanitizers
failed to detect UBs in them. Interestingly, we also found two bugs that are
not sanitizer FN bugs but rather wrong reports, which means that sanitizers
report a UB but with incorrect report information, such as a wrong UB type
warning.

➤ Are there any false alarms by UBfuzz? We encountered one false alarm
report generated by UBfuzz as indicated by the “Invalid” row in Table 5.3.
The reported program is shown in Figure 5.7. It contains a use-after-scope
at line 8 because s points to an inner scope variable i. GCC ASan at -O3 can
not detect it. Our crash-site mapping can verify that line 8 is still present
at -O3. The GCC developers marked this report as invalid because GCC
-O3 removes the for loop and moves out the inner code, which invalidates

5.3 empirical evaluation 135

Figure 5.8: Number of sanitizer FN bug reports in GCC and LLVM bug
trackers per year.

the use-after-scope UB. This program reveals a limitation of our crash-site
mapping test oracle. Nevertheless, the significant number of reported true
bugs already demonstrates its effectiveness.

➤ How significant are the bug-finding results? To approach this question,
we have conducted a manual analysis of all reported false negative bugs
based on GCC and LLVM bug trackers of sanitizers. We chose GCC-5
(released in 2015) and LLVM-5 (released in 2017) as the earliest versions
because they are the first stable versions that support sanitizers. The re-
sults are shown in Figure 5.8. In the past decade, there were a total of
40 false negative reports on GCC’s sanitizers. Of these 40 bugs, UBfuzz

found 16 (40%). For LLVM, UBfuzz found 14 (58%) out of the 24 bugs.
As an intermediate conclusion, UBfuzz has found a significant number
of interesting bugs in both GCC’s and LLVM’s sanitizers. To further un-
derstand the influence of our reported bugs in different stable releases of
compilers, we also ran the UB programs that accompany our bug reports
on all stable compiler versions. Figure 5.9 presents the number of sanitizer
bugs that affect each stable compiler version. It indicates that UBfuzz can
find many long-standing latent bugs, further confirming the significance of
our bug-finding results.

➤ Affected optimization levels. As shown in Figure 5.10, we counted
the number of bugs that affect each optimization level. The result reveals
that sanitizer bugs affect all optimization levels. Testing only one of the
optimization levels, such as -O0, would miss many bugs that only appear at
other optimization levels. This demonstrates the usefulness of our crash-site
mapping test oracle in identifying sanitizer bugs across optimization levels.
There is no clear tendency on which optimization levels are more sensitive

136 finding bugs in sanitizer implementations

Figure 5.9: Stable compiler versions that are affected by the reported sani-
tizer FN bugs.

Figure 5.10: Affected optimization levels

to sanitizer bugs. It correlates to the fact that sanitizers and compiler
optimizations work independently, as having been shown in Figure 5.1.

5.3.3 RQ2: Effectiveness of UB Program Generator

This section provides an in-depth understanding of the effectiveness of our
UB program generator. Although there is no other UB program generator
that we could compare UBfuzz against, we use the following two generators
as the baseline:

• MUSIC [121] is a program mutator designed for mutation testing.
It mutates a valid program’s abstract syntax tree (AST) to generate
syntactically valid mutants. By design, MUSIC may also generate UB
programs as it has no guarantees regarding program semantics.

• Csmith-NoSafe means that one runs Csmith with its -no-safe-math

option. To avoid UB at runtime, Csmith utilizes many safe wrappers.
For example, it changes all x/y to (y==0?1:x/y) to avoid division-by-
zero. We use its -no-safe-math option to disable all the safe wrappers,
which may introduce UB in the generated programs.

5.3 empirical evaluation 137

Table 5.4: The number of generated UB programs per generator. The “No
UB” column shows the number of generated programs that do not contain
UB. UBfuzz having “-” on this attribute means that all of its generated
programs contain UB.

Generator
UB

Buf.Overflow
(Pointer)

Use After
Free

Use After
Scope

Null Ptr.
Deref

Integer
Overflow

UBfuzz 4,213 3,032 461 2,082 408

MUSIC 27 0 0 1 151

Csmith-NoSafe 0 0 0 0 220

Generator
UB No

UBShift
Overflow

Divide
by Zero

Buf.Overflow
(Array)

Use of
Uninit. Total

UBfuzz 287 329 2,396 664 13,872 -

MUSIC 487 3 26 9 704 13,296

Csmith-NoSafe 5,286 1,899 0 0 7,405 6,595

For each generator, we assess the quantity of each type of UB program
that the respective generator can produce. We also equip the two baseline
generators with the crash-site mapping oracle to test sanitizers.

Generation quantity. We first use Csmith to randomly generate 1,000 seed
programs. For each seed program, we use our generator to generate UB
programs for every UB type that we support. Table 5.4 details the results.
The column “Total” shows that out of the 1,000 seed programs, UBfuzz

generates 13,872 UB programs, averaging 14 UB programs per seed. The
generated programs cover all UB types that we support. Buffer overflow
takes up the most generated UB programs. The reason is that the seeds
from Csmith contain a large number of array and pointer operations, on
which UBfuzz can generate buffer overflow programs. Relatively fewer UB
programs are generated on some of the UB types, such as UseAfterScope
and DividebyZero. The main reason is that the code constructs they require
are stricter than others. For example, DividebyZero can only happen if

138 finding bugs in sanitizer implementations

operators “/” or “%” are present in the live code regions. Comparatively,
NullPtrDeref requires only a pointer dereference such as “∗p”, which
apparently appears more often.

For a fair comparison to UBfuzz, we apply MUSIC to randomly generate
14,000 programs from the 1,000 seeds used by UBfuzz. Then, we utilize
sanitizers7 to compile and analyze these programs to know if each of them
contains UB. Table 5.4 shows that there are only 704 (4%) out of the 14,000

programs containing UB. The other 13,296 (95%) do not contain UB. We now
use Csmith-NoSafe to generate programs. Because Csmith-NoSafe does
not require a seed program, we directly use it to generate 14,000 programs.
Similarly, we use sanitizers to analyze if each of the programs contains
UB. From the last row in Table 5.4, we can find that around half (7,405)
of the programs contain UB. This number is not as high as UBfuzz but
already much better than MUSIC. Notably, all the UB programs are only in
three types, i.e., IntegerOverflow, ShiftOverflow, and DividebyZero. This is
consistent with how Csmith-NoSafe work: it removes safe wrappers around
numeric operations. In summary, UBfuzz can generate the most number of
UB programs and cover the most types of UB. Next, we will use MUSIC
and Csmith-NoSafe as the UB generator to test sanitizers extensively.

Testing sanitizers with MUSIC and Csmith-NoSafe. To understand if UB
programs produced by the baseline generators can also find sanitizer FN
bugs, we replace the generator component in UBfuzz with MUSIC and
Csmith-NoSafe. The crash-site mapping remains unchanged to serve as the
test oracle. During our testing, we let each generator generate around 1

million programs. In the end, we did not find any sanitizer FN bugs. The reason
for the failure of MUSIC could be that most of the generated programs
did not exercise UB. For Csmith-NoSafe, its failure is mainly due to (1) the
narrow range of UB types it can generate and (2) unlike our generator, it
typically introduces multiple UB in a program, which makes it hard to
discover missed sanitizer reports.

Testing sanitizers with the existing UB test suite. The Juliet test suite [109]
released by NIST consists of a collection of UB programs. It is by far the most
comprehensive test suite for UB detectors. To understand if UB programs
from the existing test suite can find sanitizer bugs, we select all the 16,344

7 We run each program with all sanitizers. If a sanitizer reports UB on a program, we use its
report to get its UB type. Note that the programs generated by UBfuzz do not need such
analysis because the design of UBfuzz allows us to know the UB type of each generated
program.

5.3 empirical evaluation 139

UB programs from the Juliet test suite that are detectable by sanitizers.
Instead of using a generator, we directly use all the UB programs from
the test suite as the source of programs. Our results show that none of the
UB programs from the Juliet test suite can find sanitizer FN bugs. This further
confirms the necessity of a UB program generator like ours.

5.3.4 RQ3: Effectiveness of Crash-Site Mapping

For each generated UB program, we apply differential testing to find dis-
crepancies across compilers. We then use our crash-site mapping to deter-
mine if a discrepancy is caused by a sanitizer FN bug or merely compiler
optimizations. For the 13,872 UB programs generated from Section 5.3.3,
we run all the sanitizers specified in the evaluation setup (Section 5.3.1) to
select programs that cause discrepant sanitizer reports. This results in a
total of 6,567 selected programs, nearly half of the generated UB programs.
The substantial number of discrepancy-causing programs highlights (1) the
exceptional quality of our generated UB programs and (2) that without
our crash-site mapping, discerning real sanitizer bug-caused discrepancies
from the 6,567 discrepancies would be practically infeasible. To evaluate the
effectiveness of our crash-site mapping test oracle, we measure its precision
and recall.

Precision: Out of all selected discrepancies, how many are truly caused by sanitizer
bugs? Out of the 6,567 discrepancies, our crash-site mapping selected 58
and dropped the rest 6,505 as invalid. We manually verify each of the
selected discrepancies to see if they are caused by compiler optimizations.
Our manual analysis found that all discrepancies selected by crash-site mapping
are due to sanitizer bugs, which means that our crash-site mapping achieves
perfect precision. Although we have analyzed an invalid report by UBfuzz in
Section 5.3.2, it does not appear in our quantitative evaluation. Thus, we
may conclude that our crash-site mapping has a high precision.

Recall: Out of all sanitizer bug-caused discrepancies, how many are selected?
This measures if our crash-site mapping will miss interesting discrepancies.
Ideally, we should analyze all the dropped discrepancies to verify if any of
them are due to sanitizer bugs. However, this requires a manual analysis of
7,966 discrepancies. To reduce the cost, we randomly sampled 200 dropped
discrepancies by the crash-site mapping and then manually analyzed each
of them. Perhaps surprisingly, after our analysis, we found that none of the
dropped discrepancies were caused by sanitizer bugs. In other words, our

140 finding bugs in sanitizer implementations

Table 5.5: Line coverage (LC), function coverage (FC), and branch coverage
(BC) of GCC and LLVM.

GCC LLVM

LC FC BC LC FC BC

Seeds 63.1% 65.5% 49.4% 30.4% 38.2% 23.3%

MUSIC 63.1% 65.5% 49.4% 30.5% 38.2% 23.4%

Csmith-NoSafe 63.6% 65.5% 50.1% 32.5% 40.2% 24.8%

UBfuzz 63.7% 65.5% 50.8% 31.8% 39.3% 24.3%

crash-site mapping achieves 100% recall on these samples. Since our evaluation
is on sampled data, it is not complete, but it does suggest that crash-site
mapping has a high recall.

Soundness of Crash-Site Mapping: As defined in Definition 7, the crash
site is associated with the source location of the last executed instruction.
The soundness of crash-site mapping largely depends on a reliable mapping
between instructions and source locations. In our implementation, we enable
-g option for all compilations, which enriches the produced binaries with
debugging meta-data. These meta-data can then be utilized by a debugger
to obtain the source location, i.e., (line number, offset), of each instruction.
Although compiler optimizations can remove instructions with their meta-
data, it will not cause the soundness problem in crash-site mapping because
this resides in the scope discussed in Challenge 2 at the beginning of this
chapter. Unfortunately, a recent study [141] has confirmed that bugs in
compilers may lead to incorrect debugging meta-data. Buggy meta-data
can theoretically cause unsound or incorrect crash-site mapping results. For
instance, crash-site mapping can incorrectly flag the existence of an eliminated
crash-site, and thus generate false positive reports. During our extensive
testing period, we did not observe any false positive reports, though. We
believe such compiler bugs to be rare in our testing scenario. Handling
buggy debugging meta-data is an orthogonal research program, and we
assume that the correct meta-data is always used in this work.

5.3 empirical evaluation 141

Table 5.6: Bug category according to root cause analysis.

Category GCC LLVM

No Sanitizer Check 2 2

Incorrect Sanitizer Optimization 5 3

Wrong Red-Zone Buffer 1 1

Incorrect Sanitizer Check 2 7

Incorrect Expression Folding/Shorten 4 1

Incorrect Operation Handling 0 1

Wrong Line Information 2 0

5.3.5 RQ4: Code Coverage

We utilized Gcov and only instrumented sanitizer-related files to collect
coverage in both GCC and LLVM. We used the generated programs from
Section 5.3.3 to profile coverage. Table 5.5 summarizes our results. In all
cases, compared to the seed programs, all generators lead to a moderate
coverage improvement, with UBfuzz and Csmith-NoSafe showing the
largest increase on GCC and LLVM, respectively.

5.3.6 Case Study

In order to understand why sanitizers make mistakes, we categorize all
bugs according to their root causes. The categorization is based on both
our manual analysis and developers’ feedback. Table 5.6 shows the result.
Both GCC and LLVM make some common mistakes. For example, their
sanitizer implementations may conduct “Incorrect Sanitizer Optimization”
causing valid sanitizer checks to be removed. We discuss a selection of
representative bugs in each bug category.

Figure 5.11a: (No Sanitizer Check) This program contains an overflowed
memory access at line 7. Since p_ptr initially points to pointer ptr at line 2,
ptr will point to the overflowed address &buf[3] after line 6. Therefore, a
stack-buffer-overflow occurs at line 7, and then the value 0xfff is written to

142 finding bugs in sanitizer implementations

1 int g, *ptr = &g;
2 int **p_ptr = &ptr;
3 int main() {
4 int buf[3]={1,2,3};
5 *ptr = 1;
6 *p_ptr =&buf[3];
7 *ptr = 0xfff;
8 }

a. GCC ASan at -O1 missed the
buffer overflow access *ptr at
line 7. [44]

1 int a, c;
2 short b;
3 long d;
4 int main() {
5 a = (short)(d == c |
6 b > 9) / 0;
7 return a;
8 }

b. GCC’s UBSan at all levels
missed the DividebyZero at
line 5. [46]

1 void b() {
2 int c[1];
3 c;
4 }
5 int main() {
6 int d[1]={1};
7 int *e = d;
8 a = 0;

9 for(;a<=5;++a){
10 int f[1]={};
11 e = f;
12 a||(b(), 1);
13 }
14 return *e;
15 }

c. GCC’s ASan missed the use after scope
at line 14, where the pointer e points to
an inner scope variable f defined at line
10. [45]

1 volatile int a[5];
2 void b(int x) {
3 if(x)
4 {
5 a[5] = 7;
6 }
7 }
8 int main(){ b(1); }

d. LLVM’s ASan missed
the buffer overflow at
line 4. [91]

1 int main() {
2 int *a = 0;
3 int b[3]={1, 1, 1};
4 ++b[2];
5 ++(*a);
6 }

e. LLVM’s UBSan missed the
null pointer dereference at line
5. [92]

1 int main() {
2 unsigned char a;
3 if (a-1)
4 printf("boom!\n");
5 return 1;
6 }

f. LLVM’s MSan missed the use
of uninitialized memory at line
3. [93]

Figure 5.11: Sample UB programs that trigger sanitizer FN bugs.

