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A B S T R A C T

Autonomous systems strongly rely on computer vision to build a compre-
hensive model for understanding the environment they are embedded in.
This task needs to be solved on multiple levels of abstraction, ranging from
a high-level understanding of agent intentions to solving combinatorial
problems for fundamental vision tasks. In this thesis, we focus on appli-
cations at three of these levels. On the most abstract level, we study the
understanding of human intentions for autonomous driving and for a team
of humanoid robots in structured environments. The foundation of this
approach is multi-object tracking (MOT), which is subsequently investi-
gated as one of the fundamental computer vision problems. Finally, on the
lowest level of abstraction, we propose a quantum computing formulation
of the matching problem our tracker is built on and further investigate the
efficient use of an adiabatic quantum computer in computer vision.

In the first part of this thesis, the prediction of high-level actions of
traffic participants in an autonomous driving scenario is studied. For this
purpose, we develop a Hidden-Markov model representation that allows us
to decode the sequence of actions from a vehicle’s trajectory and a semantic
map present in large-scale driving datasets. For predicting future driving
maneuvers, we propose a convolutional neural network that fuses map
information and observed trajectories using a rendered representation.

We subsequently approach human action recognition from the perspec-
tive of an autonomous robot in a structured environment. To enable this,
we collect a referee action dataset that contains multiple domains to cater to
the requirements of the task. By using simulated images, the dataset can be
adapted easily to new actions, while two kinds of realistic domains allow
us to adapt to real images with a reduced annotation effort. We develop a
computationally efficient network to detect the actions and deploy it on the
humanoid NAO robot.

In the second part, we propose a learnable online 3D MOT approach
that uses a predictive model for traffic participants together with deep
learning-based object matching. To enable this, we define a graph struc-
ture that merges both representations and uses neural message passing to
match pairs of detection at different timesteps as well as detections with
tracks. We furthermore propose a two-stage training approach that models
inference within an online system, while avoiding the expensive rollout of
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online tracks. Overall, our method considerably improves track stability
and performance.

After this, we further investigate improving long-term track stability on
video sequences. This is done in the context of monitoring a fleet of robots
from wide-angle cameras, where strong occlusions and identically looking
robots pose a large challenge. We thus frame the task as a multi-platform
sensor fusion approach, where tracklets from the external camera view are
combined with measurements performed by the robots. The tracklets are
combined into long-term tracks by solving a discrete quadratic problem
that represents costs generated by different submodules. The cost weights
are optimized using particle swarm optimization as a metaheuristic.

The third part of the thesis explores the application of quantum com-
puting to challenging computer vision and machine learning tasks. We
approach MOT with this paradigm by stating the matching and assignment
problem as a task solvable on an adiabatic quantum computer (AQC). We
further propose an iterative approach to represent and optimize the tracking
constraints, for an improved solution probability. In simulation, we show
that our approach is competitive with the state-of-the-art on commonly
used MOT benchmarks. Using a D-Wave AQC, we demonstrate that small
real-world problems can be solved on a quantum computer and provide
an in-depth analysis of the properties of our approach using synthetic
examples.

Finally, we approach the efficient use of an AQC for quantum computer
vision and machine learning tasks. Starting from the perspective that many
quantum computer vision applications are formulated as clustering tasks
with additional constraints, we propose an approach that utilizes all mea-
surements taken on an AQC to generate alternative high-quality clustering
solutions. This uses the existing measurements to generate calibrated con-
fidence scores for the solutions, with little additional compute cost. We
validate our formulation with experiments in simulation and on a D-Wave
AQC. Furthermore, we show that the set of solutions can be used to elimi-
nate ambiguous points and that this approach also transfers to real data
that does not strictly follow the assumptions of our derivation.
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Z U S A M M E N FA S S U N G

Autonome Systeme sind in hohem Maße auf computerbasierten Sehens
(Computer Vision) angewiesen, um ein umfassendes Modell zum Verständ-
nis der Umgebung zu erstellen, in der sie eingebettet sind. Diese Aufgabe
muss auf mehreren Ebenen der Abstraktion gelöst werden, von einem
abstrakten Verständnis der Absichten aller Akteure bis hin zur Lösung
kombinatorischer Probleme für grundlegende Aufgaben im computerba-
sierten Sehen. In dieser Arbeit konzentrieren wir uns auf Anwendungen auf
drei dieser Ebenen. Auf der abstraktesten Ebene untersuchen wir das Ver-
ständnis menschlicher Absichten für autonomes Fahren und für ein Team
von humanoiden Robotern in strukturierten Umgebungen. Die Grundlage
dieses Ansatzes ist die Multi-Objekt-Verfolgung (Multi-Object Tracking
(MOT)), die anschließend als eines der grundlegenden Probleme des com-
puterbasierten Sehens untersucht wird. Schließlich schlagen wir auf der
niedrigsten Abstraktionsebene eine Quantencomputing-Formulierung des
Zuordnungsproblems vor, auf dem unser Tracker basiert, und untersuchen
weiterhin den effizienten Einsatz eines adiabatischen Quantencomputers in
computerbasiertem Sehen.

Im ersten Teil dieser Arbeit wird die Vorhersage von hochrangigen Aktio-
nen von Verkehrsteilnehmern in einem autonomen Fahrscenario untersucht.
Zu diesem Zweck entwickeln wir eine Darstellung mittels verdecktem
Markowmodell (Hidden-Markov-Modell (HMM)), die es uns ermöglicht,
die Sequenz von Aktionen aus der Trajektorie eines Fahrzeugs und einer
semantischen Karte, die in groß angelegten Fahrdatensätzen vorhanden ist,
zu erkennen. Zur Vorhersage zukünftiger Fahrmanöver schlagen wir ein
faltungsbasiertes neuronales Netzwerk vor, das Karteninformationen und
beobachtete Trajektorien unter Verwendung einer visuellen Darstellung
fusioniert.

Anschließend betrachten wir die Erkennung menschlicher Aktionen
aus der Perspektive eines autonomen Roboters in einer strukturierten
Umgebung. Um dies zu ermöglichen, sammeln wir einen Schiedsrichter-
Aktionsdatensatz, der mehrere Domänen enthält, um den Anforderungen
der Aufgabe gerecht zu werden. Durch die Verwendung simulierter Bilder
kann der Datensatz leicht an neue Aktionen angepasst werden, während
zwei Arten realistischer Domänen es uns ermöglichen, uns mit reduziertem
Annotationsaufwand an reale Bilder anzupassen. Wir entwickeln ein re-
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chenleistungseffizientes Netzwerk zur Erkennung der Aktionen und setzen
es auf dem humanoiden NAO-Roboter ein.

Im zweiten Teil schlagen wir einen lernbaren Online-3D-MOT-Ansatz vor,
der ein Vorhersagemodell für Verkehrsteilnehmer zusammen mit einer auf
Tiefenlernen basierenden Objektzuordnung verwendet. Dazu definieren
wir eine Graphenstruktur, die beide Darstellungen zusammenführt und
neuralen Nachrichtenaustausch (Neural Message Passing) verwendet, um
Paare von Objecten zu verschiedenen Zeitpunkten zu erkennen sowie mit
bereits bestehenden Zielobjecten zu verbinden. Darüber hinaus schlagen
wir einen zweistufigen Trainingsansatz vor, der die Inferenz innerhalb
eines Online-Systems modelliert und dabei das kostspielige Ausrollen von
verfolgten Objekten vermeidet. Insgesamt verbessert unsere Methode die
Stabilität und Leistung der Verfolgung erheblich.

Danach untersuchen wir die Verbesserung der langfristigen Stabilität
der Verfolgung in Videosequenzen. Dies geschieht im Kontext der Über-
wachung einer Flotte von Robotern aus Weitwinkelkameras, wo starke
Verdeckungen und identisch aussehende Roboter eine große Herausfor-
derung darstellen. Wir formulieren die Aufgabe daher als einen Multi-
Plattform-Sensorfusionsansatz, bei dem verfolge Objecte aus der externen
Kameraperspektive mit Messungen kombiniert werden, die von den Robo-
tern durchgeführt werden. Die kurzzeitig verfolgten Objecte werden durch
die Lösung eines diskreten quadratischen Problems, das Kosten darstellt,
die von verschiedenen Teilmodulen erzeugt werden, zu langfristig erkann-
ten Objekten kombiniert. Die Kostengewichtung wird unter Verwendung
der Partikelschwarmoptimierung als Metaheuristik optimiert.

Der dritte Teil der Arbeit erforscht die Anwendung des Quantenrechnens
auf herausfordernde Aufgaben des computerbasierten Sehens und des ma-
schinellen Lernens. Wir betrachten MOT mit diesem Paradigma, indem
wir das Zuordnungs- und Zuweisungsproblem als eine Aufgabe formulie-
ren, die auf einem adiabatischen Quantencomputer (AQC) lösbar ist. Wir
schlagen weiterhin einen iterativen Ansatz vor, um die randbedingungen
darzustellen und zu optimieren, um eine verbesserte Lösungswahrschein-
lichkeit zu erreichen. In der Simulation zeigen wir, dass unser Ansatz mit
dem Stand der Technik auf gängigen Datensätzen konkurenzfähig ist. Mit
einem AQC der Firma D-Wave demonstrieren wir, dass kleine reale Pro-
bleme auf einem Quantencomputer gelöst werden können und bieten eine
eingehende Analyse der Eigenschaften unseres Ansatzes unter Verwendung
synthetischer Beispiele.
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Abschließend nähern wir uns dem effizienten Einsatz eines AQC für
Aufgaben des computerbasierten Sehens und des maschinellen Lernens.
Ausgehend von der Perspektive, dass viele Anwendungen im Quanten-
computerbasierten Sehen als Gruppierungsaufgaben mit zusätzlichen Be-
dingungen formuliert sind, schlagen wir einen Ansatz vor, der alle auf
einem AQC vorgenommenen Messungen nutzt, um alternative hochwertige
Gruppierungslösungen zu generieren. Dies nutzt die bereits vorhandenen
Messungen, um kalibrierte Vertrauenswerte für die Lösungen zu gene-
rieren, mit geringen zusätzlichen Rechenkosten. Wir validieren unsere
Formulierung mit Experimenten in Simulationen und auf einem D-Wave
AQC. Darüber hinaus zeigen wir, dass die Menge der Lösungen verwendet
werden kann, um mehrdeutige Punkte zu eliminieren, und dass dieser An-
satz auch auf reale Daten übertragen wird, die nicht strikt den Annahmen
unserer Ableitung folgen.

ix





P U B L I C AT I O N S

The following publications are included in parts or in an extended version
in this thesis:

• Jan-Nico Zaech, Dengxin Dai, Alexander Liniger, Luc Van Gool. Ac-
tion Sequence Predictions of Vehicles in Urban Environments using
Map and Social Context. IEEE/RSJ International Conference on Intel-
ligent Robots and System (IROS), 2020.

• Arka Mitra*, Lukas Molnar*, Jan-Nico Zaech*, Yan Wu , Carlos Oliveira,
Seonyeong Heo, Fisher Yu, Luc Van Gool. Multi-Domain Referee
Dataset: Enabling Recognition of Referee Signals on Robotic Platform.
IROS Workshop on Human Multi-Robot Interaction, 2023. * Joint first
authors listed alphabetically.

• Jan-Nico Zaech, Alexander Liniger, Dengxin Dai, Martin Danelljan,
Luc Van Gool. Learnable Online Graph Representations for 3D Multi-
Object Tracking. IEEE Robotics and Automation Letters 7, 5103, 2022.

• Giuliano Albanese*, Arka Mitra*, Jan-Nico Zaech*, Yupeng Zhao* ,
Ajad Chhatkuli, Luc Van Gool. Optimizing Long-Term Player Tracking
and Identification in NAO Robot Soccer by fusing Game-state and
External Video. IEEE Winter Conference on Applications of Computer
Vision (WACV), 2024. * Joint first authors listed alphabetically.

• Jan-Nico Zaech, Alexander Liniger, Martin Danelljan, Dengxin Dai,
Luc Van Gool. Adiabatic Quantum Computing for Multi Object Track-
ing. IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022.

• Jan-Nico Zaech, Martin Danelljan, Tolga Birdal, Luc Van Gool. Prob-
abilistic Sampling of Balanced K-Means using Adiabatic Quantum
Computing. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

xi



Furthermore, the following publications were part of my Ph.D. research,
but not included in this thesis.

• Peshal Agarwal, Danda Pani Paudel, Jan-Nico Zaech, Luc Van Gool.
Unsupervised robust domain adaptation without source data. IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2022.

• Edoardo Mello Rella, Jan-Nico Zaech, Alexander Liniger, Luc Van
Gool. Decoder fusion rnn: Context and interaction aware decoders for
trajectory prediction. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

• Gabriel Herl, Jochen Hiller, Mareike Thies, Jan-Nico Zaech, Mathias
Unberath, Andreas Maier. Task-specific trajectory optimisation for
twin-robotic x-ray tomography. IEEE Transactions on Computational
Imaging, 2021.

• Jan-Nico Zaech, Dengxin Dai, Martin Hahner, Luc Van Gool. Texture
underfitting for domain adaptation. IEEE Intelligent Transportation
Systems Conference (ITSC), 2019.

• Martin Hahner, Dengxin Dai, Christos Sakaridis, Jan-Nico Zaech,
Luc Van Gool. Semantic understanding of foggy scenes with purely
synthetic data. IEEE Intelligent Transportation Systems Conference
(ITSC), 2019.

xii



C O N T E N T S

1 Introduction 1

1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Part I Action Recognition and Prediction
i.I Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Action Sequence Predictions of Vehicles in Urban Environments
using Map and Social Context 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Network Architecture . . . . . . . . . . . . . . . . . . . 13

2.2.2 Input and Output Representation . . . . . . . . . . . . 14

2.2.3 Probabilistic Action Predictions . . . . . . . . . . . . . 15

2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Argoverse . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Map Information . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Automatic Action Labeling . . . . . . . . . . . . . . . . 17

2.3.4 Test Data and Ordered Action Sequences . . . . . . . . 19

2.3.5 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Evaluation Approach . . . . . . . . . . . . . . . . . . . 22

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Direct Evaluation . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 N-Most Likely Ordered Sequences . . . . . . . . . . . . 24

2.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.4 Dataset Scale study . . . . . . . . . . . . . . . . . . . . . 27

2.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 28

3 Multi-Domain Referee Dataset: Enabling Recognition of Referee
Signals on Robotic Platforms 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Referee Actions . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Real Data - Test Setting . . . . . . . . . . . . . . . . . . 34

3.2.3 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . 36

xiii



xiv contents

3.2.4 Real Data - Chroma Key . . . . . . . . . . . . . . . . . . 37

3.2.5 Data Split . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Part II Multi-Object Tracking
iI.I Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Learnable Online Graph Representations for 3D Multi-Object
Tracking 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Graph Representation of Online MOT . . . . . . . . . . 56

4.2.2 Neural Message Passing for Online Tracking . . . . . . 59

4.2.3 Training Approach . . . . . . . . . . . . . . . . . . . . . 63

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Optimizing Long-Term Robot Tracking with Multi-Platform Sen-
sor Fusion 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Data and Application . . . . . . . . . . . . . . . . . . . 75

5.2.2 Camera Calibration and Pose Estimation . . . . . . . . 75

5.2.3 Multi Object Tracker . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Jersey Color Detection . . . . . . . . . . . . . . . . . . . 77

5.2.5 Robot States . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.6 Global optimization . . . . . . . . . . . . . . . . . . . . 78

5.2.7 Cost terms . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.8 Optimization of Cost Weighting . . . . . . . . . . . . . 80

5.2.9 Reference Method: DeepSORT . . . . . . . . . . . . . . 81

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Feature Importance . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Part III Quantum Computer Vision and Machine Learning
iII.I Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iII.II Basics of Quantum Computing . . . . . . . . . . . . . . . . . . 93

6 Adiabatic Quantum Computing for Multi-Object Tracking 97



contents xv

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Quantum MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Traditional Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Hessian Regularization . . . . . . . . . . . . . . . . . . 105

6.3.2 Post Processing . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 Lagrangian Multiplier . . . . . . . . . . . . . . . . . . . 107

6.4.2 MOT15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Probabilistic Sampling of Balanced K-Means using Adiabatic Quan-
tum Computing 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Energy-Based Models . . . . . . . . . . . . . . . . . . . 117

7.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.3 Clustering as QUBO . . . . . . . . . . . . . . . . . . . . 119

7.3 Probabilistic Quantum Clustering . . . . . . . . . . . . . . . . 120

7.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.3 Boltzmann Reparametrization . . . . . . . . . . . . . . 122

7.3.4 Maximum Pointsets . . . . . . . . . . . . . . . . . . . . 123

7.3.5 Inference Parameter Optimization . . . . . . . . . . . . 124

7.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 124

7.4.1 Solver Methods . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.2 Dataset and Metrics . . . . . . . . . . . . . . . . . . . . 125

7.4.3 Calibration Performance . . . . . . . . . . . . . . . . . . 126

7.4.4 Clustering Performance . . . . . . . . . . . . . . . . . . 127

7.4.5 Maximum Pointsets . . . . . . . . . . . . . . . . . . . . 128

7.4.6 IRIS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Conclusion 131

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 131

8.2 Discussion, Limitations and Future Work . . . . . . . . . . . . 133

8.2.1 Action Sequence Predictions of Vehicles in Urban
Environments . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2.2 Recognition of Referee Signals on Robotic Platforms . 134

8.2.3 Learnable Online Graph Representations for 3D MOT 136

8.2.4 Long-Term Robot Tracking with Multi-Platform Sen-
sor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 137



xvi contents

8.2.5 Adiabatic Quantum Computing for Multi-Object Track-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2.6 Probabilistic Sampling of Balanced K-Means using AQC138

Bibliography 141



A C R O N Y M S

AP Average Precision

AQC Adiabatic Quantum Computing/Computer

CNN Convolutional Neural Network

FPN Feature Pyramid Network

HMM Hidden Markov Model

IoU Intersection over Union

k-NN k-Nearest Neighbors

MLP Multilayer Perceptron

MOT Multi-Object Tracking

MPIR Mean Player Identification Recall

NMS Non-Maximum Suppression

PSO Particle Swarm Optimization

QA Quantum Annealing/Annealer

QUBO Quadratic Unconstrained Binary Optimization

ReID Person Re-Identification

SIM Simulated Annealing

UMAP Uniform Manifold Approximation and Projection

xvii





1
I N T R O D U C T I O N

Autonomous systems have sparked fascination in their users and designers
for a long time. Ancient and early examples mostly include sophisticated
automata used for entertainment and serving as curiosities. These machines,
while not "autonomous" in the sense of today’s systems, showcased the
potential of using mechanical and later electrical systems to perform tasks
without constant human intervention. They range from the Greek "Theater
of Heron" and flying automata described by Mozi in China, to Al-Jazari’s
work in the "Book of Knowledge of Ingenious Mechanical Devices." This
evolution peaked in the Renaissance period, notably with Leonardo da
Vinci’s inventions and drawings.

Later, the 20th century marked an important era for autonomous sys-
tems with the advent of computers and subsequently, the field of robotics.
Scientists and inventors such as Alan Turing, who theorized about ma-
chine intelligence, and Norbert Wiener, the founder of cybernetics, laid the
foundation leading to today’s autonomous systems.

The later part of the century and the beginning of the 21st century brought
the rise of machine learning, particularly deep learning, and increased com-
putational power. These have revolutionized the capabilities of autonomous
systems and lifted them to the level where they can be encountered in many
daily situations. Today’s autonomous vehicles, drones, and sophisticated
robots build on top of vast amounts of data, use intricate algorithms, and
have capabilities that span beyond hard-coded tasks. These systems can
learn, adapt, and make decisions in real-time.

Even with their presence in daily situations, autonomous systems have
not lost any of their enchantment and we see more and more autonomous
systems interact directly with humans. However, to create a space that is
shared by humans and robots on a large scale, a considerable number of
challenges still need to be solved. Out of these, comprehensively under-
standing the environment is one of the most challenging and important
ones as it is a key step towards operating safely. While it is very natural for
a human to have situational awareness and to know what happens around
oneself, it is hard to strictly and uniquely formalize this task and it needs
to be approached on multiple levels of abstraction, which is the core theme
of this thesis.

1
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Figure 1.1: Overview of the thesis structure. The main theme is covering computer
vision components in an autonomous system framework. Starting from high-level
scene understanding the thesis advances towards more fundamental tasks of
computer vision.

