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Abstract

The rapid proliferation of the Internet of Things (IoT) has coincided
with a revolution in machine learning, driven by deep learning-based
algorithms. At the intersection of these developments, smart sensing
systems aim to integrate sensing, deep learning-based interpretation
of the captured data and reaction to the results of the processing.
As battery-powered IoT sensor nodes operate under stringent power,
memory and compute resource constraints, the deployment of deep
learning algorithms on these systems requires careful and joint
optimization in both the algorithmic and the hardware domain.

Quantized neural networks (QNNs) use low-bitwidth integer
formats to represent model parameters and intermediate results.
This shrinks their memory and storage footprints, and by taking
advantage of specialized hardware for low-precision integer arithmetic,
the operational efficiency of the inference can be optimized.

This thesis explores how QNNs can be used to implement highly
energy-efficient IoT and edge applications, from both the algorithmic
and hardware implementation perspectives. The common element in
its key contributions is a focus on end-to-end applications, with the
goal of providing an evaluation of the potential of QNNs to improve
full-system efficiency.

For efficient evaluation of the impact of different quantization
policies on the energy efficiency of end-to-end applications, we first
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present a methodology for the automated conversion of full-precision
networks to trainable and to deployable, integer-only quantized
counterparts.

We then explore the real-world potential of extreme quantization
in the form of ternarized neural networks (TNNs). On the example
of end-to-end gesture recognition from dynamic vision sensor data,
we demonstrate state-of-the-art accuracy and energy efficiency with
a TNN-based processing pipeline. Next, we present TNN-specific
RISC-V instruction set architecture (ISA) extensions, which offer a
40 % increase in throughput on a real-world benchmark network at a
negligible overhead in silicon area and power consumption.

While extreme quantization holds the most potential for energy
efficiency gains, it incurs a considerable accuracy penalty on more
challenging tasks. To optimize the trade-off between networks’
statistical performance and end-to-end inference energy, we present
a method for finding latency-optimized layer-wise mixed-precision
quantization policies for a given network and hardware target platform,
achieving up to 30 % lower end-to-end inference latency at full-precision
equivalent classification accuracy on the 1000-class ImageNet dataset
on a microcontroller-class platform.



Zusammenfassung

Zeitgleich mit der rasanten Ausbreitung des Internet of Things (IoT)
hat die Entwicklung von Deep-Learning-Algorithmen eine Revolution
im Feld des maschinellen Lernens ausgelöst. Die Schnittstelle
dieser Entwicklungen bilden intelligente Sensorsysteme, welche die
gemessenen Daten mit Deep Learning interpretieren und direkt auf
die Resultate reagieren. Da IoT-Geräte oft batteriebetrieben sind
und über eng begrenzte Rechen- und Speicherkapazität verfügen,
müssen die eingesetzten Deep-Learning-Algorithmen und die Hardware-
Plattformen auf maximale Energieeffizienz ausgelegt und eng aufein-
ander abgestimmt sein.

Quantisierte neuronale Netzwerke (QNN) sind Deep-Learning-
Modelle, in welchen die Modellparameter und Zwischenresultate
statt als Fliesskommazahlen als Ganzzahlen mit geringer Bitbreite
dargestellt werden. Dies reduziert den Speicherbedarf und ermöglicht
die Benutzung von weniger komplexen Hardware-Recheneinheiten, was
wiederum die Energieeffizienz erhöht.

Diese Dissertation beschäftigt sich mit dem Einsatz von QNN
zur Effizienzsteigerung von IoT-Anwendungen, wobei sowohl algo-
rithmische Aspekte als auch das Hardware-Design erforscht werden.
Das übergreifende Ziel soll dabei sein, das Potenzial von QNN zur
Steigerung der Gesamtsystemeffizienz auszuloten.

Zur effizienten Bestimmung des Einflusses unterschiedlicher Quan-
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tisierungsmethoden auf die Energieeffizienz kompletter Anwendungen
präsentieren wir zuerst eine Methode zur automatischen Quantisierung
von neuronalen Netzwerken. Mit dieser Methode können sowohl
trainierbare QNN als auch vollständig ganzzahlige Modelle für
den Einsatz in IoT-Anwendungen automatisch aus herkömmlichen
Fliesskommazahl-Modellen generiert werden.

Als nächstes erforschen wir das Potenzial extremer Quantisierung
anhand ternarisierter neuronaler Netze (TNN). Am Beispiel eines
kompletten Systems zur Klassifizierung von Gesten zeigen wir, dass mit
TNN sowohl statistische Genauigkeit als auch Energieeffizienz auf dem
Stand der Forschung und darüber hinaus erreicht werden können. Wir
präsentieren weiterhin eine Erweiterung des RISC-V-Instruktionssatzes,
welche diesen für die Ausführung von TNN optimiert. Bei einem
minimalen Zuwachs an Chipfläche und Leistungsaufnahme vermag
diese Erweiterung den Datendurchsatz im Beispiel einer realistischen
Anwendung um 40 % zu steigern.

Extreme Quantisierung ermöglicht zwar dramatische Effizienzstei-
gerungen, kann aber auch grosse Einbussen bei der statistischen
Genauigkeit eines Netzwerkes zur Folge haben, insbesondere bei
komplexeren Datensätzen. Wir stellen einen Algorithmus vor,
welcher die Ausführungszeit eines gegebenen neuronalen Netzes auf
einem gegebenen System optimiert, indem jede Netzwerkschicht
zu einer eigenen Präzision quantisiert wird, um einen optimalen
Kompromiss zwischen der algorithmischen Leistungsfähigkeit und
der Energieeffizienz des gesamten Systems zu erreichen. Wir zeigen,
dass die Ausführungszeit eines Netzes auf einer Mikrokontroller-
Plattform mit diesem Algorithmus bei gegenüber dem ursprünglichen
Fliesskommazahl-Modell unveränderter statistischer Genauigkeit im
ImageNet-Bildklassifizierungsdatensatz mit 1000 Klassen um bis zu
30 % reduziert werden kann.
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Chapter 1

Introduction

1.1 Motivation
The proliferation of small-scale sensing systems such as IoT sensor
nodes and wearable devices has coincided with a revolution in data
processing. Machine learning (ML) algorithms such as convolutional
neural networks (CNNs) and transformer networks have dramatically
improved the state of the art in fields such as computer vision,
natural language processing or biomedical signal processing [1]–[4].
As most applications involving the collection of data demand for
their interpretation and reaction to the result, these developments
are naturally symbiotic. However, the approach of transmitting raw
data to cloud servers to be processed with powerful and compute-
intensive ML models does not scale to the enormous amounts of
data collected and conflicts with the constraints of battery-powered,
sensor-driven applications requiring real-time performance: wireless
communication is power-intensive and incurs communication latency,
and the transmission of raw sensor data raises privacy and security
concerns.

This conflict is addressed by the emerging research field of edge AI,
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Task
Complex.

Easy:
CIFAR-10,
10-Class

Large Small

Hard:
ILSVRC12,
1000-Class

Does not
Converge

Network
Size

Figure 1.1 – Comparing the impact of integer quantization to different
precisions (bitwidths) depending on network complexity and task difficulty.
ResNet50 results are taken from [5], all other results are ours.

which aims to enable efficient and accurate ML-based processing of
sensor data directly on the edge nodes where they are collected. These
systems, typically built around Microcontrollers (MCUs), operate
under stringent power, memory, and compute resource constraints. A
key algorithmic technique in edge AI is quantization of neural networks,
where parameters and intermediate activations are represented in low-
bitwidth data formats. Smaller data elements directly reduce a given
model’s memory and storage footprints, enabling the deployment
of quantized models on memory-constrained platforms. Lowering
operand precision also makes arithmetic hardware units smaller and
increases their operational efficiency. Together with the increased
data density, this enables higher throughput and efficiency figures at
constant memory bandwidth and silicon area budgets.

Of course, the benefits of quantization are not unconditional,
but subject to a system of non-trivial trade-offs. On one hand,
aggressive quantization to low bitwidths increases a model’s data
density and operational efficiency. On the other hand, a model’s
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statistical performance decreases with lower precisions – while research
in quantization algorithms has come far in narrowing the accuracy
gap, quantizing models to 1-bit or 2-bit precision still typically incurs
a considerable accuracy penalty. The trade-off landscape is made
more complex by the fact that quantization tends to incur a larger
accuracy drop on more difficult tasks than on easy tasks. Similarly,
small network topologies tuned toward high efficiency in terms of
accuracy vs. model size and computational complexity tend to see a
larger accuracy drop from quantization than larger, overparametrized
models. This is demonstrated in Figure 1.1. A large network, such
as VGG9, used to solve the comparatively easy 10-class CIFAR-10
dataset [6], can be quantized to 2-bit precision with no accuracy
drop. On the other hand, when solving the more challenging 1000-
class ImageNet dataset [7] with the lightweight MobileNetV1, 4-bit
quantization already leads to a substantial accuracy drop, and the
2-bit quantized network does not converge. A designer facing the task
of choosing the most efficient combination of model and quantization
policy for a given edge AI task must navigate these algorithmic aspects,
but that is only one half of the challenge. They must also choose
a platform on which to implement their solution and confront the
fact that the hardware-software infrastructure most likely does not
conform to the idealized performance models that are often used in
algorithmic exploration techniques. The design challenge thus involves
interactions and feedback loops across the entire stack of algorithmic
development, software and hardware infrastructure implementation
and application development and deployment, making a divide-and-
conquer approach certain to yield suboptimal results and likely to fail
outright by delivering a worse trade-off than naïve solutions such as
homogeneous quantization to 8 bits, which can be applied with no
accuracy drop in the vast majority of cases. Due to this complexity,
commercial edge AI solutions by MCU vendors consist of hardware and
toolchain solutions that focus on optimization for 8-bit quantization,
leaving the efficiency potential of more aggressive quantization unused.

The objective of this thesis is to explore methods to leverage that
potential to improve the end-to-end, system-level efficiency of edge
AI applications. Its contributions, detailed in the next section, span
the gamut from full-stack system design, to ISA extensions tailored
to aggressively quantized TNN, to an algorithm to find quantization
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Figure 1.2 – Overview of thesis structure.

policies which optimize the inference latency for a given network and
hardware platform. All of these contributions include performance
and/or efficiency results for the end-to-end deployment of full networks
to real platforms, underlining the focus on end-to-end efficiency.

1.2 Outline
Figure 1.2 provides an overview of how the 7 chapters of this thesis
relate to each other. The 5 middle chapters contain the main technical
and theoretical contributions and are framed by this introduction
and a final conclusory chapter. This introduction provides the
motivation for the rest of the thesis and gives an overview of its



1.2. OUTLINE 5

content and contributions. The conclusion summarizes and relates the
thesis’ contributions and gives an outlook on potential future research
directions. The rest of the thesis is structured as follows:

1.2.1 End-to-End Quantization: From Theory to
Deployed Networks

In the years before and during the writing of this thesis, research in
the field of deep neural network (DNN) quantization and hardware
for QNN inference has attracted significant interest. Chapter 2 first
outlines the basic principles of integer DNN quantization, describing
how to obtain trainable, fake-quantized (FQ) QNNs from full-precision
networks and how to convert these FQ networks to integer-only QNNs.
It then gives an overview of the state of the art in the field of DNN
quantization algorithms and the hardware platforms used for QNN
inference, with a focus on the techniques and hardware relevant to
the later chapters of this thesis. To readily apply and evaluate those
algorithms in the context of edge AI application development, an
end-to-end pipeline is needed to automate the conversion of existing,
full-precision DNNs to deployable, integer-only networks. In Chapter 3,
we present such a pipeline, which we have integrated in the open-source
QuantLab [8] Python framework. This pipeline is used in all later
chapters to generate, train and export QNNs.

1.2.2 Extreme Quantization with TNNs
Quantization to extremely low precision achieves the highest rates
of model compression and allows the use of extremely lightweight
hardware for computation. The most aggressive quantization schemes
are binary and ternary quantization, where the parameters and
intermediate activations can take only two or three different values. In
Chapters 4 and 5, we explore the potential of ternary quantization to
enable efficient edge AI applications. In Chapter 4, we present an end-
to-end gesture recognition pipeline built around a TNN to classify video
sequences captured by a dynamic vision sensor (DVS) camera. Our
classification network achieves state-of-the-art classification accuracy
on an 11-class gesture recognition dataset. It can be run either on a
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dedicated TNN accelerator or on a cluster of RISC-V-based general-
purpose cores. We implement the gesture recognition pipeline on a
physical chip and present real-world power measurements for both
approaches, offering a realistic efficiency comparison between inference
on an application-specific accelerator and on general-purpose cores. We
find that while using the accelerator provides the lowest system-level
power consumption, the efficiency gap between the two is orders of
magnitude lower than the difference in pure operational efficiency at
peak throughput. With both approaches, we achieve a state-of-the-art
continuous power consumption of < 10 mW.

The RISC-V cores we deploy the gesture recognition TNN to are
already optimized for integer-bitwidths QNNs, but do not feature
TNN-specific optimizations. Furthermore, the inclusion of application-
specific accelerators represents a major commitment of silicon area and
implementation effort in the system design process. This commitment
may not be acceptable when developing an edge platform under
stringent cost constraints, where silicon area investments must be
justified by returns in the form of versatile functionality. Having
documented the efficiency potential of ISA-based processing cores at
the system level in Chapter 4, we explore how to improve it further
in Chapter 5. We present XpulpTNN, a lightweight extension to the
RISC-V ISA consisting of a set of specialized operations for ternary
data. XpulpTNN significantly improves the throughput and efficiency
of TNN execution at a minimal impact on silicon area and power
consumption in general applications.

1.2.3 Mixed-Precision Neural Networks for End-
to-End Efficiency

As we demonstrate in Chapters 4 and 5, aggressive quantization
to a single low precision has great potential to increase energy
efficiency. However, when tackling more difficult tasks with efficient
network architectures, extreme quantization tends to incur inacceptable
accuracy losses. With mixed-precision quantization, different layers
of a network are quantized to different precisions. The mixed-
precision paradigm opens a vast design space for a given network
architecture, allowing for a much finer-grained trade-off exploration
than homogeneous quantization to a single precision. As the number
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of possible quantization policies is exponential in the number of layers
in a network, a brute-force search is out of the question. In Chapter 6,
we present Free Bits, a directed search algorithm to find latency-
optimized precision configurations of a given network for a specific
hardware platform. We evaluate our algorithm on multiple variations
of a RISC-V-based multi-core MCU platform with two efficient DNN
architectures. Our results demonstrate that Free Bits can reliably find
Pareto-optimal precision configurations for various latency targets,
achieving up to 30 % reduction in measured latency compared to an
8-bit network at full-precision equivalent classification accuracy on
the challenging 1000-class ImageNet dataset.

1.3 Contributions
Chapters 1, 3 and 7 are new and unpublished content which I wrote
autonomously. The remaining chapters are adapted from publications
of which I was the main author (see Section 1.3.1). While I was
responsible for the majority of concept formulation, manuscript writing,
technical work and experiments, these chapters could not have been
realized without the help and feedback from my co-authors. The key
technical contributions of this thesis are summarized below.

1. A method for the automated conversion of full-precision
networks to their trainable quantized counterparts and for
the generation of integer-only deployable QNNs. (Chapter 3)

2. Design, implementation of and evaluation end-to-end process-
ing pipeline consisting of a ternarized CNN architecture for
gesture recognition from DVS camera data and preprocessing
steps. (Sections 4.4 and 4.6.1)

3. Hardware design, implementation and testing of a DVS
camera interface peripheral implementing those preprocessing
steps. (Section 4.5.1)

4. Deployment of the complete gesture recognition pipeline
to the Kraken SoC and evaluation of the in-silicon power
consumption and energy efficiency. (Sections 4.5.2 and 4.6.2)

5. Design and hardware implementation of the XpulpTNN
extensions to the RISC-V ISA to optimize the efficiency of
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execution of TNNs on general-purpose cores. (Section 5.3)
6. Development of full-stack software support consisting of

compiler support, optimized compute kernels and support for
automated TNN deployment and evaluation of performance,
power consumption and energy efficiency on the complete
hardware-software framework. (Sections 5.3.3 and 5.4)

7. Algorithmic design and evaluation of the Free Bits method
for finding mixed-precision configurations latency-optimized
for specific hardware platforms. (Chapter 6)

1.3.1 List of Publications

[9] G. Rutishauser, M. Scherer, T. Fischer, L. Benini,
“7 µJ/Inference End-to-End Gesture Recognition from
Dynamic Vision Sensor Data Using Ternarized Hybrid
Convolutional Neural Networks”, Future Generation
Computer Systems, July 2023.

[10] G. Rutishauser, M. Scherer, T. Fischer, L. Benini, “Ternar-
ized TCN for µJ/Inference Gesture Recognition from DVS
Event Frames”, in Proc. IEEE DATE, 2022.

[11] G. Rutishauser, F. Conti, L. Benini, “Free Bits: Latency
Optimization of Mixed-Precision Quantized Neural Networks
on the Edge”, in Proc. IEEE AICAS, 2023.

[12] G. Rutishauser, J. Mihali, M. Scherer, L. Benini, “xTern:
Energy-Efficient Ternary Neural Network Inference on RISC-
V-Based Edge Systems”, accepted for publication at IEEE
ASAP, 2024.

The following publications are not directly included in this thesis, either
because their topics are not sufficiently aligned with the thesis’ research
focus, or because my contribution to them was of a secondary nature.
[13] L. Cavigelli, G. Rutishauser, L. Benini, “EBPC: Extended

Bit-Plane Compression for Deep Neural Network Inference
and Training Accelerators”, IEEE Journal on Emerging and
Selected Topics in Circuits and Systems (JETCAS), 2019.

[14] M. Scherer, G. Rutishauser, L. Cavigelli, L. Benini, “CUTIE:
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Benini, M. Magno, “ColibriES: a Milliwatts RISC-V Based
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Networks Hardware Accelerators for Low-Latency Closed-loop
Control Applications”, in Proc. IEEE ISCAS, 2023.

[17] F. Conti, G. Paulin, A. Garofalo, D. Rossi, A. Di Mauro,
G. Rutishauser, G. Ottavi, M. Eggimann, H. Okuhara, L.
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Node SoC With 2–8 b DNN Acceleration and 30 %-Boost
Adaptive Body Biasing”, IEEE Journal of Solid-State Circuits,
2024.
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RISC-V Parallel Cluster for Inference of Fine-Grain Mixed-
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[8] M. Spallanzani, G. Rutishauser, M. Scherer, A. Burrello, F.
Conti, L. Benini, “QuantLab: A Modular Framework for
Training and Deploying Mixed-Precision NNs”, Poster at
TinyML Summit, 2022.





Chapter 2

Quantized Neural Networks:
Theory and Applications

In this chapter, we provide an introduction to QNNs. We start with a
brief overview of approaches to make DNNs more resource efficient.
We then introduce the basic theory and fundamental principles of
QNNs, before giving an overview of the state of the art in quantization
algorithms and hardware for QNN inference.

2.1 Introduction
The breakthrough success of the AlexNet [19] CNN in the ImageNet
challenge [7] was followed by the rapid introduction of novel CNN
architectures [20]–[22] which proceeded to improve the state of
the art in image classification, and were soon successfully applied
to other applications such as face recognition [23], [24], content
recommendation [25], [26] and speech recognition [27], [28]. As the
focus in these initial developments lay on statistical performance
rather than efficiency, the size and computational volume of early
models was considerable: AlexNet (2012) has around 62M parameters

11
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and required about 380M multiply-accumulate (MAC) operations
to compute, and VGG19, proposed in 2014, has 144M parameters
and a compute load of 9.8 GMACs per inference. DNN training and
evaluation in a research context is most commonly carried out on
platforms based on powerful graphics processing units (GPUs), which
are capable of handling such processing loads. However, with the
increasing demand for DNN processing on embedded systems and edge
devices, the large parameter counts and high computational intensity of
these early networks were quickly identified as a prohibitive bottleneck
to their widespread deployment and application. With DNNs rapidly
becoming an intensely researched topic, researchers soon proposed
different approaches to address these issues:

Pruning and Codebook-Based Compression Pruning, also
called sparsification, refers to techniques to enforce parameter sparsity
(i.e., the proportion of parameters whose value is zero) in a DNN model.
Many techniques for sparsification have been proposed; refer to [29] for
a comprehensive overview. The simplest approach to pruning consists
of setting weights with a magnitude below a certain threshold to zero
and, optionally, re-training the sparsified network [30], [31]. A sparse
network’s parameters can be stored in a sparse representation format
such as compressed sparse column (CSC) or compressed sparse row
(CSR), leading to a reduction in model size approximately proportional
to the degree of sparsity. The remaining nonzero weights can be
compressed by clustering them to k centroid values using, e.g., the k-
means algorithm. As there are only k discrete values that a parameter
can take, a single parameter can be represented as an index in the
vector containing the centroids, requiring ⌈log2 k⌉ bits of storage space.
[32] combines these two steps with Huffman coding of the compressed
parameter representation [33] to achieve a reduction in model size by up
to 98 % from the original 32-bit floating-point model. While sparsity-
and codebook-based compression methods can greatly reduce the size of
the stored model, their efficient implementation in application-specific
inference hardware is not straightforward: the sparse representation
of parameters must be decoded efficiently and sparse computation
requires specially designed hardware (as proposed, e.g., in [34], [35]).
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Efficient Network Topologies Rather than decrease the resource
footprint of a given network architecture, an alternative – and
largely orthogonal – approach is to develop DNN architectures
which optimize the trade-off between computational and storage
resource load and statistical performance. MobileNets [36] were
among the first architectures explicitly targeting resource efficiency
for mobile and embedded applications. Their key innovation was the
depthwise separable (DWS) convolution layer, which replaces regular
convolutional layers. By decomposing a convolution with kernel size
k into a channel-wise ("depthwise") convolution with kernel size k
and a "pointwise" convolution, i.e., a regular convolution with kernel
size 1, the parameter count and number of operations is decreased
while preserving the receptive field. As shown in [36], this substitution
incurs only a moderate drop in statistical performance, providing a
favorable trade-off between complexity and accuracy. The second
iteration of MobileNets [37] further improved efficiency by using
inverted bottleneck blocks with residual connections as building blocks.
To scale the network capacity and performance, the input resolution
and convolutional layers’ channel counts are scaled.

While versions 1 and 2 of MobileNet are parametrizable in their
size, the number of layers and their parametrization (excluding the
number of input and output channels) are fixed. To find more efficient
networks at a given complexity or resource budget, later works proposed
more sophisticated approaches. Network architecture search (NAS)
algorithms offer a way to search for architectures under consideration
of a complexity or efficiency metric; for a comprehensive survey on
the topic, we refer the interested reader to [38]. FBNet [39] and
MNASNet [40] use NAS to jointly optimize the task loss and inference
latency, using layer-wise latency measurements and estimations,
respectively, as the quantity to be optimized. MobileNetV3 [41]
combines the platform-aware NAS of [42] followed by iterative
simplification of the found network with optimized operators and
manual adjustments of the network structure. EfficientNets [43] address
the question of how to scale up a given, efficient network architecture
while maintaining a good accuracy-cost trade-off. Starting from a
small baseline architecture found with NAS, the input resolution, each
layer’s channel count and the number of layers in the network are
scaled jointly to obtain a larger, more accurate network.
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Figure 2.1 – Different 3-bit quantizer functions: (a) shows a linear quantizer
with 8 levels with step size ε, while (b) shows a quantizer with 7 levels
and logarithmically increasing step sizes.

2.2 A Primer on QNNs
QNNs broadly refers to neural networks whose weights and/or
activations are constrained to a discrete set of values. The previously
discussed methods for reducing DNNs’ resource footprint all operate
on full-precision, floating-point models, modifying their structure,
parameters and/or representations. The data format used to represent
the raw inputs to a computation step, i.e., parameters and intermediate
activations, is not altered. Consequently, the elementary MAC
operations which dominate the computational load of DNNs must
be executed on large, energy-hungry FPUs. Parameters (or, in the
case of clustering-based model compression, parameter centroids)
and intermediate activations are likewise stored as full-precision
floating-point values, contributing to the model size and memory
footprint. Furthermore, the specialized hardware required to capitalize
on sparsity- and codebook-based compression techniques tends to
impose restrictions on the topology of supported models, the order in
which computations are performed and the data formats used.

As illustrated in Figure 2.2, low-bitwidth (8 or fewer bits) integer
arithmetic units exhibit orders of magnitude lower silicon area and
energy consumption than their floating-point counterparts. By
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Figure 2.2 – Comparison of normalized energy consumption (Enorm) and area
(Anorm) requirements (in 45 nm process) of 8-bit integer (Int8) and 32-bit
floating-point (FP32) adders and multipliers. The figures are normalized
to those of an Int8 adder. FP32 arithmetic units have orders of magnitude
higher energy and area requirements compared to those of Int8, illustrating
the energy-saving potential of integer-quantized DNNs. Data adapted
from [44], [45].

representing a model’s weights and/or activations in low-precision
data formats, such as low-bitwidth integers, QNNs enable a reduction
of model size and memory footprint proportional to the reduction in
bitwidth. By executing the model with low-precision integer arithmetic,
the complexity of the required hardware is reduced, reducing the
energy consumed in the execution of a network and facilitating
the deployment of QNNs on resource-constrained, battery-powered
embedded systems. Different approaches to quantization have been
suggested: the quantized values may be spaced logarithmically [46], [47]
or may be low-precision floating-point numbers [48], [49]. As clustering-
based model compression results in weights being represented by a small
number of indices, it may be considered a form of quantization too. In
the following explanations, we will focus on uniform quantization. In
uniform quantization, the quantization levels lie on an evenly spaced
grid, with adjacent levels separated by the quantization step size
ε. Uniform quantization to 2b levels maps directly to b-bit integer
arithmetic, making them very hardware-friendly: the only required
hardware are integer MAC units in the appropriate bitwidths, with no
further implications on the processing order, network topology, etc.
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QNNs have become a key technique both in the high-performance
domain to enable more efficient large-scale inference [50], [51] and in
the edge domain, where toolchain [52], [53] and hardware [54], [55]
support for QNN deployment have become commonplace in commercial
offerings. In the remainder of this chapter, we will give an introduction
to the working principles of QNNs, the quantization algorithms used
to create them and the inference hardware used to run them.