5.3 empirical evaluation 143

buf[3]. However, due to a sanitizer instrumentation bug, GCC ASan at -O2
fails to insert the check for the validity of *ptr at line 7, and thus cannot
report it. This bug affects GCC trunk and has been fixed.

Figure 5.11b: (Incorrect Expression Folding/Shorten) This program reveals a
long latent bug in GCC UBSan, which fails to report the DivisionbyZero UB
at line 6. The root cause is that UBSan only cares about integer operands but
not booleans. However, although (d==c|b>9) is boolean, it gets widened to
short. GCC UBSan incorrectly handles this case and thus misses the UB.
This bug has existed since the introduction of UBSan in GCC.

Figure 5.11c: (Incorrect Sanitizer Optimization) This program contains a
UseAfterScope UB at line 14, where e points to an inner scope variable f.
GCC ASan fails to report this bug at -O3. In fact, GCC ASan initially indeed
inserts a scope check for f at line 10, but another sanitizer analysis module
removes this check when exiting the loop.

Figure 5.11d: (Wrong Red-Zone Buffer) This program has an overflowed array
access at line 4, where the array a is of length 5. LLVM ASan incorrectly
marks the overflow access as within the scope of array padding, while, in
fact, it is not. This bug reveals a fundamental problem with ASan handling
of global arrays. It affects all LLVM versions at all optimization levels.

Figure 5.11e: (Incorrect Sanitizer Check) This program contains a NullPoint-
erDereference UB at line 5, where the pointer a is NULL and the program
tries to increment it. LLVM UBSan does not report this bug because the null
pointer check is not placed before the increment operation. The developer
believes that the ++ operator misleads UBSan’s internal logic because if we
replace ++(*a) with *a += 1, UBSan would work again.

Figure 5.11f: (Incorrect Operation Handling) The if branch in this program
can be taken differently depending on the value of uninitialized variable a.
LLVM MSan incorrectly handles the subtraction and thinks that the value
of (a-1) is fully determined. The LLVM developers have confirmed this
bug and are working on a fix.

5.3.7 Discussion on Approach Generality

Despite the fact that sanitizers are the most popular UB detectors, there are
many other dynamic and static UB detection tools. Dynamic tools such as

144 finding bugs in sanitizer implementations

Dr. Memory [13] and Valgrind [107] can detect memory errors, including
buffer overflows, use of uninitialized memory, improper free, etc. Static tools
such as CppCheck [25] and Infer [104] can detect null pointer dereferences,
integer overflows, etc. In principle, our approach can also be used to test
these detectors. We currently focus on sanitizers because they have a wider
real-world impact, especially in the area of fuzzing. Our evaluation results
on testing sanitizers have already confirmed the significant UB program
generation and bug-finding capability of our tool. Extending our testing
scope to other detectors would be an interesting application of our approach
and help solidify these additional tools.

5.4 related work

Compiler Testing. Finding compiler bugs has been extensively studied;
significant research effort has been devoted to testing various compiler
functionalities. Many efforts have been put into studying the generation of
valid programs [17], which can be used for testing compilers. In the scope
of validating sanitizers or bug detectors in general, programs with various
defects, however, are required. UBfuzz can mutate a valid seed program
by injecting various undefined behaviors. Therefore, UBfuzz, in principle,
can benefit from the broader program generation research. We defer the
discussion of current compiler testing research to Section 6.5 in Chapter 6.

Sanitization. ASan and MSan use shadow memory to record and check
the safety of each memory access. Runtime checks are inserted around
memory accesses during the compilation of a program. Similarly, UBSan
uses tailored checks for different UBs, such as overflow checks for addi-
tions and null pointer checks for pointer dereferences. These checks will
inevitably increase a program’s runtime overhead. Many approaches have
been proposed to reduce the overhead by removing redundant checks [163],
optimizing checks [165], or applying checks to only a subset of the original
code [71, 143]. These optimizations are meaningful in improving sanitizers’
practical utility. UBfuzz can also be used to validate their implementations
once they are integrated into mainstream compilers.

Part III

R E L I A B I L I T Y O F C O D E C O M P I L AT I O N

6
B O O S T I N G C O M P I L E R T E S T I N G B Y I N J E C T I N G
R E A L - W O R L D C O D E

Even if developers can write fully correct code or apply powerful code anal-
ysis tools to eliminate all possible bugs from the code, the resulting binary
or executable may still be buggy due to compiler bugs. To improve compil-
ers’ reliability, the community has proposed various testing approaches to
detect compiler bugs. The most representative techniques are (1) random
program generation by featuring a set of generation rules [85, 86, 159]
and (2) EMI-based mutation [66, 139] by mutating a random program
while preserving its run-time behaviors on specific inputs. However, these
rule-based approaches have a common and fundamental limitation: Their
expressiveness is constrained by the underlying rules.

Key idea. In this chapter, we introduce a novel approach for testing opti-
mizing compilers with code from real-world applications. The core idea
is to construct well-formed programs by fusing multiple code snippets
from various real-world projects. The key insight is backed by the fact
that the large volume of real-world code exercises rich syntactical and se-
mantic language features, which current engineering-intensive approaches
like random program generators are hard to fully support. To construct
well-formed programs from real-world code, our approach works by (1) ex-
tracting real-world code at the granularity of function, (2) injecting function
calls into seed programs, and (3) leveraging dynamic execution information
to maintain the semantics and build complex data dependencies between
injected functions and the seed program. With this idea, our approach
complements the existing generators by boosting their expressiveness via
fusing real-world code in a semantics-preserving way.

One may think that why can’t we use real-world code directly for com-
piler testing? First, real-world code is unlikely to trigger observable com-
piler issues directly. Marcozzi et al. [101] studied the impact of miscompila-
tion bugs with 10 million lines of C/C++ code from 309 Debian packages.
They run standard test suites from these packages to identify possible mis-
compilation bugs. Among dozens of studied miscompilation bugs, only one
test failure was observed during a five-month experiment. Such inefficiency
is clearly not suitable for stress-testing compilers. Second, as shown in

147

148 boosting compiler testing by injecting real-world code

Chapter 2, real-world code often contains bugs, e.g., undefined behavior.
Input programs for compiler testing need to be well-formed. Otherwise,
even if a failure, such as incorrect output, is observed, we cannot differen-
tiate whether or not it is caused by undefined behavior or compiler bugs.
Numerous efforts [152, 169] in academia and industry have been made to
detect and remove undefined behavior from real-world code, yet they still
remain unsolved. Last, reducing a project into a simple enough test case
suitable for a bug report is challenging. Non-trivial open-source projects
typically have a large code base. Reduction is necessary for compiler de-
velopers to diagnose and fix bugs. For instance, EMI [66] reported that
although they found inconsistent outputs from real-world code, they were
not able to reduce them.

We implement our idea in a tool, Creal, to test C compilers. In a nine-
month testing period, we have reported 132 bugs to GCC and LLVM, two
of the most popular and well-tested C compilers. At the time of writing, 121

of them have been confirmed as unknown bugs, and 97 of them have been
fixed. Most of these bugs were miscompilations, and many were recognized
as long-latent and critical. Our evaluation results evidently demonstrate the
significant advantage of using real-world code to stress-test compilers. We
believe this idea will benefit the general compiler testing direction and will
be directly applicable to other compilers.

Main contributions. In summary, we make the following contributions:

• We propose injecting real-world code into seed programs to create
diverse, well-formed programs for testing compilers.

• We develop Creal to implement our idea by injecting real-world func-
tions into seed programs. To fuel Creal, we build a function database
containing over 51,000 real-world functions and

• We conduct a nine-month extensive evaluation of Creal to demonstrate
its effectiveness — 132 unique bugs are discovered in widely used
production C compilers: GCC and LLVM.

We believe our idea of injecting real-world code into synthetic programs
offers an exciting and promising technical direction for testing C compiler
implementations and beyond. The artifact for Creal, including all source
code and data, is permanently available [73].

6.1 illustrative examples 149

6.1 illustrative examples

1 // Input: [*, 75, 48] => Output: 2
2 int print_dec(
3 char*buf,int max,unsigned value){
4 int i = 0;
5 if (value == 0) {
6 if (max > 0) {
7 buf[0] = '0';
8 i = 1;
9 }

10 } else while(value && i < max) {
11 buf[i++] = '0' + value % 10;
12 value /= 10;
13 }
14 return i;
15 }

a. A real-world function.

1 int a, b;
2 int main() {
3 int c = 1, d = 0;
4 long j[2];
5 for (a = 0; a < 2; a++) {
6 {
7 //Profile: a={0,1},b={0,1},c={1},d={0}
8 b = d + a;
9 }

10 j[b] = 1;
11 }
12 printf("%d\n", j[0]);
13 }

b. The seed program.

1 int a, b;
2

3 /* A function from FreeBSD.*/
4 int print_dec(
5 char*buf,int max,unsigned value){
6 int i = 0;
7 if (value == 0) {
8 if (max > 0) {
9 buf[0] = '0';

10 i = 1;
11 }
12 } else while(value && i < max) {
13 buf[i++] = '0' + value % 10;
14 value /= 10;
15 }
16 return i;
17 }
18

19 int main() {
20 int c = 1, d = 0;
21 long j[2];
22 for (a = 0; a < 2; a++) {
23 {
24 char h[2] = {0, 0};
25 //replace ``d'' with a function call
26 b = print_dec(h,c+74,d+48)-2+a;
27 }
28 j[b] = 1;
29 }
30 printf("%d\n", j[0]);
31 }

c. Our generated new program.

Figure 6.1: The program in (c) triggered a latent miscompilation bug in
GCC. It is generated by replacing the variable d from line 8 in (b) with
a carefully designed function call to (a). The synthesized function call is
highlighted in gray in (c).

We use a concrete GCC miscompilation bug to illustrate (1) what features
in the injected real-world function trigger the compiler bug, (2) why current
generators and mutators cannot trigger this bug, and (3) how Creal injects
a real-world function into the seed program. Since Csmith [159] is by far
the most powerful and widely used generator for producing generic C

150 boosting compiler testing by injecting real-world code

programs [17, 139], in this thesis, we use Csmith as the seed program gen-
erator. To facilitate our presentation, we only show reduced and simplified
programs.

Figure 6.1c shows a program generated by Creal that triggered a long-
latent GCC miscompilation bug. This program is produced by injecting the
real-world function print_dec shown in Figure 6.1a into the seed program
shown in Figure 6.1b.

➤ Q1: What features in the real-world function are essential to trigger the
bug?
The function “print_dec” is extracted from the FreeBSD project 8. Its defini-
tion can be found in Figure 6.1a. This function converts a decimal integer
“value” into a string and returns its number of digits as i. Now, let us focus
on the program in Figure 6.1c. The function call “print_dec(h, c+74, d+48)”
in line 26 should always return 2 because c+74=75, which is a 2-digit num-
ber. Thus, b = a. The correct output from this program should be 1 as j[0]
is set to 1 in line 28. The executable compiled by GCC at -O3, however,
outputs 13368. The root cause is that when GCC unrolls the “while” loop
in lines 12-15, the complex control flow leads to incorrect memory partition
for arrays j and h. Consequently, values in j are polluted by h and become
incorrect. The complex while loop in “print_dec” is essential to trigger the
bug — removing any expression such as “i<max” (line 12), “value%10” (line
13), or “buf[i++]” (line 13) from the loop cannot trigger the bug.

➤ Q2: Why current generator- and mutator-produced programs cannot
trigger this bug?
As discussed above, the complex “while” loop is the key to triggering the
bug. However, as has discussed before, generators like Csmith can only
generate constant-bounded “for” loops such as

for (i = 0; i < 2; i++) {
...

}

for (i = 0; i != 2; i-=v) {
...

}

Csmith is conservative in generating loops to guarantee termination and
avoid undefined behavior. All the loops are bounded by constant values,
and loop indexes are only modified in the “increment” parts of for loops.
The while loop from the real-world function in Figure 6.1a, on the other
hand, has more features: (1) it has two loop indexes, (2) both loop indexes
are modified in the loop body, and (3) the loop is not constant-bounded.

8 https://github.com/freebsd/freebsd-src/blob/main/contrib/unbound/compat/snprintf.
c

https://github.com/freebsd/freebsd-src/blob/main/contrib/unbound/compat/snprintf.c
https://github.com/freebsd/freebsd-src/blob/main/contrib/unbound/compat/snprintf.c

6.1 illustrative examples 151

The Csmith implementation does not support these features. Consequently,
mutators relying on generators cannot support these features, either.

➤ Q3: How does our approach generate the new program?
Our approach aims to inject real-world function calls into a seed program.
Real-world functions need to be available in the first place. We design
a function extractor to extract and preprocess functions from real-world
projects. Assume that “print_dec()” is the only function we collected. After
collection, we generate a driver function to capture valid input/output pairs
for the function. One possible driver function for print_dec() is

int main () {

char arr[2];

int ret = print_dec(arr, 75, 48);

print("%d\n", ret);

}

Executing the driver function can tell us that when calling the real-world
function with “print_dec(arr, 75, 48)” where arr is pointing to a suffi-
ciently large memory, the return value of “print_dec()” is “2”. This I/O
information will be added along with the static function information into
our function database. For example, the first line in Figure 6.1a indicates
one input/output pair for the function. We apply extensive analysis such
as sanitizers [130] to guarantee that there is no undefined behavior when
calling the function with the cached inputs. More details will be included
in Section 6.3.2.

The resulting program should be well-formed. To this end, we con-
struct an equivalence modulo inputs (EMI) variant when injecting calls, which
means the new program has an input/output behavior identical to the seed
program. For example, the injected call “print_dec(h, c+74, d+48)-2” is
always evaluated to 0 at run-time, which is identical to the replaced variable
“d”. This equivalence guarantees that the resulting new program is also
well-formed as long as both the seed program and the injected function
are well-formed. Specifically, given the seed program in Figure 6.1b, Creal

works as follows:
Step 1. Seed analysis: identify variables or constants after which function

calls can be injected. For example, the variables “d” and “a” from
line 8 in Figure 6.1b are valid candidates. Other valid expressions
include “0” and “2” in line 5, “b” and “1” in line 10, etc.

Step 2. Seed profiling: instrument and profile the program to collect val-
ues of in-scope variables. Suppose that only variable “d” in line

152 boosting compiler testing by injecting real-world code

8 is matched. Since “a,b,c,d” are in-scope variables in line 8, we
collect values of variables a,b,c,d in line 8 with our instrumenta-
tion. As indicated by line 7, the profile includes all run-time values
of these variables: both “a” and “b” have multiple values, while
“c” and “d” have single values.

