mzuriCh ETH Library

Addressing the Nested Data
Processing Gap: JSONiqg Queries
on Snowflake through Snowpark

Conference Paper

Author(s):

Graur, Dan; Réthlisberger, Remo; Jenny, Adrian; Fourny, Ghislain (:); Drozdowski, Filip; Konigsmark, Choden; Miller, Ingo
Alonso, Gustavo

Publication date:
2024

Permanent link:
https://doi.org/10.3929/ethz-b-000674963

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICDE60146.2024.00395

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://orcid.org/0000-0001-8740-8866
https://orcid.org/0000-0001-8818-8324
https://orcid.org/0000-0002-4396-6695
https://doi.org/10.3929/ethz-b-000674963
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICDE60146.2024.00395
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use
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Abstract—Nested data is common in many use cases but query-
ing it is still not well supported. Options available today include
using: (1) SQL extensions, which are often unintuitive and error-
prone; (2) user-defined functions, which limit portability and
reusability, and often reduce performance; or (3) domain-specific
query languages (DSQL), which often have limited scalability and
performance. In this paper, we address the shortcomings of the
latter approach by translating a language specifically designed for
nested data, JSONiq, to a highly efficient, scalable, and feature-
rich RDBMS, the Snowflake Database. For this purpose, we
use the Snowpark API, a data-frame-based client library for
writing applications on Snowflake, which allows us to translate
each JSONiq query into a single native Snowflake SQL query.
In contrast to previous approaches, this does not introduce any
interpretation overhead or optimization barriers that may limit
efficient execution in the target system. We evaluate the resulting
system on an established benchmark for large-scale nested data
from the high-energy physics (HEP) domain on up to 1 TiB as
well as the SSB benchmark from the relational domain. OQur
approach is on par or better than handwritten SQL baselines
while allowing for significantly more readable query formulations
and typically outperforms the state-of-the-art systems specialized
for nested data by an order of magnitude.

Index Terms—databases, query languages, nested data

I. INTRODUCTION

Nested data has grown in volume due to the ubiquitous
nature of the internet, the digitization of businesses, and
the ever-increasing diversity of data sources. Processing this
type of data constitutes an important challenge for businesses
and consequently represents a profitable market for database
vendors. To gain more market share, vendors are in con-
tinuous competition with each other in adding new features
that provide better support for storing and processing such
data [[1]-[6]. However, solutions for analyzing nested data
are still sub-optimal. Practitioners essentially have the choice
between (1) SQL with extensions, (2) SQL with user-defined
functions (UDFs), or (3) domain-specific languages, all of
which have significant downsides: While there is support for
nested data in the SQL standard (via the ARRAY and ROW
data types and related functions), a recent study [[7] shows
that only very few systems implement enough of the standard
for even moderately complex queries because, among other
limitations, they lack support for the most basic functionality
like unnesting structures, defining custom structured types, or

Adrian Jenny
ETH Ziirich

Ingo Miiller
ETH Ziirich

Ghislain Fourny
ETH Ziirich

Filip Drozdowski
Snowflake

Gustavo Alonso
ETH Ziirich

supporting nested queries. The systems that do support this
part of the standard are most often not fully compliant or
otherwise cumbersome to use. User-defined functions (UDFs)
may allow users to express more complex logic on nested data
but they are non-portable, usually sacrifice performance, and
frequently disallow complex return types such as tables. In
contrast, domain-specific query languages (DSQLs) are more
expressive and provide a more readable interface; however,
the performance of existing systems is one or more orders of
magnitude worse than that of state-of-the-art RDBMSs [7].

In this paper, we address this gap in the processing of nested
data by making the execution of DSQLs efficient and scalable.
Concretely, we translate JSONiq [8]-[10]], a language designed
for semi-structured data with excellent support for nested data,
to the SQL dialect of Snowflake [[11], an efficient and scalable
cloud-native RDBMS. This combines the best of two worlds:
a natural, concise way for specifying queries on nested data
and the benefits of a best-in-class RDBMS.

Translating a DSQL such as JSONiq to Snowflake SQL is
a complex task. The key challenge is mapping each construct
of JSONiq to one or several constructs of the target language
(SQL) with identical semantics. While many constructs have
a direct equivalent to Snowflake SQL, we show that a few
require the careful combination of several target constructs
that would be cumbersome and impractical to write manually.
Unlike previous work [[12]], which falls back to imperative
logic using UDFs or local single-node execution, we can
translate any arbitrary JSONiq query in its entirety to a
single SQL query that expresses its full semantics. This gives
the SQL optimizer end-to-end visibility into the query and
eliminates the overhead for language switching, data copying,
intermediate result materialization, and UDF interpretation,
thus improving performance substantially.

We exploit several other features of Snowflake. First, we use
Snowpark [13]], a data-frame-based API that makes assembling
SQL queries programmatically safe and convenient. Second,
we expose Snowflake’s support for nested data formats (JSON,
XML, Parquet, etc.) to allow for in-situ processing without
manual schema definition or data loading, as well as process-
ing of existing relational tables (with or without nested data).
In addition to Snowflake’s performance, we thus also benefit
from its feature-richness and ecosystem.



"EVENT": 263142897,
"HLT": {"IsoMu24": false, [...[},
"ELECTRON": [{"charge": -1, ...}, [-..I,
"JET": [{"btag": 0.99983340, [...}, [..]I,
"MUON": [{"pt": 12.777096, [...J}, [..]I,

}

(a) Shortened element example.

{
"EVENT": "long",
"HLT": {"IsoMu24": "boolean", [:]},
"ELECTRON": [{"charge": "integer", [...]}, [..]I,
"JET": [{"btag": "double", [...J}, [..]I,
"MUON": [{"pt": "double", [...J}, [..]I,

(b) Shortened JSound schema.

Fig. 1: Schema and element example from the ADL dataset.

We evaluate our work on two established benchmarks: (1)
the ADL benchmark [14], which stems from the high-energy
physics (HEP) domain and consists of eight complex queries
on a large-scale dataset that is naturally nested and (2) the Star
Schema Benchmark (SSB) from the relational domain [15]].
We show that our work can generate automatically translated
queries with on-par performance to handwritten SQL queries
while starting from queries that are significantly more concise
and readable. Compared with other state-of-the-art systems
with DSQLs for nested data, our approach is one to two orders
of magnitude faster, thus greatly narrowing the nested data
processing gap. Our work also contributes to the long-standing
question of whether relational databases can efficiently store
nested data and query it using DSQLs [16], [17]. This paper
highlights how flexible cloud-native databases have become
and how they can be further used to tackle similar challenges.

II. BACKGROUND
A. Nested Data

Nested data, also known as homogeneous semi-structured
data is a subclass of semi-structured data [18]], [19]. In
relational terms, nested data is a class of unnormalized or
non-first normal form (NF?) data. It is defined by a fixed
tree-like structure, from which a schema can be derived.
Figure [Ta] shows a shortened version of a nested element from
the IRIS ADL dataset and Figure [Tb] shows the shortened
JSound [20] schema of the dataset. In contrast, heterogeneous
semi-structured data has a highly flexible structure (e.g.,
elements of different types and cardinality at the same paths).
We focus on nested data. Still, we believe this approach is
generalizable to heterogeneous semi-structured data as well,
given Snowflake’s out-of-the-box support for such data types.

