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Summary

Spinal cord injury (SCI) is a medical condition resulting from damage to the spinal cord.
As the spinal cord represents the primary connection between the brain and peripheral
organ systems, a disruption leads to numerous impairments in locomotion, sensation, and
organ functions. A SCI therefore undermines the overall quality of life and independence
of the individuals affected and their families. This realization is particularly relevant
since the field still lacks an intervention, pharmacological or otherwise, to promote the
restoration of functions and/or regeneration of the damaged spinal cord. While clinical
trials conducted to date did not find any promising intervention, they support the field
by thoroughly collecting large amounts of data. The surge of data science, including
statistical andmachine learning (ML)methods, holds the promise to uncover new insights
in better defining and enhancing recovery following SCI by extensively investigating
retrospective data.

This thesis aimed to leverage the potential of data science to maximize clinical impact
in SCI research. This effort was pursued around three pillars: (i) enlarging the surveil-
lance within clinical studies, (ii) promoting best methodological practices from data
science applied to SCI research, and (iii) highlighting the importance of effective research
dissemination.

Firstly, the general context in which this thesis fits is outlined in Part A. Then, Part
B sets benchmarks through the secondary analyses of major datasets collected in the
field, namely the Sygen clinical trial, the European multicenter study on human spinal
cord injury (EMSCI), the Murnau center, and SCIRehab cohorts. Chapter 1 studies how
recovery following SCI evolved over the last two decades and showed that, despite an
evolving standard of care, neurological recovery has remained largely unchanged in this
period. This observation paves the way to using historical patient data to enrich placebo
arms in future clinical trials, therefore maximing the exposure to the intervention of
interest. Chapter 2 describes the natural progression of serologicalmarkers following SCI,
providing an additional surveillance tool when testing pharmacological interventions
that might affect individuals beyond the primary injury targeted. Similarly, studies
testing the effect of new pharmacological interventions may be affected by interactions
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with medications that are prescribed following injury. We therefore exhaustively report
in Chapter 3 what constitutes the current pharmacological standard of care. We reveal
an extensive polypharmacy that individuals with SCI are subject to. To characterize the
effects of this polypharmacy on SCI recovery, we systematically review the literature in
Chapter 4 and describe both clinical and pre-clinical evidence supporting beneficial or
detrimental effects in neurological recovery following SCI.

Secondly, Part C adapts known methods from data science to be translated to SCI
research applications. We initially investigate the potential of serological biomarkers
as predictors of motor recovery in Chapter 5. This analysis shows that accounting
for clinical characteristics specific to the condition improved predictions, while still
being limited by factors such as missing data leading to small cohorts to be studied. We
therefore further characterise missing data in the context of SCI in Chapter 6. Here we
develop guidelines on how to handle missing information based on simulation studies.
We demonstrate that last observation carried forward imputation is a viable approach
for imputing missing neurological outcomes after SCI, owing to the distinctive plateau in
recovery starting around six months after initial trauma. Finally, Chapter 7 explores the
concept of positive deviance to detect individuals recovering beyond clinical expectations.
While data extracted from such individuals may impair the performance of ML prediction
models, understanding the mechanisms underlying their phenomenal recovery holds
the potential to uncover patterns leading to improved recovery.

Lastly, Part D underlines the importance of science communication to effectively link
research from bench to bedside. Chapter 8 particularly promotes the use of new tools
such as interactive data visualization to elevate the presentation of research outcomes
while leaning towardsmore transparent and accessible research not only for the scientific
and clinical communities but also the individuals affected, their families and society.

Overall, this thesis contributes to the in-depth benchmarking of decisive elements
guiding clinical studies in SCI, such as neurological recovery, the evolution of serological
biomarkers, and medications commonly prescribed as part of the standard of care. This
work leads the path towards improved data analyses and recovery prediction following
SCI by integrating known characteristics from the condition. In the context of the SCI
research field, this thesis participates in revising the approaches employed to discover
interventions to improve recovery following SCI.
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Résumé

Une lésion de la moelle épinière (LME) est un état pathologique résultant d’une atteinte
de la moelle épinière. Cet organe étant la connexion principale entre le cerveau et
les organes périphériques, une perturbation de cette connexion entraîne de nombreux
déficits: locomoteurs, sensoriels, régulation des organes périphériques. Par conséquant,
une LME nuit à la qualité de vie globale et à l’indépendance des personnes touchées et
de leur famille. Cette constatation est d’autant plus critique qu’à ce jour, il n’existe pas
d’intervention, pharmacologique ou autre, pour promouvoir la restauration des fonctions
et/ou la régénération de la moelle épinière endommagée. Si les essais cliniques menés
jusqu’à présent n’ont pas permis de découvrir une intervention prometteuse, ils ont
néanmoins permis de collecter de grandes quantités de données. L’essor des sciences
des données, incluant les méthodes statistiques et d’apprentissage automatique, promet
d’apporter de nouvelles approches afin de mieux définir et d’améliorer le rétablissement
après une LME en examinant de manière approfondie les données rétrospectives.

Cette thèse vise à exploiter le potentiel de la science des données pour maximiser
l’impact clinique de la recherche liée aux LMEs. Cet effort s’est articulé autour de trois
piliers : (i) élargir la surveillance au sein des études cliniques, (ii) promouvoir un usage
optimal et adapté des méthodes des sciences des données appliquées à la recherche liée
aux LMEs, et (iii) mettre en évidence l’importance d’une diffusion efficace de la recherche.

Premièrement, le contexte général dans lequel s’inscrit cette thèse est décrit dans la
Partie A. Ensuite, la Partie B établit des repères épidémiologiques grâce aux analyses
secondaires des principaux ensembles de données collectées, à savoir l’essai clinique
Sygen, la cohorte European multicenter study on human spinal cord injury (EMSCI), le
centreMurnau et la cohorte SCIRehab. Le Chapitre 1 étudie l’évolution du rétablissement
neurologique après une LME au cours des deux dernières décennies et a montré que,
malgré les changements en termes de normes de soins, le rétablissement neurologique
est resté globalement stable au cours de cette période. Cette observation ouvre la voie
vers l’utilisation de patients historiques pour enrichir les groupes placebo dans les futurs
essais cliniques, maximisant ainsi l’exposition à l’intervention testée. Le Chapitre 2
décrit la progression naturelle des marqueurs sérologiques après une LME, offrant un
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outil de surveillance supplémentaire lors des essais cliniques évaluant des interventions
pharmacologiques susceptibles d’affecter les individus au-delà de la LME. De même,
les études testant l’effet de nouvelles interventions pharmacologiques peuvent être
affectées par des interactions avec les médicaments prescrits à la suite du traumatisme.
Nous rapportons donc ici de manière exhaustive dans le Chapitre 3 ce qui constitue
actuellement la norme en termes de soins pharmacologiques. Nous mettons en évidence
une large polypharmacie à laquelle les individus sont soumis. Pour caractériser les
effets de cette polypharmacie sur le rétablissement neurologique, nous avons examiné la
littérature de manière systématique dans le Chapitre 4 et décrivons les preuves cliniques
et précliniques soutenant les effets bénéfiques ou préjudiciables de ces traitements sur le
rétablissement neurologique après une LME.

Deuxièmement, la Partie C expose l’adaptation de méthodes issues des sciences des
données pour l’étude des LMEs. Nous étudions d’abord le potentiel des biomarqueurs
sérologiques en tant que prédicteurs du rétablissement moteur dans le Chapitre 5. Cette
analyse a montré que la prise en compte des caractéristiques cliniques spécifiques à
la maladie améliore les prédictions, tout en étant limitées par des facteurs tels que les
données manquantes qui conduisent à de cohortes restreintes par leur taille. Nous avons
donc approfondi la caractérisation des données manquantes dans le contexte des LMEs
dans le Chapitre 6. Nous y élaborons des recommandations sur la manière de traiter les
informations manquantes sur la base d’études de simulation. Nous démontrons égale-
ment que l’imputation à partir de la dernière observation est une approche viable dans le
contexte des tests neurologiques, en raison du plateau distinctif dans le rétablissement
qui commence environ six mois après le traumatisme initial. Enfin, le Chapitre 7 explore
le concept de déviance positive pour détecter les personnes qui se rétablissent au-delà des
attentes cliniques. Bien que les données issues de ces personnes puissent compremettre
la performance des modèles de prédiction par apprentissage automatique, la compréhen-
sion des mécanismes qui sous-tendent leur rétablissement phénoménal peut permettre
de découvrir des caractéristiques menant à une amélioration du rétablissement.

Enfin, la Partie D souligne l’importance de la communication scientifique pour faire
le lien entre les résultats obtenus en recherche et la pratique clinique. Le Chapitre 8
encourage particulièrement l’utilisation de nouveaux outils tels que la visualisation inter-
active des données pour améliorer la présentation des résultats de recherche. Ces outils
permettent également de s’orienter vers une recherche plus transparente et accessible
non seulement pour les chercheurs et leurs collaborateurs en clinique, mais aussi pour
les patients, leur famille et le reste de la société.

Globalement, cette thèse contribue à l’analyse approfondie des éléments décisifs
qui guident les études cliniques liées aux LMEs, tels que le rétablissement neurologique,
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l’évolution des biomarqueurs sérologiques et les traitements couramment prescrits en
pratique clinique. Ces travaux ouvrent la voie à l’amélioration des analyses de données
et à la prédiction du rétablissement après une LME en intégrant des caractéristiques
cliniques connues de la maladie. Dans le contexte de la recherche sur les LMEs, cette
thèse participe à la révision des approches utilisées pour la découverte d’interventions
qui amélioreraient le rétablissement après une LME.
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Zusammenfassung

Eine Rückenmarksverletzung (engl. spinal cord injury (SCI)) ist eine medizinische Dia-
gnose auf Grund einer Schädigung des Rückenmarks. Da das Rückenmark die primäre
Verbindung zwischen dem Gehirn und den peripheren Organsystemen darstellt, führt
eine Unterbrechung der Konnektivität zu zahlreichen Beeinträchtigungen in der Fort-
bewegung, der sensorischen Wahrnehmung und weiteren Organfunktionen. Eine SCI
beeinträchtigt daher die gesamte Lebensqualität und Unabhängigkeit der betroffenen
Personen und ihrer Angehörigen. Diese Tatsache ist umso bedeutsamer, da es in diesem
Gebiet der Medizin noch keine pharmakologische oder sonstige Intervention gibt, die
die Wiederherstellung von Funktionen und/oder die Regeneration des geschädigten
Rückenmarks fördert. Die bisher durchgeführten klinischen Studien haben nicht zu einer
vielversprechenden Intervention geführt, aber sie unterstützen das Feld mit gründlich
gesammelten, großen Datenmengen. Der Fortschritt in den Datenwissenschaften, einsch-
ließlich statistischer und maschineller Lernmethoden, verspricht neue Erkenntnisse
bei der Definition und Verbesserung der Genesung nach einer SCI, indem diese Daten
retrospektiv umfassend untersucht werden.

Ziel dieser Arbeit ist es, das Potenzial der Datenwissenschaft zu nutzen, um die
Wirkung in der klinischen Forschung zu maximieren. Diese Bemühungen stützten sich
auf drei Säulen: (i) Ausweitung der medizinischen Überwachung innerhalb klinischer
Studien, (ii) Einsatz bewährter methodischer Verfahren aus den Datenwissenschaften in
der Forschung zu SCI, und (iii) Aufzeigen der Bedeutung einer wirksamen Kommunikation
von Forschungsergebnissen.

Zu Beginn wird der allgemeine Kontext, in den sich diese Arbeit einfügt, in Teil A um-
rissen. Folgend werden in Teil BMaßstäbe gesetzt, die auf Sekundäranalysen wichtiger
Datensätze, die in verschiedenen Bereichen der Forscung zu SCI gesammelt wurden, na-
mentlich die klinische Studie Sygen, die Europeanmulticenter study onhuman spinal cord
injury (EMSCI), die Daten des Murnau-Zentrums und die SCIRehab-Kohorten, basieren.
Kapitel 1 untersucht, wie sich die Genesung nach SCI in den letzten zwei Jahrzehnten
verändert hat, und zeigt, dass die neurologische Genesung trotz eines sich weiterentwick-
elnden Behandlungsstandards in diesem Zeitraum weitgehend unverändert geblieben ist.
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Diese Beobachtung ebnet den Weg für die Verwendung historischer Patientendaten zur
Anreicherung von Placebo-Armen in künftigen klinischen Studien, wodurch die Exposi-
tion gegenüber der gewünschten Intervention maximiert werden kann. In Kapitel 2wird
die natürliche Entwicklung serologischer Marker nach SCI beschrieben. Diese Marker
stellen ein zusätzliches Überwachungsinstrument bei der Erprobung pharmakologischer
Interventionen dar, die sich über die eigentliche Verletzung hinaus auf den Einzelnen
auswirken könnten. Ebenso können Studien, in denen die Wirkung neuer pharmakolo-
gischer Maßnahmen getestet werden, durch Wechselwirkungen mit Medikamenten, die
nach einer Verletzung verschrieben werden, beeinträchtigt werden. Daher legen wir
in Kapitel 3 ausführlich den derzeitigen pharmakologischen Standard der Versorgung
dar. Wir haben eine umfangreiche Polypharmazie aufgedeckt, der die Betroffenen aus-
gesetzt sind. Um die Auswirkungen dieser Polypharmazie auf die Erholung nach einer
SCI zu charakterisieren, haben wir in Kapitel 4 die Literatur systematisch gesichtet und
sowohl klinische als auch präklinische Evidenz beschrieben, die positive oder negative
Auswirkungen diverser Medikationen auf die neurologische Erholung nach SCI haben
können.

In Teil C passen wir bekannte Methoden aus den Datenwissenschaften an, um sie auf
Anwendungen in der Forschung zu SCI zu übertragen. Wir untersuchen zunächst das Po-
tenzial von serologischen Biomarkern als Prädiktoren für die Erholung derMotorfunktion
in Kapitel 5. Diese Analyse zeigt, dass die Berücksichtigung von klinischen Merkmalen,
die für diese Verletzung spezifisch sind, die Vorhersage verbessert, aber dennoch durch
Faktoren wie fehlende Daten, die zu kleinen zu untersuchenden Kohorten führen, einges-
chränkt ist. Daher charakterisieren wir fehlende Daten im Kontext von SCI in Kapitel 6
ausführlich. Hier entwickeln wir auf der Grundlage von Simulationsstudien Leitlinien für
den Umgang mit fehlenden Informationen. Wir zeigen, dass die Imputation mittels der
letzten Beobachtung ein praktikabler Ansatz für neurologische Testergebnisse ist, da die
Genesung etwa sechs Monate nach dem Trauma ein Plateau erreicht. Schließlich wird in
Kapitel 7 das Konzept der positiven Abweichung untersucht, um Personen zu erkennen,
die sich über die klinischen Erwartungen hinaus erholen. Während solche Personen die
Leistung von Algorithmen des maschinellen Lernens in Prädiktionsproblemen beein-
trächtigen können, birgt das Verständnis der Mechanismen, die diesen phänomenalen
Genesungen zugrunde liegen, das Potenzial, Muster aufzudecken, die zu der beobachteten
besseren Genesung führen.

Schließlich unterstreicht Teil D die Bedeutung derWissenschaftskommunikation, um
die Translation der Forschung vom Labor ans Krankenbett effektiv zu gestalten. Kapitel
8 beschreibt insbesondere den Einsatz neuer Werkzeuge wie interaktive Datenvisualisier-
ung, um die Präsentation von Forschungsergebnissen zu verbessern und gleichzeitig die
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Forschung transparenter und zugänglicher zumachen, nicht nur für die Forschenden und
die klinische Gemeinschaft, sondern auch für die betroffenen Personen, ihre Familien
und die Gesellschaft.

Insgesamt trägt diese Arbeit zu einem eingehenden Benchmarking entscheidender
Elemente bei, die für klinische Studien zu SCI maßgeblich sind, wie z. B. die neurologis-
che Erholung, die Entwicklung serologischer Biomarker und die üblicherweise als Teil
der Standardbehandlung verschriebenen Medikamente. Diese Arbeit weist den Weg zu
einer verbesserten Datenanalyse und Genesungsvorhersage nach SCI, indem sie bekan-
nte Merkmale der Erkrankung integriert. Im Kontext des Forschungsfeldes trägt diese
Arbeit dazu bei, Ansätze weiterzuentwickeln, die zur Entdeckung von Interventionen zur
Verbesserung der Genesung nach SCI eingesetzt werden können.
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Part A

General introduction
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1 Spinal cord injury (SCI)

1.1 Definition

The central nervous system (CNS), responsible for receiving, integrating, and reacting to
external stimuli, is composed of two organs: the brain, located in the skull, which extends
from the foramen magnum into the spinal cord, located in the vertebral column (Figure
1) [2]. The spinal cord regulates the transmission of various neurological signals in the
sensory, motor, and autonomous systems. Owing to its crucial role as an intermediate
between the peripheral body and the brain, any trauma affecting the integrity of the
spinal cord leads to impairments in numerous other systems, including musculoskeletal,
cardiovascular, respiratory, urinary, and reproductive systems [3]. The initial loss of
homeostasis ultimately leaves the affected individual with impairments spamming from
dysregulated functions to complete loss, and may occasionally lead to death when a
homeostatic state cannot be maintained.

Figure 1: Central nervous system, spinal cord and level of injury. Created with BioRender.com
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1.2 Epidemiology
Two main types of spinal cord injuries (SCIs) should be distinguished: the ones from
traumatic and non-traumatic origins. Non-traumatic injuries could be the result of
tumors, infections, ischemia, or degenerative processes. Traumatic SCIs, on the other
hand, are caused by external trauma, such as motor vehicle accidents, sports injuries,
gun shots, and falls. The worldwide incidence of traumatic SCIs is estimated around 3.3
to 195.4 per million per year [4], with large variations at the national and subnational
level. In total, the prevalence, or total number of individuals living with SCI, is estimated
around 250 to 906 per million across Western countries (e.g., Canada, France, United
States of America (USA)), with notable differences between geographical areas [5, 6].
Interestingly, the incidence and distribution of the causes for traumatic SCIs vary greatly
depending on the geographical area considered, with, for example, an increased incidence
of gunshot wounds in the USA compared to Europe, Canada, and Australia [7]. Unlike
the primary cause of injury, other epidemiological parameters remain constant across
countries. Traumatic SCI is a conditionmainly affectingmale subjects, with amale:female
ratio estimated from 4:1 to 2.3:1 [7, 8]. The two main age groups affected are young adults
from 15 to 29 years old and above 50 years of age [3]. Interestingly, the predominant
causes of injury differ between the two age groups, with comparatively more falls in the
older population [9], leading to further dissimilarities in the injury characteristics (e.g.,
level of injury, injury severity).

1.3 Characterization

Clinical scores

Numerous assessments exist to specifically characterize a SCI, from neurological assess-
ments to electrophysiological [10] and pain testing [11], imaging (e.g., magnetic resonance
imaging [12]), or hand impairment quantification (e.g., graded redefined assessment
of strength sensibility and prehension (GRASSP) [13]). Taken together, they contribute
to draw a complete clinical description of an individual with SCI. This thesis primar-
ily focuses on scores assessed as part of the international standards for neurological
classification of spinal cord injury (ISNCSCI) examination, as presented below.

The ISNCSCI examination, featured in Figure 2, contributes to shaping the hetero-
geneous clinical manifestations. It does not only define sensory and motor functions of
each testable dermatome and myotome, but also the level, completeness and severity of
the injury.

Dermatomes and myotomes are defined as the projection on a skin area and groups
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of muscles, which innervation is provided by a certain spinal root [14]. In sensory testing,
each dermatome (n = 56 in total, equally distributed between left and right sides) is
assigned a value from 0 (absent) to 2 (normal), when compared to an unaffected area
(Table 1). The process is repeated for two distinct types of sensations, namely light touch
(LT) and sharp-dull discriminationwith the pin prick (PP) tests. The sums over all LT (total
light touch (TLT)) or PP (total pin prick (TPP)) scores range from 0 to 112, with higher
scores representing more preserved sensation. Similarly, motor function is evaluated
at each myotome (n = 20 in total), bilaterally, on a scale from 0 (total paralysis) to 5
(normal active movement against full resistance) (see Table 1 for score level definitions).
Combining information from each myotome leads a total motor score (TMS) from 0 to
100, sometimes split between lower extremity motor score (LEMS) and upper extremity
motor score (UEMS), both evaluated from 0 to 50.

Figure 2: International standards for neurological classification of SCI (ISNCSCI) worksheet.
ISNCSCI: Revised 2019 is licensed under CC BY-NC-ND 4.0 and presented in Rupp et al. [15].

26 General Introduction.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Data science for SCI clinical studies

Table 1: Details on the grading of sensory and motor functions

0 absence of sensation total paralysis
1 altered sensation (either impaired or

increased)
palpable or visible contraction

2 normal sensation active movement, full ROM with grav-
ity eliminated

3 active movement, full ROM against
gravity

4 active movement, full ROM against
gravity and moderate resistance in a
muscle specific position

5 (normal) active movement, full ROM
against gravity and full resistance in a
functional muscle position expected
from an otherwise unimpaired person

Score Sensory function Motor function

Adapted from Rupp et al. [15]; range of motion (ROM)

The level of injury, often referred to as neurological level of injury (NLI), is to be
distinguished from the anatomical level of injury, as illustrated in Figure 1. It refers
to the most lowest level of the spinal cord with normal sensory (LT and PP scored as 2)
and antigravity motor function (i.e., motor levels scored as 5) on both sides of the body,
assuming that there is normal sensory and motor functions in the above levels [16].

Injury completeness is defined according to the sparing of function in the sacral area
(see Figure 1) and assessed through the deep anal pressure (DAP) and voluntary anal
contraction (VAC). For an injury to be classified as neurologically complete, either DAP
would be absent, or both VAC and sensory scores at the S4-5 levels would be absent. The
injury is otherwise classified as neurologically incomplete.

Combining information from injury completeness, sensory and motor functions
allows for the overall grading of the injury severity through the American spinal injury
association (ASIA) impairment scale (AIS) grade, ranging from A to E, for the most to
least severe injuries. Further details on the definition of each grade are summarised in
Table 2. The AIS grade is an important assessment as it provides valuable information on
the severity of the injury and is associated with potential of recovery [17].
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Table 2: Details on the grades constituting the American spinal injury association (ASIA)
impairment scale (AIS)

A Sensorimotor complete No sensory or motor function is preserved in the
sacral segments S4-5

B Sensorimotor incomplete Sensory but nomotor function is preserved below
the NLI and includes the sacral segments S4-5,
AND no motor function is preserved more than
three levels below the motor level on either side
of the body

C Motor incomplete Motor function is preserved below the NLI AND
more than half of key muscles functions below
the NLI have a muscle grade less than 3

D Motor incomplete Motor incomplete status as defined above, with at
least half (half or more) of key muscle functions
below the NLI having a muscle grade ≥ 3

E Normal Normal. If sensation andmotor function as tested
with the ISNCSCI are graded as normal in all seg-
ments, and the patients had prior deficits, then
the AIS grade is E. Someone without an initial SCI
does not receive an AIS grade

Grade Type of injury Description of injury

Adapted from Rupp et al. [15]; American spinal injury association (ASIA) impairment
scale (AIS); international standards for neurological classification of spinal cord injury
(ISNCSCI); neurological level of injury (NLI)

Beyond neurological assessments, patients can also be evaluated according to func-
tional scores, which reflect their ability to perform daily tasks, such as dressing up,
walking, bowel and bladder management, and transfers. Functional scores also tend to
relate more to the priority concerns in the spinal cord-injured populations [18], such as
regaining or improving, sexual, bladder, and bowel functions. One of the most commonly
used functional scores is the spinal cord independence measure (SCIM) score [19]. The
latest version of SCIM, SCIM III, is divided in five subscales, assessing self-care abilities,
respiration and sphincter management, mobility in room and toilet, and mobility indoors
and outdoors [20].
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Recovery trajectory and quantification

Assessing clinical scores longitudinally enables the study of recovery trajectories. Spe-
cifically after SCI, improvements in aggregate scores such as LEMS or UEMS would occur
largely in the first six months following injury, before reaching a plateau between six and
12 months [17]. From this observation, one can define recovery based on the difference
between the score obtained shortly after injury and the one obtained around the expected
plateau. Similarly, recovery can also be defined based on changes in severity grading,
referred to as AIS conversion. Multiple variations of the AIS conversion can be considered,
from comparison of actual grades to comparison based on the completeness of the injury.

Taken together, the information characterizing an injury and its recovery, although
primarily collected for clinical purposes, are also essential components of clinical studies,
in defining outcomes of interest and in studying the natural evolution of a SCI and other
affected systems.

2 Clinical studies in SCI
Clinical studies are a type of investigations involving human subjects to assess the safety
and performance of an intervention [21] on an outcome of interest. Owing to the lack of
intervention, pharmacological or otherwise, to improve recovery following SCI, numerous
clinical studies conducted in SCI populations have been and are still conducted to date.
These clinical studies can adopt various designs. Here we will focus on the design of a
randomized clinical trial (RCT) and an observational study, which are introduced in the
following section and summarized in Figure 3.

2.1 Randomized controlled trials (RCTs) as gold standard
According to the American national institutes of health (NIH), a clinical trial is "a research
study in which one or more human subjects are prospectively assigned to one or more interventions
(which may include placebo or other control) to evaluate the effects of those interventions on
health-related biomedical or behavioral outcomes" [22]. More precisely, RCTs refer to clinical
trials in which participants are randomly assigned to the intervention or comparator
(typically placebo) group.

Randomization is believed to help reduce bias, which refers to systematic errors
that can occur from how the data is collected and/or analyzed [23]. Multiple sources of
bias have been identified in the context of RCTs. Firstly, confounding refers to a factor
associated with the intervention and/or the outcome of interest (e.g., age, sex, injury
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Figure 3: Differences between a randomized clinical trial (RCT) and an observational study.

heterogeneity) [24]. Secondly, selection bias occurs by (sub)consciously favouring the
enrollment of participants that are believed to benefit from the treatment [25]. Finally,
information bias may result frommisdiagnosis or misidentification of the exposure status
to the intervention of interest [26].

Since bias may lead to distorted views on the association between the intervention
and outcome of interest, study designs such as randomization have been developed
to mitigate its effects. Hence, the aim of the random assignment is to obtain groups
that would only differ in the intervention tested. The two groups obtained should be
otherwise comparable, also referred to as balanced groups (e.g. similar age distributions,
proportions in injury severity, sex, missing data). The ultimate goal is to be able to
attribute any differences in outcomes observed between the groups to the intervention
tested.

A RCT is conceptually the only study design that allows for this direct attribution of
effect to the intervention and is therefore, considered the gold standard when testing
therapeutical interventions [27]. RCTs are typically conducted in three phases, with
increasing cohort sizes: (i) phase I, studying the pharmacokinetics (i.e., the effect of the
receiver on the substance after administration [14]), pharmacodynamics (i.e., how the
substance affects the receiver [14]) and safety of the intervention; (ii) phase II, aiming to
determine the optimal dosage; (iii) phase III, testing drug efficacy. Upon approval of the
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intervention on the market, the trial enters phase IV, as known as pharmacosurveillance,
monitoring long-term (side) effects in the effective treated population.

RCTs in SCI

Dietz et al. [28] reported nearly 1200 entries since 1996 on ClinicalTrials.gov1 of trials
investigating one or more intervention(s) to promote outcomes following SCI. The pre-
dominant emphasis in both past and ongoing clinical trials has been on rehabilitation and
training, neuromodulation and electrical stimulation, and pharmacological interventions.
Dietz et al. noted that the latter, while being the most represented intervention in 2007
with about 38% of the trials reported, are proportionally less represented in the early
2020s. This shift in proportion can be explained by two factors: (i) the increased interest
in interventions based on neuromodulation and electrical stimulation; and, (ii) the overall
increase in clinical trials registered over time.

NASCIS study
The national acute spinal cord injury study (NASCIS) study refers to a series of three

trials conducted in the 1980s and 1990s in testing the effect ofmethylprednisolone sodium
succinate (MPSS) on recovery following acute SCI. Results of the second study (NASCIS
II) initially presented beneficial effects of high dose of MPSS administered specifically
within eight hours after injury [29]. Notably, the results of the NASCIS trials led to MPSS
being part of standard of care following SCI, which is the only intervention that ever
reached this status for SCI. However, criticisms and new evidence later arose, pointing
towards a lack of control group, bias in the results reported and lack of transparency
regarding the cohort sizes in the subgroup analyses [30]. At last, MPSS was retracted
from treatment guidelines after SCI [31, 32]. The NASCIS trials nonetheless increased the
attention of the SCI research community in identifying bias and limitations related to
data analyses and interpretation.

Sygen study
Originally set to investigate the effect of gangliosidosis 1 (GM-1), the Sygen trial is

a multicenter, randomized, double-blinded clinical trial conducted between 1992 and
1998 in the United States of America (USA). The trial enrolled close to 800 individuals, all
subject to the national acute spinal cord injury study (NASCIS) II protocol, and followed for
the course of the first year after injury. Standardized time points were set for neurological
assessments to be collected: baseline measurement (first 72h), 4, 8, 16, 26, and 52 weeks
following injury. Additionally, information spanning from surgical protocols, medications

1https://clinicaltrials.gov/
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prescribed to serological markers were included in the study protocol. While the trial
failed to demonstrate any significant benefit in improving neurological status [33, 34],
the data collected have since been reused in numerous secondary analyses.

RISCIS
The riluzole in spinal cord injury study (RISCIS) trial aimed to test the effect of

riluzole, a sodium channel-blocking anticonvulsant, in acute SCI across the USA and
Canada (ClinicalTrials.gov ID: NCT01597518). This treatment has the peculiarity of being
approved and used for the treatment of amyotrophic lateral sclerosis [35]. After a phase
I trial providing evidence of safety and suggesting neuroprotective effects in use for
SCI (ClinicalTrials.gov ID: NCT00876889) [36, 37], the compound entered a phase II/III
trial in 2013, which was discontinued by the sponsor in May 2020 due to the COVID-19
pandemic [38]. The trial originally planned for the enrollment of 351 participants [39], of
which 193 were effectively recruited. As a result of the early termination and reduced
cohort, the trial led to inconclusive results with the riluzole group showing improved
UEMS, an improvement which however failed to reach the predefined statistical criteria
for superiority. Further analyses are currently undertaken to investigate the effects in
subgroup populations.

NISCI study
The Nogo inhibition in spinal cord injury (NISCI) study is a double-blind, placebo-

controlled trial conducted from 2019 to 2023, across Switzerland, Germany, Spain, and
Czech Republic (ClinicalTrials.gov ID: NCT03935321). The trial was testing the efficacy of
antibodies directed against the growth inhibitory protein Nogo-A in improving move-
ments and quality of life of individuals with acute tetraplegia due to a SCI. The phase II
trial is based on preclinical knowledge suggesting enhance axonal sprouting and neuro-
protective effects [40], and a phase I trial which demonstrated that the intervention
was safe and well tolerated [41]. Notably, the NISCI study included historical controls in
its cohort to maximize the number of participants exposed to the intervention tested,
allowing for the completion of the trial, despite difficulties in enrollment related to the
COVID-19 pandemic []. Owing to its recent completion, definitive results on the effects of
anti Nogo antibodies are still unknown. However, the trial allowed for the collection of
data from 129 individuals, representing a new data source for future research.

As a result of the failures observed so far, and despite being the gold standard in
studying therapeutical interventions, RCT is likely not the only study design that can be
used to discover interventions with a therapeutic effect on SCI recovery. The aforemen-
tioned limitations are calling for complementary study designs, including the secondary
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analyses of data collected through RCTs, such as observational studies.

2.2 Observational studies
Observational studies are studies in which no intervention is introduced by the invest-
igators [42] (see Figure 3). By relaxing the need for balanced and comparable groups,
observational studies are logistically easier to implement compared to RCTs. They allow
for the collection of information from larger cohorts, more representative of the popula-
tion of interest. Tremendous efforts were deployed in that direction, especially since the
early 2000s. We present here examples of observational studies focused on SCI, which
contributed to the content of this thesis.

Observational studies in SCI

Secondary analyses of clinical trials data
Secondary analyses of data collected through RCTs are of utmost importance for the

field. Indeed, they offer cohorts with a large and thorough collection of data, with sample
sizes usually exceeding the ones from in-house data collection, and a more detailed view
at the individual level. The Sygen clinical trial is a good example of valuable data source
for secondary analyses. Despite the absence of effect found in the intervention tested, the
trial nonetheless considerably contributed to the SCI research field. It enabled numerous
secondary analyses, unrelated to the initial intervention tested, and contributed to gain-
ing insights in domains as diverse as medications prescribed [43], serological biomarkers
[44] or timing of surgical decompression [45].

European multicenter study on human spinal cord injury (EMSCI)
The Europeanmulticenter study on human spinal cord injury (EMSCI) 2 is a network of

centers specialized in SCI care across Europe and India. Started in 2000, this collaborative
effort groups 19 centers in which data from over 6000 individuals have longitudinally
collected, as of 2023. Data is collected meticulously throughout the network, relying on
specifically-trained staff. This assetmakes it one of the highest quality dataset available in
the field. The standardized assessments are performed during five distinct time windows:
very acute (from 0 to 15 days after injury), acute I (16 to 40 days), acute II (70 to 98 days),
acute III (150 to 186 days) and chronic (300 to 546 days). They mainly report neurological
scores from the ISNCSCI examination, but also functional scores (e.g., SCIM) and walking
ability (e.g., 6-minute walking test (6MWT), walking index for spinal cord injury (WISCI),
10-meter walking test (10MWT)). Notably, specific centers from the network collect

2https://www.emsci.org/
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additional information, such as the Murnau center in Germany, reporting serological
markers.

SCIRehab
The SCIRehab cohort groups data from six partner SCI rehabilitation centers across

the USA [46, 47]. The primary aim was to investigate the effectiveness of interven-
tions provided during rehabilitation on recovery following SCI. In pursuing this goal,
information on demographics, therapy and medical interventions, including medication
prescriptions, patient education and counseling, were collected. Notably, the SCIRehab
cohort was followed longitudinally, with outcome data available at six and 12 months
after injury. A total of 1500 individuals were enrolled in the cohort, from fall 2007 to end
of 2009, making it one of the biggest SCI rehabilitation cohort.

More generally, in the absence of interventions, observational studies are a valuable
setting to observe the natural course of a disease or condition. A comprehensive bench-
marking is warranted not only to improve clinical practice but also to conductmeaningful
and thorough interpretation of data collected as part of RCTs. In particular, having a com-
prehensive overview of the pharmacological compounds to which individuals are exposed
following SCI is essential to consider potential interactions when testing drug-based
interventions. Similarly, while many studies report on the epidemiological landscape
of SCI [48, 49], relatively little is known about the natural evolution of the neurological
landscape over time. This could be an indicator of improved care overall. Such research
questions are better suited to observational studies as they require data unaffected by
predefined assumptions on effects from interventions of interest. However, observational
studies also present specific challenges such as an increased degree of missing data, a
potentially high imbalance in the outcomes studied, and a higher heterogeneity of the
population observed. Overcoming those challenges is nonetheless made possible by the
in-depth study of data through the lens of data-driven approaches.

3 The place of data science in SCI research

3.1 The surge of statistical and machine learning (ML) modeling
Machine learning (ML) is a branch of artifical intelligence (AI) which uses training data
and mathematical optimization rules to make predictions on previously unseen testing
data [50]. Its development led to numerous successful applications in medical fields,
such as infectious disease testing [51] and cancer detection [52, 53]. Applications to
the field of SCI naturally followed and prediction models started to arise as early as
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1998, with a publication from Roland et al. comparing prediction models for ambulation
following SCI[54]. Overall, ML models have been used in over 40 publications dealing
with SCI, as summarised by Tuci and Håkansson et al., unpublished. They report that
the majority of the models published took demographic information (e.g., age, sex) and
neurological status, as assessed in the ISNCSCI examination, as input variables to be
used for fitting mostly linear models (e.g., linear and logistic regressions). However, it
is interesting to note the emergence of more complex models such as neural networks
or ensemble architectures in the last ten years [55, 56, 57]. To date, the field has been
mainly interested in predicting functional outcomes, especially walking ability [58], or
mobility in general taking the example of the functional independence measure (FIM)
[59] or SCIM [60]. Other highly represented outcomes of interest are scores derived from
the ISNCSCI examination (LEMS, UEMS, motor scores, AIS grade conversion). Overall,
we can observe that the applications of data-driven approaches and ML in SCI research
remain narrow in their spectrum, partially failing to scope the specific needs expressed
by individuals living with a SCI [18].

3.2 Challenges data scientists must face in SCI research
A number of limitations, inherent to the field, contribute to this slow start in integrating
data-driven approaches to SCI research. Firstly, while statistical and ML models require
large volumes of data to capture meaningful (potentially non-linear) predictive patterns,
SCI is a rare condition, automatically limiting the amount of data available. Secondly,
SCI is a heterogeneous condition both in its initial clinical presentation (severity, level of
injury, demographics) and in the patterns of recovery observed (e.g., from no recovery to
an individual being able to walk with an initial severe injury graded with an AIS A). The
emergence of more complex models in SCI research will most likely follow the growing
number of entries in data registries and contribute to better modeling the heterogeneity
of SCI. Despite the increase in data volume, a third limitation remains regarding the quality
of the data collected, in particular the quantity of missing data present. Although a vast
literature exists on the topic of missing data in statistics, the problem remains largely
underreported in the case of SCI research. The example ofmissing data is in part revealing
overlooked best practices as established in the data science and ML community. Taken
together, limitations on sample size, heterogeneity and missing data impair not only
prediction performance, but also generalizability of models developed. Further, as reported
in Tuci and Håkansson et al., unpublished, code developed for prediction models was
shared in only three publications [61, 62, 57], limiting the reproducilibity of the research
outcomes. Code sharing is an essential part to build on existingmodels and accurately and
critically peer-review models presented. Finally, as raised in other medical applications
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[63], ML prediction models, once performant, generalizable, and reproducible, require to
be interpretable for use in clinical practice. Interpretability, defined as "the degree to which
a human can understand the cause of a decision" [64], is crucial for data-driven predictions to
be accepted in the context of high stakes clinical decisions. Acceptability of models can
however be supported by the integration of domain knowledge, making it more relatable
by the healthcare providers who are at the interface between the research outputs and
affected individuals.

Observing the current challenges faced by researchers in SCI opens avenues for further
research, which have been in part pursued in this thesis.

4 Thesis objectives and outline
As described in the previous paragraphs, the field of SCI research currently lacks three
key factors to successfully embrace the opportunities provided by the advancements in
data science. Firstly, although considerable amount of data is now available, the field
is lacking a global overview of the natural course of recovery (neurological and other
biomarkers) and standard of care (medications prescribed) of the individuals affected
by SCI. This benchmarking is however essential to draw meaningful comparisons with
individuals undergoing interventions believed to improve their recovery. Secondly, best
practices developed alongside data-driven approaches have not yet been presented in a
comprehensive and adapted manner to the SCI research field. Finally, transparency in
scientific communication and data presentation is still to be further promoted, especially
at the frontier between researchers and clinical partners.

This thesis aims to address these three key factors using data-driven approaches
to maximise clinical impact in SCI research.

Further details on the contributionsmade through this thesis are presented as follows:
Part B Surveillance within clinical studies
Chapter 1 International surveillance study in acute spinal cord injury confirms

viability of multinational clinical trials
Chapter 2 Natural progression of routine laboratory markers after spinal trauma:

A longitudinal, multi-cohort study
Chapter 3 Pharmacological management of acute spinal cord injury: A longitud-

inal multi-cohort observational study
Chapter 4 Do commonly administered drugs inadvertentlymodify the progression

of spinal cord injury? A systematic review
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Part C Towards better data analysis for clinical studies
Chapter 5 Exploring the potential of routine serological markers in predicting

neurological outcomes in spinal cord injury
Chapter 6 Studying missingness in spinal cord injury: Challenges and impact of

data imputation
Chapter 7 The concept of positive deviance applied to spinal cord injury recovery:

An exploratory analysis

Part D Effectively conveying results through interactive data visualization
Chapter 8 The interactive manuscript: From tabular to interactive result present-

ation and data visualization

The thesis is concluded by a general discussion (Part E) summarizing the contribu-
tions presented in the broader context of SCI research, their limitations and implications
for future research endeavours.
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Introduction
Surveillance refers to the process of collecting, managing, analyzing, interpreting, and
reporting information relative to the status of a population in terms of a specific disease
or condition [65]. Surveillance therefore contributes to comprehensively characterizing
and better understanding the natural history of a condition. This represents an essential
step towards unravelling potential interventions (pharmacological or otherwise) which
aim to improve recovery or disease progression overall. In the case of spinal cord injury
(SCI), researchers are mainly working towards either neuroprotective (i.e., dampening
secondary injuries caused by ischemia and excitotoxicity leading to tissue inflammation
and loss), or neuroregenerative (i.e., promoting axonal growth) interventions [3]. To
assess the effectiveness of an intervention, one requires an in-depth understanding of
the natural history of the variations that such a trauma causes at all scales: from the
neurological recovery, observed at the macroscopic scale, to the chemical variations,
observed in parts of the blood, and including interventions taken as part of standard
of care, which might interact with the intervention of interest. Surveillance directly
enables this in-depth understanding and is therefore an integral part of clinical studies in
SCI. Surveillance is itself facilitated by data collection both in randomized clinical trials
(RCTs) and observational studies. RCTs allow for systematic and extensive data collection,
while observational studies indirectly reflect clinical knowledge (e.g., in testing a specific
marker at a given time after injury).

In this Part B, we leverage data from the Sygen clinical trial [34, 33], SCIRehab study
[46], Europeanmulticenter study onhuman spinal cord injury (EMSCI) 3 andMurnau study
center, aiming to analyze, interpret and report on three key components of surveillance
in SCI :

(i) neurological (motor and sensory) recovery over the last two decades in Chapter 1;

(ii) serological markers variation over the first year after injury in Chapter 2;

(iii) medications prescribed in the acute phase following injury (about two months) in
Chapter 3 and their effects on SCI-specific neurological recovery known from and
reported in the literature in Chapter 4.

3http://emsci.org/
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Chapter 1

International surveillance study in
acute spinal cord injury confirms
viability of multinational clinical trials

Adapted from:

Lucie Bourguignon, Bobo Tong, Fred Geisler, Martin Schubert, Frank Röhrich, Marion
Saur, Norbert Weidner, Rüdiger Rupp, Yorck-Bernhard B. Kalke, Rainer Abel, Doris Maier,
Lukas Grassner, Harvinder S. Chhabra, Thomas Liebscher, Jacquelyn J. Cragg, EMSCI study
group, John L. K. Kramer, Armin Curt and Catherine R. Jutzeler

BMC Medicine, 2022

Publication: 10.1186/s12916-022-02395-0
Neurosurveillance web site: https://jutzelec.shinyapps.io/Haemosurveillance/
GitHub repository: https://github.com/jutzca/SCI_Neurological_Recovery

Lucie Bourguignon primarily contributed to building the Neurosurveillance web site, on
an original idea from Catherine R. Jutzeler; and secondarily contributed to the acquisition,
analysis, and interpretation of the data and drafting of the manuscript. Further details
can be found in Section 1.6.
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1.1 Abstract

Background

The epidemiological international landscape of traumatic spinal cord injury (SCI) has
evolved over the last decades along with given inherent differences in acute care and
rehabilitation across countries and jurisdictions. However, to what extent these differ-
ences may influence neurological and functional recovery as well as the integrity of
international trials is unclear. The latter also relates to historical clinical data that are
exploited to inform clinical trial design and as potential comparative data.

Methods

Epidemiological and clinical data of individuals with traumatic and ischemic SCI enrolled
in the European multicenter study on human spinal cord injury (EMSCI) were analyzed.
Mixed-effect models were employed to account for the longitudinal nature of the data, ef-
ficiently handlemissing data, and adjust for covariates. The primary outcomes comprised
demographics/injury characteristics and standard scores to quantify neurological (i.e.,
motor and sensory scores examined according to the international standards for neuro-
logical classification of spinal cord injury) and functional recovery (walking function).
We externally validated our findings leveraging data from a completed North American
landmark clinical trial.

Results

A total of 4601 patients with acute SCI were included. Over the course of 20 years, the
ratio of male to female patients remained stable at 3:1, while the distribution of age at
injury significantly shifted from unimodal (2001/02) to bimodal distribution (2019). The
proportional distribution of injury severities and levels remained stable with the largest
percentages of motor complete injuries. Both, the rate and pattern of neurological and
functional recovery, remained unchanged throughout the surveillance period despite
the increasing age at injury. The findings related to recovery profiles were confirmed
by an external validation cohort (n = 791). Lastly, we built an open-access and online
surveillance platform (“Neurosurveillance”) to interactively exploit the study results and
beyond.
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Conclusions
Despite some epidemiological changes and considerable advances in clinical management
and rehabilitation, the neurological and functional recovery following SCI has remained
stable over the last two decades. Our study, including a newly created open-access and
online surveillance tool, constitutes an unparalleled resource to inform clinical practice
and implementation of forthcoming clinical trials targeting neural repair and plasticity
in acute SCI.

Keywords
Spinal cord injury, Surveillance study, Neurological recovery, Functional recovery, Aging,
Epidemiological shift, Benchmark
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1.2 Introduction
Traumatic spinal cord injury (SCI) is a devastating neurological disorder that is associated
with life-long neurological condition with motor, sensory, and autonomic deficits [66].
Damage to the spinal cord occurs via both mechanical perturbation (so-called primary
injury) and a cascade of damaging pathophysiological events (so-called secondary injury)
[67, 68]. There are no pharmacological or non-pharmacological interventions available
that mitigate the extent of damage in the acutely injured spinal cord. Despite the lack of
effective treatment options, considerable progress has been made toward reducing the
mortality rate and morbidity among patients with SCI [69, 70]. This progress is chiefly
attributable to advances in the acute and long-term care of SCI, including early spine
surgery (i.e., decompression and stabilization) [71], blood pressure augmentation within
the first week post injury [72], introduction of antibiotics [73], availability of specialized
rehabilitation centers [74], rehabilitation practices (e.g., gait training), and the prevention
and treatment of secondary complications (e.g., infections and neuropathic pain) [75, 76].

Little is known about the impact of these advances on the rate and pattern of func-
tional and neurological recovery following traumatic SCI. This knowledge gap is partially
attributable to the data sources available, which are often limited in consistency and
sample size, lack follow-up measures, and/or non-standardized data collection [77]. Vari-
ous recent studies have reported changes in demographics and injury characteristics over
the past decades. Most of these, however, have focused on regional epidemiology for a
limited number of outcomemeasures, spanning only a relatively short time period [78, 79].
There is a paucity of validated long-term and comprehensive longitudinal studies.

Our study addressed this knowledge gap by leveraging data from the European multi-
center study on human spinal cord injury (EMSCI) — the largest and most comprehensive
longitudinal international data source in the field of SCI 1. The first aim was to investigate
changes in the epidemiological landscape of traumatic SCI over the last 20 years with a
focus on changes in demographics and geographical and injury characteristics. Based
on previous evidence [78, 79], we hypothesized a shift to older and less severe injuries
along with an invariable ratio of female to male patients. The second aim was to establish
a benchmark for the rate and pattern of neurological and functional recovery after a
SCI. To this end, we investigated the extent that functional and neurological recovery
following traumatic SCI has changed over the last two decades. We hypothesized that
changes in acute and rehabilitation practices have led to improved outcomes during the
transition from acute to chronic SCI. External validation was conducted using data from
a landmark clinical trial.

1http://emsci.org/
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Lastly, we developed the Neurosurveillance web platform for the SCI community, re-
searchers, authorities, and policymakers that offers an open-access resource for bench-
marking recovery and inform the design and implementation of clinical trials.
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1.3 Methods

1.3.1 Study design and data source
We performed a prospective and longitudinal observational cohort study of individuals
enrolled in the EMSCI 2 (ClinicalTrials.gov Identifier: NCT01571531). The design and
reporting of this study adhere to the strengthening the reporting of observational studies
in epidemiology (STROBE) guidelines for observational studies [80]. Founded in 2001, the
EMSCI comprises 30 participating trauma and rehabilitation centers from across Europe
and India that have collected data from more than 5000 individuals with SCI. Detailed
neurological and functional outcomes are comprehensively tracked in individuals with
traumatic or ischemic SCI at fixed time points over the first year of injury (i.e., very acute
[within 2 weeks], acute I [4 weeks], acute II [3 months], acute III [6 months], and chronic
[12 months]). Further details on the EMSCI study (e.g., inclusion and exclusion criteria,
active centers per year) can be found in Additional file 1: Table S1.

1.3.2 Cohort definition: inclusion and exclusion criteria
To be included in our study, patients enrolled in the EMSCI had to meet the following
inclusion criteria: (i) available baseline information on sex, age at injury, and year of
injury; (ii) defined cause of SCI (e.g., disc herniation, traumatic, ischemic, hemorrhagic);
(iii) neurological level of injury (NLI) either “cervical,” “thoracic,” or “lumbar” (i.e., L1
and L2); and (iv) neurological assessment of injury severity according to the American
spinal injury association (ASIA) impairment scale (AIS) [1] (for details see Table 1.1) at
exam stage “very acute” (i.e., <2 weeks post injury) and/or “acute I” (i.e., 2–4 weeks post
injury). The NLI refers to the most caudal segment of the cord with intact sensation and
antigravity muscle function strength, provided that there is normal (intact) sensory and
motor function rostrally [16]. We excluded patients who had sustained a non-traumatic
SCI (with the exception of ischemic injuries), in whom damage was below the level L2
of the spinal cord, and missing information on injury completeness at the very acute or
acute I stage. Ischemic injuries with a determinable disease onset were included owing
to the fact that this type of injury is characterized by a sudden disease onset and the
rate and pattern of recovery is comparable to traumatic SCI [81]. The workflow for the
individuals included/excluded from our analysis is highlighted in Figure 1.1A.

2http://emsci.org/
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Table 1.1: American spinal injury association (ASIA) impairment scale (AIS) describes
the functional impairment as a results of spinal cord injury (SCI) [1].

A Sensorimotor complete No sensory or motor function is preserved in the
sacral segments S4-5.

B Sensorimotor incomplete Sensory but nomotor function is preserved below
the NLI and includes the sacral segments S4-5,
AND no motor function is preserved more than
three levels below the motor level on either side
of the body.

C Motor incomplete Motor function is preserved below the NLI AND
more than half of key muscles functions below
the NLI have a muscle grade less than 3.