Step 3. Function call synthesis: synthesize a function call to the real-world
function. Since “d” is selected, our target is to synthesize a function
call that can replace “d” while maintaining the execution seman-
tics. We then (i) Choose a function from the database. We assume
“print_dec()” is chosen. (ii) Synthesize the input parameters to the
chosen function. All input parameters should be identical to the
cached input so that we know the return value from the function
call during synthesis. Because the first parameter of “print_dec()”
is a pointer, we place “char h[2]” ahead of the current statement
as shown in line 24 in Figure 6.1c and use “h” as the first pa-
rameter. We do not use any pointer from the seed program to
avoid modification to the seed program’s memory state. Because
the second and last inputs are 75 and 48, we can simply use
“print_dec(h,75,48)” as the function call. In order to build data
dependency between the seed program and the injected function,
we use in-scope variables as input parameters. For example, since
“c=1” and “d=0”, we use “print_dec(h,c+74,d+48)” as the func-
tion call, which returns the same value as “print_dec(h,75,48)”.
(iii) Return value compensation: compensate the return value of the
function call to cancel its effect. Since “print_dec()” returns 2,
we append “-2” after the function call. The final synthesized ex-
pression is “print_dec(h, c+74, d+48)-2”, which is evaluated to
0=d and thus does not modify the run-time semantics of the seed
program.

The final generated program is shown in Figure 6.1c. The injected function
call builds dependency between the seed program and the real-world
function, bringing the rich features from the real-world function into the
seed program. In practice, Creal will insert more than one function call to
enhance the expressiveness of the final program further.

6.2 approach

This section presents our real-world function injection approach. Sec-
tion 6.2.1 introduces basic concepts about the constructed function database.

6.2 approach 153

Section 6.2.2 describes the high-level algorithmic sketch of our approach.
Sections 6.2.3 to 6.2.5 detail the main steps in the sketch. Section 6.2.6
presents our implementation of Creal.

6.2.1 Function Database

Our approach is driven by real-world functions. We design and build a
function extractor that can automatically extract, transform, and profile
functions from source code files. We defer the technical details of function
database construction to Section 6.3. Let us assume a constructed function
database DF is available. For each function Fi ∈ DF, Fi has the following
key properties:

1. Fi takes only numeric input types and returns a numeric value.

2. Fi does not contain any other function calls.

3. Fi is pure, meaning that Fi has deterministic outputs and has no side
effects.

The first property allows us to avoid passing pointers from the seed
program as input parameters, preventing uncontrolled modifications to the
seed program’s memory state. For the illustrative function “print_dec()”
in Figure 6.1a that takes a pointer as input, we design a transformation
that transforms it into a numeric input-only function. Technical details will
be clarified in Section 6.3.1. To simplify our presentation, we will always
assume that all functions take only numeric input types. The second property
indicates that each function can be compiled and executed independently.
The last property allows us to fully model a function’s semantics by its
input/output pairs.

6.2.2 Algorithmic Sketch

Our high-level idea is to substitute an expression in a seed program with a
function call to a real-world function. The resulting program should have
the same semantics as the seed program. Algorithm 9 presents the general
process of generating a new program by injecting real-world functions into
a seed program P . In general, P should be deterministic, well-formed (e.g.,
absence of undefined behaviors), and can be compiled into an executable.
Given P and an input I to the program, our generator works as follows:

154 boosting compiler testing by injecting real-world code

Algorithm 9: Program generation

1 procedure Generate(Seed Program P , Input I , Function Database DF):

// find all matched expressions expr

2 E ← GetMatchedExpr(P)
// profiling the program at all program locations of E

3 p̂rof ← Profile(P , I , E)
4 F_list← []

5 foreach expr ∈ E do

// decide if this expression needs to be substituted

6 if IsAlive(expr, p̂rof) and FlipCoin() then

// select a function from the database

7 F ← SelectFunction(DF)

// synthesize the function call

8 expr′ ← SynFuncCall(expr, F, p̂rof)

// substitute the original expression with the

function call

9 P ← InsertFunc(P , expr, expr′, F)

10 if F /∈ F_list then

// remember all used F

11 F_list.append(F)

// insert function declarations

12 InsertFuncDecl(P , F_list)

13 return P

6.2 approach 155

Step 1. Expression matching (line 2): find all expressions in the seed pro-
gram P that satisfy a set of predefined criteria (see Section 6.2.3).
These expressions will later be replaced with function calls in a
certain probability.

Step 2. Program profiling (line 3): instrument and run the program P on
input I to collect the execution profile p̂rof , which contains all
the needed run-time information at the program location of each
matched expression. (see Section 6.2.4)

Step 3. Skipping an expression (line 6): for the matched expressions, we do
not aggressively substitute all of them with function calls. First, we
query the execution profile to see if expr is alive, i.e., exists in the
live rather than dead code region. Then, for live expressions, we
do substitution in a certain probability. The function FlipCoin()

returns either true or false. The probability for FlipCoin() to
return true can be configured in our Creal implementation. The
reason why we skip dead code regions is that previous work [67,
139] has shown that mutating on live regions is more likely to
exercise interesting compiler optimizations and trigger bugs.

Step 4. Function selection and function call synthesis (lines 7-8): a function
F ∈ DF is randomly selected. With the execution profile p̂rof , we
know the evaluation results of expr and a set of in-scope vari-
ables. The SynFuncCall procedure will then synthesize a function
call expression that is evaluated to the same value as expr. (see
Section 6.2.5)

Step 5. Function call insertion (lines 9-11): the new expression expr′ with a
function call will replace the original expression expr in P . This
function will also be appended into F_list.

Step 6. Function declaration insertion (line 12): after the iteration is over,
insert the declarations of all used functions to the beginning of P ,
making it to be compilable and executable.

As indicated in the algorithm, the generation happens iteratively over
all matched live expressions. The resulting program contains more than
one real-world function call. For the rest of this section, we will introduce
in detail the three key steps, i.e., expression matching, program profiling, and
function call synthesis.

156 boosting compiler testing by injecting real-world code

S ::= E⊕ ⟨e⟩ | ⟨e⟩ ⊕ E | S′ ⊙ E

E ::= ⟨c⟩ | ⟨v⟩ | ∗ ⟨v⟩ | ⟨v⟩[⟨e⟩]
⟨c⟩ ::= constants

⟨v⟩ ::= variables

⟨e⟩ ::= all expressions in C

⊕ ::= binary operators, e.g., +| − | ∗ |%, etc.

⊙ ::= assignment operators,e.g., = |+ = |∗ =, etc.

S′ ::= left operand of ⊙ (ignored)

Source code
a + b

(a + b) - c

*a + b

a = b + 1

a += b + c[1]

Matched expressions
a, b

a, b, c

*a, b

b, 1

b, c[1]

Figure 6.2: Syntax rules for matching expressions E appearing in S. Note
that, E is of numeric type, such as int.

6.2.3 Expression Matching

Given a seed program P , we statically scan P to find all expressions
where function calls can be injected. Figure 6.2 gives the syntax rules used
for matching target expressions and a set of matched expression examples.
There are two main criteria:

• The expression has to be non-left, i.e., not on the left-hand side of an
assignment expression. This criterion ensures syntactic validity after
we inject a function call. For instance, replacing “a” in “a = b + 1”
with a function call violates the C language specification.

• The expression has a numeric type. Since all functions in the database
have numeric input/output types, we match numeric expressions
only for type compatibility.

A valid expression can contain multiple matched expressions. For exam-
ple, “(a+b)-1” contains three expressions that satisfy our criteria, namely
“a”, “b”, and “1”. Specifically, we match three types of expressions, i.e., (1)
constants, (2) variables having numeric types, and (3) pointer dereferences
or array accesses having numeric types such as “*a” or “c[1]” of type int.

6.2.4 Program Profiling

Program profiling collects the run-time variable values at target program
locations. The target program locations L are a set of lines that contain at
least one matched expression. Let us denote all matched expressions at the
program location l as El and all in-scope variables at l as Vl . It is clear that

6.2 approach 157

all variables from El ∈ Vl . With this notation, we define the execution profile
as follows:

Definition 8 (Execution Profile). Given a program P , an input I , and program
locations L. By running P on the input I , the execution profile p̂rof records the
values of expressions in Vl at each program location l ∈ L.

Figure 6.3 shows the execution profile of an example program. In this
program, the target program locations are L = {5, 6, 8} because only these
three lines contain matched expressions. Note that we do not touch variable
definitions, and thus, lines {1, 3, 7} are not matched. In line 5, the variable
b and constant 1 are matched expressions; variables a, b and g are in the
variable set V5 as they are all in-scope. In line 8, there is an extra in-scope
variable c. The execution profile, as shown in the bottom right of the figure,
records all observed run-time values of variables in each Vi.

For a non-trivial seed program P , the number of in-scope variables Vi
at each program location is typically large. Recording all of their values is
thus costly. Since only a part of variables from Vi will be used for synthesis,
to reduce the profiling cost, our implementation of Creal randomly selects
a small yet sufficient subset of in-scope variables in each Vi. To facilitate
easy access to the execution profile p̂rof , we design the following queries:

• GetStableVariable(p̂rof , l): returns all in-scope variables where the
variable has only one run-time value. For example, getting the in-scope
variables by calling GetStableVariable(p̂rof , 5) returns only {b, g}
but not a. It may also return none if no stable variable is available. In
this case, the following synthesis will use constants.

• GetVariableValue(p̂rof , l, v): returns the run-time value(s) of variable
v at location l, e.g., GetVariableValue(p̂rof , 5, b) returns {1}.

6.2.5 Function Call Synthesis

Given a selected expression expr, we synthesize a new expression expr′,
such that

[[expr′]] = [[expr]]

where [[x]] denotes the run-time value of expression x. The above equa-
tion indicates the run-time values of expr and expr′ are identical. Let
P [expr/expr′] be a program formed by replacing expr with expr′ at the
same source location. The run-time value equivalence of expr and expr′

158 boosting compiler testing by injecting real-world code

Algorithm 10: Function call expression synthesis.

1 procedure SynFuncCall(Program Location l, Profile p̂rof , Database DF,

Target Value val):

// randomly select a function from the database and get

its input set

2 Fi ← SelectFunction(DF)

3 [inp1, inp2, · · · , inpm]← Fi.input

// initialize the function call template

4 FC = “ Fi.name (<para>1, <para>2, · · · , <para>m)”

// iteratively synthesize the function parameters

5 foreach k ∈ [1 . . . m] do

6 V ← GetStableVariable(p̂rof , l)

// sythesize expression para using V such that

[[para]] = inpk

7 para ← SynthesizeExpression (V, inpk)

8 FC.Substitute(<para>k, para)

9 V′ ← GetStableVariable(p̂rof , l)

// synthesize expression expr′ using V′ and FC such that

[[expr′]] = val

10 expr′ ← SynthesizeExpression (V′ ∪ FC, val)

11 return expr′

6.2 approach 159

1 int g=4;
2 int main() {
3 int a = 0, b = 1;
4 for (;;) {
5 a += b + 1;
6 if (a > g) {
7 int c = 3;
8 g = a + c;
9 break;

10 }
11 }
12 }

Program locations: L = {5, 6, 8}

Matched expressions:
E5 = {b, 1}
E6 = {a, g}
E8 = {a, c}

Execution profile:
V5 : a = {0, 2, 4}, b = {1}, g = {4}
V6 : a = {2, 4}, b = {1}, g = {4}
V8 : a = {4}, b = {1}, c = {3}, g = {4}

Figure 6.3: The program on the left is the seed program. L is the program
locations where we have matched expressions E . The execution profile
shows the run-time values of in-scope variables at each program location.

guarantees that (1) P [expr/expr′] has the same output as P , and (2) if both
P and expr′ are well-formed, e.g., free of undefined behavior, P [expr/expr′]
is also a well-formed program.

There are two cases for expr: (1) expr is stable, meaning that [[expr]] is
a single value val, e.g., variable “b” at line 5 in Figure 6.3. In this case,
we require [[expr′]] = val. (2) expr is unstable, meaning that [[expr]] has
different values at run-time, e.g., variable “a” at line 5 in Figure 6.3. In this
case, we synthesize the new expression as “expr′ = expr + êxpr”, where
[[êxpr]] = 0. This ensures that [[expr′]] = [[expr]]. The second case can be
viewed as the first case by treating êxpr as the target expression expr′.
Without loss of generality, our presentation always assumes that expr is
stable, and our target is to synthesize a new expression expr′ that evaluates
to [[expr]] = val.

Algorithm 10 shows the general procedure of synthesizing a new ex-
pression. The core merit of this synthesis is to guarantee that the new
expression has the same run-time value as the target expression. It first
randomly selects a function item Fi from the constructed function database
DF and obtains the function input set (lines 2-3). Note that all x such as inp1
and val are concrete numeric values, e.g., “0”, “2”, etc. Then, it initializes a
function call template as FC (line 4). This template is of string format and
has a set of placeholders for input arguments, i.e., <para>1, <para>2, · · · ,
and <para>m. Next, it tries to replace all these placeholders with concrete
expressions. For each of the parameter placeholder parak, it obtains stable

160 boosting compiler testing by injecting real-world code

⟨e⟩ ::= ⟨c⟩|⟨v⟩|(⟨e⟩)| ⊖ ⟨e⟩
|⟨e⟩ ⊕ ⟨e⟩|⟨F⟩

⟨c⟩ ::= constants
⟨v⟩ ::= variables
⟨F⟩ ::= function call
⊖ ::= unary operators, e.g., !| ∼
⊕ ::= binary operators, e.g., +| ∗ |%

Figure 6.4: BNF grammar for expression synthesis.

variables V from the execution profile (line 6). With the grammar shown
in Figure 6.4, it uses V and synthesizes an expression para that evaluates
to inpk (line 7). The parameter placeholder <para>k is then substituted by
the synthesized parameter expression para (line 8). After the for loop, the
function call to “Fi.name(. . .)” is evaluated to Fi.output. Finally, with the
grammar shown in Figure 6.4, it synthesizes an expression with a set of sta-
ble variables V′ and the synthesized function call FC. This new expression
expr′ is now evaluated to the target value val.

Example. We use an example to illustrate the algorithm. Let us assume the
target value is val = 5:
• In line 2, suppose the selected function is “int real(int)”, which takes

an integer as input and returns an integer value.

• In line 3, suppose the single input is inp1 = 2 and the function return is
1.

• In line 4, the template is then “real(<para>1)”.

• In lines 6-7, suppose the stable variables V is { b } and “b” has a single
value 1. One instance of the synthesized expression can be “b + 1”,
which evaluates to 2 = inp1.

• In line 8, the synthesized input expression is then “b + 1”, and the
function call FC is “real(b + 1)”.