Our work differs from related research that has focused on
the XML data format and its associated query languages (e.g.
XPath and XQuery), as XML is a document type with strong
semantics and advanced features (e.g. ability to mix text and
node elements, ordering guarantees, node attributes, various
types of traversals, etc.). XML-related work has sought to
abide by these semantics, tightly binding contributions to the

format itself. By only focusing on the nestedness of data, we
are not bound to any specific data format or format-specific se-
mantics. As we show with this work, this enables much higher
scalability and performance than document-centric querying.
Furthermore, our work applies to any nested data format (e.g.,
XML serialization of records, JSON, Parquet, etc.)—and we
only use JSON in the examples of this paper because it is
widespread and human-readable.

B. The Snowflake VARIANT Type and Physical Layout

The VARIANT data type offers a set of features for ef-
ficiently storing and processing nested data at scale without
requiring an explicit schema [11], [21]], [22]. Nested data in a
VARIANT column is transparently columnarized: elements at
each unique path are physically stored in their own column and
are transparently cast to their lowest common type to avoid
runtime casting overheads. When no common type exists,
fast runtime casting is used [11]. Snowflake infers the nested
objects’ schema and exploits it during query runtime to cor-
rectly address columns and rebuild objects. These features also
ensure that large or deeply nested objects are not penalized, as
the engine ultimately deals with flattened, columnarized data.

Data in Snowflake is physically stored in horizontal table
shards called micro-partitions. Each shard contains 50 MB to
500 MB of originally uncompressed row data. Within micro-
partitions, data is stored compressed in a columnar fashion al-
lowing for efficient granular scans. To enable scalability and to
avoid maintenance overheads, Snowflake does not use indexes.
Instead, it stores schema and micro-partition level statistics
and metadata [21]. Schema-level statistics can be used to
point to micro-partitions that contain specific values. Micro-
partition-level metadata and statistics include zone maps and
the unique value count for a micro-partition-level column. This
information is used by the optimizer and runtime to effectively
find and prune micro-partitions and columns.

Since  VARIANT data is stored as many columns and
reuses Snowflake’s micro-partition logic and infrastructure,
the optimizer and runtime can leverage nested data just like
relational data and generally does not need to be aware of
fine-grained information that is specific to semi-structured
data. Some metadata can be used during query planning and
execution, such as the objects’ schema, types, and nestedness.
The practitioner is allowed to stage nested data however they
prefer: single or multiple VARIANT columns within one or

more tables (§II-C).
C. The IRIS HEP ADL Benchmark

IRIS HEP ADL is a benchmark originating from the High-
Energy Physics (HEP) domain [7]], [14]. This benchmark is an
excellent fit for the problem at hand: it consists of naturally
nested, fully homogeneous data, its queries involve deeply
nested logic, and performance and scalability are fundamental.
Furthermore, it has been implemented across 13 systems, from
BigQuery [23|] to RDataFrames [24] We thus use it as a
running example throughout the document.

'ADL benchmark: https://github.com/iris-hep/adl-benchmarks-index


https://github.com/iris-hep/adl-benchmarks-index

DataFrame df = session.table("orders");

Column lower = Functions.lit (90000);

Column upper = Functions.lit (120000);

Column totalPrice = Functions.col ("o_totalprice");

Column clerks = Functions.col ("o_clerk");

df .where (totalPrice.between (lower, upper))
.select (Functions.count_distinct (clerks))
.collect ();

® 9 m AW D =

(a) The query written in Snowpark’s Java APL.

1 SELECT count (DISTINCT "O_CLERK")

2 FROM (

3 SELECT «

4 FROM (SELECT x FROM (orders))

5 WHERE (

6 ("O_TOTALPRICE" >= 90000 :: int)

7 AND ("O_TOTALPRICE" <= 120000 :: int)))

(b) The generated SQL code.
Fig. 2: Snowpark Java example on the TPC-H dataset.

ADL features eight complex queries and, at Scale Factor 1,
uses a dataset of 17 GiB containing roughly 54 million rows
(i.e., events), each consisting of event metadata and the high-
energy particle properties observed during the event. FigureTa]
shows a simplified event sampleﬂ The queries and data stem
from the 2012 Compact Muon Solenoid experiment at the
Large Hadron Collider, which led to the discovery of the Higgs
boson particle. ADL constitutes an important step forward
for nested data research, as it is the only modern complete
benchmark (data and queries) for this data type [7].

The ADL queries define challenging nested data work-
loads. At their simplest (Q1), they involve projection and
histogramming. At their most complex (QS8), they involve
unpacking several levels of nested data, applying complex
HEP formulas, creating and manipulating new heterogeneous
particle structures, before histogramming specific properties.
For full benchmark details, we defer to [[7].

D. The Snowpark Library

Snowpark is a library that offers a comprehensive set of
API calls for programmatically building Create, Read, Update,
Delete (CRUD) queries [25]] that manipulate data stored in
Snowflake. Snowpark currently offers APIs for Java, Scala,
and Python. Snowpark exposes SQL operations as method
calls rather than requiring its users to specify the SQL code
themselves manually. Besides making query writing less error-
prone and more maintainable, this additional level of abstrac-
tion allows Snowpark to transparently construct and optimize
the generated queries to run on Snowflake.

Snowpark exposes three important classes: DataFrame,
Column, and Functions. A DataFrame object logically
encapsulates a fully executable SQL query. Transformations
applied to it are lazy and generate a new DataFrame
object. Table [[] shows some of the methods exposed by the
DataFrame class. These methods generally correspond to
SQL clauses (SELECT, WHERE, GROUP BY, etc.). Column

>The benchmark’s repository offers a more complete, human-readable
sample: https://github.com/RumbleDB/hep-iris-benchmark-scripts/blob/
master/datasets/samples/

Return Type Parent Class Method

DataFrame DataFrame select (), where (), drop (),
withColumn (), groupBy(),
flatten(), collect (), ...

Column Column add (), mul (), mod (), and(),
1t (), in(), subField(), ...

Column Functions object_construct (),
col(), 1it (), sum(), seq(),
atan (), array_agg (),
abs (), ...

TABLE I: Important Snowpark API classes and methods.
1 for [§jet in collection("adl").Jet[]
> where abs ([§jet.eta) 1t 1
3 return [fjet.pt

Listing 1: Simplified ADL Q3 JSONiq reference code.

objects represent subexpressions in queries (e.g. literals, arith-
metic operations, logical operations, etc.). Column objects
are not bound to any dataset and only represent partial pieces
of SQL logic, meaning they are not executable. Column
objects are composed with one another either via methods in
their API or via static functions from the Functions class.
Table |I| exemplifies some of these methods. In either case,
new Column objects are returned as part of the composi-
tion process. Column objects are plugged in as arguments
into methods from the DataFrame class, generating new
DataFrame objects that represent the target query logic.