2.2.1 Basic Principles of QNNs
We will consider CNNs consisting of convolutional and linear layers with
a fully feed-forward structure (i.e., no recurrent or residual structures -
the quantization of residual branches is covered in Chapter 3). Without
loss of generality, we consider the l-th layer of the network, with input
Xl = Yl−1 ∈ RN l

i ×Hl×W l and output Yl = Xl+1 ∈ RNo×Hl×Wl , to be
a convolutional layer, optionally followed by a batch normalization [56]
layer, and fed into a non-linear activation function σ:

Yl
c = σ

(
BN

(
Xl ∗Wl

c + Bl
c

))
∀ 0 ≤ c < No, (2.1)

where ∗ is the 2-dimensional multi-channel convolution operator,
Wl =

[
Wl

0, · · · , Wl
No−1

]
∈ RNo×Ni×ky×kx are the layer’s weights

and Bl =
[
Bl

0, · · · , Bl
No−1

]
∈ RNo is a vector of channel-wise bias

parameters. The batch normalization operation on a tensor T with
NT channels and spatial dimensions DT is defined as follows:

T ∈ RNT ×DT = [T0, · · · , TNT −1]

BN (Tc) = Tc − µc√
σ2

c + ϵ
γc + βc, ∀0 ≤ c < NT ,

where µ = [µ0, · · · , µNT −1] and σ = [σ0, · · ·σNT −1] are vectors
containing the channel-wise minibatch mean and variance, respectively,
γ and β are learned scale and shift parameters and ϵ is a small constant
to ensure numerical stability. For inference, batch normalization (BN)
layers can be folded together with the bias into a single affine transform:

BN (Tc + Bc) = γ̃cTc + β̂c ∀0 ≤ c < NT ,

with γ̃ = γ√
σ2 + ϵ

, β̃ = γ̃ (B− µ) + β



2.2. A PRIMER ON QNNS 17

For the ease of illustration, we will assume that our network uses the
rectified linear unit (ReLU) activation function:

σ (x) = ReLU (x) = max (x, 0)

Note that modern networks feature many other operators and topolog-
ical structures, such as residual connections [22], concatenations [57]
and squeeze-excite layers [41], [58]. This chapter is intended as an
introduction to QNNs, a procedure for the automatic quantization of
models containing more advanced operators is presented in Chapter 3.
Given a full-precision model consisting of such layers, we define two
classes of QNNs that we can derive from it:

Fake-quantized networks’ parameters and activations take values
in a discrete subset of the real numbers, on the same scale
as those of the full-precision network. This means that they
can not directly be executed on integer-only hardware, and
parameters are still floating-point values, albeit from a discrete
set. Intuitively, a fake-quantized network approximates its full-
precision counterpart, with the precision of the approximation
determined by the granularity of the quantization.

True-quantized (or integerized) networks’ parameters and activa-
tions are integers, i.e., a true-quantized network can be computed
with integer arithmetic, without further conversion. As such,
true-quantized networks are the final output of a quantization
pipeline.

In general, the conversion process from a full-precision to a true-
quantized model is performed in two steps: from full-precision to fake-
quantized, and from fake-quantized to integerized. In the following,
we will describe the general procedure for such a conversion, before
giving an overview of quantization algorithms designed to optimize
the resulting QNN.

2.2.2 Fake-Quantized Networks
In a fake-quantized network, weights and intermediate activations are
discretized to finite subsets of R. Furthermore, some layers may be
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Signed Int. Unsigned Int.

Even n clo < 0, chi = n−2
n

clo clo = 0, chi > 0
Odd n clo < 0, chi = −clo clo = 0, chi > 0

Table 2.1
Constraints on clipping bounds chi and clo depending on signedness

of the integer representation and evenness of the number of
quantization levels n.

left in full floating-point precision, e.g., BN layers. A full-precision
value t ∈ R is converted to its n-level quantized version t̂ by the
uniform quantizer function Qn:

t̂ = Qn

(
t, clo, chi, z

)
=
⌊
clip

(
t− z, clo, chi

)
/ε
⌉
× ε + z, (2.2)

where clo and chi are lower and upper clipping bounds, ε = chi−clo

n−1
is the quantization step size and z is a parameter to shift the zero
point of the integer representation. Note that in order for the network
to be integerizable, z must be a multiple of ε. The clipping function
clip

(
·, clo, chi

)
is defined as:

clip
(
x, clo, chi

)
= min

(
max

(
x, clo

)
, chi

)
Intuitively, Qn

(
·, clo, chi, z

)
maps its shifted argument to the closest

value on an n-point grid between clo and chi whose points are spaced
by ε. To simplify the conversion to a true-quantized network, we
further constrain clo, chi and z. First, we set z = 0; while shifting the
argument before mapping it to the integer domain enables more faithful
quantization of tensors distributed with a non-zero mean, our own
experiments and results from literature have shown that good statistical
accuracy can be achieved without a shift of the zero point [5], [59].
For simplified notation, we omit z = 0 when applying Equation (2.2).
Next, we constrain clo and chi as shown in Table 2.1, depending on the
signedness of the integer representation and the evenness of the number
of quantization levels n. For n = 2b, this allows the conversion of a fake-
quantized tensor to its (signed or unsigned) b-bit integer counterpart
by a simple division by ε. Note also that in the case of unsigned
quantization (clo = 0), the ReLU activation is implicitly performed in
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the quantization operation. Each layer l’s weights and activations can
be quantized to a different number of levels nl

W and nl
Y . For efficient

integer inference, the complete activation tensor Ŷl must be quantized
to the same step size εl

Y , while weights can be quantized channel-wise,
with distinct clipping bounds clo,l

W,c and chi,l
W,c for each output channel c.

Theoretically, weights can also be quantized to different channel-wise
precisions (an approach explored in [60]), but we will assume a single
number of levels nl

W in the following. We will also omit the layer index
l in the interest of compact notation, noting that Ŷl−1 = X̂l. In a
fake-quantized network, the computation of layer l thus becomes

Ŷc = QnY

(
σ
(

BN
(

X̂ ∗ Ŵc + Bc

))
, 0, chi

Y

)
(2.3)

= QnY

(
X̂ ∗ Ŵcγ̃c + β̃c, 0, chi

Y

)
∀0 ≤ c < No, where (2.4)

Ŵc = QnW

(
W, clo

W,c, chi
W,c

)
∀0 ≤ c < No (2.5)

2.2.3 Integerized Networks
For deployment, all weight and activation tensors should be represented
as integers. Given the l-th layer’s weight tensor Ŵ, quantized channel-
wise to step sizes εW = [εW,0, · · · , εW,No−1], its integer representation
ŴINT can be obtained by division by εW :

ŴINT,c =
⌊
clip

(
Wc, clo

W,c, chi
W,c

)
/εW,c

⌉
(2.6)

= Ŵc/εW,c ∀0 ≤ c < No (2.7)

Likewise for the integer representation of the l-th activation tensor
Y, quantized to nY levels with step size εY :

ŶINT =
⌊
clip

(
Y, 0, chi

Y

)
/εY

⌉
= Ŷ/εY . (2.8)
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In an integer-only network, the input to layer l is the integer tensor
X̂l

INT = Ŷl−1
INT . Combining (2.1), (2.7), (2.8) and (2.2), we arrive at

ŶINT = QnY

(
BN

(
Ŵ ∗ X̂ + B

)
, 0, chi

Y

)
/εY (2.9)

= QnY

(
BN

(
ŴINT ∗ X̂INTεW εX + B

)
, 0, chi

Y

)
/εY (2.10)

=
⌊
clip

(
ŴINT ∗ X̂INT γ̃εW εY + β̃, 0, chi

Y

)
/εY

⌉
(2.11)

=
⌊

clip

(
ŴINT ∗ X̂INT γ̃

εW εY

εY
+ β̃/εY , 0, nY − 1

)
+ 1/2

⌋
(2.12)

In (2.12), the convolution is performed with integer activations and
weights. The multiplication by εW εX

εY
corresponds to a rescaling of the

convolution’s integer output from a step size of εW εY to εY . This factor,
β̃, γ̃, and the summand 1/2 used to substitute the rounding operation
by flooring are all not integer. To perform the equivalent computation
with integer arithmetic only, the parameters of the combined affine
transform can be shifted by D bits and rounded to integers γ̂ and β̂:

ŶINT ≈ clip
(⌊

γ̂X̂INT ∗ ŴINT + β̂
⌋

/2D, 0, nY

)
, (2.13)

γ̂ =
⌊

2Dγ̃
εW εX

εY

⌉
(2.14)

β̂ =
⌊

2D

εY
(γ̃ (B− µ) εW εY + β + εY /2)

⌉
(2.15)

(2.13) is the final, integer-only quantized equivalent of (2.1). The
convolution operation is performed on low-bitwidth operands, with the
intermediate result accumulated into wider (e.g., 32-bit) integers. The
affine transformation parametrized by γ̂ and β̂ can be implemented
with a single integer multiplication-addition sequence, while the floored
division by 2D is equivalent to an arithmetic right-shift, which avoids
the need for expensive integer divisions. The combined affine transform
and shifting operation amounts to a fixed-point implementation of
the merged batch normalization and requantization operation. D
corresponds to the number of fractional bits used to represent γ̂ and β̂.
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2.3 Quantization Algorithms
With the procedures shown above, a given full-precision network can be
converted to an integer-only model. In addition to the model weights,
the clipping bounds clo and chi need to be defined for every tensor to
be quantized. The objective of model quantization algorithms is to
determine a suitable parametrization for the conversion. Quantization
algorithms can be roughly divided into two classes:

Post-training quantization (PTQ) algorithms optimize only the
parameters of the quantization procedure. The parameters of
the original model are not modified or retrained, and the amount
of data used to optimize the quantization parameters is generally
small compared to the size of the training dataset.

Quantization-aware training (QAT) algorithms optimize both
the base model’s weights and the quantization parameters.
They retrain (or fine-tune) the model parameters on the full
training dataset while taking the quantization into account. QAT
generally achieves superior statistical accuracy compared to PTQ,
but requires access to the full training dataset and involves greater
computational effort, as the complete model is re-trained.

2.3.1 Clipping Bound Initialization
For algorithms of both classes, the first step is to initialize the clipping
bounds clo and chi for each quantized tensor. In literature, several
methods to perform this initialization have been proposed. All of them
can be applied in PTQ (in this context, the process is often called
calibration) and in QAT. In the following, T refers to an unquantized
tensor and T̂ = Qn

(
T, clo, chi

)
is its counterpart fake-quantized to

n = 2b levels, where b ∈ Z, b > 1. As activation clipping bounds are
usually calibrated with a number of batches NB of a calibration dataset,
we denote the instance of T produced by the i-th batch of inputs as
Ti, i = 1, . . . , NB. In the case of weight tensors, the procedures for
finding clipping bounds are equivalent setting NB = 1, as the weights
are quantized based on their values at a fixed point in time. c

{lo,hi}
s

denote clipping bounds for quasi-symmetric (signed) quantization, and
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c
{lo,hi}
u denote clipping bounds for unsigned quantization. The min

and max operators are used to denote the maximum element of their
argument when operating on a tensor, and the absolute value operator
| · | operates on each element of its argument.

Maximum

The simplest way to initialize clipping bounds is to use the maximum
and minimum values observed during calibration:

clo
s = −max

i
(max (|Ti|)) , chi

s = −n− 2
n

clo
s

clo
u = 0, chi

u = max
(

0, max
i

(max (Ti))
)

Mean and Standard Deviation

Clipping bounds can be initialized based on the mean and standard
deviation of the observed values. As storing all observed tensors Ti

to calculate the mean is impractical, an exponential moving average
(EMA) with bias correction is used to track a moving mean. Past
values are weighted with a factor β and the current observation is
weighted with a factor of 1− β. The EMA of an observed quantity Ti

at time step k is denoted with EMAk (Ti) and calculate it as follows:

EMA (Vi) =
{

0, if i = 0
βTi−1+(1−β)Ti

1−βi , otherwise

We denote the mean value of a tensor T with µ (T) and its standard
deviation with σ (V). Calculating the clipping bounds can be done
by setting them to the mean of the observed tensor plus a distance
of nσ standard deviations. For signed tensors, the mean is taken
of the absolute value. Unsigned quantization is usually applied to
ReLU-activated tensors; if that is the case, we assume that T is ReLU-
activated already. For simplicity of notation, we denote the k-th EMA
value of the mean and average of a tensor observation series {Ti} as
µ̄k (T) and σ̄k (T), respectively.

clo
s = −µ̄NB

(|T|)− nσσ̄NB
(T) , chi

s = −n− 2
n

clo
s

clo
u = 0, chi

u = µ̄NB
(T) + nσσ̄NB

(T)
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Mean Square Error

An intuitive measurement of the quality of an approximation is its
mean square error (MSE) respective to the exact value. Accordingly,
the clipping bounds for a tensor T can be chosen to minimize the MSE
between its unquantized and quantized versions. We denote the MSE
between T and its quantized version T̂ (i.e., the quantization error) as
∆Q

(
T̂
)
≜ ∥T− T̂∥2. The analytical expression the MSE-minimizing

clipping bounds is the following:

clo, chi = EMANB

(
arg min

clo,chi

∆Q

(
T̂
))

The arg min operation is assumed to be performed under the
respective constraints for signed or unsigned clipping bounds, namely
chi

s = −n−2
n clo

s and clo
u = 0, respectively. This expression cannot

generally be solved analytically, so a grid search can be used to find
an approximate solution.

2.3.2 Quantization-Aware Training
QAT methods train the fake-quantized model’s parameters directly
using stochastic gradient descent (SGD).

STE-based QAT methods The majority of QAT algorithms
are fundamentally based on the straight-through estimator (STE),
introduced in [61]. In STE-based QAT methods, the forward pass is
computed with the fake-quantized model, applying (2.2) to quantize
tensors. As the derivative of the quantizer (2.2) is undefined, the
STE defines it as the identity:

dQn

(
x, clo, chi, z

)
dx

=
{

1, clo ≤ x− z ≤ chi

0, otherwise

As the STE makes it possible to optimize model weights using
conventional SGD-based training, STE-based methods differ in their
treatment of quantization clipping bounds clo and chi. This includes
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both the initialization of the clipping bounds at the beginning of
quantized training and their adjustment over the course of training.

As giving an exhaustive overview of QAT algorithms is out of the
scope of this chapter, we will introduce those algorithms we consider the
most representative and relevant according to the criteria of i) novelty
and impact at the time of publication, ii) statistical performance of
the resulting QNNs, and iii) significance to the rest of this thesis.

BinaryConnect (BC) [62], one of the first published implementa-
tions of QNNs, proposed a simple, STE-based approach for converting
a DNN to a binary weight network (BWN). In the forward pass,
weights are replaced by their sign, while in the backward pass, the
full-precision weights are updated. This corresponds to setting each
quantized weight element ŵ

ŵ = Q2 (w, 0, 2, 1) = sgn (w)

and applying the STE. As well as decreasing a network’s resource
footprint, the authors found that BC acts as a regularizer. In this
context, they proposed a stochastic binarization of the full-precision
weights:

ŵ =
{

1 with probability p = σ(w)
−1 with probability p = 1− σ(w),

where σ (·) denotes the sigmoid function. Using the stochastic version
of BC, the weights are binarized only during the training forward pass,
with the full-precision weights used for inference, making this version
useful only for regularization purposes. Compared to contemporary
regularization methods such as Dropout [63], Maxout [64] and
DropConnect [65], BC performed well on the simple MNIST, SVHN
and CIFAR-10 datasets. Even the deterministic version, using
binary weights for inference, resulted in better accuracies than the
unregularized, full-precision baseline - a fact that can likely be
attributed to the easy tasks BC was evaluated on.

BinaryNets [66] extended this approach to activations, introducing
binarized neural networks (BNNs). It relies on batch normalization to
scale the integer results of binary convolutions and benchmarking a
GPU implementation of the binary convolution kernel. In hardware,
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the binary values ±1 are represented as single bits, i.e., {0, 1}. The
dot-product of two n-element binary vectors v1, v2 can be computed
efficiently from their hardware representations vH

1 , vH
2 using bit-wise

operations:

v1 · v2 =
∥∥∥vH

1 ⊕ vH
2

∥∥∥
0
−
∥∥vH

1 ⊕ vH
2
∥∥

0 = n− 2
∥∥vH

1 ⊕ vH
2
∥∥

0 ,

where ⊕ denotes the bit-wise XOR operation. The L0-norm is
equivalent to a population count operation, which many ISAs
implement natively. The accuracy drop on the same three ten-class
tasks that BC was evaluated on was less than half a percentage
point from full-precision and binary-weight networks of identical
architectures. In [67], the authors extended the concept to multi-bit
quantization, composing the multiplication of a k-bit operand by an
l-bit operand of k × l binary multiply-shift-additions. XNOR-Net [68]
introduces scaling of the binarized values: Each output channel’s
binarized weights are scaled by the average L1 norm. Activation
scaling is performed on a finer granularity than in (2.2), with a separate
scaling factor applied for each kernel window. While this gives more
representational power to the resulting QNN, these scale factors have
to be computed from the integer results of the binary convolution
at runtime, which limits XNOR-Net’s suitability for deployment to
platforms with tightly limited memory and compute capabilities.
XNOR-Net was the first QNN applied to the large-scale ImageNet [7],
with a binarized version of AlexNet reaching a classification accuracy
12 percentage points lower than the full-precision version.

Parametrized activation clipping (PACT) [69] determines the upper
clipping bounds for unsigned activations by learning them directly via
gradient descent and applying L2 regularization to it. Weight clipping
bounds are determined by a method named statistics-aware weight
binning (SAWB). SAWB uses the mean weight magnitude and mean
squared weight in a statistical model obtained by linear least-squares
regression of the clipping bounds on different statistical distributions.
Combining PACT and SAWB to quantize both weights and activations
to two-bit precision, [69] reports a classification accuracy for AlexNet
within 0.1 percentage points of the full-precision version, while the
accuracy drop for ResNet18 is reported to be 3.4 percentage points.

Trained quantization thresholds (TQT) [59] and learned step size
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quantization (LSQ) [5] are the last STE-based we describe here. They
are closely related, with both methods learning the quantization
clipping bounds of both weights and activations by gradient descent.
To do so, they define a gradient of (2.2) with respect to ε as

dQn

(
x, clo, chi, z

)
dε

=


(x̂− x) /ε if clo < x− z < chi

clo/ε if x− z ≤ clo

chi/ε if x− z ≥ chi,

where the first conditional equality is obtained by applying the STE to
(2.2), setting the derivative of the rounding operation to unity. This
allows the learning of the step size during the fine-tuning process,
which determines the clipping bounds (at a fixed offset of z = 0).
While LSQ trains the step size directly, TQT learns the logarithm
of the quantized range to improve numerical stability. Additionally,
the original TQT procedure constrains ε to integer powers of two,
i.e. ε = 2−f , f ∈ Z. This results in fixed-point quantization: when
quantizing unsigned numbers to b bits, the quantized representation
will be a fixed-point number with b− f integer bits and f fractional
bits. For signed numbers, the number of integer bits is b − f − 1.
In [5], the authors report ResNets of different sizes with weights and
activations quantized to 3 bits reaching full-precision accuracy. For
TQT, only combinations of 4-bit and 8-bit weight quantization and
8-bit activation quantization are reported, with quantized ResNets
achieving accuracies less than 1 percentage point below their full-
precision equivalents. While LSQ’s reported statistical performance is
better than that of TQT, this discrepancy may be due to the restriction
to fixed-point numbers. Furthermore, the authors of [59] only retrained
networks with TQT for a maximum of 5 epochs, while in [5], networks
are fine-tuned for 90 epochs for all precisions except 8 bits. It should
be noted that while the fixed-point restriction of TQT is intended to
simplify the rescaling by the factor εl

W εl
X

εl
Y

to a simple bit-shift, the
presence of batch-norm layers introduces a non-power-of-two factor
into the multiplication, eliminating the advantage of this constraint.
Similarly, both TQT and LSQ quantize weight tensors to a single
step size, which has no resource advantage compared to channel-wise
quantization in networks with batch normalization layers, which scale
each channel separately regardless of quantization. In Chapters 4 and 6,
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we use a version of TQT with channel-wise weight quantization and
arbitrary scaling factors to achieve state-of-the-art statistical accuracy
with QNNs solving the 11-class DVS gesture dataset [70] and the
1000-class ImageNet classification task, respectively.

QAT without STE The algorithms mentioned so far all make use
of the STE, retraining and quantizing a model’s weights simultaneously.
The incremental network quantization (INQ) algorithm [47] is a weight
quantization algorithm that does not rely on the STE. Instead, a
model’s weights are quantized incrementally over the course of the re-
training. Starting from a full-precision model, a fraction of its weights
are quantized at the start of the procedure. The quantized weights
are frozen and are not updated anymore for the rest of the training,
while the weights that remain unquantized are retrained for a few
epochs. This procedure is repeated for multiple iterations, with the
fraction of quantized weights increasing at each iteration, until in the
last step, all weights are quantized. INQ uses logarithmically spaced
weights, i.e., ŵ ∈ {±2n1 , · · · ,±2n2 , 0} ∀ŵ ∈ Ŵ. This allows MAC
operations to be implemented as bit-shifts. With a negligible accuracy
drop for weights quantized to 3-bit precision, INQ outperformed
previous weight quantization schemes. However, it does not offer a
method for the quantization of intermediate activations and STE-based
algorithms published in the subsequent years offer better performance
while offering comprehensive frameworks for the quantization of both
weights and activations.

2.3.3 PTQ
By jointly optimizing quantization parameters and weights, QAT
allows for aggressive quantization at minimal accuracy drop from
full-precision networks. However, the retraining procedure requires
access to the full training dataset and is computationally intensive,
as well as requiring the generation of trainable fake-quantized models
(see also Chapter 3). To address these shortcomings, PTQ algorithms
perform network quantization without modifying the trained full-
precision weights. PTQ algorithms determine clipping bounds for
each tensor to be quantized based on a limited amount of data. This
section will give a brief introduction to the basic working principle of
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PTQ before describing some examples of advanced PTQ approaches
and comparing the statistical performance of state-of-the-art PTQ
algorithms with QAT.

The basic approach to PTQ is to apply the quantizer (2.2) to the
unmodified weights of a model and to intermediate activations. To do
so, the clipping bounds clo and chi must be determined. This can be
achieved using any of the methods shown in Section 2.3.1. Statistics
of the trained weights can be obtained without running the model,
but the activation statistics needed to determine activation clipping
bounds depend on the input data the model is executed on. An
obvious choice for such a calibration dataset is a subset of the training
dataset used to train the full-precision model, an approach adopted by
commercially supported tools such as TensorFlow Lite and TensorFlow
Lite Micro [71], [72] or Vitis AI [73] by Xilinx. Improvements on
this basic model of PTQ have been proposed in two main areas: the
amount and nature of data needed for calibration, and techniques
for finding the quantized weights.

The requirement for even a small subset of the original training
dataset can be a disadvantage. In a scenario where the dataset is
not available because it is not public and/or cannot be shared due
to privacy concerns, e.g., with health data, methods to quantize pre-
trained model without any of the training data are desirable. [74]
and ZeroQ [75] use the statistical information about the intermediate
activations contained in BN layers’ parameters to generate a synthetic
input dataset which produces intermediate activations with similar
activation statistics. This is achieved by applying loss functions which
penalize the difference in intermediate activations’ distributions from
the stored statistics and backpropagating onto a white noise input to
modify it into a more representative input image. Both [74] and ZeroQ
achieve a negligible classification accuracy drop relative to full-precision
baselines with 8-bit weights and activations on the ImageNet dataset
when quantizing various models, including the compact MobileNetV2.
[76] removes the dependence on the presence of BN layers in the
network, obtaining results competitive with ZeroQ. This is achieved
by directly generating labeled input images from one-hot classifier
output vectors using a process inspired by visualization techniques
such as Inceptionism [77].

Other works have focused on improving the results for lower-
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bitwidth quantization by finding quantized parameters that better
approximate the behavior of the original full-precision model than those
obtained by rounding to the nearest quantized value. With adaptive
rounding (AdaRound), [78] proposed learning an element-wise rounding
policy for weights. Using the L2 distance between the output of the
full-precision and weight-quantized versions of each layer as a target
loss, a tensor that determines whether each weight value is rounded up
or down is learned. Using this approach to quantize networks to 4-bit
weight and 8-bit activation precision, [78] reported accuracy drops of
less than 1 percentage point for ResNets and 1.5 percentage points on
MobileNetV2. BRECQ [79] adopts the AdaRound concept, but learns
the rounding policy for sequences of multiple layers at a time (e.g.,
the residual blocks ResNet is composed of) and reported favorable
results at even lower precisions. Quantizing MobileNetV2’s weights
and activations to 4 bits, the authors report an accuracy drop by 6
percentage points relative to the full-precision model. Nevertheless, on
low-bitwidth quantization of compact nets QAT methods still incur a
significantly lower accuracy penalty (1.1 percentage points in [80] and
2.7 percentage points in [11] on MobileNetV2 for ImageNet). By using
SGD to learn the rounding policy, AdaRound and BRECQ arguably
blur the lines between QAT and PTQ. While those methods leave
the parameters unmodified, AdaQuant [81] applies the principle of
layer approximation introduced in AdaRound to directly fine-tune the
parameters. Rather than a rounding policy, AdaQuant directly learns
the parameters to minimize the L2 distance between the quantized
and full-precision layer outputs. This results in equivalent or better
accuracy compared to AdaRound for homogeneously quantized 4-bit
ResNets, despite AdaRound using higher-precision 8-bit activations.
The overlap in available results for AdaQuant and BRECQ is restricted
to 4-bit ResNet18 and ResNet50, where the two approaches report
equivalent accuracy.

2.4 Hardware for QNN Inference
To realize QNNs’ potential to improve inference energy efficiency,
they must be executed on suitable hardware. The main feature of
inference platforms for QNNs are arithmetic units which operate on
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the reduced-precision data formats used in the QNN to be executed.
As with quantization algorithms, hardware for QNN inference is a
vast field whose comprehensive coverage exceeds the scope of this
thesis, and we will focus on those aspects which are most relevant to
the later chapters of this thesis. For a more thorough introduction
to the topic, we refer the interested reader to dedicated surveys.
[82] gives a general introduction to the principles and processing
approaches of dedicated DNN accelerators. [83]–[86] provide snapshots
and development analysis of the landscape of both academic and
commercial machine learning accelerators in the years 2019, 2020, 2021
and 2022. In [87], the authors present a survey of field-programmable
gate array (FPGA)-based DNN acceleration and [88] provides a survey
of CNN accelerators, focusing on application-specific integrated circuits
(ASIC) designs. Finally, [89] visualizes the efficiency and throughput
of a large number of published DNN accelerator designs and can
be filtered according to criteria such as operand precision, hardware
platform, etc. This allows users to easily compare different classes
of accelerators. In this section, we attempt to give a brief overview
of the landscape of inference hardware for QNNs. As this thesis
emphasizes full-system efficiency, we pay particular attention to the
potential of quantization to improve end-to-end energy efficiency in
edge scenarios. Processors used to perform QNN inference can be
roughly grouped into four categories:

GPUs Manycore processors originally conceived to compute highly
parallel algorithms in computer graphics, GPUs have become the
main class of processors used for training and inference of DNNs.
GPU architecture development has historically been focused on full-
precision (FP) performance. As QNNs have gained traction and
were shown to achieve statistical performance on par with full-
precision models, GPU manufacturers have implemented support
for low-precision integer arithmetic. Namely, Nvidia’s desktop and
server line of GPUs implement tensor cores targeted at deep learning
(DL) inference starting with the Volta generation of chips, released
in 2017. Apart from 16-bit FP arithmetic, newer generations of
tensor cores implement low-precision integer arithmetic. The second
generation, introduced in 2018’s Turing family of chips, added support
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for 8-bit and 4-bit integer arithmetic. Nvidia’s embedded GPUs
are based on the same microarchitectures as the desktop and server
models and have incorporated tensor cores with low-precision integer
arithmetic support since 2019’s Xavier generation of SoCs. Engineered
with a thermal design power (TDP) between 10 W and 65 W, these
systems are not suitable for edge applications, but their programmable
nature, extensive software infrastructure and hardware support for
low-precision integer arithmetic enable the application of high-capacity
QNNs in scenarios with a higher power budget, such as large unmanned
aerial vehicles (UAVs).