D Motor incomplete Motor incomplete status as defined above, with at
least half (half or more) of key muscle functions
below the NLI having a muscle grade ≥ 3.

E Normal Normal. If sensation andmotor function as tested
with the ISNCSCI are graded as normal in all seg-
ments, and the patients had prior deficits, then
the AIS grade is E. Someone without an initial SCI
does not receive an AIS grade.

Grade Type of injury Description of injury

international standards for neurological classification of spinal cord injury (ISNCSCI);
neurological level of injury (NLI)

1.3.3 Primary outcome (dependent) variable
The primary outcomes were common neurological (total motor score (TMS), lower ex-
tremity motor score (LEMS), upper extremity motor score (UEMS), total pin prick (TPP),
total light touch (TLT), total sensory score (TSS)) and functional outcome scores (spinal
cord independence measure (SCIM), walking index for spinal cord injury (WISCI), 10-
meter walking test (10MWT), and the 6-minute walking test (6MWT)). For motor scores,
key muscles in the upper and lower extremities were examined according to the inter-
national standards for neurological classification of spinal cord injury (ISNCSCI) [16],
with a maximum score of 50 points for each, the upper and lower extremities (for a
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maximum total motor score of 100). Light touch and pin prick (sharp-dull discrimination)
scores were also assessed according to ISNCSCI, with a maximum score of 112 each (for
a maximum total sensory score of 224) [16]. It is important to note that between 2001
and 2019, different ISNCSCI versions were used to assess the sensorimotor scores. For
our analysis, we standardized and recalculated the ISNCSCI data by using the EMSCI
ISNCSCI calculator [82] to comply with the 2015 ISNCSCI revision [16]. The SCIM is a
scale for the assessment of activities of daily function. Throughout the duration of this
study (2001–2019), two different versions of the SCIM were used: between 2001 and 2007
SCIM II [83] and since 2008 SCIM III [19]. The major difference between the versions is
that SCIM II does not consider intercultural differences. Both versions contain 19 tasks
related to activities of daily living organized in four areas of function (subscales): self-care
(scored 0–20); respiration and sphincter management (0–40); mobility in room and toilet
(0–10); andmobility indoors and outdoors (0–30). For the longitudinal analysis, we pooled
the SCIMII and SCIMIII variables. WISCI has an original scale that quantifies a patient’s
dependency on walking aids to travel a distance of 10 m; a score of 0 indicates that a
patient cannot stand and walk 10 m and the highest score of 20 is assigned if a patient
can walk 10 m without walking aids of assistance [84]. Lastly, 10MWT measures the time
(in seconds) it takes a patient to walk 10 meters at a self-selected walking speed, and the
6MWT quantifies the distance (in meters) covered by the patient within 6 minutes [85].
The 10MWT and 6MWT were only analyzed for ambulatory patients.

1.3.4 Input (independent) variables
Year of injury and exam stage (i.e., time since injury) were selected as the independent
variables. Exam stage comprises four levels: very acute (≤2 weeks post injury), acute I
(1-month post injury), acute II (3 months post injury), acute III (6 months post injury), and
chronic (12months post injury). The examstage variablewas coded as continuous variable
for the estimation of temporal recovery trajectories. As with all observational studies,
there is potential for confounding effects and bias. Potential confounders included age,
sex, injury completeness (at time of injury) according to the AIS grade [86], and NLI
(cervical, thoracic, or lumbar).

1.3.5 Data preprocessing and statistical analyses
As part of the preprocessing, we assessed the type and pattern of missing data. Briefly,
we tested the hypothesis that the missing data are missing completely at random (MCAR)
using the LittleMCAR function of the R package BaylorEdPsych. To visually explore
the pattern of missing data as well as combinations of missingness across cases, we used
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the R package naniar.

In the first step of analysis, descriptive statistics (mean, standard deviations, median,
min, max, percentage, and proportions) were used to provide summary information
on the demographics, baseline injury characteristics, and baseline functional and neur-
ological outcomes. Independent 2-group Mann-Whitney-U and χ-squared tests were
used to assess whether there was a difference in demographics and injury characteristics
between included and excluded cohorts. Prior to the regression analyses, we normalized
and standardized our data (i.e., ExamStage, YEARDOI, AgeAtDOI). Specifically, normaliza-
tion refers to scaling a variable to have a value between 0 and 1, while standardization
transforms data to have a mean of zero and a standard deviation of 1. These two steps
are important as they improve the interpretability and computational performance of
the described statistical models. Employing linear and logistic regression analysis, we
assessed if demographics (i.e., age at injury, ratio of male and female patients) and injury
characteristics (i.e., injury severity and NLI) differed between 2001 and 2019. Variability
in injury characteristics were assessed separately for male and female patients. Specific-
ally, the proportions (in percent) of the different injury severities (AIS A to AIS D), injury
level (cervical, thoracic, and lumbar), and plegia (paraplegia, tetraplegia) were calculated
for each year of the surveillance period. Subsequently, we fit a linear regression model
with the proportion of AIS A as the response, and time since injury as the predictor to
assess if the confidence interval of the beta coefficient includes zero or not. This was
repeated for each AIS grade and all injury levels (i.e., cervical, thoracic, and lumbar). The
second step of the analysis entailed the employment of non-linear mixed effect models
to address the question if and to what extent the functional and/or neurological recovery
were subject to change over the course of the last two decades. We assumed a random
intercept and random effect for time since injury [87]. Moreover, we assumed a con-
tinuous time autoregressive process of order 1 for within-patient correlation structure
and assumed a power function of the mean value for within-patient heteroscedasticity
structure [88]. The model was fitted using restricted maximum likelihood for unbiased
estimates of variance components. Dependent variables were all primary outcome vari-
ables described above, independent variables were year of injury (YEARDOI) and exam
stages (ExamStage). To assess time-dependent changes in the recovery trajectories, the
independent variables were included as interaction effect (YEARDOI*ExamStage). These
analyses were performed for the overall cohort and stratified by sex, plegia, and AIS
grades. Confounders of not interest included age and sex. If applicable, we also adjusted
for AIS grades. The significance threshold was set at α= 0.05. Post-hoc pairwise compar-
isons were Bonferroni corrected to account for multiple comparisons [89]. Lastly, as we
expected a covariate-shift in terms of age, we performed a sensitivity analysis to determ-
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ine if the recovery trajectories of sensorimotor and functional recovery changed in an
age-dependent manner throughout the surveillance period. A second sensitivity analysis
aimed at testing for sex-specific differences in recovery profiles. The third sensitivity
analysis was performed to test the assumption that patients with ischemic and traumatic
SCI recover in a comparable fashion. For all analyses and figures, R Statistical Software
Version 3.5.2 for Mac Os Mojave was used. All analyses were run locally (MacBook Pro,
Memory 16GB, Processor 2.3GHz Intel Core i5).

1.3.6 External validation cohort

In order to externally validate our findings related to the epidemiology as well as neur-
ological recovery trajectories, we analyzed an independent clinical trial dataset [33].
Specially, the Sygen trial was a randomized, prospective, phase III, placebo-controlled,
multi-center study testing the efficacy of gangliosidosis 1 (GM-1) therapy in acute, trau-
matic SCI. Clinically active from 1992 to 1998, the Sygen trial failed to demonstrate a
superior treatment effect of GM-1 over placebo treatment. The Sygen clinical trial en-
rolled patients with traumatic SCI whowere admitted to trauma centers across the United
States of America (USA) and followed them over a year. Detailed information regarding
the trial can be found in the Additional file 3. It is noteworthy to mention that the
Sygen clinical trial is particularly well-suited to serve as an external validation data set
for EMSCI owing to similar granularity in data, timepoints of assessment, duration of
follow-up period, and standardized assessments across participating trauma and rehabil-
itation centers. There is no contemporary dataset that offers comparable data granularity,
quality, and depth as the Sygen trial. The workflow for the individuals included/excluded
from our analysis is highlighted in Additional file 3: Figure S1. To maximize the in-
terpretability of cross-data sources comparisons, the same inclusion/exclusion criteria
to be included in our analysis as for EMSCI were applied. Similar to the EMSCI data, we
standardized and recalculated the ISNCSCI data by using the EMSCI ISNCSCI calculator
[82] to comply with the 2015 ISNCSCI revision [16]. The validation was focused on the
sensorimotor recovery owing to the comparable assessment methods (i.e., ISNCSCI). In
the Sygen trial, functional recovery was assessed with different outcome measures (i.e.,
Modified Benzel Score, functional independence measure (FIM)) compared to the EMSCI
study making a proper validation of the functional recovery profiles impossible. Lastly,
we performed a sensitivity analysis to assess if the recovery trajectories are different for
patients who had early surgery (<24h) vs. those with late surgery (>24 h). In light of
that, we added the timing of surgery as an independent variable to the models described
above.
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1.3.7 Interactive web platform Neurosurveillance

In order to enable the SCI community, researchers, authorities, and policymakers to
fully explore the data and results of this study (and beyond), we developed the freely
available and open source Neurosurveillance web platform. Neurosurveillance was im-
plemented with the Shiny framework [90], which combines the computational power
of the free statistical software R with friendly and interactive web interfaces. Both, the
front- and back-end of Neurosurveillance have been built using the shiny dashboard
package [91]. Neurosurveillance is available as an online application and is hosted at ht-
tps://jutzelec.shinyapps.io/neurosurveillance/ and can be accessed via any web browser
on any device (e.g., desktop computers, laptops, tablets, smartphones). Neurosurveil-
lance is published under the BSD 3-Clause License. The source code of Neurosurveillance
is available through Github at https://github.com/jutzca/Neurosurveillance/. Further
details on the technical implementation can be found in Additional file 4.

1.3.8 Data sharing and code availability
The data used for this study, including de-identified individual participant data and a
data dictionary defining each field or variable within the dataset, can be made available
upon reasonable request to the corresponding author (CRJ). Data will be made available
following publication of this work. Written proposals will be evaluated by the authors,
who will render a decision regarding suitability and appropriateness of the use of data.
Approval of all authors will be required and a data sharing agreement must be signed
before any data are shared. The code to run the analysis as well as create the figures and
tables can be found on our Github repository 3.

1.3.9 Role of funding source
The funder of the study had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. The corresponding author had full access to all
the data in the study and had final responsibility for the decision to submit for publication.

3https://github.com/jutzca/SCI_Neurological_Recovery
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1.4 Results

1.4.1 Cohort summary
Between 2001 and 2019, a total of 5220 individuals were enrolled in the EMSCI (Figure
1.1A). Based on our initial inclusion criteria, 4601 patients were eligible for our analysis
(mean age at injury, 47.2±19.0 years; 77.0% male); 53.9% were injured at the cervical
level, and 51.5% had a motor complete injury at the initial ISNCSCI examination (i.e.,
AIS A and AIS B). Detailed cohort characteristics are provided in Table 1.2. The average
number of patients enrolled per year was 242.2±101.6 (Additional file 2: Figure S1). As
shown in Figure 1.1B and summarized in Additional file 2: Table S1, the majority of the
patients were admitted to EMSCI centers located in Germany (n = 2949, 64.1%), followed
by Switzerland (n = 451, 9.8%), and the Czech Republic (n = 297, 6.5%). Additional file 2:
Table S2 provides the demographics and injury characteristics stratified by age groups.

Table 1.2: Demographics and injury characteristics of included European multi-
center study on human spinal cord injury (EMSCI) cohort stratified by
sex.

Sex
Female 1059 (100%) 0 (0%) 1059 (23.0%)
Male 0 (0%) 3542 (100%) 3542 (77.0%)

Age (years)
Mean (SD) 51.1 (20.2) 46.0 (18.4) 47.2 (19.0)
Median [Min, Max] 52.0 [9.0, 94.0] 46.0 [9.0, 92.0] 47.0 [9.0, 94.0]

Cause
Disc herniation 3 (0.3%) 10 (0.3%) 13 (0.3%)
Hemorrhagic 12 (1.1%) 3 (0.1%) 15 (0.3%)
Ischemic 129 (12.2%) 202 (5.7%) 331 (7.2%)
Traumatic 915 (86.4%) 3327 (93.9%) 4242 (92.2%)

AIS grade
A 360 (34.0%) 1459 (41.2%) 1819 (39.5%)
B 136 (12.8%) 418 (11.8%) 554 (12.0%)

Female (n = 1059) Male (n = 3542) Overall (n = 4601)

Continued on next page
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Table 1.2: Demographics and injury characteristics of included European multicen-
ter study on human spinal cord injury (EMSCI) cohort stratified by sex.
(Continued)

C 227 (21.4%) 644 (18.2%) 871 (18.9%)
D 336 (31.7%) 1021 (28.8%) 1357 (29.5%)

NLI
Cervical 539 (50.9%) 1899 (53.6%) 2438 (53.0%)
Thoracic 387 (36.5%) 1256 (35.5%) 1643 (35.7%)
Lumbar 133 (12.6%) 387 (10.9%) 520 (11.3%)

Female (n = 1059) Male (n = 3542) Overall (n = 4601)

American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for
full description.
European multicenter study on human spinal cord injury (EMSCI), standard devi-
ation (SD), neurological level of injury (NLI)

A total of 619 EMSCI patients (mean age at injury, 49.7± 20.5 years; 77.1% male)
were excluded from our analysis (Additional file 2: Table S3). The ratio of male and
female patients was comparable between included and excluded cohorts (χ2 = 0.006, df
= 1, p-value = 0.939). However, the cohorts were different in terms of age (t = 2.779,
df = 697.900, p-value = 0.006) and injury characteristics (χ2 = 14.106, df = 3, p-value
= 0.003), with the excluded cohort being older and represented by a larger proportion
of AIS D injuries. For detailed information on the missing data, see Additional file 1:
Figures S1 and S2.

1.4.2 Epidemiological landscape between 2001 and 2009
The overall ratio between female and male patients remained constant over the last 20
years (β= 0.102, standard error = 0.665, p-value = 0.880, Figure 1.1C). Along these lines,
the ratio between female and male patients remained unchanged stratified according
to cervical and thoracic/lumbar spine levels (i.e., tetraplegia [ratio 1:3] and paraplegia
[ratio 1:3], Additional file 2: Figure S2A) as well as injury severity (AIS A [ratio 1:4],
B [ratio 1:4], C [ratio 1:3], and D [ratio 1:3], Additional file 2: Figure S2B). In contrast,
the overall distribution of age at injury changed significantly over the years (β= 8.603,
standard error = 1.045, p-value < 0.001). Between 2001 and 2019, there was a shift
towards older age at injury (Figure 1.1D, Additional file 2: Table S4), which was more
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prominent in male compared to female patients (interaction effect YEARDOI*Sexmale:
β = 5.306, standard error = 2.433, p = 0.029, Additional file 2: Figure S3). This shift
in age remained evident after stratifying patients according to their plegia (Additional
file 2: Figure S4A) and injury severity (Additional file 2: Figure S4B). In terms of the
baseline injury severity, the overall proportion (in percentage) of AIS A, AIS B, AIS C, and
AIS D remained constant throughout the study duration (Figure 1.1E). The proportions
of cervical, thoracic, and lumbar injuries were also unchanged (Figure 1.1F). These
findings remained constant in post hoc sensitivity analyses of subgroups according to
AIS grades (Additional file 2: Figure S5A) and plegia (Additional file 2: Figure S5B).
When stratified by age groups, linear regression models revealed significant changes in
the proportion of injury severities as a function of time (Additional file 2: Figure S6),
with more motor-complete injuries (AIS A, AIS B) among female and male patients older
than 50 years of age. Summary statistics of all models can be found in the Additional
file 2: Table S5.

1.4.3 Temporal progression of neurological and functional outcomes
The mixed-effect models revealed that recovery trajectories (i.e., fitted regression lines)
of all neurological and functional outcomes remained comparable between 2001 and 2019
(Figure 1.2). Dependent on the injury severity, the recovery trajectories within a year
were characterized by an improvement in function between baseline (i.e., very acute and
acute I) and 6months followed by a plateau phase up to 12months post injury (Additional
file 2: Figures S7-S10). In addition to the pattern, the rate of sensorimotor recovery
remained comparable between the years of the surveillance period (Figure 1.3A, B, and
Additional file 2: Table S6). This was also true when stratifying patients based on sex,
plegia, and AIS grades. Summary statistics of all models are provided in Additional file
2: Tables S7-S15. Our sensitivity analyses revealed that the neurological and functional
recovery profiles were comparable throughout the surveillance period between different
age groups (Additional file 2: Figure S11 and Table S17), male and female patients
(Additional file 2: Figure S12 andTable S17), and cause of injury (traumatic vs. ischemic,
Additional file 2: Figure S13 and Table S18). The results can be further interactively
explored on our open access and online Neurosurveillance platform.
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Figure 1.1: Study overview and result from the main cohort. A. Flowchart of the included
and excluded patients that were originally enrolled in the European multicenter study on human
spinal cord injury (EMSCI) study. Almost 90% of the EMSCI patients met our inclusion criteria;
B. Number of patients recruited between 2001 and 2019 per country. The majority of patients
were admitted to centers in Germany, Switzerland, and Czech Republic. Note: The Indian center
joined the EMSCI network only in 2011; C. Annual ratio between female and male individuals
with spinal cord injury (SCI) enrolled in the EMSCI. Between 2001 and 2019, the ratio between
men and women sustaining a traumatic or ischemic SCI remained comparable at 3:1; D. Change
in distribution of age at injury. Over the last two decades, a shift in age at injury was observed
for individuals with SCI. In comparison to early 2000s, which were characterized by a unimodal
distribution, the proportion of elderly people sustaining a traumatic SCI increased significantly; E.
Baseline injury severity. While there are some fluctuations, the proportions of injury severities, as
measured by American spinal injury association (ASIA) impairment scale (AIS) scores, remained
constant across the study period; F. Baseline level of injury. The proportion of cervical, thoracic,
and lumbar injuries did not significantly change as a function of time.
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Figure 1.2: Neurological and functional recovery throughout the surveillance period. The recovery
trajectory profiles of A. the motor function; B. functional independence; and C. walking function
remained comparable across the surveillance period. In other words, the degree a person with spinal
cord injury spontaneously recovers motor and walking function as well as functional independence
within 1-year post-injury is the same now as it was two decades ago. The solid lines represent the fitted
models and the shaded areas, the standard deviation. The inserted boxes illustrate the robustness of
the recovery profiles across all years for patients with AIS C injuries. For all other injury severities,
please refer to the supplementary material section 11.1.

Chapter 1. 55



Data science for SCI clinical studies

Figure 1.3: Comparison of sensorimotor recovery between data sources. A. The pattern
and degree recovery of motor; and B. sensory function of patients enrolled in the European
multicenter study on human spinal cord injury (EMSCI) were comparable to those of patients
from the Sygen study (C. andD.). The heat plots and the number in the tiles represent themean of
motor and sensory scores, respectively. The progression of upper extremitymotor score (UEMS) is
only shown for individuals with a tetraplegic spinal cord injury. Note: Individuals with paraplegic
spinal cord injury have, by definition, full function in the upper extremities (i.e., UEMS of 50)

1.4.4 Validation study
As summarized in Table 1.3, the validation cohort comprised 703 patients (mean age
at injury, 32.9±13.5 years; 79.7% male, 74.4% motor complete injury). In comparison
to EMSCI cohort, the Sygen cohort exhibited a comparable ratio of male and female
patients (χ2 = 3.176, df = 1, p-value = 0.074). However, the cohorts were different in
terms of age (t = 2.779, df = 697.900, p-value = 0.006) and injury characteristics (AIS
grades: χ2 = 301.44, df = 3, p-value < 0.001, NLI: χ2 = 219.12, df = 2, p-value < 0.001),
with the Sygen cohort being younger and represented by a larger proportion of AIS A
and cervical injuries.

56 Chapter 1.



DatascienceforSCIclinicalstudies

Table 1.3: Demographics and injury characteristics of Sygen cohort per year and overall.

Sex, n (%)
Female 23 (22.1) 32 (19.9) 30 (23.4) 24 (17.3) 32 (20.1) 2 (16.7) 143 (20.3)
Male 81 (77.9) 129 (80.1) 98 (76.6) 115 (82.7) 127 (79.9) 10 (83.3) 560 (79.7)

Age (years)
Mean (SD) 33.6 (13.8) 32.0 (13.4) 32.7 (12.9) 32.6 (13.3) 34.2 (14.0) 26.3 (13.2) 32.9 (13.5)
Median[Min, Max] 31.0 [15.0, 69.0] 30.0 [15.0, 66.0] 30.0 [15.0, 69.0] 30.0 [15.0, 67.0] 33.0 [13.0, 69.0] 23.5 [13.0, 60.0] 30.0 [11.0, 69.0]

AIS grade
A 69 (66.3) 102 (63.4) 75 (58.6) 83 (59.7) 106 (66.7) 11 (91.7) 446 (63.4)
B 9 (8.7) 14 (8.7) 16 (12.5) 19 (13.7) 19 (11.9) 0 (0) 77 (11.0)
C 22 (21.2) 34 (21.1) 27 (21.1) 34 (24.5) 31 (19.5) 1 (8.3) 149 (21.2)
D 4 (3.8) 11 (6.8) 10 (7.8) 3 (2.2) 3 (1.9) 0 (0) 31 (4.4)

NLI, n(%)
Cervical 81 (77.9) 115 (71.4) 103 (80.5) 112 (80.6) 119 (74.8) 10 (83.3) 540 (76.8)
Thoracic 23 (22.1) 46 (28.6) 25 (19.5) 27 (19.4) 40 (25.2) 2 (16.7) 163 (23.2)

1992 1993 1994 1995 1996 1997 Overall
n = 104 n = 161 n = 128 n = 139 n = 159 n = 12 n = 703

American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for full description.
European multicenter study on human spinal cord injury (EMSCI), standard deviation (SD), neurological level of injury (NLI)

Chapter1.
57



Data science for SCI clinical studies

The ratio of male to female patients remained constant at 3 : 1 (β= 1.247, standard
error = 0.668, p-value = 0.135; Figure 1.4A) and there was no significant change in the
distribution of age at injury between 1992 and 1997 (β= 0.392, standard error = 1.782,
p-value = 0.826, Figure 1.4B). The proportion (%) of AIS grades remained comparable
during the trial period (Figure 1.4C) (AIS A: β= 9.833, standard error = 20.484, p-value
= 0.634; AIS B: β = 2.891, standard error = 3.955, p-value = 0.486; AIS C: β = −1.156,
standard error = 6.622, p-value = 0.865; AIS D: β = −2.148, standard error = 2.707, p-
value = 0.454). The ratio between patients sustaining cervical and thoracic injuries
(β= 2.375, standard error = 2.471, p-value = 0.454; Figure 1.4D) was comparable across
the 6 years of study duration. An overview of the excluded cohort (Additional file
2: Table S1) as well as detailed information on the missing data (Additional file 2:
Table S2 and Figures S2 and S3) and model summaries of demographics (Additional
file 2: Table S3) can be found in the Additional files 2 and 3. As shown in Figure
1.4E and F, the motor and sensory recovery, respectively, were dependent on the injury
severity and level (Additional file 2: Figure 4). The direct comparison with the EMSCI
revealed similar pattern and rates of motor (Figure 1.3C, Additional file 2: Tables
S4-S6) and sensory recovery (Figure 1.3D, Additional file 2: Tables S7 and S8). Age
and sex had no effect on the rate and pattern of sensorimotor recovery. Owing to a
significant degree of missingness in the functional scores (i.e., Benzel score, > 30% data
was missing), we refrained from computing functional recovery profiles for the patients
enrolled in the Sygen clinical trial. In terms of the surgical timing, there was no statistical
difference in the sensorimotor recovery trajectory between the early and late surgery
group (Additional file 2: Table S9).

1.4.5 Interactive web platform Neurosurveillance

The Neurosurveillance web platform is hosted online and contains three main data
visualization parts: (i) epidemiological features, including demographics and injury
characteristics (Additional file 4: Figure S1); (ii) functional and neurological profiles
(Additional file 4: Figure S2); and (iii) recovery monitoring of single patients or a group
thereof. All data from the EMSCI study and the Sygen clinical trial, which was used in
this study, can be explored in a customized fashion (e.g., customized selection of patient
groups, one time point vs. multiple time-points).
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1.5 Discussion

The primary aim of this study was to outline the epidemiological landscape of acute SCI
over the last 20 years, as well as to provide a benchmark for the expected changes in
standardized neurological and functional SCI outcomes. In line with our first hypothesis,
the ratio between female and male patients remained fairly stable at approximately 1 : 3

throughout the surveillance period. The mean age at injury, however, has been steadily
increasing over the last 20 years, which is consistent with an aging general population at
risk. This increase was accompanied by a shift from a unimodal (i.e., young patients) to a
bimodal distribution of age at injury (i.e., young and elderly patients). In terms of injury
characteristics, the proportional distribution of injury severities and levels remained
stable with the largest percentages of motor complete injuries. Our second hypothesis
was not confirmed as neither the rate nor the pattern of neurological and functional
recovery has changed since 2001—even after adjusting for injury characteristics and
demographics. In essence, the degree a patient with SCI recovers sensory, motor, and
walking function within 1-year post-injury remained stable over the last two decades.
With the exception of the change in age at injury, all findings derived from the EMSCI
study were confirmed through the external validation analysis of a secondary source of
data (i.e., Sygen clinical trial performed in the USA). The similarity of results from these
different data sources affirm that our findings are not markedly influenced by temporal
or geographical biases or confounding factors related to the study design, timing of data
collection, or population structure.

Confirming previous findings, the age at injury progressively increased throughout
the surveillance period in both, male and female patients [78, 92, 93]. A shift from an
unimodal (i.e., young patients) to a bimodal distribution of age at injury (i.e., young and
elderly patients) was observed between 2001 and 2019. A cursory glance at the one of the
largest US data sources, spinal cord injury model systems (SCIMS) [93], suggests that this
upward trend in age at injury is evident since the early 1970s. Possible explanations for
this observation are the increasing longevity in the general population along with an
increase in propensity for risk taking among the elderly population [94]. Furthermore,
the elevated susceptibility for SCI among elderly is also attributable to the increasing risk
of falling with ageing [95]. In fact, the majority of SCI among elderly are sustained trau-
matically through falls [9]. Comparable to trends in the general population, the changed
age structure of the SCI population has major implications on the medical and nursing
services required in prevention and treatment of SCI and associated complications [96].
The latter is of particular concern, as the frequency of secondary health complications in
older patients with SCI is markedly higher compared to younger patients [97]. Older age
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at injury is not only associated with greater number of infections, cardiovascular and
metabolic complications, but also more fatigue and a greater risk for cognitive impair-
ments [98]. Moreover, the shift towards bimodal distribution of age at injury also has
implications on the design of clinical trials and the stratification of patients as it is imper-
ative that data collected from clinical trials are applicable to the patient population to
be treated. Thus, forthcoming clinical trials must ensure an appropriate representation
of elderly to provide meaningful and generalizable evidence and knowledge regarding
the trialed treatment strategy. A proportionate participation of the elderly individuals
in clinical trials is further desirable to allow for statistically meaningful subgroup ana-
lyses to account for age-related differences in treatment response (e.g., altered affect
pharmacokinetics and pharmacodynamics, adverse drug events due to comorbidities or
concomitant drugs). While the epidemiological landscape has been changing in terms of
age, traumatic SCI remains much more common in men, with incidence rates that are
three to four times higher compared to women. Along with reports from the SCIMS [93],
the data from the Sygen clinical trial study further corroborate the robustness of the
sex ratio. Our findings partially contrast previous reports suggesting an increase in the
proportion of female patients since the early 2000s [99]. These divergent observations
can likely be explained by the differences in study size (smaller studies are more prone
to outliers), study population (e.g., focus on subgroups vs entire cohort), and duration
of observation period (longer time windows allow to account for seasonal fluctuations).
Independent of age and sex, the incidence of cervical injures remained higher than that
of thoracic/lumbar injuries, as has been reported in other studies [99]. Although not
reaching statistical significance, the annual proportion of lower thoracic spine injuries
steadily decreased, while a greater number of cervical injuries was consistently recorded
over the last two decades. In contrast, no such trend was detected for the injury severit-
ies, as their distribution remained fairly stable for both male and female patients and
independent of the NLI. Results from the Sygen clinical trial study further suggest that
the proportion of sensorimotor complete injuries are following a declining trend since
the early 1990s.

Both the rate and pattern of neurological and functional recovery have been extens-
ively studied over the last couple of decades [100, 101]. Generally speaking, recovery after
acute SCI is characterized by an initial period of rapid improvement, with a plateau in
sensory and motor function by one year, leaving most patients with some permanent
neurological and functional deficits [100, 102]. Outcome-modifying factors include injury
characteristics (level and severity), age, acute care concepts (early surgical decompres-
sion, blood pressure regulation), comorbidities, and medication administered to treat
secondary complications (e.g., gabapentionoids) [103, 104]. Our international surveil-
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lance study revealed that rate, pattern, and variability of neurological and functional
recovery remained stable between 2001 and 2019. As a matter of fact, our validation
analysis further suggests that this pattern has been unchanged since the early 1990s
and is independent of geographical region, study design (observational vs. controlled
clinical trial), and changes in population structure. Independent of the data source and
year of injury, changes in neurological score were the greatest for tetra- and paraple-
gic AIS C patients. A markedly smaller increase was observed for patients with AIS D
injuries owing to ceiling effects of the neurological scores. In contrast, the AIS C and
AIS D showed the greatest increase in the functional scores, which are less prone to
ceiling effects. Our findings are remarkable considering the ongoing changes in the acute
care [75, 76, 105] and neurorehabilitation practices aiming at maximizing the functional
recovery following a SCI [106]. However, the mainly applied concept in SCI rehabilitation
still relies on fostering mechanisms of compensation and adaptation, while interventions
of true neural repair and induced regeneration have not yet reached clinical practice. It
is noteworthy that our study does not allow to make any assumption of the effects of
potential changes to the very early acute care (e.g., surgical decompression, specialized
transportation from scene of accident to hospital) on recovery. While our study indicates
consistent patterns and robust trends for injury characteristics-dependent neurological
and functional recovery during early rehabilitation in the sub-acute time period and
long-term follow-up of one year, it does not capture the immediate effects of very early
interventions on the recovery or outcome-modifying factors. Nevertheless, it is note-
worthy that our sensitivity analysis revealed that there is yet no significant effect of
early surgery on the longitudinal recovery trajectory. This is in line with a recent study
by Jaja and colleagues [107] employing group-based longitudinal trajectory modeling.
Additionally, the effect of outcome-modifying factors, such as medication, comorbidities,
and readmissions, has not been assessed owing to the lack of this data in the EMSCI study.
However, given the observed robustness of the recovery patterns, rate, and variability
over the years and a fairly large cohort, we carefully conclude that these effects are
marginal and might be specific to subpopulations. Future studies, powered to detect
effects of outcome-modifying factors, are warranted to investigate the validity of this
conclusion.

With recovery rates remaining rather consistent over recent decades, the data from
the EMSCI can be pooled across the years making it the largest longitudinal observational
studyworld-wide. EMSCI constitutes an unparalleled resource to inform real-time clinical
practice as well as guide the design and implementation forthcoming clinical trials
targeting neural repair and neural plasticity [108]. Gauging a patient’s recovery trajectory
is challenging owing to the high variability in neurological and functional recovery after
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injury. Heterogeneous recovery makes accuracy in prognosis at early time-points after
injury very difficult and creates a dilemma for clinicians asked to provide a prediction
of long-term outcomes to patients and their families. Undoubtedly, there is a great
need for accurate and reliable early injury exams or surrogates (e.g., blood biomarkers)
thereof. With data from EMSCI, patients that share similar demographics and injury
characteristics, physicians can provide a reference context with greater confidence to
newly injured patients (i.e., concept of digital twins/siblings) [109]. Having a “digital
twin” also allows tracking a patient’s progress, detecting deviations from the projected
trajectory, and initiating timely interventions (e.g., treatment of infections) if required. In
the context of clinical trials, heterogeneity also adds variability to recovery trajectories,
limiting the effectiveness of patient stratification methods, and potentially masking
subtle treatment effects. Thus, the provided surveillance data will be instrumental
to refine the patient selection and stratification for future clinical trials clinical trials
targeting neural repair and neural plasticity.

Beyond this, our study suggests that observational data, such as the EMSCI, could
be implemented as historical control data in clinical trials to, at least partially, replace
a concurrent control. For rare conditions like acute SCI, there are a number of distinct
advantages to the incorporation of historical control data into clinical trials. Chief among
them is increasing the number of participants exposed to treatment and thereby, avoiding
early termination of trials owing to difficulties with patient enrollment [110]. Moreover,
the incorporation of quality external historical control data (e.g., EMSCI data) allows
for reduced mean square error, increased power, and reduced type I error within the
current trial [111]. In contrast, should the historical data be inconsistent with current
trial control arm data, there is a potential for bias and inflated type I error. Residual
confounding cannot just reliably be adjusted away, andmisleading (causal and non-causal)
associationsmay not be ruled out. Owing to the standardized data collection and curation
by highly trained staff, the EMSCI constitutes a unique source for real-world evidence,
particularly for clinical trials that are conducted at EMSCI centers. This is highlighted by
the ongoing Nogo inhibition in spinal cord injury (NISCI) trial (clinicaltrial.gov identifier:
NCT03935321). Accumulating evidence suggests that the appropriate usage of real-world
evidence can increase the probability of successfully completing a clinical trial and even
support regulatory decisions [112].

Our study has limitations. Firstly, the EMSCI database lacks information on mortality,
which is an important factor when investigating how modifications to the standard of
care change the epidemiological landscape. This limitation is mainly driven by the fact
that the majority of the participating centers of EMSCI dedicated comprehensive SCI
care centers to which patients are transferred from trauma centers, where they received
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acute medical and surgical care. Trauma-related deaths would be recorded in the trauma
centers and thus not collected within the EMSCI. Secondly, the standard of care after
SCI (e.g., surgery and timing of surgery, rehabilitation training) was not standardized
across the EMSCI centers. Non-uniform standard of care can potentially confound the
data and results. In contrast, the Sygen study was completed in a rigorous manner, using
a randomized clinical trial protocol designed to limit confounding variables. Despite
these differences in study design, the findings related to neurological outcomes were
comparable. Thirdly, neither the EMSCI nor the Sygen trial included non-traumatic
SCI, with the exception of ischemic injuries. Longitudinal studies are warranted to shed
light on potential changes in epidemiology and recovery profiles of non-traumatic spinal
cord injuries. Lastly, EMSCI data have not undergone a thorough monitoring process as
typically applied in controlled trials, which is a concern as it might impact the results of
the study. Data missingness is inherent to any clinical study and particular observational
studies. We addressed this concern by performing a comprehensive examination of
the variables and patterns of missing data, which revealed that, in comparison to other
observational studies, the degree of missingness is remarkably low.
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1.6 Conclusion
In conclusion, the goal of this surveillance study was to provide an unparalleled overview
of how the epidemiological landscape of SCI evolved between 2001 and 2019. Additionally,
we addressed the questions whether and to what extent the rate and pattern of neurolo-
gical and functional recovery changed over the last two decades. Leveraging the largest
longitudinal observational SCI study, we observed a continuation in the previously repor-
ted trend toward increasing mean age at injury of new cases, while the ratio between
male and female patients as well as the acute injury characteristics remained stable. Most
interestingly, the rate and the pattern of neurological and functional recovery did not
change throughout the surveillance period. External validation using the data from a
landmark clinical trial conducted in the USA corroborated our findings regarding fore-
castable neurological recovery. It further suggests that our findings are not significantly
confounded by geography, study design, and population structure and change thereof.
In addition to the longitudinal quantification of the change in the population structure,
our study provides a benchmark for expected changes in standardized outcomes after
traumatic SCI. These seminal findings will inform and guide the development and imple-
mentation of future clinical trials assessing the safety and effectiveness of novel therapies
— with the potential applicability in a multinational setting.
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Figure 1.4: Overview of the validation study. A. The ratio between male and female individuals
with a spinal cord injury. Depending on the year, the ratio of male and female spinal cord injury
individuals changed between 3:1 and 4:1; B. Distribution of age at injury. Throughout the clinical
trial period, therewas no change in distribution of age at injury. Important to note, the average age
at injury of the Sygen clinical trial cohort, independent of sex, was significantly lower compared
to the European multicenter study on human spinal cord injury (EMSCI) cohort; C. Baseline injury
severity; and D. injury level: The proportions of injury characteristics remained constant between
1992 and 1997; E.Motor; and F. sensory recovery stratified by American spinal injury association
(ASIA) impairment scale (AIS) grade and plegia (i.e., paraplegia or tetraplegia). The solid lines
represent the fitted models and the shaded areas the standard deviation.
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2.1 Abstract
Our objective was to track and quantify the natural course of serological markers over
the first year following spinal cord injury. For that purpose, data on serological markers,
demographics, and injury characteristics were extracted frommedical records of a clinical
trial (Sygen) and an ongoing observational cohort study (Murnau study). The primary
outcomes were concentration/levels/amount of commonly collected serological markers
at multiple time points. Two-way analysis of variance (ANOVA) and mixed-effects regres-
sion techniques were used to account for the longitudinal data and adjust for potential
confounders. Trajectories of serological markers contained in both data sources were
compared using the slope of progression.

Our results show that, at baseline (≤ 2 weeks post-injury), most serological markers
were at pathological levels, but returned to normal values over the course of 6–12 months
post-injury. The baseline levels and longitudinal trajectories were dependent on injury
severity. More complete injuries were associated with more pathological values (e.g.,
hematocrit, ANOVA test; χ2 = 68.93, degree of freedom (df) = 3, adjusted p value < 0.001,
and χ2 = 73.80, df = 3, adjusted p value < 0.001, in the Sygen and Murnau studies, re-
spectively). Comparing the two databases revealed some differences in the serological
markers, which are likely attributable to differences in study design, sample size, and
standard of care. We conclude that because of trauma-induced physiological perturba-
tions, serological markers undergo marked changes over the course of recovery, from
initial pathological levels that normalize within a year. The findings from this study are
important, as they provide a benchmark for clinical decision making and prospective
clinical trials. All results can be interactively explored on the Haemosurveillance website
1 and GitHub repository 2.

1https://jutzelec.shinyapps.io/Haemosurveillance/
2https://github.com/jutzca/Systemic-effects-of-Spinal-Cord-Injury
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2.2 Introduction
Because of its crucial role in the coordination of bodily functions, damage to the spinal
cord can lead to severe dysfunction or failure in single or multiple organs, including the
heart, kidney, and liver [113]. As a consequence of altered functions, levels or concen-
tration of biomarkers derived from conventional serological tests are modified [44, 114].
Their readiness and straightforward collection make these serological markers, which
encompass both hematological (complete blood count (CBC)) and biochemical indices,
ideally suited for evaluating the trauma-induced systemic perturbations. Laboratory
tests are routinely conducted in the acute phase of injury to assess the initial magnitude
of systemic damage and to monitor the bodily functions. However, little is known about
how the systemic effects and their respective serological markers progress as a func-
tion of time. This paucity of knowledge is even more surprising, considering that these
serological markers have the potential to guide the design (patient stratification) and
implementation of clinical trials (safety assessment of trialed drug) [114, 115, 116]. To
address this knowledge gap, the aim of this study was to determine the natural progres-
sion of serological markers following a spinal cord injury (SCI). We hypothesized that,
by disruption of normal innervation of vital organs after a traumatic SCI, there will be
time-dependent and injury-specific alterations in serological markers characterized by
an initial pathological change that normalizes over time (i.e., reaches norm values of
healthy able-bodied people). Lastly, we provide the scientific and medical community
with a first-of-its-kind surveillance tool "Haemosurveillance" which aims to generate
novel research questions as well as to inform clinical decision making and clinical trial
design.
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2.3 Methods

2.3.1 Study design and data source
To determine the natural progression of serological markers following SCI, we performed
an observational study of prospectively collected data. Therefore, we analyzed two
different data sources, one each from the United States of America (USA) and Germany.
The first data source was a prospective phase III, placebo-controlled, multi-center study
assessing the efficacy of gangliosidosis 1 (GM-1) therapy in acute traumatic SCI [33, 34].
Running from 1992 to 1998, the Sygen trial failed to demonstrate a superior treatment
effect of GM-1 over placebo treatment. Full design, recruitment, and enrollment details
of the Sygen trial have been described previously [117]. A total of 797 patients across
the United States were included in the randomization. Within the framework of this
USA food and drug administration (FDA) regulated trial, detailed information concerning
neurological scores and blood chemistry were meticulously collected. The second data
source was an observational cohort study conducted at the over-regional level-I trauma
center in Murnau, Germany (hereafter referred to as the Murnau study). Between 2004
and 2017, 363 patients were enrolled and followed up for one-year post-injury. All patients
enrolled in the Murnau study received standard rehabilitation care.

2.3.2 Ethics approval
The study was performed in accordance with the Declaration of Helsinki. Approval for the
secondary analysis of the Sygen trial was received by an institutional ethical standards
committee on human experimentation at the University of British Columbia. The original
Sygen clinical trial (results published elsewhere) also received ethical approval, but
was conducted before clinical trials were required to be registered [34, 117, 118]. The
data received from the original clinical trial were de-identified. The Murnau study was
approved by the Bavarian Medical Chamber (#2018-077).

2.3.3 Cohort definition: Inclusion and exclusion criteria
To be included in our study, patients needed to have blood values at three different time
points as well as information on sex, age, and injury characteristics (i.e., injury severity,
injury level, and baseline motor and sensory scores). Baseline was defined as the first 72
hours after injury for the Sygen trial and the first two weeks post-injury for the Murnau
study. Patients were excluded if any of these data were missing or if they had sustained
a non-traumatic injury (e.g., a tumor), or had decided to withdraw their data over the
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course of the study.

2.3.4 Outcome, predictor, and confounding variables
The primary outcomeswere serologicalmarkers with data available for at least 50 patients
at each time point. This threshold was chosen to ensure that the model output was
interpretable, statistically powerful enough to make inferences, and clinically relevant.
Independent variables were time points post-injury at which serological markers were
collected. As an FDA requirement for the Sygen trial, detailed information regarding
routine blood chemistry was collected at admission to the trauma center (hereinafter
referred to as week 0), and at 1, 2, 4, 8, and 52 weeks post-injury. The laboratory analyses
were all performed by SmithKline Beecham between February 1997 and April 1993 using
the available clinical machines in this time period (Table S1). In the Murnau study,
information on serological markers was collected upon the request of the attending
physicians (i.e., not at standardized time points). As a consequence, different numbers of
blood draws were collected for each patient on different days post-injury. All laboratory
analyses were performed in-house at the berufsgenossenschaftliche unfallklinik (BGU)
Murnau. Normal ranges for the serological markers were provided by the manufacturer
of the analytic devices (Table S1). Normal ranges derived from the Murnau study were
also applied to the analysis of the Sygen study. The rationale for that stems from the
fact that the original upper and lower bound values in Sygen are not available anymore.
Potential confounders included age, sex, injury completeness (at time of injury) according
to the American spinal injury association (ASIA) Impairment scale (AIS) [119], level of
injury (at/above T6 vs below T6), and presence or absence of polytrauma. Polytraumawas
defined as significant injuries of three or more points in two or more different anatomic
regions in addition to the SCI [120]. In the Sygen trial, the injury severity was assessed
using the Frankel Scale, whereas in the Murnau study the AIS grading scale was employed.
In order to facilitate a comparison between the two data sources, we recalculated the AIS
grades for all patients enrolled in the Sygen trial using the Europeanmulticenter study on
human spinal cord injury (EMSCI) international standards for neurological classification
of spinal cord injury (ISNCSCI) calculator 3.

2.3.5 Statistical analyses
Two-way analysis of variance (ANOVA) and mixed-effects regression models were chosen
for the primary analyses. These models were naturally suited to account for the longitud-
inal nature of the data as well as to adjust for potential confounders. Dependent variables

3https://ais.emsci.org/
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were all serological markers that met our inclusion criteria. In the Murnau study, blood
values were averaged per week, from week 0 to week 7 post-injury. In both studies, if, for
a certain marker, patient, and time point, no data were available, the time point for this
patient’s marker was excluded. For analyses comparing both studies, we examined the
percentage of deviation from the mean of the normal range, collected from the Murnau
study. The rationale for this normalizing procedure was to make the data of the two
cohorts comparable despite having different units. Independent variables were time post
injury, AIS grade, or level of injury, when examining data from the individual studies.
When comparing the serological markers from both studies, we added the data sources
as an independent variable. For mixed-effects regression models, pairwise comparisons
of the different levels of the independent variable of interest were performed. Hence,
significance levels were adjusted for multiple comparisons using Tukey’s test, and p
< 0.05 after adjustment, was regarded as statistical significance. For one-study two-way
ANOVA tests, we applied Bonferroni correction for testing for six independent variables
together. Thus, we adjusted p values, and p < 0.05was regarded as statistical significance.
In the same way, when comparing the two studies, no correction was applied, as only the
data source was considered to be an independent variable. Thus, p < 0.05 was regarded
as statistical significance. For all analyses, R Statistical Software, version 3.6.3 (running
under: macOS Mojave 10.13.6), was used.

2.3.6 Data visualization
Using the R package Shiny and ShinyDashboard, we created an online interface to
visualize the results of the current study and to interactively explore the data used for
this study.

2.3.7 Data and code availability statement
Anonymized data used in this study will be made available upon request to the corres-
ponding author and in compliance with the European general data protection regulation
(EU GDPR). The code describing the analysis can be accessed on our GitHub repository 4.

4https://github.com/jutzca/Systemic-effects-of-Spinal-Cord-Injury
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Table 2.1: Subject and injury characteristics of patients included in our analysis and enrolled
in the Sygen trial and Murnau study, respectively

Sygen trial Murnau study p value
Subject characteristics
Total, n 703 239

Sex, n (%) 0.786
Male 560 (79.7) 193 (80.8)
Female 143 (20.3) 46 (19.2)

Age in years at injury <<< 0.001
Mean±SD 33±14 51±19

Neurological/functional outcomes
Baseline ASIA impairment scalea, n (%) <<< 0.001
A 446 (63.4) 81 (33.9)
B 77 (11.0) 22 (9.2)
C 149 (21.1) 26 (10.9)
D 31 (4.4) 110 (46.0)

Lower extremity motor score, mean±SD
Baseline 2.82±7.3 19.5±19.9 <<< 0.001
After one year 12.8±19.3 28.1±21.9 <<< 0.001
NA, n 140 105

Serological markers, n 47 39

a American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for
full description;

Significant p values are highlighted in bold.
standard deviation (SD)

2.4 Results

2.4.1 Cohort summary: Included patients

Subject and injury characteristics of both cohorts (Sygen: 679; Murnau: 239) are sum-
marized in Table 2.1. A comparison revealed a comparable ratio of male and female
patients (Pearson’s χ2 test, χ2 = 0.07, df = 1, p = 0.786). However, significant differ-
ences were found in terms of age distribution (two-sided t-test, t = 13.63, df = 322.55,
p < 0.001, Figure S1) and injury severity distribution (Pearson’s χ2 test, χ2 = 244.9, df
= 3, p < 0.001).
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2.4.2 Cohort summary: Excluded patients
A total of 94 and 124 patients in the Sygen trial and Murnau study, respectively, did not
meet the inclusion criteria and were excluded. Reasons for exclusion comprised normal
AIS grade (AIS E, n = 5) and missing information on baseline AIS grade (n = 192). Table
S2 provides a detailed overview of the excluded cohorts. Excluded and included cohorts
were significantly different in terms of age distribution (two-sided t-test; t = 2.03, df
= 124.56, p = 0.04, with excluded cohort younger than included cohort; and, t =−1.8852,
df = 123.91, p = 0.06, with excluded cohort older than included cohort), in the Sygen
trial and Murnau study, respectively. Excluded and included cohorts were comparable in
terms of ratio of male and female patients (Pearson’s χ2 test; χ2 = 3.43, df = 1, p = 0.06),
in the Sygen trial, but significantly different in the Murnau study (Pearson’s χ2 test;
χ2 = 8.73, df = 1, p = 0.003).

2.4.3 Serological markers
A total of 32 and 28 routinely assessed blood markers were available in the Sygen trial
and Murnau study, respectively. Among these, 14 and 8 blood markers, respectively, were
part of the CBC, which is a test that evaluates the cells that circulate in blood. Notably,
it includes counts of platelets, red and white blood cells, hemoglobin, and hematocrit.
The remaining blood markers reflect renal function (5 and 4 markers in the Sygen trial
and Murnau study, respectively), hepatic function (5 and 6 markers), pancreatic function
(1 and 2 markers), and muscle damages (2 and 3 markers). Overall, 20 blood markers
were shared among the two data sources. Table 2.2 provides an overview of all collected
markers.

Table 2.2: Serological markers collected in the Sygen trial and Murnau study

Complete blood count
Erythrocytes Erythrocytes
Hemoglobin Hemoglobin
Hematocrit Hematocrit
MCHC MCHC
MCV MCV
Thrombocytes Thrombocytes

Sygen trial Murnau study

Continued on next page
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Table 2.2: Serological markers collected in the Sygen trial and Murnau study (Con-
tinued)

Leucocytes Leucocytes
Lymphocytes Hemoglobin per erythrocyte
Monocytes
Neutrophils
Eosinophils
Basophils
MCH
Total serum

Liver
Alkaline phosphatase Alkaline phosphatase
ASAT ASAT
ALAT ALAT
Total bilirubin Total bilirubin
Chloride Gamma-GT

Lactate dehydrogenase
Kidney

Calcium Calcium
Creatinine Creatinine
Albumin Total proteins
Blood urea nitrogen Blood urea nitrogen
Uric acid

Muscle
Potassium Potassium
Sodium Sodium

Cholinesterase
Pancreas

Amylase Amylase

Sygen trial Murnau study

Continued on next page
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Table 2.2: Serological markers collected in the Sygen trial and Murnau study (Con-
tinued)

Lipase
Others

Glucose Glucose
Prothrombin time INR
Cholesterol Partial thromboplasmin time
Triglycerides CRP
Carbon dioxide Quick test

Serological markers, n 32 28

Sygen trial Murnau study

A total of 32 and 28 serological markers were available in the Sygen trial andMurnau
study, respectively. Overall, 20 serological markers were collected in both stud-
ies (highlighted in bold). mean corpuscular hemoglobin concentration (MCHC);
mean corpuscular volume (MCV); mean corpuscular hemoglobin (MCH); aspartate
aminotransferase (ASAT); alanine aminotransferase (ALAT); γ-glutamyl transferase
(Gamma-GT); international normalized ratio (INR); C-reactive protein (CRP)

2.4.4 Natural progression of serological markers post-injury
With the exception of amylase, c-glutamyl transferase (GGT), glucose, lipase, and alanine
aminotransferase (ALAT) in the Murnau study (p = 0.624, p = 1, p = 0.081, p = 1, p =
0.242, respectively) and alkaline phosphatase, potassium, and thrombocyte levels in
the Sygen trial (p = 0.685, p = 1, p = 1, respectively), the concentrations of serological
markers significantly changed as a function of time since injury (Tables S3 and S4). For 28
serological markers, these changes occurred within the normal range. The remaining 24
serological markers had baseline values outside the normal range, which normalized over
the course of recovery (Figures 2.1 and 2.2). One serological marker (i.e., hematocrit)
remained outside the normal range at one-year post-injury.