As DataFrame objects are lazy and only reflect a log-
ical query plan, the execution of a query is triggered only
upon calling certain methods on the DataFrame (e.g.
collect (), take ()). This is similar to Spark [26]. We take
full advantage of the lazy nature of the Snowpark API and en-
sure the query translation is lazy from start to finish, producing
a single, fully native SQL query that completely represents the
original query logic without using UDFs (i.e. only standard
SQL). When DataFrame materialization is triggered, the
query is directly and fully executed in Snowflake.

Figure [2a] exemplifies how Snowpark can be used to query
the number of distinct clerks associated with orders having
a total price between 90000 and 120000 on the TPC-H
dataset [27]]. The generated SQL query is shown in Figure 2b]

E. The JSONiq Query Language

JSONiq is a fully specified, mature query language, tailor-
made for the semi-structured data model. It employs the
FLWOR expression set (for, let, where, order by,
count, group by and return) [10]. FLWOR clauses have
similar semantics to their SQL counterparts (e.g. return
matches SELECT, where matches WHERE, for matches
FROM, etc.), bar 1et which does not have a direct coun-
terpart in SQL. let can be seen as the addition of a
new column, and can, for instance, be expressed via a
SELECT *, <new-column>. SQL JOINs can be ex-
pressed as successive for clauses that read different tables.
where can be used to represent JOIN conditions.

JSONiq is the successor to XQuery [28] and is inspired
by the JSON format. This enables practitioners to express
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complex nested query logic concisely and with relative ease.
This contrasts with SQL where certain patterns required for
processing semi-structured data are not easily expressible [7].
JSONiq has an imperative feel to it, which stems from its
FLWOR expression set. This is exemplified in Listing [I] In
Line 1, the Jet entry in the "ad1" dataset is unboxed. Each
unboxed element is bound to the jet alias as part of the for
clause. In Line 2, each jet element is discarded if its eta
subfield’s absolute value is less than 1. Finally, in Line 3, the
pt subfield of the jet objects that passed the where clause
are returned. While JSONiq is primarily designed for handling
semi-structured data, it is not bound to this data model and
can also be used to query relational data (§V-G) [9].

III. DESIGN AND IMPLEMENTATION

We show how the Snowpark API enables us to translate
JSONiq queries to SQL for execution on Snowflake. The core
challenge of doing so consists of mapping each language con-
struct of JSONiq to one or several constructs in the Snowpark
API that have the same semantics and result in SQL queries
that use the full performance of Snowflake. To this extent,
we employ a classical approach from compiler theory and
lower a query from JSONiq to SQL via several intermediate
representations. To facilitate this, we use RumbleDB [[12f], a
state-of-the-art system for querying semi-structured data with
excellent support for JSONiq. RumbleDB readily converts a
query to an AST, expression tree, and finally, an iterator tree,
where it defers execution in a hybrid manner to Spark and
native Java. We reimplement the behavior of the iterator tree
in Snowpark to generate a single SQL query that entirely
encompasses the logic of the original JSONiq query. We
continue to use the iterator naming for clarity, even though
each iterator is visited exactly once during query translation.

A. System Architecture

1) Overview.: To execute a query, the user submits a
JSONiq query to a local RumbleDB process via one of its
interfaces (REPL client, command line client, or REST server).
Our back-end translates the JSONiq query into a single native
SQL query that fully encapsulates the original JSONiq logic.
The translation happens in several phases, which can be split
into two categories. The first phases are the construction of an
abstract syntax tree (AST) and a subsequent conversion into an
expression tree, which are back-end-agnostic. The third phase
is the construction of a tree of iterators, which have back-end-
specific execution modes.

2) Parsing layer.: RumbleDB’s parsing layer converts
JSONiq queries into logical query plans. This process is still
back-end-agnostic. It does so by parsing the submitted query
into an AST and then converting the AST into an expression
tree using standard techniques. In the resulting expression tree,
virtually every node represents a JSONiq operation that is
specified in the query text. In that form, RumbleDB applies
several query rewrites that optimize the expression tree (e.g.
dead-code elimination, function inlining, etc.).

3) SQOL Query Construction Layer.: RumbleDB then trans-
lates the expression tree and converts it into an iterator
tree—a tree that has the same structure as the expression
tree but whose nodes are “iterators”. The default execution
mode of these iterators is the traditional way of implementing
iterators in database systems with an open/next/close interface.
However, in RumbleDB, back-ends can extend iterators by
implementing their own execution mode.

For our Snowflake back-end, we add a new execu-
tion mode that, for each node in the iterator tree, com-
putes a DataFrame or Column object using the Snow-
park API. We extend RumbleDB’s iterator interface with
the processNativeSnowflake method that computes a
DataFrame or Column object. We do this for each iterator
type in RumbleDB and give details for a selection of them
in Section When the execution of the root iterator is
triggered, it assembles a Snowpark API object by recursively
asking its child iterators to do the same.

With this approach, the JSONiq query is translated to
Snowflake SQL in its entirety. This is in contrast with pre-
viously existing back-ends of RumbleDB (e.g. Spark), which
carried out pre- and post-processing in the local RumbleDB
process and fell back to injecting slow Java-based iterators into
UDFs for some of the more complex JSONiq constructs [12].
This often implies slow execution, data movement, and seri-
alization overheads. In contrast, the Snowpark API and the
underlying SQL dialect are expressive enough to natively
express the subset of JSONiq that RumbleDB supports. This
not only saves round-trips to and from the server but also gives
the Snowflake optimizer the possibility to optimize the query
holistically and without blackboxes caused by UDFs.

This design does not involve any modification in Snowflake
but treats it transparently as any other client would. This
implicitly means that the Snowflake optimizer is not aware
of the translation layer, and the translation layer does not
cater to the optimizer, beyond using the Snowpark API as
intended. The Snowpark API exposes Snowflake’s query lan-
guage in a programmatic interface that enables us to express
the logic of JSONiq queries with purely native constructs.
As the evaluation shows, we can obtain on-par performance
with handwritten SQL (§E). We posit, however, that if our
back-end was moved inside Snowflake itself, such that users
would send JSONiq queries to Snowflake directly, further
performance improvements may be possible than what is
currently achievable via the SQL interface.

B. The SQL Query Construction Layer

The SQL query construction layer generates an SQL query
with identical behavior and semantics as the original JSONiq
query. The query construction is done iteratively by traversing
the iterator tree once in a post-order fashion and gradually
building up the SQL query logic in each node by com-
bining the SQL subexpressions of the children nodes using
Snowpark calls. The final product of the translation is a sin-
gle DataFrame capturing the original JSONiq query logic,
which can be used to schedule query execution in Snowflake.



Comparison(”/t”)
/// \\\

FunctionCall(”abs”) IntLiteral(/)

ObjectLookup
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VariableReference(”$jet”)  StrLiteral(”era”)

(a) Non-FLWOR expression: abs (jet .eta) 1t 1

where

YA

for($jet) Comparison(”lt”)
(b) FLWOR expression: where clause
Fig. 3: Listing |1 expression tree examples.