6.2 approach 161

• In line 10, suppose the stable variables V′ is { g } and “g” has single
value 4. One instance of the synthesized expression can be “(−real(b +
1) ∗ 2) + g ∗ 2− 1” because

(−real(b + 1) ∗ 2) + g ∗ 2− 1 = (−1 ∗ 2) + g ∗ 2− 1

= (−1 ∗ 2) + 4 ∗ 2− 1

= 5 = val

The synthesized expression expr′ fuses the function call with variables in
the seed program. This fusion builds rich dependencies between the seed
program and the inserted functions. The original expression expr is then
replaced by expr′.

6.2.6 Implementation

We implemented the proposed program generator in Creal. Taking a seed
program P and a function database DF as inputs, Creal utilizes Clang’s
Libtooling [81] to instrument profiling code into P and collects its execution
profile. When generating a mutant, Creal replaces multiple expressions in
the seed program with different synthesized function call expressions.

Type conversion. In the above presentation, we assumed that there is only
one numeric type in the program. In practice, the C language supports
many types, such as int, char, and unsigned. When an operation happens
between values of different types, the compiler will do implicit type conver-
sions. For example, the evaluation results of “a + b” are different when “a”
has different types:

int a = 0; int b = −1; ⇒ a + b = −1 (int)

unsigned a = 0; int b = −1; ⇒ a + b = 4294967295 (unsigned)

For the second case, b is cast into unsigned, and thus, its value becomes
4294967295 (the maximum value for a 32-bit unsigned integer). In Creal, we
carefully evaluate the expression values when type conversion is possible.
We also add explicit casts to make sure the type of expr′ is the same as the
original expression expr.

Avoiding undefined behavior. When synthesizing expressions in Creal, it
is important to guarantee that the synthesized expressions are well-formed.
Since our expressions involve only arithmetic operations, we only need to

162 boosting compiler testing by injecting real-world code

Figure 6.5: Step-by-step transform an invalid function into a pure function.

avoid integer overflow. This can be easily achieved because we know the
concrete evaluation values of all involved variables.

Generated programs. Our approach is general and can, in principle, take
programs from any generators as input as long as they are deterministic,
well-formed, and can be compiled into an executable. In our implementa-
tion, we use Csmith as the default generator to generate seed programs.
In this case, every seed program is in a single source file. After injecting
function calls, Creal includes function definitions for all used functions in
the source file. The generated program by Creal is thus a single source file,
as exemplified in Figure 6.1c.

6.3 constructing function database

This section presents details about constructing a function database to fuel
our approach.

6.3.1 Extracting and Transforming Functions

We design a function extractor to obtain functions from source code files.
We utilize Clang’s Libtooling [81] for implementation. The extractor finds
all function definitions in a pre-processed input program, e.g., programs
processed by “clang -E”. The principal selection criteria are (a) the function
only involves primitive types, and (b) the function should be pure, i.e., with
deterministic outputs and no side effects. The first requirement allows us
to compile and execute functions without dealing with user-defined types.
The second requirement allows us to model the execution of a function
purely by its I/O behavior. In the context of C, this means

6.3 constructing function database 163

1. The function does not modify its arguments. Some functions take pointers as
arguments, the memory locations pointed to by which can be modified
after invoking the function. Instead of discarding such functions, we
synthesize proxy functions for them to avoid possible modifications
to arguments. For example, Figure 6.5 (1) shows how we use a proxy
function foo_proxy to hide the pointer parameter in the original function
foo. Note that the proxy function also dereferences the return pointer
to make it also a primitive type.

2. The function does not call other functions that have side effects. Real-world
functions may call other functions. Analyzing other functions to avoid
side effects is theoretically feasible but would complicate our imple-
mentation and make it fragile. Instead, we choose to remove all other
function calls from a function definition. To maintain syntactic correct-
ness, we replace each call with a randomly chosen yet type-compatible
value. For instance, Figure 6.5(2) shows that the extractor replaces the
function call “bar(g, c++)” with an integer value “1”.

3. The function does not modify global or static variables. The value of global
or static variables may be different when calling the same function
multiple times. Such side effects break our intention of modeling a
function by its I/O behaviors. Our extractor will remove all “static”
keywords from a function definition and then lower all global variables
into local variables. For example, the extractor changes variables g and
c as shown in Figure 6.5(3).

Since we utilize a function’s I/O for program generation, we also exclude
functions that take no inputs or return void. With the designed function
extractor, we can extract a set of functions from real-world projects. We
denote the constructed function database as DF = {F1, F2, · · · , Fn}, where
each Fi contains the static information regarding the function and has the
following information:

• Fi.name: the unique name of the function in the database, e.g.,
“foo_proxy” in Figure 6.5.

• Fi.arg_type: the types of each argument, e.g., [“char”].

• Fi.ret_type: the return type, e.g., “int”.

• Fi.def: the function definition, e.g.,
“int* foo(...){...} int foo_proxy(...){...}”.

164 boosting compiler testing by injecting real-world code

1 #include <stdio.h>
2

3 /*Placeholder for function definition*/
4 F.def;
5

6

7 int main() {
8 /* randomly select values */
9 F.arg_type[0] p1 = RAND();

10 F.arg_type[1] p2 = RAND();
11 ...
12 /* invoke the function */
13 F.ret_type ret = F.name(p1,p2,...);
14

15 /* output the IO */
16 LOG(p1); LOG(p2); ...;
17 LOG(ret);
18 }

a. Driver template.

1 #include <stdio.h>
2 /* function definition */
3 int add(char a, int b) {
4 int r = a + b;
5 return r;
6 }
7 int main() {
8 /* randomly select values*/
9 char p1 = RAND(char);

10 int p2 = RAND(int);
11

12 /* invoke the function */
13 int ret = add(p1, p2);
14

15 /* output the IO */
16 LOG(p1); LOG(p2);
17 LOG(ret);
18 }

b. The driver function for “add”

Figure 6.6: Template for driver functions and an example driver function.

6.3.2 Constructing Function Database with I/O

Caching the input/output (I/O) behaviors of a function can help us
precisely synthesize a function call and avoid ill-formed functions prior
to synthesis. For each function in DF, we utilize a driver function to learn
(1) its I/O pairs, and (2) whether or not the function is well-formed, i.e.,
whether it contains undefined behavior. Figure 6.6a shows the template for
the driver function, and Figure 6.6b shows an example driver function for
the function “add()”. For a function Fi ∈ DF, the general I/O construction
works as follows:

1. Include the function definition Fi.def in the driver template, i.e.,
line 4 in Figure 6.6a and lines 3-6 in Figure 6.6b.

2. For each argument of Fi, synthesize a statement to randomly pick a
value with this type, i.e., lines 9-11 in Figure 6.6a and lines 9-10 in
Figure 6.6b. “RAND()” function only returns values within the valid
range for the given type. For instance, RAND("char") returns values
between -128 and 127.

6.4 evaluation 165

3. Synthesize a function call statement and put the return value into a
variable with type F.ret_type, i.e., line 13 in Figure 6.6a and line
13 in Figure 6.6b.

4. Log the inputs and output, i.e., lines 16-17 in Figure 6.6a and lines
16-17 in Figure 6.6b.

The synthesized driver function is then compiled and executed. We use
sanitizers [130] and CompCert [69, 70] to examine whether or not the
driver function is well-formed. If all examinations are successful, we save
the logged input/output pair into the database. For instance, one valid
input/output pair of Fig. 6.6b is {input=[1,2], output=3}. In practice, we
will try to run each driver function multiple times to save more than one
input/output pair into the database. Now, new items Fi.input and Fi.output
are added to the database. At this point, all functions in the database are free of
undefined behaviors when calling them with the inputs cached in Fi.input.9

6.4 evaluation

This section presents the details of our extensive evaluation of Creal,
demonstrating its practical effectiveness. In a nine-month period until mid-
November 2023, we ran Creal to test two open-source compilers, GCC and
LLVM. Our testing results are summarized as follows:

• Creal has found many new bugs. Within nine months of testing, Creal

has detected 132 bugs, of which compiler developers have confirmed
121 bugs and fixed 97 bugs.

• Creal has found many miscompilation bugs. Of all 132 detected bugs, 79

(60%) of them are miscompilation bugs, the most severe and hard-to-
detect compiler bug type.

• Creal has found many latent bugs. We reported 41 latent bugs in GCC
and LLVM. These bugs have escaped all previous generation- and
mutation-based compiler testing techniques.

9 This guarantee relies on the robustness of sanitizers and CompCert. We did not meet any
issues in practice, although there are reports complaining sanitizers of missed cases [61]
including our UBfuzz [78].

166 boosting compiler testing by injecting real-world code

Figure 6.7: Statistics about #lines and #branches of functions in the con-
structed database.

6.4.1 Experimental Setup

Compiler versions. Our evaluation focuses on widely used and mature
production C compilers, GCC and LLVM. To avoid reporting previous
known bugs, we used Creal to test the latest development versions of both
GCC (from 80d6f89 to 5476de2) and LLVM (from 34ae308 to 0289dad). We
used all five standard optimization levels, i.e., -O0, -O1, -Os, -O2, and -O3,
in both compilers for extensive testing.

Seed programs. We used Csmith [159], a mature random C program genera-
tor, to generate seed programs for Creal. Csmith has been widely adopted
by many compiler testing techniques [17, 31, 82] and has been de facto
default program generator for C compiler testing. There are three main
strengths in using Csmith: (1) it can generate complex programs, providing
Creal rich opportunities to mutate on; (2) all Csmith-generated programs
are self-contained, meaning that they do not take external inputs and can
be executed; and (3) Csmith-generated programs and their mutants can be
effectively reduced with existing tools like C-Reduce [124].

Function database. We used our function extractor to extract functions
from open-source projects. AnghaBench [27] provides intermediate access
to the source files of 146 most starred open-source C projects on GitHub,

6.4 evaluation 167

such as OpenSSL, PHP, and Linux kernel, to name a few. On top of Ang-
haBench, we crawled over one million functions from these 146 projects.
After extraction and I/O generation as described in Section 6.3, we collected
a function database of 51,356 functions. The majority of crawled functions
are discarded due to unsupported input or return types. We count the
number of lines and branches in our collected functions. Figure 6.7 shows
the distributions. We can see that most functions have fewer than 30 lines
and 10 branches. On average, the number of lines in a function is 17, while
the number of branches in a function is 4.

Hardware. We conducted all our evaluations on two Linux servers running
Ubuntu 20.04 LTS. Both are equipped with an AMD EPYC 7742 64-core
CPU and 256GB RAM.

Testing process. Our testing process runs continuously and is fully auto-
mated. We first use Csmith to generate a seed program10, then apply Creal

to generate 10 mutants. The FlipCoin() probability in Section 6.2.2 is set
to 20%. Then, we use both GCC and LLVM with different optimization
levels to compile and run these programs. Since all mutants are semantics-
preserving, we use the output from the seed program as the reference oracle.
Once a compiler crash or miscompilation is observed, we use C-Reduce to
reduce the bug-triggering program into a small reproducing program and
then make a bug report with it.

6.4.2 Quantitative Results: Bug-Finding

Number of bugs. Table 6.1 summarizes the status of all found bugs in GCC
and LLVM. As of mid-November 2023, we have filed a total of 132 bug
reports to GCC and LLVM. The compiler developers have acknowledged,
i.e., confirmed or fixed, 92% of them (121/132) as previously unknown and
new bugs, while they have fixed 73% of them (97/132). In particular, GCC
and LLVM developers confirmed or fixed respectively 86% and 96% of our
filed bugs. As mature and production compilers, both GCC and LLVM have
been extensively tested in industry and academia. The significant number
of new bugs highlights the substantial bug-finding ability of Creal. The
“Reported” bugs are still waiting for developers’ confirmation. Since there

10 We used the parameters “-no-volatiles -no-volatile-pointers -no-unions -ccomp”
when invoking Csmith.

168 boosting compiler testing by injecting real-world code

Table 6.1: Status of the reported bugs.

Status GCC LLVM Total

Reported 3 1 4

Confirmed 13 11 24

Fixed 38 59 97

Duplicate 5 2 7

Total 59 73 132

Table 6.2: Type of found bugs.

Symptom GCC LLVM Total

Crash 22 31 53

Miscompilation 37 42 79

are other compiler developers, users, and testers reporting bugs, 5 bugs in
GCC and 2 bugs in LLVM are marked as “Duplicate”.

Types of bugs. Table 6.2 summarizes the types of found bugs. All bugs
can be categorized into the following two types: (1) “Miscompilation”:
The compiler incorrectly compiles the program and produces a wrong
executable code, which has a different semantics from the source program,
and (2) “Crash”: The compiler crashes when compiling the program due to
either run-time failures or assertion failures. As the table shows, more than
half of the bugs (79 out of 132) are miscompilations, the most critical and
hard-to-detect bugs [17, 139].

Importance of bugs. The fix of 97 out of 132 bugs, predominantly miscom-
pilations, has highlighted the critical impact of the bugs. For GCC bugs,
developers will classify bugs according to their priority and severity. P3 is
the default while P1 is the highest priority. Developers have to fix all P1 bugs
before making the next release. Out of the 59 GCC bugs, 19 (32%) of them are
assigned as P1.

To understand the impact of found bugs, we ran each bug-triggering test
case on stable compiler versions since GCC-5 and LLVM-9. Figure 6.8 shows
for each compiler version, how many bugs affect it. It indicates that Creal

can find many long-latent bugs. Specifically, there are 14 bugs affecting GCC
versions earlier than GCC-11 and 7 bugs affecting LLVM versions earlier
than LLVM-13. These compiler versions have been released for 2 ∼ 8 years.
Since these long-latent bugs have escaped all existing testing techniques, it
further confirms the significant bug-finding capability of Creal.

6.4 evaluation 169

Figure 6.8: Stable compiler versions that are affected by our reported bugs.

Figure 6.9: Number of inserted functions in reduced bug-triggering pro-
grams.

Affected compiler components. We studied all fixed bugs on which com-
piler developers provided detailed diagnoses and fix messages, allowing us
to identify the affected compiler components accurately. Tables 6.3 and 6.4
list all the affected compiler components in LLVM and GCC. One may be
concerned that Creal can only find control-flow-related bugs as we only in-
ject function calls into seed programs. However, from the tables, it is evident
that these bugs impact a diverse range of compiler components. In both
GCC and LLVM, loop transformations and peephole optimizations account
for more bugs than other components. This finding is aligned with the
existing empirical study [168] that instruction combination (peephole opti-
mization) is one of the most buggy optimizations, and loop optimizations
are more bug-prone than other optimizations.

6.4.3 Bug Characteristics

For all the unique and new bugs (121 bugs), we identified what real-world
functions account for triggering the bug. Because Creal injected multiple
functions into a seed program, we automatically removed all irrelevant
functions and only kept the functions that were essential to trigger the
underlying bug. Note that it is possible that more than one function is

170 boosting compiler testing by injecting real-world code

Table 6.3: Affected LLVM compo-
nents.