In the first part of the thesis, the highest level of understanding is ap-
proached, where the actions and intent of all agents in a scene must be de-
tected and predicted. This information can be used within the autonomous
framework to allow for long-term planning, to build a global state repre-
senting the scene as well as to provide interpretable information to any
human working with the system. In the context of driving, an important
responsibility for human drivers is to anticipate the actions of others, even
if it often occurs unconsciously. This helps us to smoothly follow the traffic
flow while keeping special attention and a sufficient distance from vehicles
that are operated in an uncommon way. Furthermore, it allows one to adapt
the driving style to a given scenario such as driving fast in areas where no
risk stems from the observed intentions like in a well-predictable highway
scenario and slowing down in uncertain scenarios like inner city traffic.
In an autonomous vehicle, this information needs to be used similarly to
plan a driving trajectory avoiding any dangerous situations proactively. The
prediction problem often lacks a unique solution. Therefore, we model the
task by predicting the probability of each potential action by a driver. While
this high-level task is important for decision-making further down in a
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whole autonomous driving framework, it also strongly builds on the prior
steps of scene understanding and most importantly, a robust multi-object
tracking pipeline, which forms the second part of this thesis.

Multi-object tracking aims to assign a unique identity to the same object
over multiple frames in a time sequence. It is typically performed for a
predefined set of object types relevant to autonomous driving scenarios,
such as vehicles, pedestrians, and cyclists. While tracking is a fundamental
building block for many autonomous systems, it is far from being solved in
a robust way, especially in scenarios with strong occlusions or fast-moving
objects. One approach towards solving this challenge is the integration of a
model that represents any object that has been observed previously. Such a
model can describe the dynamics and appearance of any object and in the
simplest scenario be matched directly based on the distance between the
predicted state and the state of a detected object. In this thesis, two major
challenges in applying multi-object tracking to real-world scenarios are
approached; the first work aims at integrating motion models and learned
object matching into an online graph-based tracking framework using 3D
LIDAR point clouds. This allows for a considerable improvement in track
stability during occlusions and in cluttered scenarios. The second work
investigates tracking of a fleet of robots, where long occlusions, identical
appearance and clustering robots are the major challenges. We approach
this by fusing the information perceived with each robot’s own camera
with an external camera view, which allows the tracker to follow the robots
throughout a long video sequence. The core of this framework is a quadratic
optimization problem for sensor fusion, which allows the merging of short
tracklets into long tracks. However, similar to many discrete optimization
problems in computer vision, this is hard to solve and constrained in its
scale.

With quantum computing, a possible solution to this challenge is dis-
cussed in the last part of the thesis. Quantum algorithms promise a consid-
erable speedup over their classical counterparts that are computationally
prohibitive. Typical examples noteworthy in this context are Shor’s prime
factorization algorithm [205] and Grover’s quantum search algorithm [81],
which both improve the performance on these hard-to-solve problems. In
computer vision, quantum computing has only recently been a topic of
attention, and the works mostly focus on finding formulations that fit the
architecture of a quantum computer. This often requires investigating the
computational problem from scratch, as existing formulations are optimized
to be efficiently solvable on classical hardware, which not necessarily is
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the best formulation for a quantum-computing approach. Our work on
quantum computing for multi-object tracking follows this approach by
stating a frame-based formulation of the tracking assignment problem as
a quadratic optimization problem. Furthermore, it investigates ways to
modify the problem such that it can be solved with high probability and
presents experimental results on a quantum annealer.

A second, still mostly open question in quantum computer vision is
related to efficiently using a quantum computer, which most fundamental
quantum computing research currently focuses on. On the other hand,
quantum computer vision initially examines the application, aiming to
enhance performance subsequently. In this thesis, the efficiency of quantum
computing algorithms is approached for probabilistic k-means clustering.
While most previous work discards all but the best solution measured on
a quantum annealer, our work utilizes all measurements to provide a set
of high-quality solutions together with calibrated confidence scores. This
comes with little additional computational cost, as multiple measurements
have to be performed in any scenario to assert a high probability of solving
the task at hand.

1.1 thesis structure

The following parts of the thesis are structured according to Figure 1.1. The
thesis follows the theme of vision for autonomous systems, where the main
topics of action prediction and understanding, multi-object tracking and
quantum computing for computer vision are covered. Each of the three
topics is introduced with a section presenting related work, each followed
by two chapters covering different topics that were investigated as part
of this work. Furthermore, a chapter introducing the basics of quantum
computing is included to make the thesis more accessible to readers with a
computer vision background.



Part I

A C T I O N R E C O G N I T I O N A N D P R E D I C T I O N
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The first part of this thesis investigates high-level scene understanding, es-
pecially the task of understanding the intentions of human agents. Knowing
the intention of humans allows autonomous agents to plan their actions ac-
cordingly, which ensures a safe operation in shared spaces. In Chapter 2, we
investigate this task in the context of an autonomous vehicle. On a dataset
of short trajectories that are recorded by an acquisition vehicle equipped
with a large number of sensors [39], a method that uses semantic maps to
extract high-level actions is presented. We show that a prediction model can
be trained with this data and evaluate the limitations of current datasets.
Chapter 3 studies human action recognition from the perspective of a fleet
of humanoid robots, equipped with low-cost consumer level hardware.
For this task, a multi-domain dataset is presented that aims at reducing
data-collection and annotation costs. Furthermore, an action recognition
method aiming at computational efficiency is developed and deployed on
the humanoid NAO robot.

i.i related work

Behavior prediction formulated as trajectory forecasting for both humans
and vehicles has been extensively studied. This extends to areas like pre-
dicting the high-level intentions of traffic agents and recognizing human
actions in various scenarios.

The line of research closest to the method presented in Chapter 2 this
thesis focuses on predicting high-level intention of traffic agents. It ap-
proaches driver action prediction of the ego vehicle where rich information
about the state is available. Morris et al. [167] use rich sensor data includ-
ing radar, lane marking detection and a head tracking camera to predict
lane changes in a highway driving scenario. Jain et al. [105] extend this
approach to a larger set of maneuvers and base their method on a video
of the driver, maps, vehicle dynamics and an outside view in more diverse
environments. In [88] surround video and map renderings are used to
predict yaw and acceleration in an end-to-end framework. [201] forecast
lane changes of other traffic agents in highway scenarios and analyze the
challenge of heavily imbalanced data in this context. In more challenging
urban environments, [118] classify driving actions at structured four-way
intersections with an LSTM-based approach.

Early approaches to trajectories prediction, combine maneuver recogni-
tion with parametric motion models for each maneuver. Laugier et al. [130]
use a Hidden Markov Model (HMM) with access to high-level information
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such as distance to lane borders, signaling light status or proximity to
an intersection to recognize behaviour of traffic agents. Trajectories are
then sampled from a Gaussian process and used for evaluating collision
risks. The same task is approached in [202] by detecting maneuvers with
a Bayesian network. Houenou et al. [99] propose a heuristic maneuver de-
tection module with full environment knowledge including each vehicle’s
acceleration and yaw angle, together with an analytic description of trajec-
tory sets. By using a variational Gaussian Mixture Model, Deo et al. [54, 55]
implement probabilistic trajectory prediction for highway scenarios in the
combined maneuver and trajectory prediction framework. Recently, [38]
used a neural network-based approach to combine intention and trajectory
prediction with dynamic HD maps and LIDAR information.

A second group of trajectory prediction algorithms directly approaches
the task without intermediate state representations. Lee et al. [135] propose
an end-to-end trainable recurrent neural network structure that includes
scene context and samples multiple trajectories to capture the multi-modal
nature of trajectory prediction. In [92], a wide range of output represen-
tations are evaluated in combination with a fully convolutional encoder
structure. By defining a graph structure, [139] explicitly models the relation
between multiple traffic agents and uses an LSTM-based encoder-decoder
model to predict trajectories. Closely related to trajectory prediction, re-
searchers at Waymo [14] learn a driving policy using rich maps and employ
data augmentation to train robust models. By building a more strongly con-
nected graph and learning relations subsequently, attention-based methods
were able to further improve the utilization of agent relations [164, 189, 197].
Recently Scene Transformer [173] approaches the task of jointly predicting
all traffic agents with a transformer architecture, which further strengthens
the relationship modeling throughout the whole prediction pipeline.

In the context of pedestrian prediction and tracking, a central challenge
is the modeling of interactions. Pellegrini et al. [179] show that social
interactions and scene knowledge can boost tracking performance. [6, 82]
predict trajectories based on past ego and social trajectory observations,
while matching not only trajectories but also distributions. Sadeghian et
al. [196] include world context using a top-down view and add attention to
select the parts of the environment that are important. With a similar focus
to our work, but in the context of pedestrian prediction, [210] explicitly
investigates its multi-modal nature. Aiming at the interaction between
a vehicle and pedestrian Zhang et al. [252] introduce a module into the
network to specifically learn this behavior. Similar to predicting vehicle
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trajectories, Transformers are used to model more complex social interaction
among pedestrians [204, 228, 245, 251].

Parallel to this, human action recognition has been a cornerstone chal-
lenge in the computer vision community [24, 34, 60, 62, 107, 115, 206, 207,
216, 222, 227]. With the advent of deep learning, Simonyan and Zisser-
man [206] introduce a two-stream convolutional neural network for action
recognition, laying the foundation of deep video action recognition. Sub-
sequent works, such as the two-stream I3D [34], TSN [222], LRCNs [60]
also make great progress on proposing innovative networks to capture the
spatiotemporal features for video action recognition. Recently, the attention
mechanism [78, 158, 169] is also introduced in the field of HAR. Further-
more, attention mechanisms were used as they are especially well suited
for processing higher-level information such as skeleton data [182, 187].

For training these models, large human action recognition datasets are
required. Besides a high annotation effort that is present for many tasks,
they need to strongly account for privacy concerns when collecting humans
performing a wide range of activities. UCF101 [207], HMDB51 [128], and
Kinetics [115] are several widely-used large-scale video datasets for action
training deep recognition networks, which cover a diverse set of human
activities. However, collecting and annotating large-scale video datasets
require tedious work, and therefore, synthetic datasets are also used to
train visual models for many computer vision tasks [51, 74, 85, 156, 157,
218, 249].

Though models trained with synthetic datasets can show an acceptable
performance when testing on real-world scenarios [74, 85, 156], the domain
gap between the synthetic domain and the real domain remains to be an
issue [180]. Two ways to approach this problem are domain adaptation [4,
101, 243, 247, 253] or the simulation and generation of more realistic data [84,
91, 218], which is the concept chosen in the method presented in Chapter 3.





2
A C T I O N S E Q U E N C E P R E D I C T I O N S O F V E H I C L E S I N
U R B A N E N V I R O N M E N T S U S I N G M A P A N D S O C I A L
C O N T E X T

In this chapter, we study the problem of predicting the sequence of future
actions for surrounding vehicles in real-world driving scenarios. To this aim,
we make three main contributions. The first contribution is an automatic
method to convert the trajectories recorded in real-world driving scenar-
ios to action sequences with the help of HD maps. The method enables
automatic dataset creation for this task from large-scale driving data. Our
second contribution lies in applying the method to the well-known traffic
agent tracking and prediction dataset Argoverse, resulting in 228,000 action
sequences. Additionally, 2,245 action sequences were manually annotated
for testing. The third contribution is to propose a novel action sequence
prediction method by integrating past positions and velocities of the traffic
agents, map information and social context into a single end-to-end train-
able neural network. Our experiments prove the merit of the data creation
method and the value of large automatically annotated datasets – prediction
performance improves consistently with the size of the dataset and shows
that our action prediction method outperforms comparing models.

2.1 introduction

Autonomous driving is expected to fundamentally change our understand-
ing of mobility and give us safer and more efficient traffic. One fundamental
building block to achieve this is the ability to predict future actions of other
road users. Only if one is able to accurately predict the potentially multi-
modal future, collisions can be avoided. However, predicting future actions
and trajectories of other road users requires a comprehensive understanding
of traffic scenarios. This includes understanding the static and dynamic
environment, as well as the traffic rules and the unwritten rules that govern
how road user interact with each other.

The most common approach in this research direction is to directly
predict the trajectories of other vehicles. While this is intuitive, allows for
fully automatic data collection with today’s test vehicles and yields a good

11
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Figure 2.1: Concept of the proposed method: Based on trajectory and map
information, high-level action sequences are predicted for surrounding vehicles.
This representation is well interpretable and can potentially facilitate downstream
planning tasks.

representation for decision-making and planning algorithms, it does not
consider well that humans learn driving as a sequence of actions and also
interpret driving scenarios that way. Furthermore, many traffic rules are
defined as high-level representations using driving maneuvers. Thus an
autonomous driving system requires emphasis on anticipating high-level
actions of surrounding vehicles to better plan its own actions and to be
more interpretable to humans.

To overcome the aforementioned challenges, we propose to state the prob-
lem of predicting traffic agents as the task of predicting action sequences
and create a large-scale action prediction dataset based on real driving data.
To circumvent the expenditure for manual annotations, we design an auto-
matic method to convert trajectories of real-world traffic agents into action
sequences. We apply the method to the large-scale dataset Argoverse [39]
and compile a new action prediction dataset. The dataset contains 228,000

action sequences and features five distinct driving actions: cruise ( , c), turn
left ( , tl), turn right ( , tr), lane change left ( , ll) and lane change right ( , lr)
that describe normal vehicle operation. For testing, 2,245 trajectories from
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the validation set have been manually annotated. The dataset allows us to
train and compare models in a quantitative way in terms of their ability to
predict a sequence of future actions.

We further propose an end-to-end trainable neural network that uses
the past positions and velocities of the traffic agents, the map information
and the social context to predict the future actions of the traffic agents.
To fully leverage the power of convolutional neural networks (CNNs), we
encode the information into a rendered image with multiple channels and
use 2D and 3D CNN modules for prediction. As future actions are often
uncertain and multimodal, our model outputs a probabilistic distribution
of all plausible actions which can facilitate downstream planning. Fig. 2.1
showcases the concept of our action prediction approach.

2.2 method

First, our method introduces an interpretable representation of traffic agents
by forecasting high-level action sequences of a single traffic agent. Second,
our method is completely learning-based and uses a sequence of maps,
agents, as well as social information (other traffic agents) to predict the agent
action sequence. This is done using a fully convolutional neural network
with two-dimensional convolutions for computing spatial features and two
three-dimensional layers for late and early fusion of temporal features. The
network head is a fully connected layer that predicts the complete action
sequence of the traffic agent at once with a single forward pass through the
network. Finally, to make this method applicable for large-scale datasets,
we introduce an automatic approach to generate action sequences from X-Y
trajectory data and map information. Note that our method is entity-centric
and only predicts the action sequence of one agent, however, we consider
other traffic agents during prediction.

2.2.1 Network Architecture

We use a VGG-inspired architecture for action sequence prediction, which
is shown in Fig. 2.2. Like [92], early and late fusion of temporal features is
performed with three-dimensional convolutions. To avoid overfitting on the
training data, we use a smaller model compared to some fully convolutional
trajectory prediction approaches [92].
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Figure 2.2: VGG inspired network architecture, with 2D convolutions to extract
spatial features and 3D convolutions for early and late temporal fusion.

2.2.2 Input and Output Representation

The input to our neural network consists of three components: target agent,
map, and social information. All the information is provided in a tensors
with spatial dimension 128× 128 and 7 channels at every timestep. We
consider this combined information as our observation at time t, which we
denote as Ot. More precisely, Ot is given as,

Ot =
(

m, 1target, vtarget, 1other, vother

)

t
, (2.1)

where, all components are rendered frames, spanning 50 m × 50 m. All
frames are centered at the target agent’s last observed position and rotated
towards its driving direction. Each observation Ot contains one layer for
the rendered lane centerlines m which stays fixed for all time steps. As
the map only consists of centerline information, it can easily be captured
with current industry grade perception systems and is present in most rich
maps. Still, it naturally extends to more extensive information that might
be available from manual annotations or more advanced data acquisition
systems. Additionally, in Ot the target agent is represented by three layers:
1target,t, which is the indicator function representing the target agent’s
position by a one-hot encoded layer and two layers vtarget,t representing
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the current velocity in global coordinates. The other agents are represented
the same way, but with all agents jointly rendered into the three available
channels.

Altogether, the input to the network are the last five observations,

O =
(

Ot−4 , Ot−3 , Ot−2 , Ot−1 , Ot0

)

, (2.2)

where the observations are spread over the last two seconds, with t ∈
(−2 s,−1.5 s,−1 s,−0.5 s, 0 s).

To improve the performance and robustness of our method, data aug-
mentation is used. More precisely, we rotate the network input randomly by
θ, which is uniformly sampled from the range −5◦ ≤ θ ≤ 5◦. To perform
the augmentation efficiently and without artifacts, all input data is stored
in parametric form and rendered on the fly.

The output of the network is an independent probability distribution of
the 5 action classes for 30 timesteps. With a sampling time of 100 ms, this
results in a prediction horizon of 3 s. Note that the temporal relation and
implicit dependence need to be learned by the model from the training
data.

2.2.3 Probabilistic Action Predictions

In contrast to trajectory forecasting methods, our approach directly returns
probabilistic predictions, without any requirement for sampling multiple
forecasts [135] or defining spatially discretized grid-maps, as done in [92,
120]. Furthermore, this also allows for transparent performance measures
since action classes can easily be interpreted by humans. The performance
evaluation of trajectory prediction methods on the other hand normally uses
averaged displacement errors. Even though this seems to be a transparent
evaluation, due to imbalanced datasets, where following the current lane
(our cruise action) is heavily over-represented, getting better displacement
error does not necessarily imply that the method is better at forecasting
the important corner cases. Note that the imbalance in the datasets can
be massive, e.g. our dataset consists of 80% cruise states, however, there
are other traffic environments where cruise trajectories can make up as
much as 99% of the dataset [201]. This imbalance also explains that often
simple constant velocity forecasting methods are competitive for short
prediction horizons [92], even though they lack any understanding of the
traffic scenario.
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By predicting action sequences, our method does not directly solve the
imbalance in the dataset. However, our evaluation method is more fine-
grained and focuses on complex scenarios that require understanding the
traffic scene.

2.3 dataset

Many large-scale datasets for visual tasks in autonomous driving such as
image segmentation, object detection or depth estimation have been released
in recent years and fueled the development of corresponding learning-based
methods [31, 39, 76, 116]. In contrast to this, modeling and prediction of
human decision-making in driving scenarios is heavily underrepresented,
which can be attributed to the lack of data. Public datasets, while being
suitable for vision tasks, fall short when approaching the task of modeling
human driving behavior in complex environments. Furthermore, most
datasets directly intended for this purpose remain private [38, 92].

2.3.1 Argoverse

An exception is the Argoverse Trajectory Forecasting dataset [39], which
contains approximately 325,000 automatically detected trajectories in an
urban environment. Out of them, 245,000 cover 5s segments that can by
used for our approach1. The dataset further provides basic semantic map
information, including lane centerlines and the drivable area. We augment
this dataset by automatically annotating high-level actions such as lane
changes and turns that are interpretable by humans and have the potential
to boost low level tasks like trajectory forecasting [55]. Finally, we also
automatically extract the velocity information of the agents, which further
helps our prediction model.

2.3.2 Map Information

As shown and discussed in Section I.I, using HD-map information can be
fundamental for traffic agent forecasting. However, we show that HD-maps
can also be used to automatically annotate data, or in our case generate
high-level action sequences from trajectories. This avoids time and labor-
intensive manual labeling, and at approximately 245,000 trajectories in

1 80,000 trajectories are in the test set and only show 2s segments.
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Argoverse, which corresponds to roughly 7.5M action annotations, this is
the only viable approach.

On the one hand, relying on HD-maps for action sequence generation,
is in our opinion not restrictive, since maps are regarded essential for the
safe operation of autonomous vehicles. On the other hand, for large-scale
datasets, annotating a semantic map with lane centerlines, which remains
constant over time, scales favorably compared to annotating every time
step of every agent recorded during driving. Furthermore, as current lane
detection algorithms show impressive performance in a wide range of
practical scenarios, automatic extraction of local map information could be
feasible to further automate the labeling process.

For the task of action sequence annotation, the semantic HD-map avail-
able in [39] can be represented as a graph where each node corresponds to
a short sequence of line segments and edges represent the relation between
the line segments, which is visualized in Fig. 2.3. Edges can have the labels
successor, predecessor, and neighbor lane-segment. Nodes contain the geo-
metric properties describing the lane segments and semantic information if
the segments describe a turn (either left or right) or a lane driving straight
forward.