The iterator tree features two important classes of nodes:
(1) FLWOR clauses (i.e. the iterators representing for, let,
where, order by, count, group by and return) and
(2) non-FLWOR iterators (e.g. comparisons). We detail their
high-level behavior and highlight how the Snowpark API is
employed in the next sections (§III-BIJ§MI-B2). The more
complex iterator behavior is discussed in Section [[V]

1) Non-FLWOR Iterators: Non-FLWOR iterators repre-
sent partial query logic. Consider the subtree rooted in the
Comparison ("1t") iterator in Figure @ The logic of the
subtree represents the comparison |jet.eta] < 1. The semantics
of this subexpression become clear only when attached to a
FLWOR clause. This is similar to how SQL subexpressions
work: a subexpression in a WHERE clause represents a predi-
cate, while in a SELECT clause it generates a new column.

This equivalence between JSONiq and SQL allows us to
neatly exploit the Snowpark API, which is primarily designed
with SQL in mind. Snowpark Columns occupy a similar
role in the API as JSONiq’s non-FLWOR expressions: they
represent the partial pieces of query logic that are ambiguous
until attached to an SQL clause.

In normal scenarios, non-FLWOR iterators receive Column
objects from their children iterators. Incoming Columns are
composed using Snowpark to implement the iterator’s behav-
ior. Each non-FLWOR iterator produces a single Column
object that is returned to the parent iterator. The returned
Column object encapsulates the partial query logic rooted
in the non-FLWOR iterator. Listing [2] shows the implementa-
tion of the ComparisonIterator: the iterator fetches the
Columns returned by the two children iterators (Lines 3-8)
and applies the relevant comparison (Lines 11-16), generating
a new Column that is returned to the parent iterator (Line 17).

This design of the non-FLWOR iterators produces concise
SQL translations and decreases the amount of nesting in the
translated SQL queries. For instance, the JSONiq predicate
where abs (delta) gt 1 ultimately gets converted to
SELECT » FROM source WHERE abs (delta) > 1

1  public Context processComparison (

2 Context context) {

3 Context 1lContext = this.children.get (0)
4 .processNativeSnowflake (context) ;

5 Context rContext = this.children.get (1)
6 .processNativeSnowflake (context) ;

7 Column 1lColumn

8 Column rColumn =
9

= lContext.getColumn () ;
rContext.getColumn () ;

10 Column resultColumn;

11 switch (this.comparisonType) {

12 case "1t":

13 resultColumn = 1Column.lt (rColumn) ;
14 break;

15

16 }

17 return new Context (resultColumn) ;

18 }

Listing 2: comparisonIterator simplified implementation.

int. The alternative approach of storing the results of
non-FLWOR iterators directly in DataFrames generates
nested verbose queries. The same JSONiq predicate would
get translated to SELECT » FROM (SELECT «, 1
int AS right FROM (SELECT *, abs(delta) AS
left FROM source)) WHERE left > right. Such
translations would require more careful schema management
to remove the partial results (e.g. left, right columns).

2) FLWOR Iterators: FLWOR clauses map closely to SQL
clauses. For instance, a JSONiq return matches an SQL
SELECT, a for matches FROM, a where matches WHERE,
and so on. let clauses are without a direct counterpart in
SQL, but can be straightforwardly expressed through SELECT
clauses. In Snowpark, SQL clauses are exposed as methods
in the DataFrame class. We design FLWOR iterators to
manipulate DataFrame objects and implicitly generate the
next query execution stages in the SQL translation.

Unlike non-FLWOR iterators, which can have an arbitrary
number of children depending on what behavior they im-
plement, FLWOR clauses possess exactly two (except the
FLWOR clauses at the beginning of a JSONiq query). The
left child points to the preceding FLWOR clause iterator of the
original query, while the right child points to the subexpression
attached to the clause. Figure 3b] shows how the where clause
in Listing [T] has a left child pointing to the for iterator
and a right child pointing to the where’s subexpression
(Figure [3a). FLWOR iterators fetch the DataFrame returned
by the left child and the Column returned by the right child.
The incoming DataFrame encapsulates the fully executable
query logic up to the current iterator, while the incoming
Column encapsulates the logic of the iterator’s subexpression.
The Column is applied to the incoming DataFrame using
the appropriate DataFrame API call. This generates a new
DataFrame that is returned to the parent FLWOR iterator.

In complex cases where the right subtree features a nested
query, this pattern is changed. To enable such cases, the
DataFrame incoming from the left child is always passed
into the right child (i.e. the nested query) such that, if need
be, it can be directly modified there. In such cases, the



1  public Context processWhere (

2 Context context) {

3 // Execute child FLWOR clause

4 Context lContext = this.leftChild

5 .processNativeSnowflake (context) ;

6 DataFrame incomingDF = lContext.getDI ();
7
8
9

// Execute right child subexpression

Context subContext = new Context (

10 context, incomingDF);

11 Context rContext = this.rightChild

12 .processNativeSnowflake (subContext) ;
13

14 DataFrame resultDF;

15 if (rContext.isSimpleQuery()) {

16 resultDF = incomingDF.where (

17 rContext.getColumn());

18 } else {

19 resultDF = cleanup (incomingDF, rContext);
20 }

21 return new Context (resultDF);

22 }

Listing 3: whereClauseIterator simplified implementation.

FLWOR iterator generally performs cleanup operations on
the DataFrame, such as eliminating temporary columns. We
discuss situations where this pattern occurs in Section
Listing [3] exemplifies a simplified version of the where
iterator. The incoming DataFrame from the left child is
captured (Lines 4-6). The right child is executed, passing the
left incoming DataFrame to it in case it hosts a nested
query (Lines 9-12). Finally, if there was no nested query
rooted in the right child, the iterator applies the where clause
of the incoming DataFrame (Lines 15-17); otherwise, it
applies its cleanup logic (Line 19). In either case, the resulting
DataFrame is returned to the parent iterator (Line 21).

C. Data Model

We do not require a schema and do not impose any
restrictions on how nested data should be staged. The nested
data can be stored in a single table or across multiple tables.
Tables can have a single VARIANT-type column that fully
encapsulates an object or several VARIANT columns for each
nested top-level entry in an object (e.g., for ADL this would
mean a dedicated column for JET, MUON, ELECTRON etc.)
in combination with other Snowflake typed columns (e.g.,
NUMBER (38, 0) for EVENT) and anything in between. For
the ADL evaluations, we stage the data in a single table, using
the latter schema (i.e., the multi-column version). In all cases,
each row in the Snowflake table represents an object.

Data can also be staged in multiple tables that can be later
joined. This data can be purely relational, nested, or even a
hybrid combination of nested and relational data. To support
these use cases, we implement support for JOIN operations,
as described in the JSONiq standard [[10].

IV. COMPLEX QUERY PATTERNS

JSONiq and Snowflake SQL have a large amount of
common ground between them. There are, however, several
scenarios where the two diverge. We explore these cases here.

for [Jevent in collection("adl")
let [Yfiltered := (

for Em in Eevent.Muon[J

where predicate (§m)

return [§m
)

R Y N SENTCR R

Listing 4: A nested query example, where the Muon array in
each top-level object is unboxed. Individual muons are filtered.
The passing muons for each top-level object are aggregated
into arrays and aliased by the name $filtered.