Component #Bugs

Peephole Optimizations 17

Loop Transformations 11

Backend 6

Induction Variable Trans. 6

Scalar Evolution Analysis 5

Global Value Numbering 4

SLP Vectorization 4

Selection DAG 3

Alias Analysis 2

Induction Variable Analysis 2

CFG Transformations 1

Dead Store Elimination 1

Dominance Optimizations 1

Escape Analysis 1

Pass Management 1

Vectorization Optimizations 1

Table 6.4: Affected GCC compo-
nents.

Component #Bugs

Loop Transformations 10

Peephole Optimizations 9

CFG Transformations 7

Loop Analysis 3

Value Range Analysis 3

Vectorization 3

Constant Propagation 2

IR Data Structures 2

Dead Store Elimination 1

Jump Threading 1

Liveness Analysis 1

Predictive Commoning 1

Redundancy Elimination 1

required to trigger a bug. With this information, we answer the following
questions:

➤ How many functions are in bug-triggering programs? Figure 6.9 sum-
marizes the number of real-world functions in each reduced bug-triggering
program. The first bar shows that out of all 121 bug-triggering programs, 54

of them have only one single real-world function inserted, demonstrating
the ability of one real-world function to enhance seed programs’ features.
The rest half, nearly all of them, have ≤ 4 inserted functions, with only a
few having more than 5 functions. This means that the combination of a
small number of functions can further enhance the expressiveness of seed
programs.

6.4 evaluation 171

➤ Can real-world functions alone trigger bugs? Figure 6.9 shows that 54

out of 121 bug-triggering programs contain only one real-world function.
One may wonder if the seed programs are necessary, i.e., if we can find
many compiler bugs without using Csmith-generated seed programs. To
answer this question, we used the driver function from Section 6.3 as the
seed to build a well-formed program for each function in the database.
Then, we compiled and ran these programs with different compilers to test
if we could find compiler bugs. The result is that we did not find any compiler
bugs. This emphasizes the importance of incorporating complex run-time
semantics from seed programs.

We also checked if there are functions that lead to multiple bugs. We
identified that 5 real-world functions contribute to more than one bug,
highlighting the importance of injecting real-world functions into seed
programs: different injections may uncover different bugs.

The main reason why real-world functions alone cannot trigger bugs
is that triggering compiler bugs usually requires specific run-time envi-
ronments. For example, although the real-world function in Figure 6.1c
is essential for triggering the miscompilation bug, the for loop and the
use of global variables “a” and “b” in the main function provide necessary
run-time environments and are also necessary. The driver functions from
Section 6.3 can only provide functional but trivial environments and thus
are not suitable for finding compiler bugs. Seed programs from random
generators like Csmith, on the other hand, can provide the required complex
and diverse environments.

Note that Creal can be applied beyond Csmith. The core merit of Creal

delivers is that we can significantly boost a generator’s expressiveness by
fusing real-world code. In general, any program generator that can produce
closed and executable programs with non-trivial syntax, such as loops,
global variables, and complex data structures, can benefit from Creal.

➤ What are the unique features in bug-triggering functions? We manually
analyzed each minimized bug-triggering program to figure out what unique
code features are in the real-world functions. We find two notable features
that appear in 21 bugs:

• Unbounded complex loop, where the loop conditions are not bounded by
a constant value and have a complex dependency with the loop body.
This feature is present in 11 bug-triggering programs. As discussed
before, generating complex loops is difficult for random program gen-
erators due to the need to guarantee termination and avoid undefined
behavior.

172 boosting compiler testing by injecting real-world code

Table 6.5: Line coverage (LC), function coverage (FC), and branch coverage
(BC) of GCC and LLVM.

Compiler Generator LC FC BC

GCC

Seeds (1,000) 30.9% 34.3% 19.2%

Csmith (10,000) 33.6% (+23,897) 35.5% (+1,055) 21.4% (+24,055)

Creal 37.2% (+55,761) 37.5% (+2,813) 24.0% (+52,485)

LLVM

Seeds (1,000) 33.3% 24.9% 18.2%

Csmith (10,000) 34.7% (+22,788) 25.8% (+801) 20.3% (+14,166)

Creal 35.9% (+42,952) 26.9% (+1,864) 22.1% (+27,382)

• Employing switch/case statements, where the function employs specific
conditional statements “switch. . . case. . . ” to build control flow. This
feature is present in 10 bug-triggering programs. Each switch often
comes with multiple (5 ∼ 21) cases conditioning on the same expres-
sion. Csmith does not yet support this feature.

The remaining bug-related functions have various features. They typically
have either unique syntax, such as the above two constructs, or unusual
real-world semantics, such as flipping bits and rotating arrays. Although
random program generators support the syntax in these functions, the
underlying semantics are nearly impossible to be from random generation.
We will include more sample bugs in Section 6.4.7 to demonstrate this point
further.

6.4.4 Code Coverage and Generation Speed

We conduct code coverage analysis to understand if Creal can increase code
coverage. We randomly generated 1,000 seed programs with Csmith. Then,
we use Creal to generate 10 mutants per seed, which leads to a total of
10,000 programs from Creal. For a fair comparison against Csmith, we also
used Csmith to generate 10,000 random programs. For each set of programs,

6.4 evaluation 173

we collected their function, line, and branch coverage on GCC and LLVM11.
Table 6.5 reports the results. It is clear that Creal achieves significantly
higher code coverage. Compared to the seed programs, Creal remarkably
increased line coverage in GCC by 6.3% (55,761 more lines) and in LLVM
by 2.6% (42,952 more lines). Creal also shows significantly higher coverage
compared to the same amount of Csmith-generated programs. Overall, the
large amount of extra code regions signifies that Creal-generated programs
cover more code features.

With the same set of seeds, we measured the generation speed of Creal.
Generating 10,000 mutants took 8,710 seconds, an average of 0.87 seconds
per mutant. During our testing process, we observed that compiling and
executing programs consumed most of the time (≥ 3 seconds per mutant),
while program generation was not a bottleneck.

6.4.5 Significance of Function Database

To evaluate the impact of real-world functions, we construct three variants
of Creal:

• Creal- 1
2 : We halve the size of the real-world function database used

in Creal. We randomly selected half of the functions and let Creal

use this smaller database during generation.

• Creal- 1
4 : We further halve again the size of the real-world function

database used in Creal.

• Creal-Csmith: Instead of using real-world functions, we extract func-
tions from Csmith-generated programs. We build a new function
database of the same size as in Creal, i.e., 50,000 functions from
Csmith-generated programs. Then, we set up Creal to use this new
function database.

Comparing against Creal- 1
2 and Creal- 1

4 helps us understand if more
real-world functions in the database can offer richer code features. Compar-
ing against Creal-Csmith helps us understand the necessity and importance
of using functions from real-world projects.

Code coverage analysis. We ran these variants on the same 1,000 seeds as
in Section 6.4.4. We let each tool generate 10 mutants per seed. Figure 6.10

shows the covered lines by each variant. Overall, our default Creal achieves

11 We used gcov for GCC coverage collection and llvm-cov for LLVM coverage collection.

174 boosting compiler testing by injecting real-world code

Figure 6.10: Line coverage of different variants of Creal and Hermes.

the highest line coverage in both GCC and LLVM. Compared to both Creal-
1
4 and Creal- 1

2 , we can see that with the increase of database size, the line
coverage also increases. This confirms the necessity of using a large set
of real-world functions. Compared to Creal-Csmith, which has the same
number of functions as Creal, all variants based on real-world functions
significantly surpass it. We can further confirm that real-world functions
enhance the functionality and expressiveness of seed programs.

Bug-finding analysis. Our analysis of bug-triggering programs in Sec-
tion 6.4.3 has shown that nearly all of the bugs are triggered by different real-
world functions except for 5 functions. When using a smaller database such
as Creal- 1

4 , it is very likely to exclude many bug-relevant functions. Using
such a small database would not be able to detect as many bugs as the full-
size database. It is thus clear that reducing the number of real-world functions
hinder the bug-finding capability of Creal.

We also evaluated the bug-finding capability of Creal-Csmith. To this end,
(1) we ran Creal-Csmith for one week on the same machine to see if it could
find any new bugs, and the result shows that Creal-Csmith failed to find
any new bugs. (2) we selected all fixed bugs (97 bugs) found by Creal,
then applied Creal-Csmith to mutate each seed program that was used by
Creal to trigger the bug. Considering the stochastic nature of Creal, we
let Creal-Csmith mutate for one hour, generating more than 200 mutants per
seed (instead of 10 used in Creal). In the end, Creal-Csmith re-discovered
3 bugs in LLVM and 0 in GCC, which are all recent regressions. All three
bugs are crash bugs, and no miscompilation was found.

6.4 evaluation 175

6.4.6 Comparison of Creal v.s. Hermes

We also compared Creal against Hermes [139], which is the most recent
and powerful EMI-based compiler testing tool.

Code coverage analysis. We used the same 1,000 seeds as in Section 6.4.4
and applied Hermes to generate 10 mutants per seed. In the end, we
obtained 10,000 Hermes-generated programs, the same number as Creal.
The last bars in Figure 6.10 show the achieved line coverage of Hermes
on GCC and LLVM. Hermes improved line coverage compared to the
seed programs, but the improvement is not as significant as Creal. Since
all Hermes-injected code snippets are derived from a relatively simple
grammar, it is expected to exercise much fewer code features than Creal.

Bug-finding analysis. According to EMI’s project website [166], Hermes
has been constantly used for finding compiler bugs until now: “We have
maintained our continuous, extensive effort in stress-testing GCC and LLVM to
benefit the entire community”. Despite their efforts, the 121 new compiler bugs
demonstrate at least the complementary bug-finding capability of Creal.
To understand if Hermes can re-discover the bugs found by Creal, as in
Section 6.4.5, we selected all fixed bugs (97 bugs) and applied Hermes to
mutate each seed program that was used by Creal to trigger the bug. For
each seed, we ran Hermes for one hour, generating more than 100 mutants
per seed (instead of 10 used in Creal). The result shows that Hermes was
able to re-discover 3 bugs.

Despite the evaluation favoring Creal, we stand by the fact that the
strengths of both Creal and Hermes are complementary. Similar to Csmith,
Hermes can be used as a program generator, on top of which Creal can
bring in real-world code features.

6.4.7 Case Study

Figure 6.11a: This program triggers a miscompilation bug in GCC. The
function real is extracted from FreeBSD [37], which converts an input
numeric variable dest into a pointer and then operates over this pointer.
GCC incorrectly handles the while loop by asserting that this loop must
be executed at least once. The reason is that *ptr and len are from the
same variable j, and the pointer *ptr is used in line 7, which leads GCC to
conclude that len must not be zero otherwise *ptr would deference a null
pointer. Line 5, where an integer is converted to a pointer, is essential to
trigger this bug. Such corner functionality cannot be covered by generators.

176 boosting compiler testing by injecting real-world code

1 int a, f, i, h;
2 static int *e, *g;
3

4 long real(long dest,int val,long len){
5 char *ptr = (char*)dest;
6 while (len-- > 0)
7 *ptr++ = val;
8 return dest;
9 }

10

11 int main() {
12 unsigned j = i, c = 0;
13 for (a=1; a<2; a++) {
14 j = real(j, c, j);
15 if (e) break;
16 }
17 const int **k = &e;
18 j && (*g)--; *k = 0;
19 printf("%d\n", f);
20 }

a. GCC at -O1 miscompiles this code.
The compiled binary produces 2

instead of 1.

1 static int a=0, *b, *c=&a; int d,e;
2 int real(
3 int effectnum,int *converted_num){
4 switch (effectnum) {
5 case 0x0:
6 *converted_num = effectnum;
7 return 1;
8 case 0x4: return 1;
9 case 0x5:

10 *converted_num = effectnum+1;
11 return 0;
12 default: return 0; }
13 }
14 int main() {
15 unsigned h=0;
16 for (; a + h <= 6; h = h + 3)
17 for (; d; d++);
18 int j, *k = c, d = &k != &b;
19 int g = real(h, &j); e = g;
20 }

b. Clang -O1 crashes on this code.
It triggers an assertion failure in
SimplifyCFG component.

1 int a, b, c, d;
2 int *e = &c;
3 unsigned real(unsigned char x) {
4 x = ((x>>1)&0x55) | ((x<<1)&0xaa);
5 x = ((x>>2)&0x33) | ((x<<2)&0xcc);
6 x = ((x>>4)&0x0f) | ((x<<4)&0xf0);
7 return x;
8 }
9 void h(unsigned g) {

10 *e = 8 > real(g + 86) - 86;
11 }
12 int main() {
13 d = a && b;
14 h(d + 4);
15 printf("%d\n", c);
16 }

c. GCC at -O1/2/3/s miscompiled
the code. The compiled binaries
output 0 instead of 1.

1 static int a = -3, b;
2 static char c;
3 int d;
4 int real(int low, int high) {
5 if (low - high < 0x10000L)
6 return low;
7 return low + (1 % (- low));
8 }
9 int main() {

10 int *h[] = {&a, &a};
11 for (; c <= 8; ++c) {
12 int *i = &b;
13 *i |= real(a, 8) + d;
14 }
15 printf("%d\n", b);
16 }

d. Clang at -Os miscompiles this
code. The compiled binary pro-
duces -1 instead of -3.

Figure 6.11: Sample reduced programs that trigger compiler bugs.

6.4 evaluation 177

Figure 6.11b: This program triggers an assertion failure at Clang -O1:
“TableSize >= Values.size() && "Can’t fit values in table!"”. The function real is
extracted from GBStudio [138] and has more than 20 case branches. We omit
the majority of them for easier presentation. The compiler incorrectly infers
the value range of effectnum when simplifying the control flow graph. The
multiple branches conditioning on the same variable is important to trigger
the bug.

Figure 6.11c: This program triggers a latent miscompilation bug since GCC-
10. The function real is extracted from QMKFirmware [36], which rotates the
bit stream of the input x. GCC has built-in rotation optimizations, which
incorrectly handle this case. The rotation functionality, critical to triggering
this bug, is almost impossible for a random program generator to generate.

Figure 6.11d: This program triggers a miscompilation bug in LLVM. The
root cause is in the backend, which incorrectly rewrites the expression at
line 7. The operand “low” and the last “-low” are essential to trigger this
bug. The function real is extracted from FreeType [38]. Although it seems
that such a function has trivial syntax, the semantics that the same operand
“low” has to appear twice with negated values is non-trivial.

6.4.8 Discussion

Limitations and Extensions. We position Creal as a complementary ap-
proach for existing generators. It significantly boosts a program generator’s
expressiveness by injecting real-world code. Since Creal relies on the func-
tion database, it will eventually saturate until new functions or extensions
are developed. In our prototype, we only support functions that are pure
and have numeric input/output types, which simplified our implementa-
tion. In general, as shown in Section 6.4.6, increasing the size of the function
database can help find more bugs. Lifting function restrictions will increase
the database’s size and thus improve the bug-finding capability. However,
lifting these restrictions may require some engineering efforts. One appli-
cable way to support non-numeric inputs is to wrap functions with proxy
code. For example, we synthesized a proxy function in Figure 6.5 to trans-
form the pointer-based arguments into numeric types. Such a strategy can
also be applied to functions with other argument types. However, it is
challenging to support functions with unusual and complex features, such
as using user-defined struct/union types. We consider this as an exciting
and orthogonal future work.