2.4.5 Relationship between serological levels and injury character-
istics

In line with our hypothesis, ANOVA revealed a global effect of injury severity (i.e., AIS
grade). Our post-hoc analysis revealed that the serological values were dependent on
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Figure 2.1: Natural progression of the complete blood count in patients with spinal cord
injury (SCI) who were enrolled in the Sygen trial. Three different patterns of progression were
observed. First, the bloodmarkers, such as thrombocytes, remained constant andwithin the range
of able-bodied people. Second, blood markers were pathological immediately after the trauma,
but recovered over the course of a year and reached the normal range. Erythrocytes, hemoglobin,
and leucocytes are characterized by such a course. Third, values were initially within the normal
range, but as a function of time they became pathological when compared with those of able-
bodied people. Hematocrit is one such example (not shown here). For clinical decision making as
well as the design and implementation of clinical trials, it is of utmost importance to know the
temporal progression of these blood markers. For further exploration of the data, please refer to
the web application Haemosurveillance (https://jutzelec.shinyapps.io/Haemosurveillance/)

.
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Figure 2.2: Natural progression of the complete blood count in patients with spinal cord
injury (SCI) who were enrolled in the Murnau study.

the AIS grades, calcium (p < 0.001 and p = 0.007), hematocrit (p < 0.001 and p < 0.001),
hemoglobin (p < 0.001 and p < 0.001), erythrocytes count (p < 0.001 and p < 0.001), and
total protein/albumin levels (p < 0.001 and p < 0.001), in both the Murnau study and
the Sygen trial, respectively (Tables S3 and S4). The pairwise comparisons between the
AIS grades yielded that calcium, hematocrit, hemoglobin, erythrocyte count, and total
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protein/albumin levels were significantly different between patients classified as AIS A
and those classified as AIS D. In all cases, higher values for these markers, closer to the
normal range, were associated with less severe injury (AIS D), as illustrated in Figure
2.1. Additionally, hematocrit, hemoglobin, erythrocyte count, and total protein/albumin
were significantly different between patients classified as AIS A and those classified as
AIS B, C, and D. All results are reported in Tables S5 and S6 and illustrated in Figures
S2–S7. In terms of injury level, we found no significant differences in serological values
between patients with injuries at/above T6 and those with injuries below T6 in both the
Murnau study and the Sygen trial (Tables S3 and S4). Lastly, the presence or absence of
a polytrauma had a significant impact on some of the serological values (Tables S3 and
S4).

2.4.6 Comparison between historical and contemporary cohort
As described, the Murnau study and Sygen trial have a number of major differences
in their design. As illustrated in Figure 2.3, there were significant differences in the
serological markers and their progression (Table S7), with the exception of amylase
(p = 0.114), alkaline phosphatase (p = 0.409), MCHC (p = 0.053), sodium (p = 0.476), and
ALAT levels (p = 0.746).

2.4.7 Data visualization
All results can be explored interactively on the Haemosurveillance website 5. Information
is presented in separate tabs for patients enrolled in the Sygen and Murnau studies,
respectively. The interactive interface also allows visualization of the data stratified by
demographics (sex and age group) and injury characteristics (i.e., injury severity and
type of plegia). Additionally, the interface facilitates a direct comparison of the two data
sources.

5https://jutzelec.shinyapps.io/Haemosurveillance/
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Figure 2.3: Comparison of the natural progression of hemoglobin (A) and mean corpuscular
volume (MCV) (B) in patients with spinal cord injury (SCI) enrolled in the Sygen trial and
the Murnau study, respectively.

2.5 Discussion
The present study describes the natural progression of serological parameters that are
routinely assessed on admission and in the days to weeks following acute SCI. Consistent
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with our first hypothesis, we found trauma-induced changes in routinely collected serolo-
gical markers (e.g., hemoglobin, glucose). By and large, most of the markers normalized
at one-year post-injury (i.e., reached the normal values of healthy able-body people).
Our second hypothesis was also confirmed, insofar as the observed changes in markers
were dependent on age at injury, sex, and injury severity, but not injury level. This sug-
gests that these changes, in addition to reflecting the polytrauma and the consequent
recovery process, are also capturing the severity of the SCI. Additionally, age at injury
can be considered as a potential confounder for both the serological levels and the injury
severity, which, itself impacts significantly the observed changes in serological markers.
Collectively, this study provides new insights that will aid the design and implementation
of clinical trials.

2.5.1 Natural progression and the relationship between serological
levels and injury severity

In the present study, the majority of the serological markers reach pathological level
shortly after the traumatic event and then normalize within a year post-injury. At
baseline (within two weeks post-injury), the degree of alterations in the serological
markers was associated with the injury severity, in such a way that patients with complete
injuries exhibitedmore pronounced abnormalities in serological markers than those with
incomplete injuries. This relationship between serological markers and degree of injury
severity underpins the notion that serological markers may be utilized as measurable
indicators of the severity. As such, they bear the potential to aid the diagnosis of SCI
severity, particularly in cases in which standard neurological examination is not possible
(e.g., intoxicated or unresponsive patients) [114]. Moreover, abnormalities in certain
serological markers (e.g., albumin) [44, 121] may also induce further damage or delay
the recovery process and, therefore, need to be addressed. In a recent study, Tong and
colleagues detected that patients with prolonged hypoalbuminemia recovered to a lesser
degree than those patients with normal albumin levels [44, 121]. Timely substitution
of albumin might have beneficial effects on the functional and neurological recovery
of the patient, as suggested by findings from animal studies [122]. Although the return
to normal serological levels occurs along the same timeline as the neurological and
functional recovery, for many serological markers there is no longer an association
between serological levels and injury severity. This lack of association in the chronic
phase of injury suggests that the serological markers are more representative of the
initial polytrauma and the recovery from it as opposed to being specific indices of the
SCI.
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2.5.2 Serological markers in the design and implementation of clin-
ical trials

Our study provides an important framework for the implementation of serological mark-
ers in the design and conduct of clinical trials. Conventionally, the safety and tolerability
of trialed treatments are assessed bymeans of specific abnormalities of routinely collected
serological and cerebrospinal fluid (CSF) markers [123]. As the majority of drugs, includ-
ing the currently trialed riluzole [124, 125] and minocycline [126, 127], are metabolized
and cleared by the liver and kidney, respectively, regulatory agencies released guidelines
for the assessment of risk surrounding drug-induced liver injuries (DILI) [128, 129] and
nephrotoxicity [130] in clinical trials. Multiple scheduled blood draws facilitate the early
detection, tracking, and management of drug-induced organ damage. Typically, any devi-
ation from the normvalues of healthy able-bodied peoplewould alert the investigators. In
SCI, however, baseline values of numerous serological markers are pathological (Figures
2.1 and 2.2), which, when ignored or unknown, can substantially bias assumptions on
drug safety. Our Haemosurveillance tool offers a first-of-its-kind platform to accurately
disentangle drug-induced from trauma-driven perturbations in routinely collected ser-
ological markers. This tool is particularly useful for (i) clinical trials without a control
group (i.e., placebo) and (ii) clinical trials with a control group that is not being managed
by a standard of care. In the former situation, historical data can aid the evaluation of
the safety of the trialed drug, whereas in the latter situation, the effect of the deviation
from the standard of care can be measured. For example, in the ongoing Nogo inhibition
in spinal cord injury (NISCI) trial 6, all enrolled patients are subject to repeated lumbar
puncture regardless of their allocation. As repeated lumbar puncture is not a standard
of care, historical data can be leveraged to assess their impact on health (e.g., rate of
infections).

In addition to providing guidance on drug safety and tolerability, serological markers
bear the potential to refine the stratification of patients and increase the likelihood of
detecting a significant treatment effect [131, 132]. A major barrier to detecting small
treatment effects in clinical trials is the extensive heterogeneity of the neurological
recovery and the scarcity of reliable predictors, such as the initial damage to the spinal
cord (i.e., AIS grades), that can fully capture the extent of the injury. Therefore, utilizing
a biological correlate (e.g., blood or central nervous system (CNS) marker) is potentially
advantageous and informative because of its representation of the trauma and indirect
involvement in the CNS.

6https://nisci-2020.eu/index.php?id=1449
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2.5.3 Differences between data sources
In the current study, we analyzed data from two different data sources to validate our
findings regarding temporal trajectories of the serological markers. Overall, these traject-
ories show comparable trends. However, some differences were uncovered that are likely
attributable to differences in the study design, study period, standard of care, population
structure, and sample size. The Sygen trial, our first data source, was conducted in the
1990s and had five pre-defined time points of blood collection. Moreover, as part of the
standard of care at the time, all patients sustaining a SCI received methylprednisolone, a
corticosteroid, to reduce inflammation and secondary damage [133, 134]. Corticosteroids
have been reported to alter the concentration of certain serological markers, including
bilirubin, albumin, and leukocytes [135, 136, 137]. Patients enrolled in the Sygen trial
exhibited reduced bilirubin levels and leukocytosis (i.e., an increase in the number of
white cells in the blood) compared with the patients in the Murnau study, who did not
receive acute treatment with methylprednisolone. Moreover, the time points of blood
draw could have contributed to the differences observed. Whereas the Sygen trial collec-
ted blood samples at pre-defined time points, the patients in the observational Murnau
study were subject to blood draws when indicated by the treating physician. Lastly, it
is well known that organ function declines with age and is correlated with changes in
laboratory values. A larger proportion of elderly patients was enrolled in the Murnau
study (Figure S1), which could have contributed to the divergent findings [138, 139].

2.5.4 Limitations
The primary limitation of the current study is that we utilized nearly 20-year-old retro-
spective data, collected in clinical trial conditions, which might compromise the transla-
tion of our results to the current clinical context. We partially address this limitation
by prospectively collecting contemporary data in the framework of the Murnau study.
Potential bias introduced by changes in standards of care over the last decades can be, at
least in part, mitigated. However, time points of data collection were not standardized
in the Murnau study. As a consequence, the time-varying sample size complicated the
analyses. For example, the chosen cutoff of 50 patients for the analyses was largely
driven by the sample size. Future studies with larger and more consistent sample sizes
at each time point of data collection are warranted to validate our findings and provide
the optimal cutoff values in a data-driven fashion. The small sample size further pre-
vented a meaningful subgroup analysis stratified by sex and age, considering that many
serological markers have different normal ranges for women and men as well as being
subject to age-related changes. It should also be noted that excluding patients because
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of missing AIS grade (e.g., because the patient was unconscious at baseline) represents
a loss of information and introduces a potential bias toward patients with slightly less
severe injuries. Studies with large sample sizes at baseline and follow-up time points
are warranted to address this in further detail. Additionally, our study is focused on
correlations at the population level, which does not guarantee the translation of our
findings at the individual level. Further investigations are needed to assess the potential
of serological markers in individual recovery prediction. Moreover, we did not account
for any of the medications that were administered to the patients to treat secondary
complications associated with SCI [140, 141]. Some medications (e.g., corticosteroids and
nonsteroidal anti-inflammatory (NSAID) medication) can affect the concentration of the
serological markers. Future studies should also address the impact of medication on the
serological markers, particularly in the acute phase of injury.

2.6 Conclusion
To our best knowledge, this is the first study to comprehensively investigate the natural
progression of serological markers in patients with a traumatic SCI. As a consequence
of the sustained trauma, numerous routinely collected serological markers are altered
in their concentration. The majority of these markers return to a normal range after
6–12 months post-injury. The current study provides a first step toward establishing
a benchmark for serological markers and their natural course, which can inform clin-
ical decision making and prospective clinical trials. Our online surveillance platform
(Haemosurveillance) provides a tool for the SCI community, researchers, authorities, and
policy-makers to interactively exploit the natural progression of serological markers
and compare different data sets with each other. The platform is configured such that
existing or newly generated data sets can be added if they comply with EU GDPR.
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3.1 Abstract
Multiple types and classes of medications are administered in the acute management
of traumatic spinal cord injury (SCI). Prior clinical studies and evidence from animal
models suggest that several of these medications could modify (i.e., enhance or impede)
neurological recovery. We aimed to systematically determine the types of medications
commonly administered, alone or in combination, in the transition fromacute to subacute
SCI. For that purpose, type, class, dosage, timing, and reason for administration were
extracted from two large SCI datasets. Descriptive statistics were used to describe the
medications administered within the first 60 days after SCI. Across 2040 individuals with
SCI, 775 unique medications were administered within the two months after injury. On
average, patients enrolled in a clinical trial were administered 9.9±4.9 (range 0–34), 14.3±
6.3 (range 1–40), 18.6±8.2 (range 0–58), and 21.5±9.7 (range 0–59) medications within
the first 7, 14, 30, and 60 days post-injury, respectively. Those enrolled in an observational
study were administered on average 1.7±1.7 (range 0–11), 3.7±3.7 (range 0–24), 8.5±6.3

(range 0–42), and 13.5±8.3 (range 0–52) medications within the first 7, 14, 30, and 60
days post-injury, respectively. Polypharmacy was commonplace (up to 43 medications
per day per patient). Approximately 10% of medications were administered acutely as
prophylaxis (e.g., against the development of pain or infections). To our knowledge, this
was the first time acute pharmacological practices have been comprehensively examined
after SCI. Our study revealed a high degree of polypharmacy in the acute stages of SCI,
raising the potential to impact neurological recovery. All results can be interactively
explored on the RX SCI web site 3 and GitHub repository 4.

3https://jutzelec.shinyapps.io/RxSCI/
4https://github.com/jutzca/Acute-Pharmacological-Treatment-in-SCI/
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3.2 Introduction
Traumatic spinal cord injury (SCI) is a neurological condition associated with varying de-
grees of motor, sensory and autonomic deficits. At present, there are no pharmacological
interventions available to enhance the extent a person neurologically or functionally
recovers from acute SCI [117, 142]. In the absence of interventions that enhance neur-
ological recovery, acute care of SCI chiefly focuses on managing neurological sequela
(e.g., neuropathic pain) and secondary complications (e.g., infections). As SCI ultimately
affects every organ system of the human body, a multidisciplinary treatment strategy
is necessary. In accordance with existing treatment guidelines, these necessitate the
administration of various drugs, including narcotics, analgesics, sympathomimetics, an-
tibiotics, muscarinic antagonists, antithrombotics, anticonvulsants, and antidepressants
to manage pain, infections, urinary tract dysfunction, deep venous thrombosis, and
psychological disorders. To date, little is known to what degree common drugs used
in the management of acute SCI have downstream and potentially unintended effects,
which modify neurological recovery. This is surprising in light of the fact that numerous
drugs: (i) are spinal cord blood barrier (SCBB) permeable and/or gain access to the central
nervous system via a leaky SCBB after injury, (ii) act on targets in the central nervous
system, and (iii) are administered during the window of opportunity to promote neural
repair and plasticity (i.e., in the initial hours to weeks post injury).

Recent observational studies have reported a potential beneficial effect of acutely
administered gabapentionoid medications (but not other anticonvulsants) on long-term
neurological outcomes after SCI [103, 143, 104]. Subsequent preclinical studies demon-
strated a potential gabapentionoids-meditated mechanism for enhanced recovery, as
well as confirmed behavioral benefits in animal models [144, 145]. While efficacy awaits
confirmation in prospective clinical trials, these collective observations point to the
promise of a reverse translational approach (bedside-to-bench) to restore neurological
function after SCI. Identifying other opportunities for drug repurposing depends, in
part, on knowledge regarding specific medications commonly administered in the acute
phase. Additionally, if promising pharmacologic agents are to be proposed for human
evaluation in clinical trials of acute SCI, it is important to consider the spectrum of other
concomitant medications that are routinely administered in the care of these patients,
as they may have known interactions with the promising agent in question.

The aim of this study was to characterize what constitutes the “acute pharmacological
management of SCI” leveraging available clinical trial and observational study data.
Specifically, we determined the types of timing, and reason of administration for drugs
commonly administered, alone or in combination, in the acute to subacute phase (i.e.,
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first 2 months) of SCI.
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3.3 Methods

3.3.1 Study design
The design and reporting of this analysis adhered to the relevant guidelines for observa-
tional studies [146].

3.3.2 Data source and cohort definition
To quantify medications commonly administered in the acute management of SCI, we
analyzed two sources of data. Both sources represent collections of data from the United
States of America (USA); the first (i.e., trial) between 1992 and 1998 and the second (i.e.,
observational) from 2007 to 2009.

The first source comprised details of concomitant medications administered in a
clinical trial—the Sygen trial—delivering gangliosidosis 1 (GM-1) in acute SCI [117, 34].
The Sygen trial was a randomized, prospective, phase III, placebo controlled, multi-center
study testing the efficacy of GM-1 therapy in acute, traumatic SCI [117, 34]. Full design,
recruitment, and enrollment details have been published previously [117]. Briefly, to be
included in the Sygen trial patients were required to have at least one lower extremity
with a substantial motor deficit. Patients with spinal cord transection or penetration,
head trauma, major chest trauma, or intubation were excluded, as were patients with
a cauda equina, brachial or lumbosacral plexus, or peripheral nerve injury. Multiple
trauma cases were included as long as they were not so severe as to preclude neurologic
evaluation. Patients were also excluded when they suffered from significant systemic
disease such as lung, liver, gastrointestinal, or kidney disease; or active malignancy or
any other condition as determined by history or laboratory investigation that could
alter the distribution, accumulation, metabolism, or excretion of the study medication,
cause a neurologic deficit, or result in the patient’s life expectancy being less than 2
years. The full list of inclusion and exclusion criteria can be found elsewhere [117]. All
patients were to receive the national acute spinal cord injury study (NASCIS) II dose
regimen of methylprednisolone sodium succinate (MPSS) starting within eight hours
after the SCI. To avoid any possible untoward interaction between MPSS and Sygen® [134],
the study medication was not started until after completion of MPSS administration.
With 797 enrolled patients followed over the first year following injury, the Sygen trial
was the largest clinical trial ever conducted in the field of SCI. The Sygen trial, which
followed patients over the first year following injury, was clinically active from 1992
to 1998, and showed no differences between treatment and placebo groups in terms of
neurological recovery [33]. The negative finding of the Sygen study is considered Class
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I Medical Evidence by the SCI Committee of the american association of neurological
surgeons (AANS) and the congress of neurological surgeons (CNS) [147, 148]. Subsequent
analyses of the Sygen data have been performed to characterize the trajectory and extent
of spontaneous recovery from acute SCI [149, 150].

The second source of data was from a large, observational study (i.e., SCIRehab), which
abstracted information pertaining tomedication use in the acute phase of SCI frompatient
medical records [46]. The SCIRehab study enrolled, upon consent, individuals aged ≥ 12

years with traumatic SCI whowere rehabilitated at six participating rehabilitation centers
from 2007 through 2009 [47]. Participating centers included Rocky Mountain Regional
Spinal Injury System at Craig Hospital, Shepherd Center, Atlanta GA; Rehabilitation
Institute of Chicago, Chicago, IL; Carolinas Rehabilitation, Charlotte, NC; the Mount Sinai
Medical Center, New York, NY; and National Rehabilitation Hospital, Washington, DC.
Patients were followed for the first-year post-injury and were excluded if they spent
two or more weeks at a non-participating rehabilitation center. Details of more than
460,000 interventions provided to 1500 patients were documented by over 1000 clinicians
at the six participating centers. Patient demographics and injury characteristics were
extracted from the patient medical record (part of the National Institute on Disability and
Rehabilitation Research Spinal Cord Injury Model Systems Form I). Design, recruitment,
inclusion criteria, and enrollment details have been previously described in detail [47].

To be included in our study, information on medications administered needed to be
available for the patients.

3.3.3 Commonly administered medications

In the Sygen trial, alongside serious adverse events, concomitant medication information
was routinely tracked following standardized case report forms by trained examiners
in clinical trials as a measure of safety. For each concomitant medication administered
during the trial, the reason for administration, dosage, dosing (i.e., start and end date,
frequency), and reason for conclusion were recorded. It was also documented in case
medicationswere administered for prophylactic reasons (e.g., to prevent deep vein throm-
bosis). Note that, although patients were randomized to GM-1 therapy, individuals were
not randomized to any concomitant medication administered and were managed ac-
cording to the conventional care protocols of the enrolling center. The SCIRehab study
documented the use of all commonly administered medications. For each medication ad-
ministered, route, dosage, and dosing (i.e., start and end date, frequency) were abstracted
directly from medical records. However, medication indication was not recorded.
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3.3.4 Medication data cleaning and organizing
Medication data from the Sygen trial and SCIRehab study were separately cleaned and
organized. From the medication files, which exist for each patient in the Sygen trial
and SCIRehab, we extracted generic medication name and information on dosing (i.e.,
start and end date, frequency). As information on medication indication (i.e., reasons
for administering a medication) was not entered in a standardized fashion during data
collection, we classified the medication indication according to the common terminology
criteria for adverse events (CTCAE) [151]. Briefly, each indication was assigned to a system
organ class (SOC), the highest level of the medical dictionary for regulatory activities
(MedDRA) hierarchy 5. The SOC is identified by anatomical or physiological system,
etiology, or purpose (e.g., SOC Investigations for laboratory test results) and comprises 26
different categories. We added a separate class for trauma-related pain (i.e., nociceptive
and neuropathic). The rationale for this amendment stems from the fact that the CTCAE
does not sufficiently cover this category. After carefully reviewing the medication list,
we have also consulted study clinicians of both data sources to identify any discrepancies,
including missing or duplicate medications, changes in dosages, and drug interactions
(i.e., medication reconciliation).

3.3.5 Assessment of blood brain barrier (BBB) permeability
Leveraging the information from the DrugBank database 6, the permeability of medic-
ations to cross the blood brain barrier (BBB) was determined. In case corresponding
information was missing in the DrugBank, a PubMed search was performed to consider
studies that have evaluated BBB permeability.

3.3.6 Statistical analysis and data visualization
R Statistical Software version 3.6.3 (Running under: macOS Mojave 10.14.4) was used for
all analyses and to visualize the results. Descriptive statistics (mean, standard deviation,
ranges, and proportions) were used to describe the patients’ demographics, injury char-
acteristics, and medication information. For the latter, this included the number and
type of medications administered, reason for administration, and how many medications
each patient received per day (i.e., point prevalence). Type and frequency of medications
that were administered prophylactically were also computed.

5medical dictionary for regulatory activities (MedDRA)®terminology is the international medical ter-
minology developed under the auspices of the international council for harmonisation of technical re-
quirements for pharmaceuticals for human use (ICH)

6www.drugbank.ca
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3.3.7 Interactive web platform RXSCI
In order to enable the SCI community, researchers, authorities, and policymakers to
fully explore the data and results of this study (and beyond), we developed the freely
available and open source RX SCI web platform. RX SCI was implemented with the Shiny
framework [90], which combines the computational power of the free statistical software
R [152] with friendly and interactive web interfaces. Both, the front- and back-end of
RX SCI have been built using the shiny dashboard package [91]. RX SCI is available as
an online application and is hosted at https://jutzelec.shinyapps.io/RxSCI/ and can be
accessed via any web browser on any device (e.g., desktop computers, laptops, tablets,
smartphones). RX SCI is published under the BSD 3-Clause License. The source code of
RX SCI is available through Github at https://github.com/jutzca/Acute-Pharmacological-
Treatment-in-SCI/tree/master/shinyapp.

3.3.8 Data sharing and code availability
Full anonymized data of both data sources will be shared at the request from any qualified
investigator (please contact CRJ). The code for the data analysis and visualization is
available in our GitHub repository 7.

3.3.9 Standard protocol approvals, registrations, and patient con-
sents

Approval for this study (secondary analysis) was received by an institutional ethical
standards committee on human experimentation at the University of British Columbia.
The original Sygen clinical trial (results published elsewhere) also received ethical ap-
proval, but was conducted before clinical trials were required to be registered (i.e., no
clinicaltrial.gov identifier available) [33]. Each participating center of the SCIRehab study
received institutional review board approval for this study and obtained informed consent
from each patient (or their parent/guardian).

7https://github.com/jutzca/Acute-Pharmacological-Treatment-in-SCI/
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3.4 Results

3.4.1 Patient characteristics and summary statistics
797 and 1243 patients from the Sygen clinical trial and SCIRehab observational study,
respectively, were included in our analysis. While all patients from the Sygen study were
included in our analysis, we had to exclude 257 patients from the SCIRehab study due
to missing data on medications (n = 242) or SCI with no sensory or motor impairments
(i.e., American spinal injury association (ASIA) impairment scale (AIS) E, cauda equine
or peripheral nervous system injuries, n = 15). In both cohorts, the ratio between male
and female patients was approximately 4 : 1, the majority of the patients were injured at
the cervical levels (Sygen: 75.2%; SCIRehab: 60.4%), and motor complete (Sygen: 65.7%;
SCIRehab: 65.6%). The most frequent cause of injury was car accidents (Sygen: 47.9%;
SCIRehab: 35.5%) followed by falls (Sygen: 16.2%; SCIRehab: 24.1%). Detailed description
of both cohorts is provided in Table 3.1.

Table 3.1: Demographics and injury characteristics of the included cohorts

Study details
Study type Prospective, double-blind,

randomized, stratified,
multicenter trial

Prospective observational
study

Study outcome No differences between
treatment and placebo
groups in terms of neuro-
logical recovery

Not applicable

Running time 1992-1998 2007-2010
Country USA USA
Time of enrollment <72h Admission to rehabilita-

tion center (30 ± 27 days
post-injury)

Follow-up 1-year post-injury Discharge from rehabilita-
tion center

Sygen clinical trial (n =
797)

SCIRehab study
(n = 1243)

Continued on next page
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Table 3.1: Demographics and injury characteristics of the included cohorts (Continued)

References [117, 34] [46]
Sex, n(%)
Female 153 (19.2) 231 (18.6)
Male 642 (80.6) 1012 (81.4)
Missing 2 (0.3) Not applicable

Age or age groups (years)
Mean (SD) 32.5 (13.4) Not applicable
Median [Min, Max] 30.0 [11.0, 69.0] Not applicable
Missing 2 (0.3%) Not applicable
12-19 150 (18.8%) 183 (14.7%)
20-29 236 (29.6%) 340 (27.4%)
30-39 194 (24.3%) 190 (15.3%)
40-49 118 (14.8%) 201 (16.2%)
50-59 55 (6.9%) 165 (13.3%)
60-69 44 (5.5%) 106 (8.5%)
70-79 Not applicable 45 (3.6%)
80+ Not applicable 13 (1.0%)

AIS grade, n(%)
A 446 (56.0%) 624 (50.2%)
B 77 (9.7%) 192 (15.4%)
C 149 (18.7%) 230 (18.5%)
D 31 (3.9%) 197 (15.8%)
Missing 94 (11.8%) Not applicable

NLI, n(%)
Cervical 599 (75.2) 751 (60.4)
Thoracic 196 (24.6) 46 (3.7)
Lumbar Not applicable 446 (35.9)

Sygen clinical trial (n =
797)

SCIRehab study
(n = 1243)

Continued on next page
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Table 3.1: Demographics and injury characteristics of the included cohorts (Continued)

Missing 2 (0.3) Not applicable
Paraplegia/tetraplegia, n(%)
Paraplegia 189 (50.9) 461 (37.1)
Tetraplegia 602 (36.5) 782 (62.9)
Unknown 2 (0.3) Not applicable

Cause, n(%)
Automobile 382 (47.9) 441 (35.5)
Blunt trauma 9 (1.1) Not applicable
Fall 129 (16.2) 300 (24.1)
Gunshhot wound 36 (4.5) 125 (10.1)
Motorcycle 48 (6.0) 110 (8.8)
Sports 35 (4.4) 125 (10.1)
Others 61 (7.7) 51 (4.1)
Pedestrian 10 (1.3) 20 (1.6)
Person-to-person contact Not applicable 10 (0.8)
Water related 85 (10.7) 61 (4.9)
Missing 2 (0.3) Not applicable

Sygen clinical trial (n =
797)

SCIRehab study
(n = 1243)

American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for full
description;
United States of America (USA); standard deviation (SD); neurological level of injury (NLI)

3.4.2 Acute pharmacological management after SCI

In total, 489 (trial) and 575 (observational study) unique medications were administered
over the course of 60 days after SCI. More than a third (n = 289[∼ 37.3%]) of the medica-
tions administered were common to both data sources (for details see Supplementary
Table 1). Medications were administered to manage secondary complications arising
from 21 different system organ classes or to facilitate surgical and medical procedures
(Figure 3.1A and Supplementary Table 2). No medications were administered for the
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following five organ systems: (i) congenital, familial and genetic disorders; (ii) injury;
(iii) hepatobiliary disorders, poisoning and procedural complications; (iv) pregnancy,
puerperium and perinatal conditions; and (v) social circumstances. On average, patients
enrolled in the Sygen trial received 9.9±4.9 (range 0–34), 14.3±6.3 (range 1–40), 18.6±8.2

(range 0–58), and 21.5±9.7 (range 0–59) medications within the first 7, 14, 30, and 60
days post-injury, respectively (Figure 3.1B). Patients enrolled in the SCIRehab cohort
study received on average 1.7±1.7 (range 0–11), 3.7±3.7 (range 0–24), 8.5±6.3 (range
0–42), and 13.5± 8.3 (range 0–52) medications within the first 7, 14, 30, and 60 days
post-injury, respectively (Figure 3.1C). Supplementary Figure 1 shows the absolute and
cumulative number of unique drugs per day for the Sygen (Supplementary Fig. 1A) and
the SCIRehab (Supplementary Figure 1B). The disparity between Sygen and SCIRehab
in the first month post injury can be attributed to different time-points of patient enroll-
ment, with the Sygen trial enrolling patients within 72 h, compared to SCIRehab, which
enrolled patients within days or weeks of injury (Table 3.1). As a result, medications
for first-line trauma management (e.g., nitroglycerin, dopamine) as well as surgical and
medical procedures (e.g., isoflurane, vecuronium bromide) are only captured by the
Sygen trial. Acetaminophen (analgesic, n = 674 patients), morphine (analgesic, n = 664

patients), and heparin (anticoagulant, n = 505 patients) were the three most commonly
administered medications in the Sygen trial (Figure 3.1D). Similarly, in the SCIRehab
study, the analgesic acetaminophen (n = 924 patients) was the most commonly admin-
isteredmedication, followed by the laxative docusate (n = 620 patients) and the analgesic
combination medicine acetaminophen and oxycodone (n = 603 patients) (Figure 3.1E).

The majority of patients enrolled in the Sygen trial required medications to treat
secondary complications arising from the gastrointestinal system (n = 752, 95.1%), pain
(n = 742, 93.8%), infections (n = 737, 93.2%), and psychiatric issues (n = 650, 82.2%)
(Figure 3.2A, Supplementary Table 3). A total of 150, 99, and 93 unique medications
were administered to treat a variety of secondary complications arising from infections,
respiratory system, and gastrointestinal system, respectively. Moreover, pain (e.g., mus-
culoskeletal), gastrointestinal complications (e.g., heartburn, ulcers), and infections (i.e.,
bacteria, viral, and fungal) were the most frequently managed problems (Figure 3.2B,
Supplementary Table 4). This was also true when stratifying for injury severity (AIS
grades, Supplementary Table 5). While infections were mainly treated with antibi-
otics, antifungal, and antiviral medications depending on their nature, complications
arising from gastrointestinal tract were targeted with analgesics, antibiotics, antacids,
antiulcer, anti-anemics, anticholinergics, and antispasmodics (see detailed overview in
Supplementary Table 6).
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3.4.3 Polypharmacy
As illustrated in Figure 3.3, polypharmacy was commonplace. Almost every patient
enrolled the Sygen trial or the SCIRehab study received multiple medications per day
(Figure 3.3A). Patients withmore severe injuries (AIS A and B) receivedmoremedications
per day than those with less severe injuries (AIS D). The number of medications admin-
istered per day per patient ranged between 1 and 30 for patients enrolled in Sygen trial
(Figure 3.3B) and between 1 and 43 for patients enrolled in the SCIRehab study (Figure
3.3B). Individual patient examples of the extend of polypharmacy is shown in Figure
3.3C. The complexity of the combination of medications administered is illustrated in
Figure 3.3D. In the Sygen trial, the three most common combinations of medications
were acetaminophen and morphine (n = 164 patients), morphine and ranitidine (n = 128

patients), as well as acetaminophen and heparin (n = 123 patients). In the SCIRehab
study, acetaminophen and acetaminophen oxycodone was the most common combina-
tion of medications (n = 480 patients), followed by acetaminophen and acetaminophen
hydrocodone (n = 407 patients), as well as acetaminophen and ibuprofen (n = 346 pa-
tients). The complexity of the combination of medications administered to patients in
the SCIRehab study is illustrated in Figure 3.3E.

3.4.4 BBB permeability
Out of the 775 unique medications, 59.4% (n = 460) have the ability to cross the BBB
while 20.6% (n = 160) are not permeable for the BBB. No information regarding the BBB
permeability was identified for the remaining 20.0% (n = 155). Detailed information on
the permeability can be found in Supplementary Table 7.

3.4.5 Prophylactic administration of medications
Approximately 10% (n = 2838) of all recorded indications in the Sygen trial (Figure 3.4A)
were labelled ‘prophylactic’ or ‘preventative’. A total of 137 unique medications were
administered for prophylactic treatment to prevent a wide range of secondary complica-
tions (Figure 3.4B). The major medication groups included antihistamines (ranitidine,
famotidine), anticoagulants (heparin, warfarin), and antibiotics (cefazolin, gentamicin)
for the prevention of secondary complications arising from the gastrointestinal system
(e.g., heart burn, gastric ulcers), blood and vasculature system (e.g., deep vein thrombosis),
and infections, respectively (Figure 3.4C). The majority of patient enrolled in the Sygen
trial (n = 666 [83.6%]) received prophylactic treatments (meanmedi cati ons/pati ent = 3

[range 1–21]; meani ndi cati ons/pati ent = 4.3 [range 1–33]) (Figure 3.4D). Supplementary
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Table 8 provides a comprehensive overview of all medications (and their respective
indications) that were administered prophylactically.

3.4.6 Interactive web platform RXSCI
The RX SCI web platform is hosted online 8 and contains three main data visualization
parts: (1) epidemiological features, including demographics and injury characteristic; (2)
information on the pharmacological treatment of SCI patients on daily basis, including
medication administration patterns; and (3) visualization of the polypharmacy. All data
from the Sygen clinical trial and the SCIRehab study, which was used in this study, can
be explored in a customized fashion (e.g., customized selection of patient groups). The
platform is configured such that existing or newly generated data sets can be added if
they comply with European general data protection regulation (EU GDPR).

8https://jutzelec.shinyapps.io/RxSCI/
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3.5 Discussion
The aim of the current study was to comprehensively evaluate pharmacological man-
agement practices in acute SCI. To this end, two large data sources were examined, one
from a clinical trial and the other from an observational study. Our analysis revealed an
incredibly high rate of polypharmacy spread over the course of the first 60 days’ post
injury, which was administered to manage various health conditions arising directly or
indirectly from acute SCI. Various medications were administered, including those that
readily cross the BBB (e.g., pregabalin [153], morphine [154]) to manage the sequela of
SCI (e.g., neuropathic pain), as well as other complex medical complications. Drugs that
cross the BBB may be more likely to have effects (positive or negative) on neural recovery
pathways after injury.

To our knowledge, this was the first time acute pharmacological practices have been
comprehensively examined after SCI. Even considering its extreme and traumatic nature,
the sheer number of medications administered in a short window of time after SCI, over
the course of the 2 months, was remarkably high. This led to a very high degree of
polypharmacy. For comparison, polypharmacy in other complex health conditions is
generally considered more than five medications [155, 156] — the average for acute SCI
patients was approximately double that threshold. While perhaps startling, the complex-
ity of managing SCI requires aggressive pharmacological management. Nevertheless,
the lack of attention paid to the question of “neurological safety” (i.e., whether use of a
medication or its interaction with other medications in the acute phase of injury will
have long-term and detrimental neurological consequences) is surprising, as is the fact
that few attempts have been made to discern potential beneficial (or detrimental) effects
of medications that readily cross the BBB. Furthermore, one must consider potential
interactions between the high number of clinically used concomitant medications with
novel medications and biologics being trialed for improving recovery from SCI.

The limited knowledge about the potential effects of acutely administered medic-
ations on recovery in humans becomes all the more curious considering that a num-
ber of these medications alter outcomes in animal studies. As an example, pregabalin,
a potent calcium channel blocker and anticonvulsant administered for neuropathic
pain, has been repeatedly shown to benefit recovery after SCI in animal and human
SCI [103, 143, 104, 144]. Detrimental effects were also observed for some medications,
including opioids, which attenuated the recovery of locomotor function and exacerbated
pathophysiological processes in rodentmodels of SCI [157, 158, 159]. A detrimental opioid
effect is in line with beneficial effects of naloxone (i.e., opioid antagonist) [157, 160], and is
highly concerning in light of the fact that opioids are ubiquitously administered for pain
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management in the early stages of injury (to > 80% of the patients). While completely
removing or restricting opioids would be highly problematic and present with serious
ethical concerns (i.e., weighing the management of acute pain with long-term neuro-
logical effects), opioids were among medications commonly administered to prevent
the onset of pain. This suggests that opioids, at least in a proportion of patients, were
prescribed with the intention to prevent the onset of pain, despite a lack of evidence
[161]. Among these individuals, neurological recovery could perhaps be facilitated by
minimizing the administration of opioids. Many other common medications (up to 10%)
are prophylactically administered, including acetaminophen, cefazolin, and famotidine
for pain/fever, infection, and ulcer prophylaxis, respectively.

Despite years of use in clinical routine, safety information with respect to neuro-
logical outcomes of many concomitant medications is currently not available. This is
highly concerning because fundamental assumptions of pharmacokinetics and -dynamics
may not apply as in other (healthy) individuals [162]. Alterations in physiology lead to
prolonged absorption as a consequence of slowed gastric emptying and gastrointest-
inal motility [162], altered distribution due to leaky blood spinal cord barrier [163],
hampered metabolism [164, 165], and slowed excretion are hallmarks of this altered
physiology [162, 164, 165]. Examples of medications with changed pharmacokinetics
are amikacin, baclofen, carbamazepine, cefotiam, ciprofloxacin, diazepam, diclofenac,
doxycycline, ketamine, lorazepam, naproxen, and vancomycin. A major issue with these
injury-induced modifications in pharmacokinetics is that some medications do not reach
desired therapeutic effects, whereas others may reach potentially toxic levels. In addition
to potential toxicity, also common side effects of medications (e.g., gastric emptying and
gastrointestinal motility caused by opioids) may worsen the natural pathophysiology
of injury. Post-marketing surveillance and risk assessment programs aim at detecting
previously unrecognized positive or negative effects that may be associated with a med-
ication—within real-world populations. To our knowledge, few of these studies have
examined effects after SCI. An exception is a recent study that established neurological
safety profile of baclofen, an antispasmodic to treat debilitatingmuscle spasms [43]. Cragg
et al. performed a secondary analysis of clinical trial data to provide data reaffirming
that baclofen is neurologically, hepatically, and renally safe to use in patients sustaining
a SCI [43]. Complementing the existing safety profile, neurological safety medication
profiles in the context of concomitant medications in real-world settings will enable
health care providers to provide an informed, evidence-based response regarding the
use of medications such as baclofen in the acute phase of SCI.
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3.5.1 Limitations
There are multiple limitations that are noteworthy. Firstly, in this study, we compared
two cohorts which were collected a decade apart. It cannot be excluded that changes in
the management, in particular pharmacological management, of SCI occurred over this
period. However, it has been shown that the recovery rate did not change [166]. Thus,
we can hypothesize that the potential changes in the standard of care did not signific-
antly improve or deteriorate the recovery of the SCI itself. Secondly, all medications
administered after SCI were meticulously tracked in the Sygen trial. However, there is
no information on medications prescribed prior to the injury. Thirdly, the two studies
involve dissimilar populations of people with acute SCI and data from two drastically
different periods (1992 versus 2007), both of which are dated. Another limitation was
the differences between the two study cohorts in reporting of demographics (i.e., age,
time since injury, etc.) at the time of enrollment. Thus, more contemporary studies are
warranted to establish the extent to which polypharmacy during acute SCI management
may have changed within the last 30 years. Lastly, there might be potential confounding
factors that may undermine the legitimacy of the data used in this study, including co-
morbidities, patient characteristics (age, sex, race, or genetics), concomitant diseases
or conditions, non-adherence of patients, variance in physician prescribing practices,
timing and duration of concomitant medication use, and dosage and potency of concom-
itant medications. These confounding factors must be considered when analyzing the
concomitant drug data of clinical trials and observational studies.

3.6 Conclusion and implications for other neurological
disorders

Our study revealed a dramatic degree of polypharmacy after acute SCI that potentially
impacts recovery and the potency of novel treatments of SCI. It should be noted that
in the testing of novel drug agents in preclinical models of SCI, the experiments are
typically designed to minimize (and of course standardize) the concomitant medications
administered to the animals. How starkly different this is from clinical reality is revealed
in our analysis. SCI is a complex condition and as such, the pharmacologic needs are
understandably high. While we are not arguing for an arbitrary “reduction” in the
use of various medications in the management of these individuals, evaluating current
standards of acute care and understanding what pharmacologic agents patients are
typically exposed to does represent an intriguing alternative strategy to improve the
lives of individuals with SCI. Knowledge gained from our study has major implications
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for other diseases hallmarked by polypharmacy, including Parkinson’s disease [167],
Alzheimer’s disease [168], Multiple Sclerosis [169], traumatic brain injury [170, 171],
cancer [172], and sepsis [173]. Similar to SCI, these diseases are complex conditions
associated with a wide range of symptoms (e.g., functional impairment) and secondary
complications (e.g., gastrointestinal and cardiovascular complications, pain) necessitating
pharmacological treatment — at times simultaneously. Many of these diseases are not
yet curable, but effective disease modifying treatments that relieve symptoms, slow
down disease progression, and improve quality of life are available [174, 175, 176, 177]. A
cursory glance at the literature corroborates that the knowledge gap regarding the effect
of commonly used medications on disease progression and their potential to alter the
effectiveness of disease modifying treatments is not unique to SCI.

Data availability
Fully anonymized data of both data sourceswill be shared at the request fromanyqualified
investigator (please contact CRJ). The code for the data analysis and visualization is
available in our GitHub repository 9.
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Figure 3.1: Pharmacological management of acute spinal cord injury (SCI). A. Secondary
complications. Spinal cord injury is associated with a large number of secondary complications
that arise from 20 organ systems as defined by common terminology criteria for adverse events
(CTCAE) published by the U.S. Department of Health and Human Services [151]. Manymedications
were also administered to facilitate medical and surgical procedures, such as decompression
surgeries, laminectomy, and computer tomography scans. B.Number ofmedications administered
to patients enrolled in the Sygen trial within the first 7, 14, 30, and 60 days post-injury. C.
Number of medications administered to patients enrolled in the SCIRehab study within the first
7, 14, 30, and 60 days post-injury. D. Frequency of medications administered. The majority of
patients enrolled in the Sygen trial received acetaminophen, morphine, and heparin to treat
secondary complications, such as pain and deep venous thrombosis. E. Frequency of medications
administered. Pain killers (acetaminophen and acetaminophen oxycodone) as well as the laxative
docusate were among the most frequently administered medications in the SCIRehab study.
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Figure 3.2: Indication of medications administered. A. Number of unique medications admin-
istered per organ system for patients enrolled in the Sygen clinical trial. Note the diversity of
medications administered within each category of complications. For instance, over 100 different
medications were administered to treat infections and infestations as well as for surgical and med-
ical procedures. B.Number of patients of the Sygen clinical trial that required treatment per organ
system. The three most frequently treated secondary complications were pain, gastro-intestinal
system disorders, as well as infections. The SCIRehab database did not track the indications for
which medications were prescribed.

.
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Figure 3.3: Polypharmacy. Caption continues on the next page.
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Figure 3.3: (Previous page.) A. Point prevalence of commonly administered medications. The
number of medications administered per day per patient in the first 60 days post injury varied
between 1 and 30 for the clinical trial and between 1 and 43 in the observational study. Each line
represents one patient and the color white indicates that no medication was administered or no
data was available for that time period. B. Daily average number of medications administered.
Patients withmotor complete injuries (AIS A and B) received on averagemoremedications per day
compared to patients with motor incomplete injuries. The range medications administered varies
quite drastically. The dashed line denotes the average number of medications and the solid lines
the minimum and maximum number of medications, respectively. Patients with no information
on AIS grades at baseline were grouped together in the category ‘unknown’. C. Examples longit-
udinal medication profiles for four patients in the first 60 days post injury. Polypharmacy was
commonplace across different injury severities and aetiologies. The pattern of medication admin-
istration varied between continuous, intermittent, and single-use indications. Medications were
often co-administered bearing a high risk of pharmacological interactions between medications.
While some are well-understood, the majority of these interactions (particularly combinations of
three andmoremedications) have not yet been explored. D.Network of medications administered
in combination to patients enrolled in the Sygen trial. The nodes of the network represent the
medications. The size of the nodes represents the number of patients that have received this
particular medication on day 7 or 14, respectively. Medications that were administered together
on a specific day, either 7 or 14, are connected via an edge. The width of the edge represents the
number of patients that have received the two medications (acetaminophen and ketorolac) in
combination on the day of interest. E. Network of medications administered in combination to
patients enrolled in the SCIRehab study. The nodes of the network represent the medications. The
size of the nodes represents the number of patients that have received this particular medication
on day 7 or 14, respectively.
.
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Figure 3.4: Prophylactic pharmacological treatment to prevent secondary complications
from occurring. A. Number of indications per organ system. The majority of prophylactic indic-
ations were related to the gastrointestinal and vascular system as well as infections of all sorts. B.
Number of uniquemedications administered for disease prophylaxis. C.Number of indications per
medications. Anticoagulants, antihistamines, and antibiotics were amongst the most frequently
administered medication classes. D. Number of patients that received prophylactic treatment per
organ system. The majority of the patients enrolled in the Sygen trial (n = 666 [83.6%]) received
at least one medication for disease prophylaxis. The average number of medications per patient
was 3 (range 1–21) and average number of indications per patient was 4.3 (1–33).

.
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4.1 Abstract

Background and objectives
Complications arising fromacute traumatic spinal cord injury (SCI) are routinelymanaged
by various pharmacological interventions. Despite decades of clinical application, the
potential impact on neurological recovery has been largely overlooked. This study aims
to highlight commonly administered drugs with potential disease modifying effects.

Methods
This systematic literature review included studies referenced in PubMed, Scopus andWeb
of Science from inception toMarch 31st, 2021, and assessing disease-modifying properties
on neurological and/or functional recovery of drugs routinely administered following
SCI. Drug effects were classified as positive, negative, mixed, no effect, not (statistically)
reported. Due to the vast heterogeneity in study protocols and reporting standards, a
meta analysis could not be conducted. Risk of bias (RoB) was assessed separately for
animal, randomized clinical trials and observational human studies.

Results
Our literature review revealed 394 studies conducting 486 experiments that evaluated
144 unique or combinations of drugs. 195 of the 464 experiments conducted on animals
(42%) and one study in humans demonstrate positive disease-modifying properties on
neurological andor functional outcomes. Methylprednisolone, melatonin, estradiol and
atorvastatin were the most common drugs associated with positive effects. Two studies
on morphine and ethanol reported negative effects on recovery compared to control.

Discussion
Despite a large heterogeneity observed in study protocols, research from bed to bench
and back to bedside provides an alternative approach to identify new candidate drugs in
the context of SCI. Future research in human populations is warranted to determine if
introducing drugs likemelatonin, estradiol or atorvastatin would contribute to enhancing
neurological outcomes after acute SCI.

Trial registration information
The study protocol was registered on PROSPERO (CRD42021231851).
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4.2 Introduction
Spinal cord injury (SCI) is a devastating condition that often leads to severe andpermanent
neurological and functional impairments. Despite recent advancements, effective treat-
ments promoting neurological and functional recovery are urgently needed [178, 179].
Over the last decades, interest in exploring the disease-modifying effects of commonly
administered drugs in this context has grown [104, 43, 143, 103]. Nearly every individual
sustaining a traumatic SCI receives multiple types and classes of drugs to manage a wide
range of secondary complications associated with the neurotrauma [180, 181, 182]. These
range from drugs to manage blood pressure, to analgesics for concomitant traumatic
injuries, to anticholinergics for spasms. A recent study showed that patients receive up
to 60 unique drugs within the first two months, often in combinatorial fashion [180].
Despite extensive polypharmacy, little is known to what degree common drugs used in
the management of acute SCI have downstream, unintended, beneficial or detrimental,
effects on neurological and functional outcomes.

The acute phase of SCI represents a crucial window of opportunity for therapeutic in-
tervention. Consequently, understanding the potential therapeutic benefits of routinely
administered drugs on neurological and functional recovery is paramount in the devel-
opment of effective treatment strategies for SCI. The detrimental effects of SCI extend
beyond the initial damage, as a cascade of secondary injury processes like inflammation,
oxidative stress, excitotoxicity, and apoptosis is triggered further compromising neural
tissue and impeding recovery. Identifying drugs that can modify these secondary injury
mechanisms while promoting neural repair and regeneration presents a promising av-
enue of research. Commonly administered drugs, already approved for various medical
conditions, offer the advantage of established safety profiles and known pharmacokinet-
ics. These drugs have been extensively studied in their primary therapeutic indications,
but emerging evidence suggests that some possess additional neuroprotective, neurore-
generative, or anti-inflammatory properties potentially promoting recovery after SCI
[103, 183]. Disease-modifying effects of these drugs can be multifaceted. Some drugs
may act directly on the injured spinal cord by reducing inflammation [184], inhibiting
cell death pathways [185], or promoting axonal regeneration [186]. Others may exert
their effects indirectly by modulating the surrounding environment, such as promoting
angiogenesis or altering the immune response [187, 188] to create a more conducive
environment for neural repair.