RowID Muon m

1 [ mi,m2,m3 | | my

1 [ my,mg,m3 ] | mo

Muon 1 [ my,mg,m3 ] | m3

[ my,ma,mg ] B [n1,mo 1 "

Lrim2 ] 2 [ n1,m2 ] ng

RowID Muon l
1 I ] Muon filtered
MMy, Ma, My [ my,ma,m3 ]| [ m1,ms ]

2 [n,n ] [n1,n2 ] [ ]

Fig. 4: Example trace of the subquery in Listing 4| Rows that
pass the predicate are highlighted in gray.

A. Nested Data Access and Array Unboxing

Nested data access is a core functionality of
JSONiq. We enable this common wuse case using
the Column::subField() method which accesses

VARIANT data subfields. Array unboxing is also an
essential part of handling nested data. We employ the
DataFrame::flatten () method. This is equivalent to
a LATERAL FLATTEN operation in Snowflake SQL, which
unboxes the elements of an array and replicates the other
columns for each generated row [21]].

B. Nested Queries

Nested queries are an intrinsic part of processing nested
data. In JSONiq nested queries usually occur as part of a
where or a let clause. Such queries usually unbox an array,
filter and process its elements, and return results to the parent
query. Listing [] shows an example where a nested query is
embedded into a let clause (Lines 2-5). Here, the Muon
entry in each dataset object is unboxed (Line 3). The unboxed
values are bound to the name m. Each muon then undergoes
a filtering operation (Line 4). The passing muons are returned
by the nested query (Line 5). At the end of the nested query,
the semantics of JSONiq imply a transparent reaggregation
of the returned values into an array for each parent object.
The cardinality of a nested query’s output is the same as its
input. In other words, no objects can ever be fully removed
by a nested query. Concretely, for Listing [4] this means that,
for each dataset object (i.e., event), an array containing
the object’s muons that passed the predicate (i.e. reached the
return clause) is produced. If none of the object’s muons
passed the predicate, an empty array should be returned.



We transparently deal with nested queries. We show
this in Listing [] and its trace in Figure Upon enter-
ing a nested query, a unique ID is added to each row
(RowID) to later reconstruct the table when exiting the
nested query. The target structure (Muon) is flattened using
DataFrame::flatten (). This creates a new column (m),
and re-materializes the other columns of the original row
(RowID and Muon). The nested query’s logic is then applied.
Tuples that pass the predicate are highlighted in gray. At the
end of the nested query, the original table is reconstructed,
with the nested query’s results being packed in an array
for each row. This is done by grouping using the row ID,
using Functions.array_agg () onthe return’s subex-
pression (m), and Functions.any_value () on the other
columns. Auxiliary columns (e.g. RowID) are dropped.

C. Erroneous Object Elimination

An important challenge that arises in nested queries is the
erroneous elimination of dataset objects. The base pattern ob-
served in nested queries involves several unboxing and filtering
operations, ultimately followed by aggregation (§IV-B). In
JSONiq, no parent object can be removed as a side-effect
of a nested query. As Figure [4] shows, in Snowflake SQL,
nested queries are handled through LATERAL FLATTEN.
Subsequent subquery logic is then applied to such flattened
top-level tables. This runs the risk of fully discarding objects
when unboxing empty arrays or if all unboxed values of an
object fail the nested query’s predicates. When reaggregating
at the end of the nested query, these objects no longer exist
in the DataFrame. This conflicts with JSONiq’s semantics
of keeping all original objects and returning an empty array
as the result of the subquery for such cases.

This scenario is exemplified in Figure [5a] Here, the object
with row ID 1 fully disappears after the unboxing as its
Muon array is empty. After filtering, both unboxed elements
stemming from the row ID 2 object fail the predicate. When
the result is reaggregated, only the object with row ID 3
remains. The nested query consequently produces incorrect
results. To ensure nested queries work as expected, we propose
and implement two approaches: (1) a flag column approach
(§IV=CI) and (2) a JOIN-based approach (§IV-C2).

1) Flag Column Approach: In the flag column approach,
we add a special column to the DataFrame passed into the
nested query that indicates whether the row should be con-
sidered for aggregation in the nested query’s return clause.
‘We name this column KEEP. In addition to this, we ensure the
unboxing operation is performed on empty arrays as well by
setting outer=true in DataFrame::flatten (). This
ensures that objects with empty arrays are retained.

Figure [5b] shows how the flag column approach would work
on a trace of the nested query in Listing |4 The KEEP column
is added immediately after the unboxing. Rows stemming
from objects with empty arrays have a false in their KEEP
column; all other rows have true. When passed through
where clauses, rows failing the predicate will have the KEEP
column set to false. Rows that pass the predicate have their

Muon RowID
[1 2 [n1,n2] | m
[n1,n2] 2 [n1,n2] | no
[g1] 3 [g1] 91

|

RowID | Muon
1 i] Muon | Result
[g1] lg1]

Muon m

2 [n1,n2]
3 [g1]

(a) Erroneous object elimination example

ID Muon m KEEP
MF]OH "1) Mrlon I 0 | NULL | FALSE
[n1 n2] 2 [TLl 712] 2 [7L1,7L2] ny TRUE
2 J 2 | [ny,n2] No TRUE
Lg1] 3 1 ol 3| Igd | ¢ | TRUE
ID | Muon m KEEP ID Muon m
1 1] NULL | FALSE 1 i NULL Muon | Result
2 | n,ma] | m | FALSE || 2 | [n1,n2] | NULL | [m[.]"z] H
2 | [n1,n2] no FALSE 2 [n1,n92] | NULL [él] Tol
3 [g1] 91 TRUE 3 [g1] g1
(b) Flag column approach
Muon ID Muon 1D Muon m
[] 1 (1 2 | [n1,n2] | ny D ‘ Muon ‘ Result ‘
[n1,n2] 2 | [n1,n2] 2 | [n1,n2] | n2 3 [od | [o1] |
lg1] 3 [g1] 3 lg1] 91
Copy v
ID Muon ID | Muon Result Muon | Result
1 [1 1 [ NULL 1] 1]
2 | [n1,n2] L 2 | [n1,n2] | NULL [n1,n2] (1
3 [91] join [ 3 [g1] [g1] lg1] Lg1]

(c) JOIN-based approach

Fig. 5: Erroneous object elimination example on Listing E] and
solutions. Rows that pass the predicate are highlighted in gray.

KEEP column unaffected. In the return clause, the rows
where KEEP is false return a NULL, which is ignored in
the array aggregation. This approach ensures that every object
has at least one row stemming from it in the nested query,
guaranteeing that the nested query produces the correct results.

While we do optimize where clauses to remove all failing
rows, bar the last row stemming from an object, this technique
has a slight data volume overhead.

2) JOIN-based Approach: In the JOIN-based approach,
the DataFrame passed into the nested query is copied
immediately after the row ID column is added. The nested
query then freely manipulates the incoming DataFrame
as described in Section [ eliminating objects with empty
arrays during unboxing operations and rows that get filtered in
where clauses. The nested query produces its partial result,
which gets joined with the copy of the DataFrame on the
row ID column. The two tables are connected using a left
outer join, where the left table is the copy DataFrame. NULL
values in the result are replaced by empty arrays to ensure the
nested query semantics are maintained. Figure [5c| provides an
example of how this would work for the subquery in Listing 4}

The benefit of this approach is that it proactively eliminates
rows and does not require flag columns. The downside is
the JOIN operation, which is fast in Snowflake [21]] but can



become costly for large tables. This approach can outperform
the flag column approach (§IV-C1) for subqueries with many
unboxing operations and filters.