178 boosting compiler testing by injecting real-world code

Improving existing generators. Bugs found by Creal reveal certain lim-
itations of existing generators and provide possible improvement direc-
tions. For example, Figure 6.11b shows that the complex conditions from
switch/case can trigger compiler bugs. Generators like Csmith, however,
do not support this feature. This indicates that it would be beneficial for gen-
erators to support this feature for better bug-finding capability. Engineering
existing generators to support more features is, in principle, possible but
may require significant efforts.

6.5 related work

In this section, we discuss related work in the context of compiler testing.

Generative compiler testing. Generative compiler testing utilizes ran-
dom programs produced by a well-engineered generator to test compilers.
Csmith [159] is by far the most impactful program generator for finding
C/C++ compiler bugs. It can produce a large number of well-formed pro-
grams, and hundreds of compiler optimization bugs were found when
it was launched more than ten years ago. Csmith has also been adapted
for other compiler testing scenarios. For example, CLsmith [82] modifies
Csmith to test OpenCL compilers. YARPGen [85] and its follow-up second
version YARPGen v2 [86] are more recent re-designed program generators
targeting scalar and loop optimizations, respectively. Together, they have
discovered hundreds of optimization bugs in a few years.

A key challenge for generative tools is to guarantee the validity of the
generated programs. Extensive engineering efforts are an absolute necessity
to support a wide range of yet incomplete language features. Due to the
stochastic nature of random generation, certain code semantics such as the
ones discussed in Section 6.4.7 have low probabilities of being generated.
Creal tackles this challenge by embracing the power of rich open-source
projects and requires relatively low engineering efforts. Conceptually, our
solution can be effortlessly adapted to any generator-based approach.

Mutation-based compiler testing. Another line of compiler testing is based
on mutation. The most effective approaches are the series of equivalence
modulo inputs (EMI) work [66, 67, 139]. Given a seed program, EMI mutates
the seed program by removing/changing dead regions or inserting code
into live regions. EMI guarantees that the mutated program has the same
semantics w.r.t. the same input. CsmithEdge[31] removes “safe math” wrap-
pers from Csmith programs to lift the expressiveness constraints. GrayC [32]

6.5 related work 179

mutates seed programs with coverage guidance. This approach is effective
in finding compiler crashes. However, no miscompilation could be found.

Similar to the generators, they are also limited by the designed mutation
rules and the seed programs. Although our approach is based on muta-
tion, the large amount of available real-world code provides us with more
elevated diversity in generating mutants.

Using real-world code for compiler testing. There are indirect usages of
real-world code by using machine learning models for compiler testing.
DeepSmith [26] trains an OpenCL program generator on a large set of
real-world code. Fuzz4All [156] utilizes large-language models to produce
programs. One fundamental limitation of these approaches is that they
do not guarantee the validity of generated programs. Instead of using
models, LangFuzz [55] aims at fuzzing JavaScript interpreters and uses code
fragments from bug reports. FreeFuzz [153] collects API information from
deep learning libraries and then synthesizes API calls to test deep learning
compilers. Our work differentiates from these efforts by semantically fusing
real-world code with the seed program and ensuring program validity.

Program synthesis. Much work has been done in the domain of program
synthesis [50]. The goal is to automatically find a program that satisfies
the user-intended specifications such as logical constraints [98] and in-
put/output examples [115]. The purpose of program synthesis is not testing
compilers but rather aiding human programmers, education, etc.

7
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

In this thesis, we have introduced novel approaches for detecting various
software defects at different levels in the software development pipeline:
CompDiff, PGE, and Sand at the code level, UBfuzz at the code analysis
level, and Creal at the code compilation level. These tools have identified
many real-world bugs in critical software systems.

CompDiff, presented in Chapter 2, is a simple, straightforward, yet
effective approach for finding unstable code in C/C++ programs. CompDiff

concerns program input/output behaviors across metamorphic compiler
implementations. The succinct design of CompDiff poses no constraint on
the underlying programming language and is generally applicable. We also
integrated CompDiff into AFL++ to improve its practicality. Our extensive
evaluation on both benchmark and real-world programs confirmed that
CompDiff is effective in covering a broad range of unstable code and
significantly complements existing sanitizers by finding many unique bugs.
We expect our study to inspire the community further to explore the impact
and the detection of unstable code.

PGE, presented in Chapter 3, is a novel technique for boosting grey-
box fuzzing’s efficiency and bug detection. The high-level insight is that
partial test execution can help separate interesting and non-interesting
tests, thus a fuzzer can terminate those non-interesting executions early
for higher fuzzing throughput. We have empirically shown that most test
inputs during fuzzing are non-interesting, and execution prefixes can help
select interesting tests. As a proof-of-concept, we have integrated PGE into
AFL++. Our results show that AFL++-PGE improves not only AFL++’s
performance but, more importantly, also its coverage-increasing and bug-
finding capability. PGE is general and, in principle, can enhance any grey-
box fuzzer. This work provides a simple, effective realization and motivates
future explorations of this direction.

Sand, presented in Chapter 4, is a new fuzzing framework to decouple
sanitization from the fuzzing loop. Sand performs fuzzing on the normally
built program and only executes sanitizer-enabled programs when input
is identified as sanitization-required. Sand utilizes the fact that most of
the fuzzer-generated inputs do not need sanitization, which enables it to
spend most of the fuzzing time on the normally built program. To identify

181

182 conclusion and future directions

sanitization-required inputs, we have designed a practical and effective
execution analysis via the execution pattern.

UBfuzz, presented in Chapter 5, is the first validation framework for
testing sanitizer implementations. UBfuzz contains a UB program generator
that generates UB programs from a seed program via shadow statement
insertion. Based on this generator, we have employed differential testing
across multiple compilers to test sanitizers. To filter out discrepancies
caused by compiler optimizations, we have designed a new test oracle,
crash-site mapping, that is capable of accurately identifying true sanitizer
bugs. UBfuzz has discovered 31 bugs in ASan, UBSan, and MSan from
both GCC and LLVM. Our work represents a promising initial step toward
comprehensive validations of sanitizer implementations and highlights the
importance of this problem.

Creal, presented in Chapter 6, is a novel approach to boost the ex-
pressiveness of existing random program generators by fusing real-world
code. We first construct a function database by collecting functions from
real-world applications. We then augment each function with input/output
pairs to model function semantics precisely. With the function database,
we synthesize function calls and inject them into seed programs. We have
demonstrated the effectiveness of Creal by identifying 132 bugs, with
121 confirmed and 97 fixed in the two most popular C compilers, GCC
and LLVM. Our innovative approach of blending real-world code with
synthetic programs offers a compelling and optimistic research direction for
testing compiler implementations. From a technical standpoint, discovering
more effective methods for extracting code could enhance the variety and
versatility of generated programs. From an application standpoint, further
research is needed to explore how this approach can be applied to other
language compilers.

Future work. Next, we discuss several interesting and exciting future work
on extending our work.

7.1 compdiff beyond c/c++

CompDiff was initially designed for detecting undefined behaviors in
C/C++ programs. However, its design stems from the common conse-
quence of undefined behaviors, i.e., the language specification poses no
restrictions on their runtime behaviors. Since compilers implemented the
language specification, they may do arbitrary or divergent translations or
optimizations on code with undefined behaviors. In general, undefined

7.2 faulty execution detection based on pge and sand 183

behaviors in other languages, such as Rust, also share this common conse-
quence. It is thus interesting to try whether or not the principled detection
methodology of CompDiff can be applied for detecting undefined behavior
in other program languages.

7.2 faulty execution detection based on pge and sand

Given an input or its execution, deciding whether or not this input or
the execution triggers a bug in the program is challenging. This is the so-
called test oracle problem. Solving the test oracle problem or detecting faulty
executions for general programs is hard while demanding. The general
philosophy behind PGE and Sand provides a possible way toward it. The
common philosophy behind them is that program executions contain rich
information that can be utilized to infer many properties regarding the
executions themselves. From these two works, we believe that analyzing the
dynamic execution of an input can help us decide whether or not this input is bug-
triggering. We used the code access pattern in both PGE and Sand to analyze
executions. Despite their simplicity, we have successfully inferred certain
properties of an execution. Therefore, we believe that by utilizing advanced
analysis, such as extracting more information or applying machine learning
techniques, we can precisely detect faulty executions and thus move toward
the test oracle problem.

7.3 validating bug detectors via ubfuzz

To validate sanitizer implementations, our UBfuzz has two core components,
i.e., a program generator and a test oracle. While the test oracle is tailored
for sanitizers, the program generator, designed for automatically producing
complex programs with various types of undefined behaviors, is general.
Countless efforts have been put in both academia and industry to detect
undefined behaviors in C/C++ programs. Their reliability is essential for
the overall reliability of many software systems that rely on them. UBfuzz

thus can be extended to validate them extensively. For dynamic tools such
as Valgrind [107], similar test oracles to UBfuzz may be required. For static
tools such as Infer [104], UBfuzz’s program generator is directly applicable
or can be applied with minor changes.

184 conclusion and future directions

7.4 universal program generation based on creal

Due to the substantial importance of compilers, significant research efforts
have been put into compiler testing. Despite the existence of many program-
ming languages, a large proportion of compiler testing efforts were spent
on popular languages such as C/C++ and Java. Researchers devote count-
less efforts to designing random program generators to produce diverse,
expressive, and valid programs for stress-testing compilers. Implementing
a program generator requires a lot of research and engineering resources.
Still, all current rule-based program generators, such as Csmith [159], are
constrained by hard-coded rules as discussed in Chapter 6. Designing bet-
ter program generators becomes harder. Even worse, many programming
languages do not have program generators to test their implementations.

Creal provides an alternative path toward program generation. The
initial positioning of Creal is a new way to augment existing random
program generators by injecting real-world code. However, the core message
of Creal can also be interpreted as we can generate a new program by blending
many code snippets. For example, given any seed program or even a function
from Creal’s function database, we can iteratively inject other code snippets
or functions into it. This technical routine is not only suitable for C/C++ but
potentially also applicable to a broader range of programming languages,
such as Rust and Javascript.

B I B L I O G R A P H Y

[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya,
and Meredith Whittaker. Announcing OSS-Fuzz: Continuous fuzzing
for open source software. Google Testing Blog, 2016.

[2] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio
Tramontana, Emily Kowalczyk, and Atif M. Memon. Exploiting the
saturation effect in automatic random testing of android applications.
In Proceedings of the 2nd ACM International Conference on Mobile Software
Engineering and Systems, MOBILESoft’15, pages 33–43, 2015.

[3] Austin Appleby. Murmurhash3. https://github.com/aappleby/

smhasher/wiki/MurmurHash3, 2016. Accessed: March 21, 2024.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gaw-
lik, and Thorsten Holz. REDQUEEN: Fuzzing with input-to-state
correspondence. In Proceedings of the 26th Annual Network and Dis-
tributed System Security Symposium, NDSS’19, pages 1–15, 2019.

[5] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko,
and Thorsten Holz. JIT-Picking: Differential fuzzing of javascript
engines. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS’22, pages 351–364, 2022.

[6] Marcel Böhme and Brandon Falk. Fuzzing: On the exponential cost
of vulnerability discovery. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE’20, pages 713–724, 2020.

[7] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha. Boosting fuzzer
efficiency: An information theoretic perspective. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE’20,
pages 678–689, 2020.

[8] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS’17, pages 2329–2344, 2017.

185

https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3

186 bibliography

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS’16, pages 1032–1043, 2016.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. IEEE Transactions
on Software Engineering, 45(5):489–506, 2017.

[11] Marcel Böhme, Ezekiel O Soremekun, Sudipta Chattopadhyay, Ema-
murho Ugherughe, and Andreas Zeller. Where is the bug and how
is it fixed? an experiment with practitioners. In Proceedings of the
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE’17,
pages 117–128, 2017.

[12] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. FUZ-
ZOLIC: Mixing fuzzing and concolic execution. Computers and Secu-
rity, 108, 2021.

[13] Derek Bruening and Qin Zhao. Practical memory checking with
dr. memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO’11, pages 213–
223, 2011.

[14] C-Standards. Iso/iec 9899:2018, programming languages —
C. https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.

pdf, 2018. Accessed: March 21, 2024.

[15] C++-Standards. Standard for programming language C++. https://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf,
2020. Accessed: March 21, 2024.

[16] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie,
Xiuheng Wu, and Yang Liu. Hawkeye: Towards a desired directed
grey-box fuzzer. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS’18, pages 2095–2108,
2018.

[17] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu
Zhang, Dan Hao, and Lu Zhang. A survey of compiler testing. ACM
Computing Surveys, 53(1), 2020.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf

bibliography 187

[18] Liming Chen and Algirdas Avizienis. N-version Programming: A
fault-tolerance approach to reliability of software operation. In Proceed-
ings of the 8th IEEE International Symposium on Fault-Tolerant Computing,
FTCS’78, pages 3–9, 1978.

[19] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy, SP’18, pages 711–725, 2018.

[20] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: Fuzzing
deeply nested branches. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS’19, pages
499–513, 2019.

[21] Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. MEUZZ:
Smart seed scheduling for hybrid fuzzing. In Proceedings of the 23rd
International Symposium on Research in Attacks, Intrusions and Defenses,
RAID’20, pages 77–92, 2020.

[22] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong
Zhang, Tao Wei, and Long Lu. Savior: Towards bug-driven hybrid
testing. In Proceedings of the 2020 IEEE Symposium on Security and
Privacy, SP’20, pages 1580–1596, 2020.

[23] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun
Zhao. Coverage-directed differential testing of JVM implementations.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI’16, pages 85–99, 2016.

[24] CISQ. The cost of poor software quality in the US: A 2022

report. https://www.it-cisq.org/wp-content/uploads/sites/6/

2022/11/CPSQ-Report-Nov-22-2.pdf, 2022. Accessed: March 21,
2024.

[25] Developers of CppCheck. A tool for static C/C++ code analysis. http:
//cppcheck.sourceforge.net/, 2022. Accessed: March 21, 2024.

[26] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh
Leather. Compiler fuzzing through deep learning. In Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA’18, pages 95–105, 2018.

https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/

188 bibliography

[27] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley
de Souza Magalhães, Jerônimo Nunes Rocha, Breno Campos Ferreira
Guimarães, and Fernando Magno Quintão Pereira. AnghaBench: A
suite with one million compilable c benchmarks for code-size reduc-
tion. In Proceedings of the 19th IEEE/ACM International Symposium on
Code Generation and Optimization, CGO’21, pages 378–390, 2021.