2.3.3 Automatic Action Labeling

Action extraction from trajectories is performed in a three-stage pipeline
described in the following paragraphs.

trajectory smoothing As the trajectories are generated from auto-
matically detected objects, all samples are noisy and need to be filtered
in the first stage. For this purpose, we use a bidirectional Kalman filter
with a standard constant acceleration model, where the jerk is modeled as
a noise input and we use the agent’s noisy position as the measurement.
Note that this filter does not only help to smooth the agent’s position but
also estimates the velocity of the agent.

lane assignment In the second stage of the annotation pipeline, each
sample from the trajectory is assigned to a node, which represents a lane
segment in the graph map as shown in Fig. 2.3. Following the temporal
order of samples, each trajectory induces a sequence of nodes that are
visited. If the sequence of nodes follows a valid path through the graph,
i.e. a path that only contains transitions between nodes that are connected
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Figure 2.3: Map represented as rendered centerlines and as graph-map. Each
centerline corresponds to a node in the graph-map which are connected by edges
labeling their semantic relation.

by an edge, actions can be extracted from the graph. The property that
only a valid path allows for the extraction of an action sequence form the
base to design the node assignment algorithm. Using a purely geometric
approach, where each sample is assigned to its nearest neighbor in an
arbitrary measure, could lead to a large fraction of invalid trajectories.
We thus propose to use a joint geometric and semantic lane assignment
algorithm based on the Viterbi algorithm.

One can interpret a trajectory as the observation from an HMM defined
by the graph map together with actions as latent variables. The graph-map
induces a HMM, where the lane segment used by the agent at time step t
corresponds to the hidden state Xt and its position Yt ∈ R

2 is the symbol
emitted by the state. The emission probability

P(Yt|Xt = xt) (2.3)

captures the driver’s behavior of not perfectly following the centerline,
uncertainties in the map and measurement noise. Using this viewpoint,
the actions taken by the agent define the sequence of hidden states, or
inversely: inferring the most likely sequence of hidden states from the
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observed trajectory is equivalent to finding the underlying action sequence.
This task can be solved with the Viterbi algorithm.

To reduce computational complexity, only lane segments that are closer
than a threshold of 5 m to the observed trajectory are included as hidden
states in the HMM. Prior knowledge about the driving behavior can be
encoded in the transition matrix A between lane segments, which we popu-
late using the edges of the graph-map that describe the relation between
lane segments. For the possible transitions to a successor, predecessor or
neighbor lane, values of 1.0, 0.5 and 0.3 are assigned respectively. For transi-
tions between non-connected lanes, a skew variable α is introduced. Setting
α = 0, yields state sequences that can always be annotated, given the map
information is valid. This also includes trajectories that actually cannot be
modeled by the 5 action classes used in our approach, such as U-turns.
Thus, we set α = 0.001 which allows for transitions between unconnected
lane segments, preventing the annotation of an action sequence for cases
that cannot be annotated with the given set of actions. It is important to
note that for the transition matrix A the sum of entries from a state does not
necessarily sum up to 1 and thus, does not represent a traditional transition
probability matrix. We use this representation to not penalize lane segments
that have multiple lanes connected to them in the graph map, such that
trajectories going through them do not come at a higher cost.

action extraction With the most likely sequence of lane-segments
determined by the Viterbi algorithm, actions can be extracted from the
map information with a rule-based system. Lane changes are labeled for
transitions between lane segments marked as neighbors2 and turns can
directly be labeled from the turn annotation in the lane segment.

All actions are handled as non-singular events, e.g. the lane change
state is annotated for all time steps between leaving the previous lane and
stabilizing on the new lane. To enable this, the smoothed trajectory together
with the lane geometry is used to extract the start and end point of all
maneuvers.

2.3.4 Test Data and Ordered Action Sequences

For testing, 2245 trajectories from the validation set have been manually an-
notated. However, the annotator did not generate temporal action sequences,

2 Corner cases such as the direct change to the neighbor of a successor lane need to be modeled
and handled adequately.
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but what we call ordered action sequences. Whereas action sequences, as
produced by our automatic labeling, contain an action for each time step,
ordered action sequences only contain the order of actions. To make this
clear, let us consider a simple left lane change example where the prediction
horizon is six time steps. In our example, the action sequence is given by
as = (c,c,ll,ll,c,c). This action sequence would correspond to the following
order action sequence aos = (c,ll,c), thus the exact temporal location of the
lane change is lost, however, the gist of the maneuver is captured.

Annotating ordered action sequences is also significantly simpler and
less error prune, compared to temporal action sequences. Thus, for our 2245
test trajectories, we have manually annotated ordered action sequences for
the 3 s prediction horizon. Note that to avoid bias, the annotator had no
access to the automatically generated labels.

2.3.5 Dataset Statistics

While the trajectories present in the Argoverse dataset are already filtered
to show challenging behavior, the extracted action data is still imbalanced,
with the majority of the samples representing the cruise class as shown in
Table 2.1. While this mostly stems from the lower probability of encounter-
ing an active maneuver compared to just following a lane in cruise, it also
reflects the fact that a turn or lane change is usually followed by the traffic
agent stabilizing in the cruise state.

Whereas generating the dataset statistics for our automatically generated
action sequences in the training and validation set is based on the number of
occurrences, the statistics for the ordered action sequences use an adapted
method. State proportions are estimated by counting states with the inverse
number of total states annotated for the corresponding sequence, e.g. a
sequence only annotated as cruise counts 100% towards cruise, while a
sequence consisting of cruise and a following lane change counts with 50%
towards both classes. In total, the state distribution for the train, validation,
and test set is as shown in Table 2.1.

2.4 experiments

2.4.1 Training

Network parameters are optimized with the Adam optimizer and an initial
learning rate of 10−4. A step decay schedule with a stepsize of 10 epochs



2.4 experiments 21

Turn Change

Split Total Cruise left right left right

train 191,841 84.5% 7.6% 4.0% 2.1% 1.9%

val 36,471 87.5% 4.0% 3.2% 2.9% 2.4%

manual 2,245 87.2% 4.1% 2.7% 3.5% 2.6%

Table 2.1: Label distribution of the annotated data.

and a factor of 0.5 is used for adapting the learning rate. Dropout of 0.5 is
used to reduce overfitting. All variations of the network are trained for 50

epochs.
To compensate for the heavily imbalanced dataset, weighted random

sampling is used for dataloading. Weights are assigned based on the pres-
ence of actions anywhere in the prediction horizon: if a turn is present,
the sample gets weighted with a factor of 3, if a lane-change is present,
the weighting factor is set to 10. This does not fully compensate for the
imbalance but performed better than strictly weighting samples by their
inverse probability.

Note that the positions and velocities of all traffic agents used in the input
representation in Equation (2.1) are extracted from the noisy trajectory data
with a bidirectional Kalman-filter, as described in Section 2.3.3. However, to
ensure causality, the filter is only applied to the observed values.

2.4.2 Baseline Model

By proposing a new formulation of the traffic agent prediction task, no
direct comparison to other methods is possible. However, trajectory fore-
casting methods are intended to predict a trajectory that represents the
future actions of the agent. Therefore, it is possible to adapt a method origi-
nally designed for trajectory prediction to the new task. For our evaluation,
a k-Nearest-Neighbor (k-NN) based method that was evaluated in [39]3

and outperformed all their tested deep learning models for multimodal
prediction is adapted to our problem statement and used as a baseline-
model for comparison. With the nearest neighbors in the training set, the
automatically extracted action sequences can be used as a prediction for

3 arXiv:1911.02620 [v1] 6 Nov 2019
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Turn Change

Method Mean Cruise left right left right

random 20.0 87.5 4.0 3.2 2.9 2.4

k-NN (9) [39] 32.5 93.5 32.9 26.3 5.4 4.2

k-NN (50) [39] 36.9 95.0 39.2 34.7 8.2 7.1

k-NN (100) [39] 37.4 95.3 39.7 35.4 8.6 8.0

ours 61.4 97.8 67.9 68.4 33.5 39.4

Table 2.2: AP scores of the investigated methods on the automatically annotated
validation set. Random sampling performance corresponds to the dataset propor-
tion for each class. All scores in %.

the task at hand. Given the predictions from k-NN, the frequency of class
labels at each time step results in a prediction that matches the probabilistic
form of our proposed approach. We set k ∈ {9, 50, 100} to compare the
influence of sampling multiple trajectories and select the best model for
further comparison.

2.4.3 Evaluation Approach

2.4.3.1 Direct Evaluation of Predictions

Interpreting every time step as an independent classification problem allows
for the direct evaluation of the network’s performance. As the data is heavily
imbalanced, classification accuracy on the whole dataset does not provide
sufficient insight. Therefore, we measure performance by representing every
action class as a binary classification problem, which allows the calculation
of the average precision (AP) score. AP for each class and their unweighted
average denoted as mean AP across all five action classes are used as a
performance measure. This direct evaluation approach jointly measures
the performance of predicting the right action classes together with the
performance of predicting the right time step for a transition between two
actions.
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2.4.3.2 N-Most Likely Ordered Action Sequences

In addition to directly measuring the model’s precision on the temporal
action predictions, we evaluate our method by extracting the N-most likely
ordered sequences of actions, i.e. sequences that are only defined by the
order of actions, not their exact length or transition times.

The extraction of the N-most likely ordered action sequences, is sensible
as the number of different actions in the 3 s prediction horizon is small.
For our test set only 10 samples, corresponding to 0.45% of the manual
annotations, were labeled as a sequence of more than two actions. Therefore,
for extracting ordered action sequences from the temporal action sequence
predictions, we only consider sequences with at most two actions, which
makes the approach tractable.

When extracting ordered action sequences, the model of independent
actions used during training needs to be taken into account. While this
assumption is a good model for the probability of an agent performing
action at at time step t, it is not suitable to approximate the probability of
observing a full action sequence as = (a0, ...aT). By just using the product
of the predicted probabilities

pind = ∏
t

p̂at
t , (2.4)

as an estimate for the sequence probability, the high temporal correlation of
actions is neglected. We thus model the probability of a sequence with the
two actions (ab1, ab2) by

pb(ab1, ab2, ts) = min( p̂
ab1
t0

, ..., p̂
ab1
ts

)min( p̂
ab2
ts+1, ..., p̂

ab2
T ), (2.5)

where the transition happens after time step ts leading to the blocks t0 ≤
t ≤ ts of ab1 and ts < t ≤ T of ab2. Given that within a block no transition
may happen, the transition probabilities between identical actions are 1.
Therefore, the total probability of the first block can be modeled as the
lowest predicted probability for ab1 within t0 ≤ t ≤ ts

min( p̂
ab1
t0

, ..., p̂
ab1
ts

). (2.6)

Note that the same holds for ab2 and the second block. Under the assump-
tion that rare combinations, such as a left turn directly followed by a right
turn, are assigned low probabilities by the network, the transition proba-
bilities between the blocks are modeled as being equal for all action pairs
(ab1, ab2).
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The problem of finding the most likely ordered sequence of two actions
can then be defined as finding (ab1, ab2, ts) that maximize the product of
the two block probabilities

pb,opt = max
ts ,ab1,ab2

pb(ab1, ab2, ts). (2.7)

By repeatedly searching for the most likely sequence while suppressing al-
ready extracted action pairs (ab1, ab2), the N-most likely ordered sequences
can be extracted. We report total and per sequence top-N accuracy with
N ∈ {1, 2, 3} in Table 2.3 on manually annotated data. A sequence is rated
as being detected if the ground truth ordered state sequence is one of the
top-N predictions. Trajectories that are annotated with sequences of length
> 2 are always treated as being predicted incorrectly when computing the
total accuracy.

2.5 results

2.5.1 Direct Evaluation

Performance metrics for the direct evaluation of predictions for the k-
NN baseline [39] and our proposed method are shown in Table 2.2. The
results affirm that increasing the number of sampled nearest neighbors
by one magnitude (k=100) compared to the usual setting can improve its
performance. Across all methods, the AP for the cruise state is on a high
level, followed by turn actions. Lane changes are harder to predict with AP
values at a much lower level. Also, the largest relative improvement of the
proposed method compared to the baseline implementation can be seen for
the two lane change action classes.

This may be explained by the dataset statistics together with the shape of
lane change trajectories. While lane changes as well as turns are underrep-
resented in the training data, turns have a much more distinct trajectory
shape and thus can be detected more easily, even without modeling them
explicitly.

2.5.2 N-Most Likely Ordered Sequences

Results of evaluating our proposed as well as the best-performing baseline
method on the manually annotated ordered sequences are provided in
Table 2.3. In contrast to the baseline model, where the cruise action class is
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Ours k-NN (100) [39]

Sequence Top1 Top2 Top3 Top1 Top2 Top3

total 82.5 89.8 93.0 81.2 86.4 88.6

c 94.1 96.2 97.9 99.6 99.8 99.9

ll, c 65.7 85.7 95.7 1.4 27.1 41.4

tl 63.3 69.4 73.5 14.3 18.4 26.5

lr, c 44.7 72.3 83.0 0.0 36.2 53.2

tl, c 25.0 65.0 87.5 32.5 95.0 97.5

tr, c 42.5 75.0 80.0 17.5 70.0 87.5

c, tl 12.1 69.7 75.8 0.0 42.4 69.7

c, tr 24.2 72.7 78.8 0.0 36.4 48.5

c, ll 4.3 52.2 73.9 0.0 17.4 26.1

ll 23.8 38.1 42.9 0.0 0.0 0.0

lr 11.1 22.2 22.2 0.0 0.0 0.0

tr 35.3 47.1 58.8 0.0 0.0 5.9

c, lr 6.3 75.0 75.0 0.0 6.3 6.3

tr, ll 14.3 21.4 42.9 0.0 0.0 0.0

tl, lr 40.0 50.0 60.0 0.0 0.0 10.0

Table 2.3: Evaluation of the top-N ordered sequence predictions. The shown
sequences are ordered by descending frequency and at least have 10 samples. All
scores are accuracies in %.

overrepresented, our proposed method predicts a more diverse set of action
sequences. While a relatively high top1-accuracy is observed for sequences
that require detecting a maneuver, e.g. (tl), (ll, c), (lr, c), sequences that
involve the prediction of maneuvers such as (c, ll) or (c, lr) show a high
improvement in the top2-accuracy. The observation that some action classes
heavily improve in top2-accuracy is in line with the commonly accepted
assumption that agent prediction needs to be multimodal to account for the
uncertainty of the future.

Fig. 2.4 and 2.5 show the confusion matrix for the top-1 and top-2 se-
quence prediction, with sequences ordered according to their frequency in
the dataset. For top-1 prediction, the classification errors mostly stem from
assigning sequences with an incorrect second action, e.g. (tl) instead of (tl,
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Figure 2.4: Confusion matrix for top-1 ordered sequence predictions with the
x-axis showing predicted classes and y-axis showing ground truth classes. All
numbers in %, normalized that rows sum to 100.

c), which confirms that prediction is a much harder task than classification.
Still, the top-2 predictions allow for correcting for many of these errors,
resulting in substantially higher values on the diagonal.

2.5.3 Ablation Study

An ablation study is conducted to evaluate the impact of the separate mod-
ules. Ablated methods are compared using the mean AP on the validation
dataset, with results shown in Table 2.4. To investigate the influence of input
representation the input tensor is grouped into the following modules: The
target agent information (Target) includes positions and velocities of the
target agent

(

1target, vtarget

)

. Social context (Social) comprises the positions
and velocities of the other agents (1other, vother). Finally, map information
(Map) contains the layer representing the lane centerlines m.
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Figure 2.5: Confusion matrix for top-2 ordered sequence predictions with the
x-axis showing predicted classes and y-axis showing ground truth classes. All
numbers in %, normalized that rows sum to 200.

Besides ablating the input representation, we show that traffic agent
action prediction can profit from the presented data augmentation approach
of rotating the complete input representation by a small random angle.

The results confirm the usefulness of providing all three sources of
information jointly, with the map having the biggest impact. Interestingly,
adding social information to a representation that does not contain a map,
has a substantially higher impact than adding it to a representation that
does contain a map. This indicates that there is redundant information
available in the map and social context the network is able to use.

2.5.4 Dataset Scale study

The second ablation study investigates the relevance of the dataset size for
the action prediction task while using the full model. Thus, the network
is trained with three subsets of our data that reflect 50%, 10% and 5% of
the full set of action sequences. The dataset reduction is implemented by
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Input representation

Target Social Map Augmentation mean AP

✓ ✓ 0.375

✓ ✓ ✓ 0.490

✓ ✓ ✓ 0.602

✓ ✓ ✓ 0.590

✓ ✓ ✓ ✓ 0.614

Table 2.4: Ablation study on the action predic-
tion network.

Dataset proportion mean AP

100% 0.614

50% 0.571

10% 0.522

5% 0.493

Table 2.5: Ablation study on
the action prediction dataset.

skipping the corresponding number of samples, to avoid changing the
dataset statistics. Epoch length and sample weights are kept constant, such
that the training parameters are stable. The results of the ablation study,
shown in Table 2.5, show a large difference in performance between the
different scales, indicating that the amount of data has a major impact on
the prediction performance. Furthermore, the considerable improvement
from 50% of the data to the full dataset allows for the conclusion that the
performance did not saturate at the scale present in the Argoverse dataset
and larger amounts of data could benefit the community.

2.6 conclusion and future work

In this chapter, we investigated the task of predicting high-level actions of
vehicles in urban environments. To make this task viable, we proposed an
algorithm to automatically extract action sequences using HD-maps, from
the public Argoverse [39] dataset. Furthermore, we proposed an action
prediction network, that predicts the future action sequence considering
agent, map, and social information. The network is completely based in
rendered images and can be trained in an end-to-end fashion using the
automatically generated large-scale action sequence dataset. We showed
that our action prediction model, together with our dataset, can outperform
existing methods that are adapted from trajectory prediction.



3
M U LT I - D O M A I N R E F E R E E D ATA S E T: E N A B L I N G
R E C O G N I T I O N O F R E F E R E E S I G N A L S O N R O B O T I C
P L AT F O R M S

Recognizing referee signals is a key aspect of playing soccer games with
human players as well as in RoboCup, where Robots compete with each
other. In these games, the current development prioritizes making the
robots fully autonomous, where a key aspect is to interact with humans
by understanding and interpreting signals provided by a referee. To cater
to this, we present the Multi-Domain Referee Dataset in this chapter. The
dataset aims to spur the development of high-efficiency action recognition
methods in RoboCup as well as provide a basis to study the transfer
between simulated and real domains in a strongly structured environment.
To this end, we provide 3,108 action sequences with more than 183,000

images in total, spanning four domains: one fully synthetic, two hybrid
ones that combine real images with synthetic augmentations, and one real
domain for testing. To study the properties of the multi-domain dataset, we
develop a recognition model capable of real-time inference inside a robotic
framework on the Intel-Atom-based NAO robot. Our experiments show that
combining real and synthetic data considerably improves performance and
that new signals and settings can be learned efficiently by only updating the
synthetic data, which can reduce the acquisition effort incurred by future
rule changes in RoboCup.

3.1 introduction

The RoboCup competition serves as a testing ground for autonomous
systems, requiring teams to investigate all scientific aspects related to safely
operating a robot fleet. This ranges from building robots over developing
robust vision algorithms to learning global game strategies to engage in
soccer matches autonomously. This all serves the overall objective of playing
against the human world cup winners in the middle of the 21st century
following official FIFA rules [125]. One critical component required for
achieving this goal is the capability to understand the same signals a
human player can use, with a special focus on referee actions. These can

29
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signal the game’s state as well as events such as fouls, offside situations,
or penalty kicks and have a direct impact on the game’s dynamics and
outcomes. Thus, an accurate and efficient referee action recognition system
is essential for the success of RoboCup teams.

Recently the community around the Standard Platform League has identi-
fied this research aspect to be crucial for moving the state-of-the-art forward
and held multiple research challenges focused on this aspect. However, the
achieved performance is behind expectations from current general action
recognition methods and varies strongly between teams1. This can be at-
tributed to the distinct challenges faced in the RoboCup environment as well
as the lack of a common dataset that can be used for training recognition
models.

With the dataset and method described in this section, we provide a
basis for approaching this goal and investigate the challenges of referee
action recognition within the context of RoboCup. We explore the unique
constraints and opportunities presented by this domain and present a
comprehensive dataset to facilitate the development and evaluation of ref-
eree action recognition in future RoboCup tournaments. Our dataset is
designed to encompass the complexities of real-world RoboCup matches
while providing teams with the necessary resources to overcome the inher-
ent challenges.

Compared to the generally used definition of human action recognition
in literature [24, 62, 115, 206, 207, 216, 227], referee action recognition in
RoboCup comes with its own distinct set of challenges and limitations.
These are set by the environment as well as by the robots used during the
matches. Their main objective is to provide an affordable humanoid robotic
platform, which entails the following limitations:

• Low Cost: The robots are equipped with low-quality cameras that
have to capture referee actions in suboptimal conditions like varying
lighting and occlusions.