D. Complex Non-FLWOR Iterators

Non-FLWOR iterators can return or modify DataFrame
objects directly rather than returning Column objects to
their parent iterator (§III-BT). This usually happens if non-
FLWOR iterators are ancestors of a nested query. A fre-
quent example of this is syntactic sugar expressions like
where exists (<subquery>). Here, the non-FLWOR
iterator exists hosts a nested query that returns an updated
DataFrame. For such cases, we take special care to orches-
trate and maintain the original query semantics, which often
involves decomposing the syntactic sugar expression into its
fundamental clauses and subexpressions.

E. Limitations

Our work covers the major impedance mismatches between
nested data querying and SQL. We however do not yet support
recursive functions. We choose to not implement this feature
for now as it is not often used in practice. In addition, the
practitioner is tasked with choosing between the two solutions
for erroneous object elimination (§IV-C). We’ve observed that
the flag column approach fares well in most cases while
the JOIN-based approach works best if there are numerous
unboxing operations and where clauses in the nested queries.
We plan to introduce an optimizer that can automatically
decide between the two approaches based on the patterns
observed in the nested query logic.

Our system takes a Snowflake-centric, data-format agnostic
approach. We focus on deriving high performance and scal-
ability from the translated query by focusing purely on the
nested aspect of data and how it can be efficiently manipulated.
This comes at the cost of two JSONiq semantics: (1) data
ordering and (2) part of the JSONiq type system. JSONiq
views the dataset as a stream, hence the output of a query
should reflect the input order. Our translation processes the
data in an arbitrary order thus compromising on (1). We could
address this by adding an order number to each item to ensure
the data gets processed in its original order. For (2), our system
exclusively employs Snowflake types and discards special
JSONiq types such as function items [10]. Some support for
these could be added at the cost of query performance.

V. EVALUATION
A. Methodology

We evaluate across several dimensions: (1) query translation
time from JSONiq to SQL (§V-B) (2) query compilation time
in Snowflake (§V-C) (3) query execution time in Snowflake
(§V-D) (4) end-to-end time (i.e. the sum of (2) and (3)
(5) the number of bytes scanned (§V-E), (6) scalability of the
queries in terms of the end-to-end time, as a function of the
dataset size (§V-F), (7) the SSB relational benchmark [[15]. For
(4) and (6), we compare against AsterixDB and RumbleDB
with a Spark backend, two state-of-the-art NoSQL systems

for semi-structured data that use query languages tailored for
such data (SQL++ and JSONiq).

For most experiments, we use the IRIS HEP ADL bench-
mark (§I-C). For experiment (1) the results are independent of
the dataset size. For experiments (2) through (5) we use Scale
Factor 1 (17 GiB of data with 54 million top-level objects).
For experiment (6) we use 23 different scale factors: {271¢,
2715 .., 25, 26}, covering dataset sizes from 1000 events
(approx. 300 kiB) to 3.42B events (approx. 1 TiB). For (7),
we use four scale factors for the SSB data: {1, 10, 100,1000},
ranging from approx. 1 GiB to approx. 1 TiB. For Snowflake,
we use pre-loaded tables; for AsterixDB and RumbleDB we
store the data in Parquet. Parquet has similar features to VARI-
ANT: transparently columnarizing nested data (via Dremel’s
columnar storage representations for nested records [29]),
using horizontal partitioning, and allowing the push-down of
predicates for more efficient data pruning [30]. For a fair
comparison, all systems use AWS infrastructure, and all data
is stored in S3. We disable both the data and result cache
in Snowflake. For experiments (1) - (6), data is staged in
a single table; we choose to stage top-level entries in their
own column (i.e., the multi-column schema). This applies to
all systems. The alternative of storing the data as a single
VARIANT column should not affect the presented Snowflake
results and insights as the data’s physical layout would be
identical [22], but might negatively affect RumbleDB-on-
Spark and AsterixDB as they rely on Parquet’s shredding
capabilities. For experiment (7), we use the official version
of SSB. As baseline, we use RumbleDB-on-Spark, AsterixDB,
and the handwritten Snowflake SQL queries publicly available
in the official IRIS HEP ADL benchmark GitHub repository,
which are written using the same query patterns used for the
other relational databases in [7]. We use the reference queries
for JSONiq (for our work and Rumble-on-Spark) and SQL++
(for AsterixDB), which are available in the official IRIS HEP
ADL benchmark GitHub repository. We refer to the queries
translated by our system as Automatically Generated SQL,
and the handwritten Snowflake SQL references (which are
executed on Snowflake) as Handwritten SQL. For Q6, we
use the JOIN-based approach for nested queries (as it yields
better performance); for the rest, we use the boolean flag-based
approach (. All translations are publicly availableﬂ

For each final value in experiment (1), we average a total of
100 runs with 10 warm-up runs. For each value in experiments
(2) to (6), we average across a total of three runs with three
additional warmup runs, while for (7), we average 20 runs.
We impose a 10 minute query time limit for (6). For (1), we
employ an AWS z1d.xlarge VM with 4 vCPUs and 32 GiB
of memory. Our Snowflake deployment across experiments (2)
to (7) consists of a single Standard edition LARGE virtual
warehouse on an AWS backend. RumbleDB and AsterixDB
are deployed on an m5d.24xlarge AWS VM (96 vCPUs,
384 GB RAM). For RumbleDB, we use AWS EMR [31] to
ensure the Spark configuration is well-tuned.

3Translations repository: |https://github.com/DanGraur/JSONiq- Snowflake


https://github.com/DanGraur/JSONiq-Snowflake
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Fig. 6: Query translation time (JSONiq to SQL)

Type Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

FLWOR Iterators | 14 14 17 21 24 61 24 72

Other Iterators 70 71 79 90 148 460 213 492

Total Iterators 84 85 96 111 172 521 237 564

TABLE II: The number of runtime iterators generated by
RumbleDB for each query in the ADL benchmark.

B. Query Translation Time

Our results for the query translation times are shown in
Figure [ We count the number of iterators for each query
(Table ) to understand the relationship between the iterators
and the translation time. The translation time is directly
proportional to the number of iterators, as more iterators imply
more logic to go through to generate the SQL query.

The translation times are relatively low especially when
compared to the query runtimes at larger scales and the
benefits they can bring to developer productivity. This is
our target use case: complex query logic that is not easily
expressible in SQL executed on large-scale data. Nonetheless,
we could translate faster by introducing a translation cache
and by making RumbleDB’s codebase leaner.

C. Compilation Time

The compilation time represents the time required by
Snowflake to parse, optimize, and compile the SQL into
an execution plan. It does not include any execution time.
Figure [7] shows our results. For all queries except Q8, the
compilation of the automatically generated queries is lower
than the handwritten versions. This is likely because Snowpark
expresses more verbose but conceptually simpler queries.