FPGAs FPGAs consist of elementary hardware primitives such
as LUTs and flip-flops, embedded in a reconfigurable fabric. By
programming an FPGA, the primitives are connected together in a
specific way, allowing the implementation of arbitrary digital logic.
QNN inference acceleration on FPGAs has been widely researched, and
major FPGA vendors are offering parametrizable accelerator solutions
that can be implemented on their platforms [73], [90]. However, the
flexibility of FPGAs comes at the cost of efficiency: Comparing FPGA
to ASIC accelerators in [89]’s visualization, FPGA implementations
are roughly 1-2 orders of magnitude less efficient. For edge systems,
only the smallest FPGAs with the lowest power consumption would be
suitable – these devices are usually too small to implement useful ML
accelerators. For this reason, we will not cover FPGA-based inference
hardware in more detail and refer the interested reader to the surveys
listed at the beginning of this section.

Microprocessor Cores Traditional microprocessor ISAs do not
offer native support for low-precision integer arithmetic. Executing
QNNs on such architectures thus incurs a runtime overhead for the
expansion of packed low-bitwidth operands into a wider, natively
supported format. Nevertheless, QNNs’ reduced memory and storage
requirements can make deployment to such platforms attractive, as
demonstrated in [91]. BNNs represent a special case, as the binary
MAC operations used in BNNs can be efficiently implemented with
bitwise XOR and population count instructions supported by many
mainstream ISAs. This makes BNN deployment on off-the-shelf MCU
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platforms possible [68], [92]–[94].
To increase inference throughput on non-BNN QNNs, single

instruction multiple data (SIMD) instructions that treat each operand
register as a packed vector of sub-word elements are commonly used.
The ARM ISAs used in many commercially available 32-bit MCUs
optionally implement various extensions that support instructions. The
ARM DSP extension found in Cortex-M4 and Cortex-M7 processors
implements 16-bit MAC instructions. This raises the upper bound on
throughput in MAC/cycle by a factor of 4 compared to separate 32-bit
multiplications and additions, but does not eliminate the overhead
of having to expand 8-bit elements into 16-bit half-words. The latest
generation of Cortex-M processors remedies this with the Helium
vector extension, which implements SIMD instructions operating on
128-bit vector registers, performing up to 16 8-bit MACs with a single
instruction [55].

Academic researchers have presented various extensions to the open
RISC-V ISA [95]. The parallel ultra-low power (PULP) family of open-
source RISC-V cores, which we will use in several later chapters of
this thesis, has introduced several generations of extensions targeting
general signal processing tasks and QNN inference in particular. The
RI5CY core [96] (now maintained by the OpenHW group under the
name CV32E40P1) introduced the XpulpV2 extension. XpulpV2 is
comprised of lightweight additions to the base RISC-V integer ISA
to increase throughput and efficiency on general signal-processing
tasks. Post-increment memory access operations and hardware loops
reduce bookkeeping overhead for most regular (loop-based) algorithms,
while SIMD MAC instructions for half-word and byte operands are
particularly useful for QNN inference. The XpulpNN extension [97]
explicitly targets QNN inference with SIMD instructions operating on
2-bit and 4-bit data. Finally, in Chapter 5, we propose XpulpTNN,
a lightweight extension to RISC-V to speed up TNNs inference with
minimal impact on core area and power consumption.

A different approach, adopted by Sparq [98] and Quark [99],
is to base custom extensions for sub-byte arithmetic on RISC-V’s
vector extension. Quark introduces instructions to accelerate bit-serial
integer arithmetic, while Sparq’s extensions improve the performance

1https://github.com/openhwgroup/cv32e40p

https://github.com/openhwgroup/cv32e40p
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of ULPPACK [100], a method to perform MAC operations on packed
sub-word elements with a regular word-width multiplier.

All of these extensions have in common that they add relatively little
implementation overhead to systems built around cores that implement
the base ISA. At the same time, they substantially improve throughput
and energy efficiency of QNN inference. This makes them attractive
to include when designing a system targeting edge AI applications.

Dedicated Accelerators The most efficient platforms for QNN
inference are application-specific accelerators. They achieve efficiency
through specificity, as they can be designed from the ground up around
the constraints of the target application. An extreme example of this is
presented in [101], where a BNN architecture with constant parameters
is described in RTL and directly optimized with Electronic Design
Automation (EDA) tools to obtain a highly efficient – but singularly
specific – hardwired BNN circuit. More commonly, QNN accelerators
offer some level of flexibility by supporting configurable layer types
and variable parameters. Still, the ability to tailor the data path to the
specific type of QNN targeted results in dedicated accelerators having
both the highest efficiency at a given precision as well as seeing the
largest efficiency gain from precision reduction. Evaluated in isolation,
configurable BNN and TNN accelerators can achieve efficiencies in
the hundreds of TOp/J by using flattened data paths that do not
store any intermediate results, eliminating the efficiency overheads
inherent to partial computation [14], [102].

However, an operationally efficient accelerator architecture does
not automatically yield a practically efficient edge AI system. Most
accelerators are optimized for energy efficiency at maximum through-
put. In real applications, there may be substantial idle time between
inferences – the faster an accelerator performs the inference, the more
its idle power consumption will contribute to the average system
power. Furthermore, an accelerator alone does not make a versatile
edge AI system. Sensor data needs to be collected, prepared and
transferred to the inference engine before it can process them. After
an inference, the results must be interpreted and, potentially, reacted
to. All of these processes can be a bottleneck to the overall energy
efficiency of a system. We explore these challenges in Chapter 4 by
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designing a complete, TNN-based sensor-to-label classification pipeline,
running inference both on a state-of-the-art TNN accelerator and an
8-core cluster of general-purpose RISC-V cores. Notably, the efficiency
of the accelerator-based pipeline is two orders of magnitude higher
during network execution, but the full-system power consumption in
continous operation is only 27 % lower.

2.5 Conclusion
This chapter is intended as the foundation on which the remainder
of the thesis builds. To this end, we have given a comprehensive
introduction to the principles of integer DNN quantization. With an
overview of both the landscape of quantization algorithms and the
hardware platforms used for integer QNN inference, we have shown
how these principles are applied to create performant QNNs, and how
those models can be used to increase the efficiency of DNN inference.

In Chapter 3, we build on the mathematical concepts introduced
in Section 2.2 to construct an end-to-end quantization flow to
automatically create trainable and integerizable QNN from full-
precision models. In all remaining chapters, we use this flow to create
the QNN used for our evaluations. In general, all following chapters
rely on the theoretical background introduced here.



Chapter 3

Automated Quantization of
Deep Neural Networks

3.1 Motivation and Problem Statement
In Chapter 2, we have introduced the concept of QAT and shown
how FQ networks can be trained with state-of-the-art quantization
algorithms and then integerized for deployment on edge platforms. In
practice, users will start from a FP network description, commonly
written in Python using frameworks such as PyTorch [103] or
TensorFlow [104]. QAT algorithms are usually implemented as
extensions to these frameworks and made available by the authors
or third parties as a set of quantized layer classes, from which users
can assemble QNNs. Manually rewriting the network description in
terms of quantized layers is a cumbersome and error-prone process,
as is manually converting a trained FQ network to its integerized
version. Furthermore, directly replacing each full-precision layer with
its quantized counterpart does not generally result in a graph that
has an integer equivalent; performing the necessary adjustments to
the FQ network manually places a further burden on the designer

35
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and introduces another potential source of errors. Automation of
these processes enables researchers and application developers to
efficiently apply QAT in diverse settings, explore the impact of different
quantization policies and enable rapid turnaround from FP networks
to deployable, integer-only QNNs. Ideally, a flow for automated
quantization should offer the following properties:

Automation: The conversion from FP to FQ and from FQ to
integerized networks should be easy to use, requiring minimal
adjustments to support different network topologies.

Fidelity: The converted FQ network should have minimal numerical
discrepancy from the final FP net. This allows the QAT process
to adapt trainable parameters optimally to the quantization and
ensures that statistical performance is identical between the FQ
and integerized networks.

Flexibility: The user should have complete design freedom to control
the quantization process. For example, quantizing individual
layers to different precisions or combining different algorithms
should be possible.

Modularity: The flow should be extendable, such that support for
novel topologies and layer types can be added without major
modifications to existing code.

In this chapter, we present a flow that fulfills these criteria. We extend
the open-source, PyTorch-based QuantLab [8] QAT and experiment
management framework with the following features:

• An automated conversion flow from standard floating-point
PyTorch modules to integerizable FQ networks, and

• an automated conversion procedure to generate integerized
networks from trained FQ networks. The integer-only networks
can be exported to precision-annotated graphs in the Open
Neural Network Exchange (ONNX) format to be processed by
platform-specific deployment tools.

These additions make QuantLab a complete, end-to-end quantization
solution. Starting from a full-precision PyTorch network, users can
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convert this network to a FQ network that has a direct integer
equivalent. The basic quantization policy is specified in terms of
layer replacement rules, allowing any level of granularity to be used
– from individual settings for each layer to a common policy for all
layers of the same type. The FQ network can be trained in QuantLab
using a range of state-of-the-art QAT algorithms, and its performance
will reflect that of the final integerized version. After training, the FQ
network can be automatically converted to an integer-only inference
graph. The integer network can be evaluated to ensure the correctness
of the conversion, and exported to an ONNX graph to be mapped to a
target platform by a deployment tool such as DORY [105]. An overview
of the complete QuantLab flow is shown in Figure 3.1. Thanks to
QuantLab’s modular structure, support for novel topological features
and layer types can be added easily.

3.2 Problem Setup
Ultimately, our goal is to quantize a full-precision network architecture,
train it using a QAT algorithm and convert it to an equivalent integer-
only network that can be exported and deployed to a given platform
that only supports integer arithmetic. The procedures we describe
can be applied in principle to arbitrary network architectures and
hardware platforms, but for the sake of clarity, we will constrain the
setting to one relevant to the later chapters of this thesis.

Network Architectures In our examples, we will consider CNNs
in the style of ResNets [22] and MobileNetV2 [37]. They contain
convolutional, batch normalization and ReLU activation layers
arranged into residual blocks that also perform an element-wise
addition of activations. These architectures can be implemented as
QNN with just four types of FQ operators: quantized convolution
layers, quantized fully-connected layers, and quantized activations
in signed and unsigned form. The linear operators have quantized
parameters, while quantized activations perform an unconditional
clipping and requantization of the input to a single step size εout, i.e.,
the output step size is independent of the input step size.
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Figure 3.1 – Overview of the flow for automated quantization of neural
networks.

Target platform The target platform is characterized by the integer
kernels it supports. Each kernel is defined by the data formats (bit
width and signedness) of its inputs, internally kept intermediate results
(if any) and its outputs; each kernel can be thought of as implementing
a subgraph of an integerized network. The platform we consider
for our examples supports only integer arithmetic. It has kernels to
compute convolutional and fully-connected layers, as well as element-
wise additions. All kernels operate exclusively on low-bitwidth (i.e., b ≤
8) inputs and can perform integer channel norm (ICN) requantization
on the output tensors. Intermediate results are accumulated into 32-bit
integers before they are requantized to low-bitwidth integers.
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3.3 Automated Generation of FQ Net-
works

The first step in a QAT-based quantization flow consists of imple-
menting the desired topology with quantized operators that support
the chosen QAT algorithm. As our ultimate purpose is to obtain an
integer-only network for inference, the FQ network should correspond
as closely as possible to the final integerized network. This ensures that
all effects of the final quantization are modeled during training and
that the statistical performance of the FQ network accurately reflects
that of the deployed integer network. We achieve this goal with a two-
step procedure. First, we perform a layer-wise replacement, replacing
full-precision operators with their fake-quantized counterparts. In
the second step, the resulting graph is searched for patterns that do
not have an integer equivalent, and all instances of such patterns
are replaced with an integerizable version. Figure 3.2 shows an
example of this process: in the first step, the full-precision convolution
and activation layers are replaced with quantized versions. In the
second step, two non-integerizable patterns are made integerizable: a
quantized activation is inserted between two subsequent convolution
layers, and two quantized activations with equal step sizes are inserted
before the inputs to the element-wise addition.

3.3.1 Requirements for Integerization
In the following, we describe necessary – but not generally sufficient
– conditions for a FQ network to be directly integerizable for a given
target platform. By directly integerizable, we refer to networks that
can be integerized with ICN activations as described in Section 2.2.
The only mismatches between intermediate activations of the FQ
net (after scaling by the respective quantization step size ε) and the
integer activations we allow for are those resulting from the fixed-point
approximations introduced by the ICN activations. The intuitive
fact that the complete computational graph of a network must be
mappable to the kernels available on the target platform establishes
a first requirement for integerizability:
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Operator-Kernel Compatibility There must exist a partition of
the network’s computational graph into non-overlapping subgraphs,
with each subgraph corresponding to a kernel supported by the target
platform. However, the target kernels are the building blocks of
integer-only graphs, whereas we are interested in assessing whether
a given fake-quantized graph is directly integerizable. Thus, a more
accurate formulation of this requirement is the following: First, for
each subgraph in the partitioning, there must exist an integerization
rule that is applicable to it. Second, the integerized subgraph produced
by the rule must map to a kernel supported by the target platform.
For a common example that violates this rule, consider our example
system, which supports only 8-bit convolutions. For this system, a
sequence of two 8-bit convolutional layers with no activation between
them – a structure that occurs, for example, in MobileNetV2 [37] –
would violate this requirement, as the output of the first convolution
is not representable with 8-bit numbers anymore.

Identically Quantized Inputs to Combination Operators We
summarize the operations of element-wise addition (found, e.g., in the
residual blocks introduced by ResNet [22]) and concatenations under
the term combination operators. Combination operators must have
inputs which are quantized to the same step size. Formally, if the
fake-quantized activation tensors a1 and a2, quantized to step sizes
ε1 and ε2, respectively, are added together, we impose:

ε1
!= ε2 (3.1)

To understand why this condition is necessary, consider the case
ε1 ≠ ε2. The integer representations are given as A1 = a1/ε1 and
A2 = a2/ε2. Clearly, no step size εsum can be generally determined
such that (A1 + A2)εsum = a1 + a2. This means that the sum of
the integer activations would not have a unique correspondence to a
fake-quantized tensor. The same argument applies to concatenations if
one considers that the concatenated tensor is fed into a convolutional
layer, which forms a weighted sum of the differently quantized values,
leading to the same problem.
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Figure 3.2 – Automated conversion of full-precision networks to their trainable
and integerizable fake-quantized counterparts.

3.3.2 Layer-Wise Replacement
In the first step of the conversion procedure, layers that have a direct
quantized equivalent are replaced. In the specific case of CNNs, this
means replacing convolutions and fully-connected layers with equivalent
layers that have fake-quantized parameters. Analogously, activation
functions are replaced with quantizing activations.BN layers are left
in full precision, as they are folded into the ICN activations in the
integerization step.

3.3.3 Harmonization
The network graph resulting from the layer-wise replacement step will
be directly integerizable in the case of simple, feed-forward networks
that consist only of convolution-normalization-activation layer stacks.
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Structures such as residual blocks, introduced in ResNets [22], are
not directly integerizable (see above) and require special attention.
To ensure that the final network graph meets the requirements listed
in Section 3.3.1, we apply a harmonization procedure to the graph
produced by the layer-wise replacement step. The harmonization
procedure is based on pattern replacement: The network graph is
searched for subgraphs (patterns) which violate the requirements.
Each such pattern is associated with a rule that specifies how to create
an integerizable replacement pattern. When an instance of a pattern
is found, the rule is applied to it to generate a replacement. The
found pattern is removed from the graph and the replacement pattern
inserted in its place. Commonly, the modifications specified by the
rules amount to the insertion of quantizer layers. It is important to note
that harmonization is a heuristic procedure: non-integerizable patterns
that are not in the library of pattern-rule pairs are not detected and,
consequently, not replaced. To support new topologies containing
subgraphs that are not integerizable after layer-wise replacements,
a user must specify the patterns they contain and formulate the
associated replacement rules. In the remainder of this thesis, we will use
CNNs in the VGG style (Chapters 4 and 5) and the MobileNetV1/V2
architectures Chapter 6. The examples of harmonization rules we
present here are sufficient to make these architectures, as well as
ResNets, fully integerizable.

The first harmonization rule ensures that the inputs to linear
and pooling operators are always quantized. This is achieved by
detecting layer sequences where the output of a linear operator (i.e., a
convolution or fully-connected layer, or a BN layer following such a
linear operator) is the input to another linear operator or a pooling
layer. The replacement pattern consists of an identical layer stack,
with an additional signed quantization operator inserted after the first
linear operator or BN layer.

A second harmonization rule ensures that element-wise addition
nodes are correctly integerizable. This is done by replacing adder
nodes with quantized addition layers. The quantized addition layer
passes each input through a quantized activation to requantize both
input tensors to an identical step size ε. When using QAT algorithms
that learn ε (e.g, LSQ [5]), a gradient descent step may cause the two
quantizers’ step sizes to diverge. To be able to use these algorithms, the
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shared step size is set to the larger of the two quantizers’ step sizes after
each gradient update. If one or both of the inputs are already outputs
of a quantized activation layer, those layers are removed from the graph
to avoid unnecessary requantization steps. The signedness of each input
quantizer is derived automatically from the signedness of the respective
adder input. These two steps are sufficient to make ResNet- and
MobileNet-style networks directly integerizable. These network families
serve as inspiration for many practical edge applications of CNNs [106],
[107] and their building blocks are used in various NAS algorithms [39],
[108]. Different topological features may require additional quantized
layers and/or harmonization passes, both of which can easily be added
to the existing framework.

3.4 Automated Integerization of FQ net-
works

The FQ network produced by the harmonization step can be trained
using any of the QAT algorithms supported by QuantLab. As it
directly corresponds to an integerized inference graph, its statistical
performance will be representative of the final integer-only network.
We generate the integerized network in two steps: epsilon propagation
and integerization.
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3.4.1 Epsilon propagation
To convert fake-quantized layers to their integer counterparts, we use
the procedure described in Section 2.2.3:, specifically Equations (2.7)
and (2.13). This requires knowledge of the input and output
quantization step sizes in every layer (see Equations (2.14) and (2.15)).
The epsilon propagation step annotates the network graph with this
information at every node. For every quantized layer type T , an epsilon
conversion function fT

c (εin, l) specifies how the output quantization
step size εout depends on the input step sizes εin and the layer instance
l. Layers for which no explicit epsilon conversion function is specified
are assumed to have an identity conversion, i.e., the layer’s output
is quantized identically to its input. By feeding an input epsilon
εin,0 into the network and propagating the result of the conversion
function for each node along the network graph, each node can be
annotated with its input and output step sizes. εin,0 is determined
by the scaling of the training dataset relative to the integer inputs
that the network will receive when deployed. For example, if the
network is trained on raw integer sensor data, the scale in training
and inference will be the same, i.e., εin,0 = 1. If the training dataset
consists of 8-bit integer sensor data scaled to the range (−1, 1), we
would set εin,0 = 1−(−1)

28−1 = 2
255 ≈ 0.0078. A pseudocode description

of the epsilon propagation algorithm is given in Algorithm 1.

3.4.2 Integerization
Once the input and output quantization step sizes are known at every
layer in the network, it can be integerized. This is again performed
as a pattern replacement pass. Convolutional and fully-connected
layers are integerized by scaling their weights with a factor of 1/εW .
Sequences of BN and quantized activation layers are converted to ICN
operations as described in Equation (2.13). The final graph consists
only of integer operations. The export procedure produces an ONNX
graph, with each operator node annotated with the input and output
precisions. This ONNX file can be consumed by a deployment tool
and mapped to the target platform. Figure 3.3 shows both steps of
the integerization procedure on an example subgraph.
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Network Precisiona Accuracyb

FP FQ Int.b,c

ResNet18

8/8 (NH)

69.8 %

69.2 % 69.2 %/69.1 %
8/8 (H) 69.4 % 69.5 %

4/4 (NH) 68.6 % 68.2 %/68.3 %
4/4 (H) 68.3 % 68.3 %

MobileNetV2

8/8 (NH)

71.9 %

71.7 % 68.7 %/62.1 %
8/8 (H) 71.5 % 71.4 %

4/4 (NH) 69.3 % 68.1 %/51.7 %
4/4 (H) 68.8 % 69.0 %

a H and NH indicate whether quantized networks were trained with (H)
or without (NH) harmonization prior to training.

b All accuracies are for top-1, single-crop classification on the ImageNet
2012 validation dataset.

c For networks trained without harmonization (NH), we report two
accuracy numbers for the integerized network. The first is obtained by
choosing clipping bounds to minimize the MSE between the quantized
and unquantized tensors observed from feeding the calibration dataset
through the network. For the second, we set the clipping bounds to
the maximum magnitude of the observed activations. The color of
the accuracy figures indicates the severity of the accuracy drop from
integerization: green indicates a negligible drop, orange a non-negligible
drop and red indicates an unacceptable drop (> 5 pp.).

Table 3.1
Effect of harmonization on integer network accuracy.

3.5 Experimental Results
To determine the impact of our harmonization procedure, we consider
the statistical accuracy of ResNet18 and MobileNetV2 on the 1000-class
ImageNet dataset [7]. We trained each architecture in 4-bit and 8-bit
precision, both with and without harmonization before training. After
training, the non-harmonized networks were made integerizable by
the same harmonization procedure used on the harmonized networks
before training. To calibrate the clipping bounds of the newly inserted
activation layers, we fed a random subset of the validation dataset
through the network and determined two sets of clipping bounds for
each layer: the first is found by taking the highest-magnitude value
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seen in the respective layer, while the second is found by tracking an
EMA across all batches of the clipping bounds minimizing the MSE
between the quantized and unquantized tensors. In the 4-bit quantized
networks, all linear layers are quantized to 4-bit precision, including
the first and last layer. Activations inserted before adder nodes by
the harmonization passes are always quantized to 8 bits; all other
activation layers – including activations inserted after adder nodes
– are quantized to the respective network precision. The complete
QAT hyperparameters are shown in Table A.1. The results of our
evaluations are shown in Table 3.1. Three aspects of the results are
notable. First, in ResNet18, the networks trained in harmonized
form are not considerably more accurate after integerization than
those harmonized after training. This can be attributed to the
fact that in this architecture, the post-training harmonization only
inserts activations before adder nodes. In the original network, each
adder node is already followed by a ReLU layer which is replaced
with a quantized activation in the layer-wise conversion step. Thus,
the input activations to the following linear layer are quantized
identically between the unharmonized and harmonized nets. Second,
in MobileNetV2, harmonization before training has a much larger
impact: while the fake-quantized accuracy of unharmonized networks
is equivalent to those harmonized before training, integerization leads
to a considerable accuracy drop. We attribute this to the fact that
in MobileNetV2, the harmonization pass inserts additional 4-bit or
8-bit activations directly before convolutional layers. This changes the
quantization step size of the inputs to those layers, whose weights were
trained to process much finer-grained data. Finally, in MobileNetV2,
the calibration method used to find the clipping bounds in post-
training harmonization has a major impact on the final accuracy,
which grows with decreasing precision of the inserted activations.
When using the maximum magnitude of the observed activations to
determine clipping bounds, statistical outliers give rise to clipping
bounds with a large magnitude, leading to very coarse quantization
granularity. This results in large quantization errors and leads to
unacceptable accuracy drops of 17.5 pp. (4-bit quantization) and 7.5 pp.
(8-bit quantization). In contrast, using the MSE criterion results in
smaller-magnitude bounds that clip extreme outliers, reducing the
accuracy drop from integerization to 1.2 pp. (4-bit quantization) and
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3 pp. (8-bit quantization). We note that in our experiments with
harmonization before training, the initialization method of activation
clipping bounds did not have a large impact on final accuracy, as the
clipping bounds are adjusted to a suitable magnitude by the TQT
algorithm during training.

In conclusion, the benefits of harmonization before training for
inference accuracy depend highly on the network architecture. In
MobileNetV2, where harmonization introduces additional quantizer
layers whose output is consumed by linear operators, a considerable
accuracy drop of 1.2 pp. to 3 pp. from integerization is eliminated by
training the harmonized network. Harmonization before training also
makes the quantization process more robust to suboptimal clipping
bound initialization, as clipping bounds can be learned by the QAT
algorithm. Finally, we note that for topologies containing, e.g.,
residual blocks, some form of harmonization is required in every case
if the network is to be deployed to an integer-only platform – an
unharmonized network will contain structures that are not directly
integerizable. With this in mind, harmonization before network
training offers only benefits, as the complexity cost of implementing
it must be paid in any case for successful deployment.

3.6 Conclusion
In this chapter, we have presented an open-source automated
quantization flow for QAT. In the first step, our flow automates
the conversion of standard, full-precision networks to trainable FQ
networks. An essential step of this conversion is an automated
harmonization process, which ensures that the generated FQ graph
is integerizable by replacing non-integerizable subgraphs with their
integerizable versions. This ensures that the statistical performance of
the FQ network is representative of the final integer-only network and
allows QAT algorithms to adapt network and quantization parameters
to the full extent of quantization is modeled during training,

After QAT, the FQ network is automatically converted to an integer-
only inference graph and can be exported to a precision-annotated
ONNX graph. By providing an end-to-end solution to quantize
existing topologies, our flow makes QAT accessible to application
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developers targeting edge platforms that support only low-bitwidth
integer arithmetic.

In experimental evaluations, we show that performing network
harmonization before QAT eliminates accuracy drops of 1.2 pp. to
3.0 pp. that occur when unharmonized FQ MobileNetV2 networks
are integerized.
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Algorithm 1 Epsilon Propagation
Input:

L: DNN represented as dictionary {i : (inputs, m, users)},
mapping a layer’s (topologically sorted) index i to its input
indices, a layer object m containing layer information (operator
type, parameters etc.) and a list of user indices indicating
which layers use its output.

C: Dictionary {op : convert_eps(eps_in, m)}, mapping an
n-input operator type op to an epsilon-conversion function
convert_eps taking a list of input epsilon vectors eps_in =
[εin,1, . . . , εin,n] and the layer object m.

ε0: Step size of the quantized input to the network.

Output:

εann: Dictionary {i : (εin = [εin,1, . . . , εin,n] , εout)} mapping
layer indices i to the input step size vectors εin for each of the
layer’s n inputs and the output step size vector εin

εann [0] .εin ← [εo] ▷ Annotate first layer’s input step size
for all (i, l ∈ L) do ▷ Iterate over all layers

εin ← εann [i] .εin ▷ Get layer’s input step size
if l.op ∈ C then ▷ If a conversion function is registered...

εout ← C [l.op] (εin, l.m) ▷ ...use it to compute the εout.
else

εout ← εin[0] ▷ Else, propagate the first input’s εin

end if
εann[i].εout ← εout

for all iu ∈ l.users do
εann[iu].εin.append (εout) ▷ Prop. εout to all users’ inputs

end for
end for



Chapter 4

Efficient End-to-End Gesture
Recognition with Ternary
Neural Networks

4.1 Introduction
In this chapter, we apply aggressively quantized QNNs in the context
of a complete system built around an MCU. In a practical application
scenario, such a systems is typically battery-powered and the key
performance characteristic – apart from the latency and accuracy with
which it solves the task it is designed for – is the battery lifetime. Thus,
energy efficiency becomes a system-level design goal; e.g., efficient QNN
inference on its own is not useful if the system has a very high idle
power consumption. Thus, to optimize both power consumption and
performance, the entire pipeline from the sensor to the reaction to
the results of processing must be considered. An efficient end-to-end
solution consists of a low-power sensor that minimizes redundant data
generation, a tightly integrated sensor-processor interface to avoid
communication overhead (e.g., from dedicated logic circuits for sensor

51
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readout) and an efficiently implemented processing algorithm executed
with low latency.