• Low Latency Constraint: Real-time performance is crucial on a robotic
platform, imposing strong latency requirements on the recognition
algorithm.

• Low Compute Capability: The compute resources available on the
robots are strongly limited, necessitating lightweight, yet accurate
recognition models.

1 https://spl.robocup.org/
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• Time and Cost Effective Data Acquisition: Teams have restricted re-
sources that need to be distributed over all parts of the development.
This limits the ability to acquire large-scale, diverse datasets for train-
ing and evaluation for all tasks by each team separately.

Nevertheless, at the same time, the setting used in RoboCup offers dis-
tinct properties that can be exploited when designing action recognition
algorithms:

• Multi-Platform Sensor Fusion: Multiple robots are deployed on the
field. With all of them being able to observe the referee, sensor fu-
sion on multiple platforms can be employed to improve recognition
accuracy.

• Consistent Game Layout: The game layout remains consistent across
games. The robots are identical for all teams and the field is only
scaled moderately between lab settings and real world-cup games.

• Existing Robotic Framework: A robotic framework with all modules to
perceive and interact with the environment is available. This provides
the foundation for easily deploy referee action recognition on the
robot.

To address these challenges and leverage the opportunities, we present
a dataset that not only models the full range of referee actions used in
the tournament but also caters to the limitations and strengths of the
RoboCup environment. The main contributions presented in this Section
are as follows:

• A multi-domain dataset for referee action recognition in RoboCup
games, encompassing synthetic data, real data captured against a
chroma key background with synthetic augmentations, and real data
collected in multiple environments.

• An action recognition pipeline that utilizes the dataset for training and
evaluating the algorithm, demonstrating its potential as a benchmark
for this task.

• Experimental results showcasing the effectiveness of the multi-domain
dataset in improving recognition performance beyond using a single
domain only.

Including data from multiple domains (real, real-chromakey, synthetic) al-
lows us to quantify the transfer-capability between domains on this strongly
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structured task as well as allows us to scale the amount of available data
considerably. This is especially important in the context of the dynamically
evolving RoboCup tournament. With changing locations, referee signals
and referee outfits, synthetic data provides a way to generate new data in a
cost- and time-efficient way.

Furthermore, strong control over the synthetic data generation pipeline
ensures that the annotations are correct; unlike real-life conditions where
ambiguity in the data might occur due to noise in the human annotations.
Finally, real-world datasets also raise privacy concerns; where the individual
participants need to agree to their capture for research purposes. Synthetic
data circumvents these ethical dilemmas, making it faster and easier to
obtain and use.

3.2 dataset description

The dataset aims at enabling referee gesture detection on mobile robots.
To this end, we provide a dataset that contains rendered synthetic videos,
two sets of videos with a chroma key background and different acquisition
protocols, and a set of real videos for benchmarking in a realistic setting.

The challenge we provide data for has first been presented at RoboCup
2022, where one robot was placed at the center circle of a soccer field,
while the referee was standing in front of the robot. The robot had to
detect a whistle that initiated the action detection. In a later version of this
challenge (2023), the referee stands at a predefined position to perform a
gesture, while the robots can be located anywhere on the field. The robots’
positions represent a random game state, as the action is performed during
a competitive match, again indicated by a whistle. The challenge is far from
being solved and each year new additions are made to close the gap to
referee actions in actual soccer games.

Our robotic pipeline deployed in RoboCup captures and processes videos
at 15 frames per second, and annotations are done with single-frame preci-
sion. In addition, synchronization of multiple robots needs to be performed
manually due to the possible frame drops within the real robotic framework.
All these challenges make the task of gathering and annotating a large-scale
dataset for referee action recognition very time-consuming.

As the robots used in the Robocup tournaments are well-documented
and the physics that they follow can be clearly modeled, a similar envi-
ronment can be configured in a simulated environment. This approach
not only offers controlled data generation capabilities for researchers but
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also enables us to generate large-scale datasets much more efficiently. In
addition, given that the actions employed in the tournament may evolve
from year to year, simulations provide a flexible means of adapting to new
gestures introduced annually, with minimal adjustments required in the
data generation pipeline.

Nevertheless, synthetic simulators often struggle to replicate the intri-
cacies presented in real-life scenarios, leading to the presence of a typical
domain gap between synthetic and real data. Green screens provide one
way to bridge the domain gap between the simulated and real-life data.
By allowing the background to be changed, green screen data enables
strong data augmentation by recording a single real session in a well-
defined environment. We leveraged the collected green-screen data and
generated synthetic data for action recognition model training, and to test
its performance in real-life scenarios, we also collected video sequences
in real environments. Details about the gestures and the process for the
data-collection of the data are described in detail in the following.

3.2.1 Referee Actions

The flow of soccer games is complex and controlled by the referee. With
many events that can stop or alter the gameplay, understanding these events
from the robot’s perspective is crucial to playing autonomously without
human interaction. When critical events occur in RoboCup, the referee
performs different static or dynamic gestures after indicating them by the
whistle. Often, these gestures also show which team the event is attributed
to, which results in a range of gestures that can be performed symmetrically
in two directions, where the most extended hand indicates the direction.

Figure 3.1 shows the action defined for the RoboCup 2023 and the corre-
sponding event they refer to. As all but one action exists in two directions,
we only show a single version of each action. Most actions are static and
depicted in Figure 3.1a.

The last two dynamic actions consist of a dynamic motion followed
by a static pose to denote which team needs to be considered. These are
demonstrated in Figure 3.1b. Furthermore, the dynamic action classes 12

and 13 can be identified by considering the dynamic part and the static pose.
The dynamic part is identical and the static action is similar to the action
performed during kick-in. However, depending on the action-recognition
approach these can also be detected separately with the provided dataset.
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(a) Static (b) Dynamic

Figure 3.1: Referee Actions in the dataset. The first row represents the ideal pose.
The second row is the same action performed by a real human. Synthetic pose
is shown in the third row. Most gestures have a pair of actions where the arm
reaches in opposite directions and only one direction is displayed here.

3.2.2 Real Data - Test Setting

We collect data from the robot cameras at 6 different locations that cover a
variety of backgrounds and lighting conditions representative of environ-
ments present during RoboCup. To record a single session, the robots are
randomly placed on the field with all robots facing the referee. The referee
performs all 12 actions sequentially, separated by short breaks, while the
robots record the video at 15 fps. We furthermore, collect data with the
referee performing random motions, which we label as undefined motion
(class 0). This data is solely used in the test set, to evaluate how our models
trained on other data domains generalize to real-world settings.

data annotation Data is collected by multiple robots in parallel, and
by synchronizing these robots, the data annotation can be accelerated. After
initializing each robot, its internal clock precisely measures the starting
position of the recorded video sequences. However, in certain cases, the
internal clocks of some robots may deviate over time. To account for this, the
starting time of each action in the action sequences is manually annotated.
This annotation serves to correct for any time drift that may occur when
running multiple sessions sequentially.

Action sequences captured by the robot with the clearest view are an-
notated manually with single-frame accuracy. Subsequently, a 60-frame



3.2 dataset description 35

(a) Real (b) Synthetic

Figure 3.2: Dataset examples.

(4-second) interval is extracted for each action from the action sequences,
starting from the annotated initial action pose. This duration is long enough
to cover a complete action sequence. By manually synchronizing all the
robots, the annotation process for data collected by other robots can be
easily conducted as well.

The data collected with the real robotic platform introduces more chal-
lenges in achieving accurate action recognition, some of which are even
difficult for humans to recognize. Several factors contribute to these chal-
lenges, including wear and tear in the cameras of certain robots and some
challenging natural lighting conditions. These conditions encompass issues
such as a green tint, underexposure, referees partially exiting the frame, and
high-exposure backgrounds (one such example is shown in Figure 3.2a). In
light of these challenges, recorded sequences are further manually rated and
divided into easy and hard categories, indicating the challenge of accurately
recognizing the presented action.

data acquisition challenges While the real data is representative
of the environment at the RoboCup tournament, its collection is expensive
and time-consuming. Besides the considerable annotation effort, setting
up the field at different locations with diverse backgrounds and training
individuals to perform required gestures adds to the expense and time
commitment of data collection.

The real-time robotic framework deployed during data acquisition intro-
duces additional challenges that can harm the data quality. For example,
frame drops can happen and the camera can be reset after driver failures,
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resulting in the sequence of frames obtained being non-consecutive. This
leads to issues in synchronization and thereby, the frames need to be anno-
tated manually, which increases annotation costs and can lead to additional
sources of human error.

However, without such effort, the real data is not representative and
cannot be used for training and testing without limitations. In our approach,
we thus explore two different ways to approach this issue: generating
fully synthetic data and recording chroma key sequences of real scenes
with synthetic backgrounds for training purposes, reserving the real data
exclusively for testing. These two different methods are explained in the
next sections.

3.2.3 Synthetic Data

We create synthetic data by modeling the 3D simulation environment in
the procedural 3D animation framework Side FX Houdini 2 that closely
resembles the setup during RoboCup. Subsequently, photo-realistic referee
action sequences are rendered from diverse camera views using a ray-
tracing approach. Within the simulation environment, there is full flexibility
to adjust camera positions, referee poses, referee body models, and textures.
This facilitates the efficient creation of a diverse, large-scale dataset with
precise and easy annotation of the generated video sequences.

simulation environment setup The simulation environment is set
up by using the official field definition and a model of the NAO robot3

with differently colored jerseys as used during the real tournaments. To
represent the referee, we employ rigged 3D human models that encompass
different body shapes and textures. An example setup of our simulation
environment is shown in Figure 3.2b.

Realistic and natural referee actions are generated from real videos that
show the reference action as detailed in § 3.2.2. From these reference videos,
we manually extract the position of human joints and subsequently apply
these extracted joint movements to the rigged human model.

robot positions In our simulated environment, the robots and cam-
eras are randomly distributed across the field and remain in the same
position when generating a single session of data. This provides the option

2 https://www.sidefx.com/
3 https://www.aldebaran.com/en/nao
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to fuse information from multiple robots that perform recognition in paral-
lel. However, robots are randomly placed between each session to have the
same variation as the real data.

We create a set of synchronized referee action sequences that encompass
a wide range of viewpoints and game layouts. As cameras are distributed
over the whole field, certain viewpoints are not suitable for observing the
referee’s actions. This may be due to the location of a camera too close to
the referee or acute angles relative to the referee’s orientation. In the former
case, the referee’s hand can move out of the camera’s field of view, while in
the latter scenario, strong ambiguity between the poses cannot be resolved
even by a human annotator. To conduct a more detailed analysis of how the
relative position between the robot camera and the referee impacts action
recognition performance, we further categorize the camera positions. We
label positions where the robots’ cameras are consistently a quarter of the
field away from the referee and have a view angle of less than 45° angle
as easy positions, and the other robot positions are labeled as hard positions.
The synthesized robot positions are illustrated in Figure 3.4, with the easy
position plotted in blue and the hard position indicated in red.

backgrounds Using the simulation environment, we render RGBA
images with a transparent background that are further augmented with
various backgrounds. We generate a total of 65 synthetic backgrounds with
53 used for training and 12 for validation. The backgrounds are generated
using Stable Diffusion [193] trained on the 2b English language label subset
of LAION 5b with prompts representative of the environments encountered
during RoboCup such as crowded exhibition centers. An example of such a
background with a real image (Section 3.2.4) in front is visible in Figure 3.3c.

3.2.4 Real Data - Chroma Key

A high-quality animation framework and raytracing renderer has been
used to generate the synthetic data. However, they still do not represent
images from the real images. We, therefore, collect more data from the NAO
robots to bridge the gap between synthetic and real. Recording via a single
robot generates only a single sample per location, which can either be used
for training or validation. Thus, various sessions need to be generated at
different locations to obtain diverse backgrounds. Green screen or chroma
key backgrounds can allow multiple different backgrounds to be inserted
after post-processing with an example provided in Figure 3.3. Thus, data
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(a) Green screen data. (b) Masked image. (c) Background added.

Figure 3.3: Data collection with green screen and augmentation with generated
backgrounds.

can be recorded in a single setting and further images can be synthesized
for different locations. The method also ensures synchronization across the
data in different locations.

We use two different methods for data collection of chroma key images,
which differ in the number of robots per session. In the first setting, referred
to as Chroma Key Front (CK Front), a single robot is used. This robot
is placed directly in front of the referee according to the official rules of
RoboCup 2022. In total 9 people are participating in the data collection. In
the second setting, referred to as Chroma Key Game (CK Game), multiple
robots are used in the same session and placed in different positions on the
field, following the rules of RoboCup 2023. In the second setting, 5 people
participated in the data collection.

chroma key front The first chroma key setting consists of videos
acquired by a single robot placed in front of the referee. The referee is
guaranteed to be fully in front of the greenscreen, which occupies the
whole field of view. This ensures an easy extraction of the background.
While the setting during recording is more limited and does not require
operating multiple robots simultaneously, every sequence needs to be
annotated manually. For each session, the greenscreen has been replaced
with a transparent background by manually choosing a window of colors.

Following the RoboCup 2022 rules, class 12 is not present in this dataset.
Therefore, this part of the dataset can be used to study the capabilities of
our approach to learn with a data-mix where the class is only available in
synthetic data. For future rule changes, this can indicate, how much new
real data needs to be collected
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chroma key game In the second setting called Chroma Key Game, all
robots are randomly placed on the field with the referee in their field of
view. This layout is changed for each session to provide sufficient variability.
Figure 3.3a shows the view from one of the robots. The timestamps of
the recorded frames are saved as the human performs the different ges-
tures. Adobe Premiere has been used to generate a mask that removes the
greenscreen. However, as the conditions are more diverse than in the first
chroma key dataset, manual annotation of all frames is complex. The same
methodology as for annotation of real data has been used, which helps to
synchronize annotations between robots.

3.2.5 Data Split

The real data has been solely used for the purpose of testing. For the training
and validation split, the backgrounds have been divided into training and
validation backgrounds to avoid any information leakage. Furthermore,
the people participating as referees in the dataset collection have been
distributed into separate training and validation sets, such that there is no
overlap in referees between the training and validation data.

The final dataset contains 183’591 images which are distributed accord-
ingly: 69’323 synthentic, 43’699 chromakey game, 11’226 chromakey front
and 59’451 real game. Figure 3.4 displays the locations on the field where
the cameras are placed to simulate the synthetic environment. The locations
are labeled as hard if they are less than 1.5m from the sideline where the
referee is standing, or the angle at which the referee is seen is greater than
45°.

The classes in each of the domains are represented uniformly. However,
due to following the RoboCup 2022 guidelines, class 12 does not exist in
the CK front datasplit. In order to preserve the privacy of the different
participants in the real datasets, their faces have been blurred.

3.3 action recognition

To gain deep insight into our dataset and to provide a public benchmarking
model to all RoboCup teams, we develop an approach for human action
recognition designed for low-resource contexts. The method employs a
MobileNet [100] architecture for image feature extraction as a backbone.
After resizing each image from a window of 15 frames to 90 x 120 px, the
corresponding deep feature is extracted. To further capture the temporal
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Figure 3.4: Synthetic data camera positions. Hard and Easy positions are rep-
resented by Red and Blue respectively. Referee coordinates are: X = 0.0m, Z =
-3.0m.

relationships among the images, the sequence of 15 deep features is further
processed by a gated recurrent unit GRU [44]. The GRU’s 64-dimensional
output is directed through 2 subsequent dense layers, each with a preceding
Dropout layer [208] and ReLU [3] activation functions. Finally, the class
is predicted directly from the logits. Our approach is further depicted in
Figure 3.5 for clarity.

The model is trained end-to-end with an initial learning rate of 5e-4 for
40 epochs and a plateau-based scheduler. Adam optimizer [123] is used to
update all the trainable parameters in the model. Early Stopping [35] has
been used to stop the model training if the validation loss does not improve
for 15 epochs. The best model on the validation set is saved and used for
evaluation on the test set.

For the training data, we aim for 60 frames for each action and video. As
our model requires 15 frame sequences, the following steps are taken to
sample the data. From the 60 frames in a sample, a window of 15 frames
with a random starting point is chosen when training the model. For the
test set, a fixed set of 15 frames starting at frame 10 of each 60-frame sample
is selected for evaluating our model. All images are resized to 90× 120
px, however we also provide the full image resolution in our dataset. For
training our models at a higher speed, we further preprocess the training



3.4 experiments and results 41

Figure 3.5: Overall Pipeline for Action Recognition.

data by randomly selecting 20 of the backgrounds for each sample and
augmenting the images with them.

3.4 experiments and results

results In the first set of experiments, we evaluate the basic training
approach of using single-domain data for training to establish the baseline
performance and to further investigate the usage of different combinations
of synthetic, chroma key data. For all experiments, we split the synthetic
training data into easy and hard sets as described in § 3.2.3. Furthermore,
the evaluation is performed on real test data that is further separated man-
ually into easy and hard examples as described in § 3.2.2. Considering the
application of RoboCup, the test easy class is of major interest, as it best
represents the current tournament scenario where only the robot locations
that are known to have good viewing angles need to be considered for
making a decision. In addition to evaluating the overall action classifica-
tion accuracy, we take note of the fact that many actions possess mirror
pairs (as illustrated in Figure 3.1). Consequently, we are also interested in
assessing the accuracy of direction classification and gesture recognition.
All evaluation results are provided in Table 3.1. In this section, the domains
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synthetic and chroma key will be indicated by their abbreviations SYN and
CK respectively.

single domain performance Investigating the set of single domain
experiments in the first 5 rows of Table 3.1, the performance improves for
an increasing overlap between the training and testing domains. On the full
test set, this corresponds to the sequence of SYN, CK Front and CK Game.
CK Game has the strongest performance by a large margin, with 60.4% and
65.0% accuracy on test full and easy respectively. SYN and CK front both
exhibit a considerably lower performance, which can be attributed to the
two different domain gaps. The former has a considerably different image
appearance, while the latter covers a much smaller domain of viewing
angles.

Further investigating training on SYN shows that the performance is
strongly dependent on the location of the robots. The test performance
degrades for all scenarios when utilizing SYN hard during training. This
can likely be attributed to the observation that many actions cannot be
easily recognized from hard positions, which results in the wrong signal
being backpropagated to the model, degrading the performance.

multi-domain performance We evaluate the multi-domain perfor-
mance by testing different combinations of SYN, CK Front, and CK Game
during training. This can be used to make decisions about which kind of
data needs to be collected when new rules or actions are introduced and
how it can be augmented with synthetic data that can easily be adapted
and regenerated. The results are presented in the second block of rows in
Table 3.1.

Combining SYN and CK Front boosts the performance considerably, even
though both datasets on their own have a large domain gap with the test
real data. Compared with only training on SYN and CK Front, performance
rises by 24.8% and 22.0% on test full respectively. This improvement can
be explained by the complementary nature of the domain gaps which
allows the training to cover the full domain when using them together.
Further adding the CK Game data allows us to raise the model’s accuracy
to 76.1%, 85.6%, and 55.4% for test full, easy, and hard respectively. For our
task, this supports the use of a multi-domain dataset, that contains large
portions of data that are cheap to generate on a large scale.
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✓ 60.4 65.0 50.2 62.6 77.3

✓ ✓ 69.3 74.3 58.4 70.5 80.8
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✓ ✓ 52.8 54.7 48.7 55.5 70.5

✓ ✓ 74.4 82.5 56.6 74.7 83.3

✓ ✓ ✓ 76.1 85.6 55.4 76.1 83.5

✓ ✓ ✓ 46.8 52.5 34.5 48.2 60.6

✓ ✓ ✓ 72.5 81.3 53.2 73.1 82.9

✓ ✓ ✓ ✓ 73.3 79.4 59.9 74.0 84.7

Table 3.1: Evaluation on Test Set. Best performance is in bold and the second
best has been underlined.

amount of data As the data collection and annotation require a large
amount of resources, we provide an analysis of the amount of data required
to train the model. Thus, the model is trained on SYN together with only
a subset of the referees available in the two CK datasets to investigate the
influence on the model performance, which is depicted in Figure 3.6. The
results indicate that even combining SYN data with a single referee from a
CK dataset can improve the performance considerably, which is a promising
perspective for data collection.

feature analysis To gain insights into the learned multi-domain
embedding space, we employ Uniform Manifold Approximation and Pro-
jection (UMAP) [161]. We visualize the image feature space for the model
trained with SYN, CK Front, and CK Game data. The features from the
datests SYN, CK Front, CK Game and Test are depticted in Figure 3.7a
and show more details for two class clusters in Figures 3.7b and 3.7c. The
complete UMAP in Figure 3.7a indicates that different actions are well
separated from each other. Investigating the two clusters in more detail
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(a) SYN easy + CK game (b) SYN easy + CK front

Figure 3.6: Test set performance when trained on varying amounts of real data.

shows that the real test data (red) covers the largest domain, with most
features accumulating in one small location. SYN and CK Game cover
slightly smaller parts of the cluster, both with a focus on different regions,
but mostly contain Test. CK Front occupies the most minimal region that
remains distinguishable from the Test cluster, indicating the presence of a
domain gap. The findings in the multi-domain feature embedding analysis
align with the experimental results in Table 3.1.

interpretability Saliency maps provide insight into the model’s
decision-making process.. To understand how the model classifies dif-
ferent actions, we use RISE [181] to generate saliency maps. The method
runs multiple predictions with different masks applied to the input image
and relates them to the predictions on the masked images. The change
in performance provides a heatmap that estimates the region where the
model is focusing. As the method is originaly intended to be used with
single images, we adapted it to our dataset where the input to the model
is 15 images. Based on the assumption that the referee motion is limited
between frames, the same mask is used for all 15 images. 4000 masks are
generated for each input and the initial masks are of size 16x16 which is
then upsampled to the size of the image.