To bridge this knowledge gap, we conducted a comprehensive systematic review of
preclinical and clinical studies examining the effects of commonly administered drugs
on functional and neurological recovery following SCI. Our study aimed to provide a
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thorough synthesis of the existing literature and identify potential therapeutic agents
that could improve outcomes in individuals with SCI.
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4.3 Methods
The study protocol was registered with and approved by the international prospective
register of systematic reviews (PROSPERO) (registration number: CRD42021231851). This
review conforms to the preferred reporting items for systematic reviews and meta-
analysis (PRISMA) guidelines [189].

4.3.1 Selection of drugs
The list of commonly administered drugs to treat secondary complications after SCI was
extracted from our recent publication [180]. The subset of drugs for which studies could
be retrieved and were included in this review is provided in Supplementary Table 8.1.

4.3.2 Search methods for identification of studies
Using “Publish or Perish” (version 7.23.2852.7498 1), PubMed, Scopus, and Web of Science
were searched using the time range from their individual inception dates (1977, 1960,
and 1945 respectively) to March 31st, 2021. Search terms were “spinal cord injury”,
“recovery”, and name of a drug of interest (Section 4.3.1), joined with AND. A manual
search was also performed to include matching references of relevant trials.

4.3.3 Selection of studies
Articles were independently screened in two stages: initial screening of titles and ab-
stracts (MW, CRJ), and full-text assessments (LB, LPL, MW, CRJ) using criteria described in
Section 4.3.4. In case multiple articles reported on a single cohort, the article providing
the most data or detail was selected for further synthesis [190]. Disagreements were
discussed and resolved at multiple consensus meetings.

4.3.4 Inclusion and exclusion criteria
All full-text, peer-reviewed studies investigating the disease-modifying effect of a drug
of interest (Section 4.3.1) on relevant neurological or functional outcomes (Section
4.3.5) after acute SCI were included. Where original articles were not published in Eng-
lish, screening and data extraction were performed by native speakers. We excluded
duplicates, non peer-reviewed articles, reviews, meta-analyses, abstracts, editorials,
commentaries, perspectives, patents, letters with insufficient data reporting, studies

1https://harzing.com/resources/publish-or-perish
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exclusively on children/neonates, or out of scope studies (see Figure 4.1 for full defin-
ition). We only included studies comparing the treatment group to a placebo control
group, and excluded experiments using active compounds as the only control as it is
impossible to compare drug effects between studies using different comparators (i.e.,
different active controls in studies A and B instead of placebo). Authors of articles that
were indexed but not accessible either through institutional library access (ETH Zurich) or
open source publishing, were contacted to obtain a copy of the full article. In case no copy
was provided, the article was excluded (see “not accessible” in Figure 4.1). Subsequent
data extraction was performed by six investigators (LB, LPL, BT, JL, TG, and CRJ).

4.3.5 Assessments and outcomes
The review focused on studies reporting drug effects on recovery as assessed by loco-
motor function, skilled fore- or upper limb function, sensory function as well as elec-
trophysiology. Details about the assessments included in the analysis are reported in
Supplementary Tables 8.2 and 8.3. Assessments used to track recovery outcomes in
animals with SCI were grouped into categories based on the deficits measured. Tasks
that assess spontaneous and voluntary motor function were differentiated between quad-
rupedal locomotion or skilled reaching or forelimb usage. Sensory assessments were
grouped, including sensory reflex arcs, regardless of the type of sensory input eliciting the
reflex. Assessments of electrical activity of muscle fibers or circuits were grouped under
electrophysiology assessments to mirror comparable assessments in humans and reflect
neural excitability. Too few papers assessed reflexes or utilized electrophysiology to
warrant distinguishing between proprioceptive or pain/withdrawal reflexes, or between
assessments of single units vs. monosynaptic or polysynaptic potentials or motor vs.
sensory circuits. Assessments spanning multiple categories (e.g., Gale scale) or used in
only a few studies were grouped together. In cases of ambiguity, the methods and results
of the paper were closely reviewed to ascertain the feature of the deficit being assessed
(e.g., toe spread as a measure of reflexes vs. weight bearing during locomotion).

4.3.6 Data extraction and synthesis
The following information was extracted from all studies: (i) study characteristics (first
author’s last name, publication year, language), (ii) study population (species, group sizes
[total/control/treatment], sex, age, weight), (iii) injury characteristics (level, severity,
mechanism, duration), (iv) drug administration (drug name, dose, route of administration,
timing of start of treatment relative to injury, duration of treatment), and (v) neurolo-
gical and functional assessment outcomes (name, time point(s), investigators blinded to
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Figure 4.1: Preferred reporting items for systematic reviews and meta-analysis (PRISMA)
flowchart. Protocols (n = 4), non-standardised spinal cord injury model (n = 1) and capsaicin-
based transient receptor potential vanilloid 1 study (n = 1) are grouped under “other” out of
scope excluded studies.

.

treatment, drug effect). A full list of extracted variables is provided in Supplementary
Table 8.4. Studies analyzing multiple drugs of interest (e.g., drug A, drug B, and control,
with drugs A and B of interest) were separated into multiple experiments (e.g., experi-
ment 1: drug A vs. control, experiment 2: drug B vs. control) and extracted individually.
risk of bias (RoB) was assessed for each experiment, considering animal, randomized
clinical trial (RCT) [191], and intervention (observational) human studies [192] separately.
Animal experiments were assigned a score from 0 (no bias) to 20 (highest RoB) according
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to criteria listed in Supplementary Table 8.5. Visualizations for RoB assessments of
RCTs and intervention studies were created using robvis [193].

4.3.7 Statistical analysis

Drug effects were classified for each experiment in one of six categories (Table 4.1).
Descriptive statistics (mean, standard deviation (SD), median, min, max, percentage, and
proportions) were used to provide summary information on the study characteristics,
the studied drugs, and their effect on recovery after SCI.

Table 4.1: Classification of drug effect

Positive Treatment with the drug of interest resulted in improved/increased
functional/neurological outcomes compared to control.

Negative Treatment with the drug of interest resulted in worse/decreased func-
tional/neurological outcomes compared to control.

No effect Treatment with the drug of interest did not impact the func-
tional/neurological outcomes compared to control in a statistically
significant manner.

No statistics Qualitative comparison between treatment and control groups were
performed, but no statistical test results were reported.

Not reported Functional/neurological outcomes were defined in Methods but res-
ults of comparison between treatment and control groups were not
reported.

Mixed Combination of positive, negative, no effects and/or no statistics was
reported, depending on the assessments, dosage, timing, regimen or a
combination of those situations.

Drug effect Description

4.3.8 Data and code availability statement

The data used in this study and source code of the analysis performed (including visualiz-
ations) can be accessed on our GitLab repository 2. R Statistical Software version 4.3.1
and Python version 3.10.10 were used.

2https://gitlab.ethz.ch/BMDSlab/publications/SCI-drug-review-publication
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4.3.9 Role of funding source
Funding sources of the study had no role in study design, data collection, analysis, inter-
pretation, or writing of the report. The corresponding author had full access to all the
data in the study and had final responsibility for the decision to submit for publication.
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4.4 Results
Initially, 9338 studies were screened and 1140 qualified for full-text reading. 394 unique
studies, reporting 486 experiments, met our inclusion criteria (see 4.3, Figure 4.1). Sixty-
four studies (16%) reported more than one experiment (see Section 4.3.6). Studies
were published between June 1975 and March 2021, with the majority after 2010 (238
studies, 60%, Supplementary Figure 8.3A). While most studies were published in English
(n = 381, 96.7%), some were also written in Mandarin (n = 7, 1.8%), Turkish (n = 2, 0.5%),
Portuguese (n = 2, 0.5%), Persian (n = 1, 0.3%), and Korean (n = 1, 0.3%).

Most studies addressed the effect of medications in animal models (n = 377, 96%).
Seventeen (4%) studies, reporting 22 experiments (5%), reported results in humans.
774 drugs are known to be administered in the acute phase of SCI. 7116 (15%) of those
drugs were included in experiments identified in our review. 110 drugs were examined
individually and 33 in combination (Supplementary Table 8.1). Six drugs were only
tested as part of combinatorial treatments - aminocaproic acid [194], rosuvastatin [195],
magnesium chloride [196, 197], ketamine [198], isoflurane [198] and nitroprusside [199].

Rat models were most extensively investigated (n = 382/464 experiments, 82%). Lar-
ger mammals (i.e., cats, dogs) were mainly used before 2001 (n = 19/22 experiments
conducted on cats and dogs, 86%, Supplementary Figure 8.3B). By contrast, all exper-
iments performed on mice (n = 38) were published after 2000. Sample size, age, and
sex were partly or fully missing in 77 (17%), 341 (73%) and 61 (13%) experiments, re-
spectively. Partly missing entries included sample size bounded or expressed as ranges,
age described as “adult” or “young”, and samples comprising both male and female in
unknown proportions. Likewise, exclusion or death of animals was only reported for
51 (11%) experiments. Among experiments reporting sample size, cohorts included a
mean of 63 animals (standard deviation (SD): 52, median: 48, Q1-Q3: 32-80). Studies using
larger mammals exhibited smaller cohorts (Supplementary Table 8.6). When reported,
age was commonly expressed in weeks (n = 87, 19%). Rats had a mean age of 10 weeks
(10.69 weeks when mean age is reported [n = 31/77], 8.92 weeks for lower bound and
10.76 weeks for upper bound when ranges are reported [n = 57/77]). Mice were also
10 weeks of age (mean of 10.00 [n = 2/10], 8.25 [n = 8/10] and 10.13 [n = 8/10] weeks
when mean, minimum and maximum are reported, respectively). A majority of studies
included exclusively male or female animals (n = 387, 83%), withmore experiments being
performed on exclusively male populations (n = 206, 44%). Details on the use of male,
female and mixed populations over time are reported in Supplementary Figure 8.3C.

SCImodels have been previously categorized into contusion, compression, distraction,
dislocation, transection and chemical models [200]. 278 (60%), 132 (28%), 27 (6%), 16 (3%),
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7 (2%), 5 (1%) experiments reported a contusion, compression, transection, ischemia,
multiple or other injury mechanisms (photochemical lesion [201, 202, 203], irradiation
[204], electrolytic lesion [205]), respectively. Although protocols used to induce injuries
were often described in detail, information about the corresponding severity of the
injury was missing for most experiments (n = 257, 55%). The level of injury was typically
reported either precisely (n = 262, 56%) or in ranges (n = 172, 37%). Most experiments
studied injuries at the thoracic level, predominantly at or below T5 (n = 222, 85% and
n = 151, 88%, of experiments reporting unique and range levels respectively, Figure
4.2A).

109 individual drugs and 32 combinations were tested in SCI animal models. Methyl-
prednisolone (MP) andmethylprednisolone sodiumsuccinate (MPSS)weremost prevalent
among experiments reported with 71 (15%) and 23 (5%) experiments, respectively (Figure
4.2B). A total of 60 (43%) unique drugs or combinations were tested in more than one
experiment.

Drug effects were evaluated by a wide range of neurological and locomotor assess-
ments. The most common choice was the Basso Beattie Bresnahan (BBB) [206] scale,
developed and employed for rats. Its original or modified versions (e.g. Basso mouse
scale (BMS) [207], canine BBB locomotor scale [208]) were used in 275 (59%) of the ex-
periments (Figure 4.2C). Overall, most tests performed (n = 620/848, 73%) evaluated
locomotor function. One experiment or study could include more than one assessment
and 174 (46%) unique studies tested more than one category among locomotion, skilled
forelimb function, sensory function, electrophysiology and other functional assessments.
While assessment protocols were mostly well described, timing, number of repeats and
follow-up period varied widely between experiments.

Figure 4.2B illustrates the drug effect reported for the most prevalent drugs in
our review. One can notice that diverging findings were reported when testing the
same drug in different experiments. Using MP as an example, 31 experiments reported
positive effects, while 28 experiments found no effect for MP. Similarly, metformin,
atorvastatin, lithium, valproic acid, melatonin and estradiol were investigated in more
than five independent experiments and the majority (> 50%) of those experiments
reported a positive effect of the treatment (80%, 78%, 63%, 60%, 57%, 56%, respectively).
Interestingly, we identified two drugs with negative effects reported (morphine [158],
ethanol [198]). However, most of the experiments published and reviewed here found
their respective drugs of interest to have a positive (n = 195, 42%) or no effect (n =
115, 25%) on neurological or functional recovery following SCI. Details of mixed effects
reported are presented in Supplementary Figure 8.4.

We extracted information from 17 studies reporting 22 experiments conducted on hu-
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Figure 4.2: Analysis of animal studies reporting drug effects on neurological and functional
recovery following spinal cord injury (SCI). A. Number of experiments per level of injury stud-
ied. Shaded areas distinguish between cervical, thoracic and lumbar injuries. Notably, thoracic
injuries were themost prevalent in animal experiments. B. Drug effects reported for drugs studied
in at least five experiments. Circle size is proportional to the number of experiments reporting
the effect of interest. Circles are colored proportionally to the frequency that the effect of interest
represents among all experiments studying the drug of interest. C. Number of experiments per
assessment reported, classified in locomotion, skilled forelimb function, sensory function, elec-
trophysiology (EP) and other functional assessments. Basso Beattie Bresnahan (BBB) locomotor
scale; Basso mouse scale (BMS); somatosensory evoked potentials (SEPs); motor evoked potentials
(MEPs); spinal cord evoked potentials (SCEPs). D. Illustration of the heterogeneity observed among
experiments reporting effects of methylprednisolone on neurological and functional recovery
after SCI.

.

man cohorts with SCIs (Figure 4.3). Cohort sizes varied greatly (n = 10 [209] to n > 2000

[210]). Sex distributions were consistently skewed towards male population (from 53.4%
to 100% male), in line with the sex distribution observed in the general SCI population
[211, 49, 77, 166]. While one study (two experiments) explicitly included pediatric parti-
cipants [29], most experiments considered only adult participants withmean age between
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32.5 [43] and 57.6 [212] years, matching the age distribution reported in the literature
[77, 166, 213, 214].

Figure 4.3: Overview of the human experiments included and its corresponding legend.

As expected and in contrast to animal studies, most human experiments were per-
formed onheterogeneous groupswith regards to their injury characteristics (neurological
level of injury, severity, mechanism of injury). The majority of the studies (n = 15, 18
experiments) investigated patients with acute SCI. Only two studies (four experiments)
specifically enrolled participants with chronic incomplete injuries [209, 215] comparing
test performances pre- and post-exposure to the drugs of interest.

Drugs tested included naloxone [29, 160, 216] (n = 3, 14%), cyproheptadine [209, 215]
(n = 2, 9%), escitalopram [209, 215] (n = 2, 9%), baclofen [43], minocycline [217], levodopa
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[218], testosterone [219] and a combination of progesterone and vitamin D [220] (n = 1,
each, 5%). Methylprednisolone was the most studied drug (n = 10, 45%) with publications
between 1990 [29] and 2018 [108].

All studies evaluated drug effects through neurological assessments. Additionally,
functional outcomes such as mobility [209, 215, 221] or spasticity [209, 215] were tested in
eight experiments, and one study (two experiments) [209] reported electrophysiological
outcomes. Lastly, recovery was assessed based on changes in injury severity in four
experiments [43, 212, 108, 222].

Results reported for the effects of MP diverged from the animal studies with only
one experiment recording positive results [29], which was part of the oldest study of
MP in humans. Most of the experiments on MP reported no effect (n = 6, 60%) and
three observed mixed effects depending on subgroup [223], assessment [108] or timing of
treatment [160]. A similar trendwas observedwhen considering all drugs tested in human
populations: a total of 12 experiments reported no effect (55%) and 9 described mixed
results (41%), mainly due to differences between assessments (n = 7, 32%). Notably, most
of the data from human populations were collected prospectively (n = 18/22, 82%), i.e.,
individuals were followed and data was collected over time, while they were most often
analyzed retrospectively (n = 12/22, 55%), i.e., data were analyzed after the final outcome
was known. This hints towards few clinical trials testing pharmacological treatments for
SCI.

RoB was assessed for animal, RCTs and observational human studies separately. Over-
all, animal studies exhibited scores ranging from zero to 12, with 36 experiments (7.8%)
having a score greater or equal to six (Supplementary Table 8.7). Variablesmost affected
by a potential bias were age and blinding of recovery assessments (Figure 4.4A and B).
Among observational human studies, only one showed critical RoB (Figure 4.4C), while
most RCTs showed high RoB in the selection of the reported results (Figure 4.4D).
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Figure 4.4: Assessment of the risk of bias (RoB) for included experiments. A. Co-occurrence
of potential bias (grading as low or high risk) within animal experiments. RoB was most prevalent
in reported age, followed by a combination of age and blinding status. Conversely, information on
species, route of drug administration and dose showed lower RoB. B. Proportion of each RoB (low,
unclear or high) by domain of bias studied. Age represents the domain with the most prevalent
high RoB. C. RoB for human intervention studies (observational). Only one study showed a
critical RoB (domain 5: bias due to missing data), whilst most studies (n = 6, 67%) did not provide
sufficient information to assess the RoB due to deviations from intended interventions (domain 4).
Additionally, the majority of the studies (n = 8, 89%) had a low RoB due to selection of participants
(domain 2). D. RoB for randomized clinical trial (RCT). High RoB was detected in 7 studies (88%)
for bias in selection of the reported results.

.

4.5 Discussion

The current study aimed to systematically review existing literature assessing the effects
of drugs commonly administered in the acute phase of SCI. Encouragingly, several drugs
have been investigated across multiple animal models and have consistently demon-
strated positive effects [183, 224, 225, 226, 227]. This convergence of evidence prompted
the formulation of drug repositioning as a novel translational approach in the field of
acute SCI care. Repositioning has emerged as a successful strategy in other fields (e.g.,
amantadine in Parkinson’s Disease [228] and Lintuzumab in Alzheimer’s disease [229]) to
improve neurological outcomes in the absence of novel therapies. Drug repositioning
aims at identifying new uses for approved or investigational drugs that are outside the
scope of the original drug indication [230]. A clear advantage of this approach is the use
of de-risked compounds with established safety and biological activity profiles, thereby
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reducing overall development costs and shortening timelines [231, 232]. While drug
repositioning utilizes existing evidence to accelerate the development of new treatments,
it is still affected by challenges of translational research. We identified 377 studies consid-
ering the effects of drugs previously identified as administered to human patients with
acute SCI. Evidence exists for 112 (77.78%) unique compounds or combinations to exert be-
neficial and/or detrimental effects. For example, metformin is routinely used in humans
to manage high blood sugar levels caused by type 2 diabetes [233]. Preclinical studies
have identified enhanced regeneration in the spinal cord related to metformin-induced
autophagy via the mTOR signaling pathway [183, 234, 235]. These observations suggest
that administering metformin early after injury could potentially improve long-term
neurological outcomes.

Detrimental effects were also observed for some drugs, including opioids, which atten-
uated the recovery of locomotor function and exacerbated pathophysiological processes
in rodent models of SCI [236, 159, 237, 228]. A detrimental opioid effect is in line with
beneficial effects of naloxone, an opioid antagonist [229, 230], and highly concerning in
light of the ubiquitous administration of opioids for pain management in the early stages
of SCI. Completely removing or restricting opioids presents serious ethical concerns (i.e.,
weighing the management of acute pain with long-term neurological effects). However,
minimizing the administration of opioids could potentially facilitate neurological re-
covery [238, 239]. To allow for a comprehensive characterisation of potential effects of
commonly administered drugs on neurological recovery, we deliberately decide to include
preclinical studies involving animal models and clinical studies in humans. Nonetheless,
the high degree of heterogeneity across studies, even in a single species, was surprising. A
large variability in population characteristics, exact administration parameters and tim-
ing of assessment is observed. In combination with a wide range of spinal levels subjected
to injury and different species being studied, comparisons between experiments are
challenging or impossible. One exception is the study by Popovich et al. [240] aiming to
replicate findings, which noted a strong connection between initial injury characteristics
and detectable drug effects. This highlights the need for varying as few parameters as
possible to allow for meaningful comparisons. Currently, meta-analyses are not feasible,
even for the most commonly studied drugs (Figure 4.2D), constituting a notable limita-
tion as the large fraction of positive effects reportedmight hint towards a publication bias.
In human studies we suspect that the majority reporting mixed or no effects reflects the
heterogeneity in injury patterns included. This likely results in effects which vary widely
between individuals and cannot be detected in a group-level analysis. The lack of an
effective pharmacological treatment for SCI highlights the discrepancy between largely
positive pre-clinical results and unsuccessful translation to human subjects. The present
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review allows to formulate a number of hypotheses that could explain this divergence.
One noticeable difference concerns basic study parameters such as the age of the cohort
studied or the level of injury. While the age distribution in humans affected by SCI is
moving towards a bimodal shape [166], studies in animal models are typically performed
on more homogeneous groups of younger individuals [241, 242, 243, 186, 244]. While the
use of young animals might be a result of ethical guidelines, it may affect transferability.
Further, SCI in humans occurs predominantly in the cervical segment of the spinal cord
[166], while animals are mostly injured in the thoracic region (Figure 4.2A). Similarly,
injury severity, frequently not reported, has been named as a critical parameter to control
for in animal studies to ensure transferability of findings to the human population [245].
Noticeable differences also exist in the administration of drugs. Animal studies typically
follow a weight-based dosing regime while humans receive a standardized dose. Similarly,
many animal studies initiate treatment immediately after injury [227, 246, 247], which
appears infeasible in the human population. These issues in the transfer from animal
to human studies might contribute to the majority of human studies reporting mixed
effects. While beneficial effects might still exist in humans, they could go undetected due
to the scarcity of RCTs. While RCTs require substantial resources, and can be challenging
to conduct in a rare and heterogeneous condition like SCI, advancements in the treat-
ment of SCI will only be possible if efforts extend from preclinical studies to systematic
prospective data collection and analysis in humans. Finally, only a small subset of studies
in humans considers the effect of drugs in the chronic phase. As chronic injuries cannot
be investigated in animal studies due to ethical restrictions, studies of chronic human SCI
populations should be expanded to address debilitating secondary complications [245].
A noteworthy limitation of the current review was that literature search was limited to
articles listed in PubMed/Medline, Scopus, and Web of Science, or identified by hand
searches. Considering the pace at which research in this area advances, it is likely that
the findings of the publications described in this paper will be quickly complemented
by further research. The literature search also excluded gray literature (e.g., preprints,
reports, conference proceedings), the importance of which to this topic is unknown, and
thus might have introduced another source of search bias. Publication bias is likely to
result in studies with positive results being preferentially submitted and accepted for
publication. The present review provides an extensive summary of existing evidence
on effects of drugs administered to individuals affected by SCI. In particular, results
highlight melatonin, estradiol, and valproic acid as commonly investigated drugs with
largely positive effects, indicating the inherent potential to advance treatment through
drug repurposing. Simultaneously, we observed and extensively characterized sources
of heterogeneity among the valuable resources provided by existing studies. In light of
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the current lack of an effective pharmacological treatment for SCI and failed attempts to
develop new treatments, the field would benefit from further standardization in studying
and reporting drug effects investigated in animal models.
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Part B in a nutshell
As presented in Part B, data collected as part of clinical trials and observational studies
are valuable assets to better characterize SCI. However, handling real-world data also
comes with challenges. Some of these challenges are inherent to the SCI field, such as the
heterogeneous presentation of the condition and subsequent recovery. Other aspects,
however, are known from other fields, such as the influence of missing data. Importantly,
observational studies are, by design, prone tomissing information (e.g., different markers
needed for making clinical decisions, less controlled environment). The SCI research field
currently lacks methods adapted to the peculiarities of data collected from individuals
with SCI. Hence, Part C presents the effort pursued towards tailoring existing methods
to their applications in SCI research.
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Introduction
At the heart of the analysis of a randomized clinical trial (RCT) lies the definition of
a treatment effect. An average treatment effect is determined by comparing the out-
comes observed, or recovery achieved, in the treatment versus placebo arm [248]. This
comparison assumes that the two groups were comparable at baseline, and one could
therefore expect equally comparable recovery in the absence of an intervention. Any
difference between the two groups can in turn be attributed to the intervention tested.
This assumption of groups being comparable is, however, often questioned in cases like
spinal cord injury (SCI), where the injured population is largely heterogeneous [116]. Ob-
taining truly comparable groups would require the recruitment of large samples, which
is challenging in light of the low prevalence of traumatic SCI. A complementary measure
of a treatment effect can therefore include individual-level estimation of the expected
recovery, which is then compared to the one observed in presence of an intervention.
The individual-level comparison would be made possible thanks to accurate, explainable
and transferable predictive models using machine learning (ML) algorithms. Predicting
the expected recovery of an individual would first require to train a model, i.e., to use
existing data from which the outcome is known, to infer patterns that are associated
with the outcome. The setting where the outcome is known in the population used to
train the algorithms is referred to as supervised ML[249]. Various models, differing in
their architecture and complexity, will be trained, optimized and later compared using
performance metrics to determine the combination of parameters that allows for the
best performing algorithm, i.e., predicting outcomes closest to the ones observed.

However, building predictive models for healthcare poses specific challenges [250].
Firstly, they should be capable of capturing the large heterogeneity of the population
on which the model would later be applied. Secondly, the expected prediction error
should fall under what is considered a clinically significant change [251], such that any
potential error made by the model would not result in clinically observable or significant
differences. Lastly, transferability and interpretability, namely the ability for a model to
achieve a good prediction when given previously unseen cases [252] and the possibility
for a human to understand the decision made by the algorithm [253], are crucial for a
successful deployment in a clinical setting.

Part C exposes our contribution towards improved data analyses for better charac-
terization and prediction of recovery at the individual level following SCI. It is organized
in three chapters, where we:

(i) present our attempt to build a prediction model for lower extremity motor score
(LEMS) observed 52 weeks after injury in Chapter 5. In this chapter, we expand the
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insights drawn from the study of serological markers (Chapter 2) and question the
predictive power of these biomarkers;

(ii) following from the limitations identified in Chapter 5, examine the impact of
missing data on results reported through a simulation study detailed in Chapter 6;

(iii) explore the uniqueness of individuals recovering beyond clinical expectations, with
the intent to formulate new hypotheses for future research, in Chapter 7.
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neurological outcomes in spinal cord
injury
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5.1 Abstract
Spinal cord injury (SCI) is an orphan conditionwith a heterogeneous presentation,making
the search for a pharmacological cure challenging. With the increased amount of clinical
routine data available our investigation aimed to assess the feasibility of predicting lower
extremity motor score (LEMS) at chronic stage (52 weeks after initial injury) in patients
with SCI using routine serological markers.

Serological markers, assessed within the initial seven days post-injury in the ob-
servational cohort study from the Trauma Hospital Murnau underwent diverse feature
engineering approaches. These involved arithmetic measurements such asmean, median,
minimum, maximum, and range, as well as considerations of the frequency of marker
testing and whether values fell within the normal range. To predict LEMS scores at the
chronic stage, eight different regression models (including linear, tree-based, and en-
semble models) were used to quantify the predictive value of serological markers relative
to a baseline model that relied on the very acute LEMS score and patient age alone.

The inclusion of serological markers did not improve the performance of the pre-
diction model. The best-performing approach including serological markers achieved a
mean absolute error (MAE) of 6.59 (2.14) which was equivalent to the performance of the
baseline model. Stratifying the models based on the acute-phase LEMS exceeding zero,
led to a mean improvement in MAE across all cohorts and models, of 1.2 (2.13).

We conclude that routine serological markers hold limited predictive power in our
study. However, the implementation of model stratification by the very acute LEMS
markedly enhanced prediction performance. This observation supports the inclusion of
clinical knowledge in the modeling of prediction tasks for SCI recovery. Additionally, it
lays the path for future research to consider stratified analyses when investigating the
predictive power of potential biomarkers.
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5.2 Introduction
Spinal cord injury (SCI) is a rare, yet severe medical condition with far-reaching implica-
tions for affected individuals, caregivers, and society. The consequences of SCI are often
profound, impacting motor function, sensation, and autonomic functions [3]. Despite
recent advances in acute care and rehabilitation, the extent of recovery during the first
year post-injury has remained unchanged over the past two decades [166]. During the
acute phases of the SCI, a cascade of molecular mechanisms are activated including demy-
elination, apoptosis, inflammatory pathways, lipid peroxidation and reactive oxygen
species creation [254]. These changes can be measured both in the cerebrospinal fluid
(CSF) and in the serum [255]. Unraveling the dynamics of fluid serological markers offers
a promising avenue for predicting SCI related outcomes in a more objective and cost-
effective manner compared to conventional imaging techniques like magnetic resonance
imaging or invasive methods like CSF markers [256].

CSF biomarkers, such as neurofilament light chain (NF-L) and glial fibrillary acidic
protein (GFAP) have been demonstrated to be associated with injury severity as measured
by the American spinal injury association (ASIA) impairment scale (AIS) [256]. The
concentration of these biomarkers in CSF and serum have been used by Stukas et al. [256]
and Leister et al. [257] to predict AIS grade conversion (change in severity category).
Nevertheless, CSF biomarkers pose challenges in routine and straightforward collection
compared to peripheral blood. Serological markers, derived from routine blood draws,
have also been demonstrated to be indicative of injury severity. For instance, Tong et al.
[44] revealed a significant association between elevated serum albumin concentrations at
one, two, and four weeks post-injury and higher lower extremity motor score (LEMS) at
the 52-week post-injurymark. Further analyses [258, 259] examined 28 routine serological
markers and identified some correlations with injury severity. Specifically, higher values
closer to the normal range of calcium, hematocrit, hemoglobin, erythrocyte count, and
total proteins were associated with less severe injury. This suggests a potential for
utilizing serological markers to define SCI severity, which is in itself an indicator of the
expected recovery, and therefore enhance the prediction of possible outcomes.

We hypothesized that incorporation of information from serological markers would
enhance the performance of machine learning models in predicting LEMS at the chronic
stage, surpassing prediction accuracies based solely on baseline patient characteristics
(LEMS and age). Additionally, we explored the idea that the frequency of serological
draws conducted during the initial seven days acts as a proxy of the overall patient health
status, potentially leading to improved prediction performance.
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5.3 Methods

5.3.1 Study design and data source
The Murnau Study is an observational cohort study, conducted at the level 1 trauma
center in Murnau, Germany. Between 2004 and 2017, a total of 363 SCI patients were
enrolled and followed for the course of one year after initial injury. During that period,
standard rehabilitation care was given to all patients.

5.3.2 Ethics approval
The study was performed in accordance with the Declaration of Helsinki. The Murnau
study was approved by the Bavarian Medical Chamber (#2018-077).

5.3.3 Cohort definition: Inclusion and exclusion criteria
To be eligible for inclusion in the analysis presented, patients were required to have LEMS
assessed at both the very acute (within two weeks post-injury) and chronic (26 to 52
weeks post-injury) stages. The utilization of the LEMS score facilitated the inclusion of
both paraplegic and tetraplegic individuals. All patients who satisfied these criteria were
included, independent of neurological level of injury (NLI) or age.

5.3.4 Outcome, features, and confounding variables
The primary outcome was LEMS at 52 weeks post injury (i.e., chronic stage of injury).
LEMS is evaluated as part of the international standards for neurological classification
of international standards for neurological classification of spinal cord injury (ISNCSCI),
where five key muscles of each lower limb are tested. Each muscle group has a maximum
score of five (activemovement against full resistance) andminimumof zero (full paralysis),
for a total score per limb ranging from zero to 25 and total LEMS ranging from zero to
50 [16]. Following the data collection protocol of the European multicenter study on
human spinal cord injury (EMSCI) 1, the Murnau study assesses LEMS at five distinct
stages following SCI: very acute (0 to 15 days post injury), acute I (16 to 40 days), acute II
(70 to 98 days), acute III (150 to 186 days) and chronic (300 to 546 days). Representing
only the muscle activity of the lower extremities, LEMS therefore offers better walking
capability prediction [260] and allows for the inclusion of both para- and tetraplegic
patients, thereby making it a suitable outcome of interest.

1http://emsci.org/
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A total of 28 routine serological markers (Supplementary Methods 8.8) were used
as features, based on previous work by Bourguignon et al. [258]. All serological marker
analyses were conducted by the berufsgenossenschaftliche unfallklinik (BGU) Murnau
following an in-house protocol. Serological marker samples were collected upon request
from the attending physician, resulting in a heterogeneous amount of blood draws and
serological markers data sets across all patients, where some patients had multiple
draws per day, while others had none. In order to mitigate the heterogeneous sampling
frequency, three different feature engineering strategies were used.

5.3.5 Data preprocessing, feature engineering, and feature selection

Data imputation

To maximize our sample size, data imputation was employed. Imputation of missing
LEMS at chronic stage was obtained using the last observation carried forward (LOCF)
method from LEMS evaluated at the acute III stage, as it significantly outperforms other
imputation methods for chronic LEMS imputation [261]. This approach is also consistent
with observed SCI recovery trajectories showing that most recovery happens within the
first six months, followed by a plateau [262].

For patients lacking LEMS scores at the initial acute stage, but presenting acute I and
acute II scores of 0, subsequently leading to a final acute III or chronic LEMS score of 0,
the missing LEMS score at the initial acute stage was backwards filled as 0.

Feature engineering 1: arithmetic transform of serological markers

The first feature engineering strategy was to calculate the average, median, minimum,
maximum, and range of the serological markers values across the first seven days. Opting
for a seven-day time frame was a compromise between data collected in temporal prox-
imity to the injury, sample size, and the number of missing values. In this time window,
patients are likely to have blood tests at least twice, therefore providing the opportunity
to extract a mean, median, minimum, maximum, and range. It should be noted that
minimizing the amount of missing values is crucial as the downstream prediction tasks
demand complete data (see Section 5.3.6). This first feature engineering step resulted in
five different data sets for the serological markers; one for each calculation method of
the serological marker values: mean, median, minimum, maximum and range cohorts,
respectively.
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Feature engineering 2: sampling frequency features

The second feature engineering approach was to calculate the sampling frequency, where
the number of times a specific serological marker was tested over the first seven days after
injury, was counted. We will refer to this cohort hereinafter as the sampling frequency
cohort.

Feature engineering 3: values inside/outside normal range

A seventh set of input features was created where each value of the serological mark-
ers were encoded as a 1, 0 or -1, for abnormal, normal or missing values, respectively
(Supplementary Methods 8.8). This approach accounts for both sampling frequency
and for a serological marker to be out of the norm. Owing to the categorical nature of
these features, they were one-hot encoded and no feature selection was performed.

Feature selection

The features were filtered based on a moderate Pearson correlation threshold of 0.7 [263]
(Figure 5.1 and Supplementary Table 8.10). Additionally, an eighth cohort was created
where features from all feature engineering strategies were combined, followed by a
forward feature selection with a linear regressor (p-value threshold = 0.05).

5.3.6 Statistical analysis
Considering LEMS as a continuous variable, a range of commonly-used regression models
were employed for the prediction task. These included linear, least absolute shrinkage
and selection operator (LASSO) and ridge regressions, random forest (RF), support vector
machines (SVM)with a linear kernel, gradient boosting regressor (GBR), extreme gradient
boosting (XGBoost) regressors, and light gradient boosting machine (LightGBM) as imple-
mented in scikit-learn (version 1.0.2). All hyperparameters were optimized using a
five fold cross-validation scheme (Supplementary Methods 8.9). All model scores are
reported as mean (standard deviation (SD)) through 50 random seed iterations. As the
LEMS is lower (0) and upper bounded (50), all predicted scores below 0 or above 50 were
capped to 0 or 50, respectively. As a confounding variable, age was added as a feature, as
older age has been associated with negative impact on recovery [17].

The prediction task was first approached considering Equation 5.1 applied to the
different cohorts independently. The features of the regression models are the very acute
LEMS, age, and the serological markers (after feature selection).

LE MSchr oni c ∼ LE MSver y acute +age± serological marker features (5.1)
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Figure 5.1: Overview of the inclusion criteria, data imputation, and feature engineering
strategies. Number of patients in the specific cohort is indicated with N. In orange are the
cohorts obtained from arithmetic transformations of the serological values (all, mean, median,
minimum, maximum, and range) cohorts, followed by the sampling frequency cohort in dark red.
Subsequently in white is the cohort that encodes the serological marker, based on the serological
value being abnormal, normal, or missing. lower extremity motor score (LEMS); last observation
carried forward (LOCF)

In a second approach, a stratified analysis based on values of LEMS at the very acute
stage was employed since we observed two distinct groups in our population (see Sup-
plementary Figure 8.5). Here, in order to account for this skewed distribution, two
separate models were trained for all eight regression models based on Equation 5.1: the
first model only included patients with a LEMS of 0 at the very acute stage, while the
second model included all patients with a score above 0. After prediction, the respective
test predictions were merged for evaluation.

As the aim of the study was to evaluate the predictive power of serological markers,
two baseline models were also created, as the distinct feature engineering strategies
resulted in two different patient cohort sizes due to patient exclusion in case of missing
features (see Figure 5.1). The baseline models relied exclusively on the very acute LEMS
and age (Equation 5.1, in the case where serological marker features are not included).
This allows a direct comparison to quantify the predictive power of serological markers
in predicting chronic LEMS scores.
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5.3.7 Noise
Irrelevant or meaningless data, also known as noise [264], can significantly affect various
machine learning (ML) tasks by rendering them less efficient and more computationally
demanding [265]. In order to test whether the serological marker information holds
predictive power, a random binary noise variable was introduced as a feature in separate
models. This parameter allows one to determine how robust the models are to random
noise [266, 267] and to quantify the feature importance of the serological markers in
this context. A feature importance for the random noise variable similar to one for the
serological marker information would indicate that serological markers lack predictive
value.

5.3.8 Evaluation of models
All models were scored and compared using the root mean squared error (RMSE) and
mean absolute error (MAE) between the true and predicted LEMS. Both scoring methods
are on the same scale of the measurement itself and negatively-oriented for ease of
interpretation. A lower score, approaching zero, is indicative that on average the pre-
dicted value is closer to the true value. However, the RMSE, which squares the difference
between the root and predicted values, penalizes larger errors more.

5.3.9 Data and code availability statement
Anonymized data used in this study will be made available upon request to the corres-
ponding author and in compliance with the European general data protection regulation
(EU GDPR). The code describing the analysis and library versions can be accessed on our
GitHub repository 2.

5.3.10 Role of funding source
The funding sources of the study had no role in study design, data collection, data analysis,
data interpretation, or writing of the report. The corresponding authors had full access
to all the data in the study and had final responsibility for the decision to submit for
publication.

2https://gitlab.ethz.ch/jmatthias/lems_prediction_serological_markers
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5.4 Results

5.4.1 Cohort summary
With the fulfillment of the inclusion criteria (i.e., LEMS score at very acute and at chronic
stage), the original data set was initially reduced from 363 patients to 118 patients. After
imputation of missing LEMS at chronic stage using LOCF, two patients had an abnormal
decrease of 40 points or above between very acute and chronic LEMS, without a clear
justification, which led to their exclusion from the final cohort. With imputation for
the acute and chronic LEMS (Supplementary Table 8.11), the final cohort is composed
of 154 patients. A summary of the steps taken to define the final cohort is provided in
Figure 5.1.

Demographics and injury characteristics of the originalMurnau and final study cohort
are summarized in Table 5.1. Comparing the two cohorts revealed a similar ratio of
female to male patients (Pearson’s χ2 test, χ2 = 1.947, degree of freedom (df) = 1, p =
0.1629). Furthermore, the AIS grade distribution at the very acute stage does not present
significant differences (Pearson’s χ2 test, χ2 = 3.538, df = 4, p = 0.4721). The very acute
LEMS and chronic LEMS scores in the two cohorts also did not show any significant
differences. However, the mean age revealed a significantly younger population in the
study cohort (Wilcoxon rank-sums test, stat = 3.429, p = 0.0006).

Table 5.1: Detailed description of the final study cohorts

Subject characteristics
Total, n 363 154

Age in years at injury 0.0006

Mean±SD 54.01±19.99 47.64±18.52
Sex, n (%) 0.1629
Male 275 (76) 126 (82)
Female 88 (24) 28 (18)

LEMS
Very acute
Time in days (median) 5.00 4.00 0.0915
Time in days [Q1 - Q3] [2.00 - 8.00] [2.00 - 7.00]

Murnau Study cohort p value

Continued on next page
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Table 5.1: Detailed description of the final study cohorts (Continued)

Score (mean±SD) 22.65±20.60 17.37±20.25 0.0159
NA, n 140 0

Chronic
Time in days (median) 363.00 346.50 0.0151
Time in days [Q1 - Q3] [326.25 -

396.00]
[305.25 -
394.75]

Score (mean±SD) 28.60±21.87 25.69±22.40 0.2605
NA, n 201 0

AIS grade at very acute stage, n (%) 0.4721
A 67 (18.5) 48 (31.2)
B 22 (6.1) 17 (11.0)
C 27 (7.4) 14 (9.1)
D 103 (28.4) 54 (35.1)
E 2 (0.6) 0 (0)
NA 142 (39.1) 21 (13.6)

Murnau Study cohort p value

American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for full
description. P values significant after Bonferroni adjustment are indicated in bold;
standard deviation (SD), lower extremity motor score (LEMS), first quartile (Q1), third
quartile (Q3), not available (NA)

The LEMS score of the included patients was measured at very acute stage within
approximately 2 weeks post injury (median [Q1, Q3]: 4.00[2.00,7.00] days), acute III
(approximately 6 months, 159.50[154.25,171.00] days) and chronic (approximately 12
months, 346.50[305.25,394.75] days).

Arithmetic transformation of the serological markers cohorts

Stemming from exclusion of patients who presented with missing values in their sero-
logical markers, the serological marker cohorts for which arithmetic calculations were
performed, present a smaller cohort size compared to the study cohort. The mean, me-
dian, min, and max, range and the cohort which includes all features cohorts comprise
90 patients each (Supplementary Table 8.12).
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Sampling frequency cohort and encoded cohort

Due to the categorical nature of its encoding, the cohort based on normal ranges did not
undergo feature selection and includes 415 serological marker features. The sampling
frequency cohort (with sampling frequency ranging from 0 to 15) and the cohort that
encodes the serological marker based on the normal range, each consist of 154 patients
(Supplementary Table 8.12).

5.4.2 Model performance (non stratified approach)
Figure 5.2A-C summarizes the model performance. Detailed results can be found in
Supplementary Table 8.13. The baseline model for the arithmetic calculation cohort
(n = 90) achieves its best MAE performance with the SVM regressor (mean (SD): 9.69
(2.88)), and best RMSE with the LightGBM (13.98 (3.49)). Similarly, the baseline model
for sampling frequency and normal range encoded cohorts (n = 154) performs best in
terms of MAE with the SVM regressor (8.15 (2.23)) and with LightGBM for the RMSE (12.43
(2.50)).

We failed to demonstrate statistically significant improvements in prediction per-
formance when comparing models including serological information to their respective
baseline (t-test, p > 0.05, Bonferroni corrected).

5.4.3 Stratification models
Figure 5.2D-F summarizes the stratified model performance. All results are presented in
Supplementary Table 8.14. In the cohorts including 90 and 154 patients respectively,
baseline models after stratification showed a best average MAE when fitting a SVM
regressor (7.41 (3.04) and 6.59 (2.14)) and best average RMSE with the LASSO (13.55 (3.62)
and 12.09 (2.60)). In the stratified models, all best performing combinations between
cohorts and models fail to significantly outperform the respective baseline (t-test, p >
0.05, Bonferroni corrected).

5.4.4 Comparisonbetween stratified andnon-stratifiedmodelfitting
When comparing the average performance of the cohorts across all models, the stratified
models, on average, perform significantly better (comparisons with t-test resulted in
67 and 42 out of 80 models with p < 0.05 after Bonferroni correction, for MAE and
RMSE, respectively; Supplementary Table 8.15). This is especially evident with the
cohorts based on arithmetic transformation of the serologicalmarkers (i.e., mean,median,
minimum, maximum and range) with the LASSO regression and Ridge regression models.
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Figure 5.2: Best performing models, scored with MAE, in the different cohorts in the non
stratified and stratified models, compared to the baseline model of the specific cohort (in
light blue). In orange are the mean, median, minimum, maximum, range of the serological
markers and the cohorts which includes all features. Dark red marks the sampling frequency
cohort, while the cohort encoded based on normal range is displayed inwhite. A. RF regressor, non
stratified, comparing the cohort which includes all features and the baseline; B. RF regressor, non
stratified, comparing the mean, median, minimum, maximum and range cohort to its respective
baseline model; C. SVM regressor, non stratified, with the sampling frequency cohort and the
cohort which encodes the serological marker based on its normal range; D. SVM regressor,
stratified, with the cohort which includes all the features compared to its respective baseline;
E. SVM regressor, stratified, with the serological marker mean, median, minimum, maximum
and range cohort; F. SVM regressor, stratified, sampling frequency cohort and the cohort which
encodes the serological marker based on normal range; mean (SD) is the mean and standard
deviation of the MAE across 50 random seed iterations; mean absolute error (MAE), random forest
(RF), support vector machines (SVM)

In the mean cohort the stratified LASSO average MAE score is 9.39 (1.92), compared
to the MAE score of 11.38 (1.70) with the non stratified LASSO model. The respective
baseline has a stratified MAE score of 9.33 (1.91) compared to the non stratified MAE
value of 11.06 (1.73). As seen in Figure 5.3, most stratified models (5 out of 8 regression
models) significantly outperform the non-stratified models on the same cohort when
evaluated with the MAE metric. All results are presented in the Supplementary Table
8.15.

5.4.5 Introduction of random noise
When introducing a noise variable to the best performing combination between cohort
(i.e., cohort based on sampling frequency), and regression model (i.e., stratified SVM
regressor), the mean MAE score increases from 6.59 (2.14) to 6.62 (2.13). This increase is
statistically significant (dependent t-test, t = 3.58, p = 0.0007). Additionally the mean
feature importance of noise in the model stratified based on a very acute LEMS score
above zero is -0.18 (0.27), putting it in a similar range as the feature importance from
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Figure 5.3: Comparison of the mean cohort across non stratified and stratified regression
models. In darker orange is the performance of non stratified models, in lighter orange the
performance of stratified models, the lines connect the various seed iterations. Significant
differences between MAE scores (linear regression: t =−6.00, p < 0.001, LASSO regression: t =
11.80, p < 0.001, ridge regression: t = 9.67, p < 0.001, SVMregressor: t = 9.36, p < 0.001, XGBoost:
t = 7.87, p < 0.001, GBR: t = 5.82, p < 0.001) between the two distributions, calculated with a
dependent t test, are indicated with an ∗; mean absolute error (MAE), least absolute shrinkage and
selection operator (LASSO), support vector machines (SVM), extreme gradient boosting (XGBoost),
gradient boosting regressor (GBR), light gradient boosting machine (LightGBM).

serological information (0.12 (0.19), for the sampling frequency of erythrocytes). In
comparison, this model showed a feature importance of 4.42 (0.78) for the very acute
LEMS score.
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5.5 Discussion
The objective of our study was to determine whether serological marker information can
predict LEMS at the chronic stage after SCI.

In the used data set we failed to demonstrate a benefit by including serological
markers for the prediction of chronic stage LEMS indicated by no statistically significant
improvement in performance in models including serological markers relative to the
corresponding baseline models.

Interestingly, stratifying the regression models based on the bimodal LEMS distri-
bution observed at the very acute stage improved the regression models’ performance,
independent of the set of input features. One possible explanation is that the serological
markers are not representative of the severity of the SCI itself, but rather of the sever-
ity of the overall trauma. Patients with a very acute LEMS score of 0, had more severe
injuries, which is associated with serological marker values deviating more from the
normal range compared to the less severe injuries [258]. By stratifying the cohorts before
fitting, the variability in serological marker values driven by the initial severity of the
injury is reduced, which may be reflected in the prediction. A second explanation for
the improved scores with the stratified models, is that we are reducing the variability in
the outcome score, which would explain the more accurate predictions. For example, in
the sampling cohort (n = 154), patients who have a very acute score of 0 have a mean
(SD) chronic LEMS score of 7.88 (15.61), whereas the patients who have a very acute score
above 0, have a mean (SD) chronic LEMS of 43.97 (10.25). This can be compared to the
entire cohort’s mean chronic LEMS of 25.69 (22.40).

We initially hypothesized that the frequency of blood draws could be indicative of
injury severity. Thus this feature would have offered predictive value for the chronic
LEMS score, which is enabled by the observational nature of the data. For example,
higher numbers of white blood cells entries could be indicative of infectious episodes and
correlated to injury severity, as more severe injuries tend to lead to more infections [268].
However, this hypothesis could not be validated with the sampling frequency cohort
performing in a comparable manner to its respective baseline. This result was further
verified by the feature importance of sampling frequencies being similar to an added
random noise feature. It should also be reiterated that this model only has two more
features compared to its respective baseline regression.

5.5.1 Limitations
Our study was primarily limited by the small cohort size, which is a typical problem for
statistical and predictive studies done with rare and heterogenous diseases [269]. In order
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to mitigate this, we used data imputation at the very acute stage and at the chronic stage,
which resulted in 36 additional patients meeting the inclusion criteria. Additionally, the
different feature engineering strategies for the serological markers cohort enabled us to
to include all 154 patients in two cohorts: the sampling frequency cohort and the cohort
which encodes the serological markers based on their normal range. Furthermore, by
using LEMS as the outcome score, we were able to include both paraplegic and tetraplegic
patients within our study. However, although we used three different approaches to
mitigate the small cohort size, the largest cohorts only included 154 patients.

Due to the different feature engineering strategies the cohorts are composed of
different numbers of patients, which in turn has an influence on the interpretation of
our results. As shown by the differences in prediction performance between baseline
cohorts, results obtained on different cohorts are not readily comparable given the small
cohort sizes. This lack of comparability is justified to maximize the sample size in each
cohort. Additionally, it should be noted that in the cohort that encodes the serological
value based on the normal range, 415 serological features for 154 patients were included
(p > n). This introduces a challenge when modeling, where we risk overfitting on our
training set leading to increased error rates [270].

In this study we considered LEMS as the outcome to be predicted. More precisely,
we examined LEMS as a continuous score, implicitly assuming a linear scale in LEMS
improvement, which is not clinically accurate (e.g., recovering from a LEMS score of zero
to five is less likely than recovering from 45 to 50). Moreover, by its composite nature,
the LEMS score is masking heterogeneity encountered in the recovery (e.g., two patients
with an improvement from zero to eight might clinically present differently).

While the initial findings are promising, they do not yet meet the required level
of accuracy for clinical application. With models leading to average errors of seven to
11 points in predicting a LEMS score ranging from zero to 50, the current error range
is equal to or larger than the clinically accepted threshold of five, which signifies a
clinically-relevant improvement in LEMS score [271].