In the context of visual sensing, DVS cameras minimize sensing
and communication energy by only capturing and outputting events
describing the location and polarity of pixel-wise brightness changes
exceeding a certain threshold. Accordingly, DVS communicate at a
data rate proportional to the activity in the captured scene, with a
corresponding reduction in communication energy when operating in
static or low-activity environments.

Spiking neural networks (SNNs), a class of brain-inspired neural
networks, operate directly on a stream of input events and extend the
principle of energy-activity proportionality to the processing domain.
As such, they can be viewed as the natural processing paradigm for
event-based vision systems and the combination of the two principles
has attracted significant research. However, SNNs are still an emerging
technology: they lag behind classical ML models such as CNNs both in
task accuracy and in hardware support, and have not yet proven their
suitability for low-power applications in the edge computing domain
[109], [110]. Aggregating the DVS event stream into video frames
provides an alternative to SNN-based processing and allows the use
of more established, highly optimized machine learning models such
as aggressively QNNs [10], [111], [112].

In this chapter, we follow the latter approach and present a frame-
based end-to-end processing pipeline for DVS event data implemented
on the RISC-V-based Kraken SoC. Thanks to a dedicated on-chip DVS
camera interface implementing configurable event frame aggregation,
data transfer, and processing overheads are minimized. By classifying
the accumulated frames with a 2-stage TNN, either on the integrated
CUTIE accelerator [14] or on a PULP cluster of 8 RISC-V cores,
we show that frame-based processing of DVS event data has the
potential to enable ultra-low-power gesture recognition in real-time on
edge computing nodes.While the CUTIE accelerator offers maximal
efficiency at very low latencies, it is a large design with a silicon
footprint of 3 mm2 in a 22 nm process and imposes restriction on the
supported network architectures, such as the restriction to TNNs, the
number of channels per layer or the maximum kernel size. The fully
software-programmable PULP cluster has no such restrictions and
can efficiently perform a wide range of compute tasks. An efficient
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implementation of our network on the cluster is thus an attractive
option for area-constrained systems requiring maximal flexibility and
a point of reference for applications requiring network architectures
not compatible with CUTIE.

The contributions of this chapter are the following:

• We present a detailed exploration of the impact of architectural
parameters and training algorithms on the performance of
ternarized hybrid temporal convolutional networks (TCNs) for
gesture recognition from DVS event frames.

• Motivated by ReLU activations’ superior performance, we present
a procedure to convert networks using 3-level unsigned (ReLU)
activations to networks with signed ternary activations commonly
supported by TNN accelerators.

• We evaluate the effect of the different parameters in generating
event frames from raw DVS camera output on the network’s
statistical accuracy and latency, achieving state-of-the-art classi-
fication accuracy of up to 97.9 % on the DVS128 gesture dataset.

• We map the proposed network architecture on both the CUTIE
TNN accelerator [14] and a PULP cluster of 8 RISC-V cores
with native hardware support for low-precision arithmetic. We
report in-silicon measurements of inference energy for both
targets, demonstrating continuous end-to-end inference at a
power consumption of 4.7 mW and an inference energy of 7 µJ at
a latency of 0.9 ms on CUTIE. On the PULP cluster, continuous
inference consumes 6.4 mW with a classification energy of 0.41 mJ
at a latency of 17.8 ms. The energy per CUTIE inference
represents an improvement on the state of the art for embedded
end-to-end gesture recognition by a factor of 67×. The energy per
inference for cluster-mapped networks is still competitive with
the state of the art, demonstrating the viability of software-based
processing of DVS events within a sub-10 mW power budget.
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4.2 Related Work
As this chapter presents a pipeline for power-efficient end-to-end gesture
recognition from DVS data, we first focus our review of the related
literature on works that perform gesture recognition on embedded,
low-power devices with various types of sensors before giving a more
detailed overview of works that employ event cameras as the primary
sensor. The interested reader may refer to [113] for a wider perspective
on deep learning-based techniques for device-free wireless sensing tasks
such as person localization, gesture recognition, or fall detection.
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[114] [115] [70] [116] This work
Sensor SRR DVS128 [117]/sEMG (Myo) DVS128 DVS128 DVS132S [118]a
Psensor 95 mW >23 mWb 23 mW 23 mW 250 µW
Dataset Custom Custom DVS128 DVS128 DVS128
Model CNN/transformer SNN SNN SNN Ternarized CNN/TCN
End-to-end? ✓ ✗ ✓ ✗ ✓
Processor GAP8 ODIN + MorphIC Loihi TrueNorth Loihi CUTIE PULP Cluster
Pidle - - 29 mW [119] 134.4 mW 29 mW [119] 4.7 mW 3.6 mW
Pcont >7.1 mWc - 33.2 mW d 178.8 mW - 4.7 mW 6.4 mW
tinf 9 ms 19.5 ms 7.8 ms - 11 ms 0.9 ms 17.8 ms
Einf 0.47 mJ 37 µJ e 1.1 mJ e 18.8 mJ - 7 µJ 0.41 mJ
Accuracy 77.15 % 89.4 % 96.0 % 94.6 % 90.5 % 97.7 % 97.7 %
a Network accuracy was evaluated on the DVS128 gesture dataset collected with a different sensor.
b Power consumption of the Myo armband is not specified.
c We assume 15 inf/s and zero idle power consumption as a lower bound for continuous power consumption.
d Calculated from idle power, inference energy and inference latency.
e Only dynamic energy figures reported.

Table 4.1
Comparison of the results with state of the art embedded gesture recognition implementations
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4.2.1 Embedded Gesture Recognition
Gesture recognition based on electromyography (EMG) has attracted
significant research interest. A common approach is to attach an EMG
electrode array to the forearm and classify the signals using a DNN.
[120] combines a custom analog frontend for 8-channel EMG signal
acquisition and analog-to-digital conversion with an ARM Cortex-M4
microcontroller running a support vector machine (SVM) to classify
the input. The complete system achieves an average classification
accuracy of 89.7% on four user-specific datasets of 7 gestures in a
power envelope of 29.7 mW. [121] proposes a larger system based on
a 32-channel wireless sensing armband and CNN-based classification
on the NVidia Jetson Nano platform, achieving 98.5% classification
accuracy on eight gesture classes collected from a single user with 5 ms
of inference latency at a total power consumption of 3.1 W. At tens-of-
mW power envelopes, other EMG-based embedded gesture recognition
systems [122]–[124] achieve comparable results to [120]. The drawback
of EMG-based gesture recognition is that it is not suitable for ad-
hoc human-machine interaction for two reasons. First, the models are
commonly user-specific, requiring retraining for different users. Second,
placing EMG electrodes requires careful setup and preparation. While
systems supporting on-device learning based on hyperdimensional
computing [124] have addressed the former issue, the latter is inherent
to EMG interfaces.

A different sensing approach is to use miniaturized radar sensors.
Google pioneered this technique with SOLI [125], using custom radar
ASICs in combination with off-the-shelf (embedded and desktop-scale)
processing platforms to achieve up to 92.1% classification accuracy on a
four-class hand gesture dataset collected from five users with a random
forest-based classifier. [126] uses SOLI hardware to collect an 11-class
hand gesture dataset, achieving 94.2% classification accuracy with a
CNN-based classifier run on desktop hardware. The radar approach
was subsequently refined and miniaturized in [107], using embedded
short-range radar sensors produced by Acconeer and performing
classification with a hybrid TCN on the RISC-V PULP-based GAP8
processor. The authors report 81.5% classification accuracy at a
continuous inference power of 21 mW and a classification energy
of 4.52 mJ, bringing radar-based gesture recognition into the edge
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computing space. [114] improves on this work by using a transformer-
based classifier, reducing latency and inference energy to 9 ms and
0.47 mJ, respectively. While this shows that radar data processing can
be performed under strict power constraints, radar sensors are generally
power-hungry: Google’s SOLI radar consumes 300 mW per chip and
the sensors used in [107] use 90 mW each. This means that sensing
power dominates full-system power consumption and makes radar-
based gesture recognition unsuitable for ultra-low-power applications
requiring power envelopes of <10 mW.

Other sensing techniques used for gesture recognition include sensor
gloves [127], [128], ultrasonic echolocation [129], [130] and camera-based
visual sensing [131], [132]. However, these approaches have not found
any application to ultra-low-power embedded systems so far.

4.2.2 DVS Gesture Recognition
In recent years, gesture recognition from DVS event data has seen
considerable research interest. The most common approach is to
process the event stream using SNNs. In [70], the authors introduced
the 11-class DVS128 full-body gesture dataset, which has become the
de-facto standard for DVS gesture recognition. They implement an
end-to-end gesture recognition system on the NS1e development board
based on IBM’s TrueNorth neuromorphic processor. The event stream
is preprocessed with a cascade of temporal filters and classified with a
16-layer convolutional SNN at 1 ms timesteps. This pipeline achieves
a classification accuracy of 91.8%, The application of a sliding-window
filter to the output further increases accuracy to 94.6%. TrueNorth’s
power consumption is measured at 178.8 mW, making this system
unsuitable for edge computing applications.

Similarly, [116] proposes an SNN converted from a 5-layer CNN to
classify the event stream from the DVS128 dataset. In notable contrast
to [70], events are accumulated over much longer timeframes (300 ms
for the best-performing network) which are divided into multiple
input channels. This processing approach is equivalent to feeding
event frames to a SNN. Classification accuracy is reported as 90.5%
at a processing latency of 15 ms. While the authors do not provide
information on power consumption, [119] reports a single Loihi chip’s
idle power consumption as 29 mW, providing a lower bound. It should
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also be noted that the acquisition and preprocessing of the event
stream are not performed on Loihi.

[115] performs sensor fusion on DVS and EMG data, using dual-
branched SNN models with a joint classifier layer to perform hand
gesture recognition on a custom 5-class dataset. The model mapped
to Loihi, consisting of a spiking CNN handling DVS data and a
spiking multi-layer perceptron (MLP) to process EMG data, achieves
a classification accuracy of 96% at an inference latency of 7.8 ms. The
authors also map a model consisting of two spiking MLPs to a pair of
research SNN accelerators, ODIN [133] and MorphIC [134]. Like the
Loihi model, this smaller model operates on a 200 ms window of input
data and achieves 89% classification accuracy at a latency of 19.5 ms.
The authors report only the dynamic energy consumption of both
networks, which is measured at 1.1 mJ for Loihi and calculated (using
detailed power models) at 37 µJ for ODIN+MorphIC. As with [116],
the preprocessing step is not accounted for in these figures and is
performed offline.

Other works are purely algorithmic and do not include power
or energy figures on embedded platforms. [135] proposes a spiking
convolutional recurrent neural network, achieving 90.3% validation
accuracy on the DVS128 dataset. [136]–[138] propose different methods
of training SNNs, achieving validation accuracies of up to 97.6%. [112]
proposes a method to aggregate events into decimal pixel values to
encode time information, processing these event frames with a large
3D CNN. This approach achieves a near-perfect validation accuracy of
99.6% on the DVS128 dataset, the highest result reported in the
literature.

In conclusion, our literature study reveals that accessible end-
to-end gesture recognition on extreme-edge devices is an unsolved
problem: existing edge solutions use sensing technologies that are
either impractical to use (e.g., EMG) or too power-hungry to fit the
constraints of the IoT. DVS cameras have the potential to close this
gap but have not yet been used to their full potential in ultra-low-power
sensor nodes. We propose to close this gap with an event frame-based
processing pipeline based on a hybrid TNN mapped to the Kraken SoC,
which integrates the sensor interface with efficient processing units
(namely, the CUTIE accelerator and 8-core PULP cluster) to perform
both inference and general-purpose processing tasks. To the best of
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our knowledge, our system outperforms all embedded solutions in both
classification accuracy (97.7% on DVS128) and efficiency (7 µJ/inf.,
4.7 mW continuous inference power) while providing the versatility of a
fully-featured MCU, enabling always-on gesture detection on battery-
powered sensor nodes at the extreme edge. Table 4.1 compares our
system to the state of the art in embedded gesture recognition systems.

4.3 Background
In this section, we give a brief overview of the operating principle
of DVS cameras, their advantages and drawbacks compared to
conventional cameras, and the approaches adopted to process DVS data.
We then provide background on the training and inference of QNN and
a short description of the architecture of the CUTIE TNN accelerator.

4.3.1 DVS Cameras and Processing DVS Data
DVS, first proposed in 1991 [139], are an emerging class of visual
sensors that detect and transmit information on brightness changes
in the captured scene. In contrast to conventional cameras, which
produce a stream of frames at fixed time intervals, DVS cameras
emit a stream of events describing the location and polarity of an
individual pixel’s change in brightness. An event can be described
as a tuple (t, x, y, p), where t denotes the time at which the event
is produced, (x, y) are the coordinates of the pixel which produced
the event and the polarity p ∈ {−1, 1} indicates whether brightness
at the respective pixel increased or decreased by a specific threshold
since the last event emitted.

An advantage of DVS cameras over conventional image sensors
is that they enable energy-proportional sensing: As only localized
brightness changes are sensed and transmitted, the pixel array’s activity
and transmission data rate (and, with them, the respective power
consumptions) are proportional to the activity level in the captured
scene. In contrast, conventional cameras capture and transmit frames
at a constant data rate, leading to constant and activity-independent
power consumption. A second advantage lies in their low latency
(typically < 200 µs) due to their asynchronous nature: Each pixel in
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a DVS array operates independently, emitting information about a
change in the captured scene as soon as it occurs. Sensing latency is
thus limited only by the readout circuitry and the physical interface
used to transmit the event stream. DVS pixels also typically have a
high maximum event rate per pixel of >300 e/s, making DVS cameras
suitable for high-speed applications. Due to the logarithmic brightness
response of DVS pixels, DVS cameras also support high dynamic
ranges of > 120 dB [117], [140], [141], enabling their application in
a wide range of lighting conditions.

Compared to shutter-based cameras, DVS cameras have some
limitations. The first is a lack of color representation; while there are
some research works exploring this [142], commercially available DVS
cameras are exclusively monochrome. Availability and price are further
obstacles to widespread adoption of DVS technology; while camera
modules for embedded applications are mass-market products, DVS
camera availability is very limited and prices range in the equivalent
of thousands of dollars.

The processing of DVS data presents a significant challenge, and
[111] divides approaches into two broad categories. The first class
aggregates event data into frame-like groups. An example of this is time
surfaces, where the value of each pixel describes how recently the last
event at that pixel occurred. The most basic approach in this class is
that of event frames, which we also adopt. Event frames are constructed
by dividing the event stream into fixed time intervals, aggregating
the events occurring during each frame interval into pixel values for
each spatial location in the frame [10], [112], [143]. These approaches
enable processing with conventional image processing algorithms such
as DNNs, but omit some of the information in the event stream. E.g.,
in periodically sampled time surfaces, there is no information about
how many events on a given pixel occurred during the frame interval.

The second category of processing algorithms for DVS data operates
on individual events. This category’s most prevalent algorithmic
paradigm is that of SNNs. A class of artificial neural networks
(ANNs) inspired by the working principle of the human brain, SNNs,
consist of one or multiple layers of neurons that behave according to a
biologically-motivated model. In the most commonly utilized model,
the leaky integrate-and-fire (LIF) neuron, each neuron in the network
is connected to neurons in the previous layer and takes discrete spikes
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as its input. The input spikes are weighted with parameters specific to
their source and added to the neuron’s internal membrane potential,
which decays exponentially independent of input spiking activity.
When a neuron’s membrane potential reaches a parametrizable
threshold, it fires and propagates a spike to the neurons of the next
layer to which it is connected. Upon firing, the membrane potential
resets to a rest potential. SNNs are fundamentally asynchronous
and time-continuous, but their dynamics can be discretized in time,
a fundamental step for their implementation in digital circuits [109],
[136]. As DVS events can be directly mapped to input spikes, SNNs are
a natural fit for processing DVS data and this pairing has accordingly
attracted widespread research attention. Examples of their successful
application include optical flow estimation [144], [145] and image
classification [136], [146], [147] on event datasets converted from
traditional datasets consisting of static images [148]–[150]. Gesture
recognition, the application we target, has also been implemented with
SNNs, achieving accuracies of up to 94.6% on the DVS128 dataset [70].

However, on all the above tasks, the accuracy of SNN-based
methods does not match that of traditional DNNs [109], [112], [136],
[151]. Furthermore, the integration of flexible SNN accelerators suitable
for executing complex networks into systems capable of end-to-end
processing is not well-established. So far, it has been restricted to
large-scale designs such as Intel’s Loihi family of systems [152], [153]
or IBM’s TrueNorth platform [154].

4.3.2 Training and Inference of Aggressively Quan-
tized Neural Networks

Extreme Quantization - Binarized and Ternarized Networks

The techniques introduced in Section 2.2 can be applied to achieve
quantization to any desired precision, with lower-precision quantization
generally leading to more significant degradation of task accuracy. The
most extreme forms of QNNs are BNNs [66], [68] and TNNs [155],
[156]. In BNNs, all weights and activations are quantized to values in
{−1, 1}. TNNs can be considered an extension of BNNs, with tensor
elements taking values in the set {−1, 0, 1}. Consequently, arithmetic
operations on binary and ternary values can be implemented with
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simple hardware: Computing the dot product of two N -element binary
vectors can be achieved by N XNOR gates and an N -bit popcount
unit [68]. The dot product of two N -element ternary vectors can
be computed using N ternary multipliers and 2 N -element popcount
units. This property makes BNNs and TNNs highly attractive targets
for acceleration. While binary and ternary quantization schemes allow
for the design of simple arithmetic units which improves inference
energy efficiency considerably [14], statistical inference accuracy is
typically degraded, even when employing QAT. Significant research
has been conducted to combat this negative impact on accuracy and
significant advances have been reported [157], [158]; however, low-
bitwidth quantization typically still carries a non-negligible penalty on
statistical accuracy. As such, binary and ternary neural networks are
best suited for applications where the penalty on accuracy is acceptable,
such as in low-complexity tasks or always-on sensing or wake-up trigger
applications. In this chapter, we apply the INQ [47] and TQT [59]
QAT algorithms to the training of binary and ternary neural networks,
comparing the resulting networks’ accuracy and showing that TNNs
are ideally suited for ultra-efficient gesture recognition from DVS data
as they achieve minimal accuracy drop while allowing inference to
be run on simple, highly efficient hardware. In particular, we deploy
our gesture recognition TNNs to the CUTIE accelerator, which we
introduce in the following.

The CUTIE TNN Accelerator

The Completely Unrolled Ternary Inference Engine (CUTIE) is an
accelerator for TNNs, introduced in [14]. In contrast to most neural
network accelerator architectures, CUTIE uses a compute architecture
that is fully parallel in the computation of each output pixel by
processing elements termed output channel compute unit (OCU). Each
OCU computes the sum of dot products corresponding to a single filter
in a fully unrolled manner and in a single cycle. To parallelize the
computation of each pixel, CUTIE uses one OCU per output channel.
Each OCU has a dedicated latch-based weight buffer that holds all filter
weights. In order to reuse input kernel windows optimally, CUTIE
features a 3-line buffer, which dispatches full 3× 3 kernel windows.

CUTIE’s maximally parallel design not only increases arithmetic
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Figure 4.1 – Overview of the proposed processing pipeline.

optimization by forming large adder trees over the sum of dot products
in each OCU, but also minimizes data movement since every pixel in
the input feature map and every weight in every filter is only loaded
once per layer. These characteristics make CUTIE highly efficient for
neural network inference at the edge while enabling throughput at rates
exceeding 1000 inf./s. Kraken features an updated version of CUTIE,
described and evaluated in detail in [159]. The main improvements
from the original version are support for causal, dilated 1D convolutions
and the addition of an intermediate buffer for a window of up to 24
CNN output vectors, enabling the execution of ternarized TCNs. The
CUTIE accelerator in Kraken features 96 OCUs, computing one output
pixel with up to 96 input/output channels per cycle and resulting in a
peak throughput of 56 TOp/s when clocked at 54 MHz for maximum
efficiency in a 22 nm implementation.
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4.4 Event Frame Processing Pipeline

4.4.1 Overview
The class of cameras we target produce events consisting of three
values each: Two spatial coordinates (xe, ye) describing the location of
the event on the sensor grid, and a polarity pe ∈ {−1, 1} to indicate
a decrease or increase in brightness, respectively. The first stage of
our proposed pipeline performs data preparation, aggregating events
detected by the DVS camera into 2-dimensional frames. The resulting
frames are natively ternary: Pixels where at least one event occurred
during a frame interval take the value of the most recent event’s
polarity, while pixels with no activity take the value 0. The prepared
data is then processed by a two-stage hybrid CNN inspired by [107].
In the first processing stage, Cin sequential frames are fed into a fully
ternarized 2D CNN. By processing multiple frames per inference, the
2D CNN can analyze short-term temporal dependencies, which are
encoded into ternary feature vectors by the last layer.

In the third and final stage, a fully ternarized TCN analyzes the
longer-term temporal dependencies by performing inference on a sliding
window covering NT CN feature vectors. Its output is a vector of class
scores Vp ∈ ZNc , where Nc is the number of classes. For the DVS128
dataset, Nc = 11. Finally, the class label of the sequence is given
as Cls = arg maxi (Vp).

Figure 4.1 shows a diagram of the proposed processing pipeline.
The frame extraction process is shown in Figure 4.2 and described
in more detail in Section 4.4.5.

4.4.2 Network Design
The ternarized hybrid CNN/TCN adopts a simple feed-forward
architecture, i.e., there are no residual branches in the network. All
layers but the first have Nch output channels. The two networks’
topologies are listed in Table 4.2. The final, fully ternarized network
consists only of convolutional layers with no bias, ternary activations
(4.2) and pooling layers. Consider a layer stack consisting of a
convolutional layer with Ni/No input/output channels respectively
and an optional pooling layer and denote the ternary values as
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Layer Out Ch. Out Res. Pad Dilation
2D

C
N

N

Input Cin 64 × 64 N/A N/A
C2D (3 × 3) 32 64 × 64 S 1
MP (2 × 2) 32 32 × 32 V 1
C2D (3 × 3) Nch 32 × 32 S 1
MP (2 × 2) Nch 16 × 16 V 1
C2D (3 × 3) Nch 16 × 16 S 1
MP (2 × 2) Nch 8 × 8 V 1
C2D (3 × 3) Nch 8 × 8 S 1
MP (2 × 2) Nch 4 × 4 V 1
C2D (3 × 3) Nch 2 × 2 V 1
MP (2 × 2) Nch 1 × 1 V 1

1D
T

C
N

Input Nch NT CN N/A N/A
C1D (2) Nch NT CN CS 1
C1D (2) Nch NT CN CS 2
C1D (2) Nch NT CN CS 4
C1D (NT CN ) 11 1 V 1

Table 4.2
Topology of the proposed hybrid CNN architecture, consisting of
a 2D CNN for short-term feature extraction and a 1D TCN to

capture longer-term temporal dependencies. C{1,2}D:
1/2-dimensional convolution, MP: Max-Pooling. (C)S/V indicate

(causal) same/valid padding, respectively.

T ≜ {−1, 0, 1}. The layer stack takes as input a tensor X ∈
T Ni×HX ×WX , where HX/WX are the spatial dimensions. X is
convolved with the convolutional weights W ∈ T No×Ni×k×k and
pooled, to yield pre-activations Z ∈ ZNo×HY ×WY , shown in Equation
4.1. Z is then mapped to ternary activations Y ∈ T No×HY ×WX by
channel-wise thresholding as shown in Equation (4.2) with tlo and
thi, tlo, thi ∈ ZNo .

Z = pool (X ∗W) (4.1)

yi,x,y =


−1, zi,x,y < tlo

i

0, tlo
i ≤ zi,x,y < thi

i

1, zi,x,y ≥ thi
i

(4.2)



66 CHAPTER 4. TNN-BASED GESTURE RECOGNITION

4.4.3 Quantization-Aware Training
To train the ternarized networks we evaluate, we perform QAT using
two algorithms: INQ [47] and TQT [59]. To determine the impact of
the activation function used to train the network, we compare hard
hyperbolic tangent (HtanH)-activated networks to ReLU-based ones.
Note that both types of FQ networks are ultimately converted to fully
ternarized networks as described in Section 4.4.2. QAT is performed
in 4 steps (3 in the case of HtanH activations):

1. Training full-precision network to convergence,
2. quantization of activations,
3. (incremental) weight quantization, and, if ReLU activations

were used,
4. fine-tuning to compensate for non-zero padding.

For all training algorithm and activation function combinations, we
train networks with BN layers inserted after the convolutional layers
to allow for channel-wise scaling. After full-precision training has
converged, HtanH and ReLU activations of layer l are replaced with
symmetrical and asymmetrical 3-level step functions (4.3) and (4.4),
respectively.

Al
symm(x) =


εl

A, x ≥ εl
A/2

0, −εl
A/2 ≤ x < εl

A/2
−εl

A, x < −εl
A/2

(4.3)

Al
asymm(x) =


2εl

A, x ≥ 3/2εl
A

εl
A, εl

A/2 ≤ x < 3/2εl
A

0, x < εl
A/2

= Al
symm(x− εl

A) + εl
A

(4.4)

The network is retrained for a few epochs before weight quantization
is applied. When using INQ, weight and activation quantization
step sizes are kept constant at 1, i.e., εW = εA = 1. Weights are
frozen to the nearest values in T incrementally in order of decreasing
magnitude, and the unmodified STE is used to propagate gradients
through quantized activations. After each freezing step, the network’s
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remaining learnable parameters (free weights and BN parameters) are
retrained to convergence. When using TQT, both weight and activation
clipping bounds are learned, with weight clipping bounds of each layer
learned individually for each output channel. When quantizing weights
with TQT, fake-quantization is applied to all weights simultaneously.
The detailed training parameters are listed in Section 4.6.1.

4.4.4 Network Ternarization
To be deployed on CUTIE, FQ networks must be mapped to fully
ternarized models containing only ternary parameters and thresholding
activation functions of the form (4.2). For FQ networks using
asymmetrical (ReLU) activations (4.4), this requires the replacement
of those activations by symmetrical ones (4.3). (4.4) is equivalent to
(4.3) shifted by εl

A in both the argument and the output. The shift of
the argument translates to shifted thresholds, while the shift in the
output is equivalent to a bias of εl

A being added to the next layer’s
input, which can be propagated through the convolution operation
to an equivalent output bias. However, this transformation would
require padding the edge regions of the input feature map to layer l + 1
with −εl

A (FQ)/−1 (integerized), which CUTIE does not support. We
compensate for this by fine-tuning the network after fake-quantization
with padding values of +εl

A, which corresponds to the zero-padding
applied by CUTIE on the transformed network.