The compilation times are especially high for Q6 and Q8.
This problem occurs both for the handwritten and the automat-
ically translated queries, meaning the problem is not due to
the translation. Q6 and Q8 are the most complex and compute-
intensive queries in the benchmark [7|]. Both generate dozens
of triplets of particles from each dataset object and heavily
manipulate them by applying complex HEP formulas that
access many fields within nested structures and combine them
to produce scalar results or generate new nested structures. The
overhead of optimizing the complex access patterns is what
likely leads to high compilation times. Optimizing this time

100.0

B Automatically Generated SQL
3 Hand-Written SQL

Snowflake Query Compilation Time [s]
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Fig. 7: Query compilation time in Snowflake
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Fig. 8: Query execution time in Snowflake for SF1

is outside the scope of our work as it focuses on Snowflake
internals but reducing it would prove beneficial to us.

D. Execution Time

We measure the Snowflake query execution time of the
generated and handwritten queries on SF1 data (shown in
Figure [8). The execution time corresponds to the execution
of the query plan generated by the compilation phase. Apart
from Q7, all the automatically translated queries are on par
with the handwritten versions. The automatically generated
version of Q7 is more expensive to run, as the original JSONiq
query imposes four array unboxing-reaggregation pairs in
the translation whereas the handwritten SQL version does
this with four unboxing operations and two reaggregations.
Moreover, the handwritten version uses the BOOLAND AGG,
which can apply a predicate and a conjunction in a single
pass during aggregation. Snowpark API v1.9 does not expose
this operation, hence the automatic translation must use less
efficient approaches.

The translated version of Q8 is 1.5x faster than the handwrit-
ten version. This is because the handwritten query unboxes the
Muon and Electron arrays into two separate tables, modifies
the individual elements, and then reaggregates the modified
elements into arrays. The resulting two tables undergo a
UNION ALL immediately after to facilitate the concatenation
of the two arrays into a single one. This is the approach taken
for Q8 by some of the relational database implementations
in [7]. The automatically translated version features SQL code
where the result of each operation feeds into the FROM clause
of the next operation. In the case of Q8, the results of nested
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queries feed into each other, successively unboxing, filtering,
and reboxing the partial result. This ultimately reduces the
volume of processed data. Writing the latter version by hand
is non-trivial. It requires several additional levels of nesting
and care to avoid element duplication. This is encouraging and
shows the practitioner can express query logic more naturally
than in SQL for such use cases.

By adding the compilation and execution times, we obtain
the total query runtime in Snowflake. We compare this to
RumbleDB-on-Spark and AsterixDB. The results are shown in
Figure 0] The takeaways are encouraging: our approach is on
par with the handwritten queries for all cases bar Q7 where it is
2x worse. Moreover, the Snowflake deployments are generally
one order of magnitude faster than AsterixDB and RumbleDB-
on-Spark. AsterixDB and RumbleDB are both unable to finish
executing Q6 within 10 minutes. As highlighted in Sec-
tion RumbleDB-on-Spark is slower than RumbleDB-
on-Snowflake because of the limited support in Spark for
JSONiq’s operators. This implies UDF usage and partially lazy
execution, which requires materialization and additional data
movement, are adding noticeable runtime overheads.

E. Scanned Data

We track the volume of data scanned during execution (not
plotted). In all cases, bar Q6, both versions scan roughly the
same amount of bytes. In Q6, the translation ends up scanning
more data due to the JOIN injected into the translation to
deal with the object elimination problem. This triggers the re-
scanning of the source table, roughly doubling the amount of
data scanned when compared to the handwritten counterpart
(7.4 GiB vs 3.9 GiB for SF1), which does not use JOIN.

F. Scalability

We evaluate the total time for all queries on 23 scale factors,
ranging the dataset size between 1000 events (approx. 300 kiB)
and 3.42B events (approx. 1 TiB) on Snowflake, AsterixDB,
and RumbleDB-on-Spark. We impose a cut-off time of 10 min-
utes. Figure |10|shows our results. The automatically translated
versions display very similar performance to the handwritten
counterparts. Q1 displays noisy behavior at small scales due
to its straightforward logic. Nonetheless, both versions have
comparative performance. For Q6, the automatically translated
version displays better behavior up to SFI1, at which point

the runtimes converge. The reason behind this is the JOIN-
based approach used in Q6 for handling nested queries. This
ensures the nested query can safely project away columns
that are not used in the subquery, thus manipulating less data.
In contrast, the handwritten queries manipulate a single table
and run the risk of not being able to easily discard redundant
columns. While joins are efficient, at higher scales they can
become expensive, potentially explaining the time convergence
at SF1. For Q8, both approaches are on par up to SF1. Up
to SF1, the end-to-end time is dominated by the Snowflake
compilation phase, taking upwards of 60s, regardless of dataset
size. For larger scales, the UNION ALL operation in the
handwritten version incurs large runtime costs (§V-D), losing
in performance to the automatically generated version. When
compared to AsterixDB and RumbleDB on Spark, Snowflake
is consistently faster. Q8 is the only partial exception as
Snowflake lags behind the other two systems up to SF1. As
noted before, this is due to the high compilation time in
Snowflake. At SF1, the handwritten version converges while
the automatic translation outperforms the other approaches.

G. The Relational SSB Benchmark

We evaluate our system on the SSB benchmark to show
we can automatically translate relational queries expressed in
JSONiq to SQL with identical performance as handwritten ref-
erence SQL implementations [15]]. We run experiments on four
scale factors: {1,10,100,1000} and on all of SSB’s queries.
Figure shows a comparison between the performance of
the automatically translated and the handwritten reference SSB
SQL queries on Scale Factor 1000. In all cases, the total
time (compilation and execution) is on par with the baseline.
Figure [TTb] shows our results on query runtimes across the
four tested scale factors. For legibility, we only show queries
Ql.1, Q2.1, Q3.1, and Q4.1 but we confirm the same patterns
can be observed for the rest of the queries. Across all tested
Scale Factors, the two versions behave roughly the same. At
lower scales, for queries Q2, Q3, and Q4, the automatically
translated version can sometimes be slower than the baseline,
as the JSONiq version must return a single object with several
entries instead of several columns as the reference SQL. This
introduces an additional OBJECT_CONSTRUCT in the query
plan. The results show that JSONiq is a powerful query
language capable of also expressing relational queries and that
our system can support arbitrary queries spanning the nested
and relational data paradigms with little overhead.

H. Takeaways

We show that we can build an effective query transla-
tion system that converts JSONiq queries to SQL using our
Snowpark library for both nested (ADL) and relational (SSB)
workloads. The translated queries offer on-par compilation
and execution time to reference handwritten SQL queries.
Both the automatic translations and reference implementations
outperform state-of-the-art systems for nested data by one
or two orders of magnitude. The results show it is possible
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to strive for both performance and usability for nested data
querying, filling in the gap highlighted in [7].