5.5.2 Conclusions
Despite considering a large panel of prediction models and feature selection, this work
failed to show significant improvement from serological markers collected in the first
seven days following SCI in predicting LEMS 52 weeks after injury. However, consider-
ing that SCI is a highly heterogeneous disease, stratifying prediction algorithms by the
very acute LEMS is a promising strategy to increase prediction performance. Here we
demonstrated that stratification on the bimodal very acute LEMS score enabled more
accurate prediction. This approach could be used for other diseases, especially outcomes
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that show non-normally or skewed distributions. In the future it would be interesting to
include other biomarkers (e.g., GFAP and NF-L). Although not routinely collected, they
hold the potential of a more precise representation of the spinal injury itself since they
are collected closer to the injury site compared to biomarkers present in the serum. Fur-
thermore, future studies might consider constructing new outcomes based on the LEMS
which would take into account its sequential nature and hence potentially contribute to
improving prediction performance.
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6.1 Abstract

Background
In the last decades, medical research fields studying rare conditions such as spinal cord
injury (SCI) have made extensive efforts to collect large-scale data. However, most
analysis methods rely on complete data. This is particularly troublesome when studying
clinical data as they are prone to missingness. Often, researchers mitigate this problem
by removing patients with missing data from the analyses. Less commonly, imputation
methods to infer likely values are applied.

Objective
Our objective was to study how handling missing data influences the results reported,
taking the example of SCI registries. We aimed to raise awareness on the effects of missing
data and provide guidelines to be applied for future research projects, in SCI research
and beyond.

Methods
Using the Sygen clinical trial data (n = 797), we analyzed the impact of the type of
variable in which data is missing, the pattern according to which data is missing, and the
imputation strategy (e.g., mean imputation, last observation carried forward, multiple
imputation).

Results
Our simulations show that mean imputation may lead to results strongly deviating from
the underlying expected results. For repeated measures missing at late stages (≥ 6
months after injury in this simulation study), carrying the last observation forward
seems the preferable option for the imputation. This simulation study could show that a
one-size-fit-all imputation strategy falls short in SCI datasets.

Conclusions
Data-tailored imputation strategies are required (e.g., characterisation of the missingness
pattern, last observation carried forward for repeated measures evolving to a plateau
over time). Therefore, systematically reporting the extent, kind and decisions made
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regarding missing data will be essential to improve the interpretation, transparency, and
reproducibility of the research presented.
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6.2 Introduction
In the era of big data, medical research fields are facing a data challenge. The surge of
new mathematical and statistical methods promises to help understand the progression
of patients’ recovery following a medical event, improve diagnosis and prognosis, thereby
enhancing patients’ care. However, such models require sufficient data, preferable in the
magnitude of thousands of entries, to identify recurring patterns and infer prediction
rules. In a number of medical fields, such as the ones studying rare conditions (e.g., spinal
cord injury (SCI)) or rehabilitation, the sample size available is typically smaller and
further limited by the presence of missing data, with only a fraction of the overall data
being available. With its low prevalence and particular recovery pattern (i.e., time of
onset precisely defined followed by recovery which plateaus between six to 12 months
after the initial event), traumatic SCI constitutes an ideal study case for missing data,
which can be transferred to other medical fields. The last few decades saw the emergence
of SCI datasets, such as the European multicenter study on human spinal cord injury
(EMSCI) 1 or National Spinal Cord Injury Model Systems 2, including over 5,000 and
50,000 patients, respectively, partially filling the gap of data availability. However, these
registries, like most medical data, are prone to missing entries (e.g., patients lost to
follow-up, incomplete data entry, injury conditions making it impossible to perform
certain tests, different medication schemes etc.).

According to Rubin [272], missing data is categorized into three patterns, missing
completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR) (see Table 6.1). More precisely, MCAR refers to values, which are missing not
only independently of their true unknown value, but also of the value of the other
variables present in the data. In other words, data MCAR are equivalent to sampling a
representative subset of the complete population. When data is MAR, a missing entry is
not directly related to the underlying value, but related to other variables collected along
with the variable in which missing data is observed, i.e., the proportion of missing entries
differs between identifiable subgroups in the data. Finally, data are MNAR when the
underlying missing value is directly related to the entry being missing. Previous studies
have shown that MNAR could lead to biased interpretation of the results of statistical
analysis [273, 274, 275, 276]. Bias is defined as a deviation from the truth (e.g., either
over- or underestimating an effect) which can lead to erroneous conclusions [277]. This
phenomenon is important when dealing with medical data, as they are prone to data
MAR and MNAR [278, 279].

1http://emsci.org/
2https://msktc.org/about-model-systems/sci
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Table 6.1: Missing data patterns. lower extremity motor score (LEMS)

Pattern Definition Example
Missingness completely at
random (MCAR)

Values are missing inde-
pendently of their true un-
known value and independ-
ently of other variables

A LEMS value is missing for
participant A with no un-
derlying reason

Missingness at random
(MAR)

Values are missing inde-
pendently of their true un-
known value but the pat-
tern depends on other vari-
ables

A LEMS value is missing for
participant A because they
had a cast at the time of as-
sessment, i.e., knowing the
cast status gives inform-
ation on whether LEMS
value will be missing or not

Missingness not at random
(MNAR)

Having a value missing de-
pends on the true unknown
value

A LEMS value is missing for
participant A because their
injury was so severe that
they could not come for
the assessment, i.e., the un-
derlying true LEMS gives
information on whether
LEMS value will be missing
or not
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Independent of the missing data pattern, incomplete reports often lead to the ex-
clusion of patients as most mathematical models require so called "complete data",
effectively performing complete case analysis (CCA). This does not only represent a
missed opportunity to benefit from the entire sample available, but can also lead to
conclusions that are not representative of the entire population, and/or transferable to
other populations. Despite those limitations, CCA is the most frequent strategy applied
when handling missing data in SCI registries, although the resulting limitations are not
always explicitly acknowledged [280, 55, 115]. It has been shown that this strategy, when
applied to other medical research questions, could introduce bias in the results reported
[281, 282]. Beyond performing a complete case analysis, there exist multiple ways of
handling missing data. Imputation, in particular, refers to the procedure of inferring
likely values of the missing entries [283]. These strategies can be categorized into single
or multiple imputation, which would infer one or multiple likely value(s), respectively.
Likewise, imputation methods can consider only one variable (e.g., mean imputation) or
multiple variables at a time (e.g., model-based imputation such as predictive meanmatch-
ing (pmm)). Previous studies have reported better performances of multiple imputation
compared to single imputation strategies when data was missing in a human immunode-
ficiency virus (HIV) cohort [284] or in oncogene expression profiles [285]. Those results
are in line with the underlying motivation for multiple imputation. Having multiple
plausible imputed values allows to take into account the uncertainty when estimating
missing values. On the other hand, single imputation might impute falsely precise values
[283].

A particularity of traumatic SCI disease progression is that patients do recover to
some extent over time. Most of the recovery takes place in the first six months after
injury followed by a plateau between six and 12 months after injury [262]. The recovery
is characterized by non-linear and highly heterogeneous recovery patterns. Owing to
a scarcity of studies, the effect of missing data and imputation is not well understood
for SCI datasets. Importantly, other medical scenarios involving repeated measures may
show a similar plateau in the evolution of variables over time (e.g., observational studies
characterising recovery in rehabilitation centers following stroke [286] or traumatic brain
injury (TBI) [287], partial recovery following relapses in multiple sclerosis [288]).

To address this knowledge gap, we designed a simulation study characterizing the
impact of three key parameters on the results reported, namely the variable in which data
is missing, the pattern of missingness, and finally the imputation strategy applied. Firstly,
considering the recovery pattern following SCI, we hypothesized that performing an
imputation by last observation carried forward (LOCF) for the outcome variable evaluated
at week 52 would not significantly affect the models’ outcomes. However, we expected
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that carrying an observation from earlier time points (e.g., 16 weeks post injury) would
introduce bias in the interpretation of a model owing to the non-linearity of the recovery
trajectory. Secondly, we suspected that, while CCA is an efficient and unbiased way of
handling missing data when it is MCAR, it would introduce bias when data is MAR or
MNAR in the field of SCI as well. When data is MAR or MNAR, we hypothesized that
multiple imputation strategies, which consider the uncertainty in the imputation process,
would outperform ad-hoc and single imputation strategies. Finally, we hypothesized that
mean imputation is not a suitable strategy to handle missing SCI data, regardless of the
missingness pattern, since the assumption of normally distributed data is not met for
many SCI-related outcomes, such as the lower extremity motor score (LEMS).

Overall, our study evaluates extensively the impact of missingness on the analysis of
medical data, taking the example of SCI. Using data from the Sygen clinical trial, a well
established SCI data source, provides an opportunity to reconsider the importance of
missing data when studying SCI data and beyond.
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6.3 Methods

6.3.1 Data source

Sygen cohort

The Sygen project was a multicenter, randomized, double-blinded clinical trial conducted
between 1992 and 1998 in the United States of America (USA), to evaluate the effect of gan-
gliosidosis 1 (GM-1) on recovery following acute SCI [33, 117, 118]. Failing to demonstrate
superiority over placebo in terms of recovery following SCI, the Sygen study has emerged
as a valuable data source for research projects owing to the diligent data collection and
the size of the cohort, which is considerably larger than many contemporary cohorts
[166]. All enrolled patients were treated with methylprednisolone sodium succinate
(MPSS) according to the national acute spinal cord injury study (NASCIS) II protocol as
part of the standard of care [29]. The design of this clinical trial included the assessment
of neurological status at predefined time points. A baseline measurement (before 72
hours from injury and after the competition of the NASCIS II [34]), 4, 8, 16, 26, and 52
weeks following injury. The delayed baseline exam was centered around 48 hours after
injury. This time delay in baseline exam allowed a complete neurological examination,
also considering any recovery from hemodynamic normalization occurring between the
emergency room and 48 hours after injury. Among other variables, neurological level
of injury (NLI), motor scores (LEMS and upper extremity motor score (UEMS)), sensory
scores (pin prick and light touch) [15] and the American spinal injury association (ASIA)
impairment scale (AIS) [289] were reported. Overall, the cohort includes 797 participants,
with a majority of severe injuries (AIS A, 56%).

6.3.2 Simulation study
We conducted a simulation study where missing values were artificially introduced in
data otherwise complete. We assessed three key characteristics of the missing data: the
type of variable in which data is missing (i.e., outcome versus explanatory variable), the
patterns of missingness and the imputation strategy. We summarized the simulation
study in Figure 6.1.

Definition of the bootstrap subsets

We first selected all patients, who had data for LEMS at delayed baseline exam (referred
to as “baseline”) stage and chronic/52 weeks stage (referred to as “chronic”), as well as
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Figure 6.1: Simulation study overview. A. The first step leads to the definition of 500 bootstrap
subsets, with n = 500 in each subset; B. In each bootstrap subset, 30%missing data is introduced in
the variable for lower extremity motor score (LEMS) (either at baseline or at recovery) according
to one of the three patterns of missingness (missing completely at random (MCAR), missing at
random (MAR), missing not at random (MNAR)), independently, before being imputed. Empty
circles represent missing entries, while plain circles represent known values. neurological level
of injury (NLI)

AIS grade, NLI, sex and age at baseline. To emulate a plausible research hypothesis, we
considered the following model:

LE MSchr oni c ∼ LE MSbasel i ne + AI Sg r adebasel i ne +N LI +ag e + sex (6.1)

where we intended to study the association between LEMS at the chronic stage
(outcome variable) and LEMS at baseline (explanatory variable), taking into account
potential confounders, such as the AIS grade, NLI, age, and sex at baseline. Note, for
simplicity LEMS scores were considered to be continuous scores and NLI a binary variable,
taking either the value “cervical” or “thoracic”. Patients with lower injuries (i.e., at and
below L1) were excluded in the original study [33]. In order to assess how variable the
effects of missing data and data imputation are, we performed a bootstrap sampling with
replacement to create 500 bootstrap subsets (n = 500 entries for each) with fixed AIS
grade distributions (Figure 6.1A). The distributions followed either the original AIS grade
distribution from the complete Sygen data for the variables of interest, or with balanced
AIS grade groups (25% of grade A, B, C and D in the final cohorts, AIS grade E was not
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included as this category is not present in the original study [33]).

Introduction of missing data

In each bootstrap subset, we introduced 30%missing values in two of the variables, namely
LEMS at chronic stage and LEMS at baseline (Figure 6.1B). This percentage was chosen
based on the percentage of missing data observed in the Sygen cohort (24.1%) and was
set to a higher, more conservative percentage. In this study, we focused on simulations in
which missing data would be introduced in one variable at a time, whilst the rest of the
variables would be complete, as a way to simplify the task at hand. The choice of these
variables was motivated by their different status in the example model (outcome and
explanatory, respectively).

Missing values were introduced according to three patterns: MCAR, MAR, and MNAR
as described in Rubin in 1976 [272]. FormodelingMCAR, if LEMS at baseline ismissing for a
specific patient, the missing value would be unrelated to all other variables, including the
outcome variable LEMS at chronic stage (i.e., 52 weeks after injury). As such, disregarding
those entries should not introduce bias, provided a sufficient sample size [290]. In the
case of values MAR, information about the missing value can be retrieved by studying
the other variables. To simulate this behavior values MAR were introduced depending
on the variable sex, where being male made it twice more likely to have a value missing,
compared to being female. Finally, MNAR is a pattern, in which the unknown true value
influences whether the value is missing or not. In this study, we simulated that patients
with less severe injuries would be more likely to be missing. Specifically, high LEMS (i.e.,
above the LEMS 30th percentile) were four times more likely to be missing compared to
low LEMS (i.e., below the LEMS 30th percentile). The four times difference reflects the four
AIS grade categories (from A to D), closely related to the LEMS [291]. The 30th percentile
threshold was chosen to match the 30% missing data introduced, easily allowing for a
change in percentage of missing data introduced in future studies.

Imputation strategies

The introduced missing values were imputed with three types of procedures: ad-hoc
methods, single imputations and multiple imputations.

Ad-hoc methods included mean imputation [292] and LOCF [293]. The latter was used
for imputation of the outcome variable only (LEMS at chronic stage), where missing
data were replaced by LEMS assessed 26 weeks after injury. Intending to test the time
sensitivity of the LOCF, we repeated the analysis using LEMS at 26 weeks as the primary
outcome variable, and imputed it using LEMS available at week 16. We hypothesized,
based on the recovery profile following SCI [262], that LOCF fromweek 26 to chronic stage
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would be more relevant than LOCF from week 16 to week 26, where a substantial amount
of recovery is still likely to occur. We focused our analyses on outcomes measured at week
26 and week 52 after initial injury as they are the reference timepoints used in clinical
trials to assess recovery following SCI [33] [41].

Single imputation consisted of three main steps: (i) taking the set of patients, which
are not missing for a defined variable; (ii) fitting a model to describe this variable accord-
ing to all others; and (iii) predict likely values for the missing ones, based on the fitted
model. For example, if one imputes missing LEMS score at baseline, the fitted model
would be:

LE MSbasel i ne ∼ AI Sg r adebasel i ne +N LI +ag e + sex (6.2)

Note that we excluded the outcome variable as it represents information that is not
available at baseline. Different models can be used to fit the data available for imputation.
In this simulation study, we focused on linear regression (LR) [294], k-nearest neighbors (k-
NN) [295], and support vector machines (SVM) [296] using two types of kernel (linear and
radial basis function (RBF)) and random forest (RF) [297], as they represent a commonly
used set of machine learning models for prediction tasks [298]. All models included a
5-fold cross-validation scheme for hyperparameter optimization. The corresponding
parameter grids can be found in Additional File 1.

Single imputation is inherently limited as it does not provide uncertainty related
to the imputed value. Multiple imputation addresses this challenge: the imputation is
performed multiple times (25 times here, as a compromise between increased power
and reasonable run time [299]) before being pooled. Similarly as for single imputation,
the outcome variable was excluded from the imputation of the explanatory variable.
Models including pmm, LR imputation (norm.predict) and tree-based method (RF) were
chosen, as implemented in the R mice package [300]. Models for multiple imputation
were chosen to match the models used in the single imputation with the aim to increase
the comparability between the two approaches.

Based on our study design, we chose to pool the data before fitting the example model
featured in Equation 6.1, with the final imputed value being the mean of all imputed
values for the LEMS continuous variables [301]. This approach was taken in order to
obtain a single imputed value for each missing entry to allow for the computation of
metrics (see 6.3.3). However, it does not match the flow advocated in the implementation
for multiple imputation as presented in the R mice package. In order to ensure that
this change in procedure does not impair the outcome of the multiple imputation, we
compared both approaches in the Additional File 2.

Finally, we performed a CCA, where any patient (case) with at least one missing value
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among the variables described in Section 6.3.2 would be disregarded and the analysis
performed solely using patients for whom the entire set of variables was observed.

All imputation strategies were compared to their corresponding bootstrap subset
when complete, designated as baseline subset.

6.3.3 Evaluation of data imputation
Following imputation, we sought to evaluate and compare the different imputation
strategies tested. We employed various methods to both examine population- (i.e., stat-
istical tests, β coefficient comparisons) and individual-level (i.e., metrics) performance
of imputation methods in restoring the missing entries.

Statistical tests

Two-sample Kolmogorov-Smirnov test
We tested the null hypothesis considering that the two sets of observations were

drawn from the same unknown probability distribution, using a two-sample Kolmogorov-
Smirnov test [302], as implemented by the ks.test function in the stats R package. The
two sets of observations considered were either the variable before and after introducing
the missing values, or the variable before introducing the missing values compared with
the variable after imputation, or the variable after introducing missing values and the
variable after imputation. Note that in a typical imputation situation, true values are not
available, and thus only comparison between the set of non-missing values and the set of
values after imputation would be possible.

chi-squared (χ2) goodness of fit test
Theχ2 goodness of fit test, chisq.test in R,was employed to compare the proportion

of categorical variables between two cohorts. Its null hypothesis states that the sample
to be tested follows the hypothesized distribution from the other cohort.

Little’s test
Little’s test was first described in 1988 [303]. It tests the null hypothesis that data

is missing completely at random in a given cohort. In our framework, the mcar_test
function, implemented in the naniar R package [304], first allowed us to ensure that
the missing data was introduced as intended, i.e., MCAR or not (Section 6.4.1), and was
further used to describe the missingness in the original Sygen cohort (Section 6.4.3).

Metrics

We used the following metrics for a quantitative comparison of variables, continuous and
categorical, in their complete version versus after imputation. All imputation methods

Chapter 6. 163



Data science for SCI clinical studies

were subsequently ranked to determine, for eachmetric, which imputationmethodwould
consistently lead to imputations closer to the true values across repeated runs.

mean absolute error (MAE)
The MAE computes the average absolute difference between a known true value yi

and its corresponding imputed version ŷi for all n entries i for which missingness was
introduced:

M AE = 1

n

n∑
i
|yi − ŷi | (6.3)

MAE is a negatively-oriented score, which means lower values indicate better imputa-
tion performance. This metric has the advantage of being intuitively interpretable as it
is expressed in the units of the variables, i.e., a MAE of 3.5 for LEMS at baseline would
mean that, on average, the imputed values for LEMS missing at baseline are 3.5 points
away from their true values.

root mean squared error (RMSE)
The RMSE differs from theMAE as it squares the difference between true and imputed

values, thus penalizing large errors more. By taking the square root of the overall average
of differences, it allows one to interpret the RMSE on the scale of the initial values,
similarly to the MAE. Likewise, a RMSE of 0 corresponds to the best possible imputation.

RMSE =
√

1

n

n∑
i

(yi − ŷi )2 (6.4)

Comparison of β coefficients after linear regression (LR) using imputed data

The last method we employed to assess the quality and impact of imputation was to fit a
linear regression (LR) based on the simulated research question stated in Equation 6.1
and compare the β coefficients for the explanatory variables estimated from a LR based
on the complete set of data and the imputed data. This method allowed us to highlight
the difference in the conclusion drawn from a research question according to its study
design regarding the way to handle missing data. We considered the 95% confidence
interval (CI) and mean difference in β coefficients for each explanatory variable (i.e.,
LEMS at baseline). For an imputation method to be considered unbiased, the CI should
include the value 0 (i.e., it is likely that the true difference between the β coefficients is
negligible) and be as small as possible.

For all tests, the threshold of p < 0.05 was considered significant and led to rejecting
the corresponding null hypothesis. Analyses were performed with R Statistical Software
(version 3.6.0) and Python (version 3.7.4).
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6.4 Results

6.4.1 Description of the data

Full cohort and selected complete case cohort from the Sygen trial

Summary statistics of the variables of interest for our simulation study are presented in
Table 6.2. After including only complete cases for the variables of interest, the cohort
was reduced from 797 to 546 patients. Comparing the two cohorts did not yield significant
differences in terms of the proportion of sex (χ2 test, χ2 = 0.66, df = 1, p-value = 0.42),
age (two-sample Kolmogorov-Smirnov test, D = 0.02, p-value = 0.99), level of injury (χ2

test, χ2 = 0.25, df = 1, p-value = 0.62) or LEMS at baseline and at recovery (two-sample
Kolomogorov-Smirnov test, D = 0.01, p-value = 1, for both variables). When comparing
the proportions of AIS grades and considering missing data as a category in itself, which
would not be present by design in the cohort with only complete data, a significant
difference is reported between the two cohorts (χ2 test, χ2 = 73.96, df = 4, p-value
< 0.001). Since this difference is likely to be driven by the additional missing category, we
performed the same test using only the actual grades available. It revealed no significant
difference in the proportions of each grade between the two cohorts (χ2 = 0.84, df = 3,
p-value = 0.84).

Subsets from the cohort of complete cases

Variables of interest are summarized for every AIS grade distribution in Table 6.3. Each
value is reported as the mean of the variable’s values across the 500 subsets drawn
according to the same AIS grade distribution as in the cohort with complete cases from
the Sygen data, or with balanced AIS grade groups.

In order to test whether the missing data were introduced as intended (i.e., following
MCAR,MAR andMNAR patterns, respectively), we performed a Little’s test for each subset
and for each variable in which missing data was introduced, separately. As expected, the
null hypothesis, stating that the data is MCAR, is mostly rejected when missingness is
introduced at random or not at random (range: 491-500 subsets out of 500, Additional
File 3). Whenmissingness is introduced completely at random, it is expected that the null
hypothesis would be rejected in 5% of the 500 subsets since we defined our significance
threshold to be less than 0.05. That represents a 5% probability that the null hypothesis,
whilst being correct, is rejected. This expectation matches the observation across sub-
sets in which missingness was introduced completely at random, with the null being
rejected in 26 (5.2%) and 32 (6.4%) bootstrap subsets, depending on the AIS distribution
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Table 6.2: Characteristics of the Sygen cohort for the variables of interest, before and after selecting
for complete cases.

Entire cohort Complete cases only p value
Number of patients n 797 546
Sex 0.42

n (% male) 643 (80.7) 433 (79.3)
NA, n (%) 0 (0.0) 0 (0.0)

Age 1
mean (SD) 32.5 (13.4) 32.0 (13.3)
NA, n (%) 0 (0.0) 0 (0.0)

LEMS at week 01 1
mean (SD) 2.7 (7.2) 2.7 (7.1)
median [Q1 - Q3] 0 [0-0] 0 [0-0]
NA, n (%) 74 (9.3) 0 (0.0)

LEMS at week 26 1
mean (SD) 12.1 (18.7) 11.9 (18.9)
median [Q1 - Q3] 0 [0-29] 0 [0-28]
NA, n (%) 168 (21.1) 27 (4.9)

LEMS at week 52 1
mean (SD) 12.8 (19.3) 12.6 (19.3)
median [Q1 - Q3] 0 [0-32] 0 [0-31]
NA, n (%) 192 (24.1) 0 (0.0)

Level of injury 0.62
Cervical, n (%) 600 (75.3) 406 (74.4)
Thoracic, n (%) 197 (24.7) 140 (25.6)

AIS grade 0.84
A, n (%) 446 (56.0) 356 (65.2)
B, n (%) 77 (9.7) 59 (10.8)
C, n (%) 149 (18.7) 108 (19.8)
D, n (%) 31 (3.9) 23 (4.2)
NA, n (%) 94 (11.8) 0 (0.0) < 0.001

Significant p values are highlighted in bold.
Continuous variables (LEMS and age) were compared using a two-sample Kolmogorov-
Smirnov test, categorical variables (sex, level of injury and AIS grade) were compared
using a χ2 goodness of fit test.
lower extremitymotor score (LEMS); American spinal injury association (ASIA) impairment
scale (AIS); not available (NA); standard deviation (SD); first quartile (Q1); third quartile
(Q3)
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Table 6.3: Characteristics of the 500 bootstrap subsets (500 entries each) created according
to the American spinal injury association (ASIA) impairment scale (AIS) grade distributions
present in the Sygen cohort including only complete cases for the variables of interest, and
a balanced cohort, where all four grades are present in equal proportions.

Outcome at week 52 Sygen subsets Balanced subsets
Number of patients n 500 500
Number of male mean (SD) 369.8 (8.6) 385.5 (9.2)
Age [years] mean (SD) 32.0 (13.3) 34.2 (14.0)
LEMS at week 01

mean (SD) 2.7 (7.0) 8.5 (12.1)
median [95% CI] 0 [0-0] 0 [0-0]

LEMS at week 26
mean (SD) 11.9 (18.8) 11.9 (18.9)
median [95% CI] 0 [0-0] 34 [33-34]
NA, n (%) 24.9 (5.2) 22.8 (4.6)

LEMS at week 52
mean (SD) 12.6 (19.3) 26.2 (21.7)
median [95% CI] 0 [0-0] 35 [35-36]

Level of injury
cervical, mean (SD) 372.3 (9.8) 412.7 (8.4)
thoracic, mean (SD) 128.7 (9.8) 87.3 (8.4)

AIS grade
A, n (%) 325 (65.0) 125 (25.0)
B, n (%) 55 (11.0) 125 (25.0)
C, n (%) 100 (20.0) 125 (25.0)
D, n (%) 20 (4.0) 125 (25.0)

lower extremity motor score (LEMS); American spinal injury association (ASIA)
impairment scale (AIS); not available (NA); standard deviation (SD); confidence
interval (CI)
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(Additional File 3). Overall, this step allows us to assume that the missingness patterns
were introduced appropriately.

Following the introduction of themissing data, we evaluated the impact of themissing
data on the distribution of the variable in which it was introduced. When tested with
the two-sided Kolmogorov-Smirnov test, introducing MCAR and MAR did mostly not
significantly change the distributions of the two variables (LEMS at baseline and recovery)
(Additional File 4). By contrast, introducing MNAR introduced a shift in the distribution
of the variables for the majority (500 and 305/500 when AIS grade distribution follows the
complete Sygen data’s distribution and a balanced AIS grade distribution, respectively) of
the bootstrap subsets. Introducing MNAR in LEMS at recovery in a population where the
proportions of AIS grades are balanced (25% for each group), was an exemption to that
observation. In this particular case, the null hypothesis of the two-sided Kolmogorov-
Smirnov test, stating that the values of LEMS at recovery before and after introducing
MNAR were drawn from the same underlying population, was rejected for 305 subsets
out of 500. In comparison, it was rejected for all subsets in a similar population AIS grade
distribution, when missingness was introduced at random.

6.4.2 Performance of imputation methods
Statistical tests

The results comparing the distributions of the true and imputed values after introducing
missing data are summarized in Additional Files 5 and 6. While introducing data MCAR
or MAR did not lead to significant shifts in distributions (see Section 6.4.1), we observed
that the imputation methods introduced shifts irrespective of the underlying AIS grade
distribution in the population or the variable with missing entries. Similarly, we noted
that across variables, underlying AIS grade distributions in the samples and missingness
patterns, the majority or mean imputation systematically shifted the distribution of the
imputed variable.

When datawasMNAR, the distributions of the resulting populationwere often signific-
antly different from the initial population (from 305 to 500 out 500 subsets, Section 6.4.1
and Additional File 4). Following imputation, this shift was more likely to be reversed as
the underlying population structure approached balanced proportions in AIS grades (e.g.,
150 versus 295 subsets out of 500 had a significantly different population distribution
after imputation with multiple RF when data is MNAR in LEMS at baseline, Additional
File 5). The imputation method that led to the least number of subsets in which a shift
was still observed was imputation using a RF (simple imputation, four subsets when
data MNAR, Additional File 5), followed by pmm (multiple imputation, 14 subsets when
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data MNAR, Additional File 5) for the LEMS at baseline. One exception arose when
missingness was introduced in the outcome variables, LEMS at the chronic stage, where
imputation with LOCF led to sample distributions that were never significantly different
from the true population (Additional File 6). This observation also held true when the
outcome variable was measured 26 weeks after injury and imputation was based on data
collected 16 weeks after injury (Additional File 7). However, when both LEMS at chronic
stage and week 26 were missing, LOCF could not be performed and led to the exclusion
of a mean of 6.8 (standard deviation (SD): 2.5), 6.8 (SD: 2.5) and 6.5 (SD: 2.6) entries per
bootstrap subset, when LEMS at chronic stage was MCAR, MAR and MNAR, respectively.

Metrics

Testing for difference in distributions is equivalent to looking at the performance of the
imputation at a population level. It is, however, also interesting to see at the scale of the
individual imputed values how the imputation performs. For that purpose, we computed
various metrics to quantify the agreement between individual imputed values and their
true counterpart, across bootstrap subsets.

Twomain observationswere similar to the ones obtainedwhen comparing imputation
methods at the population level by means of statistical tests. Firstly, LOCF was the
imputation method leading to the lowest MAE and RMSE, when imputing the outcome
variable evaluated at week 52 (Figure 6.2A). When the outcome was measured at week 26
after injury, LOCF was still consistently among the top four imputation methods but was
outperformed by pmm (Figure 6.2B). Secondly, mean imputation led to the lowest ranked
metric values in most of the scenarios, regardless of the other three parameters to be
studied in this simulation (i.e., AIS grade distribution, missingness patterns, variables to
be imputed, Additional Files 8 and 9, Figure 6.2). Multiple imputation, on the contrary,
was always ranked the highest (following LOCF if present), across all metrics, with a
slight advantage to pmm and norm.predict (ranked in the top two, after LOCF, in all the
simulations) over multiple RF (ranked third, or fourth when LOCF is present, in over
90% of the simulations), when imputing LEMS variables (Figure 6.2). We also observed
that the distribution of the metrics values were less variable with multiple imputation
when repeating the process in 500 bootstrap subsets compared to the single imputation
methods (SD of distribution of MAE when LEMS at chronic stage MAR: 0.97, 0.71, 0.24

and 0.21 when imputed using k-NN, LR, pmm and norm.predict, respectively, Additional
File 9).
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Figure 6.2: Imputation methods ranked from lowest (1) to highest (9 or 10) metrics’ values
when introducing missing data not at random in A. LEMS at outcome considered at week 52. B.
LEMS at outcome considered at week 26. C. LEMS at baseline. For each subset (n = 500), missing
data is introduced and imputed using all methods. Within each subset, imputation performance is
compared between imputation methods and ranked from best performance (i.e., closest to 0 and
ranked 1) to lowest performance (i.e., highest metric value and ranked 9 or 10). We display the
proportion of subsets (out of 500) per rank and imputation method. lower extremity motor score
(LEMS); mean absolute error (MAE); root mean squared error (RMSE); support vector machines
(SVM); radial basis function (RBF).

Comparison of β coefficients after linear regression (LR) using imputed data

As shown in Figure 6.3, mean imputation for LEMS missing at baseline consistently
introduced a bias in coefficients estimated via LR, with the magnitude of the bias in-
creasing from data MCAR to MAR to MNAR (mean difference between estimates of beta
for LEMS at baseline of −0.33, −0.35, and −0.50 when data MCAR, MAR and MNAR, re-
spectively). In contrast, bias would not be introduced when performing a CCA, i.e., zero
would also be present in the CI. This imputation method, however, led to wide CIs in the
difference between coefficients estimated on the entire data versus on the imputed data
(e.g., when estimating the effect of AIS grade D in comparison with AIS grade A, 95% CI
of [−6.5;5.3], [−5.8;6.6] and [−30.1;13.1] for data MCAR, MAR and MNAR, respectively).
Taken together, Figure 6.3 supports the use of multiple imputation methods such as
pmm and norm.predict in imputing missing LEMS at baseline, as those methods did not
introduce bias and resulted in smaller CI, especially with data MNAR ([−17.9;13.5] for
estimates of the effect of AIS grade D in comparison with AIS grade A). When imputing

170 Chapter 6.



Data science for SCI clinical studies

Figure 6.3: Mean and CI of the difference between estimates from the data before introducing
missingness in LEMS at baseline and after imputation. Each row corresponds to missing data
being introduced using a different missingness pattern (MCAR, MAR and MNAR from top to
bottom). Each column corresponds to the estimate of one explanatory variable (LEMS at baseline,
AIS B compared to AIS A, AIS C compared to AIS A and AIS D compared to AIS A, from left to right).
Intervals displayed in red do not contain the value 0. missing completely at random (MCAR);
missing at random (MAR); missing not at random (MNAR); lower extremity motor score (LEMS);
American spinal injury association (ASIA) impairment scale (AIS); k-nearest neighbors (k-NN);
support vector machines (SVM); radial basis function (RBF); confidence interval (CI).

missing LEMS at week 52, LOCF produced estimates of β that were both unbiased and
close to the estimates derived from the entire data (Additional File 10). If the outcome is
evaluated at week 26, imputation of missing data using LOCF uses information available
at week 16. Despite using information from an earlier time in the recovery process, it
appears to still be the most reliable imputation method with no bias introduced, except
when data is MNAR. In that case, although the estimates repeatedly deviated from the
expected ones, the bootstrap CI is tight compared to CI obtained with other imputation
methods ([−2.5;−0.3] and [−3.1;−0.5] for the estimates for AIS B and C versus AIS grade
A, respectively, Additional File 11).
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6.4.3 Application of studying missing values to real-world data
As presented in Table 6.2, the full Sygen cohort (n = 797) presents missing entries
for LEMS at both time points and AIS grade at week 1, when taking into account the
variables studied in our example model. Sex, age and NLI, however, had no missing data.
Additional File 12 illustrates the co-occurrence of missing data across the variables
considered. The hypothesis of the data being MCAR was rejected when taking all the
variables of the model together (Little’s test, statistic = 76.4, df = 44, number of missing
patterns= 8, p-value= 0.002). The variable with most missing entries, LEMS evaluated at
week 52, presents with 24.1% missing data, making our simulation with 30% missing data
more conservative. Notably, both LEMS at week 52 and 26 were missing for 136 (17.1%)
participants. It is important to highlight that this subset could not benefit from a reliable
imputation based on the LOCF strategy. However, 56 participants (7.0%) could be included
in such an analysis by imputing themissing outcome variable using the LOCF strategy. For
the participants in which either LEMS or AIS grade at baseline was missing, imputation
could be envisaged, preferably through multiple imputation. General consideration on
how to apprehend missing data, both based on knowledge from the literature and results
from the simulation study described here, are presented in Figure 6.4.

Figure 6.4: General consideration when facing missingness in medical data.
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6.5 Discussion
In this simulation study, we aimed to address the impact of missing data in SCI data
sources on the results reported. We specifically focused on three key components that
could affect the analysis itself and the interpretation of the results: the type of variable in
which data is missing, the pattern in which the data is missing (i.e., MCAR, MAR, MNAR),
and the imputation strategy applied.

In agreement with reports from other medical fields [273, 305, 306], we showed that
data MNAR is more likely to lead to biased subsequent analysis as it might change the
distribution of the data available for analysis (Additional File 4). Likewise, disregarding
the presence of data MNAR by performing an analysis based on complete cases can also
lead to erroneous conclusions compared to an analysis that would have been performed
on the entire sample with no missing data (Figure 6.3) considering the large CI of the
difference between the true estimate and the estimate obtained from the imputed data.
This point is particularly crucial as most studies currently perform complete case analysis
[258, 44, 307, 308], and we reported absolute effect sizes greater than 5 (when MNAR and
considering AIS D or C compared to A), surpassing the threshold of 5 points considered as
clinically significant for LEMS [271]. It could also not be excluded that data was MNAR in
the Sygen data (Section 6.4.3). The latter is likely to hold true inmost SCI datasets (EMSCI
database [166]) owing to the nature of the data itself (i.e., observational medical data).
When dealing with MNAR, CCA did not consistently lead to the introduction of bias in the
estimates of β coefficients, contradicting our initial hypothesis. We observed, however,
that multiple imputation strategies, in particular pmm and norm.predict equally led to
unbiased estimates but with narrower CIs, suggesting a lower variance in the estimates.
Similarly, multiple imputation methods were more likely to generate distributions closer
to the initial true distribution. Taken together, it seems that, for this cohort, handling
MNAR with multiple imputation would be more appropriate than to use CCA.

While LOCF is only possible in the case of variables being observed at multiple time
points and may not be appropriate for other medical outcomes [309, 310], our study
supports the use of this imputation for SCI-related outcomes such as the LEMS. We
were able to show that performing LOCF from week 26 to week 52 leads to a population
similar to the true underlying population in terms of distribution (Additional File 7),
individual values imputed and estimated β coefficients from the LR model (Additional
File 9). This is likely attributable to the very characteristic recovery trajectory of SCI,
including a plateau starting six to 12 months after the initial injury. Contrary to our
initial expectation, this observation still held true when performing LOCF from week 16
to week 26 (Additional File 10). However, it is important to note that this conclusion
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might be specific to outcomes with this particular recovery trajectory, and might not be
transferable to outcomeswhere no plateau can be observed (both SCI-related or unrelated
outcomes). LOCF is also a well suited imputation method for outcome variables as it only
relies on data that will be further used at a later stage of the data analysis or modeling
process. This effectively prevents introducing circularity, which in turn improves the
potential transferability of the reported results to a clinical setting. However, it should
be noted that in longitudinal studies, one may take advantage of the repeated measures
and analyze the entire recovery trajectory rather than the mere association between
baseline and chronic measures. In such cases, likelihood-based methods (e.g., mixed-
effects models) would be advantageous. Indeed, they inherently allow for MCAR and
MAR, or specification of the joint distribution between the data present and missing data
when data is MNAR, thus not requiring imputation [311].

6.5.1 Limitations
It is important to note that the interpretation of this study might be limited by a few
factors. Firstly, we studied imputation for repeated measures in the context of SCI us-
ing LOCF considering carrying forward information from week 26 to week 52, and from
week 16 to week 26. However, we have not explored whether carrying forward values
from earlier timepoints (e.g., week 4 or 8) would lead to equally reliable imputed values.
Additionally, the exact time points to consider for a valid LOCF will depend on the spa-
cing between repeated measures available and the expected trajectory and timeframe
of the variable of interest. Secondly, we restricted our analysis to a fixed amount of
missing data (i.e., 30%). This percentage was chosen based on the actual percentages of
missing data observed in the variables studied in the original data used and was fixed
to a higher percentage to be more conservative while being able to compare our results
across variables. Thirdly, we only investigated continuous variables. Dealing withmissing
data in categorical variables (e.g., AIS grade, assessing SCI severity) would require the
use of other models (e.g., proportional odds logistic regression for multiple imputation)
and give rise to specific challenges (e.g., how to impute a category that is not present
in the data but theoretically possible). Additionally, we did not study missingness in
self-reported variables, which can carry information and should therefore be studied
beyond imputation [312, 313]. These points have not been explored as a means to limit
the complexity of our primary analysis, but constitute the starting point of future work.
Finally, we focused on missing data being present in one variable at a time, i.e., univari-
ate imputation. Investigating the multivariate missing data problem poses additional
challenges, including but not restricted to combining different missingness patterns,
introducing circularity when imputing outcomes based on explanatory variables, or
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potentially masking meaningful information from the co-occurrence of missing entries.
In such cases, imputation strategies can range from combining multiple univariate im-
putation (i.e., monotone data imputation), conditional univariate models or modeling the
joint distributions within the entire dataset [314]. Similarly, exploring different research
questions or at the scale of larger databases was beyond the scope of this initial analysis
but would benefit from their own study. Accordingly, it would be interesting to extend
this simulation study and further analysis of missing data using additional SCI datasets
such as the EMSCI or the Rick Hansen spinal cord injury registry (RHSCIR) [315], and
similar observational datasets beyond SCI such as the transforming research and clinical
knowledge in traumatic brain injury (TRACK-TBI) initiative [316] focusing on TBI.

6.5.2 Conclusions
Our study raises awareness regarding the presence and impact of missing data in medical
data sources (e.g., clinical trials, registries), taking the example of SCI. We demonstrated
that disregarding missing data could not only result in a significant loss of information,
but also lead to erroneous conclusions. Hence, we see this work as a first step towards
systematically considering and reporting the presence of missing data as part of good
practices in SCI data analysis and beyond.
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7.1 Abstract

Background
The concept of positive deviance studies individuals achieving better outcomes than
expected. Applied to spinal cord injury (SCI), it allows for an exploration and characteriz-
ation of individuals that recover beyond what is clinically explainable.

Methods
In this study, we defined positive deviance as phenomenal recovery (PR) following SCI
in two cohorts, namely the Sygen clinical trial and the European multicenter study on
human spinal cord injury (EMSCI) cohort. The definitions of PR followed two strategies:
based on clinical knowledge, and on statistical characterization. After defining PR and
comparator groups, we reported on demographics, patterns in motor scores recovery -
with a specific focus on the comparison between scores in the upper and lower extremities
-, and prescriptions of antibiotics.

Results
We observe that phenomenal recoveries tend to occur more in individuals with cervical
injuries (from 61.7% to 100% of the PR groups defined). They exhibit a higher prevalence
of central cord patterns in motor scores at recovery, especially when using more refined
definition of central cord syndrome, based on the level of injury. However, we could not
identify consistent patterns in antibiotics prescription across the different PR groups or
in comparing PR groups to their respective comparator group.

Conclusions
Further explorations in additional cohorts are warranted to confirm or infirm the trends
observe and thus better characterize patients with a potential for PR. This character-
ization would be crucial in the context of clinical trials, where such PRs should not be
mistaken for a treatment effect.
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7.2 Introduction
The concept of positive deviance refers to the observation that a few individuals will
achieve better outcomes thanks to unique behaviors or characteristics [317]. While this
concept was originally developed in behavioral and social sciences, particularly applied
to nutrition education [318], its pertinence extends to other fields, including recovery
following trauma such as spinal cord injury (SCI). SCI is a devastating condition where
the impairment of the spinal cord leads to loss of functions in all major systems of the
body (neurological, musculoskeletal, cardiovascular, pulmonary, urinary, among others).
Following the initial trauma, the severity of a SCI is summarized on a five-grade scale,
from A most severe to E least severe, according to the American spinal injury association
(ASIA) impairment scale (AIS) grading system. The AIS grade has been shown to be a
good indicator of the expected recovery [17], with more injured patients being expected
to recover less than a patient with a less severe injury, all other characteristics being
otherwise similar. Likewise, infections such as pneumonia and postoperative wounds in
the acute stage after initial trauma seem to be associated with worse recovery in the most
severely injured patients (AIS grades A and B) [105]. Despite the knowledge acquired
on factors influencing recovery following SCI, there still exists exceptions where a few
individuals with SCI recover beyond clinical expectations and explanations.

In this project, we intend to explore the characteristics of such individuals, referred
to as phenomenal recovery (PR) group, focusing on neurological recovery profiles and
medications received. We define the PR group according to two distinct methods: (i) a
clinical definition, matching the clinical experience of positive deviance; and (ii) a statist-
ical definition, based on the identification of outliers in the amount of motor recovery
observed. Our exploration includes a comparison between the methods used to define
the PR group and between groups defined in two distinct data sources, namely the Sygen
and European multicenter study on human spinal cord injury (EMSCI) cohorts.

We hypothesize that individuals from the PR group do not only exhibit increased
motor recovery as defined by aggregate scores such as the lower extremity motor score
(LEMS) but also unique patterns in motor recovery at the myotome level. Furthermore,
taking advantage of information about medication received at the acute stage after injury
in the Sygen cohort, we hypothesize that the PR group differs from the rest of the cohort
in the medications prescribed, particularly antibiotics used as proxy for infections.

Defining and studying individuals recovering to a greater extent than expected holds
the potential to formulate new hypotheses on how to enhance recovery following SCI
and further informs the detailed analyses of patient subgroups within clinical trials.
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7.3 Methods

7.3.1 Data sources

Sygen cohort

The Sygen clinical trial was conducted in the 1990s, in the United States of America (USA),
to assess the effect of the gangliosidosis 1 (GM-1) on the motor recovery of individuals
with SCI [33, 34, 117, 118]. While it failed to prove significant improvement over placebo,
since then, it has been a valuable data source for secondary analyses in the field. In this
study, we particularly rely on information on the longitudinal neurological assessments,
and prescribedmedications in the first 30 days following injury. Neurological assessments
were collected following the international standards for neurological classification of
spinal cord injury (ISNCSCI) examination standards, making available both aggregate
scores such as the lower extremity motor score (LEMS) and upper extremity motor
score (UEMS), but also gradings at the myotome and dermatome levels. Assessments
were performed according to a predefined schedule which involved measurements 2,
4, 8, 16, 26, and 52 weeks after injury. Here, we particularly focused on week 2 and 4,
considered together as baseline, and week 26 and 52, considered together as recovery
time. Additionally, the neurological level of injury (NLI) was recalculated to match the
definition given by Rupp et al. in [15].

EMSCI cohort

The EMSCI is a observational cohort collecting data across centers for SCI in Europe
and India 1. Started in the early 2000s, this initiative now represents data from over
6000 individuals. Information such as demographics, neurological assessments following
the ISNCSCI examination and functional scores (e.g., spinal cord independence measure
(SCIM)) are collected at predefined time points: very acute (∼2 weeks, 0 to 15 days post
injury), acute I (∼4 weeks, 16 to 40 days), acute II (70 to 98 days), acute III (∼26 weeks,
150 to 186 days) and chronic (∼52 weeks, 300 to 546 days). Mimicking the criteria applied
to the Sygen data, we consider here very acute and acute I stages as baseline, and acute
III and chronic stages as recovery.

1http://emsci.org/
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7.3.2 Definitions of positive deviance

Clinical approach

The clinical definition of positive deviance aimed to identify individuals who had experi-
enced a sustained very severe injury and manifested a PR. Sustained very severe injury
was defined as an injury which was consistently graded as AIS grade A 2 and 4 weeks
after initial injury, with no remaining motor or sensory functions (all scores evaluated as
0) below L1 in the same timeframe. A PR following a sustained very severe injury was
defined based on two observations. Firstly, spinal cord injury (SCI) initially graded as
severe (AIS grade A) tend to remain severe after one year following initial injury [17].
Secondly, myotomes graded with a 0 after initial injury tend to remain 0, while initial
scores above 0 have higher likelihood to improve (Lukas et al., unpublished). Therefore, PR
was fixed with an improvement of at least five points in LEMS from baseline to recovery
[271].

∆LEMS= LEMSLOCF−max(LEMS2,LEMS4) (7.1)

The comparator group corresponded to individuals a sustained very severe injury
at early stages after injury with improvement in LEMS less than five points. The full
decision tree used to define the PR and comparator groups is shown in Figure 7.1.

Figure 7.1: Decision tree illustrating the clinical definition of a PR. phenomenal recovery
(PR); American spinal injury association (ASIA) impairment scale (AIS); lower extremity motor
score (LEMS).
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Statistical approach

With the intention to define PR beyond sustained very severe injuries, we introduce a
definition of PR based on the distribution of mean improvement of motor scores (MS),
across all myotomes M , below the NLI, between scores evaluated at week 4 versus recov-
ery:

∆MSbelowNLI =
1

|M |
∑

m∈M
(MSm

4 −MSm
LOCF) (7.2)

PR is then defined as individualswho fall beyond the 95th percentile of the distribution
observed, to match an approximate 5% of the population studies which would be defined
as experiencing a PR. Notably, this approach accounts for (i) the ceiling effect observed
in scores such as the lower extremity motor score (LEMS), and (ii) the neurological level
of injury (NLI) by considering on the myotomes below this level.

The comparator group is drawn from the rest of the distribution, using propensity
score matching as implemented in the package MatchIt in R. Matching was performed
on sex, age, NLI, LEMS, UEMS and AIS grade evaluated 4 weeks after injury. We chose a
4:1 allocation with no replacement. The ratio was limited by the AIS grade distribution
from the entire population and the absence of replacement was chosen to avoid potential
over representation of prescribed medications from a single individual.

7.3.3 Data processing

Inclusion and exclusion criteria

To be included in our study, individuals needed to have information about LEMS and
AIS grade evaluated at baseline (2 and/or 4 weeks after injury), and LEMS at recovery.
The statistical approach required information about the NLI to be available. Finally,
individuals with lumbar or sacral injuries were excluded from the EMSCI cohort, for
better comparability with the Sygen cohort, including only cervical and thoracic injuries
by design.

Last observation carried forward

To maximize the size of the cohort to study, we performed a last observation carried
forward (LOCF) imputation from week 26 to week 52 when outcomes of interest, such as
the LEMS, evaluated 52 weeks after injury was missing [261].
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Exploring neurological recovery

Neurological recovery was studied by comparing myotome and dermatome gradings at
week 4 versus recovery after LOCF imputation. When comparing the incidence of central
cord syndrome (CCS), five definitions of CCS were used as defined by Engel-Haber et al.
[319]:

(i) disproportionate weakness with LEMS−UEMS≥ 1, later referred to as CCS-1

(ii) disproportionate weakness with LEMS−UEMS≥ 5, later referred to as CCS-5

(iii) disproportionate weakness with LEMS−UEMS≥ 10, later referred to as CCS-10

(iv) disproportionate weakness with LEMS−UEMS≥ 19, later referred to as CCS-19

(v) NLI-based definition with (1− meanUEMSblwNLI
meanLEMS ) > 10%, later referred to as NLI-based

CCS

Exploring antibiotics prescribed

The exploration of antibiotics prescribed was limited to the first 30 days after injury,
period during which the PR and its comparator groups are designed to be similar in their
injury characteristics. Various strategies were employed to compare the two groups in
terms of the antibiotics prescribed, both from a quantitative and qualitative point-of-view.
This analysis included the comparison in the incidence of each antibiotic prescribed, in
the number of unique antibiotics prescribed, and in number of days with no antibiotics
prescribed. Additionally, we examined the number of individuals with antibiotics pre-
scribed on day 0 and day 1 after injury, in an effort to identify prophylaxis prescriptions.
Finally, we studied the number of cumulative antibiotics-days, defined as the sum of
unique antibiotics given across the first 30 days after injury.