To generate the fully integerized network, all floating-point
parameters of an activation-convolution-BN(-pooling)-activation layer
stack are folded into channel-wise integer thresholds of the ternary
activation layer, terminating the stack. Consider the l-th stack with
(FQ) convolutional weights Wl =

[
Wl

0, ..., Wl
No−1

]
and bias Bl, input

and output activation quanta εl−1
A and εl

A (as the input data is already
ternarized, ε0

A = 1), channel-wise weight quanta εl
W and N l

O output
channels. We fold the convolutional bias and the BN parameters
the into channel-wise affine transformation parameters γ̂l and β̂l,
shown in Equation (4.5). From these, we can compute the integer
threshold vectors t̂lo,l and t̂hi,l for layer l as in Equation (4.6). Because
negative entries of γ̂ flip the inequalities in (4.2), we sign-invert the
corresponding output channels’ weights and flip their thresholds before
integerizing them, respectively (4.7, 4.8). In the final network, Wl
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is replaced with its integerized counterpart W̃l and BN-activation
sequences are replaced with a single channel-wise integer thresholding
activation of the form (4.2).

1R =
{

1 Net uses ReLU activations
0 Otherwise

B̂l
c =

{
Bl

c l = 1
Bl

c + 1Rεl−1
A

∑
i W l

c,i l > 1
∀ 0 ≤ c < No

β̂l = γl (B̂l − µl)
σl

+ βl, γ̂l = γl

σl
(4.5)

t̂lo = (1R − 0.5)εl
A − β̂

γ̂εl
W εl−1

A

, t̂hi = (1R + 0.5)εl
A − β̂

γ̂εl
W εl−1

A

(4.6)

W̃l
c =

(
Wl

c − 2Wc1γc<0
)

/εl
W,c ∀ 0 ≤ c < No (4.7)

tlo,hi
c =

⌈
t̂lo,hi
c − 2t̂lo,hi

c 1γc<0
⌉

∀ 0 ≤ c < No (4.8)

Integerization for deployment on the PULP cluster is more
straightforward and follows the procedure laid out in Section 2.2.3.
The ternarized weights are mapped to 2-bit integers, and activation
operations are mapped to requantization layers (also called Integer
Channel Normalization in [91]). The l-th requantization layer folds
ε scaling and BN into a single channel-wise affine transformation
with parameters γ̃l and β̃l followed by an arithmetic right shift
by a layer-wise parameter Dl, effectively performing fixed-point
arithmetic with integer operations. The result is finally clipped to
the appropriate integer range, implementing the nonlinear activation
function. Equation (4.9) shows the ternary requantization operation
for layer l (assuming a ReLU activation) and Equations (2.14, 2.15)
show how γ̂l and β̂l are computed. Note that by adding 0.5 to the
folded bias term, the flooring operation in (4.9) is converted into a
rounding operation.

RQl(X) = clip
(
⌊
((

γ̂X + β̂
)

>> Dl

)
⌋, 0, 2

)
(4.9)

While thresholding-based activations are completely equivalent
to their fake-quantized equivalents, the requantizing activation (4.9)



4.4. EVENT FRAME PROCESSING PIPELINE 69
TI

M
E

Cin

H

Wt fr
am

e ...

END OF
FRAME

... ...
...

...

E
V
T (x_0, y_o, pol_0)

E
V
T

s w
in

O
L w

in

DVS EVENT
STREAM

EVENTS
AGGREGATED INTO
TERNARY FRAMES

Cin FRAMES
STACKED

...

(x0, y0, p0)

E
V
T (x_0, y_o, pol_0)

E
V
T (xa, ya, pa)

...

E
V
T (x_0, y_o, pol_0)

E
V
T (xb, yb, pb)

E
V
T (x_0, y_o, pol_0)

E
V
T (xc, yc, pc)

...

E
V
T (x_0, y_o, pol_0)

E
V
T (xd, yd, pd)

E
V
T (x_0, y_o, pol_0)

E
V
T (xe, ye, pe)

Figure 4.2 – Frame aggregation for processing by the 2D CNN. All events
occurring during a time window of length tframe are assigned to the same
frame. The 2D CNN takes Cin frames as input, and two successive stacks
of Cin frames overlap by OLwin frames

.

introduces some numerical mismatches due to the rounding of γ̂ and
β̂. Higher values of D decrease the discrepancy, so D is chosen as
large as possible while avoiding integer overflows resulting from the
multiplication with X in (4.9). In our implementation, we choose
D = 19 to achieve equivalent integerized classification accuracy to
that of the FQ network.
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4.4.5 Data Preparation
Unlike previous works [70], [116], which employ fully event-based
processing schemes and rely on SNNs to classify event data directly,
our proposed approach first aggregates the event stream into ternary
2D images. This incurs some overhead for data preparation (frames
need to be assembled and buffered) and decouples the processing
energy from the density of the event stream. In practice, however, the
power required for data preparation is vanishingly small in comparison
to the idle power of the running system (see Section 4.6.2). The lack of
fine-grained energy-activity proportionality is more than compensated
by the unparalleled efficiency of TNN-based processing on CUTIE,
which is indeed owed to the regularity of DNNs. Finally, activity-
energy proportionality is still supported in a coarse-grain manner by
only triggering inference when the input event density detected by the
DVS peripheral surpasses a programmable threshold.

Parameters in data generation

The process of generating frame data from the event stream, illustrated
in Figure 4.2 has several degrees of freedom:

• Frame rate FPS, or, equivalently, frame time tframe = 1
F P S

• CNN input window size Cin; this parameter dictates the number
of input channels to the CNN’s first layer

• temporal CNN input window stride swin, which gives rise to the
input window overlap OLwin = Cin − swin, and

• downsampling factor D - from our experimental observations,
we choose D = 2, i.e., the height and width of the original frame
are both halved, and the resulting frame has 1/4 the resolution
of the raw camera data.

While all of these parameters must be fixed for network training, the
DVS peripheral performing the frame aggregation has been designed
to leave them configurable at runtime at negligible hardware overhead.
The receptive time interval tp of the full hybrid network is given by
the number of input vectors to the TCN NT CN , the number of frames
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encoded in a single vector Cin and the stride of the CNN input windows
swin as tp = Cin +(NT CN −1)swin. Once running, the latency l of the
system to react is determined by the window stride and the frame rate,
as well as the processing time tinf : l = swin/FPS + tinf ≈ swin/FPS.
When running networks on CUTIE, we can approximate tinf ≈ 0
due to CUTIE’s very high throughput compared to the frame time
(see Section 4.6.2).

4.5 SoC Architecture: Kraken
We deploy the trained hybrid TCNs on the Kraken PULP SoC [160].
Kraken has three main processing domains, each individually power-
gateable: The SoC domain, the cluster domain and the accelerator
domain.
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The SoC domain contains a single RI5CY core, implementing the
XpulpV2 extension [96] to the RISC-V ISA. This core is designated
as the FC and is responsible for orchestrating system operation and
managing peripherals. The SoC domain contains 1 MiB of SRAM-
based L2 memory, which serves as the main working memory of Kraken.
A wide range of peripherals for off-chip communication, including a
DVS camera interface (described in detail in Section 4.5.1), are also
located in the SoC domain and are managed by the µDMA engine [161],
which allows operation of peripherals with minimal involvement of
the FC core. Off-chip peripherals are powered by the same supply
rail as the FC and the L2 memory but are clocked by a separate
frequency-locked loop (FLL) clock generator.

The cluster domain contains a PULP cluster of 8 RI5CY cores
to perform compute-intensive processing tasks. Additionally to
the XpulpV2 extension, the cluster cores implement the XpulpNN
extension [97]. XpulpNN offers optimized hardware support for low-
precision arithmetic via custom MAC-and-load instructions. These
instructions combine low-precision MAC operations on packed 2-bit,
4-bit, or 8-bit operands with memory access and pointer update
operations. This approach greatly mitigates the von Neumann
bottleneck of load-store ISAs for matrix multiplication kernels, enabling
the efficient execution of low-precision neural network layers. To
minimize memory access overhead, the cluster has 128 KiB of L1 tightly-
coupled data memory (TCDM), which is divided into 16 interleaved
banks and provides single-cycle access to temporary data.

Finally, the accelerator domain contains two application-specific
accelerators: CUTIE, targeting TNN inference and SNE [162], an
all-digital SNN accelerator. Each accelerator can be clock-gated and
power-gated individually. For Kraken, CUTIE has been modified from
its first-generation architecture and configuration by changing the
maximum number of input and output channels to 96, the inclusion of
an additional memory bank to store ternary CNN output vectors and
the capability to process those vectors with TCN layers by allowing
for 1-D kernels with configurable dilation and causal padding.
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4.5.1 DVS Interface
With the DVS interface (DVSI), Kraken possesses a versatile peripheral
unit to interface with DVS cameras such as the DVS132S [118]. Its task
is to read event data from the camera unit and write it to a configurable
memory address. Event readout can be triggered by writing to a
configuration register or by an on-chip timer/counter peripheral. As
the DVS peripheral is implemented as a µDMA peripheral, it can
operate without any intervention from the FC. The peripheral can
write event data to the configured location in two different formats.
For processing by algorithms operating on discrete events (e.g., SNNs),
it can encode each event in a 32-bit word and write event data to
consecutive memory addresses. Alternatively, the peripheral can buffer
up to 15 event frames in the format required by our proposed TCN.
For this purpose, it contains an SRAM macro of 4096×32 bits, which
is used as a frame buffer. Each word corresponds to one pixel of a
64 × 64 feature map, with each channel’s value occupying 2 bits in
a word for NHWC ordering. An incoming event at location (y, x) is
written to bits [2ccurr + 1, 2ccurr] at address 64y + x, where ccurr is
a wrapping counter ranging from 0 to 15, indexing the bits at which
the currently active frame is stored. As a new frame interval starts,
ccurr is incremented. The frame buffer is configurable in Cin and swin.
After swin frames have been written into the buffer, the readout logic
streams out the most recent Cin frames by reading each word, circularly
shifting it to the right by 2ccurr bits and masking bits [31 : 2Cin] of
the resulting word to zero before writing it to the configured memory
location. After reading a word, the swin timesteps no longer used in
the next input window are zeroed to avoid contamination of future
frames by old events. The selective writing of events to bit indices
and zeroing of stale data in single write operations is made possible by
bit-selection signals exposed by the memory macros used in Kraken.

As the DVS peripheral can be configured to write to any address
in Kraken’s memory range, it can transfer input data directly to
CUTIE’s internal activation memories. After an input window has been
streamed out, the peripheral raises an interrupt line which is connected
both to the FC and CUTIE, allowing autonomous operation of the
entire processing pipeline by directly triggering CUTIE’s inference
without redundant data transfers or other intervention by the FC



4.5. SOC ARCHITECTURE: KRAKEN 75

core. After CUTIE has finished running the TNN on the input data,
it raises an interrupt line and the FC can process and interpret the
network’s output.

4.5.2 Mapping TNNs on Kraken
The two processing domains we target for the deployment of our
networks are the PULP cluster and CUTIE. In both cases, networks
are executed sequentially in a layer-by-layer fashion. To efficiently
use the cluster’s computational resources, the data on which the cores
operate must be stored in the high-bandwidth L1 memory. However,
Kraken’s L1 memory is too small to hold the inputs, outputs, and
weights, necessitating tiled execution of layers: the complete input,
weight, and output buffers for a layer are held in L2 memory and
the layer is divided into smaller execution units by tiling the input,
output, and weight tensors along the input channel, output channel or
spatial dimensions. For the execution of each tile, the corresponding
inputs and weights are transferred by direct memory access (DMA)
from L2 to L1 memory and the cluster computes the partial output,
which is then transferred back to L2. Double buffering is used to hide
the latency of the DMA transfers.

In contrast, CUTIE specializes in efficient processing of TNNs
by implementing dedicated activation and weight memories, which
offer sufficient memory to avoid tiling of the network. In order to
maximize energy efficiency of the system, inferences are executed on
the accelerator in a self-contained fashion. To prepare for network
execution, weights are written to CUTIE’s internal weight memory and
parameters for each layer (e.g., kernel size, input size, stride, etc.) are
configured, both via CUTIE’s external data interface. A ternary input
tensor can then be written to CUTIE’s activation memory. Inference
is triggered by writing to a configuration register or if CUTIE’s start
interrupt line is raised. CUTIE executes networks autonomously on its
internal memories and raises an interrupt when inference has concluded,
allowing the host system to read and interpret the results.
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Parameter Value
Epochs 50
Batch Size 128
Opt. Adam
LR0 0.01
LR decr. a Cosine Annealing [163]
EQ,W t/EQ,Act

b 0/8
Act. clip init. c Const. 6.0
a We perform one cycle of cosine annealing over 50 epochs.
b Activations and weights are quantized starting from the specified epoch
c Const. x: clipping bounds initialized to x

Table 4.3
Hyperparameters for QAT with TQT

4.6 Results
In this section, we present the results of our algorithmic evaluations as
well as power measurements conducted on the Kraken system. First,
we show the impact of data preparation, architectural, and training
parameters on the network’s classification accuracy. Then, we show
power consumption and latency measurements for networks mapped
both to CUTIE and to Kraken’s PULP cluster.

4.6.1 Network Design, Data Preparation and QAT
Algorithms

We evaluate the impact of network design, training, and data
preparation parameters on statistical accuracy from multiple aspects.
The hyperparameters for QAT with TQT are shown in Table 4.3, the
training schedule for QAT with INQ is shown in Figure 4.4.

Receptive Time Interval tp

The receptive time interval tp is tied to the network’s reaction time
to changes in the input: For larger tp, it will take longer for the new
inputs to propagate through the network and saturate the TCN’s input
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Figure 4.4 – Quantization and learning rate schedules used to ternarize full-
precision networks with the INQ algorithm. The left y-axis measures the
learning rate, the right y-axis measures the fraction of weights quantized.
Hyperparameters not shown in this plot are identical to those used for
QAT with TQT.

window. To minimize the system’s reaction time, it is thus desirable
to keep tp as short as possible. However, a very short tp limits the
temporal context of the network’s input, which may negatively impact
classification accuracy. In this context, we consider a configuration
Pareto-optimal if there is no network that achieves higher accuracy
with a shorter tp, and the set of Pareto-optimal networks forms a Pareto
front. As described in Section 4.4.5, tp is influenced both by network
design (Cin, NT CN ) and data preparation parameters (swin, FPS).
Setting Nch = 96, we trained 47 networks with parameter combinations
resulting in tp ranging from 42 ms to 1433 ms. We trained full-precision
networks on the dataset split used by most previous works (users 1-23
in the training set and users 24-29 as the validation set). Of the full-
precision networks forming the Pareto front, we also trained ternarized
versions using the TQT algorithm and ReLU activations using 4-fold
cross-validation (CV). The results are shown in Figure 4.5 for both
the standard dataset split and with 4-fold CV, selecting different users
as the validation set. From Figure 4.5, we can observe multiple points
of interest. First, at tp = 300 ms, a ternarized network already reaches
96.86 % validation accuracy on the standard dataset split, only 0.74
percentage points below the maximum observed accuracy of 97.7 %.
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Figure 4.5 – Validation accuracy vs. tp for various network architecture and
dataset generation parametrizations. Data points connected by lines form
the Pareto front of the respective experiments.

The accuracy drop from ternarization is below 1.5 percentage points
in all evaluated networks, with an average drop of 0.6 percentage
points. Quantization even results in increased accuracy in some cases,
confirming that the problem is well-suited to be solved by TNNs. Lastly,
the average statistical accuracy when using 4-fold CV is lower by 1.55
percentage points than with the standard dataset split, indicating
that the standard split is easier, with the training set representing
the validation set accurately.

Network Design, Dataset Generation and QAT Algorithms

As a fully exhaustive network design, training, and dataset generation
parameter search would be infeasible, we present ablation results over
those parameters and design choices we found to have the largest
impact on statistical accuracy. Figure 4.6 shows the impact of varying
FPS while maintaining tp = 900 ms by changing Cin. We observed
that increasing framerates significantly improves classification accuracy
only up to 60 FPS, after which it stagnates between 97.3% and 97.9%.
Next, we sought to determine the impact of the network’s TCN stage
on statistical accuracy by training two of the Pareto-optimal networks
shown in Figure 4.5 (tp = 300 ms and tp = 900 ms) without the
TCN. Instead, the NT CN outputs of the CNN are fed directly into a
linear classifier layer. Table 4.4 shows that the inclusion of the TCN
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stage improves classification accuracy by 1.5 and 1.4 percentage points
respectively. Finally, we evaluated the impact of the choice of QAT
algorithm and activation function on accuracy. As Table 4.4 shows,
the combination of ReLU activations and TQT yields the highest
classification accuracy. Furthermore, ReLU activations and TQT
outperform HtanH and INQ individually. To determine the impact
of the number of quantization levels on accuracy, we also trained
BNNs with equivalent architectures using ReLU activations and the
TQT algorithm. Since our DVS event frame representation is ternary,
the first layer of each BNN processes ternary inputs but uses binary
weights. As Table 4.4 shows, these networks still perform well but
achieve lower statistical accuracies by 1.0 and 0.7 percentage points
than their ternary counterparts.

4.6.2 End-to-End Gesture Recognition on the
Kraken SoC

We evaluated the real-world energy consumption of our processing
pipeline on the Kraken SoC with the four network parametrizations
shown in Table 4.6. On both CUTIE and the PULP cluster, we run
inference under realistic operating conditions by matching the inference
rates to the evaluated networks’ training and accounting for the power
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Net (tp) nlvls Act. QAT TCN? Acc. Quant. (FP)

Net 1
(300 ms)

3 ReLU TQT ✗ 95.3 % (96.9 %)
3 ReLU TQT ✓ 96.8% (97.3%)
3 ReLU INQ ✓ 93.9% (97.3%)
3 HtanH TQT ✓ 95.5% (95.5%)
3 HtanH INQ ✓ 93.8% (95.5%)
2 ReLU TQT ✓ 95.8 % (97.3 %)

Net 4
(900 ms)

3 ReLU TQT ✗ 96.3% (96.9%)
3 ReLU TQT ✓ 97.7% (97.5%)
3 ReLU INQ ✓ 97.2% (97.5%)
3 HtanH TQT ✓ 96.4% (96.1%)
3 HtanH INQ ✓ 95.5% (96.1%)
2 ReLU TQT ✓ 97.0 % (97.5 %)

Table 4.4
Impact of QAT algorithm, quantization levels and the TCN stage
on classification accuracy. Classification accuracy is specified
for ternarized networks trained on the standard dataset split
with full-precision accuracy in parentheses. nlvls denotes the

number of quantization levels, with 2 yielding a BNN and 3 a TNN.
For the full parametrization of the networks, see Table 4.6.

consumption of idle domains. Our results show that the CUTIE-based
implementation of our TCN network requires only 7 µJ, 58.5 × less
than a comparable implementation on the state-of-the-art RISC-V
cluster using efficient, specialized ISA extensions.

Experimental Setup

To map the network to the PULP cluster, we use DORY [105], an open-
source DNN mapping utility targeting PULP systems, to generate test
applications. The network layers are mapped to 2-bit kernels from the
PULP-NN library [164] which take advantage of the XpulpNN ISA
extension. As the DVSI’s operation does not result in a measurable
increase in power consumption, our test applications store input
samples in L2 memory. An on-chip timer generates interrupts to
the FC at the rate appropriate for each tested network, upon which
the FC triggers inference either on the cluster or on CUTIE. As CUTIE
operates on data from its internal activation memory, the FC transfers
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FC Cluster CUTIE
fclk (MHz) 40 115 15
VDD (V) 0.55 0.55 0.5
Pidle (mW) 2.0 1.6 2.7
Pinf (mW) 2.0 21.1 5.3
tinf (ms) N/A 17.8 0.9

Table 4.5
Operating conditions for power measurements and power

consumption of the different power domains on the Kraken SoC

input activations before triggering the computation, which is slower
than direct transfer by the DVSI and results in pessimistic latency
and energy estimations. Table 4.5 details the operating conditions
for our experiments, the power consumption of each domain during
each phase of inference, and the inference latency tinf . While the
tested networks differ in the values of both NT CN and Cin, this has
no measurable impact on inference latency. Due to CUTIE’s fully
unrolled architecture, the number of input channels does not influence
latency. For cluster networks, the number of input channels must be
padded to a multiple of 16 to comply with the constraints of XpulpNN
instructions. The differences in computation load caused by varying
NT CN are so small as to be unmeasurable. During idle phases, the
processing units (PULP cluster or CUTIE) are clock-gated, but not
power-gated. We also correct our power numbers for the leakage
current drawn by oversized power gates for the accelerators in our
design by measuring the leakage current with both accelerators power-
gated and subtracting it from our current measurements. This makes
our reported results equivalent to those of a design without any power-
gating features. As the FC, cluster and accelerator domains have
separate supply rails, unused domains can be turned off by switching
off their external power supplies and we calculate the total power
consumption as the summed power draw of the used domains.
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Net tp (ms) FPS Cin NTCN inf./s Acc. Einf (mJ) Pcont (mW) Ewin (mJ)
Cluster CUTIE Cluster CUTIE Cluster CUTIE

1 333 60 4 5 15 96.3%

0.41 0.007

8.9 4.68 2.74 1.26
2 300 120 4 9 30 96.8% 14.1 4.74 4.08 1.27
3 625 120 15 5 8 96.9% 6.4 4.68 3.59 2.35
4 900 60 6 9 10 97.7% 7.1 4.69 6.02 3.75

Table 4.6
Key power and energy figures for 4 Pareto-optimal networks from Figure 4.5. The networks were

mapped to both the PULP cluster and CUTIIE.
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Power Measurements

Table 4.6 reports the key figures of merit of the four networks we
evaluated on the Kraken SoC. The inference energy Einf is given as
the total energy consumed by the FC and CUTIE or the PULP cluster
for a single prediction update, i.e., a single inference of the complete
network. A complete inference on the PULP cluster takes 17.8 ms and
consumes less than 500 µJ. Running the network on CUTIE reduces
these figures further to 0.9 ms and 7 µJ, including the inefficient transfer
of input data by the FC. This represents an improvement of 5× over the
closest result reported in literature while accounting for the complete
power consumption of the processing system including data transfer,
rather than only the processing cores. Compared to previous end-
to-end systems, our approach achieves a 67× lower inference energy.
During inference, the operational efficiency of the system is 363 GOp/J
when mapping the network to the cluster and 21 TOp/J for CUTIE-
mapped networks. Figure 4.7 shows the power traces from repeated
inferences on two of the evaluated networks.

To evaluate the efficiency of our processing pipeline in real-world
applications, we consider two scenarios. The first is that of always-
on inference at the rate for which the network was trained (inf./s
in Table 4.6). In this scenario, the metric of interest is Pcont, the
processing system’s average power consumption while performing
continuous inference. Table 4.6 shows that the cluster and CUTIE
implementations behave very differently in this respect: While Pcont

strongly correlates with the inference rate for cluster-mapped networks,
it is dominated by the idle power consumption for CUTIE-mapped
networks. With higher inference rates, the efficiency advantage of
CUTIE-mapped networks grows. While gesture recognition does not
benefit from high inference rates, CUTIE’s extremely high throughput
makes it optimal for low-latency applications (e.g., perception pipelines
for fast-flying nano-drones). Higher inference rates would allow it to
amortize its leakage power consumption by increasing the utilization
of its extremely efficient datapath.

The second scenario is event-triggered inference: The system is put
to sleep until it is awakened by, e.g., increased event activity (which
can be detected by Kraken’s DVS peripheral). Upon awakening, a
complete window of NT CN inferences must be completed to produce a
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Figure 4.7 – Power traces for networks 2 and 3. Measurements for CUTIE
implementations are shown in the first and third rows, cluster-mapped
implementations are shown in the second and fourth rows. The differences
in peak power for different inferences on CUTIE are a result of our power
analyzer’s temporal resolution, which is lower than the duration of the
shortest current spikes.
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Figure 4.8 – Breakdown of Ewin into contributions from FC, idle and
inference energies. CUTIE-mapped nets exhibit very low inference energy
with larger contributions from idle time, while cluster-mapped networks
see large contributions from inference.

reliable prediction. We calculate the energy required to compute this
prediction as Ewin = NT CN Einf + (NT CN − 1)( 1

(inf/s) − tinf )×Pidle.
Consequently, shorter tp reduces the idle energy contribution and
lower inference rates reduce the computation energy contribution. As
with Pcont, idle energy dominates CUTIE networks’ Ewin and CUTIE
performs best on networks with short tp, while cluster networks’ energy
consumption rises sharply with NT CN at similar tp, as seen on networks
1 and 2. Figure 4.8 visualizes the breakdown of Ewin for the four
evaluated nets mapped to CUTIE and the PULP cluster.

To determine the individual contributions of the components of our
processing pipeline to the overall energy efficiency, we implemented the
event-frame conversion in software. The inference energy breakdown
of Network 1 mapped to the cluster and to CUTIE, using the software
frame buffer and the hardware buffer in the DVSI peripheral, is shown
in Figure 4.9. CUTIE’s inference energy is two orders of magnitude
lower and the total inference energy is reduced again by almost 2×
by using the hardware frame buffer.

4.7 Conclusion
In this chapter, we have presented an end-to-end pipeline for frame-
based gesture recognition from DVS camera data, implemented on
the Kraken SoC. A dedicated on-chip peripheral aggregates the event
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Figure 4.9 – Breakdown of inference energy for network 1 mapped to the
PULP cluster as well as to CUTIE, using both a software-based event-to-
frame mapping and the hardware frame buffer in the DVS peripheral. Note
the logarithmic y-axis, causing the equal energy consumption of CUTIE
inference to appear different visually.

stream from the DVS camera into ternary event frames. We classify the
event frames with a fully ternarized hybrid TCN mapped either to the
CUTIE accelerator or to the 8-core PULP cluster. To the best of our
knowledge, our network sets a new state of the art for embedded
implementations with 97.7 % validation accuracy on the DVS128
gesture dataset, and the most accurate network we trained achieves
97.9 %. On the CUTIE accelerator, we achieve a classification energy of
7 µJ, 67× lower than the previous state of the art for end-to-end gesture
recognition at an inference latency of 0.9 ms. We further show that our
approach can perform competitively even on software-programmable
RISC-V cores with ISA extensions for sub-byte arithmetic. The
cluster implementation exhibits an inference energy of 0.41 mJ at
a latency of 17.8 ms for the same network running on Kraken’s PULP
cluster. With a continuous classification power consumption of 4.7 mW
(CUTIE)/6.4 mW (cluster) for all involved processing components at
96.6 % classification accuracy, our implementation highlights the added
value of complete integration of sensor interface, preprocessing and
efficient compute units. Kraken’s programmability and flexibility allow
for the implementation of a variety of processing scenarios (e.g., split
execution of mixed-precision networks between CUTIE and the PULP
cluster) to be explored in the future.