In Figure 3.8, we visualize the specific areas of interest where the model
concentrates its attention. Notably, these regions align with the hand’s
positions, which serve as the primary source of crucial information for the
model to learn and recognize the performed actions.
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(a) UMAP

(b) Cluster 1

(c) Cluster 2

Figure 3.7: UMAP embedding of the different domains.

computational efficiency The model is converted to TFLite files
so that we can efficiently deploy it on real robots with real-time inference.
The feature extractor runs at 60 ms per image and when 15 images are
obtained, the features are passed into the prediction model which generates
the output at 4 ms per input.

3.5 conclusion

In this chapter, we presented a new multi-domain referee action dataset that
aims at providing the basis for bringing more autonomy to the RoboCup
competition. Comprehensive experiments demonstrate that combining dif-
ferent domains improves the performance considerably and allows easy
adaptability of the dataset to future rule changes. Finally, the implemented
action recognition method is able to run real-time on low-performance robot
hardware and can serve as a baseline to benchmark future approaches.
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(a) Saliency for Pose 1. (b) Saliency for Pose 4. (c) Saliency for Pose 4.

Figure 3.8: Saliency Maps on Test Set.
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Tracking is a core task in computer vision that forms the basis of dynamic
world models to allow autonomous agents to understand their surround-
ings. Without any human input, the goal is thus to robustly follow all
objects of a given set of relevant classes throughout the scene. While we
as humans are able to perform this task easily on a limited number of
objects, it already requires strong reasoning capabilities in scenarios where
occlusions, appearance changes or fast movements are present. One key
aspect is the ability to model object permanence during occlusions together
with the objects’ future position to re-identify them. We approach this task
in Chapter 4, where 3D motion models are combined with a graph-neural
network architecture to learn object association. Subsequently, Chapter 5

investigates the tracking of multiple identical robots, where re-identification
becomes an even harder task. We solve this by fusing information from
robot-mounted sensors with an external camera to perform tracking over
long videos.

ii.i related work

Multi Object Tracking (MOT) approaches the task of tracking all objects
belonging to a given set of categories. These often include pedestrians in
datasets containing videos from fixed surveillance cameras [53, 134, 155,
165]. Data collected from moving vehicles extends this with additional sen-
sor modalities like LIDAR or radar and provides rich map information [31,
39, 76, 211]. These datasets also typically span a large number of different
traffic participants like cars, buses, bicycles and pedestrians.

Existing tracking methods typically either approach 2D or 3D tracking,
as each of the domains provides fundamentally different cues that can be
exploited. While 3D methods profit from well-behaved motion models [43],
2D tracking can usually build on top of discriminative visual appearance
features [90, 114, 141, 150, 176, 258]. For both 3D and 2D, trackers can be
grouped into tracking by detection [20, 28, 95, 166] and joint tracking and
detection methods [18, 162, 239]. Tracking by detection starts with a set of
detected objects in every frame and links them subsequently [20], which is
the most popular method used in 3D detection as of today. Joint tracking
and detection builds on the perspective that detecting and tracking objects
is a strongly interwoven process and thus, should be approached jointly [18,
239]. This approach is primarily chosen in 2D tracking, where object detec-
tors are more mature than in the 3D domain and can be integrated well
into the tracking pipeline.
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2D MOT is well investigated, with the MOT challenge [53, 134, 165] and
its corresponding datasets as the current performance reference.

A widely adopted approach to MOT is tracking by detection, where de-
tections are available from an independently trained detection module and
data association is performed by the tracker [28, 95, 166]. The association
step is based on pairwise similarities between objects and aims to find a
global solution to this problem. Similarities can contain purely geometric
information of bounding boxes [20] or extend it with additional appear-
ance features [233, 234]. With every object detector providing imperfect
predictions, a core task of the assignment step also is the interpolation
of occlusions and missed frames as well as the rejection of false-positive
detections.

The data association step itself is closely linked to a hard-to-solve discrete
optimization problem. This can be approached either by directly formulat-
ing and solving it or by implicitly representing the task using deep learning.
Mapping the association step to a deep learning task [28, 48, 260] allows
to further process similarity metrics, as well as to directly use large fea-
ture vectors that describe each object. However, simple heuristics are often
required to resolve remaining inconsistencies that arise due to not being
able to directly enforce constraints onto the network output. Using these
approaches allows for training the complete pipeline end-to-end, without
the direct requirement to define a cost for data association [28]. This work
by Braso et al. [28] is also closest to our 3D-tracking approach presented in
Chapter 4. It introduces Neural Message Passing (NMP) as a graph neural
solver for offline 2D pedestrian tracking. Starting from a network flow
formulation, the problem is transformed into a classification problem and
data assignment is solved with an NMP network.

The alternative of explicitly stating an optimization problem [95, 96, 140,
191, 195, 214] requires a larger extend of modeling the task, but at the same
time also allows for integrating prior information about the nature of tracks
in an intuitive and transparent way. Due to the nature of the task, a wide
range of approaches casts tracking as a graph problem [140, 195, 214] or
network flow optimization [95, 96]. Nevertheless, these properties come at
a high computational cost. As most of the proposed optimization problems
are NP-hard [75], a considerable effort was invested in finding heuristics
and approximate solvers for them [96].

Furthermore, as motion and appearance in 2D videos are partly pre-
dictable by simple models, Bayesian filtering has been employed for MOT
by some earlier works. The filter is used to predict and estimate object
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states, which also motivates our proposed pipeline. Important methods in
this group are multi-hypothesis tracking [188], the Joint Probabilistic Data
Association Filter [15], and PHD filters [79].

Following the paradigm of joint detection and tracking, where both
steps are combined as a single module, Tracktor [18] uses the box regres-
sion module of faster RCNN [190] to propagate and refine object bounding
boxes between frames. Related to this, Xu et al. [239] propose a differentiable
approximation of Hungarian matching that allows end-to-end training of
trackers. More recently, Meinhardt et al. [162] proposed a transformer archi-
tecture in the joint detection and tracking framework. A range of tracker
extensions are commonly used in all approaches, including modules such
as camera motion compensation [18] or object re-identification (ReID) [114,
150, 258]. In general, most of the 2D MOT methods profit from the high
framerate available in videos [18]. Furthermore, state-of-the-art 2D object
detectors achieve a high accuracy [87, 190, 213], such that the focus of
tracking has shifted from the rejection of false positives towards a pure data
assignment task [28].

The generation of appearance features and person re-identification is a
core component of many tracking approaches, as it provides strong cues to
match pedestrians after occlusions or crossing paths. A common paradigm
in this context is metric learning [141, 176, 233], where features are learned
together with a metric that measures the similarity between objects. This
aims at jointly finding an embedding space and corresponding learned
metric to distinguish between different pedestrians.

However, training data for re-identification raises strong privacy pro-
tection concerns which have recently led to a movement towards training
the module on primarily synthetic data. In this context, PersonX [212]
and Bak et al. [13] are notable examples that use a small set of models to
generate training data. Pushing towards surpassing the scale of human-
generated data, RandPerson [225] and ClonedPerson [224] further propose
to automate this pipeline by generating randomized character clothing.
3D MOT extends the challenge of MOT to tracking multiple objects in

3D [31, 76]. With 3D MOT as a problem at the core of autonomous driving,
a wide range of datasets that focus on tracking of objects in driving scenes
is available [31, 39, 116, 211]. Due to the nature of the task, 3D MOT is
usually performed online, which adds additional challenges and requires
more heuristics. For detecting objects, any 3D modality would be suitable,
nevertheless, most datasets provide LIDAR scans which are used in most
tracking methods, including ours. As 3D object detection from LIDAR is
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still an open research question and less robust than 2D detection, 3D MOT
mostly follows the tracking by detection framework [43, 119, 229, 230, 244].

One line of work in 3D MOT establishes tracks directly from the out-
put of an object detector and forms tracks by connecting detected objects
between frames. These approaches can directly use the output of an ob-
ject detector [244] or include more advanced features like additional 2D
information [230, 254]. In this framework, Weng et al. [230] are the first to
use a graph neural network to estimate the affinity matrix, which is then
solved using the Hungarian algorithm. Since this group of trackers does
not establish a predictive model for each track, they cannot directly account
for missed detections or occlusions and require heuristics for these cases.

Another group of 3D trackers [43, 119, 229] resolves this issue by generat-
ing a separate representation of tracks and performs tracking by matching
active tracks and detections at each timestep. AB3DMOT [229] uses a
Kalman filter [113] to represent the track state and matches tracks and de-
tections based on intersection over union (IoU). Chiu et al. [43] extend this
approach by matching based on the Mahalanobis distance [153] to resolve
the issue that object size, orientation and position are on different scales.
EagerMOT [119] uses tracks parameterized in 2D and 3D simultaneously
to gain performance from multiple modalities. All of these approaches rely
on heuristics to generate new tracks, as track initialization can hardly be
learned in a purely offline training approach.



4
L E A R N A B L E O N L I N E G R A P H R E P R E S E N TAT I O N S F O R
3 D M U LT I - O B J E C T T R A C K I N G

Autonomous systems that operate in dynamic environments require ro-
bust object tracking in 3D as one of their key components. Most recent
approaches for 3D MOT from LIDAR use object dynamics together with
a set of handcrafted features to match detections of objects across multi-
ple frames. However, manually designing such features and heuristics is
cumbersome and often leads to suboptimal performance.

With our approach, we instead strive towards a unified and learning-
based approach to the 3D MOT problem. We design a graph structure to
jointly process detection and track states in an online manner. To this end,
we employ a neural message-passing network for data association that is
fully trainable. Our approach provides a natural way for track initialization
and handling of false positive detections, while significantly improving
track stability. We demonstrate the merit of the proposed approach in the
nuScenes tracking challenge 2021 with a state-of-the-art performance of
65.6% AMOTA with 58% fewer ID-switches, resulting in the best LIDAR
only submission and an overall second place.

4.1 introduction

Autonomous systems require a comprehensive understanding of their envi-
ronment for a safe and efficient operation. A task at the core of this problem
is the capability to robustly track objects in 3D in an online-setting, which
enables further downstream tasks like path-planning and trajectory predic-
tion [6, 92, 248]. Nevertheless, tracking multiple objects in 3D in order to
operate an autonomous system, poses major challenges. First, in the online
setting, data association, track initialization, and termination need to be
solved under additional uncertainty, as only past and current observations
can be utilized. Furthermore, covering occlusions requires extrapolation
with a predictive model rather than interpolation as in the offline case.
Finally, when using LIDAR for data acquisition, no comprehensive appear-
ance data is available and data association needs to primarily rely on object

53
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Figure 4.1: The proposed method uses a graph representation for detections
and tracks. A neural message passing based architecture performs matching
of detections and tracks and provides a learning based framework for track
initialization, effectively replacing heuristics required in current methods.

dynamics. This is further complicated by the presence of fast moving objects
such as cars.

With the release of large scale datasets for 3D tracking [31, 39, 116, 211],
a considerable amount of work on 3D MOT has been initiated [43, 119,
229, 230, 244]. Most of these works address the aforementioned challenges
by either linking detections directly in a learning based manner or use
comprehensive motion models together with handcrafted matching metrics.
All of these methods require a large set of heuristics and, to the best
of our knowledge, none of the methods approaches the aforementioned
challenges jointly. In contrast to this, recent work in 2D MOT [18, 28] aims to
reduce the amount of heuristics by modeling all tasks in a single learnable
pipeline using graph neural networks. However, most of these approaches
are limited to the offline setting and driven by appearance-based association
that cannot be readily employed in the 3D counterpart.

To establish the missing link between learning based methods and power-
ful predictive models in 3D MOT, we propose a unified graph representation
that merges tracks and their predictive models with object detections into a
single graph. This learnable formulation effectively replaces heuristics that
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are required in current methods. A visualization of the graph is depicted in
Figure 4.1.

Contrary to previous works, our learnable matching between tracks and
detections is integrated into a closed-loop tracking pipeline, alleviating the
need for handcrafted distance metrics. However, this raises the question of
how to effectively train such a learnable system, as the generated tracks
influence the data distribution seen during subsequent iterations. In this
chapter, we propose and describe a two-stage training procedure for semi-
online training of the algorithm, where the data seen during training is
generated by the model itself. In summary, the contributions of our work
are threefold:

• A unified graph representation for learnable online 3D MOT that
jointly utilizes predictive models and object detection features.

• A track-detection association method that explicitly utilizes relational
information between detections to further improve track stability.

• A training strategy that allows us to faithfully model online inference
during learning itself.

We perform extensive experiments on the challenging nuScenes dataset.
Our approach sets a new state-of-the-art, achieving an AMOTA score of
0.656 while reducing the number of ID-switches by 58%.

4.2 method

We model the online 3D MOT problem on a graph, where detections are
nodes and the optimal sequences of edges that connect the same objects
throughout time need to be found. The resulting core tasks are data associa-
tion by matching of nodes, track initialization while rejecting false positive
detections, interpolation of missed/occluded detections, and termination
of old tracks.

Without access to future frames due to the time causal nature in the
online setting, all of the aforementioned tasks become challenging. In the
case of track initialization, for instance, a new detection in the current frame
with no link to a track could be a false positive or the first detection of
a new track. And similarly for track termination, where an existing track
that is not matched to any detection in the current frame may need to be
terminated or may only encounter a missed or occluded object. While these
dilemmas could often be resolved when future frames become available
over time, online tracking performance is crucial for real-time decision
systems since it directly influences the behavior of the system.
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Figure 4.2: The proposed tracking graph combines tracks, represented by a
sequence of track nodes and detections in a single representation. During the
NMP iterations, information is exchanged between nodes and edges, and thus,
distributed globally throughout the graph.

To jointly resolve these challenges in a learnable framework, we for-
mulate a graph that merges tracks with their underlying dynamic model
and detections into a single representation for online MOT. Based on the
detections of the last T frames and the active tracks, a graph is built that
represents the possible connections between tracks and detections. Starting
with local features at every node and edge, NMP is used to distribute
information through the graph and to merge it with the local information
at each edge and node during multiple iterations. Finally, edges and nodes
are classified as active or inactive. Based on the active edges that connect
track and detection nodes, we formulate an optimization problem for data
association. This jointly considers matches between tracks and detections
and matches between detections at different timesteps to improve the track
stability. Based on the connectivity of the remaining active detection nodes,
tracks are initialized.

4.2.1 Graph Representation of Online MOT

Approaching 3D MOT as tracking by detection can be formulated as finding
the set of tracks T = {T1, ..., Tm} that underlie the observed set of noisy
detections. We parameterize a track as the state of the underlying Kalman
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filter and a detection by its estimated parameters such as bounding box,
class and velocity. To find a robust and time-consistent solution, three tasks
need to be solved:

1. Assignment of detections to existing track.
2. Linking of detections across timesteps.
3. Classification of false positive detections.

While either 1. and 2. would be sufficient on their own to perform track-
ing, finding a joint solution promotes stability of the tracks. Furthermore,
utilizing a track model is beneficial, since it aggregates information of the
complete sequence of matched observations which is required to interpolate
missing detections.

The three tracking tasks can be naturally formulated as one joint classifi-
cation problem on a tracking graph G = (VD, VT , EDD, ETD). The graph is
built from detection nodes VD, track nodes VT , detection edges EDD that
connect pairs of detection nodes at different timesteps and track edges
ETD that connect track and detection nodes at the same timestep. The com-
plete tracking graph is visualized in Figure 4.2. Note that track nodes have
sparser connections than detection nodes. They are only connected to the
detections at the same timestep and to the neighboring timesteps of the
same track. We chose this pattern since connected tracks and detections
need to be temporally consistent and the relation between track nodes is
determined by the Kalman prediction step. One additional characteristic
of track nodes is that nodes that correspond to the same track form a
track-subgraph called GT,n, which is highlighted with a blue shaded area in
Figure 4.2. These subgraphs are important since they share the same state
that is linked with a dynamic model. Next, we discuss the types of nodes
and edges used in our graph in more detail.
Notation: Symbols with subscript D belong to detection nodes and symbols
with subscript T to track nodes. Symbols with subscript DD belong to
detection edges and symbols with subscript TD to track edges.

Nodes are indexed with integer numbers from the set I for detection
nodes and from K for track nodes. Edges are referred to by the indices
of the connected nodes, i.e, ETD,ki describes a track edge from VT,k to VD,i.
As the graph is undirected, the notation also holds when the order of the
indices is switched. To make our notation easy to read we always use the
same index variables. More precisely, the index variables i, j, m ∈ I are
used to refer to detection node indices and index variables k, p, q ∈ K refer
to track node indices. The newest timeframe available to the algorithm
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during online tracking is denoted as t and the timeframe of a specific node
is referred to as ti. Finally, tracks are indexed with their track ID n.
Detection nodes are generated for the detected objects and are initialized
from the feature xD,i containing the position, size, velocity, orientation,
one-hot encoded class, detection score, and the distance of the detected
object relative to the acquisition vehicle. The position is given in a unified
coordinate system that is centered at the mean of the detections in the
graph. The orientation, relative to the same unified coordinate system, is
expressed by the angle’s sin and cos.
Track nodes represent the state of an active track, i.e., each track generates
one track node at every timestep. This groups the track nodes into track-
subgraphs. The feature xT,k at every track node is defined by the position,
size, orientation, and the one-hot encoded class of the tracked object. The
tracks are modeled by a Kalman filter with 11 states corresponding to the
position, orientation, size, velocity and angular velocity. Parameters are
learned from the training set as proposed by [43].
Detection edges refer to edges between a pair of detection nodes VD,i, VD,j
at two different frames ti ̸= tj. They are parameterized by xDD,ij containing
the frame time difference, position difference, size difference, and the
differences in the predicted position assuming constant velocity. To reduce
the connectivity of the tracking graph, detection edges are only established
between detections of the same class and truncated with a threshold on
the maximal distance between two nodes. This implicitly corresponds to a
constraint on the maximum velocity an object can achieve. Graph truncation
makes inference more efficient, track sampling more robust and helps to
reduce the strong data imbalance between active and inactive edges.
Track edges are connections between a track node VT,k and a detection
node VD,i at the same timestep tk = ti. These edges are modeled with the
feature xTD,ki, containing the differences in position, size and rotation.
Classification Given the unified graph G, the tracking problem is trans-
formed to the following classification tasks:

1. Classification of active track edges ETD.
2. Classification of active detection edges EDD.
3. Classification of active detection nodes VD.

Our approach to solving these tasks jointly is presented in the following.
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4.2.2 Neural Message Passing for Online Tracking

Given only the raw information described in the previous section, classify-
ing edges as active is hard and error-prone. To generate a good assignment,
the network should have access to the global and local information present
in the tracking graph. To archive this exchange of information within the
graph, we rely on a graph-NMP network. We follow the notation of NMP
used in [28] as some parts of the NMP processing are shared with this work
and highlight similarities and differences. In the following we present the
four stages of our algorithm:
1) Feature embedding: The input to the NMP network are embeddings of
the raw edge and node features. To generate the 128 dimensional embed-
dings, the raw features are normalized and subsequently processed with
one of four different Multi-Layer Perceptrons (MLP), one for each type of

node/edge. This results in the initial features h
(0)
D,i, h

(0)
T,k, h

(0)
DD,ij, h

(0)
TD,ki.