[28] Mila Dalla Preda, Roberto Giacobazzi, Arun Lakhotia, and Isabella
Mastroeni. Abstract symbolic automata: Mixed syntactic/semantic
similarity analysis of executables. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL’15, pages 329–341, 2015.

[29] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and
sanitization. In Proceedings of the 2020 IEEE Symposium on Security and
Privacy, SP’20, pages 1497–1511, 2020.

[30] Zhen Yu Ding and Claire Le Goues. An empirical study of OSS-Fuzz
bugs. In Proceedings of the 2021 IEEE/ACM International Conference on
Mining Software Repositories, MSR’21, pages 131–142, 2021.

[31] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson.
Closer to the edge: Testing compilers more thoroughly by being less
conservative about undefined behaviour. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering,
ASE’20, pages 1219–1223, 2021.

[32] Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and
Cristian Cadar. GrayC: Greybox fuzzing of compilers and analysers
for C. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA’23, pages 1219–1231, 2023.

[33] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. The use
of likely invariants as feedback for fuzzers. In Proceedings of the 30th
USENIX Security Symposium, USENIX Security’21, pages 2829–2846,
2021.

[34] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++: Combining incremental steps of fuzzing research. In Proceed-
ings of the 14th USENIX Conference on Offensive Technologies, WOOT’20,
2020.

bibliography 189

[35] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
American Fuzzy Lop plus plus (AFL++-v4.01c). https://github.

com/AFLplusplus/AFLplusplus/releases/tag/4.01c, 2022. Ac-
cessed: March 21, 2024.

[36] Project QMK Firmware. Quantum mechanical keyboard
firmware. https://github.com/qmk/qmk_firmware/blob/gb_port/

keyboards/bfake/matrix.c, 2023. Accessed: March 21, 2024.

[37] Project FreeBSD. FreeBSD. https://github.com/freebsd/

freebsd-src/blob/stable/10/contrib/binutils/libiberty/

memset.c, 2023. Accessed: March 21, 2024.

[38] Project FreeType. FreeType. https://github.com/freetype/

freetype/blob/master/src/tools/ftrandom/ftrandom.c, 2023. Ac-
cessed: March 21, 2024.

[39] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin,
Dong Wu, and Zuoning Chen. GREYONE: Data flow sensitive fuzzing.
In Proceedings of the 29th USENIX Security Symposium, USENIX Secu-
rity’20, pages 2577–2594, 2020.

[40] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. CollAFL: Path sensitive fuzzing. In Proceed-
ings of the 2018 IEEE Symposium on Security and Privacy, SP’18, 2018.

[41] Developers of GCC. Passes and files of the compiler. https://gcc.

gnu.org/onlinedocs/gccint/Passes.html, 2023. Accessed: March
21, 2024.

[42] Developers of GCC. Options that control optimization. https://gcc.
gnu.org/onlinedocs/gcc/Optimize-Options.html, 2024. Accessed:
March 21, 2024.

[43] GCC-Bug. Bug report. https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=105714, 2022.

[44] GCC-Bug. Bug report. https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=106558, 2022.

[45] GCC-Bug. Bug report. https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=108085, 2022.

https://github.com/AFLplusplus/AFLplusplus/releases/tag/4.01c
https://github.com/AFLplusplus/AFLplusplus/releases/tag/4.01c
https://github.com/qmk/qmk_firmware/blob/gb_port/keyboards/bfake/matrix.c
https://github.com/qmk/qmk_firmware/blob/gb_port/keyboards/bfake/matrix.c
https://github.com/freebsd/freebsd-src/blob/stable/10/contrib/binutils/libiberty/memset.c
https://github.com/freebsd/freebsd-src/blob/stable/10/contrib/binutils/libiberty/memset.c
https://github.com/freebsd/freebsd-src/blob/stable/10/contrib/binutils/libiberty/memset.c
https://github.com/freetype/freetype/blob/master/src/tools/ftrandom/ftrandom.c
https://github.com/freetype/freetype/blob/master/src/tools/ftrandom/ftrandom.c
https://gcc.gnu.org/onlinedocs/gccint/Passes.html
https://gcc.gnu.org/onlinedocs/gccint/Passes.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105714
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105714
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106558
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106558
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108085
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108085

190 bibliography

[46] GCC-Bug. Bug report. https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=109151, 2023.

[47] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. Differ-
ential regression testing for rest apis. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA’20, pages 312–323, 2020.

[48] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-
chine learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE’17,
pages 50–59, 2017.

[49] Google. OSS-Fuzz: Continuous fuzzing for open source software.
https://github.com/google/oss-fuzz, 2022. Accessed: March 21,
2024.

[50] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program
synthesis. Foundations and Trends in Programming Languages, 4(1-2):1–
119, 2017.

[51] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Her-
bert Bos. Dowsing for overflows: A guided fuzzer to find buffer
boundary violations. In Proceedings of the 22nd USENIX Conference on
Security, USENIX Security’13, pages 49–64, 2013.

[52] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 4(3), 2020.

[53] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish,
Mathias Payer, and Antony L Hosking. Seed selection for success-
ful fuzzing. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA’21, pages 230–243,
2021.

[54] Adrian Herrera, Mathias Payer, and Antony L. Hosking. DatAFLow:
Toward a data-flow-guided fuzzer. ACM Transactions on Software
Engineering and Methodology, 32(5), 2023.

[55] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In Proceedings of the 21st USENIX Conference on Security
Symposium, USENIX Security’12, 2012.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109151
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109151
https://github.com/google/oss-fuzz

bibliography 191

[56] Petr Hosek and Cristian Cadar. Varan the unbelievable: An efficient
N-version execution framework. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’15, pages 339–353, 2015.

[57] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang.
INSTRIM: Lightweight instrumentation for coverage-guided fuzzing.
In Symposium on Network and Distributed System Security, Workshop on
Binary Analysis Research, 2018.

[58] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles
Zhang. Pangolin: Incremental hybrid fuzzing with polyhedral path
abstraction. In Proceedings of the 2020 IEEE Symposium on Security and
Privacy, SP’20, pages 1613–1627, 2020.

[59] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo
Kim, and Byoungyoung Lee. DIFUZZRTL: Differential fuzz testing to
find cpu bugs. In Proceedings of the 2021 IEEE Symposium on Security
and Privacy, SP’21, pages 1286–1303, 2021.

[60] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. How do de-
velopers act on static analysis alerts? An empirical study of coverity
usage. In Proceedings of the IEEE 30th International Symposium on
Software Reliability Engineering, ISSRE’19, pages 323–333, 2019.

[61] Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der
Kouwe, and Klaus von Gleissenthall. Don’t Look UB: Exposing
sanitizer-eliding compiler optimizations. Proceedings of the ACM Pro-
gramming Languages, 7(PLDI), 2023.

[62] Yuseok Jeon, Wookhyun Han, Nathan Burow, and Mathias Payer.
FuZZan: Efficient sanitizer metadata design for fuzzing. In Proceedings
of the 2020 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC’20, pages 249–263, 2020.

[63] Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing Tang, Chao
Zhang, and Mathias Payer. Igor: Crash deduplication through root-
cause clustering. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS’21, pages 3318–3336,
2021.

[64] Edward L Kaplan and Paul Meier. Nonparametric estimation from
incomplete observations. Journal of the American Statistical Association,
53(282):457–481, 1958.

192 bibliography

[65] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS’18, pages
2123–2138, 2018.

[66] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation
via equivalence modulo inputs. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI’14, pages 216–226, 2014.

[67] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler
bugs via guided stochastic program mutation. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA’15, pages
386–399, 2015.

[68] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE’18, pages 475–485, 2018.

[69] Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

[70] Xavier Leroy. CompCert. https://compcert.org/index.html, 2024.
Accessed: March 21, 2024.

[71] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen, Stijn Vol-
ckaert, and Michael Franz. Partisan: fast and flexible sanitization
via run-time partitioning. In Proceedings of the 21st International Sym-
posiumResearch in Attacks, Intrusions, and Defenses, RAID’18, pages
403–422, 2018.

[72] Shaohua Li. Artifact for CompDiff. https://doi.org/10.5281/

zenodo.7612226.

[73] Shaohua Li. Artifact for Creal. https://doi.org/10.5281/zenodo.
10802596.

[74] Shaohua Li. Artifact for PGE. https://doi.org/10.5281/zenodo.

7727577.

[75] Shaohua Li. Artifact for UBfuzz. https://doi.org/10.5281/zenodo.
8406414.

https://compcert.org/index.html
https://doi.org/10.5281/zenodo.7612226
https://doi.org/10.5281/zenodo.7612226
https://doi.org/10.5281/zenodo.10802596
https://doi.org/10.5281/zenodo.10802596
https://doi.org/10.5281/zenodo.7727577
https://doi.org/10.5281/zenodo.7727577
https://doi.org/10.5281/zenodo.8406414
https://doi.org/10.5281/zenodo.8406414

bibliography 193

[76] Shaohua Li and Zhendong Su. Accelerating fuzzing through prefix-
guided execution. Proceedings of the ACM Programming Languages,
7(OOPSLA), 2023.

[77] Shaohua Li and Zhendong Su. Finding unstable code via compiler-
driven differential testing. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’23, pages 238–251, 2023.

[78] Shaohua Li and Zhendong Su. UBFuzz: Finding bugs in sanitizer
implementations. In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’24, 2024.

[79] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei
Lin, Yang Liu, and Alwen Tiu. Steelix: Program-state based binary
fuzzing. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE’17, pages 627–637, 2017.

[80] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee,
Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng
Cheng, Kangjie Lu, and Ting Wang. UNIFUZZ: A holistic and prag-
matic metrics-driven platform for evaluating fuzzers. In Proceedings
of the 30th USENIX Conference on Security Symposium, USENIX Secu-
rity’21, 2021.

[81] Developers of LibTooling. LibTooling. https://clang.llvm.org/

docs/LibTooling.html, 2023. Accessed: March 21, 2024.

[82] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. Many-core compiler fuzzing. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI’15, pages 65–76, 2015.

[83] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. An
empirical study on the effectiveness of static c code analyzers for
vulnerability detection. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA’22,
2022.

[84] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. PMFuzz:
Test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support for

https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html

194 bibliography

Programming Languages and Operating Systems, ASPLOS’21, pages 487–
502, 2021.

[85] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random
testing for C and C++ compilers with YARPGen. Proceedings of the
ACM Programming Languages, 4(OOPSLA), 2020.

[86] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Fuzzing loop
optimizations in compilers for C++ and data-parallel languages. Pro-
ceedings of the ACM Programming Languages, 7(PLDI), 2023.

[87] Developers of LLDB. The LLDB Debugger. https://lldb.llvm.org/,
2023. Accessed: March 21, 2024.

[88] Developers of LLVM. UndefinedBehaviorSanitizer. https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html, 2022. Accessed:
March 21, 2024.

[89] Developers of LLVM. LLVM’s analysis and transform passes. https:
//llvm.org/docs/Passes.html, 2023. Accessed: March 21, 2024.

[90] Developers of LLVM. Clang – The Clang C, C++, and Objective-
C compiler. https://clang.llvm.org/docs/CommandGuide/clang.

html, 2024. Accessed: March 21, 2024.

[91] LLVM-Bug. Bug report. https://github.com/llvm/llvm-project/

issues/55189, 2022.

[92] LLVM-Bug. Bug report. https://github.com/llvm/llvm-project/

issues/60236, 2023.

[93] LLVM-Bug. Bug report. https://github.com/llvm/llvm-project/

issues/61982, 2023.

[94] LLVM, Developers of. SanitizerCoverage. https://releases.llvm.

org/11.0.1/tools/clang/docs/SanitizerCoverage.html, 2021. Ac-
cessed: March 21, 2024.

[95] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. MOPT: Optimized mutation scheduling
for fuzzers. In Proceedings of the 28th USENIX Conference on Security
Symposium, USENIX Security’19, pages 1949–1966, 2019.

https://lldb.llvm.org/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://github.com/llvm/llvm-project/issues/55189
https://github.com/llvm/llvm-project/issues/55189
https://github.com/llvm/llvm-project/issues/60236
https://github.com/llvm/llvm-project/issues/60236
https://github.com/llvm/llvm-project/issues/61982
https://github.com/llvm/llvm-project/issues/61982
https://releases.llvm.org/11.0.1/tools/clang/docs/SanitizerCoverage.html
https://releases.llvm.org/11.0.1/tools/clang/docs/SanitizerCoverage.html

bibliography 195

[96] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil
Cha, Manuel Egele, Edward J Schwartz, and Maverick Woo. The art,
science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering, 47(11):2312–2331, 2019.

[97] Valentin JM Manès, Soomin Kim, and Sang Kil Cha. Ankou: Guiding
grey-box fuzzing towards combinatorial difference. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE’20, pages 1024–1036, 2020.

[98] Zohar Manna and Richard Waldinger. A deductive approach to
program synthesis. ACM Transactions on Programming Languages and
Systems, 2(1):90–121, 1980.

[99] Nathan Mantel et al. Evaluation of survival data and two new rank
order statistics arising in its consideration. Cancer Chemother Rep,
50(3):163–170, 1966.

[100] Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti.
Fuzzing with data dependency information. In Proceedings of the
2022 IEEE European Symposium on Security and Privacy, EuroSP’22,
2022.

[101] Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian
Cadar. Compiler fuzzing: How much does it matter? Proceedings of
the ACM Programming Languages, 3(OOPSLA), 2019.

[102] Björn Mathis, Rahul Gopinath, and Andreas Zeller. Learning input
tokens for effective fuzzing. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA’20,
pages 27–37, 2020.

[103] Patrick E McKnight and Julius Najab. Mann-Whitney U test. The
Corsini Encyclopedia of Psychology, 2010.

[104] Meta. A tool to detect bugs in Java and C/C++/Objective-C code.
https://fbinfer.com/, 2022. Accessed: March 21, 2024.

[105] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing
fuzzing overhead through coverage-guided tracing. In Proceedings of
the 2019 IEEE Symposium on Security and Privacy, SP’19, pages 787–802,
2019.

https://fbinfer.com/

196 bibliography

[106] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson,
and Matthew Hicks. Same coverage, less bloat: Accelerating binary-
only fuzzing with coverage-preserving coverage-guided tracing. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’21, pages 351–365, 2021.

[107] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’07, pages 89–100, 2007.

[108] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. Dif-
Fuzz: differential fuzzing for side-channel analysis. In Proceedings
of the ACM/IEEE 41st International Conference on Software Engineering,
ICSE’19, pages 176–187, 2019.

[109] NIST. Juliet test suite for C/C++ 1.3. https://samate.nist.gov/

SARD/test-suites/112, 2017. Accessed: March 21, 2024.