Chapter 5

XpulpTNN: Efficient Ternary
Neural Network Inference on
RISC-V-Based Edge Systems

5.1 Introduction
In Chapter 4, we have demonstrated that aggressively quantized
neural networks, in particular TNNs, can enable ultra-low-power
end-to-end applications on the edge. By mapping networks to a
dedicated hardware accelerator such as CUTIE, throughput, latency
and efficiency can be optimized beyond what is possible on even the
most efficient general-purpose processing cores. The specificity of such
accelerators to a single type of computation allow them to eliminate
energy overheads and drives their efficiency potential. At the same time,
the inclusion of such an accelerator in a system represents a substantial
commitment of silicon area and implementation effort. For example,
the CUTIE accelerator targeted in Chapter 4 occupies around 1/3 of
the silicon area of the complete Kraken system [160]. As affordability
is a core requirement for many edge systems, such overheads may not

87
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be acceptable for system designers. nIn such cases, implementing
hardware support for low- and mixed-precision arithmetic within
general-purpose processing cores is an attractive alternative to single-
purpose accelerators: while the operational efficiency is generally lower,
the implementation overhead is greatly decreased, and the efficiency
gains over the unmodified system are substantial. Consequently, several
ISA extensions for low- and mixed precision integer arithmetic have
been proposed and used to optimize the accuracy-energy trade-off. In
Chapter 4, we used the XpulpTNN extension to the RISC-V ISA to
execute the proposed TNN as a 2-bit network. While this approach
already achieves state-of-the-art inference efficiency, it is not tailored
to the unique properties of TNNs and provides no advantage over
regular 2-bit QNNs.

To overcome this limitation, we aim at achieving efficient TNN
inference on RISC-V processing cores with minimal hardware overhead,
enabled by a lightweight extension of the RISC-V ISA. Specifically,
we present the following contributions in this chapter:

• We propose XpulpTNN, a lightweight extension to the RISC-
V ISA designed to enable efficient inference of TNNs. We
further enable the development of end-to-end applications using
XpulpTNN with an end-to-end software stack consisting of GCC
compiler support, an optimized kernel library and an automated
deployment flow.

• We implement the proposed instructions in an open-source RISC-
V core targeted at energy-efficient edge AI applications and
construct an 8-core compute cluster based on the modified
architecture. We show that our modifications result in a
negligible area overhead of < 1 % compared to the baseline
cluster with a negligible impact on the power consumption of
8-bit applications.

• We conduct detailed performance and energy efficiency eval-
uations of the XpulpTNN hardware and software stack. We
show that our kernels increase throughput by 67 % on ternary
convolutions compared to state-of-the-art 2-bit kernels. In post-
layout simulations of the XpulpTNN system, we demonstrate a
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marginal increase in power consumption of only 5.2 %, leading
to an energy efficiency gain of 57 %.

• We evaluate XpulpTNN’s impact on inference energy efficiency
on two end-to-end applications. In image classification on the
CIFAR-10 dataset, we demonstrate that XpulpTNN enables
the deployment of TNNs that achieve up to 1.6 pp. higher
classification accuracy at equal inference latency compared
to 2-bit QNNs. In an 11-class gesture recognition task, we
demonstrate a reduction of inference energy by 33 % at a
negligible accuracy drop when comparing TNN inference using
XpulpTNN to an optimized 2-bit QNN running on an equivalent
system without our extension.

5.2 Background

5.2.1 Ternary Neural Networks
Ternary neural networks are QNNs where all activations and weights
take values in the set T ≜ {−1, 0, 1}. A typical convolutional
TNN is composed of a series of layer stacks, each consisting of a
convolutional layer followed by an element-wise non-linear activation,
with an optional pooling layer between convolution and activation
to decrease the spatial dimension of the output feature maps. The
activation layer maps the convolution/pooling layer’s integer output
Z ∈ ZNo×H×W to ternary activations Y ∈ T NO×H×W by the channel-
wise thresholding function σ(·):

yi,x,y= σ (zi,x,y)=


−1, zi,x,y < tlo

i

0, tlo
i ≤ zi,x,y < thi

i

1, zi,x,y ≥ thi
i ,

(5.1)

where tlo, thi ∈ ZNo are vectors of lower and upper integer thresholds,
respectively.

At first glance, TNNs are at a disadvantage in terms of network
size and efficiency when compared to two-bit QNNs and BNNs:
Each ternary value requires two bits of storage but only encodes
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Figure 5.1 – Comparison of accuracy vs normalized load Lnorm of ResNet8
and ResNet20, quantized to different precisions, on CIFAR10. Networks
were trained with the TQT algorithm [59], with the first and last layers
quantized to 8-bit precision. TNNs are highlighted in red.

log2 3 ≈ 1.585 bits of information. However, by assigning each
possible sequence of 5 ternary values a distinct 8-bit string, the
storage space required is reduced to 1.6 bit per value, close to the
theoretical optimum. In the context of dedicated accelerators, TNNs
represent a particularly attractive operating point. In [14], the authors
show that a well-designed ternary accelerator can achieve better
inference efficiency than an equivalent BNN accelerator on the same
network topology. Ternary compression partially amortizes the memory
overhead over a binary design, and the addition of a zero value allows
for sparsity, which directly translates to reduced switching activity in
an unrolled datapath, improving energy efficiency. At the same time,
classification accuracy is improved over BNNs due to the increased
representational capacity of TNNs. In contrast to application-specific
accelerators, ISA-based processing cores operate on fixed-width data
words. This constraint on datapath design means that the 25 % increase
in data density from ternary compression is crucial to maximizing
the achievable performance when processing ternary data. In this
paper, we choose the encoding proposed in [165] for its low-complexity
hardware implementation.
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Comparison to Other QNNs To achieve an optimal accuracy-
efficiency trade-off for a given application, a QNN must be chosen
among all model architectures and quantization policies supported by
the target hardware architecture; Figure 5.1 illustrates such a trade-off
curve for two lightweight networks, ResNet8 (from the MLPerf Tiny
Benchmark [166]) and ResNet20, on the CIFAR-10 [6] dataset. We
define the normalized load Lnorm posed by a q-bit QNN as the number
of MAC operations multiplied by q, assuming SIMD execution and
inverse linear scaling of throughput with bitwidth. We set q = 1.6
for TNNs, assuming the use of the compression scheme described
earlier. Figure 5.1 exemplifies that smaller networks like ResNet8,
quantized to higher bit widths, may dominate larger BNNs in terms
of accuracy and inference latency. In contrast, the ResNet20 TNN
extends the Pareto front, offering an attractive operating point and
demonstrating the advantages of TNNs.

5.2.2 QNN Inference on MCU-Class Platforms
To reap QNNs’ efficiency potential, an inference platform must
provide hardware support for their execution. Application-specific
accelerators achieve the highest efficiency: BNN [102], [167] and
TNN [14], [168] accelerators report efficiencies of up to 1 POp/J.
Many accelerator designs for BNNs, TNNs and other low-bitwidth
QNNs have been proposed, but there are fewer documented end-to-
end applications deployed to such accelerators embedded in MCU-
class systems. Examples include face recognition [169] and gesture
recognition [9]. While they report superior energy efficiency figures,
the accelerators implemented in these systems occupy a significant
proportion of the total silicon area. Such a commitment of silicon
resources may not be affordable for low-cost edge MCUs – indeed,
most commercial edge systems only have ISA-based reduced instruction
set computer (RISC) processing cores. Recent work has shown that
BNNs can be efficiently executed with XOR and population count
instructions [68], found in most ISAs targeting embedded and edge
systems. Multiple authors have adopted this approach to implement
BNN kernel libraries [92], [93] and applications such as BNN-based
keyword spotting [94] on off-the-shelf MCUs without BNN-specific
hardware.
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In contrast to BNNs, the efficient execution of QNNs in general
and TNNs in particular on ISA-based processing cores poses significant
challenges. Mainstream ISAs have limited support for arithmetic on
sub-word data types, severely limiting the potential efficiency gains,
as data packing and unpacking has to be implemented in software.
In commercial MCUs based on the ARMv8.1 ISA, native support for
sub-word arithmetic has been addressed for 8-bit and 16-bit operands
by packed-SIMD MAC instructions [55].

While 8-bit QNNs achieve full-precision equivalent accuracy with
the use of quantization-aware training algorithms [5], [69], sub-byte
and mixed-precision quantization enable even higher efficiency and
a finer-grained trade-off between inference energy and statistical
accuracy. Multiple works have proposed extensions to the open RISC-
V ISA targeted at QNN inference. Quark [99] and BISDU [170]
propose extensions accelerating the bit-serial computation of sub-byte
arithmetic operations, targeting minimum silicon area overhead. As we
aim for maximum throughput at the best possible efficiency, we base
the present work on XpulpNN [97]. XpulpNN extends the RISC-V ISA
by adding support for 4-bit and 2-bit data types through packed-SIMD
instructions. Furthermore, it mitigates the von Neumann bottleneck
by fusing computation and data access into MAC-and-load (M&L)
operations. Input activations and weights are read from an additional 2-
port register file (RF), the NN-RF. Combining a SIMD MAC operation
with the loading of the next activation or weight word and the update
of the corresponding pointer enables optimized kernels to eliminate
most explicit loads and pointer arithmetic, with the utilization of
arithmetic units reaching up to 94 %. The XpulpNN ISA extension
further encompasses the XpulpV2 ISA, which implements instructions
to decrease memory management and control flow overhead, such as
post-increment load and stores and hardware loops, further increasing
QNN inference efficiency.
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5.3 The RISC-V XpulpTNN ISA exten-
sion

In the following, we describe the XpulpTNN ISA extension, its
integration into an 8-core cluster of high-performance RISC-V cores,
and the software infrastructure to enable its use in end-to-end edge
AI applications.

5.3.1 Instructions

(a)

(b)

Figure 5.2 – Schematic of the hardware for the threshold-compress (thrc,
shown in a) and compressed MAC (smlsdotsp.t, sdotsp.t, shown in
b) instructions.

XpulpTNN extends the 32-bit RISC-V ISA. It is a very compact
extension, consisting of three types of instructions which cover all
operations required to execute the different layers of a TNN. All
XpulpTNN instructions consume or produce ternary data elements,
using the compression scheme proposed in [165] to represent 5
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31 2524 2019 1514 1211 7 6 0

1111100 IMM rs1 100 rd 1110111 smlsdotsp.t

1011101 rs2 rs1 100 rd 1010111 sdotsp.t

1001101 rs1 rs1 100 rd 1010111 dotsp.t

0010001 rs2 rs1 100 rd 1010111 min.t

0011001 rs2 rs1 100 rd 1010111 max.t

0000100 rs2 rs1 110 rd 0110011 thrc

(a) Encoding of XpulpTNN instructions
31 2928 2625 1615 8 7 0

c 0 xuncompr 0 xcompr rd

tlo thi rs1

(b) Encoding of thrc status (rd) and threshold (rs1) registers

Figure 5.3 – Encoding of instructions and input/output registers of XpulpTNN
instructions

ternary elements (trits) with one byte or 20 trits with a 32-bit
word. TNN layers can be mapped to kernels using three types
of XpulpTNN instructions: multiply-add (MADD) instructions,
element-wise comparison instructions and the threshold-and-compress
instruction. All instructions are only implemented for signed ternary
elements, as networks with unsigned activations can be converted
to signed as shown in [9]. Figure 5.3a shows the encoding of the
instructions introduced by XpulpTNN.

MADD Instructions The dot products in linear operators such as
convolutions are implemented with MADD instructions, which perform
20-way packed-SIMD MAC operations on two input words, producing a
32-bit integer result. XpulpTNN implements three instructions of this
class, all using the same hardware unit to perform the multiply-add
operation, shown in Figure 5.2b. dotsp.t performs a pure MADD of
rs1 and rs2 (operands A and B in Figure 5.2b), storing the result in rd.
sdotsp.t is the analogous MAC operation, adding the MADD result
to the contents of rd. mlsdotsp.t is a MAC-and-load instruction
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extending XpulpNN. The MADD input operands are taken from the
NN-RF, and rd is used as an accumulator. Its operation and encoding is
implemented analogously to the 2-bit, 4-bit and 8-bit M&L instructions
implemented by XpulpNN, which are described in detail in [97].

Element-wise Comparison Instructions Element-wise com-
parison instructions take two compressed 20-element input words,
comparing each element between both and storing a compressed word
of the smaller (min.t) or larger (max.t) element at each position
into the destination register. The max.t instruction can be used to
implement max-pooling layers efficiently.

Threshold-and-Compress Instruction Activation layers in TNNs
are implemented with thresholding operations, which can be mapped
to XpulpTNN’s threshold-and-compress instruction (thrc). It takes
three registers as inputs: rs1 contains a 32-bit integer number, which
is compared with two 16-bit integer thresholds stored in rs2 to produce
a ternary result. As the ternary compression encodes five trits into an
8-bit value and thresholding only produces one trit, the instruction
is designed in a stateful manner. rd serves both as an input and
output register, holding the instruction’s state. The state consists
of 3 items: 10 bits containing up to 5 packed, uncompressed 2-bit
trits, 8 bits containing the compressed representation of those trits,
and a 3-bit counter indicating how many trits have been processed
already. When the instruction is executed at a counter value of c, the
thresholding result is extended to a 10-bit value and left-shifted by 2c
bits. The shifted value is then merged with the previous uncompressed
values by a bitwise OR operation, and the result is fed into a ternary
compression unit. The compressed byte is stored in the updated status
register, along with the next counter value and the uncompressed
vector, which is reset to all-zeros after five elements have been processed.
Figure 5.2a shows the hardware implementation of the threshold-and-
compress instruction.

5.3.2 The XpulpTNN System
To evaluate the performance and efficiency of XpulpTNN, we integrated
the ISA extension into the open-source RI5CY-NN core, which
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implements the base RV32IMC ISA and the XpulpV2 [96] and
XpulpNN [97] extensions. This core represents the state of the art
for efficient QNN inference [171], [172]. It possesses the hardware
infrastructure to support M&L instructions, making it both a
highly optimized comparison baseline and an ideal starting point for
implementing the proposed extensions. We use the XpulpTNN-enabled
RI5CY core to assemble a fully-featured, high-performance, low-power
SoC on which we perform our evaluations. The system has two main
processing domains: the SoC domain and the cluster domain.

A RI5CY core manages system operation in the SoC domain,
called the fabric controller (FC). The system’s main program and data
memory, termed L2 memory, is also located in the SoC domain and
consists of 1 MiB of SRAM, divided into eight banks. The system’s
main interconnect links the FC, on-chip peripherals, L2 memory, and
the cluster domain.

Compute-intensive parallelizable tasks are offloaded to the cluster
domain. It contains a PULP cluster of 8 RI5CY cores with 128 KiB
of L1 scratchpad TCDM in 16 banks, connected with a single-cycle
logarithmic interconnect to minimize data access latency. Cluster
cores execute program code stored in L2 memory, which is located
in a different clock domain and accessible via a 64-bit AXI4 port
through a clock domain crossing (CDC). A shared instruction cache
of 4 KiB minimizes stalls caused by instruction fetching through this
CDC. The cluster is programmed in the single program, multiple data
(SPMD) model, i.e., all cores execute the same program, using the
core index to control program flow.

5.3.3 XpulpTNN Software Support
To make the deployment of TNNs to XpulpTNN-enabled RISC-V
systems accessible to application developers, we have implemented an
end-to-end deployment pipeline. It consists of compiler support for
the new instructions, a library of performance-optimized, parallelized
kernels leveraging XpulpTNN, and a mapping tool that takes an
ONNX representation of a TNN and generates a C application which
executes the network.
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GCC Compiler Support All XpulpTNN instructions can be
inferred from pure C code by calling built-in functions. This removes
the need for inline assembly code and enables GCC’s full range of
optimizations during the compilation process. The modified version
of GCC supporting XpulpTNN is available open source1.

Kernel Support We have implemented a set of optimized ternary
layer kernels leveraging XpulpTNN. They implement four layers, all
operating on compressed ternary inputs: 2-dimensional convolutions,
1-dimensional dilated convolutions, max-pooling, and fully-connected
layers. The fully connected kernel is intended for classifier layers
that compute class scores and produces integer outputs, while the
other kernels use the thrc instruction to produce compressed ternary
outputs. The number of ternary input and output channels is restricted
to multiples of 5, as the ternary compression encodes blocks of 5
elements in one byte.

As convolutional layers constitute most of the workload in DNNs,
a well-optimized convolution kernel is crucial to end-to-end efficiency.
Our ternary convolutional kernels take inspiration from the open-
source PULP-NN library [164] and decompose convolutions into a data
reordering step (im2col) and a matrix multiplication step (matmul).
The matrix multiplication kernels use the smlsdotsp M&L instructions
to perform the dot product operations, and the integer results must
then be mapped back to quantized values in an additional step
merging activation, batch normalization, and requantization [91].
The instructions introduced by XpulpTNN increase efficiency by
optimizing both steps. The 25 % increase in data density afforded by
the ternary compression directly translates to a corresponding increase
of throughput in the hot loop that calculates the integer dot products.
In integer-bitwidth QNNs, the activation-requantization step consists
of an affine transformation followed by an arithmetic shift and data
packing, taking up a significant share of the total kernel execution
time. XpulpTNN’s thrc instruction performs the complete process
in a single instruction, minimizing this overhead. Combined, these
improvements lead to an increase in throughput over PULP-NN’s 2-bit
kernels by much more than the 25 % that the increased data density

1https://github.com/da-gazzi/pulp-tnn-gnu-toolchain
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provides, as detailed in Section 5.4.3.

5.3.4 Deployment Pipeline
For the seamless deployment of full networks to XpulpTNN-enabled
systems, we have integrated support for TNNs and our XpulpTNN
kernels into the open-source DORY [105] tool. DORY takes precision-
annotated ONNX graphs as input and produces compilable C
applications executes the network on the target platform. Multi-level
memory hierarchies are supported by tiling layers that do not fully fit
into the scratchpad memory. DORY uses integer linear programming
(ILP) to optimize the tiling policy and inserts the appropriate DMA
driver calls for data transfer between the different levels of the memory
hierarchy.

5.4 Results and Discussion
In this section, we evaluate the efficiency and performance of
XpulpTNN. We first present hardware results collected on a full
backend layout of the XpulpTNN-enabled PULP cluster. This
implementation is used to evaluate the silicon area overhead and
compare power consumption in post-layout simulations to the baseline
XpulpNN cluster. We then evaluate the performance of the ternary
kernels on a comprehensive benchmark suite and compare the efficiency
to that of 2-bit kernels. Finally, we compare TNNs mapped to the
XpulpTNN system with 2-bit networks executed on the baseline system
on two end-to-end benchmark applications to evaluate XpulpTNN’s
impact on the trade-off between accuracy and inference latency and
energy.

5.4.1 Experimental Setup
For our hardware evaluations, we synthesized the 8-core PULP cluster
described in Section 5.3.2 in the GlobalFoundries 22 nm FDX process,
using libraries for the typical corner with VDD = 0.8 V. We used
Synopsys Design Compiler 2019.3 and constrained the core clock to
a period tclk = 1.5 ns. We used the synthesized netlist to perform
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XPulpNN XpulpTNN (this work)
C

or
e

Acore
a 163.5 kGE 168.4 kGE (+3.0 %)

PMM,8b
b 4.1 mW 4.2 mW(+2.4 %

PConv,LP
c 4.0 mW 4.3 mW (+7.8 %)

C
lu

st
er

Aclus
a 3.29 MGE 3.32 MGE (+0.9 %)

Density 70.2 % 71.0 % (+0.8 pp.)
fclk

b 500 MHz (376 MHz) 500 MHz (389 MHz)
PMM,8b

c 58.1 mW 58.9 mW(+1.4 %)
PConv,LP

c 57.7 mW 60.7 mW (+5.2 %)
EffConv,LP

c 383.9 GOp/J 603.3 GOp/J (+ 57.1 % )

a Obtained from synthesized netlists. One gate equivalent (GE) in 22 nm
FDX is 0.199 µm2, the size of a NAND2 gate.

b The first number is obtained at HV operating conditions
(VDD = 0.72 V, T = 25 ◦C), the number in parentheses is obtained
at LV operating conditions (VDD = 0.65 V, T = 25 ◦C).

c Evaluated at LV operating conditions.

Table 5.1
Hardware figures of merit for the XpulpTNN system and the

baseline implementing only XpulpNN.

a full backend layout using Cadence Innovus 21.13. We optimize
for two supply voltages, VDD = 0.72 V (HV, max. throughput) and
VDD = 0.65 V (LV, max. efficiency). We target a system clock
frequency of fclk = 500 MHz; the achieved frequencies are listed in
Table 5.1. The synthesis and backend layout flow is identical for both
cluster versions. Power results were generated by simulating the full
system using the post-layout netlists of the two cluster implementations
to collect value change dump (VCD) files, which were used to estimate
the power consumption in Innovus. We ran performance evaluations
on an FPGA port of the complete system, generated from the same
SystemVerilog RTL code as the physical implementation.

5.4.2 Hardware Impact
To evaluate the implementation overhead of our extension, we compare
the silicon area and timing of the 8-core cluster implementing
XpulpTNN to an identically parametrized baseline cluster imple-
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menting only the XpulpV2 and XpulpNN extensions. This baseline
represents the state of the art in AI-targeted, RISC-V-based MCU-
class systems. The overhead we report thus reflects the cost of adding
TNN optimizations to a system already intended for inference of QNNs.
Table 5.1 reports the standard cell areas A{core,clus} after synthesis, the
achieved operating frequency, and the power consumption. Pconv,LP

denotes power consumption of 2-bit convolution on the baseline system
and ternary convolution on the XpulpTNN system. PMM,8b is the
power consumption during 8-bit matrix multiplication, an indicator
of the impact of our modifications on cluster power consumption for
programs that do not use the new instructions. We report these figures
both for a single core and the complete cluster. The area overhead of
XpulpTNN on a single core is already low at 3 %. At 0.9 %, the cluster-
level overhead is even lower, as our modifications do not affect the
other components of the cluster, such as L1 memory and instruction
cache. Timing is not impacted since the critical path in both cluster
versions is in the FPU. The negligible area increase and non-existent
timing impact mean that the addition of XpulpTNN essentially incurs
zero implementation overhead when placing and routing the cluster.
This assessment is confirmed by the negligible post-route standard
cell density increase of 0.8 percentage points.

5.4.3 Kernel Performance and Efficiency
Figure 5.4 shows the throughput of ternary (using our kernels, opti-
mized for XpulpTNN) and 2-bit (using PULP-NN kernels optimized
for XpulpNN) convolutions running on eight cores. Nb is the number
of bytes required to store all N{i,o} input/output channels of a single
pixel, with Ni = No = 5Nb for ternary kernels and Ni = No = 4Nb

for 2-bit kernels. The kernel size is k × k = 3 × 3, and the input
and output feature map sizes are chosen such that inputs, outputs,
and weights fit into L1 memory. On average, ternary kernels achieve
67 % higher throughput than 2-bit kernels at equal Nb and resolution.
When restricting the comparison to layers where the channels of each
pixel fill an integer number of 32-bit words, i.e., Nb = 4k, k ∈ Z,
the ternary kernels exhibit 51 % higher throughput than their 2-bit
equivalents. Those layers also stand out for their considerably higher
throughput, as all dot product calculations can be performed in the
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Figure 5.4 – Throughput comparison between ternary convolution kernels
and 2-bit kernels from the PULP-NN on the 8-core PULP cluster.
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Figure 5.5 – Latency breakdown comparison between 2-bit and ternary 3× 3
convolution kernels. Latency is normalized to the 2-bit kernel’s latency
and is decomposed into im2col, hot loop (HL), requantization/thresholding
(RQ/THR) and Other components and shown for two test cases.

optimized matrix multiplication hot loop. Figure 5.5 illustrates the
nature of the speedup afforded by XpulpTNN. In test case A, all pixels
are word-aligned, and all calculations are performed in the optimized
hot loop, which accounts for most of the latency in the 2-bit kernel
together with the requantization step. The ternary kernels reduce
hot loop and requantization latency by 27 % and 55 %, respectively,
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Figure 5.6 – Latency comparison of VGG-like networks quantized to 2-bit
and ternary precision.

resulting in an overall latency reduction by 30 %. The latency from the
other contributors is roughly equal to the 2-bit kernel. In test case B,
pixels are not word-aligned. The ternary kernels’ optimized handling of
leftover calculations yields a latency reduction of 38 % after scaling the
latency to the slightly reduced number of MACs performed. Thanks
to this increased throughput and the low power consumption overhead,
ternary convolutions on an equal data volume on the XpulpTNN
system are 57 % more efficient than 2-bit convolutions on the baseline
system, placing TNNs at a very attractive trade-off point of accuracy
and energy consumption.

5.4.4 End-to-End Network Inference
To evaluate how XpulpTNN can be used in end-to-end edge applica-
tions, we consider two benchmark tasks. The first is 11-class gesture
recognition on DVS data from the DVS128 dataset [70], and the second
is image classification on the popular CIFAR-10 dataset [6]. On both
tasks, we compare optimized 2-bit QNNs and TNNs mapped to the
XpulpTNN system using our deployment pipeline.

CIFAR-10 Image Classification We evaluate the trade-off be-
tween latency and classification accuracy for 2-bit and ternary networks
on the example of a small VGG-like network architecture. The
architecture is detailed in Table 5.2. The first and last layers are
trained and executed in 8-bit precision, all other layers are in 2-bit or
ternary precision. We scale the networks by adjusting the number of



5.4. RESULTS AND DISCUSSION 103

Layer Outp. Res. Cout kconv bw
a bo

a

Input 32 × 32 3 3 × 3 – 8
C2D(S)-MP 16 × 16 32 3 × 3 8 1.6/2
C2D(S) 16 × 16 Nc 3 × 3 1.6/2 1.6/2
C2D(S)-MP 8 × 8 Nc 3 × 3 1.6/2 1.6/2
C2D(S) 8 × 8 Nc 3 × 3 1.6/2 1.6/2
C2D(S)-MP 4 × 4 Nc 3 × 3 1.6/2 8
FC 1 10 – 8 32
a Weight/output precision in bits; 1.6 denotes ternary precision

Table 5.2
Architecture of VGG-like networks used in end-to-end latency

evaluation on CIFAR-10 dataset. (C{1/2}D({S/V/C}):
1/2-dimensional convolution with same/valid/causal padding. MP:
Max-pooling layer. FC: fully-connected layer. MP layers use a
2× 2 kernel, a stride of 2 and no padding. The channel count of

convolutional layers Nc is parametrizable; we evaluate
Nc ∈ {32, 48, 64, 80, 96} (2-bit QNNs) and Nc ∈ {40, 60, 80, 100}

(TNNs).

input and output channels of all layers after the first, which is fixed
to 32 output channels. As our ternary kernels do not support this
number of input channels, the output of the first layer is zero-padded
to 40 channels for the TNNs. We use our deployment flow to map the
networks to the XpulpTNN system, using a cluster clock frequency
of 300 MHz. Figure 5.6 shows the accuracy-latency trade-off for the
4 different TNN and 5 different 2-bit QNN parametrizations. All
evaluated TNNs extend the accuracy-latency Pareto front, with the
60-channel TNN achieving a 1.6 pp. higher validation accuracy than
the 48-channel 2-bit network at a marginally lower latency.

DVS Gesture Recognition We adopt the hybrid network archi-
tecture proposed in [9], consisting of a 2-dimensional CNN followed by
a 1-dimensional TCN. The 2D CNN takes an input image of 64× 64
pixels with 4 channels, where each channel represents a DVS event
frame. DVS event frames are natively ternary, as the sensor can
report a positive/negative event (±1) or no event at all (0) during a
time window; this makes DVS data particularly suited for processing
with TNNs. The architecture of the network is detailed in Table 5.3.
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Layer Outp. Res. Cout kconv D S

2D
C

N
N

Input 64 × 64 4 – – –
C2D(S)-MP 32 × 32 Nc,1 3 × 3 1 1
C2D(S)-MP 16 × 16 80 3 × 3 1 1
C2D(S)-MP 8 × 8 80 3 × 3 1 1
C2D(S)-MP 4 × 4 80 3 × 3 1 1
C2D(V)-MP 1 × 1 80 3 × 3 1 1

1D
T

C
N C1D(C) 1 × 5 80 2 1 1

C1D(C) 1 × 5 80 2 2 2
C1D(C) 1 × 5 80 2 4 4
FC 1 × 1 11 – – –

Table 5.3
Architecture of the DVS gesture classification networks used

for evaluation. S: Stride, D: Dilation. Other notation and
parametrization as in Table 5.2.