2) Neural message passing: Initially, all information contained in the em-
beddings is local and thus, not sufficient for directly solving the data
assignment problem. Therefore, the initial embeddings are updated us-
ing multiple iterations of NMP that distribute information throughout the
graph. An NMP iteration consists of two steps. First, the edges of the graph
are updated based on the features of the connected nodes. In the second
step, the features of the nodes are updated based on the features of the con-
nected edges. The networks used to process messages in NMP are shared
between all iterations l = 1, ..., L of the algorithm. Next, we will describe
the NMP iteration for each node and edge type in detail.
Detection Edges EDD,ij at iteration l are updated with a single MLP NDD

that takes as an input the features of the two connected detection nodes

h
(l−1)
D,i , h

(l−1)
D,j , the current feature of the edge h

(l−1)
DD,ij and the initial feature

h
(0)
DD,ij

h
(l)
DD,ij = NDD

(

[h
(l−1)
D,i , h

(l−1)
D,j , h

(l−1)
DD,ij, h

(0)
DD,ij]

)

. (4.1)

We add the current and initial edge feature to the input vector, introducing
a skip connection into the unrolled algorithm.
Track edges ETD,ki are updated according to the same principle as detection
edges, using information from connected nodes, but with a separately
trained MLP NTD. The update rule is given as

h
(l)
TD,ki = NTD

(

[h
(l−1)
T,k , h

(l−1)
D,i , h

(l−1)
TD,ki.h

(0)
TD,ki]

)

. (4.2)
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Note that this type of edge is new to our formulation since we introduced
track nodes.
Detection nodes are updated with a time-aware node model in [28]. We
further process the additional input from the track edges, introduced in
our formulation, using a similar time-aware model. Given a fixed detec-
tion node VD,i, messages are generated for every detection edge EDD,ij
and tracking edge ETD,ki connected to it. To handle detection edges to
future frames, to past frames and track edges separately, three MLPs
ND ∈ {N past

D ,N fut
D ,N track

D } are employed for this task, using the following
prototype function

m
(l)
D,ij = ND

(

[h
(l)
DD/TD,ij, h

(l−1)
D,i , h

(0)
D,i]

)

. (4.3)

All networks get the current and initial feature of node VD,i as an input to
establish skip connections. Note that in the first and last time frame, where
no past respectively future edges are available, zero padding is used.

The messages formed at the incident nodes are aggregated separately
for the three types of connections by a symmetric aggregation function Φ,
which is the summation aggregation function in our implementation. The
node feature is updated with the output of a linear layer, processing the
aggregated messages as

h
(l)
D,i = ND

([

m
(l)
DD,i,past, m

(l)
DD,i,fut, m

(l)
TD,i,track

])

. (4.4)

Track nodes are new in our pipeline and require different processing
than detection nodes. As messages are sent from track edges only at the
same timeframe, the messages can be formed as

m
(l)
T,ki = NT

(

[h
(l)
TD,ki, h

(l−1)
T,k , h

(0)
T,k]

)

, (4.5)

and accumulated using the aggregation function Φ as before

m
(l)
T,k = Φ

(

{

m
(l)
T,ki

}

i∈Nk

)

. (4.6)

Finally, the message is processed by a single linear layer

h
(l)
T,k = N

′
T

(

m
(l)
T,k

)

. (4.7)

These NMP steps are performed for L iterations, which generates a
combination of local and global information at every node and edge of the
graph.
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3) Classification: The node and edge features available after performing
NMP can be used to classify detection nodes, detection edges, and track
edges as active or inactive. Detection nodes need to be classified as active
if they are part of a track or initialize a new track and as inactive if they
represent a false positive detection. Detection edges and track edges are
classified as active if the adjacent nodes represent the same object. For each

of the tasks, a separate MLP that takes the final features, h
(L)
D,i , h

(L)
DD,ij, and

h
(L)
TD,ij, is used to estimate the labels yD,i, yDD,ij, and yTD,ki. The result of

the classification stage are three sets. First, the set of active detection node
indices

AD = {i ∈ I | yD,i ≥ 0.5} . (4.8)

Secondly, the set of active detection edge indices

ADD =
{

i, j ∈ I × I | yDD,ij ≥ 0.5
}

. (4.9)

Finally, the set of active track edge indices

ATD =
{

k, i ∈ K × I | tk = ti ∧ yTD,ki ≥ 0.5
}

. (4.10)

While in [28] only AD is predicted, we infer the two additional sets to
improve track stability (see Section 4.3).

Note that during training, classification is not only performed on the
final features h(L) but also during earlier NMP iterations. This distributes
the gradient information more evenly throughout the network and helps to
reduce the risk of vanishing gradients.
4) Track update: In the last stage of our algorithm, we use the sets of
active nodes and edges, to update and terminate existing tracks as well
as to initialize new tracks. We achieve this with a greedy approach that
maximizes the connectivity of the graph.
Updates of tracks are performed by finding the matching detection nodes in
the graph for each track and time step. This is represented as an assignment,
which is a set of detection node indices

Fn ⊂ I : |Fn| ≤ T and ∀i, j ∈ Fn : ti ̸= tj if i ̸= j (4.11)

from different timesteps. We define the best assignment as the set of indices
corresponding to detection nodes that are 1) all connected to the track-
subgraph GT,n and 2) have the most active detection edges connecting them
with each other. To find the best assignment for a track n, we start with
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the set of detection node indices that are connected to a track node VT,k
through an active track edge.

Cnode
D,k = {i ∈ I |ki ∈ ATD} . (4.12)

By considering all track nodes of the track-subgraph GT,n, the set of detec-
tion edge indices connected to a track is defined as

CD,n =
⋃

k∈GT,n

Cnode
D,k . (4.13)

Finally, the set of active detection edge indices between these nodes is
derived as

CDD,n = {ij ∈ CD,n × CD,n |ij ∈ ADD} . (4.14)

The quality of the assignment Γ representing the optimization problem is
the number of detection edges between the assignment nodes that is also
present in CDD,n

Γ = |{Fn ×Fn} ∩ CDD,n| . (4.15)

A solution for all tracks is searched with a greedy algorithm, while
never assigning a detection node multiple times. As older tracks are more
likely true positive tracks, updating is done by descending age of tracks. If
there are multiple solutions with the same cost, we employ the following
tie breaking rules. First, solutions with the lowest number of nodes are
selected. If this does not make the problem unambiguous, the solution that
maximizes the sum of 3D detection scores of the selected detection nodes is
chosen. A visualization of this approach is shown in Figure 4.3.
Termination of tracks is based on the time since the last update. If a track
has not been updated for three timesteps or 1.5s, it is terminated.
Initialization of tracks takes into account detection nodes and the corre-
sponding detection edges. Our approach consists of two steps, split over
two consecutive frames. First, all active detection nodes in the most recent
frame that have not been used for a track update are labeled as preliminary
tracks. In the next iteration of the complete algorithm, these nodes are in
the second to last frame. A full track is generated for each of these nodes
that are connected to an unused active detection node in the newest frame
by an active detection edge. If multiple active detection edges exist, the
edge that connects to the node with the highest detection score is chosen.
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Figure 4.3: Visualization of different update scenarios, with only active edges
in the graph. The graph represents a single track and two detections at each
time step. a) Shows the ideal case where a track is matched to one node at every
timestep and each detection node is connected with each other. b) Represents the
case where a match at one timestep is dropped and the track is only matched to
two detection nodes. c) Shows a situation, where the proposed approach is able
to decide for the globally best solution, even though two detection nodes have
been matched to the track in the last frame.

4.2.3 Training Approach

When training an online tracker, we face one fundamental challenge, which
is the distribution mismatch of track nodes during training and inference.
While the track nodes available during training are derived from the ground
truth annotations in the dataset, the track nodes encountered during infer-
ence are generated by the algorithm itself in a closed loop.
Data augmentation: We use data augmentation to make the model more
robust against changes in the distribution of tracks and detections as well
as to simulate rare scenarios. Although the data naturally contains imper-
fections such as missed detections and noise on the physical properties of
objects, we perform four additional data augmentation steps. Detections
are dropped randomly from the graph to simulate missed or occluded de-
tections. Noise is added to the position of the detected objects. This allows
us to counteract the well-known issue of detector overfitting [31], where the
detections used for training the tracking algorithm are considerably better
than the detections available during inference, as the detector was trained
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on the same data as the tracker. To model track termination, all detections
assigned to randomly drawn tracks are removed. Finally, track initialization
is simulated by dropping a complete track while keeping the correspond-
ing detection nodes. This ensures that the case of track initialization is
encountered often during training.
Two-stage training: Data augmentation helps to train a better data associ-
ation model, however, even with data augmentation, the model does not
learn to perform association decisions in a closed loop. To overcome this
challenge one could train with fixed length episodes where only the begin-
ning is determined by the ground truth. However, such an approach comes
with two issues. First, it is inherently hard to train due to potentially large
errors and exploding gradients. Secondly, this approach is computationally
costly on large datasets as no precomputed data can be used. Thus, we
propose a two-stage training scheme as an alternative that approaches the
same challenge. In this setting, a model is trained first on offline data with
strong data augmentation. To do so, the results obtained from a LIDAR
detection model [244, 261] are matched with the annotation data available
for the training and validation dataset. The detections matched to tracks
are then processed with the Kalman filter model to generate track data for
training.

After training the full model on the offline data with data augmentation,
the model can be used for inference in an online setting. We run the tracker
on the complete training dataset and generate tracks that show a distribu-
tion closer to the online-case. This results in a new dataset, which contains
the same set of detections as before, but updated tracks. By retraining the
model on this second stage dataset, together with all data augmentation
steps used before, considerable performance gains can be accomplished.
Training parameters: We train all models with the Adam [123] optimizer
for four epochs with a batch size of 16 and a learning rate of 0.0005. Focal
loss [143] with β = 1 is used for classification of edges and nodes, weight
decay is set to 0.01 and weights are initialized randomly. The MLPs used
for embedding, NMP, and classification have [64, 128], [256, 256, 128], and
[128, 32, 8] neurons in their respective layers. In all experiments, graphs
with T = 3 timesteps are considered.

4.3 experiments and results

All experiments are performed on the publicly available nuScenes dataset [31]
with LIDAR detections only. Scores on the test set are centrally evaluated
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Method Detections Data AMOTA↑ AMOTP↓ MOTA↑ MOTP↓ IDS↓ FRAG↓

AB3DMOT [229] MEGVII [261] 3D 0.151 1.501 m 0.154 0.402 m 9027 2557

StanfordIPRL [43] MEGVII [261] 3D 0.550 0.798 m 0.459 0.353 m 950 776

GNN3DMOT* [229] - 2D + 3D 0.298 - 0.235 - - -

CenterPoint [244] CenterPoint [244] 3D 0.638 0.555 m 0.537 0.284m 760 529

CenterPoint-Ensemble* CenterPoint Ensemble* 3D 0.650 0.535m 0.536 0.294 m 684 553

Ours CenterPoint [244] 3D 0.656 0.620 m 0.554 0.303 m 288 371

Table 4.1: Results on the nuScenes test set. Methods marked with asterisk use
private detections and thus, no direct comparison is possible. Benchmark available
at nuscenes.org/tracking with our method listed as OGR3MOT.

and results on the validation set are computed with the official developer’s
kit. NuScenes is known to be more challenging than previous datasets [230]
and has a leaderboard with a range of current LIDAR based methods, thus,
providing a suitable platform to test state-of-the-art detection and tracking
approaches. To demonstrate that our method generalizes across significantly
different object detectors and provides the same advantages in all scenarios,
we perform all experiments with two different object detectors.

Detection Data. To verify the performance of our method with multiple
detectors, we choose the two state-of-the-art detectors CenterPoint [244]
and MEGVII [261] that are based on very different techniques. While
CenterPoint currently provides the best performance of all publicly available
methods, MEGVII is used by many previous methods. We perform all
experiments with both detectors and thus, allow for a fair comparison
between approaches.

MPN Baseline. To show the merit of an explicit graph representation, we
implement our method without track nodes and track edges as a baseline.
This corresponds to the direct adaptation of the tracker introduced in [28]
to the online and 3D MOT setting. In this case, tracks are modeled as
a sequence of detections and matching is performed with the classified
detection edges and nodes. This method is denoted as MPN-baseline in the
following.

Tracking Results. The results on the nuScenes test set are shown in Table 4.1.
It depicts all competitive LIDAR based methods, which were benchmarked
on nuScenes and have at least a preprint available. Our approach achieves
an AMOTA score of 0.656, outperforming the state-of-the-art tracker Cen-
terPoint [244] by 1.8% using the same set of detections. Compared to
CenterPoint-Ensemble, which uses multiple models and an improved set of
object detections that are not publicly available, we improve by 0.6%. Finally,
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Method AMOTAAMOTPMOTA IDS FRAG

Detections: MEGVII [261]

AB3DMOT [229] 0.509 0.994 m 0.453 1138 742

StanfordIPRL [43] 0.561 0.800 m 0.483 679 606

CenterPoint [244] 0.598 0.682m 0.504 462 462

MPN-baseline 0.514 0.979 m 0.451 1389 520

Ours 0.631 0.762 m 0.541 263 305

Detections: CenterPoint [244]

AB3DMOT [229] 0.578 0.807 m 0.514 1275 682

StanfordIPRL [43] 0.617 0.984 m 0.533 680 515

CenterPoint [244] 0.665 0.567m 0.562 562 424

MPN-baseline 0.593 0.832 m 0.514 1079 474

Ours 0.693 0.627 m 0.602 262 332

Table 4.2: Results on the nuScenes validation set. MPN-baseline† corresponds to
the method in [28] adapted to the online setting as described in Section 4.3.

ID switches and track fragmentation are reduced by 58% and 30% respec-
tively. This improved track stability can be explained by the integration of
the predictive track model into the learning framework.

Our algorithm runs with 12.3 fps or 81.3 ms latency on average on an
Nvidia TitanXp GPU. As 57.8 ms of this time is used for graph generation
and post-processing and only 23.4 ms is required for NMP and classification,
major gains may be achieved with a more efficient implementation.

Table 4.2 shows the results of the current state-of-the-art 3D trackers with
two different sets of detections, making them comparable. In this scenario,
our approach gains 2.8% AMOTA score compared to CenterPoint [244]
on their own detection data and 3.3% on the reference MEGVII [261]
detections. Again the advantages of using a dedicated model for tracks
becomes apparent in the number of ID-switches, which are reduces by
47% and 43% using our model on Centerpoint [244] and MEGVII [261],
respectively.

Ablation Study. We evaluate the modules of our tracker in an ablation
study shown in Table 4.3. We perform the full study on both sets of de-
tections and for the two training scenarios. The results labeled online in
Table 4.3 refer to our two-stage training pipeline and results labeled offline
correspond to only training in the first stage of this approach, where no
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data is generated by the tracker itself. In all cases, inference is performed
online.

The results indicate that all implemented modules benefit our method.
The highest impact is achieved by propagating information globally using
NMP. Next to this, removing information from edges impacts performance
for both training approaches. Without node information, the performance
drop depends on the detector. While for Centerpoint the performance drop
is severe, it is smaller in the case of MEGVII detections, especially in the
offline training case. This may be explained by the quality of detections.
While the position information is encoded on nodes and edges, information
like object size is only contained on the nodes. Such information has only
small variations between different objects and thus, it can only be used
effectively if the detection quality is high, as given for CenterPoint.

To remove track nodes, we use the baseline implementation as introduced
in Section 4.3. As only detections are used, this approach does not suffer
from a distribution mismatch and two-stage training is neither necessary nor
possible. Therefore, while the impact for offline training seems reasonable,
the overall impact in the full method is significant. To show the benefit
of using detection and track edges jointly for the track update, a naive
matching only using track edges in the latest frame is used. This approach
performs worse than not using a separate track representation at all and
supports our approach of using global information for matching. Finally,
focal loss gives a small advantage in all settings and data augmentation
helps, especially for offline training. This can be explained, as in the two-
stage training, the data distribution is closer to the distribution encountered
during inference and thus, less data augmentation is required.

To further investigate our track termination approach, we investigate
different track lifetimes in Table 4.4. Reducing the track lifetime leads to
a sub-optimal performance for both AMOTA and ID switches, while an
increased track lifetime improves the number of ID switches, but comes at
the cost of a reduced AMOTA score. For different numbers of layers of the
MLPs used during NMP, results are shown in Table 4.5. While adding an
additional layer for a total of 4 layers reduces the number of ID switches,
the corresponding AMOTA score is reduced. For a 5 layer MLP, the network
does not converge which results in a severe performance reduction.
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CenterPoint [244] MEGVII [261]

Method online offline online offline

w/o NMP 0.427 0.427 0.557 0.405

w/o edge features 0.502 0.521 0.460 0.359

w/o node features 0.652 0.587 0.610 0.582

w/o track nodes (0.593) 0.593 (0.513) 0.513

w/o det edges 0.544 0.482 0.487 0.423

naïve matching 0.607 0.576 0.529 0.500

w/o focal loss 0.684 0.647 0.618 0.581

w/o data augmentation 0.688 0.601 0.630 0.538

full pipeline 0.693 0.653 0.631 0.587

Table 4.3: Comparative ablation study performed with detections from Cen-
terPoint [244] and MEGVII [261]. Numbers are AMOTA scores where online
refers to the two-stage training introduced in Section 4.2.3 and offline to the basic
training not using self-generated data.

Lifetime 1 2 3 4 5

MOTA 0.657 0.683 0.693 0.686 0.681

IDS 581 345 262 260 226

Table 4.4: Comparison of perfor-
mance w.r.t. track lifetime for Center-
Point detections [244].

MLP layers 2 3 4 5

MOTA 0.682 0.693 0.681 0.468

IDS 297 262 243 12956

Table 4.5: Comparison of perfor-
mance w.r.t. MLP depth for Center-
Point detections [244].

4.4 conclusion

We proposed a unified tracking graph representation that combines detec-
tions and tracks in one graph, which improves tracking performance and
replaces heuristics. We formulated the online tracking tasks as classification
problems on the graph and solve them using NMP. To efficiently update
tracks, we introduce a method that jointly utilizes matches between all
types of nodes. For training, we propose a semi-online training approach
that allows us to efficiently train the network for the closed-loop tracking
task. Finally, we performed exhaustive numerical studies showing state-
of-the-art performance with a drastically reduced number of ID switches.
As our proposed method provides a flexible learning based framework, it
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allows for a wide range of possible extensions and enables the way towards
integrating fully learning based track state representations.





5
O P T I M I Z I N G L O N G - T E R M R O B O T T R A C K I N G W I T H
M U LT I - P L AT F O R M S E N S O R F U S I O N

Monitoring a fleet of robots requires stable long-term tracking with re-
identification, which is yet an unsolved challenge in many scenarios. One
application of this is the analysis of autonomous robotic soccer games at
RoboCup. Tracking in these games requires the handling of identically
looking players, strong occlusions, and non-professional video recordings,
but also offers state information estimated by the robots. In order to make
effective use of the information coming from the robot sensors, we propose
a robust tracking and identification pipeline. It fuses external non-calibrated
camera data with the robots’ internal states using quadratic optimization
for tracklet matching. The approach is validated using game recordings
from previous RoboCup World Cup tournaments.

5.1 introduction

Robust tracking with stable object identification is a crucial component in
many robot applications. Previous works in related tasks use robot-mounted
sensors in order to achieve the task in various settings [27, 32, 64, 199]. A
related task in a different setting is analyzing motions of dynamic agents
(e.g. humans in sports) through a fixed external camera [146, 147, 220,
221]. In our framework, we propose to fuse information from both types
of sensors to robustly track humanoid robots in entire soccer game videos.
Although the problem is closely related to automated game analytics,
the availability and use of internal robot sensors brings its own unique
applications, challenges and opportunities.

We focus on matches in the RoboCup Standard Platform League (SPL),
where humanoid NAO robots from two teams compete fully autonomously
in soccer matches. Robocup is an international annual competition where
teams program different robots to compete in soccer. The long term goal
of the project is to have a team of humanoid robots that can win against
the winners of the World Cup in compliance with the official rules of FIFA.
One of the main platforms in the competition is the SPL where two teams
score using five NAO robots each. The actions performed by the robots
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are autonomous and the first team to score 10 goals or the team with the
highest number of goals after twenty minutes are announced the winners.
The teams can only make changes to the software present in the NAO robots
and no modifications to the hardware are allowed. Making game analytics
available in this league can help teams improve their gameplay by providing
an objective way of comparing the performance of their algorithms.

Our problem differs in multiple ways from the well-known tracking
and identification problem game analytics: RoboCup games are recorded
with non-professional uncalibrated camera equipment, robots look identical
except for their jerseys, jersey numbers are too small to detect reliably, and
human referees often occlude a significant part of the scene. These specifics
introduce unique and non-trivial challenges into our long-term tracking
task. In particular, the re-identification by recognition becomes virtually
infeasible which is not the case in standard game analytics.