[110] NIST. CWE-469: Use of pointer subtraction to determine size.
https://cwe.mitre.org/data/definitions/469.html, 2023. Ac-
cessed: March 21, 2024.

[111] Yannic Noller, Rody Kersten, and Corina S Păsăreanu. Badger: Com-
plexity analysis with fuzzing and symbolic execution. In Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA’18, pages 322–332, 2018.

[112] Yannic Noller, Corina S Păsăreanu, Marcel Böhme, Youcheng Sun,
Hoang Lam Nguyen, and Lars Grunske. HyDiff: Hybrid differential
software analysis. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE’20, pages 1273–1285, 2020.

[113] Community of NIST. CWE: Weaknesses in software written in
C. https://cwe.mitre.org/data/definitions/658.html. Accessed:
March 21, 2024.

[114] Community of NIST. CWE top 25 most dangerous software weak-
nesses. https://cwe.mitre.org/top25/archive/2023/2023_top25_

list.html, 2023. Accessed: March 21, 2024.

https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

bibliography 197

[115] Peter-Michael Osera and Steve Zdancewic. Type-and-example-
directed program synthesis. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI’15, pages 619–630, 2015.

[116] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. ParmeSan: Sanitizer-guided greybox fuzzing. In Proceedings
of the 29th USENIX Conference on Security Symposium, USENIX Secu-
rity’20, pages 2289–2306, 2020.

[117] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D Ernst, Deric Pang, and Benjamin Keller. Evaluating and
improving fault localization. In Proceedings of the IEEE/ACM 39th
International Conference on Software Engineering, ICSE’17, pages 609–
620, 2017.

[118] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: fuzzing by
program transformation. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy, SP’18, pages 697–710, 2018.

[119] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis,
and Suman Jana. Nezha: Efficient domain-independent differential
testing. In Proceedings of the 2017 IEEE Symposium on security and
privacy, SP’17, pages 615–632, 2017.

[120] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. AFLNet:
A greybox fuzzer for network protocols. In Proceedings of the IEEE 13th
International Conference on Software Testing, Validation and Verification,
ICST’20, pages 460–465, 2020.

[121] Duy Loc Phan, Yunho Kim, and Moonzoo Kim. Music: Mutation
analysis tool with high configurability and extensibility. In Proceedings
of the 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICSTW’18, pages 40–46, 2018.

[122] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are
equal: Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596,
2017.

[123] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware evolutionary
fuzzing. In Proceedings of the 2017 Network and Distributed System
Security Symposium, NDSS’17, pages 1–14, 2017.

198 bibliography

[124] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. Test-case reduction for C compiler bugs. In Proceedings
of the 33rd ACM SIGPLAN conference on Programming Language Design
and Implementation, PLDI’12, pages 335–346, 2012.

[125] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. Unleashing
the hidden power of compiler optimization on binary code difference:
An empirical study. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation,
PLDI’21, pages 142–157, 2021.

[126] Manuel Rigger and Zhendong Su. Detecting optimization bugs in
database engines via non-optimizing reference engine construction.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE’20, pages 1140–1152, 2020.

[127] Coverity Scan. Coverity scan: Find and fix defects in your Java,
C/C++, C#, JavaScript, Ruby, or Python open source project for free.
https://scan.coverity.com/, 2022. Accessed: March 21, 2024.

[128] David A Schum. The evidential foundations of probabilistic reasoning.
Northwestern University Press, 2001.

[129] Mozilla Security. Fuzzdata. https://github.com/MozillaSecurity/
fuzzdata, 2021. Accessed: March 21, 2024.

[130] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’12, pages 309–318, 2012.

[131] Kosta Serebryany. Continuous fuzzing with libfuzzer and address-
sanitizer. In Proceedings of the 2016 IEEE Cybersecurity Development,
SecDev’16, pages 157–157, 2016.

[132] Kostya Serebryany. Sanitize, fuzz, and harden your C++ code. In
Proceedings of the 2016 USENIX Enigma, 2016.

[133] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi
Ray. MTFuzz: fuzzing with a multi-task neural network. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE’20, pages 737–749, 2020.

https://scan.coverity.com/
https://github.com/MozillaSecurity/fuzzdata
https://github.com/MozillaSecurity/fuzzdata

bibliography 199

[134] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi
Ray, and Suman Jana. Neuzz: Efficient fuzzing with neural program
smoothing. In Proceedings of the 2019 IEEE Symposium on Security and
Privacy, SP’19, pages 803–817, 2019.

[135] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent Byunghoon
Kang, Jean-Pierre Seifert, and Michael Franz. Agamotto: Accelerating
kernel driver fuzzing with lightweight virtual machine checkpoints.
In Proceedings of the 29th USENIX Security Symposium, USENIX Secu-
rity’20, pages 2541–2557, 2020.

[136] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer:
Fast detector of uninitialized memory use in C++. In Proceedings of
the 13th IEEE/ACM International Symposium on Code Generation and
Optimization, CGO’15, pages 46–55, 2015.

[137] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings of the 23th Annual Network
and Distributed System Security Symposium, NDSS’16, pages 1–16, 2016.

[138] Project GB Studio. GBStudio. https://github.com/chrismaltby/

gb-studio/blob/develop/buildTools/linux-x64/mod2gbt/

mod2gbt.c, 2023. Accessed: March 21, 2024.

[139] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via
live code mutation. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA’16, pages 849–863, 2016.

[140] Developers of Tcpdump. Tcpdump. https://github.com/

the-tcpdump-group/tcpdump, 2022. Accessed: March 21, 2024.

[141] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. Finding
missed optimizations through the lens of dead code elimination. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’22,
pages 697–709, 2022.

[142] Kaushik Veeraraghavan, Peter M Chen, Jason Flinn, and Satish
Narayanasamy. Detecting and surviving data races using complemen-
tary schedules. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, SOSP’11, pages 369–384, 2011.

https://github.com/chrismaltby/gb-studio/blob/develop/buildTools/linux-x64/mod2gbt/mod2gbt.c
https://github.com/chrismaltby/gb-studio/blob/develop/buildTools/linux-x64/mod2gbt/mod2gbt.c
https://github.com/chrismaltby/gb-studio/blob/develop/buildTools/linux-x64/mod2gbt/mod2gbt.c
https://github.com/the-tcpdump-group/tcpdump
https://github.com/the-tcpdump-group/tcpdump

200 bibliography

[143] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes
Kinder. High system-code security with low overhead. In 2015 IEEE
Symposium on Security and Privacy, SP’15, pages 866–879, 2015.

[144] Jonas Benedict Wagner. Elastic program transformations: Automatically
optimizing the reliability/performance trade-off in systems software. PhD
thesis, Ecole Polytechnique Fédérale de Lausanne, 2017.

[145] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu,
Shengchao Qin, Hongxu Chen, and Yulei Sui. Typestate-guided
fuzzer for discovering use-after-free vulnerabilities. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE’20, pages 999–1010, 2020.

[146] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
Be sensitive and collaborative: Analyzing impact of coverage metrics
in greybox fuzzing. In Proceedings of the 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID’19, pages 1–15,
2019.

[147] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-
driven seed generation for fuzzing. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy, SP’17, pages 579–594, 2017.

[148] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han
Liu, Xibin Zhao, and Jiaguang Sun. SAFL: Increasing and accelerating
testing coverage with symbolic execution and guided fuzzing. In
Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE’18, pages 61–64, 2018.

[149] Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and
Yu Jiang. Odin: On-demand instrumentation with on-the-fly recompi-
lation. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI’22, pages
1010–1024, 2022.

[150] Theodore Luo Wang, Yongqiang Tian, Yiwen Dong, Zhenyang Xu, and
Chengnian Sun. Compilation consistency modulo debug information.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’23,
pages 146–158, 2023.

bibliography 201

[151] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zel-
dovich, and M Frans Kaashoek. Undefined behavior: what happened
to my code? In Proceedings of the Asia-Pacific Workshop on Systems,
APSys’12, pages 1–7, 2012.

[152] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-
Lezama. Towards optimization-safe systems: Analyzing the impact
of undefined behavior. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles, SOSP’13, pages 260–275, 2013.

[153] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang.
Free lunch for testing: Fuzzing deep-learning libraries from open
source. In Proceedings of the 44th International Conference on Software
Engineering, ICSE’22, pages 995–1007, 2022.

[154] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
A survey on software fault localization. IEEE Transactions on Software
Engineering, 42(8):707–740, 2016.

[155] Valentin Wüstholz and Maria Christakis. Targeted greybox fuzzing
with static lookahead analysis. In Proceedings of the 2020 IEEE/ACM
42nd International Conference on Software Engineering, ICSE’20, pages
789–800, 2020.

[156] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel,
and Lingming Zhang. Universal fuzzing via large language models.
In Proceedings of the 46th International Conference on Software Engineering,
ICSE’24, pages 1–13, 2024.

[157] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-
signing new operating primitives to improve fuzzing performance.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS’17, pages 2313–2328, 2017.

[158] Developers of xxHash. xxhash: Extremely fast hash algorithm. https:
//github.com/Cyan4973/xxHash, 2016. Accessed: March 21, 2024.

[159] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI’11, pages 283–294, 2011.

https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash

202 bibliography

[160] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A practical concolic execution engine tailored for hybrid
fuzzing. In Proceedings of the 27th USENIX Security Symposium,
USENIX Security’18, pages 745–761, 2018.

[161] Michał Zalewski. American Fuzzy Lop. https://lcamtuf.coredump.
cx/afl/, 2014. Accessed: March 21, 2024.

[162] Michał Zalewski. Fuzzing random programs with-
out execve(). https://lcamtuf.blogspot.com/2014/10/

fuzzing-binaries-without-execve.html, 2014. Accessed: March
21, 2024.

[163] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong
Su. SANRAZOR: Reducing redundant sanitizer checks in C/C++
programs. In Proceedings of the 15th USENIX Symposium on Operating
Systems Design and Implementation, OSDI’21, 2021.

[164] Qian Zhang, Jiyuan Wang, and Miryung Kim. Heterofuzz: Fuzz
testing to detect platform dependent divergence for heterogeneous
applications. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE’21, pages 242–254, 2021.

[165] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis, Nikos Trian-
dopoulos, and Jun Xu. Debloating address sanitizer. In Proceedings
of the 31st USENIX Security Symposium (USENIX Security’22), pages
4345–4363, 2022.

[166] Su Zhendong. Emi compiler testing. https://people.inf.ethz.ch/
suz/emi/index.html, 2023. Accessed: March 21, 2024.

[167] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. Zeror:
Speed up fuzzing with coverage-sensitive tracing and scheduling. In
Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE’20, pages 858–870, 2020.

[168] Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. An empirical
study of optimization bugs in gcc and llvm. Journal of Systems and
Software, 174, 2021.

[169] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
A survey for roadmap. ACM Computing Surveys, 54(11s):1–36, 2022.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://people.inf.ethz.ch/suz/emi/index.html
https://people.inf.ethz.ch/suz/emi/index.html

bibliography 203

[170] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang,
and Kai Chen. FuzzGuard: Filtering out unreachable inputs in di-
rected grey-box fuzzing through deep learning. In Proceedings of the
29th USENIX Security Symposium, USENIX Security’20, pages 2255–
2269, 2020.

C U R R I C U L U M V I TA E

Personal Data

Name Shaohua Li

Date of Birth 8 December, 1994

Citizen of China

Education

2019-2024 Ph.D. in Computer Science

ETH Zurich

Zürich, Switzerland

2016-2019 Master of Engineering

University of Science and Technology of China

Hefei, China

2012-2016 Bachelor of Engineering

University of Science and Technology of China

Hefei, China

205

	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	Contents
	Introduction
	Background
	Reliability of Code
	Contribution: CompDiff
	Contribution: PGE
	Contribution: Sand

	Reliability of Code Analysis
	Contribution: UBfuzz

	Reliability of Code Compilation
	Contribution: Creal

	Reliability of Code
	Finding Unstable Code via Compiler-Driven Differential Testing
	Illustrative Examples
	Approach
	Compiler-Driven Differential Testing
	CompDiff-AFL++

	Evaluation
	Effectiveness of CompDiff in Benchmark Programs
	Impact of Reducing #Compiler Implementations
	CompDiff-AFL++

	Discussion
	Related Work

	Accelerating Fuzzing through Prefix-Guided Execution
	Observations on CGF
	Approach
	Fuzzing with PGE
	Prefix Execution
	Prefix Analysis
	Prefix Length Search

	Evaluation
	RQ1: Accuracy of Prefix Length Estimation at Different Sampling Ratios.
	RQ2: Overhead of Prefix Length Search
	RQ3: Distributions of Prefix Length on Different Recall Settings
	RQ4: Early Terminated Tests as A Percentage of All Tests
	RQ5: Ratio of Executing Interesting Tests to All Full Executions
	RQ6: Bug-Finding Evaluation
	RQ7: Coverage Evaluation
	Finding Bugs in Latest Applications
	Discussion

	Threats to Validity
	Related Work

	Decoupling Sanitization from Fuzzing for Low Overhead
	Observation and Illustration
	High Overhead of Sanitizers
	Rareness of Bug-triggering Inputs
	Illustrative Examples

	Approach
	Preliminary: Execution Path and its Proxy
	Sanitization-decoupled Fuzzing
	Implementation

	Evaluation
	Experimental Setup
	Effectiveness of Execution Pattern
	Bug-Finding Capability
	Fuzzing Throughput
	Code Coverage
	Hash in Sand

	Discussion
	Related work

	Reliability of Code Analysis
	Finding Bugs in Sanitizer Implementations
	Illustrative Examples
	UB Program Generation
	Crash-Site Mapping as the Test Oracle

	Approach
	UB Conditions and Shadow Statement
	UB Program Generator
	Crash-site Mapping as the Test Oracle

	Empirical Evaluation
	Implementation and Evaluation Setup
	RQ1: Bug Finding
	RQ2: Effectiveness of UB Program Generator
	RQ3: Effectiveness of Crash-Site Mapping
	RQ4: Code Coverage
	Case Study
	Discussion on Approach Generality

	Related Work

	Reliability of Code Compilation
	Boosting Compiler Testing by Injecting Real-world Code
	Illustrative Examples
	Approach
	Function Database
	Algorithmic Sketch
	Expression Matching
	Program Profiling
	Function Call Synthesis
	Implementation

	Constructing Function Database
	Extracting and Transforming Functions
	Constructing Function Database with I/O

	Evaluation
	Experimental Setup
	Quantitative Results: Bug-Finding
	Bug Characteristics
	Code Coverage and Generation Speed
	Significance of Function Database
	Comparison of Creal v.s. Hermes
	Case Study
	Discussion

	Related Work

	Conclusion and Future Directions
	CompDiff Beyond C/C++
	Faulty Execution Detection based on PGE and Sand
	Validating Bug Detectors via UBfuzz
	Universal Program Generation based on Creal
	Curriculum Vitae