For a fair comparison between 2-bit QNNs and TNNs, the layers of
2-bit networks must have multiples of 16 input channels, while TNN
layers should have multiples of 20 input channels, so that feature
map pixels are word-aligned and kernel performance is optimal (see
Figure 5.4). We achieve this by slightly modifying the architecture
from [9]. We change all layers but the first to have 80 input and
output channels, the smallest common multiple of 16 and 20. As the
first layer’s large input resolution incurs a high computation cost that
scales with the number of its output channels Nc,1, we set Nc,1 = 20
for the TNN, and evaluate 2 settings (Nc,1 = 16 and Nc,1 = 32, as
originally described in [9]) for the 2-bit QNN. Inference latency, energy
and validation accuracy results are shown in Table 5.4. Compared to
the large baseline 2-bit QNN, the TNN exhibits 37.4 % lower inference
latency and an estimated 33 % lower inference latency at a negligible
accuracy drop of 0.3 pp.. Compared to the reduced-size 2-bit network,
which has approximately 10 % fewer operations, the TNN’s latency
and inference energy are still lower by 13.5 % and 9 %, respectively,
while the validation accuracy is improved by 0.2 pp.
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2-bit QNN TNN
Nc,1 32 16 20
DVS128 Acc. 96.5 % 96.0 % 96.2 % (−0.3 pp.)
MACs 47.9M 33.7M 37.2M
tinf 5.7 ms 4.1 ms (−27.7 %) 3.6 ms (−37.4 %)
Θ
(MACs/Cyc.)

28.0 27.2 (−2.7 %) 34.8 (+ 24.3 %)

Einf ,cl
a 329 µJ 238 µJ (−28 %) 217 µJ (− 33 %)

a Estimated from post-layout power simulation results

Table 5.4
Comparison of end-to-end inference performance between 2-bit
and ternary networks on DVS gesture recognition networks.

5.5 Conclusion
In this chapter, we have addressed the gap between existing TNN
systems, which primarily rely on dedicated accelerators, and popular
edge computing systems, which are based on RISC cores with area-
efficient ISA extensions. Specifically, we describe the implementation
of XpulpTNN, an extension to the RISC-V ISA designed to enable the
efficient processing of TNNs, in an open-source RISC-V core targeted
at edge AI applications and assemble an 8-core compute cluster from
the extended core.

A complete implementation in an IoT-friendly GF 22 nm FD-SOI
technology shows that XpulpTNN incurs negligible area overhead of
only 3 % and 0.9 % at the core and cluster levels, respectively, with no
timing degradation. In post-layout simulations, the cluster’s power
consumption while running a ternary convolution kernel is only 5.2 %
higher than the baseline system running an equivalent 2-bit convolution,
while our optimized kernels achieve 67 % higher throughput. This
results in 57 % higher energy efficiency. In end-to-end evaluations, we
show that TNNs deployed to the XpulpTNN-enabled system offer a
competitive trade-off between inference latency/energy and accuracy,
achieving up to 1.6 pp. higher CIFAR-10 accuracy than a 2-bit QNN
at equal latency. For a gesture recognition application, XpulpTNN
enables the deployment of a TNNs that decreases inference latency
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and energy by 37 % and 33 % from a 2-bit baseline at a negligible
accuracy loss of 0.3 pp.. Overall, our results show that XpulpTNN
enables efficient TNN inference on RISC-V cores at negligible overhead
to system implementation, posing no barrier to the adoption of our
extension in edge computing systems.



Chapter 6

Mixed-Precision Networks for
End-to-End Efficiency in
Edge Applications

6.1 Motivation
As the previous two chapters have demonstrated, aggressively quantized
DNNs such as TNNs can achieve extremely low inference energies
at good statistical accuracy levels. However, extreme quantization
of small, efficient network topologies applied to challenging tasks
results in severe accuracy drops. For example, a 2-bit quantized
version of MobileNetV1 (MNv1) for ImageNet failed to converge
in our experiments, shown in Figure 1.1. To optimize the latency-
energy trade-off of these networks with quantization, a finer-grained
approach is thus needed. Mixed-precision quantization proposes to
quantize different parts (usually at the granularity of individual
layers) of the network to different precisions. Ideally, this allows
a designer to aggressively quantize those layers where the resulting
latency and energy reductions are greatest and the accuracy penalty
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smallest. Conversely, layers where low-bitwidth quantization does
not substantially decrease inference energy but severely degrades the
statistical accuracy would be left in a high precision. The challenge of
this approach consists of optimizing the layer-wise quantization policy:
the search space of mixed-precision configurations for a given network
is exponential in the number of layers and thus intractable. This makes
brute-force evaluations impossible, and various works have proposed
directed search algorithms for precision configurations. Multiple works
have applied differentiable neural architecture search (DNAS) to
mixed-precision search. However, these approaches generally rely
on a proxy for latency, such as binary operation (BOP) count, to
guide the search [173], [174]. On real hardware platforms, latency is
highly dependent on factors such as hardware implementation, memory
hierarchy, tiling, and kernel implementation, none of which are directly
linked to the number of BOPs in a network. In this work, we propose a
mixed-precision latency optimization method consisting of a hardware-
agnostic differentiable search step based on the Bayesian Bits algorithm
[173], followed by a hardware-aware, profiling-based heuristic which
both reduces execution latency and improves accuracy by increasing
the precision in layers where higher precisions achieve lower latency.
To reach a desired target latency, the configurations can be further
refined in an optional greedy search step. In evaluations on MNv1 and
MobileNetV2 (MNv2), deployed to a cycle-accurate RISC-V multi-
core simulator, our approach results in an accuracy-latency trade-off
curve that dominates those produced by either differentiable search or
greedy heuristics on their own. To our best knowledge, we demonstrate
for the first time end-to-end deployment of mixed-precision networks
to an MCU-class platform that exhibit not only a reduced memory
footprint but also reduced execution latency by up to 29.2% at full-
precision equivalent classification accuracy. Our key contributions
are the following:

• We present a lightweight method to find latency-optimized mixed-
precision quantization configurations for DNNs, consisting of a
hardware-agnostic differentiable model search and hardware-
aware heuristics, allowing the quick generation of optimized
configurations for different platforms,

• we compose an end-to-end flow consisting of precision search,
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training, generation of integerized models and deploy the found
configurations on a cycle-accurate simulator for high-performance
RISC-V MCU systems and

• we analyze the resulting accuracy-latency trade-offs, showing
that our approach achieves an end-to-end latency reduction by
up to 29.2% vs. 8-bit quantization at full-precision equivalent
classification accuracy and finds Pareto-dominant configurations
with respect to homogeneous 4-bit quantization.

6.2 Related Work
Approaches to mixed-precision configuration search in literature can
be broadly clustered into three categories: Differentiable search
algorithms which jointly train precision-selection parameters and model
parameters, static precision assignment, where the precision of each
layer is determined off-line based either on heuristic criteria or model
statistics and reinforcement learning (RL)-based approaches which
train a RL agent to assign precisions to each layer.

[173] adopt a differentiable-search approach, which we adapt for
the first step of our algorithm. In their Bayesian Bits algorithm,
quantization to a given precision is decomposed by first quantizing a
tensor to the lowest supported bit-width, and higher precisions are
recovered by adding the difference to the next quantization level to the
quantized tensor. During training, the addition of the error tensors
is controlled by stochastic, continuous-value gates whose distribution
is parametrized by trainable parameters. To encourage low-precision
quantization, a regularization term is added to the loss, with each
precision gate contributing a term proportional to the BOP cost
its associated layer incurs in the precision level controlled by the
gate. EdMIPS [174] uses a less complex approach, training gate
parameters for each available precision which are used to assemble the
final tensor by weighting its differently quantized versions with the
softmax distribution parametrized by the gates. The regularizer term
used is analogous to that of Bayesian Bits, with a term proportional
to the expected value of BOPs being added to the classification loss.
[175] take a similar approach, learning a single continuous parameter
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used to interpolate between bit-widths per layer, and [176] train only
weight precisions, using the Gumbel Softmax technique [177] to sample
the precision gates’ values. All of these algorithms have in common
that the objective functions use BOP count (or another quantity that
is monotonically related to precision, such as model size) as the target
metric. As we show in Section 6.3, BOP count does not necessarily
correlate with latency, and there is no trivial adaptation to enable these
algorithms to optimize for execution latency directly. Furthermore,
differentiable search does not allow for enforcing hard constraints on
the configurations during the search.

In contrast, techniques performing static assignment of layer-wise
precisions may target any performance metric, including execution
latency, but can not directly optimize statistical accuracy at the same
time. [91] greedily reduce weight precision to allow a network to fit
in on-device storage and decrease activation precision of those layers
which would not otherwise fit into device memory. As their target
platform is an off-the-shelf MCU without native sub-byte arithmetic
support, the low-precision operations incur runtime overhead, and
the reduced memory footprint comes at the cost of increased runtime
latency. [178] calculate a second-order sensitivity metric for each layer
and use ILP to optimize layer-wise precisions for execution latency,
model size or BOP count while minimizing the estimated cumulative
disturbance due to quantization.

In the category of RL-based algorithms, [179] use deep deterministic
policy gradient (DDPG) and restrict the agent’s action space to
networks that fulfill a user-determined (latency, energy, or model size)
constraint, such that the reward function only considers the evaluated
network’s accuracy drop relative to full-precision accuracy. [180] use a
combined reward function incorporating both the state of quantization
and the classification accuracy with the proximal policy optimization
(PPO) actor-critic algorithm to find weight-only quantization policies.

6.3 Free Bits
Free Bits is a multi-step method to find mixed-precision configurations
of DNNs optimized for low latency on a given target hardware platform.
In the first step, we employ two variants of the Bayesian Bits algorithm
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Figure 6.1 – Overview of the proposed algorithm. Mixed-precision
configurations (MP CFGs) for a given topology are first generated using
Bayesian Bits. These configurations are then optimized for the target
platform using profiling results for the layer types occurring in the topology
by increasing the precisions in layers where this results in lower latency
(LAT.). Optionally, the resulting configurations can be further refined
to meet a latency target using a greedy heuristic. The final configuration
is fine-tuned with QAT using the TQT algorithm, after which it can
be deployed to the target hardware. Green boxes represent steps with
low computational effort while steps with high computational effort (i.e.,
involving neural network training) are represented by red boxes.

with nreg different regularizer strengths to find reduced-precision
configurations of the targeted network architecture. The Bayesian Bits
regularizer penalizes high BOP counts and has no concept of latency
(and indeed does not support targeting latency optimization directly,
see Section 6.3.1). Thus, the resulting configurations will parametrize
mixed-precision networks which are not optimized for any particular
hardware platform and which may even exhibit higher inference latency
than, e.g., an all-8-bit baseline on the target platform.

In the second step, we optimize the mixed-precision configurations
found with Bayesian Bits for a specific target platform. To achieve this,
we first profile the latency of each unique layer type in the network
in all allowed precision configurations on the target platform. This
profiling data is used to update the initial configuration by choosing,
for every layer in the network, the lowest-latency precision setting that
is higher or equal to that of the initial configuration. As the precision
increase is expected to improve both latency and statistical accuracy,
we name this step the free bits heuristic.

The latency of a mixed-precision network resulting from the first
two steps is not bounded by a hard constraint, and if no satisfactory
configuration is found, we apply a greedy heuristic in the third step
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to reach the latency target. When starting from a configuration with
latency higher than the target, the heuristic successively decreases the
precision of layers where this results in the largest latency reduction
until the latency target is met. When starting from a configuration
with a latency lower than the target, precision is increased in those
layers where the latency penalty is the lowest.

The final configuration is then fine-tuned using a modified version
of the TQT algorithm [59] and automatically converted to an integer-
only model, which can be fed to a deployment backend for the target
platform.

Our method emphasizes versatility and efficiency: Decoupling the
differentiable search for low-precision configurations from the platform-
specific latency optimization means that the computationally intensive
first step only needs to be performed once for every network. From the
generic mixed-precision configurations it produces, latency-optimized
configurations can be generated for different hardware targets efficiently,
as the second and third steps only require profiling data from the target
platform and do not directly take into account task accuracy. The
total number of Bayesian Bits training runs performed is 2nreg: For
each regularizer strength, both variants of Bayesian Bits are applied.
Once the baseline configurations have been found with Bayesian Bits,
optimized configurations for different hardware targets and latency
constraints can be generated with a single QAT fine-tuning training
run.

6.3.1 Differentiable Mixed-Precision Search
To find the initial mixed-precision configurations which are latency-
optimized in the second step, we apply two variants of the Bayesian Bits
algorithm. Bayesian Bits aims to reduce a network’s total BOP count
with a regularizer that penalizes each precision gate’s contribution to
the expected BOP count individually (see also Section 6.2). There are
two reasons why the algorithm cannot target latency directly. First,
Bayesian Bits treats activation and linear operator layers individually,
summing up the regularizer terms for every layer and optimizing
each layer’s gates independently. However, the latency of a single
layer is determined jointly by the precision of input activations and
weights and cannot be decomposed into additive contributions from
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each precision. Second, the regularizer terms for an individual layer’s
gates are added together, yielding a monotonously increasing penalty
as a layer’s expected precision increases. As shown in Figure 6.4, this is
not necessarily the case for the execution latency of a layer: Instead, a
layer may have lower latency when executed in a higher precision than
in a lower one, depending on the hardware platform. In addition to the
original Bayesian Bits algorithm, we also employ a modified version
where the gate parameters for each precision are shared between a
linear operator layer and its input activation, enforcing equal input
and weight precisions. This modification accounts for the fact that
on our target platforms, the theoretical throughput for a layer with
non-equal activation and weight precisions is bounded by the higher
of the two precisions.

6.3.2 Free Bits Heuristic
We update the configurations found by the latency-agnostic Bayesian
Bits with a target-specific heuristic using profiling data from the
hardware target platform. This step relies on two core ideas: First, we
assume our target platform executes networks layer-by-layer, which
implies Lnet ≈

∑N
i=1 Li for the total execution latency Lnet of an

N -layer network where the i-th layer is executed with latency Li. This
is the case for most systems on which DNNs inference is run. Second,
increasing a layer’s input activation or weight precision never decreases
the network’s statistical accuracy. While the regularizing effect of
quantization to 8-bit (or higher) precision can have beneficial effects
on task accuracy (as is the case with MNv1, see Section 6.4), the
literature shows that lower-precision quantization generally leads to
an accuracy drop for difficult tasks such as ImageNet [59], [178], [181],
[182], justifying this second assumption.

Following the first assumption, we characterize each unique linear
operator in the target network as a layer type. A layer type is defined
as the tuple of all parameters which determine how a computational
kernel is invoked, e.g., input dimensions, number of input/output
channels, number of channel groups, and kernel size. For each layer
type occurring in the network, we measure the execution latency on
the target platform for all supported combinations of input and weight
bit-widths (bin, bwt). With this estimation of {Li}, i ∈ [1, N ], we
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Algorithm 2 Profiling-based Heuristic Precision Search
Input:

LD: Latency dictionary mapping layer type c and precisions
(bin, bwt) to a measured latency

Cnet: Dictionary of layer types and precisions representing a
mixed-precision network, of the form

{
i :
(
ti,
(
bi

in, bi
wt

))}N

i=1
Pall: Set of allowed combinations (bin, bwt) of input and weight

precisions

Output:

C ′
net: Latency-optimized mixed-precision configuration of the
input network

function higher((bin,1, bwt,1), (bin,2, bwt,2)) ▷ Returns True if
precision 1 ≥ precision 2

return (bin,1 ≥ bin,2) ∧ (bwt,1 ≥ bwt,2)
end function
C ′ ← C
for all i,

(
ti,
(
bi

in, bi
wt

))
∈ Cnet do

lati
0 ← LD

[(
ti,
(
bi

in, bi
wt

))]
▷ Initial latency

cands←{(bin, bwt) | (bin, bwt) ∈
Pall,
LD

[(
ti, (bin, bwt)

)]
≤

lati
0,

higher((bin, bwt), (bi
in, bi

wt))}

▷ Select lower-or-equal-
latency configurations with
higher-or-equal precisions

best← arg min
(bin,bwt)∈cands

LD[(ti, (bin, bwt))] ▷ Select lowest-latency

candidate
C ′

net[i]← (ti, best) ▷ Update net configuration
end for



6.3. FREE BITS 115

iterate over the layers in the network found by Bayesian Bits and check
for every layer if higher-precision configurations of the same layer type
with a lower estimated latency exist. If so, we update the layer’s
precision configuration to that with the lowest latency estimation.
By the two assumptions above, the resulting network’s execution
latency and statistical accuracy will be upper-bounded and lower-
bounded, respectively, by those of the configuration found by Bayesian
Bits. As it is expected to produce strictly superior configurations
in terms of latency and statistical accuracy, we call this procedure
the free bits heuristic. A pseudocode description of the procedure
is shown in Algorithm 2.

6.3.3 Greedy Mixed-Precision Search
The configurations produced by the free bits heuristic can optionally
be further refined with a greedy heuristic. Given a latency target
Ltgt and a network configuration C0 with estimated execution latency
L0, we aim to modify C0 to reach a latency lower than, but as close
as possible to, Ltgt. If L0 < Ltgt, we apply the heuristic in the
upward direction, seeking to increase the precision of as many layers
as possible to maximize the accuracy improvement. Accordingly, we
increase the precision of layers where this carries the lowest latency
penalty. Conversely, in the downward direction (i.e., L0 > Ltgt), we
want to decrease the precision of as few layers as possible to minimize
accuracy drop and thus choose the layers where a precision reduction
results in the largest latency reduction. In the case L0 > Ltgt, we
additionally try to keep the layer-wise precision reductions applied
"small", e.g, we prefer modifying two layers’ configurations from 8b/8b
to 8b/4b to modifying a single layer from 8b/8b to 8b/2b to achieve
the same latency improvement. This is based on the experience that
very low bit-widths have a disproportionate impact on classification
accuracy. A pseudocode description of the two versions of the greedy
heuristic is given in Appendix B.2.

This greedy heuristic can be applied to arbitrary C0, and, applied
to homogeneous-precision baseline configurations, serves as a test to
assess the utility of the initial differentiable-search step: If applying
this low-cost heuristic directly yields an accuracy-latency curve that
is not Pareto-dominated by that resulting from the full algorithm,
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the computationally expensive differentiable search serves no useful
purpose. The results of this comparison are detailed in Section 6.4.

6.3.4 Quantization-Aware Fine-Tuning and Deploy-
ment

Having arrived at a latency-optimized mixed-precision configuration,
we perform QAT to fine-tune the network’s parameters using a
generalized version of the TQT algorithm. Our implementation of TQT
differs from the original algorithm only in that we do not force clipping
bounds to be exact powers of two. For the conversion of full-precision
networks to FQ models, QAT and generation of deployable integer-only
models, we use the QuantLab1 [8] framework, which allows automating
large parts of this flow. For integerization, we follow the procedure
referred to as ICN by [91] and dyadic quantization by [178]. The inputs
to element-wise addition nodes which occur in networks with residual
connections are quantized to 8 bits, and an equal quantization step
size is enforced during the QAT phase. Likewise, the outputs of adder
nodes are always quantized to 8-bit precision.

6.4 Results

6.4.1 Experimental Setup
We performed experiments on two network architectures, applying the
procedure proposed in Section 6.3 to MNv1 [36] and MNv2 [37]. We
used width multipliers of 0.75 for MNv1 and 1.0 for MNv2. The input
resolution was 224× 224 for both networks. We train our networks on
the ILSVRC2012 [7] 1000-class dataset and report top-1 classification
accuracies on the validation set.

Differentiable Mixed-Precision Search and QAT Fine-Tuning
We applied the two variants of Bayesian Bits described in Section 6.3.1
to the MNv1 and MNv2 network topologies. The hyperparameters
for Bayesian Bits training are listed in Table B.2. The configurations

1https://github.com/pulp-platform/quantlab

https://github.com/pulp-platform/quantlab
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produced by our algorithm (as well as those produced by Bayesian
Bits in the case of MNv1) were fine-tuned with TQT using the
hyperparameters listed in Table B.1. In accordance with the
capabilities of our hardware target (see below), the precisions Bayesian
Bits can select from are 2, 4, and 8 bits for both weights and activations.
We did not use the pruning mechanism of Bayesian Bits, i.e., 2-bit
gates are always fully turned on.

Profiling, Deployment and Hardware Targets We use Quant-
Lab’s automated integerization flow to generate precision-annotated,
integer-only ONNX models, which are consumed by the DORY [105]
deployment backend. DORY generates compilable C code leveraging
the PULP-NN [164] kernel library, which we run on GVSOC, a cycle-
accurate, open-source simulator for multi-core RISC-V systems. The
hardware platforms we target are open-source RISC-V MCUs of the
PULP family. One core, designated the fabric controller, orchestrates
system operation, while compute-intensive tasks are executed on a
PULP cluster of 8 RI5CY cores [96]. System memory is split into
two parts. A low-bandwidth L2 memory (parametrized to 512 KiB for
MNv1 and 640 KiB for MobileNetV2 to accommodate the larger code
size) stores program code and data and is used for partial result storage.
The cluster cores operate on 64 KiB of high-bandwidth L1 scratchpad
memory, optimized for low access contention. This hierarchical memory
structure necessitates tiled execution of a network’s layers with each
tile’s input, output, and weight data fitting into the L1 scratchpad.
Tiling is automatically performed by DORY. If the total size of a layer’s
inputs, outputs, and weights exceeds the size of the L2 memory, an
off-chip HyperRAM memory is used to store intermediate activations.
Off-chip memory is also used to store the weights for all network layers.
As our target platforms do not implement data caches and are modeled
with a deterministic simulator, latency measurements are taken from
single runs of the DORY-generated networks.

All cores in the target system implement the base RV32IMF ISA
in addition to the custom XpulpV2 extensions. We evaluate our
found configurations on three systems, each containing a cluster
whose cores have varying degrees of sub-byte arithmetic support.
The first system’s cluster implements only XpulpV2, which supports
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only 8-bit SIMD arithmetic. We refer to this system as XpulpV2.
The second system implements the XpulpNN [97] extension, which
additionally provides support for packed-SIMD sub-byte arithmetic
(for 2- and 4-bit data). While natively supporting sub-byte arithmetic,
XpulpNN’s sub-byte arithmetic instructions require operands to have
equal bit-widths. For operands of mismatching precisions, the lower-
precision operands must first be unpacked in software to the larger
data size. We refer to this version of the system as XpulpNNv1. The
third system’s cluster implements an improved version of XpulpNN
which eliminates the runtime overhead from unpacking lower-precision
operands by performing it transparently in hardware. We refer to
this version of the system as XpulpNNv2. To generate the profiling
data used by the heuristic steps of our algorithm, we again use DORY
to generate and export dummy networks for all layer types in all
precision configurations. The dummy networks sandwich the layer to
be evaluated between a convolutional layer with 4 input channels and
a FC layer with a single output neuron. The generated application is
executed on GVSOC and the execution latency of the middle layer
is extracted.

6.4.2 Latency-Accuracy Trade-Offs for XpulpNNv1
MobileNetV1 Figure 6.2a shows the latency-accuracy trade-off
for MNv1 deployed to a PULP system with the XpulpNNv1 ISA
extensions, with the effect of the free bits heuristic indicated. We
observe that the original Bayesian Bits algorithm generally does
not produce low-latency configurations. This confirms that even on
hardware with native sub-byte arithmetic support, low BOP count
does not directly translate to low latency. The modified Bayesian
bits enforcing symmetric activation and weight precisions produces
configurations which outperform the homogeneous-precision 4b/4b
baseline, with small or zero latency penalty, which indicates that
asymmetric-precision layers are responsible for the poor performance
of the configurations found by the original algorithm. With two
exceptions, applying the free bits heuristic improves the latency of all
configurations substantially while increasing classification accuracy.
For the homogeneous-precision 4 b/4 b baseline, the heuristic increases
the precision of 12 layers, improving latency and accuracy by 7%
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Figure 6.2 – Latency-Accuracy trade-off of mixed-precision MobileNetV1
configurations running on a PULP system with XpulpNNV1 ISA extensions.
(a) shows the configurations found by Bayesian Bits before and after
applying the free bits heuristic, with grey arrows indicating the effect
of applying the heuristic. The graphs reflect the measured end-to-end
latency. (b) shows the Pareto-optimal configurations from (a) along with
configurations produced by the greedy search described in Section 6.3.3.
BB orig./locked: Configurations found by the original Bayesian Bits
algorithm and the modified version enforcing symmetric activation/weight
precisions, respectively. FB: Free bits. GU/GD: Greedy search in the
upward/downward direction.
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and 0.7 percentage points, respectively. As symmetric activation and
weight precisions are theoretically optimal for XpulpNNv1’s hardware
implementation of sub-byte arithmetic, this is a non-trivial result. The
free bits heuristic lifts the previously uncompetitive configurations
found by the original Bayesian Bits algorithm to the Pareto front,
leading to accuracy and latency gains of 1.4− 6.6 percentage points
and 12.3% − 61.6%, respectively. The most accurate configuration
matches the 8b/8b baseline in statistical accuracy at 69.1% while
reducing execution latency by 7.6%, and the configuration at the
Pareto front’s knee point improves the execution latency by 27.8%
at a classification accuracy within 0.2 percentage points of the 32-bit
floating-point baseline of 68.8%.

Figure 6.2b shows the effect of applying the greedy search (see
Section 6.3.3) to the configurations produced by Bayesian Bits and
the freebie heuristic, as well as the homogeneous-precision baselines.
The greedy heuristic produces mostly non-optimal configurations when
applied in the downward direction. In contrast, when applied in the
upward direction to configurations found by our combined algorithm, it
yields Pareto-optimal networks, refining the original Pareto front and
finding a configuration that reduces latency by 29.2% at an accuracy
drop of only 0.3% from the full-precision baseline. Finally, we note
that while the configurations produced by the upward greedy heuristic
starting from the 4b/4b baseline are completely dominated by those
found by Bayesian Bits and the free bits heuristic, they form a Pareto
front which lies within 0.3 percentage points of classification accuracy.

We conclude that i) the differentiable-search step is indeed helpful
in finding mixed-precision configurations optimized for low end-to-end
latency, ii) the greedy search step applied to these configurations in the
upward direction reliably refines the Pareto front, and iii) greedy search
which increases layer-wise precisions starting from a low-precision
baseline can provide a low-cost alternative to the multi-step procedure.