Statistical analyses

The clinical definition of positive deviance did not allow for statistical testing due to
low sample size. Kolmogorov-Smirnov (ks.test and Fisher’s exact tests (fisher.test)
were performed, for continuous and categorical variables, respectively, for comparison
between PR and comparator groups as defined according to the statistical approach.
Bonferroni multiple testing correction was used, and the adjusted p-values < 0.05 were
considered significant. All analyses were conducted with R Statistical Software, version
4.3.2 (running under: macOS Sonoma 14.2.1).
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7.3.4 Data and code availability statement
Anonymized data used in this study will be made available upon request to the corres-
ponding author and in compliance with the European general data protection regulation
(EU GDPR). The code describing the analysis can be accessed on our GitHub repository 2.

2https://github.com/lbourguignon/SCI-phenomenal-recovery
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7.4 Results

7.4.1 Clinical approach
The clinical definition of PR, based on LEMS improvement after a sustained very severe
injury, yields an incidence of about 2% both in the Sygen (n = 6) and EMSCI (n = 8) cohorts.
Although the small sample sizes prevent the use of statistical tests, we observe that the
PR groups tend to include more men and older individuals. One noticeable difference
was in the level of injury, with PR occurring predominantly after a cervical injury (n = 6,
100%, and n = 7, 87%, in the Sygen and EMSCI cohorts, respectively). Further details are
reported in Table 7.1.

Table 7.1: Demographic and injury characteristics of the phenomenal and comparator
groups defined in the Sygen and European multicenter study on human spinal
cord injury (EMSCI) cohorts according to the clinical definition

Sample size
6 (2) 293 (98) 8 (2) 393 (98)

Sex, N (%)
0 (0) 53 (18.1) 0 (0) 81 (20.6)

Male 6 (100) 240 (81.9) 8 (100) 312 (79.4)
Age (years)

37.0 (11.7) 30.6 (12.6) 51.0 (16.9) 41.2 (17.3)
Median [Min, Max] 22.0 [18.0,

49.0]
28.0 [13.0,
69.0]

56.0 [18.0,
70.0]

40.0 [13.0,
93.0]

AIS grade 4 weeks after injury, N (%)
6 (100) 293 (100) 8 (100) 495 (100)

B 0 (0) 0 (0) 0 (0) 0 (0)
C 0 (0) 0 (0) 0 (0) 0 (0)
D 0 (0) 0 (0) 0 (0) 0 (0)

NLI, N (%)

Sygen cohort EMSCI cohort
PR group Comparator

group
PR group Comparator

group

Continued on next page
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Table 7.1: Demographic and injury characteristics of the phenomenal and comparator
groups defined in the Sygen and European multicenter study on human spinal
cord injury (EMSCI) cohorts according to the clinical definition (Continued)

6 (100) 210 (71.7) 7 (87) 166 (42.2)
Thoracic 0 (0) 69 (23.5) 1 (13) 222 (56.5)
Missing 0 (0) 14 (4.8) 0 (0) 5 (1.3)

LEMS 4 weeks after injury
0 (0) 0 (0.12) 0 (0) 0 (0)

Median [Min, Max] 0 [0, 0] 0 [0, 2] 0 [0, 0] 0 [0, 0]
Missing, N (%) 0 (0) 3 (1.0) 0 (0) 0 (0)

UEMS 4 weeks after injury
9.2 (14.5) 25.0 (19.5) 24.8 (16.7) 35.5 (19.6)

Median [Min, Max] 4 [0, 38] 19 [0, 50] 23.5 [6, 50] 50.0 [0, 50.0]
Missing, N (%) 0 (0) 20 (6.8) 0 (0) 6 (1.5)

LEMS at recovery (with LOCF)
16.5 (8.7) 0.1 (0.5) 20.9 (13.6) 0.1 (0.4)

Median [Min, Max] 14.5 [6, 32] 0 [0, 5] 20 [6, 45] 0 [0, 4]
UEMS at recovery (with LOCF)

22.0 (14.5) 29.6 (17.8) 35.1 (13.4) 37.6 (17.7)
Median [Min, Max] 21.5 [5, 46] 26 [0, 50] 37 [17, 50] 50 [0, 50]
Missing, N (%) 0 (0) 1 (0.3) 0 (0) 1 (0.3)

Sygen cohort EMSCI cohort
PR group Comparator

group
PR group Comparator

group

American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for full
description.
European multicenter study on human spinal cord injury (EMSCI), phenomenal recovery
(PR), standard deviation (SD), neurological level of injury (NLI), lower extremity motor
score (LEMS), upper extremity motor score (UEMS), last observation carried forward
(LOCF)

When investigating motor recovery at the myotome level, one can note that some
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individuals classified in the PR group recover motor abilities further in the distal lower
limbmyotomes, as illustrated in Figure 7.2. This observation can be quantified according
to the different CCS definitions, as summarized in Supplementary Table 8.16. Overall,
we observe higher proportions of CCS patterns at recovery in the PR groups, both in the
Sygen and EMSCI cohorts.

A total of 19 unique antibiotics were prescribed in both the Sygen PR and comparator
groups, with 17 being prescribed most often in the PR group. Among them, vancomycin
was the antibiotic with the largest difference between the two groups, with 100% (n = 6)
versus 43.7% (n = 128) of the PR versus comparator which received vancomycin at least
once in the first 30 days after injury. Details of the antibiotics and their prevalence are
summarised in Supplementary Table 8.17. We observe that more unique antibiotics
were prescribed in the PR group (mean: 6.7, standard deviation (SD): 3.3, median: 6.0,
minimum: 2, maximum: 11; and mean: 5.0, SD: 2.4, median: 5.0, minimum: 1, maximum:
17). The proportion of individuals who received antibiotics on day 0 or 1 after injury
was also higher in the PR group (n = 3, 50% and n = 83, 28.3%, for PR and comparator
groups, respectively). Interestingly, the number of cumulative antibiotics-days tends to
be lower in the PR group compared to the comparator group (mean: 45.2, SD: 28.9, median:
44.5, minimum: 12, maximum: 82; and mean: 56.8, SD: 37.0, median: 50.0, minimum: 0,
maximum: 194; respectively).

7.4.2 Statistical approach
Individuals located beyond the 95th percentile in mean improvement of motor scores
(MS) below the NLI were mainly less severely injured individuals, with a majority of
AIS grade C both in the Sygen and EMSCI cohort (n = 21, 75.0%, and n = 86, 67.2%,
respectively). Similarly as in the clinical-PR groups, cervical injuries were the most
represented (n = 24, 85.7%, and n = 79, 61.7% in Sygen and EMSCI, respectively). As
expected based on the definition used, PR and comparator groups showed statistically
significant differences in LEMS and UEMS at recovery (Kolmogorov-Swirnov tests, both
p < 0.001). All comparisons, demographic and injury characteristics are summarised in
Table 7.2.
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Figure 7.2: Motor scores at the myotome level for PR groups based on clinical definition.
A. Evaluated at week 4 in the Sygen PR group; B. Evaluated at week 4 in the EMSCI PR group; C.
Evaluated at recovery after LOCF imputation in the Sygen PR group; D. Evaluated at recovery after
LOCF imputation in the EMSCI PR group; E. Difference between scores at week 4 and at recovery in
the Sygen PR group; F. Difference between scores at week 4 and at recovery in the EMSCI PR group;
phenomenal recovery (PR); European multicenter study on human spinal cord injury (EMSCI);
last observation carried forward (LOCF).
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Table 7.2: Demographic and injury characteristics of the phenomenal and comparator groups defined in the Sygen and
European multicenter study on human spinal cord injury (EMSCI) cohorts according to the statistical definition

Sample size
N (%) 28 (20) 112 (80) 128 (20) 512 (80)

Sex, N (%)
Female 2 (7.1) 18 (16.1) 0.37 21 (16.4) 99 (19.3) 0.53
Male 26 (92.9) 94 (83.9) 107 (83.6) 413 (80.7)

Age (years)
Mean (SD) 32.1 (13.6) 33.4 (14.5) 0.97 42.5 (18.9) 45.0 (18.7) 0.53
Median [Min, Max] 30.5 [13.0, 62.0] 30.5 [14.0, 69.0] 42.0 [9.0, 78.0] 44.5 [14.0, 89.0]

AIS grade 4 weeks after injury, N (%)
A 2 (7.1) 8 (7.1) 0.34 15 (11.7) 56 (10.9) 0.72
B 5 (17.9) 37 (33.0) 24 (18.8) 121 (23.6)
C 21 (75.0) 67 (59.8) 86 (67.2) 320 (62.5)
D 0 (0) 0 (0) 2 (1.6) 12 (2.3)
NT 0 (0) 0 (0) 1 (0.8) 3 (0.6)

Sygen cohort EMSCI cohort
PR group Comparator group p-value PR group Comparator group p-value

Continued on next page
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Table 7.2: Demographic and injury characteristics of the phenomenal and comparator groups defined in the Sygen and
European multicenter study on human spinal cord injury (EMSCI) cohorts according to the statistical definition
(Continued)

NLI, N (%)
Cervical 24 (85.7) 101 (90.2) 0.50 79 (61.7) 323 (63.1) 0.84
Thoracic 4 (14.3) 11 (9.8) 49 (38.3) 189 (36.9)

LEMS 4 weeks after injury
Mean (SD) 6.89 (6.33) 7.62 (9.93) 0.01 6.57 (6.91) 7.43 (8.87) 0.17
Median [Min, Max] 6 [0, 22] 0 [0, 36] 4.0 [0, 33] 4.0 [0, 37]

UEMS 4 weeks after injury
Mean (SD) 16.9 (15.9) 18.8 (13.3) 0.19 29.7 (18.9) 29.8 (18.4) 0.90
Median [Min, Max] 12 [0, 50] 17 [0, 50] 31.5 [0, 50] 27.0 [0, 50.0]

LEMS at recovery (with LOCF)
Mean (SD) 42.0 (7.0) 19.2 (18.8) <0.001 41.9 (6.53) 17.5 (15.4) <0.001
Median [Min, Max] 42.5 [24, 50] 17 [0, 50] 43 [6, 50] 17 [0, 50]

UEMS at recovery (with LOCF)

Sygen cohort EMSCI cohort
PR group Comparator group p-value PR group Comparator group p-value

Continued on next page
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Table 7.2: Demographic and injury characteristics of the phenomenal and comparator groups defined in the Sygen and
European multicenter study on human spinal cord injury (EMSCI) cohorts according to the statistical definition
(Continued)

Mean (SD) 40.4 (7.9) 30.2 (13.8) 0.001 44.7 (6.26) 35.6 (14.9) <0.001
Median [Min, Max] 40.5 [24, 50] 32 [0, 50] 47 [27, 50] 40 [1, 50]

Sygen cohort EMSCI cohort
PR group Comparator group p-value PR group Comparator group p-value

Note that p-values reported are not Bonferroni-corrected, in bold are the p-values significant after multiple testing
correction; American spinal injury association (ASIA) impairment scale (AIS): see Table 1.1 for full description, European
multicenter study on human spinal cord injury (EMSCI), phenomenal recovery (PR), standard deviation (SD), neurological
level of injury (NLI), lower extremity motor score (LEMS), upper extremity motor score (UEMS), last observation carried
forward (LOCF)
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Table 7.3 quantifies the differences in incidence of CCS between PR and comparator
groups. We note a trend towards higher percentage of individuals with CCS patterns
in their motor recovery in the PR groups, especially when considered more complex
definitions taking into account patterns rather than aggregate scores alone as when
comparing UEMS and LEMS only. Hence, in the Sygen cohort, NLI-based CCS was found in
15 individuals (53.6%) in the PR group, and only in 32 individuals (28.6%) in the comparator
group. Similarly, in the EMSCI cohort, 49 (38.3%) and 102 (19.9%) were classified as
CCS when considering the definition based on NLI in the PR and comparator groups,
respectively. It is however important to note that only the differences in proportions in
CCS-1 and NLI-based CCSs in the EMSCI are statistically significant after multiple testing
correction (Fisher’s exact test, both p < 0.001 uncorrected and p < 0.001 considering
adjustment for five tests).

Table 7.3: Central cord syndrome (CCS) of the phenomenal and comparator groups
defined in the Sygen and European multicenter study on human spinal cord
injury (EMSCI) cohorts according to the clinical definition

CCS-1 15 (53.6) 32 (28.6) 0.02 49 (38.3) 102 (19.9) <0.001
CCS-5 10 (35.7) 18 (16.1) 0.04 24 (18.2) 72 (14.1) 0.21
CCS-10 4 (14.3) 10 (8.9) 0.45 8 (6.3) 36 (7.0) 0.85
CCS-19 0 (0) 2 (1.8) 1 1 (0.8) 3 (0.6) 1
NLI-based CCS 15 (53.6) 35 (31.3) 0.06 51 (39.8) 106 (20.7) <0.001

Sygen cohort EMSCI cohort
PR group Comparator

group
p-value PR group Comparator

group
p-value

Note that p-values reported are not Bonferroni-corrected, in bold are the p-values signi-
ficant after multiple testing correction; central cord syndrome (CCS), neurological level
of injury (NLI)

Among the antibiotics prescribed in both PR and comparator groups, only ceftriax-
one showed a significant difference (Fisher’s exact test, p< 0.001) with it being more
prescribed in the PR group (n = 9, 32.1%) compared to the comparator group (n = 7,
6.3%). Interestingly, vancomycin did not differ, opposite to what was observed in the
comparison of groups defined according to the clinical definition of PR. All antibiotics
prescribed in both groups are summarized in Supplementary Table 8.18. The number
of unique antibiotics prescribed across the first 30 days after injury and number of cu-
mulative antibiotic-days did not significantly differ between PR and comparator group
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(p = 0.71 and p = 0.27, respectively). The number of individuals who received antibiotics
on day 0 or 1 after injury was equally comparable (n = 7, 33% and n = 13, 12% for PR and
comparator groups, respectively, p = 0.11).
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7.5 Discussion
In this project, we aimed to explore characteristics from individuals who recover beyond
clinical expectations and explanations following a SCI. The first challenge in this task was
to define what we would consider a so-called PR. To address this challenge, we followed
two distinct approaches, based on clinical knowledge, and using a statistical approach.
We further applied those definitions in two distinct cohorts, from the Sygen clinical
trial and the EMSCI cohort. In multiplying the definitions and cohorts studied, we could
compare and draw meaningful trends in the characteristics observed.

Firstly, we observed that PR was more likely to occur following a cervical injury,
but was otherwise as frequent in both sex and all age groups. Secondly, we described
unique patterns in motor score recovery approaching the definitions of CCS as being
more present in the PR groups. As described by Engel-Haber et al. in [319], defining CCS
has been a controversial research topic and the current definitions may not entirely
reflect cases were distal impairments in the upper limb is greater than impairments
proximal in the lower limb. It is important to note here that the patterns were observed
at recovery (i.e., 26 or 52 weeks after injury), but not at the initial stages following injury,
and would therefore note be classified as CCS after injury. However, CCS are known to be a
type of SCI that will recover better than injury not exhibiting this specific injury pattern
[320]. Additionally, CCS is only defined for cervical injuries, since injuries lower in the
spinal cord will not affect the upper limbs. However, it could be of interest to further
investigate individuals with greater distal impairment versus proximal motor scores,
in the lower limbs specifically. Finally, based on the data collected as part of the Sygen
clinical trial, we were able to test hypothesis related to the prescription of antibiotics
following SCI and their association with recovery. While we could observe that some
antibiotics such as vancomycin or ceftriaxone were prescribed more often in the PR
versus comparator groups, the findings were not consistent throughout the difference
definitions of PR applied. We could therefore not identify significant differences in the
antibiotics prescribed between individuals experiencing a PR and the ones who did not.

7.5.1 Limitations
A number of limitations should be acknowledged related to this work. Firstly, we were
not able to study medications in the EMSCI cohort since the information is not collected
as part of the protocol for this observational study. It would however be interesting to
further study medications in complementary cohorts such as the SCIRehab cohort [46].
On the topic of medications, we focused here on antibiotics but further explorations are
warranted to investigate potential differences in, for example, pain management. The
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areas of medications studied could then be used as proxy to extent to comparisons in
incidence of complications such as neuropathic pain, or compromised bowel and bladder
management, which are important concerns for individuals living with SCI. Furthermore,
the investigation of antibiotics depicted here would benefit from refinements, relating
the prescriptions to their indications (e.g., surgery, prophylaxis, infections) and further
considerations towards the combinations of antibiotics prescribed, and clusters that
those drugs might form rather than consider each antibiotic as a unique, independent
compound. Secondly, definition of outliers, or here PR, comes with inherent challenges.
The small sample size described in the clinical definition of PR prevented us from per-
forming meaningful statistical comparisons. Merging, or considering additional data
sources would be particularly valuable when specifically focusing on defining rare events.

7.5.2 Conclusions
This study is the first of its kind exploring individuals with sci who experience a recovery
beyondwhat is clinically explainable and expected. Being able to identify such individuals
hold the promise to both inform potential avenues in the search for interventions to
improve recovery following SCI and better identify those individuals to improve the
downstream analysis of data collected in the context of clinical trials.
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Part C in a nutshell
Part C gave the opportunity to exhibit data science methods tailored to SCI data and
research based on this data. Importantly, the adapted methods presented do not only
improve the quality of the present research outcomes but also contribute to setting best
practices within the field that can be applied in future projects. Adhering to common
best practices would enable the field to better compare, reproduce and interpret results
across studies and research groups. However, methodological advances are not the only
leverage point to achieve reproducibility and transparency. Data visualization, and in
particular user-interactive tools, plays a pivotal role when dealing with sensitive data,
such as medical and identifiable information.
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Introduction
Data visualization is a constitutive part of research communication (e.g., figures published
alongside a manuscript, oral and poster presentations), and is often the point of initial
access to a project. Accordingly, an impactful visual representation will contribute
to the enhanced promotion of the results displayed, especially when addressed to a
multidisciplinary audience. However, visualization is also largely restricted by the current
means of research communication (e.g., publications, conferences, social media), not
only in the amount that can be shared but also in the lack of adaptability.

In parallel, data transparency has been advocated as one of the most important
aspects of medical research, particularly in clinical trials and studies, as the way to inform
trustworthy evidence-based clinical decisions [321]. The initiatives towards increased
data transparency in clinical research involved protocol and trial design disclosures,
publication plans to reduce selective publication and independent data analysis [321].

In Part D and its corresponding Chapter 8, we present interactive, user-driven data
visualization as an additional measure towards the promotion of data transparency and
better science communication, thus directly benefiting medical research in general and
clinical studies in particular.
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Lucie Bourguignon, Jaimie J. Lee*1, Ryan Loke*, John L. K. Kramer, Catherine R.
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8.1 Abstract

Introduction
Advances in computer science and technology have led to unprecedented newpossibilities
in science, engineering, and business. Data visualization is one notable field which
emerged from such advances. Taken in the context of research, it allows for better and
further use of the data and proves to be an additional tool to promote data sharing and
transparency, especially when dealing with sensitive data.

Areas covered
This perspective covers the use of new technologies and tools for improved data visualisa-
tion in research. It specifically focuses on software allowing for dynamic, interactive, and
user-controlled plotting in comparison with traditional fixed visualisations and tabular
format.

Expert opinion
Interactive data visualization offers an avenue of new possibilities in all steps of data-
driven research: data exploration, hypothesis formulation, and result outputs. Owing to
the simplicity of its implementation and use, one should advocate for larger deployment
of interactive data visualization in research.
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8.2 Introduction
In the last decades, an immense amount of data has been generated, affecting all aspects
of our lives. The emergence of biobanks and open-source data sets into the research
landscape is one illustration of the phenomenon applied to biomedical research. This in-
crease in data availability drove the development of scientific fields, such as computer and
data sciences, and new analysis techniques, known under the denomination of machine
learning (ML) and artifical intelligence (AI). Because they can disentangle meaningful
recurring patterns from complex, multimodal data, those techniques are nowadays prom-
inently featured in our daily lives. Consequently, it is not rare to encounter discussions
about ML and AI not only in the scientific literature, but also in mainstream media.

Along with the development of data sciences, a related field emerged: the field of
data visualization. It commonly refers to the transfer of data into visual displays, such
as plots, charts, or graphs [322]. Visualization is an essential tool for exploring and
communicating findings in medical research, and especially in epidemiological surveil-
lance. Notable improvements have indeed been made in the direction of more effective
scientific communication. Such advances include the access to extensive information on
the effective use of colors [323], or to free online web tools. BioRender 2 is one example
of a widely used software when it comes to illustration of biological phenomena across
scales, frommolecular to specimen level. Additionally, softwares like the Shiny R package
3 [90] or Python libraries Bokeh 4 and plotly 5 allow researchers to build interfaces to
publish user-friendly and interactive representations of the data used. This possibility
marks a significant breakthrough for transmission of our research outcomes as it allows
us to overcome limits inherited from the area of printed scientific journals such as the
restricted use of colors or number of figures to be presented. It equally increases trans-
parency as it enables the public to not only access carefully selected representations of
the data but rather a diversity of representations. This transparency represents a unique
opportunity for the reader to draw their own interpretations and potentially formulate
new hypotheses. Displaying data in an interactive fashion can also help researchers and
policymakers to identify and understand trends that could be overlooked if the data were
reviewed solely in tabular form. Besides their advantages regarding visualization, the
web applications created can also perform instant analyses, effectively multiplying their
impact.

In this article, we will first discuss the importance of data visualization for medical
2https://www.biorender.com/
3https://shiny.rstudio.com/
4https://docs.bokeh.org/en/latest/index.html
5https://plotly.com/python/
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research in more detail. We will then demonstrate and illustrate the power of interactive
data visualization via a living example of a Shiny webpage comparing tabular and inter-
active visualizations 6. Finally, we will present our views on how to best take advantage of
the new data visualization tools available to make our research outcomes more impactful
and meaningful.

8.3 The importance of data visualization in medical re-
search

Data visualization in the context of medical research is a critical tool to better understand
complex phenomena and drive new research insights, which would ultimately contribute
to better care. Hence, data visualization became crucial not only in the early stages of
data exploration, but also in reaching healthcare professionals, policy-makers, and the
general public (Figure 8.1).

Figure 8.1: Data visualization in the context of research. Interactive data visualization allows
to reunite the four steps into one web application.

When first exploring large amounts of data, the initial objective is to better grasp the
nature of the data, and reach both a global and granular understanding of the data. While
visualization may appear as a qualitative approach, it is an effective way of capturing

6https://lbourguignon.shinyapps.io/Shiny-perspective/
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the presence of outliers (e.g., impossible values such as oxygen saturation of about 10%)
or errors (e.g., temperatures being reported in a mixture of Fahrenheit and Celsius, or
female being encoded as “female” or “woman” in the same dataset), which will influ-
ence the following data cleaning steps. In helping to identify previously unseen trends,
visualization of the data eventually leads to formulating new hypotheses and research
questions, providing the most effective type of chart for the data at hand. It is important
to note here that an understanding of what makes a good visualization is crucial as it
contributes to shaping the downstream analyses.

Once the relevant analyses have been performed comes the time to visualize the
results obtained. At that stage, the visualization strategy will depend on the intended
message and targeted audience. Figures presented in publications are intended for a
specialist audience. The emphasis is put on precision and accuracy of the representation
of the results, which might lead to more complex figures. They are often the first win-
dow for readers to approach a publication and will determine whether the reader will
invest time into the entire manuscript. As such, those figures would not only need to
be clear and straightforward, but also stand alone figures. They should be the reflection
of the main findings presented, even taken outside of the context of the publication.
Although the target audience might be similar, the same topic presented in an oral or
poster presentation would require adjustment in its visual support. In this scenario, the
reading time would be restricted but guided by the author, allowing for a layer-based
representation. On the other hand, visualization in the context of outreach activities such
as presentation to a lay audience requires readable and concise information. Similarly as
one would adapt the language used, the type of representation should also be adapted to
a simpler but accurate format in order to prevent misinterpretation.

The use of interactive visualization tools, such as Shiny web applications, allows to re-
concile visualizing data for exploration or presenting research results in diverse contexts
(e.g., publications, conferences, grant applications). While the interactive representa-
tions were created with a precise goal in mind (e.g., illustrating the publication that it
was created for), its adaptability to user inputs present the opportunity to formulate
new research questions to be further explored. The degree of complexity can equally be
adapted and guiding steps can be provided.

8.4 From tabular to interactive data visualization
To illustrate the use of interactive data visualization, webuilt a R-basedwebpage (https://lbourguignon.shinyapps.io/Shiny-
perspective/) based on the demo database [324] from the MIMIC-IV project [325, 326].
The webpage allows for comparison between components of a standard table display
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(often included as Table 1 to describe the study population, (Figure 8.2) left panel) and
the added information from the corresponding visual representations (right panel). The
user can control multiple parameters by selecting only a subset of the data or stratifying
the data by groups (left sidebar). Additionally, the structure given in the app, separating
demographics, diagnosis and vital information, eases the workflow for a user who would
not be familiar with the data (categories of interest, top panel in Figure 8.2). Compared
to presenting the data in tabular form only, the corresponding plots help to identify
outliers as illustrated by the oxygen saturation data (vitals), where one can easily detect
an outlier in the adult subgroup. Similarly, visualizing temperatures (vitals) makes it
easier to notice that this variable is most likely reported in two distinct scales (Fahrenheit
and Celsius) depending on the entries. Based on this interactive presentation of the data,
one can get familiar with the data and formulate hypotheses or research questions to be
explored. In our example, one would be encouraged to explore group differences based
on sex and age categories. Presenting an interactive app as part of a grant application
would also allow the reviewer to asses on their own the feasability of the proposed project
based on the data presented, hence strengthening the application.

Figure 8.2: Example Shiny app interface.

A key component of web applications, such as the Shiny app presented alongside this
perspective, resides in the unique user experience that it allows. The user is not required
to have any coding skills to be in control of the data displayed. This holds true in the limit
of the flexibility given by the coding team behind the app built. However, a web page,
contrary to a manuscript, can be modified and updated even after initial publication to
continuously incorporate new features or data, as required or desired by the users.
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8.5 Implications for future research
As illustrated by our use-case example, interactive plotting of the data allows for a
comprehensive overview of the data at hand, which is currently not the standard format
of scientific publication. By contrast, the re-evaluation of clinical trials regularly reveals
a lack of transparency, particularly in selective reporting of the results [327]. Introducing
new tools such as interactive data visualization would be a straightforward step towards
increased transparency, which aligns with the current guidelines for better research
reporting, in particular in the case of clinical trials [328]. Ultimately, it would contribute
to decreasing bias and improving the overall quality in reporting research outcomes.
Additionally, it should be highlighted that this formof data sharing is particularly valuable
for medical applications, where data sharing may come with data security and safety
concerns. With an online data visualization tool, one can initially circumvent sharing
original data and apply certain restrictions (e.g. only display subgroups based on age
range, and not on precise age) to ensure anonymity.

We want to reiterate that interactive data visualization holds multiple advantages,
while being accessible with a basic programming background. It should therefore be fur-
ther promoted, encouraged and valued by all actors of the scientific research community,
from advisors, to regulatory instances and publishers.
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Part D in a nutshell
Part D showcases the importance of data visualization, particularly when data science
is applied as the mean to inform other fields, such as medical applications or policy-
making. By allowing user-oriented and tailored experiences, data visualization allows
for a better understanding of problems at hand. Therefore, visualization tools hold
the promise to enhance not only research outcomes themselves, but also their use into
clinical practice, in political decision making processes and in communication to the
general public, including individuals affected by the conditions studied.
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The aim of this thesis was to leverage the potential of data science to maximize
clinical impact in SCI research. To achieve this goal, I first utilized existing data sources
to benchmark the natural course unfolding following SCI (Part B). Here, I investigated
the progression of neurological recovery over the last two decades (Chapter 1), and
of serological markers after injury (Chapter 2). Following this, I studied medication
prescriptions (Chapter 3) and their potential impact on neurological recovery (Chapter
4). Subsequently, I applied and modified statistical and ML tools in an attempt to predict
neurological recovery (Chapter 5). My investigation revealed that such prediction tasks
are constrained by the presence of missing data and unexpected recovery patterns, which
are specific to SCI data. This led to the development of guidelines on handling missing
data in the context of SCI data (Chapter 6) and exploration of the unexpected recovery
patterns (Chapter 7).

While the findings of each individual study have been outlined in the preceding
sections, we will now discuss their collective impact on the SCI research domain as a
whole, and explore future perspectives that emerge from the remaining limitations.

6 Leveraging data to enhance SCI clinical trials
As exposed previously in this thesis, one of the main concerns of the SCI research com-
munity is the search for an intervention benefiting recovery following a SCI. Randomized
clinical trials (RCTs) are the gold-standard for testing the safety and effectiveness of
an intervention, and many of them have been conducted in the context of SCI research
[28]. However, as reported by Martin et al., RCTs come with a high cost, ranging for
phase-III clinical trial, testing for safety and effectiveness of an intervention, from 7 to
74 millions US dollars [329]. At times, those high financial stakes may contribute to the
early termination of a trial [330].

Beyond financial concerns, early termination of a RCT may be caused by the difficulty
in recruiting participants in the trial. Recruitment is particularly critical when studying
rare conditions such as SCI and came in the forefront during the worldwide coronavirus
disease 2019 (COVID-19) pandemic. This challenge, however, can be tackled by enriching
the placebo arm, which is not subject to the intervention tested. This enrichment can be
achieved using information from patients whose data have been collected as part of pre-
vious observational studies and who were, by definition, not subject to any intervention
beyond standard of care. My study showing unchanged neurological recovery patterns
over the last two decades (Chapter 1) revealed this strategy to be viable. This finding has
tremendous impact on both the (clinical) SCI research community and SCI patients as it
underlines the stalled progress in the field to provide effective treatments. Moreover, it
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provides an opportunity to utilize existing data from individuals who did not receive the
intervention of interest for comparison. In the context of current and future RCTs, this
enables the maximization of exposure to promising interventions.

Similarly, the design of RCT protocols will be influenced by the study conducted
on routine serological markers. These latter are a cornerstone of patient surveillance
and play a pivotal role in RCTs. Indeed, those markers are particularly important in
scrutinizing the effects of the intervention tested beyond the recovery of the injury itself.
Any systematic deviation from the norm may be interpreted as a safety concern and
similarly, lead to early termination of a trial. However, detection of deviations from
the norm assumes precise knowledge of the norm, adapted to the individuals tested.
Establishing this point of reference for individuals with acute SCI was the target of the
study reported in Chapter 2. We showed that routinely collected serological markers
may lay outside of the norm as established for able-bodied individuals in the acute injury
phase. This finding allows for adapted and therefore more pertinent comparisons with
individuals undergoing a new intervention of interest. This highlights a specific scenario
where fluctuations in liver enzymes might be ascribed solely to the tested compound,
overlooking variations stemming from the injury itself. Such a misinterpretation could
potentially prompt premature termination of the trial. Hence, we provide another avenue
to mitigate the limitation of current SCI RCTs.

Finally, as described by Lammertse in [331], promising preclinical findings have to
date failed to be translated to human populations. Despite leaving no effective treatment
to improve recovery SCI, lessons can, however, also be learnt from these failures. Contrary
to the animals in preclinical studies, real-live SCI patients are not only exposed to the
treatment of interest. As part of the standard of care,many SCI patients receive antibiotics,
to prevent or during infectious episodes, painkillers etc. Reviewing the variety of those
medications was the object of Chapter 3. We uncovered a vast polypharmacy that
effectively makes preclinical and clinical studies incomparable. With exposure to up
to 43 unique medications per day, the likelihood of pharmacological interactions is
indisputable. As the SCI community recently acknowledged that the answer to enhancing
recovery will unlikely lay in a single compound or intervention [28], the characterisation
of polypharmacy represents a unique opportunity for drug repurposing. Chapter 4
outlines my contribution to addressing the challenge of drug repurposing for SCI through
a systematic review of nearly 400 publications. Specifically, the publications reviewed
discussed the effects on neurological recovery of at least one compound identified as being
prescribed after SCI. This review revealed promising candidates for drug repurposing,
such as metformin, indicated to manage high blood sugar levels in type 2 diabetes [233].
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7 Developing best practices for data analysis in SCI re-
search

The first step towards the use of data science is the access to data. However, data alone
is not sufficient. Successful inference from the data requires quality data, appropriate
preprocessing and analysis. For an analysis to be relevant to the problem at hand, it relies
on detailed knowledge of the methods taken in combination with the peculiarities of the
problem setting. In the context of medical research, including SCI research, integration
of the clinical background is crucial. Chapter 5 is a prime example of how considering
clinical subgroups in fitting ML models improves the prediction performance overall. We
took advantage of clinical observations, reflected in the data, showing that individuals
starting with an injury scored with an LEMS of zero in the acute stage after injury are
less likely to recover motor functions, compared to individuals whose injury was scored
with an LEMS above zero in the same timeframe. This project also depicted how basic
approaches in applying ML models for prediction hold numerous limitations, namely
the presence of missing data and of individuals recovering beyond clinical expectations.
These limitations were the object of ensuing projects of this thesis.

Missing data is the core reason for reduced sample size in analyses relying on complete
case data. Given the sparsity and heterogeneity of SCI data, it is key to maximize data
usage implying effective handling of missing data. Chapter 6 addressed this important
research question. The specific imputation strategy (or lack thereof) influences the results
reported in a downstream analysis. It is therefore necessary to accurately describe and
understand the effects of missing data in the context of SCI recovery prediction. Here we
performed a simulation study of different patterns of data missingness in SCI registries.
By exploiting the characteristics of SCI recovery trajectories, we demonstrated that using
imputation based on the last observation carried forward (LOCF) is a viable option in the
context of SCI longitudinal data. This finding is in contrast to other research fields where
LOCF imputation may not be appropriate, such as in anesthesiology [309] or clinical trials
with spaced follow-ups [310]. More specifically, when an observational is missing for an
assessment expected around 52 weeks after injury, values evaluated 26 weeks after injury
can be used to replace the missing later time point. This reflects the natural recovery
trajectory following SCI, where the majority of the recovery will occur in the first six
months after initial trauma to reach a plateau thereafter [17]. Our simulation study
formally supports this imputation method based on data-driven evidence. It additionally
suggested that carrying information forward from earlier time points such as 16 weeks
after injury would not introduce more bias compared to other imputation methods. This
study will contribute to the augmentation of cohort sizes to be studied in future studies
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and provides guidelines to handle missing data. It is therefore an essential building block
of best practices in data-driven SCI research.

Aiming to further improve prediction performance, the inspection of individuals for
whom predictions were not successful uncovered individuals with recovery trajectories
deviating from clinical expectation (e.g., an injury scored with an LEMS of zero in the
acute stage after injury undergoing an unexpected improvement). Chapter 7 identi-
fied and described such individuals, referred to as individuals presenting a phenomenal
recovery. Our study focused on describing those individuals according to their motor
recovery, examined on the myotome level, and their antibiotics prescriptions. We found
that individuals exhibiting a phenomenal recovery tend to present with greater impair-
ment in the distal myotomes of the upper limbs compared to the proximal myotomes
of the lower limbs. This surprising pattern could relate to previous definitions given of
CCS, and further investigations beyond motor scores are warranted. Identifying patterns
associated with greater recovery could inform researchers in the development of inter-
ventions aiming to improve recovery. Studying prescriptions of antibiotics aligned with
our objective of developing drug repurposing in the context of SCI. We hypothesized that
differences in recovery could be driven by higher antibiotics intake, reducing inflam-
mation and therefore contributing to better preservation of the tissues affected by the
initial trauma [332]. Although the data studied did not support our hypothesis, this study
contributes to establishing hypotheses related to drug repurposing as part of the general
landscape of data-driven SCI research.

Finally, best practices in research also include research communication and outreach,
especially when conducting research at the intersection of multiple fields. Throughout
this thesis, the projects conducted led to the development of multiple webpages to visual-
ize raw and processed data and provide users (i.e., clinical partners, individuals affected,
and policy-makers) with an interactive experience. Chapter 8 illustrates how scientific
communication with online tools can complement traditional scientific publications,
inherently limited in the number and static nature of their visualizations. Specifically,
we show how Shiny apps contribute to making data safely accessible and allow for tar-
geted exploration and analysis according to the user’s needs. As a result, such webpages
promote both transparency and collaboration, with the overarching goal of enhanced
research outcomes.

8 Limitations
As mentioned throughout the chapters presented, a number of limitations still need
to be overcome. Firstly, the size of SCI data available, while growing, remains small
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in comparison with other domains of application of statistical and ML methods. This
phenomenon is well illustrated in the context of drug repurposing. ML models have
been developed to emulate clinical trials based on electronic health records (EHRs) [333,
334]. These models rely on the combination of causal and deep learning approaches.
However, they more importantly rely on big data, including over one hundred million
individuals [333] to test around 250 drugs of interest. In SCI, the balance is reversed as
illustrated in Chapter 3: we identified around 775 drugs prescribed as standard of care
across 2040 individuals. For this specific task, the collection of additional data, while
commendable, would not suffice considering that SCI is a rare condition. Additionally, the
current methods still focus on the effect of unique compounds, which might offer limited
applicability to SCI owing to the heterogeneity and complexity of processes occurring
following trauma. Hence, alternatives remain to be found.

Related to the size of cohorts collected is the sparsity of data collection. Assessments
of bladder, bowel, and sexual function are particularly critical in that regard: Anderson
et al. showed in [18] that these are ranked higher than walking by individuals living
with SCI as major factors to improve their quality of life. However, information about
bladder, bowel, and sexual function is often only sparsely reported. In the EMSCI cohort,
for example, bowel and bladder functions are assessed through subscores of the SCIM,
which is one of variables with highest proportions of missing data at all assessment time
points (see Chapter 1, Additional file 1), while there is no assessment reflecting sexual
function. This absence of relevant data naturally prevents their exploration and calls
for further actions in collecting data to address the main areas of interest identified by
individuals living with SCI.

Owing to the larger data availability, the focus of this thesis was on neurological
recovery. However, the variables at hand also present limitations. Scores such as the
LEMS and UEMS can be mathematically identified as aggregates of ordered categorical
variables. Indeed, LEMS is constructed from the sum of motor scores of 10 myotomes in
the lower extremities, each being scores from zero to five, with 0 being the most severe
degree of impairment (see Table 1). The grading of individual myotomes is however
unequally spaced: for an individual to transition from a myotome graded as zero to
one would clinically be different from an individual improving from grade four to five.
The latter is expected over the natural course of recovery, while the former is more
unlikely to occur. This relevance of this subtlety becomes crucial when appropriately
modeling SCI. For simplicity, the studies presented here considered aggregate scores such
as LEMS as continuous variables, inherently assuming a linear improvement for an equal
increment in the score. Additionally, the aggregate nature of the scores tends to mask
clinically relevant distinctions between individuals. This phenomenon was particularly
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illustrated in Chapter 7 and Lukas et al. (unpublished), where comparable aggregate
scores present significant differences when examining the details at the myotome level.
Hence, further work beyond aggregate scores is warranted to better represent the reality
of highly heterogeneous clinical presentations.

9 Future perspectives
This thesis illustrates how combining clinical knowledge with existing methods can
improve the application of data-driven methods to SCI research. However, numerous
clinical aspects remain to be integrated. As described above, the clinical measurements
collected as part of daily clinical practice, such as the LEMS or UEMS, are summing scores
from the evaluation of individual motor scores, effectively losing levels of details and the
inherent dependence between the individual motor scores. A natural next step would be
to model motor score sequences in structures such as graphs and build prediction tasks
around this elevated, more accurate representation of the motor function. The newly
created representation of the data can then be analyzed with more complex models such
as graph neural networks.

Going further, an improved description of an individual would require additional
information. This can be achieved by combining multiple data modalities, and expand-
ing modeling to combine neurological scores (i.e., motor and sensory scores and their
aggregates) and demographics with imaging, or electrophysiology measurements for
example. Insight into the way how clinical trials are conducted provides an overview of
all modalities employed to monitor individuals after injury. The NISCI clinical trial is a
good example in that regard. Conducted from 2019 to 2023 in Switzerland and across
Europe, NISCI tested the effect of antibodies against nogo-A, which had been suggested
as being beneficial for recovery after SCI [41, 335, 336, 40]. While the primary outcome
relied on changes in UEMS, secondary outcomes did not only capture various measures of
bowel and bladder functions, including but not restricted to SCIM, but also measurements
of nerve conducting velocity, and somatosensory evoked potentials 8. The latter two
have shown to be associated with long-term recovery after SCI [337, 338]. Consistently
gathering multiple data modalities across individuals therefore promises to more accur-
ately represent the state of individuals at a personal level. Taking the example of other
medical fields such as oncology, the field is moving towards the collection of not only
larger but also wider cohorts, gathering multi-model inputs [339]. The resultant invest-
igation of dedicated models allowing for multi modality integration suggest favourable
development for SCI research in the next decade.

8ClinicalTrials.gov: NCT03935321
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10 Conclusion
In search of an intervention that would benefit individuals with SCI in recovering from
their injury, data science tools offer a new opening. The integration of clinical knowledge
within data-driven approaches guides the SCI research community towards a better
understanding of the condition and of the research conducted to date, as illustrated
through Part B in this thesis. Part C further elaborates on adapting data science tools to
specific characteristics of SCI, such as plateaued recovery and high heterogeneity. Finally,
any research only becomes valuable when communicated between fields, from clinical
data collection, to data analyses in a research context, and back to the bedside. Those
transitions can equally be supported by effective data visualization as demonstrated
in Part D. Taken together, the contributions of this thesis participate in revising the
approaches employed to discover interventions to improve recovery following SCI.
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Table 8.1: List of drugs included in analysis.

acetylcysteine 5
acetylsalicylic acid 1
albumin 3
aluminum 1
amiloride 4
amphetamine 2
atorvastatin 9
azithromycin 2
baclofen 1
botulinum toxin 1
bupivacaine 1
buspirone 2
calcitriol 2
carbidopa levodopa 1
carvedilol 2
ceftriaxone 2
ceftriaxone + acetylcysteine 1
celecoxib 1
chlorpromazine 1
citalopram 1
clonidine 1
clopidogrel 1
cyproheptadine 3
dantrolene 4
dapsone 1
darbepoetin 1
dexamethasone 15
dexamethasone + estrogen 1

Drug(s) tested Number of publications

Continued on next page
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Table 8.1: List of drugs included in analysis. (Continued)

dexamethasone + melatonin 1
dexmedetomidine 2
diclofenac 1
epinephrine 1
epinephrine + nitroprusside 1
epoetin 4
epoietin 2
escitalopram 2
estradiol 18
estradiol + testosterone 1
estrogen 3
ethanol 2
ethanol + isoflurane 1
ethanol + ketamine + pentobarbital 1
etomidate 1
etomidate + epoietin 1
etomidate + methylprednisolone 1
ezetimibe 1
ezetimibe + simvastatin 1
fenofibrate 1
fentanyl + nitrous oxide 1
fentanyl + nitrous oxide + naloxone 1
fluoxetine 4
fluoxetine + vitamin c 1
folic acid 2
folic acid + nitrous oxide 1
gabapentin 1
glibenclamide 1

Drug(s) tested Number of publications

Continued on next page
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Table 8.1: List of drugs included in analysis. (Continued)

glucosamine 1
glutamine 2
heparin 2
hydralazine 1
ibuprofen 4
immune globulin 3
indomethacin 3
ketoprofen 1
levocarnitine 1
levodopa 2
lidocaine 2
liothyronine 1
lithium 8
magnesium 2
magnesium + methylprednisolone 1
magnesium chloride + polyethylene glycol 3
magnesium sulfate 5
magnesium sulfate + polyethylene glycol 2
mannitol 3
melatonin 21
meloxicam 1
metformin 5
methotrexate 3
methylprednisolone 81
methylprednisolone + acetylcysteine 1
methylprednisolone + epoietin 1
methylprednisolone + magnesium chloride + polyethylene glycol 1
methylprednisolone + magnesium sulfate 1

Drug(s) tested Number of publications

Continued on next page
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Table 8.1: List of drugs included in analysis. (Continued)

methylprednisolone + melatonin 1
methylprednisolone + methotrexate 1
methylprednisolone + mycophenolate 1
methylprednisolone + pregabalin 1
methylprednisolone + rosuvastatin 1
methylprednisolone sodium succinate 23
methylprednisolone sodium succinate + aminocaproic acid 1
methylprednisolone sodium succinate + dantrolene 1
methylprednisolone sodium succinate + vitamin c 1
mexiletine 2
minocycline 22
minocycline + tacrolimus 1
modafinil 1
montelukast 2
morphine 6
morphine + minocycline 1
morphine sulfate 2
mycophenolate 1
naloxone 24
naltrexone 1
naproxen 2
niacin 1
nicotine 1
nifedipine 1
nitrous oxide 1
omega 3 5
oxandrolone 1
pentobarbital 1

Drug(s) tested Number of publications

Continued on next page
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Table 8.1: List of drugs included in analysis. (Continued)

phenytoin 4
pioglitazone 3
plasma 1
platelets 1
polyethylene glycol 10
prednisolone 1
prednisone 1
pregabalin 2
progesterone 3
progesterone + vitamin d 1
propofol 2
selegiline 1
sevoflurane 1
simvastatin 8
sitagliptin 1
tacrolimus 8
tadalafil 1
tamoxifen 8
testosterone 2
theophylline 1
thiopental 1
thiopental + naloxone 1
topiramate 3
tramadol 1
trifluoperazine 1
ubiquinone 1
valproic acid 10
vitamin c 3

Drug(s) tested Number of publications

Continued on next page
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Table 8.1: List of drugs included in analysis. (Continued)

vitamin c e 1
vitamin d 2
vitamin e 2
zinc 4

Drug(s) tested Number of publications

Rows in italic highlight drugs tested in combination.
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.

locomotion BBB Basso Beatie Brenahan
(BBB) locomotor scale
Basso Beattie and Bresna-
han (BBB) rating scale
Basso Beattie Brenahan
(BBB) locomotor scale
Basso-Beatie-and Bresna-
han (BBB) scale
Basso-Beatie-Bresnahan
(BBB) scale
BBB
BBB hind limb locomotor
rating scale
BBB lcoomotor score
BBB locomoter scale
BBB locomotor rating scale
BBB locomotor scale
BBB locomotor scale
(canine)
BBB locomotor scale
(modified)
BBB locomotor scale
(mouse version adapted to
local protocol)
BBB locomotor scale
(mouse version)
BBB locomotor score
BBB Locomotor test
BBB locomotor test

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

BBB method
BBB rating scale
BBB scale
BBB score
BBB scoring
BBB scoring scale
BBB scoring system
BBB subscores
BBB subscoring
BBB test
modified BBB hindlimb lo-
comotor scale
modified murine BBB hind-
limb locomotor rating scale
modified murine BBB
hindlimb locomotor-rating
scale
modified murine BBB scale
straight alley BBB

BMS Basso mouse scale
Basso Mouse Scale (BMS)
Basso Mouse scale (BMS)
Basso mouse scale (BMS)
BBB locomotor scale
(mouse version adapted to
local protocol)
BMS

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

BMS scale
BMS score

beam walk test beam walk
beam walk test
beam walk tests
Beam walking test
narrow beam crossing test
narrow beam test
narrow beam test
narrow beam-crossing test
tapered beam test
tapered beam walk test

footprint analysis foot print analysis (finemo-
tor control)
footprint analysis
footprint analysis (fine mo-
tor control)
footprint recording

gait analysis 2D hindlimb kinematics
during weight-supported
treadmill locomotion
3D kinemtic data
angulograms (quality and
range of motion)
base of support
catwalk gait analysis
CatWalk gait analysis

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

Catwalk-automated quant-
itative gait analysis
Gait analysis
gait analysis (DigiGait)
gait analysis with Cat-
Walk XT 10.6 multivariate
system
gait recording
hind limb gait
kinematic analysis with
the CatWalk gait analysis
system
kinematic profile
locomotion analsyis with
MotoRater apparatus
locomotor analysis with
MotoRater apparatus
toe spread index

grid walking test grid walk test
gridwalk test
grid walking test
grid-walking test
horizontal grid walking
ability to traverse wire grid
horizontal grid
grid footfalls
grid walking

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

inclined plane test angled plane score
incline plane score (IPS)
incline plane test method
inclined plane
inclined plane assessemnt
inclined plane assessment
inclined plane method
inclined plane method of
Rivlin and Tator
inclined plane score
inclined plane score (IPS)
inclined plane task
inclined plane technique
inclined plane test
inclined plane test (modi-
fied Rivlin’s method)
inclined plane test method
inclined plane tests
inclined plate test
inclined test
rivlin and tator’s inclined
plane test
Rivlin inclined plane test

ladder walk test 45 degrees ladder walk test
footfalls
horizontal ladder

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

horizontal ladder crossing
test
horizontal ladder task
horizontal ladder test
horizontal ladder test (ad-
apted to local protocol)
horizontal ladder walk test
horizontal ladder walk
tests
ladder walk
ladder walk test
ladder walk tests
walk on ladder

locomotor (other) activity box
activity box test (ABT)
activity measures
categorisation of walking
ability (paraplegia/poor
walker/walker)
clinical grading
clinical motor exam (Drum-
mond and Moore)
Drummond and Moore
criteria
Drummond and Moore mo-
tor function score

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page

Appendices. 231



Data science for SCI clinical studies

Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

Eugene D Means and
Douglas K Anderson’s
motility score
Forelimb locomotor scale
grading of motor disturb-
ance (Drummond and
Moore scale)
gross motor activity (activ-
ity box)
hind limb motor function
score (MFS)
motor capacity
motor deficit index
motor function
motor function scale
motor function scale
(Farooque)
motor performance on
rotarod
neurological function
(walking status)
neurological scores (loco-
motor status)
Open field test
open field test
porcine thoracic behavior
scale

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

presence/absence of hind-
limb paralysis
recovery index (mobility)
rotarod
rotarod locomotor func-
tion test
spontaneous movement
unprompted walking mo-
tor score

swimming swimming performance
swimming test

Tarlov scale five-point modified Tarlov
scale
hind limb motor function
(modified Tarlov)
hind-limb motor-function
according to Tarlov
modified five-point scale
developed by Tarlov
modified Tarlov method
modified Tarlov rating
system
modified Tarlov scale
modified Tarlov scale
modified Tarlov score
modified Tarlov scoring
system

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

modified tarlov’s grading
scale
modified Tarlov’s motor
scale
motor function (modified
Tarlov scale)
Tarlov motor scale
Tarlov scale
Tarlov scoring
Tarlov scoring system
Tarlov’s scoring system
Tarlow scale

forelimb function grip strength grip strength meter
grip strength task

reaching or retrieval directed forepaw reaching
(DFR)
grasping test (food
retrieval)
modified Montoya’s stair-
case test
Montoya staircase
reaching
staircase test
vermicelli handling test

rearing cylinder rearing test
cylinder test (forelimb
assymetry)

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page

234 Appendices.



Data science for SCI clinical studies

Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

open field test (rearing)
paw placement
rearing

sensory and pain mechanical reactivity cutaneus trunchi muscle
reflex
cutaneus trunci muscle
(CTM) reflex
foot withdrawal under
mechanical stimuli
girdle test
localisation reflex
mechanical reactivity
mechanical reactivity (von
Frey)
mechanical sensitivity
mechanical sensitivity
(von Frey filaments)
proprioception
proprioceptive placing
response
response to mechanical
stimuli
sensory function (paw
withdrawal)
sensory function (von Frey
filaments)

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

sensory testing (forelimb
withdrawal under mechan-
ical stimulation)
tactile capacity
tactile reactivity
tactile reactivity (girdle
test)
tactile sensory test with
Von Frey filaments
tape sensing and removal
test
touch-evoked agitation
vocal/sensory score
vocalization threshold to
mechanical pressure
Von Frey test
von Frey test
Von Frey testing

other reflexes physiological reflexes
test of hindlimb reflexes

pain gross neurologic
examination
hindpaw pinprick sensory
threshold test
hindpaw pinprick sensory
treshold test

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

hindpaw withdrawal
threshold for mechanical
allodynia
hindpaw withdrawal
treshold for mechanical
allodynia
mechanical allodynia
mechanical allodynia
testing
painful stimulus by pinch-
ing of rat tail
paraplegia status (tail
pinch)
pinprick
purposeful response to paw
pinch
Rat Grimace Scale
response to noxious
stimulation
sensitivity to pain
Von Frey test of mechan-
ical allodynia/hyperalgesia

thermal reactivity acetone drop test
Hargreave’s test
hot-water test
neuropathic pain evalu-
ation [acetone drop test
and thermal hyperalgesia]

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

nociceptive reactivity
(thermal shock threshold
tested through tail-flick
test)
nociceptive reactivity
(thermal)
sensory blockade (heat)
sensory function (hot
plate/cold stimulation)
tail flick test
tail-flick test
thermal hyperalgesia
thermal reacitivity (stand-
ard hot-plate test/cold
stimulation)
thermal reactivity
thermal sensitivity
Thermal Sensitivity
thermal sensitivity (tail
flick)

toe spread test toe spread test
toe-spread test
toe spread tests
toe spread
toe spread reflex

electrophysiology electrophysiology (other) activity in hemidiaphragm
and phrenic nerve ipsilat-
eral to hemisection

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

assessment of H-reflex
compound action potential
(CAP) recording
compound action
potentials
EMG recordings
frequency dependent de-
pression (FDD) of H-reflex
H-reflex analysis
sciatic nerve stimulation

motor evoked potentials corticomotor evoked
potentials
corticomotor evoked po-
tentials (CMEPs)
evoked muscle responses
(EMR)
evoked potential test (MEP)
motor evoked potential
motor evoked potential
(MEP)
motor evoked potentials
motor evoked potentials
(MEP)
motor evoked potentials
recording
Motor-evoked potential
(MEP)

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

motor-evoked potential
(MEPs)
motor-evoked potentials
(MEPs)
rubrospinal motor evoked
potentials (rMEP)
spinal motor–evoked po-
tentials (sMEPs)

somatosensory evoked
potentials

cortical somatosensory
evoked potentials
cortico somatosensory
evoked potentials (CSEP)
evoked potentials
measured
SEPs
somatosensory evoked po-
tential (SEP)
somatosensory evoked po-
tential (SEPs)
somatosensory evoked po-
tential (SSEP)
somatosensory evoked
potentials
somatosensory evoked po-
tentials (SEP)
somatosensory evoked po-
tentials (SEPs)

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page
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Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

somatosensory evoked po-
tentials (SSEP)
somatosensory evoked po-
tentials (SSEPs)
somatosensory evoked re-
sponses (SER)
somatosensory-evoked po-
tential (SEPs)
somatosensory-evoked po-
tentials (SEPs)
somotosensory evoked po-
tentials (SSEP)
SSEP
SSEPs

spinal cord evoked
potentials

spinal cord evoked poten-
tial recording
spinal cord evoked
potentials
spinal cord evoked poten-
tials (SCEPs)
spinal evoked potentials
(SEP)

other composite scores motor sensory deficit index
(MSDI)
neurologic scores (motor
and sensory deficit)
sensory and motor evalu-
ations (paraplegia status)

Category Harmonised assessment
name

Assessment name as re-
ported in literature

Continued on next page

Appendices. 241



Data science for SCI clinical studies

Table 8.2: Neurological and functional outcomes for animal studies included in the review.
(Continued)

Gale scale combined behavioral score
(Gale scale/CBS)
functional deficits scoring
Gale scale
gale scale
modified Gale scale
motor function scale (mod-
ified Gale)
motor function scale ac-
cording to Gale et al. (1985)
motor function score (mod-
ified Gale)
overall hindlimb impair-
ment (modified CBS)

hindfoot bar grab test hindfoot bar grab test
hindfoot bar grab tests

micturition bladder function
micturition (voiding
behaviour)

spinal cord blood flow spinal cord blood flow
spinal cord blood flow
(SCBF)

Category Harmonised assessment
name

Assessment name as re-
ported in literature

242 Appendices.



Data science for SCI clinical studies

Table 8.3: Neurological and functional outcomes for human studies included in the review

neurological neurological (motor and
sensory)

marked recovery (combination
of improvement in AIS grade
and walking function)
pinprick, light touch, motor
function scale
ASIA motor and sensory scores
ASIA scale: motor and sensory
composites
ASIA motor score, ASIA sensory
score
motor score; light touch (LT)
and pin prick (PP) scores

neurological (motor) ASIA motor score
ASIA Motor score
ISNCSCI motor score
strength
discharge motor score

neurological (other) improvement to level of injury
(change in segment to more
caudal location)

injury severity marked recovery (combination
of improvement in AIS grade
and walking function)
improvement in ASIA scale
ASIA impairment score and
grade
ASIA grade

functional functional (general) Spinal Cord Independence
Measure

Category Assessment name reported Assessment

Continued on next page
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Table 8.3: Neurological and functional outcomes for human studies included in the review
(Continued)

Functional Independence
Measure
London Handicap scale
Short Form 36 Questionnaire
FIM discharge score

functional (mobility) FIM motor score
functional (mobility and
general)

Walking Index for SCI II (WISCI
II), Spinal Cord Independence
Measure II (SCIM II)

functional (mobility and
spasticity)

overground walking per-
formance; treadmill walking
performance
spastic reflexes (modified Ash-
worth scale); walking function

electrophysiology EMG

Category Assessment name reported Assessment

American spinal injury association (ASIA) impairment scale (AIS), light touch (LT), pin
prick (PP), international standards for neurological classification of spinal cord injury
(ISNCSCI), functional independence measure (FIM), walking index for spinal cord injury
(WISCI), spinal cord independence measure (SCIM), electromyography (EMG)
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Table 8.4: Variables extracted from studies included for analysis.