VI. RELATED WORK

Query Languages for Nested Data: The database com-
munity has developed numerous query languages targeted
at nested data. To name a few: ArangoDB’s AQL [32],
SQL++ [33] (supported in Couchbase [34] and Aster-
ixDB [35])), N1QL [36]], and JAQL [37]]. Our work focuses on
JSONiq for two important reasons. (1) It has a mature, vendor-
agnostic specification, designed to target heterogeneous data —
which we plan to tackle in the future —, and (2) RumbleDB,
the engine used for this study, is open-source and offers nearly
complete support for JSONiq.

Query Engines for JSONiq: There have been a few solutions
that implement support for JSONiq besides RumbleDB. Exam-
ples include Xidel [38]], Zorba [39], and IBM WebSphere [40].
IBM WebSphere is vendor-dependent and, as a consequence,
we do not pursue it for our study. As far as we are aware,
Zorba is no longer maintained and Xidel is a command line
tool written in Pascal, making an integration with Snowpark
challenging. RumbleDB is actively maintained and provides
a modern, extensible, iterator-based Java back-end that maps
neatly to the Snowpark API.

Query Language Translation: The community has for-
warded a large body of work around reusing RDBMSs to store
semi-structured data and translate DSQLs [17]], [41]]. Previous

work can be classified into two broad categories based on the
type of data they target: (1) relational data [42[]-[52]] and (2)
semi-structured data. We expand on the semi-structured data
work as this is our target use case.

Previous work on storing nested data in an RDBMS and
querying it using a DSQL has mostly focused on XML,
XQuery, and XPath. Related contributions generally shred the
nested data to map it over one or more flat relations and use
JOIN operations to reconstruct it later at query time [|17]], [41]].
To enable the shredding and reconstruction, one or more of
three approaches is used [17]: (1) attaching an element ID to
each shredded component, (2) attaching intervals to encode
nestedness, and (3) storing the path to each shredded compo-
nent. [53] maps semi-structured data to a relational mapping
via the STORED language and uses a specialized SQL dialect
to run queries against this data. [54] exploits the graph
structure of an XML document to generate a schema where
each edge and attribute are stored in their own table. [55]]
decomposes XML documents via vertical fragmentation and
stores the root-to-leaf path and parent-child IDs in attribute
tables. The authors propose a declarative algebra for XML
document retrieval. XRel [[56] uses a similar shredding strategy
and focuses on translating a subset of XPath (i.e. XPathCore)
to SQL via an eight-step algorithm. [57]] uses a storage schema
similar to XRel, but focuses on enabling ordering guarantees
in the source data by embedding order values in the database.



Similar to XRel, it offers support for translating a class of
XPath queries using several algorithms that enforce ordering
information. [58|] takes a different approach and proposes
OQL, a query language for object-oriented data models. Work
in this area has focused on converting path expressions to
SQL [58]. Both [59] and [[16] translate XQuery to SQL by
using rule-based algorithms and composing fixed SQL tem-
plates associated with certain XQuery operators. [16] requires
the addition of custom operators in the relational engine to
obtain good performance. We take a different approach to
many of these works by not explicitly shredding the data or
requiring a schema. Our translation logic exploits intermediate
representations of the original query to ultimately generate
a single native SQL. This approach is similar to compiler
theory but dissimilar to related work which generally translates
DSQLs to SQL in one step.

Fundamentally, our approach contrasts with previous work,
as we focus on a simpler data model: pure, format-agnostic,
nested data. Related work has focused on XML, which is a
document format rich in semantics (e.g. ability to mix text and
node elements, providing ordering guarantees, node attributes,
flexible traversal types, etc.). Research has focused extensively
on XQuery and XPath, which are tightly bound to XML.
Consequently, it has sought to abide by XML’s semantics. As
we focus purely on the nested aspect of data, we are not bound
to a specific data model and can simplify our approach to strive
for scalability and performance. We require no shredding or
knowledge of the schema. We employ straightforward, well-
known techniques from compiler theory to convert a query
from JSONiq to SQL via several intermediate representations
(AST, expression tree, iterator tree, and SQL code) and use
Snowflake as an end-user to prove that it can be efficiently
used for querying nested data without changing its internals.
To the best of our knowledge, this is the first work that ap-
proaches the problem of translating a DSQL to SQL focusing
purely on the nested aspect of data using well-known compiler
techniques and without any need for shredding or schema.

VII. DISCUSSION
A. Translation-Level Optimizations

We take a straightforward approach and convert JSONiq
queries directly to SQL by implementing the behavior of
iterators mapped to JSONiq expressions in Snowflake using
Snowpark. We largely treat each iterator as independent and
pass little cross-iterator information throughout the iterator
tree. This approach leaves room for introducing translation-
level optimizations that exploit contextual information and
potentially synergize with the Snowflake query optimizer [60],
[61]]. For instance, our logic could identify common expres-
sions in the JSONiq query and materialize them as temporary
tables to facilitate the reuse of partial results across the query.
Similarly, our work could benefit from identifying common
query patterns that are often inefficiently expressed by prac-
titioners in JSONiq or SQL and ensuring they are expressed
using SQL constructs that efficiently exploit Snowflake. Q8’s

translation is an example of this, wherein a more efficient
query pattern is non-obvious and non-trivial for a practitioner
but easily translatable by a system like ours.

B. Integration with Snowflake

Our work shows that it is possible to reuse Snowflake as an
end-user and achieve minimal overhead. We are considering
porting this approach internally in Snowflake to derive further
performance than what is achievable purely via the SQL
interface. Through our work, we have identified features that
could significantly improve runtime, such as better support for
nested queries to avoid the use of LATERAL FLATTEN or the
addition of array native functions like ARRAY_FILTER. We
leave this for future work.

C. Generalizability to Other DSQLs

Our work has focused on translating JSONiq to Snowflake
SQL via Snowpark. Bar recursive functions, it covers all major
challenges in translating from JSONiq to SQL. The high-level
approach used in this work of lowering a query to an iterator
tree is well-known from database and compiler theory and
can be applied to other DSQLs. Our implementation could
potentially be used directly for other DSQLs via glue code,
granted the language semantics are similar to JSONiq.

D. Generalizability to Other RDBMS

Our system is currently tailor-made for Snowflake and
Snowflake SQL. The problem of translating between different
SQL dialects is notoriously challenging. However, we believe
it is possible to reuse our work and replace the logic of the
iterator tree nodes to generate a Substrait execution plan [62]]
rather than building a Snowflake SQL query via Snowpark. In
turn, the Substrait plan can be passed through various adapters
to generate vendor-specific query plans [62].

VIII. CONCLUSION

We have presented our approach for translating JSONiq
queries for nested and relational data to SQL using RumbleDB
and Snowpark. Our approach takes a JSONiq query as input
and generates a single native SQL query that fully encapsulates
the original JSONiq logic and is completely executable in
Snowflake. We exploit the Snowflake VARIANT type for
storing and processing the nested data in a schema-oblivious
way. We do not require any explicit shredding or schema
from the source dataset. We have evaluated our work on the
ADL (nested) and SSB (relational) benchmarks. We compare
the performance of our approach against the benchmarks’
handwritten reference query implementations and show that
the automatic translations are on par with their handwritten
counterparts across a wide range of data sizes. In the particular
case of nested data, our system is an order of magnitude faster
than state-of-the-art engines for semi-structured data.
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