MobileNetV2 Figure 6.3 shows the latency-accuracy trade-off of
MNv2 configurations produced by Bayesian Bits modified with the
free bits heuristic running on the XpulpNNv1 system. The baseline
4b/4b configuration contains many asymmetric-precision convolutional
layers due to adder node outputs being quantized to 8 bits. This leads
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Figure 6.3 – Latency-Accuracy tradeoff of MobileNetV2 configurations
optimized for XpulpNNv1. The grey arrow indicates the effect of applying
the heuristic to the 4b/4b baseline.

to a latency higher than that of the 8b/8b baseline, which is reduced
by the free bits heuristic by 46%. At the same time, classification
accuracy is improved by 0.6 percentage points. Nevertheless, the
resulting configuration is not Pareto-optimal with respect to those
produced by our algorithm. In particular, the locked-precision version
of Bayesian Bits, when combined with the free bits heuristic, produces
configurations that dominate the optimized 4b/4b baseline and the
8b/8b baseline. The configuration at the Pareto front’s knee point
reduces execution latency by 10.9% at an accuracy penalty of only
0.3 percentage points relative to the 8b/8b baseline.

6.4.3 Free Bits Across Different Target Platforms
To evaluate the portability of our algorithm, we optimized MNv1
and MNv2 configurations found with Bayesian Bits for the three
different PULP systems with different levels of support for sub-
byte arithmetic, described in Section 6.4.1. Table 6.1 shows the
lowest-latency configurations within 0.5 and 1.5 percentage points of
classification accuracy of the 8b/8b baseline. The configurations listed
were found with only the first two steps of our algorithm. Notably,
our approach achieves latency reductions even on the XpulpV2 system
without hardware support for sub-byte arithmetic, which can be
attributed to a lower data movement overhead thanks to larger tile
sizes. While relative latency reduction and the resulting accuracies are
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Acc. Margin ISA MobileNetV1 MobileNetV2
Lat. vs. 8b Acc. Lat. vs. 8b Acc.

8b Baseline all +0% 69.1% +0% 71.5%

0.5 pp.
XPv2 −5.5% 69.3% −3.4% 71.0%
XPNNv1 −27.9% 68.6% −10.9% 71.2%
XPNNv2 −28.6% 68.6% −15.3% 71.0%

1.5 pp.
XPv2 −5.5% 69.3% −6.3% 70.7%
XPNNv1 −34.4% 67.6% −15.1% 70.4%
XPNNv2 −35.1% 67.6% −15.3% 71.0%

4b + FB
XPv2 −3.5% 67.7% −7.7% 70.9%
XPNNv1 −37.1% 66.3% −12.8% 69.9%
XPNNv2 −39.8% 66.6% −25.7% 69.6%

4b Baseline
XPv2 +49.9% 65.6% +37.0% 69.3%
XPNNv1 −32.3% 65.6% +48.9% 69.3%
XPNNv2 −38.3% 65.6% −23.4% 69.3%

Table 6.1
Configurations within margins of 0.5 and 1.5 percentage points

(pp.) of 8b/8b classification accuracy for PULP systems
implementing different ISA extensions: XpulpV2 (XPv2),
XpulpNNv1 (XPNNv1) and XpulpNNv2 (XPNNv2). The

configurations listed here were found without the greedy
heuristic search step. 4b+FB: target-specific free bits heuristic

applied to homogeneously quantized 4b/4b network.

very similar between XpulpNNv1 and XpulpNNv2 on MNv1, significant
differences can be observed on MNv2’s 4b/4b baselines, both before
and after applying the free bits heuristic. On XpulpNNv2, both
exhibit significantly lower latency than the 8b/8b baseline, while
on XpulpNNv1 the unoptimized baseline is uncompetitive and the
optimized configuration is dominated in accuracy and latency by
other configurations.

6.4.4 Analysis
To explain the mechanism by which the free bits heuristic reduces
latency on different target platforms, it is helpful to consider the
results of the layer-wise profiling step, shown in Figure 6.4a. Despite
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having no native sub-byte arithmetic support, XPv2 sometimes exhibits
speedups from reduced precisions due to reduced tiling overheads in
the memory-bound depthwise (DW) layers as well as in the early
layers of the network, which have the largest activation tensor sizes.
Conversely, XPNNv1 supports sub-byte arithmetic, but non-DW layers
with lower weight than activation precisions incur overhead from weight
unpacking, which results in lower performance. XpulpNNv2 does not
see this performance degradation as the unpacking is performed by
the hardware with no latency penalty. This explains the action of
the free bits heuristic (Figure 6.4b): Activation and weight precisions
of non-DW layers are increased to 8 bits on many layers for XPv2
and set to be equal for XPNNv1, while for XPNNv2, many layers
are left in asymmetric precision.

6.4.5 Quality of Latency Estimation
As detailed in Sections 6.3.2 and 6.3.3, both the free bits heuristic and
the greedy search assume that the network’s total latency is roughly
equal to the sum of the individual layers’ latencies as measured during
profiling. For MNv1, this holds, with measured latency on average
10% lower than estimated and all estimations remaining within 15%
of the true latency. For MNv2, measured latencies are from 20% to
39% (average: 26%) higher than the estimations. The reason for this
lies in MNv2’s skip connections, which require some intermediate
activations to be buffered. This reduces the space available for
input/output activations of the residual layers, leading to smaller
tile sizes and increased data movement overhead. Nevertheless, the
free bits heuristic reliably reduces MNv2 configurations’ latencies,
indicating the robustness of the heuristic to tiling-related effects.
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6.5 Conclusion
In this chapter, we have presented Free Bits, an efficient method to find
latency-optimized mixed-precision network configurations for inference
on edge devices. Taking advantage of the fact that, depending on the
target platform, increasing input or weight precision may lead to lower
execution latency, the method optimizes mixed-precision configurations
found by the hardware-agnostic Bayesian Bits differentiable search
algorithm. To further refine the precision configurations found in
this way, a greedy heuristic can be applied. Deploying the MNv1
and MNv2 configurations found with our algorithm on a family
of high-performance MCU-class RISC-V platforms, we find that, i)
with hardware support for sub-byte arithmetic, MNv1 end-to-end
latency can be reduced by 30% while retaining full-precision equivalent
accuracy, ii) even without such hardware support, mixed-precision
quantization enables a latency reduction of up to 7.7%, and iii) the
found configurations offer a superior accuracy-latency trade-off to
homogeneous 4-bit and 8-bit quantization.





Chapter 7

Summary and Conclusions

In this concluding chapter, we will review the main insights and results
of the thesis, followed by an outlook on potential future research
directions in quantized deep learning for edge applications. The
potential of QNNs for improving the energy efficiency of neural network
inference – generally, and specifically in edge AI applications – was
known before this thesis was started, and 8-bit integer quantization
has been a key component ini enabling DNN inference on low-power,
low-cost, MCU-based platforms. In this thesis, we have explored how
to translate the theoretical efficiency advantages of more aggressively
quantized DNNs to system-level energy efficiency gains. A major goal of
the thesis has been to treat the topic in a holistic manner and to present
methods and results that translate well to practical scenarios. This
has led us to explore a considerable portion of the QNN development
and deployment pipeline. With toolchain support for efficient QNN
creation from full-precision networks and a precision configuration
search algorithm for arbitrary hardware platforms, we have facilitated
the development of QNNs that offer improved energy efficiency. On
the hardware and system design side, we have demonstrated the
potential of extreme quantization in the form of TNNs with a system
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that optimizes the complete sensor-to-inference pipeline by eliminating
interface and data transfer bottlenecks. We also showed how lightweight
ISA extensions can significantly improve TNN inference overhead on
general-purpose cores at negligible silicon area overhead.

In conclusion, we have shown that low-bitwidth and mixed-precision
QNNs offer tangible efficiency advantages not only in theory, but also
in end-to-end edge AI scenarios. In the following, we will summarize
the main results of each part of the thesis.

7.1 Summary of Results

Automated Quantization of Full-Precision Networks
Chapter 3 presented a methodology to automatically convert full-
precision DNNs to integer-only QNNs. In the first step, the full-
precision network is converted to its fake-quantized counterpart. As
part of this conversion, subgraphs that can not be integerized for
deployment on the target platform are detected and replaced with
integerizable versions in a procedure we call harmonization. The
harmonized fake-quantized network can then be trained with a variety
of QAT algorithms. Finally, the trained network is automatically
converted to its integer-only equivalent and exported for deployment
to the target platform. In experimental evaluations, we show that
on the popular MobileNetV2 [37] architecture, harmonization can
prevent substantial accuracy drops of up to 3 pp. resulting from the
low-bitwidth quantization of residual adder nodes during integerization.

Gesture Recognition on DVS Data with Ternary
Neural Networks
In Chapter 4, we proposed and evaluated a complete sensor-to-
classification pipeline for gesture recognition from DVS camera data.
The processing strategy most commonly adopted for event-based
camera data is to directly process the event stream with a SNN. We take
an alternative approach, showing that aggregating the event stream
into ternary event frames and processing it with a TNN achieves state-
of-the-art classification accuracy, outperforming SNN-based works by
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at least 1.7 pp.. We then deploy the complete pipeline to the Kraken
SoC, which includes a lightweight DVS camera peripheral that performs
the frame aggregation in hardware. The TNN can be run either on the
on-chip application-specific CUTIE accelerator or on an 8-core PULP
cluster of RISC-V-based microprocessor cores. At 7 µJ, the full-system
classification energy when running the TNN on CUTIE is 67× lower
than the previous state of the art. The suitability of our approach
for realistic application scenarios is underlined by the system power
consumption of 4.7 mW (CUTIE)/6.4 mW (cluster) under continuous
inference. A key takeaway of Chapter 4 concerns the comparison
of application-specific accelerators with general-purpose processing
cores in terms of full-system power consumption. The CUTIE TNN
accelerator boasts a compute efficiency of hundreds of TOp/J, two
orders of magnitude higher than the PULP cluster of RISC-V cores.
Nevertheless, running inference on CUTIE only reduces the steady-
state system-level power consumption by 27 %. This discrepancy can
be attributed to accelerator power consumption during idle phases
overshadowing the very short bursts of power consumption during
inference.

XpulpTNN: RISC-V ISA Extensions for Efficient
TNN Inference
As the previous chapter has shown, ISA-based processing cores are
attractive targets for efficient QNN deployment, especially when
the silicon area budget does not allow for a dedicated accelerator.
In Chapter 5, we present XpulpTNN, a set of instructions that
extend the RISC-V ISA with instructions targeted at efficient TNN
inference. Additionally, we implement full toolchain and SDK support
for XpulpTNN, enabling the development and deployment of TNNs
on XpulpTNN-enabled platforms.Compared to optimized 2-bit kernels,
XpulpTNN achieves 67 % higher throughput and 57 % higher energy
efficiency. These improvements incur a negligible silicon area overhead
and do not degrade the longest path. Together with end-to-end software
support, XpulpTNN thus enables the efficient execution TNN on
resource-constrained edge systems without specialized accelerators.
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Free Bits: Finding Latency-Optimized Mixed-
Precision Configurations
Aggressively quantized networks such as TNNs exhibit the lowest
inference energy in absolute terms. However, extreme quantization
leads to unacceptable accuracy drops on more difficult tasks such as
1000-class image classification. While large, inefficient networks can
be quantized to very low precisions without a catastrophic impact on
their statistical performance, the speed-up from this quantization does
not compensate for the inefficient network architecture, and lighter
networks quantized to a higher precision offer a better compromise
between accuracy and inference energy. Mixed-precision quantization
allows the individual quantization of each layer to a different precision
to obtain the best trade-off between statistical performance and latency,
which is closely proportional to inference energy when considering
the power consumption of the complete system. In Chapter 6, we
present Free Bits, a method to find latency-optimized mixed-precision
configurations for a given network topology and target platform. By
combining a hardware-agnostic neural architecture search step with
a hardware-aware heuristic that increases precision in layers where it
reduces the inference latency. The second step of this process is trivial
in terms of compute load, allowing users to find latency-optimized
configurations for different hardware platforms with only one run
of the first, compute-intensive step. By using exact profiling data
collected directly on the target platform, the algorithm effectively
and directly optimizes the latency for the specific hardware target,
inherently taking into account implementation-specific non-idealities
that are usually too complex to model analytically. We evaluate
Free Bits on the popular, lightweight MobileNetV1/V2 architectures,
achieving up to 30 % latency reduction while retaining full-precision-
equivalent accuracy.

7.2 Outlook
To conclude the thesis, this section will give a brief outlook on potential
directions future research directions. Research into quantized neural
networks, particularly CNNs, is in a mature state and the algorithmic
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side is well explored by existing work. Similarly, a wide variety of
hardware architectures targeting QNN inference have been presented.
However, there is a comparative lack of functional systems capable of
running end-to-end applications using low- or mixed-precision QNNs.
Consequently, the number of such end-to-end applications presented is
even lower. To gain a better understanding of the practical potential of
quantized deep learning on the edge and its limitations, future research
should be conducted with the efficiency of the complete system in
mind. That is also the spirit of the following proposals.

Mixed-Precision Acceleration
The mixed-precision capabilities of the system we targeted in Chapter 6
were implemented as ISA extensions in general-purpose cores. This
made it a rewarding target for automated optimization, as the
dependence between precision and throughput is highly non-monotonic
and influenced by so many factors that a handcrafted approach could
hardly account for all of them. Nevertheless, a dedicated hardware
accelerator with mixed-precision capabilities would achieve higher
throughput and energy efficiency. Multiple mixed-precision accelerator
designs have been proposed in literature [171], [183]–[185]. However,
they suffer from one or multiple shortcomings. The designs have either
not been integrated in edge systems, they only operate efficiently on a
limited set of kernels or they only support mixed-precision quantization
of weights, but not of activations.

To fill this “practicality gap”, a promising approach might be
the combination of a flexible mixed-precision matrix multiplication
accelerator, a powerful data movement and reordering DMA engine
and an appropriate number of programmable processing units (which
may also the form of RISC-V cores) to perform element-wise and/or
non-linear operations. With such a system, the vast majority of
current DL models could be supported. Replacing or supplementing
the PULP cluster used in multiple chapters throughout this thesis
with such a combination could yield a mixed-precision system that is
both highly efficient and flexible enough to support the deployment
of end-to-end applications.
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Low- and Mixed-Precision Transformers
Since their introduction in 2017, transformer models have experienced
massive research interest [186]. With the release of transformer-
based image and text generation tools such as Dall-E [187] and
ChatGPT [188], transformer-based models have also entered the
commercial market and the public consciousness, at a scale that
CNNs have never reached. The natural language processing (NLP)
and generative visual applications that have popularized transformers
tend to benefit from very large models with billions to trillions of
parameters [189], [190] that are not suitable for edge deployment.
However, transformer architectures have also been successfully applied
in other fields such as discriminative computer vision tasks [191].
Furthermore, various approaches have been proposed to make
transformer inference less resource-intensive [192], [193], and small
transformers have been successfully quantized and deployed on edge
devices [114], [194]. Quantization to precisions lower than 8 bits
has been successfully explored [195], but not in a mobile or edge
context. Exploring the limits of low- and mixed-precision quantization
on edge-compatible transformers would further lower their resource
requirements and enable better trade-offs between inference energy
and statistical performance.
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A.1 QAT Hyperparameters

ResNet18 MobileNetV2
Epochs 10 13
QAT Algo. TQT TQT
Batch Size 240 190
Opt. SGD SGD
Momentum 0.9 0.9
Wt. Decay 0.0001 0.00005
LR0 0.001 0.00075
LR decr. a 0.1@4, 0.1@7, 0.3@9 0.1@6, 0.1@9
Wt. Q. startb 0 1
Act. Q. startb 1 1
Act. clip init.c Perc. 0.5/99.5 Const. 6.0/Maxd

Wt. clip init.c MSE Max
a a@b indicates that LR is decreased by a factor of a before the start of epoch b,

with epochs indexed starting with 1
b Activations and weights are quantized starting from specified epoch
c Const. x: clipping bounds initialized to x,

Max: clipping bounds initialized to maximum value observed during
unquantized training,
Percentile a/b: Clipping bounds set to specified percentile of values observed
during unquantized training (upper percentile for unsigned activations, max
magnitude of upper and lower percentiles for signed activations),
MSE: Clipping bounds set to minimize MSE between quantized and unquantized
values by brute-force optimization

d Activations inserted before and after adder nodes have clipping bounds
initialized to Max, all others to Const. 6.0

Table A.1
QAT hyperparameters for ResNet and MobileNetV2
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MobileNetV1 MobileNetV2
Epochs 11 13
Batch Size 256 340
Optimizer SGD SGD
Momentum 0.9 0.9
LR0 0.001 0.00075
LR decr. a 4,7 5,8
Quant. start b 0 1
Act. clip init. c Const. 6.0 Const. 6.0/Maxd

a LR is decreased by a factor of 0.1 at specified epochs
b Activations and weights are quantized starting from specified epoch
c Const. x: clipping bounds initialized to x,

Max: clipping bounds initialized to maximum value observed during
unquantized training

d Activations inserted before and after adder nodes have clipping bounds
initialized to Max, all others to Const. 6.0

Table B.1
QAT hyperparameters for MobileNetV1 and MobileNetV2 trained

with TQT
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MobileNetV1 MobileNetV2
Epochs 11 12
Batch Size 256 150
Net Opt. SGD w/ mom. 0.9 SGD w/ mom. 0.9
LR0,net 0.001 0.00075
Prec. Gate Opt. Adam Adam
LRgate 0.0001 0.0002
LR decr. c 4,7 4,7
Quant. start 0 0
Act. clip init. Const. 6.0 Const. 6.0
Φ0

a 2.0 2.0
µ0

b 0.01, 0.03, 0.06, 0.12 0.01, 0.03, 0.06, 0.12
a Initialization of precision gating parameters
b Global regularizer strength
c Only network parameters’ learning rate is decreased

Table B.2
Bayesian Bits hyperparameters for MobileNetV1 and

MobileNetV2
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B.2 Greedy Latency-Matching Heuristics
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Algorithm 3 Greedy Heuristic Precision Search - Latency Reduction
Input:
LD: Latency dictionary mapping layer type t and precisions (bin, bwt) to a

measured latency
Cnet: Dictionary mapping layer indices to layer types and precisions

representing a mixed-precision network with latency L0, of the form{
i :
(

ti,
(

bi
in, bi

wt

))}N

i=1
with

∑N

i=1 LD[Cnet[i]] = L0
Pall: Set of allowed combinations bin, bwt of input and weight precisions
Op: Ordering of Pall, e.g. {2b : 0, 4b : 1, 8b : 2}
Ltgt < L0: Target latency

Output:
C′

net: Latency-optimized mixed-precision configuration of the input network
function dst((bin,1, bwt,1), (bin,2, bwt,2)) ▷ Returns distance between two

layer precisions based on Op

return Op [bin,1]−Op [bin,2] + Op [bwt,1]−Op [bwt,2]
end function
function get_moves(cfg, smax) ▷ Returns configuration with largest

latency decrease, decreasing each layer’s
precision at most by smax

moves← cfg ▷ Initialize with starting configuration
for all i,

(
ti,
(

bi
in, bi

wt

))
∈ cfg do ▷ Iterate over network layers

lati
0 ← LD [cfg [i]] ▷ Initial latency of layer i

cands←{(bin, bwt) | (bin, bwt) ∈ Pall,
LD [(ti, (bin, bwt))] ≤ lati

0,

dst((bin, bwt) ,
(

bi
in, bi

wt

)
) < smax}

▷ All precisions within
smax precision distance
with latency ≤ lati

0

best← arg min
(bin,bwt)∈cands

LD [(ti, (bin, bwt))] ▷ Select lowest-latency
candidate for layer i

moves [i]← (ti, best) ▷ Update configuration
end for
return moves

end function
C′ ← C ▷ Initialize to original net configuration
for all stepmax ∈ [0, ..., 2 |Op|] do ▷ Prioritize low-distance modifications

moves← get_moves(C, stepmax)
if
∑N

i=1 LD [moves [i]] < Ltgt then ▷ Modified config. meets target
while

∑N

i=1 LD [C′ [i]] > Ltgt do ▷ Loop while target not met
moveappl ← arg max

i

LD [C [i]]− LD [moves [i]] ▷ Find and apply
highest-impact
modification

C′
[
moveappl

]
← moves

[
moveappl

]
moves← moves \moves

[
moveappl

]
▷ Discard applied move

end while
return C′

end if
end for
return Failure ▷ If no configuration was found, declare failure
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Algorithm 4 Greedy Heuristic Precision Search - Latency Increase
Input:
LD: As in Algorithm 3
Cnet: As in Algorithm 3
Pall: As in Algorithm 3
Ltgt > L0: Target latency

Output:
C′

net: Latency-optimized mixed-precision configuration of the input network
function higher((bin,1, bwt,1), (bin,2, bwt,2)) ▷ True if precision 1 > precision 2

return ((bin,1 > bin,2)∧ (bwt,1 ≥ bwt,2))∨ ((bin,1 ≥ bin,2)∧ (bwt,1 > bwt,2))
end function
function get_moves(cfg) ▷ Find layer-wise precision increases with smallest

latency penalty
moves← cfg ▷ Initialize to input config.
for all i,

(
ti,
(

bi
in, bi

wt

))
∈ cfg do ▷ Loop over network layers

cands←{(bin, bwt) | (bin, bwt) ∈ Pall,

higher((bin, bwt) ,
(

bi
in, bi

wt

)
)}

▷ Find all higher-or-equal pre-
cision configurations

if cands ̸= ∅ then
best← arg min

(bin,bwt)∈cands

LD [(ti, (bin, bwt))] ▷ Lowest-latency move

moves [i]← (ti, best) ▷ Modify layer’s configuration
end if

end for
return moves

end function
C′ ← C ▷ Initialize to original net configuration
while True do ▷ Loop until failure or success

moves← get_moves(C′) ▷ Increase precision at minimal latency penalty
if moves == C′ then

return Failure ▷ If no moves are found, the algorithm fails
end if

if
N∑

i=1
LD [moves [i]] < Ltgt then ▷ Moves do not exceed target latency...

C′ ← moves ▷ ...so apply all of them
else ▷ Moves can increase latency past the target

while True do
mvappl ← arg min

i

LD [moves [i]]− LD [C′ [i]] ▷ Lowest-latency move

if
N∑

i=1
i̸=mvappl

LD [C′ [i]] + LD
[
moves

[
mvappl

]]
> Ltgt then

return C′ ▷ If the move would exceed target latency, return
else

C′
[
mvappl

]
← moves

[
mvappl

]
▷ Otherwise, apply it

end if
end while

end if
end while
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Notations and Acronyms

ANN . . . . . . . . . . . . . . . artificial neural network

ASIC . . . . . . . . . . . . . . . application-specific integrated cir-
cuits

BC . . . . . . . . . . . . . . . . BinaryConnect

BN . . . . . . . . . . . . . . . . batch normalization

BNN . . . . . . . . . . . . . . . binarized neural network

BOP . . . . . . . . . . . . . . . binary operation

BWN . . . . . . . . . . . . . . binary weight network

CDC . . . . . . . . . . . . . . . clock domain crossing

CNN . . . . . . . . . . . . . . . convolutional neural network

CSC . . . . . . . . . . . . . . . compressed sparse column

CSR . . . . . . . . . . . . . . . compressed sparse row
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CV . . . . . . . . . . . . . . . . cross-validation

DDPG . . . . . . . . . . . . . . deep deterministic policy gradient

DL . . . . . . . . . . . . . . . . deep learning

DMA . . . . . . . . . . . . . . . direct memory access

DNAS . . . . . . . . . . . . . . differentiable neural architecture
search

DNN . . . . . . . . . . . . . . . deep neural network

DVS . . . . . . . . . . . . . . . dynamic vision sensor

DVSI . . . . . . . . . . . . . . . DVS interface

DWS . . . . . . . . . . . . . . . depthwise separable

EDA . . . . . . . . . . . . . . . Electronic Design Automation

EMA . . . . . . . . . . . . . . . exponential moving average

EMG . . . . . . . . . . . . . . . electromyography

FC . . . . . . . . . . . . . . . . fabric controller

FC . . . . . . . . . . . . . . . . fabric controller

FLL . . . . . . . . . . . . . . . frequency-locked loop

FP . . . . . . . . . . . . . . . . full-precision

FPGA . . . . . . . . . . . . . . field-programmable gate array

FPU . . . . . . . . . . . . . . . Floating Point Unit

FQ . . . . . . . . . . . . . . . . fake-quantized

GE . . . . . . . . . . . . . . . . gate equivalent

GPU . . . . . . . . . . . . . . . graphics processing unit
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HtanH . . . . . . . . . . . . . . hard hyperbolic tangent

ICN . . . . . . . . . . . . . . . integer channel norm

ILP . . . . . . . . . . . . . . . integer linear programming

INQ . . . . . . . . . . . . . . . incremental network quantization

IoT . . . . . . . . . . . . . . . . Internet of Things

ISA . . . . . . . . . . . . . . . instruction set architecture

LIF . . . . . . . . . . . . . . . . leaky integrate-and-fire

LSQ . . . . . . . . . . . . . . . learned step size quantization

LUT . . . . . . . . . . . . . . . lookup table

M&L . . . . . . . . . . . . . . . MAC-and-load

MAC . . . . . . . . . . . . . . . multiply-accumulate

MADD . . . . . . . . . . . . . . multiply-add

MCU . . . . . . . . . . . . . . . Microcontroller

ML . . . . . . . . . . . . . . . . machine learning

MLP . . . . . . . . . . . . . . . multi-layer perceptron

MNv1 . . . . . . . . . . . . . . MobileNetV1

MNv2 . . . . . . . . . . . . . . MobileNetV2

MSE . . . . . . . . . . . . . . . mean square error

NAS . . . . . . . . . . . . . . . network architecture search

NLP . . . . . . . . . . . . . . . natural language processing

OCU . . . . . . . . . . . . . . . output channel compute unit

ONNX . . . . . . . . . . . . . . Open Neural Network Exchange
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PACT . . . . . . . . . . . . . . parametrized activation clipping

PPO . . . . . . . . . . . . . . . proximal policy optimization

PTQ . . . . . . . . . . . . . . . post-training quantization

PULP . . . . . . . . . . . . . . parallel ultra-low power

QAT . . . . . . . . . . . . . . . quantization-aware training

QNN . . . . . . . . . . . . . . . quantized neural network

ReLU . . . . . . . . . . . . . . rectified linear unit

RF . . . . . . . . . . . . . . . . register file

RISC . . . . . . . . . . . . . . . reduced instruction set computer

RL . . . . . . . . . . . . . . . . reinforcement learning

SAWB . . . . . . . . . . . . . . statistics-aware weight binning

SGD . . . . . . . . . . . . . . . stochastic gradient descent

SIMD . . . . . . . . . . . . . . single instruction multiple data

SNN . . . . . . . . . . . . . . . spiking neural network

SoC . . . . . . . . . . . . . . . system on chip

SPMD . . . . . . . . . . . . . . single program, multiple data

SRR . . . . . . . . . . . . . . . short-range radar

STE . . . . . . . . . . . . . . . straight-through estimator

SVM . . . . . . . . . . . . . . . support vector machine

TCDM . . . . . . . . . . . . . . tightly-coupled data memory

TCN . . . . . . . . . . . . . . . temporal convolutional network

TDP . . . . . . . . . . . . . . . thermal design power
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TNN . . . . . . . . . . . . . . . ternarized neural network

TQT . . . . . . . . . . . . . . . trained quantization thresholds

UAV . . . . . . . . . . . . . . . unmanned aerial vehicle

VCD . . . . . . . . . . . . . . . value change dump
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