Figure 5.1: Overview of the proposed approach. The pipeline includes the pro-
cessed raw video as well as the robot states as the inputs. The processed raw
video provides the tracklets from Tracktor and the jersey/team classification as
inputs to the optimizer. The robot states used as inputs are the self-localization
and fallen state. Another important component that facilitates fusion of these
inputs is the camera calibration module. The multi-modal inputs are fed into the
global optimizer in order to generate the final track results.

Like previous methods, we start with the tracking of individual robots.
Different tracking methods can be used on the video to generate tracklets.
However, the tracklets are obtained solely from visual features and do not
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extend to the whole duration of the game. We, therefore, opt for the use
of the internal states of the robot in order to extract more useful attributes,
which we call features. As we show in this chapter, these attributes can be
efficiently used in order to match the different tracklets with the robot tracks.
Therefore, we formulate the tracking problem as a biquadratic optimization
where the internal states of the robots are used to provide different costs,
used to collate the different tracklets. Overall, we propose a long-term
tracking pipeline consisting of the following modules:

1. Camera calibration, to estimate camera intrinsics, including distortion,
and the extrinsic camera pose relative to the playing field.

2. Short-term object tracking, to generate tracklets using Tracktor [18]
with a Faster-RCNN [190] object detector pretrained on MS-COCO
and finetuned on our dataset.

3. Long-term object tracking, to match tracklets to player identity by
optimizing a quadratic problem, which fuses visual detections from
the external camera and the robot’s own self-localization and status
messages.

4. Optimizing the long-term tracking performance by fine-tuning the
weights associated with the cost terms.

game analytics One of the main problems in game analytics is track-
ing and identification of players in videos [149, 220, 240]. MOT is the first
key component of the pipeline, which provides candidate detections of
the players. Other components include team detection [240] or a combina-
tion of team and jersey identification [77]. The work by Maglo et al. [152]
uses detection followed by association of tracklets in sports videos using
player re-identification. In this case, tracklet association is also learned as
the method does not have other inputs including spatial locations for the
association. [146] on the other hand, uses the estimated spatial image loca-
tions of the players for the task. However, as our problem is different from
standard game analytics formulations, the solutions presented in previous
works [147, 152, 215, 220] are not directly applicable to our task. Specifically,
a key problem that is not approached, is the full integration of the 3D
environment as well as 3D localization of the players in player tracking and
identification.

camera calibration Exploiting the known 3D environment dur-
ing tracking and identity assignment requires accurate camera intrinsics
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and extrinsics, where identifying these parameters is performed by cam-
era calibration. Standard calibration processes generally provide accurate
intrinsic parameters [256] using multiple views of a calibration pattern.
Alternative approaches without calibration patterns use minimal point cor-
respondences [185] or a robot’s known motion for camera calibration [186]
by evaluating 3D-2D correspondences with the Direct Linear Transform [2].
Similarly, Scaramuzza et al. [200] uses a 3D laser sensor to obtain highly
accurate camera intrinsics. In contrast to this, our application has to work
with a single pose video, where the factory-calibrated intrinsics are further
known to be inaccurate. Furthermore, dynamic scenes and texture-less
regions lead to poor point correspondences. To alleviate these challenges,
our approach utilizes the technique proposed by Alvarez et al. [8], which
minimizes an energy objective based on rectifying straight lines that are
present on the soccerfield.

particle swarm optimization A core component of our method
is the fusion of different sources of information through optimization. In
such scenarios, the best objective weights of the optimization problem are
often obtained using an exhaustive grid search. However, this process is
computationally expensive and requires discretizing the search space. As
an alternative, meta-heuristic algorithms such as simulated annealing [124]
and particle swarm optimization (PSO) [184] have shown good results in
various domains [98, 106]. In our approach, the PSO algorithm is used for
the constrained optimization of the weights for different cost terms.

5.2 method

In this section, we detail our pipeline for consistent player tracking and
identification. Figure 5.1 provides an overview of the key components in
our target application. Our pipeline consists of three parts. First, the camera
intrinsics and extrinsics are estimated using field features, such as lines
and corners, whose dimensions and relative positions are known a priori.
Then, player tracklets are generated and the jersey color is estimated for
each tracklet. Additional information, such as the players’ self-estimated
position and game state are extracted from the game logs. The final step
associates each tracklet with a specific robot player. We perform this crucial
step by optimizing a binary quadratic program. The performance is further
improved by finding the best cost weighting using PSO. In the following,
each component is described in detail.
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5.2.1 Data and Application

We consider RoboCup Soccer SPL matches between teams of 5 NAO robots,
where data is acquired from an external camera as well as the game-log.
The game-log is generated by the Game Controller, which communicates
the game state (start, end, free-kick, player penalties) to the players through
WiFi. Furthermore, each player is required to send a heartbeat network
packet including its estimated position to the Game Controller at 1Hz.
These are logged by the Game Controller together with the game states. In
addition, players can exchange information with their team members by
broadcasting network packets at a fixed rate. These are also captured and
logged by the Game Controller. Our dataset is composed of 8 annotated
5000-frame sequences recorded with a wide-angle camera at 30 FPS and the
Game Controller logs of the corresponding matches. The sequences were
extracted from videos recorded at RoboCup 2019 and 2022, and the frame
timestamps have been synchronized with the Game Controller logs. The
annotations include the bounding box, jersey color and number of each
active player which is visible on the field in each frame. The object detection
and image classification models and the optimizer’s weights are trained
on five of these sequences. The remaining three sequences are used for
evaluation.

5.2.2 Camera Calibration and Pose Estimation

Accurate camera calibration and pose estimation is essential in our method
to locate robots in the image on the field and to remove false positive
detections outside the field boundaries. Estimating the radial distortion
coefficients is especially important in this case due to the barrel distortion
introduced by the wide angle lens.

We assume a static camera over the sequence, which is the setup used
for all RoboCup game recordings. We, therefore, use the known geometry
and dimensions of the field lines for the camera calibration. The main pre-
requisite for the task is to establish clean images with clear correspondences
between the target frame and the known 3D geometry. Due to moving
robots and humans on the field, occlusions are present. We resolve these
and obtain a clean unoccluded view of the field by computing the median
image over the whole sequence.

Widely used calibration algorithms that are implemented in common
computer vision toolboxes require either multiple views of a flat calibration
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target [256] or several accurate 2D-3D correspondences of non-coplanar
points on the calibration target. In our application, however, the former
approach is not applicable due to the lack of camera motion. We further
observe that the later algorithms, based on 2D-3D correspondence fail to
jointly estimate distortion coefficients, intrinsics and extrinsics. This is due
to the low number of available calibration points and missing good initial
estimate of the distortion coefficients. Therefore, we approach the problem
in two steps:

First, we estimate radial distortion coefficients by leveraging the fact that
field lines should be straight. Groups of points belonging to the same field
lines are selected and used to formulate the optimization problem according
to Alvarez et al. [8].

In the second step, extrinsics are computed and the focal lengths are
refined if needed. To this end, we leverage the known 3D soccer field
landmarks, specifically the line intersection positions. After undistorting
the median image using the parameters estimated in the previous step, line
segments are detected with the SOLD2 [178] line detector. To filter out initial
false positives, a mask of the field area is estimated using color thresholding.
Lines are then further refined it with morphological dilation followed by the
Spaghetti algorithm [25] for connected component labeling. The remaining
line segments are merged into large and straight field lines by clustering
them based on their proximity of endpoints and collinearity [217].

Intersections are computed from the detected and post-processed lines,
which provides the required 3D-2D point correspondences to the ground
truth 3D field coordinates. Altogether, we obtain 7 reliable point pairs in
each of the videos. In order to compute the camera poses, the P3P [126]
algorithm followed by a non-linear refinement step is utilized. Although
the non-linear refinement can potentially further improve the intrinsics, we
find that the intrinsics are already accurate enough for our purpose at this
stage.

5.2.3 Multi Object Tracker

To generate bounding box tracklets, we use Tracktor [18] with Faster-
RCNN [190] with Feature Pyramid Networks (FPN) and a ResNet-50 back-
bone. We initialize the model with MS-COCO [144] pre-trained weights and
fine-tune it on the training sequences of our dataset to detect robot players.
Since during matches players often occlude each other for several seconds,
we set the patience of the tracker to 1 and use conservative thresholds for
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the NMS step to prevent tracklets from switching from one player to another.
In this way, when players cluster in one area of the field and occlude each
other, several short-lived tracklets are initialized. Our optimizer is then able
to robustly combine these into longer tracks.

Subsequently, the trajectory of each player tracklet is converted to field
coordinates, (x, y). We approximate the position of the robots’ feet by
the midpoint of the lower side of each bounding box. This point is then
projected to field coordinates using the camera pose estimated during cali-
bration to obtain 2D positions in field coordinates. Each resulting projected
tracklet j is smoothed using a Kalman filter with a constant velocity model.

5.2.4 Jersey Color Detection

In the SPL, 9 distinct jersey colors are used. These colors, known for each
match, provide a strong signal to associate tracklets with players from
either team. We thus, train a VGG16 network to detect jersey colors for each
tracklet and assign a score for each of the team colors. As the colors of the
two playing teams are known, only predictions for these are considered at
this stage.

5.2.5 Robot States

The Game Controller logs include several sources of information about the
state of the active players at every point in the game. In our formulation,
we make use of information from the following states to match tracklets to
players:

Self Localization: The robots calculate their position on the field based on
the field landmarks they observe with the onboard cameras. The estimated
positions are often sufficiently accurate and can be correlated with tracklet
trajectories to provide a strong signal for identification. However, relying
on this signal alone is not possible, as they can diverge arbitrarily far from
the true value due to drastic changes in lighting conditions or other factors
like the players losing track when falling over.
Fallen Robot: The robots use the IMU information and heuristics to de-
termine when they fall. In the external camera, when a player falls, its
bounding box has an aspect ratio higher than 1. Therefore, a player tracklet
whose bounding box has an aspect ratio higher than a given threshold for
a certain number of consecutive frames is considered to be a fallen player
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tracklet, which can be matched to the robots’ internal states and provides
another strong signal.
Penalties: In RoboCup soccer, the robots are penalized and removed from
the field if they fail to follow the game rules, e.g. if they commit a foul or
suddenly start leaving the field. These events are used to add constraints to
the problem to prevent the optimizer from matching an active tracklet to a
penalized player.

5.2.6 Global optimization

Even though there are at most 10 active robots in the considered soccer
matches, occlusions and distractors cause Tracktor to split the tracks into
a large number of tracklets. Therefore, we frame the long-term tracking
problem as an assignment of tracklets to a fixed number of player tracks. It
is modeled as a constrained quadratic binary optimization problem. We
denote the index set of player tracks I = {1, ..., N} (with N = 10) and
generated tracklets J = {1, ..., M}. The objective is to minimize:

H(x) = ∑
i∈I

∑
j∈J

xi,j(Ou + ∑
l∈L

wlcl
i,j)

+∑
i∈I

∑
j∈J

∑
k∈J

xi,jxi,k( ∑
p∈P

wpc
p
j,k),

(5.1)

where xi,j ∈ {0, 1} are binary optimization variables, with xi,j = 1 meaning
tracklet j is assigned to track i, L and P is the number of unary and pairwise
cost functions, cl

i,j the unary (tracklet-to-track) costs, and c
p
i,j,k the pairwise

(tracklet-pair-to-track) costs. The scalars wl , wp are the cost weights and the
scalars Ou denote the offsets. The offsets are negative to penalize the trivial
solution of assigning nothing (xi,j = 0 ∀i, j).

To prevent generating invalid tracking solutions, the following constraints
are implemented. The first set of constraints

∑
i∈I

xi,j ≤ 1, ∀j ∈ J, (5.2)

prevents assigning a single tracklet to multiple tracks. The second set
of constraints is implemented to avoid merging temporally overlapping
tracklets

xi,jxi,k = 0 ∀i ∈ I, ∀(j, k) ∈ J × J : Tj ∩ Tk ̸= ∅, (5.3)
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where Tj, Tk represent the set of frames in which detections exist for tracklets
j and k respectively.

5.2.7 Cost terms

Our formulation uses two types of cost terms: 1) Unary cost terms are a
measures for the fit between tracklets and tracks. 2) Pairwise cost terms that
measure the fit between pais of tracklets. Overall, we utilize the following
cost-terms:
Self-localization - During the matches each robot sends its estimated posi-
tion on the field (x, y) once per second. The signal is linearly interpolated
between timestamps and the distance to the position estimated from the
external camera is computed. Averaged over each tracklet, this provides a
strong prior for the assignment problem. To encourage matching a tracklet
to a player’s track when its trajectory is close to the player’s communicated
trajectory, we define the following cost term:

cloc
i,j =

βloc

|Tj| ∑
t∈Tj

||τ̂t
j − τ̃i(t)|| (5.4)

where βloc is a scaling factor.
Jersey color detection - Let p̄H

j and p̄A
j be the mean probabilities of track-

let j belonging to a player of the Home or Away teams respectively. We
encourage matching tracklets to the correct team with:

cteam
i,j =







1− p̄H
j if i ∈ IH

1− p̄A
j if i ∈ IA

(5.5)

Fallen robot state - Fallen player tracklets detected with the heuristic
described above can be easily matched to fallen player events in the Game
Controller logs. Given a fallen robot event reported by player i recorded in
a given time frame, for each fallen robot tracklets detected in the same time
frame we add a fixed cost term c f allen = 1 to discourage matching these
tracklets to other players.
Duration - To filter out false positive tracklets, which are usually short, we
use the following cost term to encourage matching with longer tracklets:

cduration
i,j = min(1,

µ

Tj
) (5.6)
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where µ is a tunable threshold.
Global trajectory continuity - A pair of consecutive non-overlapping track-
lets (j, k) is more likely to belong to the same track if the earlier tracklet
"ends near" the start of the later tracklet. We extrapolate the pose of the
earlier tracklet j from its end position using a constant velocity model:

τ̂j(t) = (x̂
tj,f

i , ŷ
tj,f

i )⊤ + (t− tj,f)(v̂
tj,f

i , ŵ
tj,f

i )⊤ (5.7)

We define the following pairwise cost term based on the distance to the
start of any temporally close tracklet:

ccont
i,j,k = ||τ̂j(tk,i)− τ̂

tk,i
k ||

∀i ∈ I, (j, k) ∈ J × J : 0 < tk,i − tj,f < θcont

(5.8)

where tj,f = max(Tj), tk,i = min(Tk), θ̂
tk,i
k is the earliest pose of tracklet k,

and θcont is a tunable parameter.

5.2.8 Optimization of Cost Weighting

The weights for each cost term and the offsets define the optimization
problem and thus the performance of the tracking results. Assigning a high
weight to a cost term ensures that the optimizer pays more attention to
that attribute, while the offsets implement an error threshold for tracklet
assignment. We use PSO for optimization the weights for the cost terms
using the ground truth training data to maximize the metrics. and initialize
particles randomly over the search space. The weights corresponding to
the different cost terms and the offset are the values represented by each
particle. At each step, the values of the particles that correspond to the
cost terms are updated such that they are non-negative and their sum is
normalized to 1. This ensures that no redundant information is modeled.
A the same time, the value corresponding to the offset for each particle
is kept negative. For all experiments, 50 particles are initialized randomly
and the optimization is run for 100 iterations. The cognitive parameter and
the social parameter, which control a particle’s affinity to its best position
and the global best position are kept at 2 for the whole run. The objective
function is the average of the Mean Player Identification Recall (MPIR) for
all the sequences and the optimization aims to maximize it. The search
stops when the number of iterations are completed or when all particles
have converged to the same position.
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5.2.9 Reference Method: DeepSORT

While our task provides information beyond what common tracking pipelines
are able to utilize, it is important to quantify the performance relative to
existing trackers. To fulfill the task of long-term tracking and player identi-
fication we augment the DeepSORT tracker [233, 234] by a greedy tracklet
matching algorithm.

DeepSORT is an extension of the optimization-based SORT algorithm [20]
that integrates appearance information from a pre-trained network to create
a deep association metric. This metric combines motion and appearance
cues to establish measurement-to-track associations during tracking. Mo-
tion cues are integrated through Kalman filtering and data association is
performed using the Hungarian algorithm.

While DeepSORT can handle occlusions by using the re-identification
module, it commonly is only able to do so over short timeframes. We,
therefore, combine it with a greedy tracklet matching approach. Any tracklet
which has not been assigned is matched with the spatially closest inactive
track. Furthermore, constraints are applied to prevent multiple tracklets
being assigned to the same track if they have any time overlap. At the start
of each run, the total number of robots which are present in that session is
provided for initialization. This provides additional privileged information
and can bound the maximum number of tracks which are generated.

Furthermore, a pure tracking pipeline like DeepSORT is able to generate
long-term tracks, but cannot detect the ID of each robot. To circumvent
this issue, we manually assign the first tracklet appearing for each robot to
the corresponding ground-truth ID, which forms an oracle approach for
identification. I.e. a perfect tracker would also perform perfect identification
using this approach. While this provides additional information beyond
what is used in our method, it allows us to compare our method to a fair
tracking-baseline that uses the best-possible identification approach.

Finaly, to allow for a well performing baseline and fair comparison, we
tune the DeepSort baseline re-identification time over the testset. Table 5.3
shows the different metrics for different values of re-identification time.

The algorithm’s performance shows an increase with the increase in the
number of frames within the reidentification window. However, when it
is too high, the performance degrades, as the initial tracklets are more
likely to contain ID-switches and therefore contain errors that cannot be
corrected later.Based on this, we select a maximum re-identification time of
900 frames corresponding to 30s of video for our baseline method.
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88.11 15.39 51.14 76.48 86.22 76.27 83.33

Table 5.1: The ablation study evaluates the influence of removing different
information used to match tracklets to tracks. All numbers are provided in
percent MPIR on the testset.

Method MPIR

ours 88.11

Oracle Deepsort [234] 43.76

Table 5.2: Results on the test-
set for our approach and the
extended deepsort baseline.
All values are provided in
percent.

Time
Frame

30 150 300 900 1800 3600 5400

MPIR 42.45 42.31 40.08 43.75 38.40 38.51 38.51

Table 5.3: DeepSort Performance with different
re-identification time.

5.3 experimental results

We evaluate our approach over a test set of 3 sequences of 5000 frames
recorded at 30 frames per second. Each video covers a different game,
thus testing our approach with different levels of player self-localization
accuracy, team colors, and environmental conditions. Since we are primarily
interested in correctly identifying players in every frame, commonly used
MOT metrics such as MOTA are not relevant, as they do not measure player
identification performance. Therefore, we define an ad-hoc metric more
suited to our problem setting, the MPIR. For each frame t in a sequence,
we match the bounding boxes predicted by the tracker to the ground truth
based on an IoU-threshold of 0.5. We denote with TPt the number of
correctly identified bounding boxes and with FNt the number of incorrectly
identified bounding boxes. The tracking metrics then read as:

MPIR =
1
T

T

∑
t=1

TPt

TPt + FNt
. (5.9)

Table 5.1 shows the MPIR, the ratio of times each player has been iden-
tified correctly. The first column shows our full approach. Subsequent
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columns show ablations, with each feature removed separately. The cost
weightings are optimized using PSO for each scenario. Figures 5.2 and 5.3
provide a visual representation of the results obtained with our algorithm
on a sequence from a match played at RoboCup 2019.

Figure 5.2: Visualization of robots identified by the tracker. The tracking result is
represented by bounding boxes and IDs at their top. Ground truth positions are
represented by green crosses and corresponding green IDs.

5.3.1 Ablation Study

We perform an ablation study and depict results in Table 5.1. With all
features, we achieve 88.11% MPIR. Removing the robot self localization
has the strongest impact with 15.39% MPIR remaining, while removing the
fallen robot flag results in the least performance drop. This is expected since
the self-localization is an important attribute that provides information
about the position of the robot in the field and consequently the image. The
fallen robot flag is noisy, as it relies on the robot’s IMU and an approximate
heuristic to detect whether the robot has fallen in the video.

5.3.2 Feature Importance

We can further analyze each feature’s importance through the weights
obtained from the PSO optimizer, where a higher weight indicates higher
importance. Figure 5.4 shows the importance of the features in each column
for the different ablations represented by each row of the table. The first
row corresponds to the full model and each following row to one of the
ablations where a single feature weight is set to zero.
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Figure 5.3: Top-view of Figure 5.2. The dotted lines represent the players’ self-
localization trajectories. The red lines are the tracklet trajectories in field coordi-
nates. For each tracklet, the original ID and the matched player ID are shown. The
purple arrows connect each tracklet trajectory to the self-localization trajectory of
the player to which the tracklet has been matched.