General information Person in charge Person in charge of the
data extraction

General information Authors First author et al
General information Year Year of publication
General information Title Full title
General information DOI or PMID Unique identifier
General information Language Language of the main text
Inclusion/exclusion Included/excluded Included or excluded
Inclusion/exclusion Reason for exclusion Primary reason of

exclusion
Inclusion/exclusion Reason for exclusion Reason of exclusion if

primary reason of exclu-
sion is "out of scope"

Inclusion/exclusion Reason for exclusion
(description)

Description of the reason of
exclusion

Classification Data collection Prospective or retrospect-
ive (human studies only)

Classification Analysis Prospective or retrospect-
ive (human studies only)

Study population Species Species studied among hu-
mans, mice, rats, dogs, cats,
fish, lampreys, sheep, rab-
bits, guinea pigs, others

Study population Species information Information about subspe-
cies used

Study population Count, n Total number of subjects
reported

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Study population Count, n control group Number of subjects in con-
trol group (included in
analysis)

Study population Count, n died in control
group

Number of subjects as-
signed to control group
not included in analysis
due to premature death

Study population Count, n excluded in con-
trol group

Number of subjects as-
signed to control group
not included in analysis for
other reasons

Study population Count, n treatment group Number of subjects in treat-
ment group (included in
analysis)

Study population Count, n died in treatment
group

Number of subjects as-
signed to treatment group
not included in analysis
due to premature death

Study population Count, n excluded in treat-
ment group

Number of subjects as-
signed to treatment group
not included in analysis for
other reasons

Study population Comment on counts Details on counts, espe-
cially when total control +
total treament do not add
to total n

Study population Sex (n, ratio, percentage) Information about sex of
subjects as reported in the
publication

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Study population Sex One option among female,
male, mixed and not
reported

Study population Sex (%, male) % male included in the
study

Study population Age [days, months, years] Information about age of
subjects as reported in the
publication

Study population Age (mean) Mean age (when
applicable)

Study population Age (SD) SD age (when applicable)
Study population Age (min) Minimum age (when age

range reported)
Study population Age (max) Maximum age (when age

range reported)
Study population Age (units) Age units used among days,

weeks, months and years
Study population Age (comments) Comment on age informa-

tion, one option among not
reported, adult, young, for
publication not reporting
precise age included

Study population Weight [g, kg, pounds] Information about weight
of subjects as reported in
the publication

Study population Weight (mean) Mean weight (when
applicable)

Study population Weight (SD) SD weight (when
applicable)

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Study population Weight (min) Minimum weight (when
weight range reported)

Study population Weight (max) Maximum weight (when
weight range reported)

Study population Weight (unit) Weight units among g, kg,
pounds

Study population Weight (comments) Comment on weight
information (e.g., not
reported)

Study population Injury characteristics
(level, severity)

Information about injury
characteristics included
level and severity as
reported in the publication

Study population Injury level Level of injury (unique
level or range for animal
studies, number of subject
per level or category for hu-
man studies)

Study population Injury severity Injury severity amongmod-
erate, mild, severe, com-
plete, incomplete, paraple-
gia, tetraplegia, not repor-
ted, mixed and moderate-
severe

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Study population Injury mechanism Injury mechanism among
contusion, compression,
distraction, dislocation,
transection, ischemia,
trauma and others. Note
this classification mainly
applies for animal models,
injury mechanism repor-
ted may differ in human
studies

Study population Injury mechanism (details) Details on injury mech-
anisms (e.g., height and
weight used in contusion
injuries, time before repur-
fusion in ischmic injuries
etc)

Study population Duration of SCI Duration of SCI before eu-
thanasia (animals) or dura-
tion of SCI before inclusion
in study (human)

Drug information Drug(s) Drug(s) studied in the
publication

Drug information Drug name harmonized Drug name harmonized
based on [Bourguignon et
al., 2022]

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Drug information MP used as main drug? Yes or no, for publication
investigation methylpred-
nisolone and methylpred-
nisolone sodium succinate
only (assess if the drug was
themain drug of interest or
used as positve control)

Drug information Dose (absolute dose or
mg/kg)

Dose given

Drug information Time (minutes pre-injury,
minutes post-injury)

Timing of start of treat-
ment compared to injury

Drug information Duration of treatment Duration of treatment
Drug information Timing (e.g., BID, PID) Frequency of treatment
Drug information Route Route used for drug

administration
Drug information Route (comment when

multiple)
Comments on the route
used

Neurological and func-
tional assessment

What was assessed?
(e.g., neurological, func-
tional recovery, spasti-
city, walking function,
electrophysiology)

Type of neurolo-
gical/functional assess-
ment (broad categories)

Neurological and func-
tional assessment

Name/type of asessement Neurological/functional as-
sessments as named in the
publication

Neurological and func-
tional assessment

Name of assessment
harmonised

Neurological/functional as-
sessments’ names harmon-
ised as described in Table
S3

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Neurological and func-
tional assessment

Details on assessement Details on assessments
as described in the
publications

Neurological and func-
tional assessment

Timing of assessement Time of assessmentwith re-
spect to the injury

Neurological and func-
tional assessment

Assessment on day 28
(yes/no)

Whether subjects were as-
sessed at day 28 after injury
(applies to experiments
testing methylpredniso-
lone and methylpredniso-
lone sodium succinate
only)

Neurological and func-
tional assessment

Was observer blinded? Options among no, yes and
not reported

Neurological and func-
tional assessment

Drug effect on functional
assessment

Options qualifying effects
among positive, negative,
no effect, mixed (assess-
ment), mixed (dosage),
mixed (timing), mixed
(regime), no stats, mixed
(stats/no stats), mixed
(assessment) + mixed
(timing), not reported,
mixed (dosage) + mixed
(timing), mixed (dosage) +
mixed (assessment), mixed
(dosage) + mixed (regime),
mixed (assessment) +
mixed (regime)

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Neurological and func-
tional assessment

Drug effect on functional
assessment (details)

Details on the effects repor-
ted allowing to categorize
the effects in the previous
column

Neuroanatomical
assessments

What was assessed? (e.g.,
histological measures, cavi-
tity measures, ect )

Type of histological assess-
ment (broad categories)

Neuroanatomical
assessments

Name/type of asessement Histology assessments as
named in the publication

Neuroanatomical
assessments

Timing of assessement Time of assessmentwith re-
spect to the injury

Neuroanatomical
assessments

Was observer blinded? Options among no, yes and
not reported

Neuroanatomical
assessments

Drug effect on neuroana-
tomical assessment

Options qualifying effects
among positive, negative,
no effect, mixed (assess-
ment), mixed (dosage),
mixed (timing), mixed
(timing of assessment),
no stats, mixed (stats/no
stats), mixed (assessment)
+ mixed (dosage), not
reported, and mixed
(assessment) + mixed
(timing)

Neuroanatomical
assessments

Drug effect on neuroana-
tomical assessment
(details)

Details on the effects repor-
ted allowing to categorize
the effects in the previous
column

Category
Variable extracted Details

Continued on next page
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Table 8.4: Variables extracted from studies included for analysis. (Continued)

Conclusions and others Drugs given to treat infec-
tions/pain ect.

Other drugs given to sub-
jects according to the study
protocol (e.g., pain relief
plan, infection treatment
or prophylaxis, anesthesia)

Conclusions and others Conclusion of study Conclusions as reported in
the publication

Conclusions and others Limitations Limitations mentioned in
the publication

Conclusions and others Remarks/Comments Personal remark or
comments following
extractions

Conclusions and others Combination of drugs
tested

Options among no, yes
(drug of interest + drug
of interest), and yes (drug
of interest + drug not of
interest)

Conclusions and others Contradictions present in
the results

Yes or no, flags contradic-
tions between text and fig-
ures presented in a given
manuscript

Category
Variable extracted Details
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Table 8.5: Details on the bias classification for animal experiments.

Dose No precise dose reported, includ-
ing “high dose”

Not reported

Species Subspecies not reported Not reported
Route - Not reported
Level of injury No precise level or range repor-

ted, including “cervical”, “mid-
thoracic, ‘thoracic”, “lumbar-
sacral”

Not reported

Treatment time - Not reported
Results Mixed results due to lack of stat-

istics reported, including "mixed
(stats/no stats)", "mixed effects
(assessment) + mixed (stats/no
stats)", "no stats"

Not reported

Sample size Sample size reported as range or
bounded

Not reported

Sex Mixed population (male/female)
with ratio not reported

Not reported

Blinding Not reported No blinding applied
Age Reported as “adult”, “young”

with no precise age reported
Not reported

Domain of bias Classified as “unclear risk of
bias”

Classified “high risk of bias”
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Figure 8.3: Publication trends over time. A. General overview of the number of experiments
included per year of publication; B. Details of repartition of species used in animal models over
time; C. Details of repartition of sex in animal models over time.

Appendices. 255



Data science for SCI clinical studies

Table 8.6: Details on the bias classification for animal experiments.

cats 26.53 16.50 24.00 16.50 31.00
dogs 33.43 25.13 26.00 22.00 32.00
guinea pig 21.00 7.55 20.00 17.00 24.50
mice 120.62 83.33 96.00 50.25 176.50
other 31.33 16.17 22.00 22.00 36.00
rabbit 69.36 50.57 47.00 28.50 133.00
rats 61.60 46.71 48.00 32.00 79.50

Species Mean SD Median Q1 Q3

“Other” include Yucatan miniature pigs (n = 2) yellow eel Anguilla anguilla L. (n = 1);
standard deviation (SD), first quartile (Q1), third quartile (Q3)
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Figure 8.4: Details of the mixed drug effects reported for drugs studied in at least five
experiments. Circle size is proportional to the number of experiments reporting the effect of
interest. Circles are colored proportionally to the frequency that the effect of interest represents
among all experiments studying the drug of interest.
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Table 8.7: Bias assessment by animal experiment.
Experiment Species Sample size Sex Age Level of injury Dose Treatment time Route Results Blinding Total bias score

Pinzon et al. (2008, minocycline) 0 0 0 1 0 0 0 0 0 0 1
Sharp et al (2013, ibuprofen) 0 0 0 0 0 0 0 0 0 0 0
Liu et al (2015, omega 3) 0 1 0 1 0 0 0 0 0 0 2
Bimbova et al (2018, atorvastatin) 0 0 0 1 0 0 0 0 0 1 2
Liu et al (2017, omega 3) 0 1 0 1 0 0 0 0 0 0 2
Yang et al (2016, niacin) 0 0 0 1 0 0 0 0 0 0 1
Jiang et al (2004, MP) 0 1 0 1 0 0 0 0 0 0 2
Halt et al (1992, ethanol + isoflurane) 1 0 2 2 0 0 0 0 0 0 5
Halt et al (1992, ethanol + ketamine + pentobarbital) 1 0 2 2 0 0 0 0 0 0 5
Durham-Lee et al (2011, amiloride) 0 0 0 1 0 0 0 0 0 1 2
Imai et al (2018, amiloride) 0 1 0 0 0 0 0 0 0 1 2
Krisa et al (2012, amphetamine) 0 0 0 1 0 0 0 0 0 0 1
Hook et al (2011, morphine) 0 0 0 0 0 0 0 0 0 0 0
Gao et al (2014, MP) 0 0 0 1 0 0 0 0 0 1 2
Baiyila et al (2018, MP) 0 0 2 1 0 0 2 0 0 1 6
Bilginer et al (2009, MP) 0 0 0 1 0 0 0 0 0 1 2
Bilginer et al (2009, mycophenolate) 0 0 0 1 0 0 0 0 0 1 2
Bilginer et al (2009, MP + mycophenolate) 0 0 0 1 0 0 0 0 0 1 2
Hong et al (2020, vitamin c) 0 1 0 0 0 0 0 0 0 0 1
Martins et al (2018, dantrolene) 0 0 0 0 0 0 0 0 0 0 0
Gao et al (2016, atorvastatin) 0 0 0 0 0 0 0 0 0 1 1
Déry et al (2009, atorvastatin) 0 0 0 1 0 0 0 0 0 1 2
Yeng et al (2016, estradiol) 0 0 0 1 0 0 0 0 0 0 1
Genovese et al (2005, melatonin) 0 0 0 2 0 0 0 2 0 1 5
Pannu et al (2005, atorvastatin) 0 1 0 2 0 0 0 0 0 0 3
Nash et al (2002, MP) 0 0 2 1 0 0 0 0 0 0 3
Zhang et al (2015, azithromycin) 0 1 0 0 0 0 0 0 0 0 1
Faden et al (1981, naloxone) 1 0 0 1 0 0 0 0 0 0 2
Giulian et al (1990, dexamethasone) 0 1 2 2 1 0 0 0 0 1 7
Salzman et al (1991, cyproheptadine) 0 0 0 2 0 0 0 0 0 0 2
Siriphorn et al (2012, estradiol) 0 0 0 1 0 0 0 0 0 0 1
Mohammadshirazi et al (2019, lithium) 0 0 0 1 0 0 0 0 0 1 2
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Table 8.7 – continued from previous page
Experiment Species Sample size Sex Age Level of injury Dose Treatment time Route Results Blinding Total bias score

Rabchevsky et al (2002, MPSS) 0 0 0 1 0 0 0 0 0 0 1
Borgens et al (2001, PEG) 1 0 2 1 1 0 0 0 0 1 6
Ditor et al (2007, PEG) 0 0 0 2 0 0 0 0 0 0 2
Ditor et al (2007, magnesium sulfate) 0 0 0 2 0 0 0 0 0 0 2
Ditor et al (2007, magnesium sulfate + PEG) 0 0 0 2 0 0 0 0 0 0 2
Liu et al (2015, carvedilol) 0 0 0 0 0 0 0 0 0 0 0
Diaz-Ruiz et al (2011, dapsone) 0 0 0 1 0 0 0 0 0 0 1
Krityakiarana et al (2016, melatonin) 1 0 0 0 0 0 0 0 0 1 2
Vanicky et al (2002, MPSS) 0 0 0 2 0 0 0 0 0 0 2
Behrmann et al (1994, MPSS) 0 0 0 2 0 0 0 0 0 0 2
Sadanaga et al (1989, chlorpromazine) 0 1 0 2 0 0 0 0 0 0 3
Gueye et al (2015, vitamin d) 0 0 0 0 0 0 0 0 0 1 1
Guth et al (1994, indomethacin) 0 0 0 2 0 0 2 0 2 0 6
Nazemi et al (2020, minocycline) 0 0 0 1 0 0 0 0 0 1 2
Lopez et al (2004, bupivacaine) 0 0 0 0 0 0 0 0 0 0 0
Namjoo et al (2018, estradiol) - rats 0 0 0 1 0 0 0 0 0 0 1
Çavus et al (2014, MP) 0 0 0 0 0 0 0 0 0 0 0
Çavus et al (2014, acetylcysteine) 0 0 0 0 0 0 0 0 0 0 0
Çavus et al (2014, MP + acetylcysteine) 0 0 0 0 0 0 0 0 0 0 0
Kang et al (2017, estradiol) 0 0 0 0 2 0 0 0 0 1 3
Baltin et al (2021, MPSS) 0 0 0 2 0 0 0 0 0 1 3
Chen et al (2018, MP) 0 1 0 1 0 0 0 0 0 1 3
Caliskan et al (2016, etomidate) 0 0 0 1 0 0 0 0 0 0 1
Caliskan et al (2016, epoietin) 0 0 0 1 0 0 0 0 0 0 1
Caliskan et al (2016, etomidate + epoietin) 0 0 0 1 0 0 0 0 0 0 1
Cayli et al (2004, MP) 0 0 0 1 0 0 0 0 0 1 2
Cayli et al (2004, melatonin) 0 0 0 1 0 0 0 0 0 1 2
Cayli et al (2004, MP + melatonin) 0 0 0 1 0 0 0 0 0 1 2
Cayli et al (2004, ethanol) 0 0 0 1 0 0 0 0 0 1 2
Cetin et al (2006, MP) 0 0 2 2 0 0 0 0 0 1 5
Cetin et al (2006, epoietin) 0 0 2 2 0 0 0 0 0 1 5
Cetin et al (2006, MP + epoietin) 0 0 2 2 0 0 0 0 0 1 5
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Table 8.7 – continued from previous page
Experiment Species Sample size Sex Age Level of injury Dose Treatment time Route Results Blinding Total bias score

Ha et al. (2008, pregabalin) 0 0 0 1 0 0 0 0 0 1 2
Ha et al. (2008, MP) 0 0 0 1 0 0 0 0 2 1 4
Ha et al. (2008, minocycline) 0 0 0 1 0 0 0 0 2 1 4
Aslan et al (2009, dexmedetomidine) 0 0 1 2 0 0 0 0 2 0 5
Aslan et al (2009, dantrolene) 0 0 1 2 0 0 2 0 0 0 5
Colón et al (2018, tamoxifen) 0 1 0 0 0 0 0 0 0 0 1
Xu et al (2009, dexamethasone) 0 0 0 1 0 0 0 0 0 1 2
Saganová et al (2009, tacrolimus) 0 0 0 2 0 0 0 0 0 1 3
Fabela-Sánchez et al (2018, albumin) 0 0 0 2 0 0 0 0 0 0 2
Darvishi et al (2014, valproic acid) 0 1 0 2 0 0 0 0 1 1 5
Torres et al (2018, dantrolene) 0 0 0 0 0 0 0 0 0 1 1
Guo et al (2018, metformin) 0 0 0 2 0 0 2 0 0 0 4
Chio et al (2021, immune globulin) 0 0 0 1 0 0 0 0 0 0 1
Kopper et al (2019, azithromycin) 0 0 0 0 0 0 0 0 0 0 0
Afshary et al. (2020, minocycline) 0 0 0 2 0 0 0 0 0 0 2
Zhang et al. (2017, metformin) - rats 1 0 1 0 1 0 0 0 0 0 2
Liu et al. (2017, lithium) 0 1 0 0 0 0 0 0 0 1 2
Jin et al. (2021, buspirone) 0 0 0 0 0 0 0 0 0 0 0
Jin et al. (2021, fluoxetine) 0 0 0 0 0 0 0 0 0 0 0
Brandoli et al. (2001, dexamethasone) 0 0 0 2 0 0 0 0 0 0 2
Faden et al (1984, naloxone) 0 0 2 2 2 0 0 0 0 0 6
Hashimoto et al. (1991, naloxone) 0 0 0 2 0 0 0 0 0 0 2
Winkler et al (1994, naloxone) 0 0 0 2 0 0 0 0 0 1 3
Faden et al (1983, naloxone) - cats 0 0 0 2 0 0 0 0 0 0 2
Faden et al (1983, naloxone) - rats 0 0 0 2 0 0 0 0 1 0 3
Faden et al (1983, naloxone) - rabbit 0 0 2 2 1 0 0 0 1 0 6
Chen et al. (2020, ezetimibe) 0 0 0 1 0 0 0 0 0 0 1
Oslau et al (2014, selegiline) 0 1 0 2 0 0 0 0 1 1 5
Salem et al. (2017, MPSS) 0 0 0 1 0 0 0 0 0 0 1
Salem et al. (2017, vitamin c) 0 0 0 1 0 0 0 0 0 0 1
Salem et al. (2017, MPSS + vitamin c) 0 0 0 1 0 0 0 0 0 0 1
Abdanipour et al. (2012, valproic acid) 0 0 0 2 0 0 0 0 0 0 2
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Table 8.7 – continued from previous page
Experiment Species Sample size Sex Age Level of injury Dose Treatment time Route Results Blinding Total bias score

Teixeira et al. (2018, MP) 0 0 0 0 0 0 0 0 0 0 0
Tong et al. (2018, lithium) 0 1 0 1 2 0 0 0 0 1 5
Karatas et al. (2015, carvedilol) 0 0 2 2 0 2 2 2 0 1 11
Papa et al. (2016, minocycline) 0 1 2 2 0 0 0 0 0 0 5
Pourheydar et al. (2018, ubiquinone) 0 0 0 2 0 0 0 0 0 1 3
Pourheydar et al. (2018, vitamin c) 0 0 0 2 0 0 0 0 0 1 3
Wang et al. (2017, minocycline) 0 0 0 2 0 0 0 0 0 0 2
Wang et al. (2019, minocycline) 0 0 0 1 0 0 0 0 0 1 2
Khoshsirat et al. (2018, MP) 0 0 0 1 0 0 2 2 0 0 5
Fee et al. (2007, progesterone) 0 0 0 0 0 0 0 2 0 0 2
Ritz et al. (2008, estradiol) 0 0 0 1 0 0 0 0 0 0 1
Means et al. (1981, MPSS) 0 0 0 2 0 0 0 0 0 0 2
Holtz et al. (1990, MP) 0 0 0 2 0 0 0 0 1 1 4
Korkmaz et al. (2015, montelukast) 0 0 0 2 1 0 0 2 0 0 5
Haghighi et al. (1987, naloxone) 0 0 2 1 0 0 0 0 0 1 4
Arias (1985, naloxone) 0 0 0 2 0 0 0 0 0 1 3
Ross et al. (1993, MP) 0 0 0 2 0 0 0 0 0 0 2
Gerber et al. (1980, phenytoin) 0 0 2 2 0 0 0 0 0 0 4
Gerber et al. (1980, dexamethasone) 0 0 2 2 0 0 0 0 0 0 4
Silva et al. (2008, prednisone) 0 0 0 0 0 0 0 0 0 1 1
Pan et al. (2006, tacrolimus) 0 0 0 1 0 0 0 0 0 0 1
Liu et al. (2017, MP) 0 0 0 2 0 0 0 0 0 1 3
Liu et al. (2017, methotrexate) 0 0 0 2 0 0 2 0 0 1 5
Liu et al. (2017, MP + methotrexate) 0 0 0 2 0 0 0 0 0 1 3
Ahmad et al. (2016, minocycline) 0 0 0 1 0 0 0 0 0 0 1
Ahmad et al. (2016, tacrolimus) 0 0 0 1 0 0 0 0 0 0 1
Ahmad et al. (2016, minocycline + tacrolimus) 0 0 0 1 0 0 0 0 0 0 1
Meng et al. (2011, MP) 0 1 2 1 0 0 0 0 1 0 5
Shen et al. (2019, levocarnitine) 0 0 0 0 0 0 0 0 0 1 1
Cristante et al. (2013, fluoxetine) 0 0 0 0 0 0 2 0 1 0 3
Zhou et al. (2016, calcitriol) 0 0 0 1 0 0 0 0 0 0 1
Nantwi et al. (1998, theophylline) 1 0 0 1 0 0 0 0 1 1 4
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Genovese et al. (2007, dexamethasone) - mice 1 0 2 2 0 0 0 0 0 1 6
Genovese et al. (2007, melatonin) 1 0 2 2 0 0 0 0 0 1 6
Genovese et al. (2007, dexamethasone + melatonin) 1 0 2 2 0 0 0 0 0 1 6
Farsi et al. (2015, MP) 1 0 0 1 0 0 0 0 0 0 2
Farsi et al. (2015, magnesium sulfate) 1 0 0 1 0 0 0 0 0 0 2
Farsi et al. (2015, MP + magnesium sulfate) 1 0 0 1 0 0 0 0 0 0 2
Yin et al. (2013, MP) 0 0 0 1 0 0 0 0 0 0 1
Lu et al. (2016, MP) 0 0 0 0 0 0 0 0 0 0 0
Li et al. (2016, MP) 0 0 0 1 0 0 0 0 0 0 1
Hou et al. (2015, celecoxib) 0 0 0 0 0 0 2 0 0 1 3
Qinxuan et al. (2020, dexamethasone + estrogen) 0 0 0 0 0 0 0 0 0 0 0
Qinxuan et al. (2020, dexamethasone) 0 0 0 0 0 0 0 0 0 0 0
Letaif et al. (2015, estradiol) 0 0 0 0 0 0 0 0 0 0 0
Hains et al. (2004, phenytoin) 0 0 0 1 0 0 0 0 0 1 2
Mann et al. (2008, epoetin) 0 0 0 2 0 0 0 0 0 0 2
Mann et al. (2008, darbepoetin) 0 0 0 2 0 0 0 0 0 0 2
Liao et al. (2014, MP) 0 0 1 1 0 0 0 0 0 1 3
Li et al. (2019, MP) 0 0 0 0 0 0 2 2 0 1 5
Wu et al. (2019, MP) 0 0 0 1 0 0 2 0 0 0 3
Rong et al. (2018, methotrexate) 0 0 0 0 0 0 2 0 0 1 3
Wong et al. (2012, amphetamine) 0 0 0 0 0 0 0 0 0 0 0
Lima et al. (2020, citalopram) 0 0 0 0 0 0 0 0 0 0 0
Li et al. (2014, MP) 0 0 0 1 0 0 0 0 0 0 1
Chen et al. (2014, vitamin c e) 0 0 0 1 0 0 2 0 0 0 3
Akdemir et al. (1993, MP) 0 0 0 2 0 0 0 0 0 0 2
Genovese et al. (2008, montelukast) 0 0 0 1 0 0 0 0 0 1 2
Chen et al. (2018, plasma) 0 1 0 0 0 2 0 0 0 0 3
Chen et al. (2018, platelets) 0 1 0 0 0 0 0 0 0 0 1
Kim et al. (2004, MP) 0 0 0 1 0 0 0 0 0 0 1
Mbori et al. (2016, MP) 0 0 0 0 0 0 0 0 0 0 0
Wiseman et al. (2009, MP) 0 0 0 1 0 0 0 0 1 0 2
Wiseman et al. (2009, magnesium) 0 0 0 1 0 0 0 0 0 0 1
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Wiseman et al. (2009, magnesium +MP) 0 0 0 1 0 0 0 0 1 0 2
Ates et al. (2007, mexiletine) 0 0 0 1 0 0 0 0 1 1 3
Ates et al. (2007, phenytoin) 0 0 0 1 0 0 0 0 1 1 3
Serarslan et al. (2010, MP) 0 0 0 2 0 0 0 0 0 1 3
Serarslan et al. (2010, tadalafil) 0 0 0 2 0 0 0 0 0 1 3
Hara et al. (2000, MPSS) 0 0 0 2 0 0 0 0 0 0 2
Zendedel et al. (2018, estradiol) 0 1 0 0 0 0 0 0 0 0 1
Braughler et al. (1987, MPSS) 0 0 2 1 0 0 0 0 0 0 3
Robertson et al. (1986, thiopental) 0 0 2 2 1 0 0 0 0 1 6
Robertson et al. (1986, magnesium sulfate) 0 0 2 2 1 0 0 0 0 1 6
Robertson et al. (1986, lidocaine) 0 0 2 2 1 0 0 0 0 1 6
Robertson et al. (1986, naloxone) 0 0 2 2 1 0 0 0 0 1 6
Robertson et al. (1986, thiopental + naloxone) 0 0 2 2 1 0 0 0 0 1 6
Kobrine et al. (1984, lidocaine) 1 0 2 1 0 0 0 0 1 1 6
Hallenbeck et al. (1983, naloxone) 0 0 2 2 0 0 0 0 0 0 4
Watanabe et al. (2012, minocycline) 0 0 2 2 1 0 0 0 0 0 5
Yücel et al. (2006, MP) 0 0 0 1 0 0 0 0 0 0 1
Gürkan et al. (2020, MP) 0 0 0 2 0 0 0 0 1 1 4
Schwartz et al. (2001, phenytoin) 0 0 0 1 0 0 0 0 0 1 2
Tator et al. (1983, liothyronine) 0 0 0 2 0 0 2 0 0 0 4
Young et al. (1982, MPSS) 1 0 2 1 0 0 0 0 1 1 6
Saganova et al. (2008, minocycline) 0 0 0 2 0 0 0 0 0 1 3
Rivlin et al. (1979, epinephrine) 0 0 0 2 0 0 0 0 0 0 2
Rivlin et al. (1979, epinephrine + nitroprusside) 0 0 0 2 0 0 0 0 0 0 2
Zhang et al. (2020, MP) 0 0 0 0 0 0 2 0 0 0 2
Zhang et al. (2020, metformin) 0 0 0 0 0 0 2 0 0 0 2
Genovese et al. (2007, dexamethasone) - mice 0 0 0 1 0 0 0 0 0 1 2
Wu et al. (2017, sevoflurane) 0 1 0 1 0 0 0 0 0 1 3
Lee et al. (2016, fluoxetine + vitamin c) 0 1 0 1 0 0 0 0 0 0 2
de Figueiredo et al. (2018, tramadol) 0 0 0 0 0 0 2 0 0 0 2
Vasconcelos et al. (2016, magnesium chloride + PEG) 0 0 0 0 0 0 0 0 0 0 0
Miranpuri et al. (2017, folic acid) 0 1 0 1 0 0 0 0 0 0 2
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Gül et al. (2005, MP) 0 0 2 2 0 0 0 0 1 1 6
Gül et al. (2005, melatonin) 0 0 2 2 0 0 0 0 1 1 6
Fu et al. (2007, naproxen) 0 0 0 2 0 0 0 0 0 0 2
Fu et al. (2007, ibuprofen) 0 0 0 2 0 0 0 0 0 0 2
Cheng et al. (2016, estradiol) 0 0 0 2 0 0 2 0 0 0 4
Hu et al. (2012, estradiol) 0 1 0 2 0 0 0 0 0 0 3
Sun et al. (2020, gabapentin) 0 1 1 0 0 0 0 0 0 0 2
McCreedy et al. (2018, diclofenac) 0 1 0 0 0 0 0 0 0 0 1
Tajkey et al. (2015, ceftriaxone) 0 0 0 0 2 0 2 0 0 1 5
Zheng et al. (2011, heparin) 0 0 0 1 0 0 0 0 0 1 2
Nguyen et al. (2012, immune globulin) 0 0 0 2 0 0 0 0 0 0 2
Ueno et al. (2011, minocycline) 0 0 2 0 0 0 0 0 0 0 2
Wang et al. (2009, ibuprofen) - rats 0 0 0 0 0 0 0 0 0 0 0
Wang et al. (2009, naproxen) 0 0 0 0 0 0 0 0 0 0 0
Wang et al. (2009, ibuprofen) - mice 0 0 0 0 0 0 0 0 0 0 0
Ozkunt et al. (2017, MP) 0 0 0 1 0 0 0 0 1 0 2
Ozkunt et al. (2017, epoetin) 0 0 0 1 0 0 0 0 1 0 2
Zakeri et al. (2014, lithium) 0 1 0 2 0 0 0 0 0 0 3
Teng et al. (2004, minocycline) 0 1 0 2 0 0 0 0 0 0 3
Wu et al. (2010, MP) 0 2 0 0 0 0 0 0 0 0 2
Huang et al. (2009, epoetin) 0 0 0 2 0 0 0 0 0 1 3
Lee et al. (2003, minocycline) 0 1 0 2 0 0 0 0 0 0 3
Lin et al. (2016, estradiol) 0 0 0 1 0 1 0 0 0 0 2
Faden et al. (1981, naloxone) 1 0 2 1 0 0 0 0 0 0 4
Holtz et al. (1991, MP) 0 0 0 2 0 0 0 2 0 1 5
Gorio et al. (2007, MPSS) 0 1 2 1 0 0 0 0 0 0 4
Ravikumar et al. (2005, nicotine) 0 0 0 0 0 0 0 0 0 0 0
Know et al. (2009, MP) 0 0 0 2 0 0 0 0 0 0 2
Know et al. (2009, PEG) 0 0 0 2 0 0 0 0 0 0 2
Know et al. (2009, magnesium sulfate) 0 0 0 2 0 0 0 0 0 0 2
Know et al. (2009, magnesium sulfate + PEG) 0 0 0 2 0 0 0 0 0 0 2
Know et al. (2009, magnesium chloride + PEG) 0 0 0 2 0 0 0 0 0 0 2
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Know et al. (2009, MP + magnesium chloride + PEG) 0 0 0 2 0 2 0 0 0 0 4
Kachadroka et al. (2010, estradiol) 0 0 0 0 0 0 0 0 0 0 0
Roman et al. (2011, PEG) 0 0 0 0 0 0 0 0 1 1 2
Bu et al. (2018, estradiol) 0 0 2 0 0 0 2 0 1 1 6
Fakhri et al. (2020, melatonin) 0 0 0 1 0 0 0 0 0 0 1
Hook et al. (2009, morphine sulfate) 0 0 0 0 0 0 0 0 0 1 1
Garcia-Ovejero et al. (2014, progesterone) 0 0 0 0 0 0 0 0 0 1 1
Erol et al. (2016, MP) 0 0 0 2 0 0 0 0 0 1 3
Erol et al. (2016, topiramate) 0 0 0 2 0 0 0 0 0 1 3
Streijger et al. (2016, magnesium chloride + PEG) 0 0 0 2 0 0 0 0 0 1 3
Streijger et al. (2016, magnesium sulfate) 0 0 0 2 0 0 0 0 0 1 3
Ji et al. (2005, MP) 0 1 0 0 0 0 0 0 0 1 2
Doyle et al. (2004, levodopa) 0 0 2 2 2 0 0 0 1 1 8
Ibarra et al. (2004, MPSS) 0 2 0 0 0 0 0 0 0 0 2
Kuroiwa et al. (2014, amiloride) 0 1 0 0 0 0 0 0 0 0 1
Wells et al. (2003, MP) 0 0 0 0 0 0 0 0 0 1 1
Wells et al. (2003, minocycline) 0 0 0 0 0 0 0 0 0 1 1
Guizar-Sahagun et al. (2009, MPSS) 0 0 0 1 0 0 0 0 0 1 2
Guizar-Sahagun et al. (2009, melatonin) 0 0 0 1 0 0 0 0 0 1 2
Lee et al. (2010, minocycline) 0 0 2 2 0 0 0 0 0 0 4
Lee et al. (2010, simvastatin) 0 0 2 2 0 0 0 0 0 0 4
Zeman et al. (2009, oxandrolone) 0 1 0 1 0 0 0 0 0 0 2
Cole et al. (1989, fentanyl + nitrous oxide ) 0 0 0 2 0 0 0 0 1 0 3
Cole et al. (1989, fentanyl + nitrous oxide + naloxone) 0 0 0 2 0 0 0 0 1 0 3
Kuchner et al. (2000, dexamethasone) 0 0 0 1 0 0 0 0 0 0 1
Luo et al. (2013, MP) 0 0 0 0 0 0 0 0 0 1 1
Thomas et al. (1999, progesterone) 0 0 0 1 0 0 0 0 0 1 2
Stewart et al. (2019, folic acid) 0 0 0 0 0 0 0 0 0 0 0
Stewart et al. (2019, nitrous oxide) 0 0 0 0 0 0 0 0 0 0 0
Stewart et al. (2019, folic acid + nitrous oxide) 0 0 0 0 0 0 0 0 0 0 0
Gok et al. (2007, MP) 0 0 0 1 0 0 0 0 0 0 1
Dinc et al. (2013, MP) 0 0 0 2 0 0 2 0 1 1 6
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Lee et al. (2010, magnesium) 0 0 0 2 0 0 0 0 0 1 3
Sonmez et al. (2013, minocycline) 0 0 0 1 0 0 0 0 0 1 2
Cuzzocrea et al. (2008, estradiol) 0 0 0 1 0 0 0 0 1 1 3
Ren et al. (2017, PEG) 1 0 0 2 0 0 0 0 1 1 5
Faden et al. (1984, dexamethasone) 0 0 2 2 0 0 0 2 0 0 6
Faden et al. (1984, MP) 0 0 2 2 0 0 0 0 0 0 4
Xu et al. (2019, melatonin) 0 2 2 2 0 0 0 0 1 0 7
Li et al. (2019, melatonin) 0 0 0 0 0 0 0 0 0 0 0
Yang et al. (2020, melatonin) 0 0 0 0 0 0 0 0 0 1 1
Piao et al. (2014, melatonin) 0 0 0 0 0 0 0 0 0 1 1
Zhang et al. (2019, melatonin) 0 0 0 1 0 0 0 0 0 0 1
Shen et al. (2017, melatonin) 0 1 0 1 0 0 2 0 0 0 4
Esposito et al. (2009, melatonin) 1 0 2 2 0 0 0 2 0 1 8
Jing et al. (2019, melatonin) 0 0 0 1 0 0 2 0 0 0 3
Fee et al. (2010, melatonin) 0 1 0 0 0 0 0 0 0 1 2
Jeffrey-Gauthier et al. (2018, buspirone) 0 0 0 2 0 0 0 0 0 1 3
Holtz et al. (1989, naloxone) 0 0 0 2 0 0 0 0 0 1 3
Park et al. (2012, melatonin) 0 0 0 0 0 0 0 0 0 0 0
Ates et al. (2006, MP) 0 0 0 0 0 0 0 0 1 0 1
Ates et al. (2006, ethanol) 0 0 0 0 0 0 0 0 1 0 1
Yingli et al. (2014, melatonin) 0 0 0 1 0 0 2 0 0 1 4
Yune et al. (2007, minocycline) 0 0 0 1 0 0 0 0 0 0 1
Yune et al. (2007, MP) 0 0 0 1 0 0 0 0 0 0 1
Zhang et al. (2017, metformin) - rats 0 1 0 1 0 0 0 0 0 0 2
Park et al. (2014, hydralazine) 0 1 0 2 0 0 0 0 0 1 4
Stirling et al. (2004, minocycline) 0 0 2 1 0 0 0 0 0 0 3
Weaver et al. (2005, MP) 0 0 0 2 0 0 0 0 0 0 2
Moutaery et al. (2000, aluminum) 0 0 0 1 0 0 0 0 0 0 1
de Mesquita Coutinho et al. (2016, tacrolimus) 0 0 0 1 0 0 0 2 0 1 4
Takami et al. (2002, MP) 0 0 0 1 0 0 0 0 0 0 1
Chikawa et al. (2001, MP) 0 0 0 0 0 0 0 0 0 0 0
Aceves et al. (2019, morphine) 0 0 0 0 0 0 0 0 0 1 1
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Aceves et al. (2019, minocycline) 0 0 0 0 0 0 0 0 0 1 1
Aceves et al. (2019, morphine + minocycline) 0 0 0 0 0 0 0 0 0 1 1
Woller et al. (2014, morphine) 0 0 0 0 0 0 0 0 0 1 1
de la Torre Valdovino et al. (2016, tamoxifen) 1 0 0 1 0 0 0 0 0 1 3
Guo et al. (2015, acetylcysteine) 0 1 0 1 0 0 0 0 1 1 4
Black et al. (1991, naloxone) 0 0 1 2 0 0 0 0 0 0 3
Black et al. (1986, naloxone) - rats 0 0 0 0 0 0 0 0 0 0 0
Black et al. (1986, naloxone) - rats 0 0 0 2 0 0 0 0 0 0 2
Wang et al. (2020, metformin) 0 0 0 2 0 0 0 0 1 0 3
Lin et al. (2019, MP) 0 1 0 0 0 2 0 0 1 0 4
Lin et al. (2019, MPSS) 0 1 0 0 0 2 0 0 1 0 4
Koyanagi, Tator (1997, MP) 0 0 0 2 0 0 0 0 0 1 3
Hook et al. (2017, morphine) 0 0 0 0 0 0 0 0 0 1 1
Wu et al. (2016, botulinum toxin) 0 0 0 1 0 0 0 0 1 0 2
Guth et al. (1994, indomethacin) 0 0 0 2 0 0 2 0 0 0 4
Lee et al. (2012, fluoxetine) 0 1 0 1 0 0 0 0 0 0 2
Gao et al. (2020, melatonin) 0 0 0 2 0 0 0 0 0 0 2
Gorio et al. (2005, MPSS) 0 1 2 1 0 0 2 0 0 0 6
Scali et al. (2013, fluoxetine) 0 1 0 0 0 0 0 0 0 1 2
Dixit et al. (2018, clonidine) 0 0 0 1 0 0 0 0 0 1 2
Zhang et al. (2014, MPSS) 0 0 2 2 0 2 2 2 1 1 12
Nazli et al. (2015, atorvastatin) 0 0 2 2 1 0 0 0 0 0 5
Li et al. (2014, atorvastatin) 0 0 0 1 0 0 0 0 0 1 2
Bharne et al. (2013, MP) 0 0 0 1 0 0 0 0 0 1 2
Cayli et al. (2006, etomidate +MP) 0 0 0 1 0 0 0 0 0 0 1
Cong, Chen (2016, dexamethasone) 0 0 0 1 0 0 0 0 0 0 1
Tan et al. (2015, MP) 0 0 0 1 0 0 0 0 0 1 2
Cakir et al. (2003, acetylcysteine) 0 0 2 2 1 0 0 2 0 1 8
Gao et al. (2015, simvastatin) 0 0 0 1 0 0 0 0 0 0 1
Hou et al. (2016, MP) 0 0 0 0 0 0 0 0 0 1 1
Wang et al. (2014, MP) 0 1 0 0 0 0 0 0 0 0 1
Sozbilen et al. (2018, MP) 0 0 0 1 0 0 0 0 0 1 2
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Yilmaz et al. (2015, clopidogrel) 0 0 0 2 0 0 0 0 0 0 2
Chen et al. (2015, MP) 0 2 0 2 0 0 0 0 0 0 4
Ok et al. (2012, MP) 0 0 0 1 0 0 0 0 1 0 2
Kazanci et al. (2017, MP + pregabalin) 0 0 2 1 1 0 0 0 0 1 5
Kahveci et al. (2014, MP + rosuvastatin) 0 0 0 1 0 0 0 0 0 0 1
Xian-Hui et al. (2016, MP) 0 0 0 1 0 1 0 2 0 0 4
Kouhzaei et al. (2013, PEG) 0 1 0 1 0 0 0 0 0 1 3
Aceves et al. (2016, morphine) 0 0 0 0 0 0 0 0 0 1 1
Guizar-Sahagun et al. (2005, MPSS) 0 0 0 1 0 0 0 0 0 1 2
De La Torre et al. (1975, mannitol) 0 0 0 2 0 0 0 0 1 1 4
De La Torre et al. (1975, dexamethasone) 0 0 0 2 0 0 0 0 1 1 4
Yates et al. (2014, MP) 0 1 0 2 0 0 0 0 0 1 4
Flamm et al. (1982, naloxone) 0 0 2 2 0 0 0 0 1 1 6
Wallace, Tator (1986, naloxone) - rats 0 0 0 2 0 0 0 0 0 1 3
Wallace, Tator (1986, naloxone) - rats 0 0 0 2 0 0 0 0 0 1 3
Cho et al. (2010, glucosamine) 0 0 0 1 1 2 0 0 0 1 5
Zadeh-Ardabili et al. (2017, vitamin e) 0 0 0 0 0 0 2 0 0 1 3
Gok et al. (2009, albumin) 0 0 0 1 0 0 0 0 0 0 1
Gok et al. (2009, immune globulin) 0 0 0 1 0 0 0 0 0 0 1
Khajoueinejad et al. (2019, calcitriol) 0 0 0 0 0 0 0 0 0 0 0
Lim et al. (2013, omega 3) 0 0 0 2 0 0 0 0 0 0 2
Popovich et al. (2012, glibenclamide) 0 1 0 0 0 0 0 0 0 0 1
Pukos, McTigue (2020, tamoxifen) 0 0 0 0 0 0 0 0 0 0 0
Durham-Lee et al. (2012, amiloride) 0 1 0 2 0 0 0 0 0 1 4
Perez-Espejo et al. (1996, MP) 0 0 0 2 0 0 0 0 1 0 3
Patel et al. (2017, pioglitazone) 0 0 0 2 0 0 0 0 0 1 3
Nash et al. (2002, MP) 0 0 2 1 0 0 0 0 0 1 4
Lankhorst et al. (2000, MP) 0 0 0 0 0 0 0 0 0 0 0
Liu et al. (2010, carbidopa levodopa) 0 0 0 1 0 0 2 0 0 1 4
Yang et al. (2020, glutamine) 0 0 0 0 0 0 0 0 0 0 0
Pannu et al. (2007, atorvastatin) 0 0 0 2 0 0 0 0 0 0 2
Mann et al. (2010, atorvastatin) 0 0 0 2 0 0 0 0 0 0 2
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Mann et al. (2010, simvastatin) 0 0 0 2 0 0 0 0 0 0 2
King et al. (2006, omega 3) - rats 0 0 0 1 0 0 0 0 0 1 2
King et al. (2006, omega 3) - rats 0 0 0 1 2 0 0 0 0 1 4
Fujimoto et al. (2000, melatonin) 0 0 0 2 0 0 0 0 0 0 2
Schiaveto-de-Souza et al. (2013, melatonin) 0 0 0 2 0 0 0 0 0 1 3
Karami et al. (2013, ketoprofen) 0 0 0 2 0 0 0 0 0 1 3
Tan et al. (2020, estrogen) 0 0 0 0 0 0 0 0 0 0 0
Wang et al. (2015, propofol) 0 0 0 0 0 0 0 0 0 1 1
Zhang et al. (2020, mannitol) 0 0 0 0 0 0 0 0 0 0 0
Yates et al. (2009, modafinil) 0 0 0 1 0 0 0 0 0 1 2
Iwasa et al. (1989, vitamin e) 0 0 0 2 0 0 0 0 0 1 3
Sengelaub et al. (2018, estradiol) 0 0 0 1 0 0 0 0 0 0 1
Sengelaub et al. (2018, testosterone) 0 0 0 1 0 0 0 0 0 0 1
Sengelaub et al. (2018, estradiol + testosterone) 0 0 0 1 0 0 0 0 0 0 1
Patel et al. (2014, acetylcysteine) 0 0 0 2 0 0 0 0 0 1 3
Osuna-Carrasco et al. (2016, tamoxifen) 0 0 0 1 0 0 0 0 0 1 2
Ren et al. (2019, PEG) 0 0 0 2 0 0 0 0 0 1 3
Kaptanoglu et al. (2005, MP) 0 0 0 1 0 0 0 0 0 0 1
Kaptanoglu et al. (2005, mexiletine) 0 0 0 1 0 0 0 0 0 0 1
Xing et al (2016, morphine) 0 0 0 1 0 0 0 0 0 0 1
Mu et al (2000, MP) 0 0 0 1 0 0 0 0 0 0 1
Kazama et al (2001, pentobarbital) 0 0 2 2 1 0 0 0 0 0 5
Genovese et al (2007, dexamethasone) 0 2 0 1 0 0 0 0 0 1 4
Pan et al (2013, tacrolimus) 0 0 0 1 0 0 0 0 0 0 1
Pereira et al (2009, MPSS) 0 0 0 1 0 0 0 0 0 1 2
Cain et al (2007, albumin) 0 0 0 2 0 0 0 0 0 0 2
Liang et al (2019, simvastatin) 0 0 0 0 0 0 0 0 0 1 1
Liang et al (2019, ezetimibe + simvastatin) 0 0 0 0 0 0 0 0 0 1 1
Gao et al (2016, simvastatin) 0 1 0 1 0 0 0 0 0 0 2
Han et al (2012, simvastatin) 0 0 0 2 0 0 0 0 0 0 2
Han et al (2011, simvastatin) 0 0 0 1 0 0 0 0 0 1 2
Han et al (2020, sitagliptin) 0 1 0 0 0 0 0 0 1 0 2
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He et al (2016, propofol) 0 0 0 0 0 0 0 0 0 1 1
Holmberg et al (2008, simvastatin) 0 1 0 1 0 1 2 0 0 1 6
Zhang et al (2018, lithium) 0 0 0 1 0 0 0 0 0 0 1
Tedeshi et al (2016, pregabalin) 0 1 0 0 0 0 0 0 0 1 2
Kim et al (2017, lithium) 0 0 0 0 0 0 0 0 0 0 0
Sanli et al (2012, MPSS) 0 0 0 1 0 0 0 0 0 0 1
Salimi et al (2020, ceftriaxone) 0 0 0 0 0 0 2 0 0 0 2
Salimi et al (2020, acetylcysteine) 0 0 0 0 0 0 2 0 0 0 2
Salimi et al (2020, ceftriaxone + acetylcysteine) 0 0 0 0 0 0 2 0 0 0 2
Ni et al (2018, estrogen) 0 1 0 1 0 0 0 0 0 0 2
Xiao Jianru et al (1998, naloxone) 0 0 0 2 0 0 0 2 0 1 5
Baffour et al (1995, MPSS) 0 0 1 2 0 0 0 0 1 0 4
Qi et al (2017, MP) 0 0 0 0 0 0 0 0 0 1 1
Yune et al (2004, estradiol) 0 1 0 1 0 0 0 0 0 0 2
Nacar et al (2014, PEG) 0 0 0 2 0 0 0 0 1 0 3
Nacar et al (2014, atorvastatin) 0 0 0 2 0 0 0 0 0 0 2
Baptiste et al (2009, PEG) 0 0 0 1 0 0 0 0 0 0 1
Mallei et al (2005, prednisolone) 0 1 0 1 0 0 0 0 0 0 2
Madsen et al (1998, tacrolimus) 0 1 2 2 0 0 0 0 0 0 5
Colón et al (2016, tamoxifen) 0 0 0 1 0 0 0 0 0 0 1
Mosquera et al (2014, estradiol) 0 1 0 1 0 0 0 0 0 0 2
Mosquera et al (2014, tamoxifen) 0 1 0 1 0 0 0 0 0 0 2
Tian et al (2009, tamoxifen) 0 0 0 1 0 0 0 0 0 0 1
Kitchen et al (2020, trifluoperazine) 0 1 0 0 0 0 0 0 0 0 1
Namjoo et al (2018, estradiol) - rats 0 0 0 1 0 0 0 0 0 1 2
Borgens et al (2002, PEG) 1 0 2 1 0 0 0 0 0 0 4
Hao et al (1991, naltrexone) 0 0 0 2 0 0 0 0 0 1 3
Ruhollah Hosseini et al (2017, dexamethasone) 0 0 0 1 0 0 0 0 0 1 2
Pedram et al (2018, meloxicam) 0 0 0 0 0 0 0 0 0 0 0
Sharma et al (2004, MPSS) 0 0 1 2 1 0 0 2 1 1 8
Sharma et al (2004, dexamethasone) 0 0 1 2 1 0 0 2 1 1 8
Guptarak et al (2014, tamoxifen) 0 0 0 2 0 0 0 0 0 0 2
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Kermani et al (2016, acetylsalicylic acid) 0 0 0 1 0 0 0 0 0 0 1
Sayin et al (2013, MPSS) 0 0 0 1 0 0 0 0 0 0 1
Baysefer et al (2003, mannitol) 0 0 0 2 0 0 0 0 0 1 3
Farooque et al (1994, MPSS) 0 0 0 2 0 0 0 0 0 1 3
Golding et al (2006, glutamine) 0 0 0 0 0 0 0 0 0 1 1
Abdanipour et al (2019, lithium) 1 0 0 0 0 0 0 0 0 1 2
Charn et al (2011, minocycline) 0 0 0 2 0 0 0 0 0 0 2
Gul et al (2010, MP) 0 0 0 1 0 0 0 0 2 1 4
Gul et al (2010, dexmedetomidine) 0 0 0 1 0 0 0 0 2 1 4
Lang-Lazdunski et al (2001, tacrolimus) 0 0 0 2 1 0 0 0 0 1 4
Rosado et al (2014, MPSS) 0 0 0 0 0 0 0 0 0 0 0
Rosado et al (2014, dantrolene) 0 0 0 0 0 0 0 0 0 0 0
Rosado et al (2014, MPSS + dantrolene) 0 0 0 0 0 0 0 0 0 0 0
Boran et al (2005, MP) 0 0 0 2 0 0 0 0 0 0 2
Boran et al (2005, epoetin) 0 0 0 2 0 0 0 0 0 0 2
Hook et al (2007, morphine sulfate) 0 0 0 0 0 0 0 0 0 0 0
Simpson et al (1991, nifedipine) 0 0 2 2 1 0 0 0 0 1 6
Simpson et al (1991, indomethacin) 0 0 2 2 1 0 0 0 0 1 6
He et al (2017, lithium) 0 1 0 1 0 0 0 0 1 1 4
Almad et al (2011, fenofibrate) 0 1 0 1 0 0 0 0 0 0 2
McTigue et al (2007, pioglitazone) 0 0 0 1 0 0 0 0 0 0 1
Ko et al (2006, minocycline) 0 0 2 0 0 0 0 0 0 0 2
Çelik et al (2015, vitamin d) 0 0 2 2 0 0 0 0 1 1 6
Park et al (2007, pioglitazone) 0 1 2 1 0 0 0 0 0 0 4
Afhami et al (2016, estradiol) 0 0 0 1 0 0 0 0 0 1 2
Gezici et al (2017, methotrexate) 0 0 0 1 0 0 0 0 0 0 1
Narin et al (2017, topiramate) 0 0 0 0 0 0 0 0 0 0 0
Gensel et al (2012, topiramate) 0 0 0 0 0 0 0 0 0 1 1
Yoshizaki et al (2019, heparin) 0 0 0 0 0 0 0 0 0 0 0
Arias (1987, naloxone) 0 1 0 2 0 0 0 0 1 1 5
Arias (1987, dexamethasone) 0 1 0 2 0 0 0 0 1 1 5
Naftchi et al (1991, MPSS + aminocaproic acid) 0 0 2 2 0 0 0 0 2 1 7
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Table 8.7 – continued from previous page
Experiment Species Sample size Sex Age Level of injury Dose Treatment time Route Results Blinding Total bias score

Romero-Ramírez et al (2020, MP) 0 0 0 0 0 0 0 0 1 1 2
Zhang et al (2009, tacrolimus) 0 0 0 2 0 0 0 0 0 1 3
Zhang et al (2014, MP) 0 0 2 0 0 0 0 0 0 0 2
Rabinowitz et al (2008, MP) 0 0 0 1 0 0 0 0 0 1 2
Penas et al (2011, valproic acid) 0 0 0 0 0 0 0 0 1 0 1
Chu et al (2015, valproic acid) 0 0 0 1 0 0 0 0 0 0 1
Lee et al (2012, valproic acid) 0 1 0 1 0 0 0 0 0 0 2
Lu et al (2013, valproic acid) 0 0 0 1 0 0 0 0 0 0 1
Lv et al (2012, valproic acid) 0 1 0 2 0 0 0 0 0 0 3
Lv et al (2011, valproic acid) 0 1 0 2 0 0 0 0 0 0 3
Hao et al (2013, valproic acid) 0 1 0 1 0 0 0 0 0 0 2
Wang et al (2020, valproic acid) 0 0 0 1 0 0 0 0 0 1 2
Li et al (2019, zinc) 0 0 0 1 0 0 0 0 0 1 2
Lin et al (2020, zinc) - mice 0 1 0 0 0 0 2 0 0 0 3
Li et al (2020, zinc) 0 1 0 0 0 0 0 0 0 0 1
Lin et al (2020, zinc) - mice 0 1 0 0 0 0 0 0 0 0 1
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11.5 Chapter 5
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Table 8.8: Serological markers studied and their normal range

Erythrocytes 3.80-5.90 _/pl
Hemoglobin 12.0-18.0 g/dl
Hematocrit 35.0-52.0 %
MCHC 32-36 g/dl
MCV 80-100 fl
Thrombocytes 140-440 tsd/ul
Leucocytes 4.3-10.8 _/nl
Hemoglobin per erythrocyte 27-34 pg
Alkaline phosphatase 35-171 U/l
ASAT 0-35 U/l
ALAT 0-45
Total bilirubin 0.0-1.1 mg/dl
Gamma-GT 0-65 U/l
Lactate dehydrogenase 0-248 U/l
Calcium 2.22-2.66 mmol/l
Creatinine 0.5-1.0 mg/dl
Total proteins 5.70-8.2 g/dl
Blood urea nitrogen 1.70-8.30 mmol/l
Potassium 3.50-5.10 mmol/l
Sodium 136-148 mmol/l
Cholinesterase 5320-12920 U/l
Amylase 0-115 U/l
Lipase 0-80 U/l
Glucose 4.1-5.9 mmol/l
INR 0.8-1.1
Partial thromboplastin time 26-40 s
CRP 0.0-0.5 mg/dl
Quick test 80-127%

Serological marker Normal range

Continued on next page
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Table 8.8: Serological markers studied and their normal range (Continued)
Serological marker Normal range

mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV),
aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), γ-glutamyl trans-
ferase (Gamma-GT), international normalized ratio (INR), C-reactive protein (CRP)
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Table 8.9: Parameter grid of the regression models used in the prediction task

LASSO
alpha np.arange (0.5, 1500, 0.5)

Ridge regression
alpha np.arange (0.5, 1500, 0.5)

RF regressor
n_estimators 10, 25, 50, 100
max_features ’sqrt’, ’log2’, None
max_depth 3, 6, 9
max_leaf_nodes 3, 6, 9

SVM regressor with linear kernel
epsilon np.arange(0, 1.5, 0.1)

GBR
n_estimators 10, 25, 50, 100
learning rate 0.001, 0.01, 0.05
subsample 0.5, 0.7, 0.8
max_depth 3, 5, 7
min_samples_split 8, 10, 15
min_samples_leaf 5, 8, 10

XGBoost
n_estimators 10, 25, 50, 100
max_depth 3, 5, 6
eta 0.001, 0.01, 0.05
subsample 0.3, 0.5, 0.9
colsample_bytree 0.5, 0.9
gamma 0.2, 0.3, 0.4, 0.5

LightGBM
learning rate 0.0.5, 0.1
max_depth 1, 2, 3

Hyperparameter Values

Continued on next page
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Table 8.9: Parameter grid of the regressionmodels used in the prediction task (Continued)

num_leaves 2, 3
metric ’l2’, ’l1’, ’poisson’
min_child_samples 10

LightGBM (stratified parameters)
learning rate 0.0.5, 0.1
max_depth 1, 2
num_leaves 2, 3
metric ’l2’, ’l1’, ’poisson’
min_child_samples 5

Hyperparameter Values

Unless specified the same parameters have been used for both approaches (non stratified
and stratified cohort). Scoring for all GridSearchCV was done with the negative root
mean squared error. least absolute shrinkage and selection operator (LASSO); random
forest (RF); support vector machines (SVM); gradient boosting regressor (GBR); extreme
gradient boosting (XGBoost); light gradient boosting machine (LightGBM)
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Table 8.10: Frequency of the features across all 50 seed iterations. Values can range from
zero, always omitted due to high correlation, to 50, always present across all
seeds.

Erythrocytes 50 50 50 50 50 50
Hemoglobin 0 0 0 0 0 0
Hematocrit 0 0 0 0 0 0
MCHC 50 50 50 50 50 0
MCV 50 50 50 50 50 0
Thrombocytes 50 50 50 50 50 0
Leucocytes 50 50 50 50 50 0
Hemoglobin per erythrocyte 0 0 4 0 50 0
Alkaline phosphatase 50 50 50 50 50 0
ASAT 50 50 50 50 50 0
ALAT 41 40 41 49 50 0
Total bilirubin 50 50 50 50 50 3
Gamma-GT 49 50 50 17 0 0
Lactate dehydrogenase 47 41 50 50 50 0
Calcium 50 50 49 50 50 0
Creatinine 50 50 50 50 50 0
Total proteins 0 1 50 1 0
Blood urea nitrogen 13 19 29 44 50 0
Potassium 50 50 50 50 50 0
Sodium 50 50 50 50 50 0
Cholinesterase 43 33 13 50 0 0
Amylase 50 50 50 50 50 0
Lipase 26 13 50 39 37 0
Glucose 50 50 50 50 50 0
INR 50 50 50 50 50 0

Mean Median MinimumMaximumRange Sampling
frequency

Continued on next page
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Table 8.10: Frequency of the features across all 50 seed iterations. Values can range from
zero, always omitted due to high correlation, to 50, always present across all
seeds. (Continued)

Partial thromboplastin time 50 50 50 50 50 0
CRP 50 50 50 50 50 0
Quick test 0 0 50 50 10 0
Age 50 50 50 50 50 50
Very acute LEMS 50 50 50 50 50 50

Mean Median MinimumMaximumRange Sampling
frequency

mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV),
aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), γ-glutamyl trans-
ferase (Gamma-GT), international normalized ratio (INR), C-reactive protein (CRP), lower
extremity motor score (LEMS)
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Figure 8.5: Lower extremity motor score (LEMS) distribution at the very acute stage. lower
extremity motor score (LEMS)

280 Appendices.



Data science for SCI clinical studies

Table 8.11: Murnau cohorts before and after preprocessing.

Subject characteristics
Total, n 118 136 154

Age in years at injury
Mean±SD 47.83±18.31 47.57±18.27 47.64±18.52

Sex, n (%) 0.1629
Male 96 (81) 112 (82) 126 (82)
Female 22 (19) 24 (18) 28 (18)

LEMS score, mean±SD
Very acute 19.65±20.50 19.67±20.48 17.37±20.25

n = 118 n = 136 n = 154

After 26/52 weeks 29.58±21.60 29.10±21.66 25.69±22.40
n = 118 n = 136 n = 154

AIS grade at very acute stage, n (%)
A 43 (36.4) 48 (35.3) 48 (31.2)
B 13 (11.0) 17 (12.5) 17 (11.0)
C 12 (10.2) 14 (10.3) 14 (9.1)
D 0 (39.8) 54 (39.7) 54 (35.1)
E 3 (0.6) 0 (0) 0 (0)
NA 3 (2.5) 3 (2.2) 21 (13.6)

Murnau
included

LOCF
included

Very acute
LEMS

included

The Murnau included column represents the included patients that meet the prerequis-
ites without imputation. Last observation carried forward (LOCF) included and very
acute LEMS included columns represent patients included after LOCF and very acute
LEMS imputation, respectively. last observation carried forward (LOCF), lower extremity
motor score (LEMS), standard deviation (SD), American spinal injury association (ASIA)
impairment scale (AIS), not available (NA)
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Table 8.12: Description of the different cohorts.

Age in years at injury
Mean±SD 47.11±19.09 47.64±18.52 -0.2594 0.7953

Sex, n (%) 0.1215 0.7274
Male 76 (84) 126 (82) 126 (82)
Female 14 (16) 28 (18) 28 (18)

LEMS score, mean±SD
Very acute 15.37±19.63 17.37±20.25 -0.7407 0.4589
After 26/52 weeks 24.59±22.62 25.69±22.40 -0.3177 0.7507

AIS grade at very acute stage, n (%) 0.9243 0.8196
A 28 (31.1) 48 (31.2)
B 12 (13.3) 17 (11.0)
C 10 (11.1) 14 (9.1)
D 27 (30.0) 54 (35.1)
E 3 (0.6) 0 (0)
NA 13 (14.4) 21 (13.6)

Cohort
n = 90

Cohort
n = 154

Test stat-
istic

p value

standard deviation (SD), lower extremity motor score (LEMS), American spinal injury
association (ASIA) impairment scale (AIS), not available (NA)
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Table 8.13: Mean and standard deviation (SD) of the different preprocessing approaches for non-stratified regression models.

Linear 14.53 ±
3.70

11.58 ±
2.71

11.59 ±
2.64

11.14 ±
2.59

12.64 ±
3.10

11.84 ±
2.63

10.83 ±
1.84

9.18 ±
1.31

9.25 ±
1.31

24.38 ±
4.59

9.29 ±
1.33

LASSO 11.12 ±
2.04

11.38 ±
1.70

11.55 ±
1.75

10.94 ±
1.92

11.75 ±
1.75

11.36 ±
2.00

11.06 ±
1.73

9.39 ±
1.26

9.47 ±
1.25

9.77 ±
1.22

9.48 ±
1.24

Ridge 12.36 ±
3.31

12.19 ±
2.03

12.13 ±
1.93

11.58 ±
2.10

12.94 ±
2.35

12.09 ±
2.27

10.89 ±
1.81

9.22 ±
1.30

9.30 ±
1.30

11.84 ±
1.72

9.33 ±
1.32

RF 10.03 ±
2.01

10.36 ±
1.97

10.13 ±
2.11

9.37 ±
2.18

10.53 ±
1.84

10.64 ±
1.87

9.89 ±
1.92

8.89 ±
1.72

9.01 ±
1.62

9.14 ±
1.59

8.55 ±
1.61

SVM 11.12 ±
2.99

11.12 ±
2.39

10.82 ±
2.18

10.42 ±
2.49

11.43 ±
2.87

11.10 ±
2.56

9.69 ±
2.88

8.11 ±
2.04

8.09 ±
2.04

11.56 ±
1.78

8.15 ±
2.23

XGBoost 10.38 ±
2.26

10.73 ±
2.17

10.38 ±
2.28

9.62 ±
1.18

12.17 ±
2.04

11.86 ±
2.18

11.49 ±
1.92

9.31 ±
1.51

9.44 ±
1.49

9.60 ±
1.35

9.35 ±
1.35

GBR 10.14 ±
2.18

10.38 ±
1.98

9.69 ±
2.12

9.72 ±
2.24

11.33 ±
1.73

11.33 ±
1.75

10.37 ±
1.74

9.07 ±
1.42

9.16 ±
1.41

9.12 ±
1.50

8.95 ±
1.41

MAE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Continued on next page
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Table 8.13: Mean and standard deviation (SD) of the different preprocessing approaches for non-stratified regression models. (Continued)

LightGBM 10.56 ±
2.11

10.67 ±
1.84

10.25 ±
2.11

9.91 ±
2.14

11.01 ±
1.78

10.91 ±
1.87

9.98 ±
1.80

8.88 ±
1.24

8.96 ±
1.24

9.68 ±
1.19

8.83 ± 1.3

RMSE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Linear 20.97 ±
4.17

16.86 ±
3.46

16.70 ±
3.24

15.89 ±
3.14

18.05 ±
3.61

16.90 ±
3.17

14.46 ±
2.91

12.74 ±
2.26

12.82 ±
2.26

32.72 ±
3.99

12.78 ±
2.27

LASSO 14.93 ±
2.92

14.66 ±
2.45

15.03 ±
2.41

14.08 ±
2.65

15.05 ±
2.32

14.81 ±
2.69

14.49 ±
2.69

12.80 ±
2.13

12.86 ±
2.10

13.08 ±
1.99

12.84 ±
2.12

Ridge 17.49 ±
4.12

16.31 ±
2.46

16.11 ±
2.42

14.93 ±
2.67

16.78 ±
2.71

15.95 ±
2.65

14.49 ±
2.86

12.76 ±
2.24

12.85 ±
2.23

15.92 ±
2.04

12.80 ±
2.25

RF 14.38 ±
3.65

14.60 ±
3.54

14.27 ±
3.60

13.63 ±
3.63

14.53 ±
3.35

14.69 ±
3.44

14.37 ±
3.72

12.85 ±
2.79

12.79 ±
2.61

12.98 ±
2.67

12.64 ±
2.67

MAE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Continued on next page
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Table 8.13: Mean and standard deviation (SD) of the different preprocessing approaches for non-stratified regression models. (Continued)

SVM 15.79 ±
3.83

15.90 ±
3.19

15.93 ±
2.92

15.06 ±
3.39

16.07 ±
3.44

15.58 ±
3.21

16.17 ±
4.19

13.73 ±
3.21

13.77 ±
3.20

15.92 ±
2.05

14.35 ±
3.22

XGBoost 14.67 ±
3.58

15.14 ±
3.37

14.51 ±
3.18

13.87 ±
3.28

16.12 ±
3.21

15.96 ±
3.30

15.33 ±
3.04

13.32 ±
2.35

13.26 ±
2.48

13.50 ±
2.26

12.80 ±
2.32

GBR 14.29 ±
3.56

14.54 ±
3.19

13.51 ±
3.39

13.77 ±
3.35

15.15 ±
2.96

15.01 ±
3.00

14.39 ±
3.35

13.80 ±
2.51

12.84 ±
2.48

13.16 ±
2.48

12.75 ±
2.48

LightGBM 14.39 ±
3.32

14.50 ±
3.06

13.78 ±
3.11

13.82 ±
3.34

14.47 ±
3.02

14.46 ±
3.26

13.98 ±
3.49

12.54 ±
2.44

12.56 ±
2.43

13.00 ±
2.24

12.43 ±
2.50

MAE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Highlighted in bold is the best score of the cohort. mean absolute error (MAE), root mean squared error (RMSE), least absolute shrinkage and
selection operator (LASSO), random forest (RF), support vector machines (SVM), extreme gradient boosting (XGBoost), gradient boosting regressor
(GBR), light gradient boosting machine (LightGBM)
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Table 8.14: Mean and standard deviation (SD) of the different preprocessing approaches for stratified regression models.

Linear 11.51 ±
3.00

13.46 ±
3.20

13.07 ±
3.26

12.88 ±
3.34

14.79 ±
2.62

12.70 ±
3.12

9.38 ±
1.89

8.40 ±
1.45

8.49 ±
1.46

18.16 ±
5.25

8.46 ±
1.41

LASSO 9.45 ±
2.11

9.39 ±
1.92

9.75 ±
1.95

8.90 ±
2.13

9.53 ±
2.06

9.80 ±
1.98

9.33 ±
1.91

8.35 ±
1.38

8.36 ±
1.39

8.45 ±
1.34

8.35 ±
1.37

Ridge 10.23 ±
2.37

9.77 ±
1.91

9.98 ±
1.96

9.72 ±
2.05

9.77 ±
1.98

9.96 ±
2.04

9.35 ±
1.91

8.40 ±
1.39

8.43 ±
1.40

8.94 ±
1.33

8.38 ±
1.38

RF 9.97 ±
2.02

10.09 ±
2.12

9.97 ±
2.16

9.42 ±
2.17

10.71 ±
2.03

10.34 ±
1.76

9.43 ±
2.07

8.54 ±
1.63

8.55 ±
1.42

8.58 ±
1.48

8.31 ±
1.64

SVM 8.97 ±
2.76

8.91 ±
2.73

9.10 ±
2.61

8.82 ±
2.77

9.18 ±
2.69

8.69 ±
2.70

7.41 ±
3.04

6.59 ±
2.14

6.62 ±
2.13

9.63 ±
1.76

6.59 ±
2.14

XGBoost 8.97 ±
2.57

9.06 ±
2.59

8.77 ±
2.78

8.52 ±
2.71

9.30 ±
2.82

9.27 ±
2.82

8.30 ±
2.67

7.88 ±
1.75

7.67 ±
1.78

7.67 ±
1.84

7.73 ±
1.67

GBR 9.64 ±
2.08

9.60 ±
2.00

9.53 ±
2.02

9.39 ±
2.13

9.93 ±
1.98

10.01 ±
1.96

9.59 ±
1.86

8.42 ±
1.41

8.45 ±
1.38

8.45 ±
1.36

8.31 ±
1.37

MAE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Continued on next page

286
Appendices.



DatascienceforSCIclinicalstudies

Table 8.14: Mean and standard deviation (SD) of the different preprocessing approaches for stratified regression models. (Continued)

LightGBM 9.89 ±
2.15

10.21 ±
2.00

9.62 ±
2.24

8.94 ±
2.41

10.27 ±
2.17

10.10 ±
2.17

9.57 ±
1.92

8.23 ±
1.38

8.26 ±
1.39

8.69 ±
1.47

8.11 ±
1.40

RMSE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Linear 17.44 ±
3.67

20.35 ±
3.44

19.48 ±
3.73

18.85 ±
3.47

21.72 ±
3.79

19.11 ±
3.71

13.74 ±
3.59

12.33 ±
2.69

12.47 ±
2.70

27.05 ±
5.21

12.24 ±
2.64

LASSO 13.99 ±
3.71

13.51 ±
3.63

14.17 ±
3.56

13.12 ±
3.70

13.63 ±
3.73

13.95 ±
3.64

13.55 ±
3.62

12.13 ±
2.61

12.13 ±
2.61

12.18 ±
2.62

12.09 ±
2.60

Ridge 14.78 ±
3.77

13.76 ±
3.60

14.25 ±
3.36

13.82 ±
3.55

13.73 ±
3.63

14.08 ±
3.56

13.57 ±
3.61

12.18 ±
2.61

12.19 ±
2.61

12.55 ±
2.57

12.13 ±
2.60

RF 14.33 ±
3.57

14.45 ±
3.57

14.13 ±
3.59

13.83 ±
3.64

14.77 ±
3.48

14.44 ±
3.27

14.38 ±
3.76

12.81 ±
2.87

12.66 ±
2.66

12.63 ±
2.70

12.84 ±
2.87

MAE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Continued on next page
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Table 8.14: Mean and standard deviation (SD) of the different preprocessing approaches for stratified regression models. (Continued)

SVM 14.38 ±
4.31

15.24 ±
4.42

15.54 ±
4.09

14.66 ±
3.93

15.36 ±
4.29

14.99 ±
4.31

14.16 ±
4.94

12.72 ±
3.52

12.74 ±
3.50

14.03 ±
2.42

12.72 ±
3.52

XGBoost 14.32 ±
4.43

14.49 ±
4.51

14.04 ±
4.53

13.64 ±
4.33

14.77 ±
4.54

14.64 ±
4.51

13.94 ±
4.71

12.75 ±
3.13

12.66 ±
3.18

12.59 ±
3.19

12.44 ±
3.02

GBR 13.92 ±
3.60

13.84 ±
3.64

13.66 ±
3.56

13.58 ±
3.58

14.20 ±
3.56

14.08 ±
3.60

13.87 ±
3.60

12.31 ±
2.60

12.30 ±
2.61

12.33 ±
2.65

12.32 ±
2.57

LightGBM 14.65 ±
3.35

15.23 ±
3.28

14.17 ±
3.44

13.32 ±
3.80

14.87 ±
3.49

14.64 ±
3.70

14.21 ±
3.65

12.37 ±
2.68

12.39 ±
2.70

13.09 ±
2.60

12.16 ±
2.67

MAE All Mean Median Minimum Maximum Range Baseline
n = 90

Sampling
frequency

Sampling
fre-
quency +
noise

Encoded Baseline
n = 154

Highlighted in bold is the best score of the cohort. mean absolute error (MAE), root mean squared error (RMSE), least absolute shrinkage and
selection operator (LASSO), random forest (RF), support vector machines (SVM), extreme gradient boosting (XGBoost), gradient boosting regressor
(GBR), light gradient boosting machine (LightGBM)
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Table 8.15: Pairwise comparison of the non stratified vs stratified model based on very acute lower extremity motor score (LEMS)

All features
LR 7.7657 4.37E-10 6.9807 7.11E-09
LASSO regression 3.4875 1.04E-03 8.3738 5.15E-11
Ridge regression 6.2187 1.08E-07 6.1836 1.22E-07
RF regressor 0.3343 7.40E-01 0.4458 6.58E-01
SVM regressor 5.2293 3.51E-06 8.6326 2.09E-11
XGBoost 1.2082 2.33E-01 6.2638 9.17E-08
GBR 2.1423 3.72E-02 3.4218 1.26E-03
LightGBM -1.7027 9.50E-02 5.5915 9.90E-07

Mean cohort
LR -9.4788 1.15E-12 -6.0014 2.33E-07
LASSO regression 4.5166 3.97E-05 11.8027 6.21E-16
Ridge regression 6.7795 1.46E-08 9.6696 6.07E-13
RF regressor 0.9083 3.68E-01 2.0552 4.52E-02
SVM regressor 2.0632 4.44E-02 9.3646 1.70E-12
XGBoost 1.9575 5.60E-02 7.8661 3.06E-10

Model RMSE t value RMSE p value MAE t value MAE p value

Continued on next page
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Table 8.15: Pairwise comparison of the non stratified vs stratified model based on very acute lower extremity motor score (LEMS) (Continued)

GBR 4.1944 1.14E-04 5.8198 4.43E-07
LightGBM -4.855 1.27E-05 3.646 6.44E-04

Median cohort
LR -7.7014 5.48E-10 -5.5733 1.06E-06
LASSO regression 3.3568 1.53E-03 10.2929 7.65E-14
Ridge regression 6.6432 2.37E-08 10.6194 2.64E-14
RF regressor 0.8914 3.77E-01 1.1779 2.45E-01
SVM regressor 1.6333 1.09E-01 9.1117 4.02E-12
XGBoost 1.3465 1.84E-01 6.2279 1.04E-07
GBR -1.0527 2.98E-01 1.283 2.06E-01
LightGBM -2.804 7.21E-03 4.1131 1.49E-04

Minimum cohort
LR -7.0735 5.10E-09 -4.5311 3.78E-05
LASSO regression 3.753 4.63E-04 10.8661 1.19E-14
Ridge regression 3.7399 4.83E-04 7.446 1.36E-09
RF regressor -1.0306 3.08E-01 -0.3602 7.20E-01

Model RMSE t value RMSE p value MAE t value MAE p value

Continued on next page
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Table 8.15: Pairwise comparison of the non stratified vs stratified model based on very acute lower extremity motor score (LEMS) (Continued)

SVM regressor 1.3524 1.82E-01 5.8821 3.55E-07
XGBoost 0.8234 4.14E-01 5.6448 8.21E-07
GBR 1.1821 2.43E-01 2.4351 1.86E-02
LightGBM 2.5622 1.35E-02 5.3808 2.07E-06

Maximum cohort
LR -8.0921 1.38E-10 -4.8532 1.28E-05
LASSO regression 4.8256 1.40E-05 11.0114 7.46E-15
Ridge regression 7.0753 5.07E-09 10.3547 6.25E-14
RF regressor -1.786 8.03E-02 -1.3263 1.91E-01
SVM regressor 1.8293 7.35E-02 7.9337 2.41E-10
XGBoost 4.7509 1.81E-05 11.8678 5.08E-16
GBR 4.9263 9.96E-06 8.5262 3.03E-11
LightGBM -2.7547 8.22E-03 4.6006 3.00E-05

Range cohort
LR -5.148 4.65E-06 -2.3987 2.03E-02
LASSO regression 3.4933 1.02E-03 7.5393 9.74E-10

Model RMSE t value RMSE p value MAE t value MAE p value

Continued on next page
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Table 8.15: Pairwise comparison of the non stratified vs stratified model based on very acute lower extremity motor score (LEMS) (Continued)

Ridge regression 4.9236 1.00E-05 8.3309 5.99E-11
RF regressor 1.6123 1.13E-01 2.4869 1.63E-02
SVM regressor 1.6824 9.88E-02 9.343 1.83E-12
XGBoost 4.3087 7.88E-05 9.8684 3.12E-13
GBR 4.955 9.03E-06 8.2515 7.90E-11
LightGBM -0.9095 3.68E-01 4.7695 1.70E-05

Sampling frequency cohort
LR 3.5346 9.02E-04 9.7821 4.16E-13
LASSO regression 5.0276 7.04E-06 10.6571 2.33E-14
Ridge regression 4.6009 2.99E-05 8.7564 1.36E-11
RF regressor 0.3518 7.26E-01 2.9259 5.19E-03
SVM regressor 4.3352 7.22E-05 8.8164 1.11E-11
XGBoost 3.0653 3.53E-03 7.8507 3.23E-10
GBR 5.8472 4.02E-07 8.095 1.37E-10
LightGBM 2.2234 3.08E-02 8.2631 7.59E-11

Cohort encoded based on normal range

Model RMSE t value RMSE p value MAE t value MAE p value

Continued on next page

292
Appendices.



DatascienceforSCIclinicalstudies

Table 8.15: Pairwise comparison of the non stratified vs stratified model based on very acute lower extremity motor score (LEMS) (Continued)

LR 6.9072 9.24E-09 6.8781 1.02E-08
LASSO regression 6.0577 1.91E-07 12.1718 2.00E-16
Ridge regression 10.3337 6.70E-14 12.0916 2.55E-16
RF regressor 2.9279 5.16E-03 6.6165 2.61E-08
SVM regressor 6.9328 8.43E-09 9.0193 5.52E-12
XGBoost 4.2239 1.04E-04 10.9961 7.84E-15
GBR 6.9537 7.82E-09 5.8894 3.46E-07
LightGBM -0.5922 5.56E-01 9.8503 3.31E-13

Baseline n = 90

LR 4.6982 2.16E-05 13.2762 7.49E-18
LASSO regression 5.2092 3.76E-06 13.9141 1.21E-18
Ridge regression 5.5963 9.74E-07 13.2688 7.66E-18
RF regressor -0.1172 9.07E-01 4.3117 7.80E-05
SVM regressor 8.9132 7.94E-12 12.6071 5.38E-17
XGBoost 4.0609 1.76E-04 12.6748 4.40E-17
GBR 5.513 1.30E-06 7.8678 3.04E-10

Model RMSE t value RMSE p value MAE t value MAE p value

Continued on next page
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Table 8.15: Pairwise comparison of the non stratified vs stratified model based on very acute lower extremity motor score (LEMS) (Continued)

LightGBM -2.7204 9.00E-03 4.328 7.40E-05
Baseline n = 154

LR 4.6437 2.59E-05 9.7457 4.70E-13
LASSO regression 5.5601 1.11E-06 11.439 1.93E-15
Ridge regression 5.297 2.77E-06 9.8255 3.60E-13
RF regressor -1.5084 1.38E-01 2.1355 3.77E-02
SVM regressor 6.9439 8.10E-09 8.7088 1.61E-11
XGBoost 2.05 4.57E-02 11.573 1.27E-15
GBR 4.2551 9.39E-05 8.41 4.54E-11
LightGBM 3.7132 5.24E-04 11.4817 1.69E-15

Model RMSE t value RMSE p value MAE t value MAE p value

For each cohort the non stratified model was compared to the stratified model with a dependent t test, with both root mean squared error (RMSE)
and mean absolute error (MAE) scores. Significant p-values, after Bonferroni correction, are indicated in bold.
linear regression (LR), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machines (SVM), extreme
gradient boosting (XGBoost), gradient boosting regressor (GBR), light gradient boosting machine (LightGBM)
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11.6 Chapter 6
Supplementary material was made publicly available with the corresponding manuscript.

11.7 Chapter 7

Table 8.16: Central cord syndrome (CCS) of the phenomenal and comparator groups
defined in the Sygen and European multicenter study on human spinal cord
injury (EMSCI) cohorts according to the clinical definition

CCS-1 2 (33) 0 (0) 2 (25) 0 (0)
CCS-5 1 (16.7) 0 (0) 1 (12.5) 0 (0)
CCS-10 0 (0) 0 (0) 0 (0) 0 (0)
CCS-19 0 (0) 0 (0) 0 (0) 0 (0)
NLI-based CCS 3 (50) 1 (0.3) 3 (37.5) 0 (0)

Sygen cohort EMSCI cohort
PR group Comparator

group
PR group Comparator

group

central cord syndrome (CCS), neurological level of injury (NLI)

Table 8.17: Antibiotics prescribed and their proportions in the phenomenal
recovery (PR) and comparator groups from the clinical definition

acetic acid 0.17 0.003
amoxicillin 0.17 0.06
amoxicillin and clavulanate potassium 0.17 0.04
ampicillin 0.17 0.10
bacitracin 0.33 0.14
cefazolin 0.50 0.58
cefotaxime 0.17 0.07
ceftazidime 0.33 0.29

PR group Comparator group

Continued on next page
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Table 8.17: Antibiotics prescribed and their proportions in the phenomenal
recovery (PR) and comparator groups from the clinical definition
(Continued)

ceftriaxone 0.67 0.17
ciprofloxacin 0.17 0.48
clindamycin 0.33 0.12
gentamicin 0.83 0.46
metronidazole 0.33 0.17
nafcillin 0.17 0.08
ofloxacin 0.33 0.07
piperacillin 0.17 0.14
ticarcillin 0.17 0.14
trimethoprim 0.50 0.43
vancomycin 1.00 0.44

PR group Comparator group

phenomenal recovery (PR)

Table 8.18: Antibiotics prescribed and their proportions in the phenomenal recovery
(PR) and comparator groups from the statistical definition

amikacin 0.04 0.03 1
amoxicillin 0.04 0.05 1
amoxicillin and clavulanate potassium 0.04 0.05 1
ampicillin 0.11 0.10 1
ampicillin and sulbactam 0.11 0.05 0.38
bacitracin 0.18 0.08 0.16
cefazolin 0.54 0.45 0.41
cefotaxime 0.18 0.09 0.18
cefoxitin 0.04 0.02 0.49

PR group Comparator group p-value

Continued on next page
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Table 8.18: Antibiotics prescribed and their proportions in the phenomenal recovery
(PR) and comparator groups from the statistical definition (Continued)

ceftazidime 0.11 0.19 0.41
ceftriaxone 0.32 0.07 < 0.001

cefuroxime 0.04 0.05 1
ciprofloxacin 0.14 0.25 0.32
clindamycin 0.11 0.07 0.42
gentamicin 0.43 0.38 0.66
imipenem 0.11 0.01 0.03
metronidazole 0.04 0.07 0.69
nafcillin 0.07 0.05 0.66
nitrofurantoin 0.04 0.05 1
norfloxacin 0.04 0.03 1
ofloxacin 0.03 0.03 1
penicillin 0.04 0.05 1
piperacillin 0.07 0.09 1
ticarcillin 0.07 0.08 1
tobramycin 0.11 0.08 0.71
trimethoprim 0.29 0.37 0.51
vancomycin 0.36 0.35 1

PR group Comparator group p-value

phenomenal recovery (PR), Note that p-values reported are not Bonferroni-corrected,
in bold are the p-values significant after multiple testing correction.

12 Use of artifical intelligence (AI) tools

DeepL Translation of text Résumé From English to
French

AI-based tool Use case Scope Remarks

Continued on next page
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Zusammenfassung From English to
German

ChatGPT 3.0 Refine sentences and
wording

Section 4.2

Brainstorming ideas Thesis title

AI-based tool Use case Scope Remarks

artifical intelligence (AI)

13 Curriculum vitae
Date of Birth 12th January 1999
Nationality French
Email blucie@ethz.ch

Google Scholar Lucie Bourguignon
GitHub lbourguignon
ORCID 0000-0001-8049-6461

Education
2020-now PhD candidate in Biomedical Data Science - ETH Zürich, Switzerland

Supervised by Prof. Dr. Catherine Jutzeler
Topic: Harnessing the potential of data science to enhance clinical trials
for spinal cord injury

2018-2020 MSc in Computational Biology and Bioinformatics - ETH Zürich, Switzerland
Overall Grade Point Average : 5.59/6

2016-now MD-PhD program - INSERM school, France
Rank : 7/70

2015-2018 BSc in Human Medicine - Université de Bordeaux, France
First Year Rank : 125/1854

Research Experience
Feb 2023 - Research exchange, supervised by Prof. Dr. John Kramer
Jul 2023 ICORD, International Collaboration on Repair Discoveries

UBC Faculty of Medicine and VGH Research Institute, British Columbia,
Vancouver, Canada
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Topic: The concept of positive deviance applied to spinal cord injury recovery:
an exploratory analysis

Jun 2020 - PhD project, supervised by Prof. Dr. Catherine Jutzeler
now BMDS, Biomedical Data Science

Department of Health Sciences & Technologies, ETH Zürich, Zürich, Switzerland
Topic: Harnessing the potential of data science to enhance clinical trials
for spinal cord injury

Nov 2019 - Master’s thesis, supervised by Dr. Catherine Jutzeler & Prof. Dr. Karsten Borgwardt
Jun 2020 MLCB, Machine Learning and Computational Biology

Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
Topic: Mortality prediction using self-reported health records and large scale
genomic data

Oct 2019 - Semester research project, supervised by Dr. Catherine Jutzeler
Nov 2019 MLCB, Machine Learning and Computational Biology

Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
Topic: Study of blood markers in spinal cord injuries

Jun 2019 - Semester research project, supervised by Prof. Dr. Sebastian Bonhoeffer
Jul 2019 Theoretical Biology

Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
Topic: HIV long-term evolution analysis

Jun 2018 - Summer research project, supervised by Dr. Olivier Tenaillon
Aug 2018 QEM, Quantitative Evolutionary Microbiology

Infection, antimicrobials, modelling, evolution institute, INSERM UMR 1137, Paris, France
Topic: DNA sequencing of E. coli, coalescent simulations

Jun 2017 - Summer research project, supervised by Dr. Olivier Saut
Aug 2017 MONC, Mathematical Modeling Applied to Oncology

Mathematical Institute of Bordeaux, INRIA South-West, Bordeaux, France
Topic: Prediction of the evolution of kidney tumors based on MRI images

Presentation & invited lectures
May 2024 Poster presentation - 2024 ASIA Annual Scientific Meeting

The concept of positive deviance applied to spinal cord injury recovery -
an analysis of medications received by patients exhibiting a phenomenal recovery

Dec 2023 Oral presentation - 2023 French MD-PhD scientific days
Data-driven approaches to enhance drug discovery in spinal cord injuries
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Oct 2023 Poster presentation - 2023 ISCoS Annual Scientific Meeting
The concept of positive deviance applied to spinal cord injury recovery -
an analysis of patients exhibiting a “phenomenal recovery”

Oct 2023 Poster presentation - 2023 ISCoS Annual Scientific Meeting
Effects of commonly administered drugs on spinal cord injury - A systematic review

Jul 2023 Invited lecture - 2023 UBC Vancouver Summer Program Pharmacology course
Introduction to the scientific method

Mar 2023 Poster presentation - 2023 ICORD annual research meeting
Analysis of phenomenal recovery after spinal cord injury -
a data-driven approach to enhance recovery

Dec 2022 Oral presentation - 2022 French MD-PhD scientific days
Data-driven approaches to inform drug repurposing for spinal cord injury

Oct 2022 Oral presentation - 2022 Swiss MD-PhD program retreat
When clinical data goes missing: challenges and impact of data imputation in the field of
spinal cord injury

Sept 2022 Poster presentation - 2022 ISCoS Annual Scientific Meeting
Do commonly administered drugs inadvertently modify the progression of spinal cord injury?

Sept 2022 Oral presentation - 2022 ISCoS Annual Scientific Meeting
Studying missingness in spinal cord injury data: Challenges and impact of data imputation

June 2022 Oral presentation - 2022 Swiss MD-PhD conference
Studying the polypharmacy administered following acute spinal cord injury

May 2022 Oral presentation - 2022 ASIA Annual Scientific Meeting
What the literature tells us about drugs used in acute care following spinal cord injury

Dec 2021 Oral presentation - 2021 ISCoS Annual Scientific Meeting
Trauma-induced perturbations of serological markers
Travel grant: SCI Research Collaboration Grant from the Spinal Research Institute

Oct 2021 Oral presentation - 2021 French MD-PhD scientific days
Informative missingness - The example of data from spinal cord injury clinical research

Sept 2020 Oral presentation - 2020 French MD-PhD scientific days
Can your genome say for how long you will survive?
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Honors and awards
Mar 2023 Third prize PhD poster award - CAD$ 250

Annual research meeting of the ICORD Institute
Feb 2023 International exchange award - CAD$ 7’500

International exchange award from the ICORD Institute
Feb 2023 SNF mobility grant - CHF 16’000

Mobility grant awarded for a 6-months research stay in Vancouver, BC, Canada
Under the supervision of Prof. Dr. John Kramer

Sept 2021 Travel grant - £220
SCI Research Collaboration Grant from the Spinal Research Institute

Jan 2020 Master’s thesis mobility grant - 1’500=C
Ecole de l’INSERM Liliane Bettencourt

Outreach activities
Participant in Business Concept course from Innosuisse:
I was selected to participate in this 12-week acceleration program for early-stage startup ideas.
This course aims to teach how to turn an idea into a promising startup, train entrepreneurial
thinking and acting and prepare participants theoretically as well as practically for the
foundation and management of their own company.
Lead organiser of the 2023 annual French MD-PhD thematic conference:
I proposed the topic Data analysis and artificial intelligence approaches for biomedical
research, which was accepted by the board of the INSERM school French MD-PhD program.
Alongside with a fellow MD-PhD student, we are in charge of building the program and
contacting both national and international speakers. Additionally, we will give a 90-minute
presentation to the MD-PhD audience, introducing essential concepts in data analysis,
statistics and machine learning applied to medical data.
Active member of the Swiss MD-PhD association (SMPA):
Since June 2022, I am in charge of communication of the association on diverse social media
platforms (e.g. Twitter, LinkedIn), participate to the redaction of the trimestrial newsletter
sent to more than 250 members, represent and promote the association to medical students,
and co-organise local events in Zurich. In June 2023, my role was made official and I took the
position of Head of Social Media as part of the board of the SMPA.
Scientifica 2023:
Co-organiser of the BMDS lab booth on Understanding spinal cord injuries better thanks to AI
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Participation in the Kangaroo goes Science project:
The Kangaroo goes science project aims at promoting science and research towards
seventh grade female students. My role was to prepare a video presenting my daily life as
a female researcher at ETH. You can find the video here.
Scientifica 2021 :
The event, co-organised by ETH Zurich and the University of Zurich and ETH Zurich,
aims to bring scientific research and knowledge into the public domain. Every second year,
researchers and scientists from both institutions are invited to present their work around
a specific topic. In its last edition focusing on "Synthetic naturally", I was involved in the
development of a web-based application illustrating the use of machine learning and
growing medical data to inform clinical decision. Through simulated examples, we were able
to introduce to a broader audience our research for personalised and precision medicine.

Service to the community
Reviewer for scientific journals :

Web of Science ResearcherID ADP-6132-2022
Teaching assistant:

376-1723-00L Big Data Analysis in Biomedical Research
376-1983-00L Foundations of Data Science

Supervision of junior researchers
Garance Jaques : Master student in Computational Biology and Bioinformatics

Studying missingness in serological markers in relationship to recovery after spinal cord injury
Eljas Röllin : Master student in Computational Biology and Bioinformatics

Characterising the importance of genetic relatedness in phenotype prediction
Richard Affolter : Master student in Computational Biology and Bioinformatics

Integrating genetic and environmental data into phenotype prediction
Ufuk Ilgin : Master student in Molecular Health Sciences

Studying missing data and imputation methods in medical data
Mariia Kuleba : Research assistant in the Biomedical Data Science lab

Impact of the COVID-related restrictions on the physical activities of patients with neurological
conditions

Jaimie Lee & Ryan Loke : Bachelor and Master students in Pharmacological sciences
The interactive manuscript: from tabular to interactive result presentation and data visualization

Jan Matthias : Master student in Molecular Health Sciences
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Machine learning-based recovery prediction in spinal cord injury
Maya Louage : Master student in Computational Biology and Bioinformatics

Studying temporal variations in recovery patterns following spinal cord injury

Skills & Interests
Programming Languages : R (intermediate), Python (intermediate), C++ (beginner)
Languages : French (native), English (fluent), German (B2), Spanish (A2)
Sports : latin dances, running, climbing
Activities : reading, piano, cooking & baking
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