While the weighting of different features needs to be handled with care
due to their scaling, we can compare the weights of the same feature in dif-
ferent ablations directly. Strong weights are assigned to the self-localization
and tracklet duration, which provide strong indicators for matching and
tracklet confidence. Removing these features shows that weighting is redis-
tributed: While in the full model the noisy fallen robot events are not used,
they are incorporated when no self-localization information is available. In
this case, the primary source of information to match tracklets to robot IDs
is missing but can be replaced by matching the fallen robots.

5.3.3 Explainability

Using several sequences for the optimization of cost weights yields weights
which can generalize to new data. However, since the matches are played by
different teams which have non-identical algorithms running on the robots,
the weights might be suboptimal for some matches. By searching for the
parameters which yield the best results on a single sequence, we can further
understand the shortcomings and types of noise exhibited by each team.
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Figure 5.4: Feature weights for ablated features.

This further allows us to better understand and explain the inner workings
of the proposed algorithm.

For this purpose, we use PSO to optimize the weights individually for
each sequence in the test set to find the optimal cost weights. Then we
compare the resulting parameters, reported in Table 5.4, with qualitative
observations on the game-videos itself. We discuss the outcome of this
analysis in the following.
Sequence 6 - In this sequence, the self-localization cost is given a relatively
high weight. This sequence was extracted from the 2022 championship final
between the top teams in the league and it was played under ideal light-
ing conditions, so the players’ self-localization is accurate. Thus, a higher
weight on this feature is expected. However, throughout this sequence,
several players are penalized and manually moved outside of the field,
which causes their internal position estimate to diverge and match less
closely the tracklets trajectories. The jersey color detection is also assigned a
comparatively high weight. The jersey colors of the two teams are different
from each other and can be detected very accurately.
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Seq # Self-
Local.

Jersey Track
Time

Fallen Traj.
cont.

Offset

6 0.27 0.16 0.34 0.02 0.22 -0.19

7 0.20 0.0 0.4 0.04 0.36 -0.45

8 0.35 0.28 0.23 0.0 0.14 -0.2

Table 5.4: Cost weights optimized individually for each sequence in the test set
with PSO.

Finally, we can observe that tracklet duration is also given high impor-
tance. In this sequence, the players are completely occluded by the referees
at several points in the sequence, during which many short-lived false-
positive tracklets are created. However, since the players are distributed
evenly on the field the rest of the time, there are also several long-lived
tracklets. Since matching these correctly can significantly affect the metrics,
prioritizing this feature helps the identification process.
Sequence 7 - In this sequence, the self-localization weight bears the lowest
weight of all three sequences. This is because the self-localization is accurate
for one of the teams, but is often very noisy and incorrect for the other.
The players are rarely occluded by the referees and the players do not
often cluster in one part of the field as often seen these matches. As a
result, there are several long lived and very accurate tracklets, hence the
higher importance given to tracklet duration. The large offset term is most
likely related to the low occurrence of tracklet switching and detection false
positives, the optimization. Hence, this term discourages the optimizer from
discarding tracklets.
Sequence 8 - In this sequence, the self-localization has a high weight. Self-
localization is accurate for one team (black jersey), but is rather unreliable
for the other team (yellow jersey) because of a software malfunction caus-
ing the players to often report their position to be in the center of field.
However, several players of the later team are penalized for the game for
most of the sequence, which means no tracklets are assigned to them due
to the constraints. As a result, most of the tracklets represent the black
team, resulting in a good self-localization performance, which makes it
an important feature. Jersey color detection also carry high importance
in this sequence. This is because the jersey colors of the two teams are
strongly distinct and easy to detect, such that team detection can easily help
differentiate tracklets belonging to players of different teams.
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5.4 conclusion

In this chapter, we presented a sensor fusion-based method for tracking
multiple similar humanoid robots. We utilize information from both visual
data and their own sensors by combining tracklets using a quadratic opti-
mization technique. The method allows automated tracking of robots over
a long time on a stationary video sequence. Open points that we will inves-
tigate in the future include the evaluation in more complex environments
as well as the interpolation of tracks during occlusions.
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Over the last years, the computer vision community has approached a
large number of real-world challenges and pushed these problems from the
domain of fundamental research to a state that allows to build products
on top of it. This comes at the cost of requiring powerful computational
resources during the training of networks, for inference and for solving
optimization problems. Quantum computing provides a long-term perspec-
tive to solve this hunger for compute, as it can efficiently solve a range of
complex and hard problems.

One kind of task that reappears throughout many computer vision ap-
plications is discrete optimization, which often is NP-hard thus, cannot be
solved exactly on large problem instances. In Chapter 6 we derive a quan-
tum computing formulation of MOT, where a quantum computing-based
optimizer is used to solve the track assignment problem. In Chapter 7 we
further investigate the efficient use of the quantum computer by using all
solutions measured on the system to quantify the confidence of clustering
solutions.

iii.i related work

With the availability of quantum computers to the general research com-
munity [29, 52, 159, 160], the research interest in finding applications for
such systems has considerably increased. In this context, adiabatic quantum
computing (AQC) [29, 111] provides a well-tangible starting point, even
though many applications need a complete reformulation considering the
architectural differences of a quantum computer. Current applications for
AQC include solving optimization problems for improved traffic flow [172],
robotic routing problems [175], the design of molecules [170] or portfolio
optimization in the finance sector [168]. In other fields like physics, quan-
tum computing has been used to reconstruct particle interactions [49] or to
engineer genes [73].

Recently, the computer vision community has developed a strong interest
in finding applications for quantum computing, which are related to hard
permutation problems [16, 17, 23] that are solvable using AQC or Quantum
Annealing (QA). Non-maximum suppression (NMS) for object detection
has been formulated as a quadratic unconstrained binary optimization
(QUBO) problem solvable using quantum computing [138] and in 3D vision
quantum computing has been successful for a range of shape and point-
matching tasks [16, 21, 163] and for optimizing geometry compression [67].
All of these approaches are closely related to optimization for computer
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vision [129, 246]. In this context, one of the tasks of special interest for
the community is model fitting which finds applications in estimating
camera parameters [59] or separating different motion components [10]. It is
traditionally solved using consensus maximization but can be reformulated
as a quantum-computing problem [10, 40, 41, 59, 66, 235].

While AQC implements a universal quantum computer in theory, current
hardware implementations do not contain all required couplings between
qubits and thus, are still limited in their capability. In contrast to this, circuit-
based quantum computing implements universal quantum computers in
hardware already today [7, 30, 103, 236]. Using this computing paradigm,
the 2D signal processing community has proposed a range of encoding
schemes that efficiently represent images using qubits. FRQI [132] uses an
amplitude encoding for color images, where the probability amplitude of
each state represents one greyscale value. This requires ⌈log N⌉ qubits to en-
code N pixel locations and one qubit to store the brightness, corresponding
to the minimum number of qubits [145], without applying further com-
pression. This comes at the cost of deep circuits being required to prepare
the state of the qubits, which is a strong limitation with current quantum
computers. NEQR [255] achieves a quadratic speedup on the quantum
image preparation by representing the quantized grayscale value of pixels
as the basis-state of a qubit sequence and not as probability amplitudes of a
single qubit. Further approaches and modifications [109, 136, 137, 198, 209,
223] aim at improving the space efficiency of encoded images as well as at
reducing the depth of circuits needed to generate encodings.

Le et al. [133] propose approaches to perform a set of geometric trans-
forms using the FRQI [132] representation and NEQR [255] further discusses
basic operations that can be performed on the quantum image representa-
tions. For many fundamental machine-learning tasks, approaches using a
quantum computer have been proposed [22, 112], that have the potential
to provide a speedup or better representative power with a lower num-
ber of qubits. For deep learning on image data, Pan et al. [177] propose
a neural network layer based on the Hadamard transform that allows to
implement 2D convolutional layers efficiently on a quantum computer.
Clustering is another well-studied machine-learning problem for quantum-
as well as quantum-inspired algorithms [5]. Quantum clustering [94] uses
the Schrödinger equation to model the clustering problem, where cluster
centers are defined as the minima of the corresponding potential function.
Casaña-Eslava et al. [37] extend this formulation with a probabilistic esti-
mate of cluster memberships. In [231] K-NN is implemented on a quantum
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computer based on encoding each point and computing Euclidian distances
on the system. Bermejo and Orus [19] state clustering as an optimization
problem that is tailored towards a variational quantum eigensolver. These
approaches use classical computation and gate-based quantum computers
that are currently still on a small scale.

Closest to the work presented in this thesis, Arthur et al. [11] propose a
balanced k-means clustering algorithm suitable for an AQC and Nguyen et
al. [174] use a clustering approach to group visual image features. Our
underlying clustering algorithm follows the same approach as [11]. How-
ever, while they discard all but the best measurement, our approach utilizes
all information by employing AQC as a sampler to generate probabilistic
solutions of the clustering problem, rather than only using the best solution
in an optimization framework.

iii.ii basics of quantum computing

Quantum computing is a fundamentally new approach, that utilizes the
state of a quantum system to perform computations. In contrast to a classi-
cal computer, the state is probabilistic and described by its wave function,
which enables the use of fundamental properties of quantum systems like
superposition and entanglement. By exploiting these properties, a range of
problems that quickly grow in complexity on classical computers and thus,
cannot be solved in any reasonable timeframe, could be solved considerably
faster [68] by a quantum computer. Reaching such a point is widely referred
to as quantum primacy. Even though implementations of quantum comput-
ers are still heavily experimental, some problems have already been shown
to profit from them, including the sampling of pseudo-random quantum
circuits [12, 237] and Gaussian boson sampling [259]. While these tasks
are of a strong academic nature, several algorithms approach important
and impactful applications. The most well-known examples in this domain
are the prime factorization algorithm by Shor [205] and Grover’s database
search algorithm [81]. To provide a fundamental overview, the following
section introduces the basics of quantum computing.
Qubits are two-state quantum-mechanical systems that form the basis of
quantum computers. Like a bit, a qubit has two basis states that can e.g.
be |0⟩ = [1 0]T and |1⟩ = [0 1]T , which in a superposition form the qubit’s
state. Qubits can be implemented using different quantum-physical systems,
depending on the required use-case. Examples include superconducting
circuits, as in the quantum computer used in this work, ions trapped in
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an electromagnetic field, or photons where the polarization represents the
qubit state.
Quantum Superposition refers to the property of a quantum system that it
is not required to be in one of the basis states, but rather can be described
by a linear combination of possible basis states. A qubit in a pure state |ψ⟩
can be described with its two basis states {|0⟩ , |1⟩} as

|ψ⟩ = c1 |0⟩+ c2 |1⟩ (5.10)

where c1 and c2 are complex numbers, called probability amplitudes, with
|c1|2 + |c2|2 = 1.
Measurement. During computation on the quantum computer, the state
of the system can be any valid superposition of basis states. However,
a measurement of the system always results in a single basis state. The
probability of measuring a state is the respective squared amplitude. In the
single qubit case, this corresponds to

p(|0⟩) = |α|2 p(|1⟩) = |β|2. (5.11)

As a measurement corresponds to an observation of the qubit it leads to
wave function collapse [232], which means that the qubit state is changed
irreversibly [80]. Which is in contrast to all other operations in quantum
computing.
Entanglement of qubits is at the very heart of quantum computing [110].
A system of entangled qubits is represented by a system state where each
qubit cannot be described only with its own state but depends on the
state of the remaining system [63, 89, 127, 151, 203]. This implies that it
is not possible to decompose the joint state into the tensor product of
each separate qubit state. Therefore, measuring the state of one qubit in
an entangled system affects the state of the other qubits [80]. This is a
fundamental property of quantum mechanics and plays a crucial role in
the exponential scaling capabilities of quantum computing.
Adiabatic Quantum Computing. AQC, which is used to solve our formu-
lation, is a quantum computing paradigm where the state of a quantum
system is modified by performing an adiabatic transition. Current hardware
implementations such as the D-wave systems [29] follow this approach and
implement a QA to solve QUBOs. They are based on the Ising model [104,
111], which describes the configuration of a set of interacting particles that
all carry an atomic spin σi.
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The spin can either be +1 or -1 and the particles are coupled by interac-
tions Jij as well as influenced individually by a transversal magnetic field
hi. The energy of this system is described by its Hamiltonian function

H(σ) = −∑
i

∑
j

Jijσiσj −∑
i

hiσi. (5.12)

Thus, finding the lowest energy state or ground state of the Ising model
corresponds to solving the QUBO defined by the Hamiltonian function.
This relation is used in the QA, where the system of qubits implements an
Ising model HT that represents the QUBO of interest. Such problems are
often NP-hard and known to be very challenging for classical solvers. As
this task can directly be implemented on an adiabatic quantum computer, a
considerable speedup for large problem instances is expected in the future.

The lowest energy state is found by following the adiabatic theorem [26].
Starting with an initial system in its ground state described by a Hamilto-
nian H0, the adiabatic theorem states that during a sufficiently slow change
of the Hamiltonian, the system never leaves its ground state. The change of
the Hamiltonian

H(t) = H0(1−
t

Ta
) + HT

t

Ta
(5.13)

is called an adiabatic transition. The transition is performed over the
annealing-time Ta and allows to solve an optimization problem with the
Hamiltonian HT . The condition for a sufficiently slow evolution depends
mostly on two factors, the temperature of the environment and the spectral
gap of the Hamiltonian, i.e. the difference between lowest and second-
lowest energy level or eigenvalue. While the first is a system property, the
second can be influenced by choosing a suitable Hamiltonian [17].

While in an ideal noise-free case, the system stays in its ground state, any
real system is embedded in a temperature bath that can induce a change to
a higher energy state. The distribution of measured final states will then
follow the Boltzmann distribution with temperature T

p(σ) =
exp[−H(σ)/T]

∑σ′ exp[−H(σ′)/T]
, (5.14)

where p(σ) describes the probability of finding the system in state σ and σ′

are all possible states.





6
A D I A B AT I C Q UA N T U M C O M P U T I N G F O R
M U LT I - O B J E C T T R A C K I N G

MOT is most often approached in the tracking-by-detection paradigm,
where object detections are associated through time. The association step
naturally leads to discrete optimization problems. As these optimization
problems are often NP-hard, they can only be solved exactly for small
instances on current hardware. AQC offers a solution for this, as it has the
potential to provide a considerable speedup on a range of NP-hard opti-
mization problems in the near future. However, current MOT formulations
are unsuitable for quantum computing due to their scaling properties.

We therefore propose the first MOT formulation designed to be solved
with AQC. We employ an Ising model that represents the quantum me-
chanical system implemented on the AQC. We show that our approach is
competitive compared with state-of-the-art optimization-based approaches,
even when using of-the-shelf integer programming solvers. Finally, we
demonstrate that our MOT problem is already solvable on the current
generation of real quantum computers for small examples, and analyze the
properties of the measured solutions.

6.1 introduction

MOT is a task in computer vision that requires solving NP-hard assignment
problems [95, 96, 214]. To make this feasible, the community proposed
a range of different approaches: work on the problem formulation using
domain knowledge helps to make it an easier to solve problem [95, 214], ap-
proximate solvers extend the feasible problem size [96], and the combination
of deep learning with simple heuristics can be seen as a data-driven ap-
proach to the problem [28, 48]. Nevertheless, integer assignment problems
remain hard optimization tasks for any available solver. With the recent
progress in quantum computing, a new way of solving such optimization
problems becomes feasible in the near future [9, 122, 219].

Instead of iteratively exploring possible solutions, e.g. via branch and
bound, the problem is mapped to a quantum mechanical system, whose
energy is equivalent to the cost of the optimization problem. Therefore, if

97
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Figure 6.1: The proposed approach to MOT states the assignment problem
between detections and a set of tracks as a quadratic unconstrained binary
optimization task. We then represent the optimization problem as a quantum
mechanical system that can be implemented on an AQC. Via quantum annealing,
a minimum energy state is found that represent the best assignment.

it is possible to measure the lowest energy state of the system, a solution
to the corresponding optimization problem is found. This is done with an
AQC, which implements a quantum mechanical system made from qubits
and can be described by the Ising model [104]. Using this approach, a
quantum speedup, which further scales with system size and temperature,
has already been shown for applications in physics [121, 122].

While there is a range of advantages that quantum computing can provide
in the future, mapping a problem to an AQC is not trivial and often requires
reformulating the problem from scratch, even for well-investigated tasks [16,
23]. On the one hand, the problem needs to be matched to the Ising model,
on the other hand, real quantum computers have a very limited number of
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qubits and are still prone to noise, which requires tuning of the model to
handle the limitations.

In this chapter, we present the first quantum computing approach to
MOT. The number of required qubits in our formulation grows linearly
in each the number of detections, tracks1 and timesteps and only requires
additional couplings between qubits to model long-term relations. Our
overall contributions are the following:

• A quantum computing formulation of MOT that is competitive with
state-of-the-art methods.

• A method using few problem measurements to find Lagrange multi-
pliers that considerably improve solution probability.

• Extensive MOT experiments on synthetic as well as real data using a
D-wave AQC.

The remaining chapter is structured as follows: After presenting related
work, the basics of quantum computing are introduced. This is followed by
our MOT formulation that is optimized to run on an AQC. We then show
the changes required to make the problem solvable also with the classical
computing paradigm. Finally, experiments on a D-wave quantum computer
are presented together with results on larger problem instances.

6.2 quantum mot

Most existing optimization-based approaches to MOT aim at finding feasible
relaxations [96], implement efficient heuristics in the solution approach [95]
or use deep learning together with post-processing [28] to solve the assign-
ment problem. With the considerable amount of work invested into them,
the problem became solvable for growing instances by now. Nevertheless,
the assignment problem stays an NP-hard task to solve and growth is
thus limited. Quantum computing with the associated speedup on hard
problems can provide a solution to this challenge, even if the corresponding
optimization problem is much harder to solve with classical approaches at
the moment. However, representing tasks in a form suitable for quantum
computing often requires a completely new formulation of the problem
and MOT is not different in this aspect.

While widely used flow formulations [95, 96, 140] are suitable for exploit-
ing sparsity, they come with a large set of inequality constraints, which

1 It is important to note that with additional detections also a larger number of tracks might be
required, which further increases the number of required qubits.



100 adiabatic quantum computing for multi-object tracking

makes them intractable on near-future quantum computers that are limited
in the number of qubits. In this context, permutation matrices were shown
to be a powerful tool for synchronization or shape matching [16, 17, 23].

mot formulation. We approach the MOT problem following the
tracking by detection paradigm and use a fixed set of available tracks.
Given a set of detections in each frame of a video, appearance features are
extracted for each detection. By using a multi-layer Perceptron, pairwise
appearance similarities between detections at different timesteps are com-
puted [96]. Starting with this, the goal of the tracking algorithm is to assign
each detection to a track, such that the sum of the similarities of detections
assigned to a single track is maximized. In this context, a track is defined
by its track ID t and each detection in a frame f by its detection ID d.

We formulate the given task of assigning detections to a joint set of tracks
using assignment matrices, which relax the assumptions of permutation
matrices. The binary assignment matrix X f for a frame f maps a vector of
detection indices to a vector of tracks at every frame of a video. The elements
xdt ∈ {0, 1} of the assignment matrix represent the connections between
detections d and tracks t. Given D − 1 detections and T − 1 tracks, the
assignment matrix assigns a detection to a track if xdt = 1. The requirement
that a single detection is assigned to a track at one timestep, leads to the
constraint

D

∑
d=1

xdt = 1 ∀t ∈ {1, ..., T − 1}. (6.1)

And reversely, Equation 6.2 asserts that every detection is assigned to a
single track

T

∑
t=1

xdt = 1 ∀d ∈ {1, ..., D− 1}. (6.2)

To allow for false-positive detections as well as to handle the case of fewer
detections than available tracks, one dummy-detection and one dummy-
track, with the respective indices D and T, are introduced. A detection
assigned to the dummy-track is treated as a false positive and a track
that got the dummy-detection assigned to it is inactive or occluded. As
the dummy-track and dummy-detection may be assigned multiple times,
constraints 6.1 and 6.2 do not apply to them. To model tracks in a sequence
consisting of F frames, a single assignment matrix X f is required for each
frame f , mapping the detections to tracks.
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quadratic form . The basis for optimization-based trackers are costs
between pairs of detections, where the cost is accounted for if two detections
are connected by a common track. The goal of the tracker is to find a solution
that minimizes the total cost associated with the assignment. Our approach
using assignment matrices leads to a quadratic cost for a pair of frames i, j
that reads

cij = ∑
t

∑
di

∑
dj

xiditqdidj
xjdjt, (6.3)

with xidit and xjdjt being entries from the assignment matrices Xi and Xj

respectively and qdidj
as the corresponding similarity score. It is important

to note that only detection pairs assigned to the same track incur a cost,
which results in a single sum over the tracks t.

Equation 6.3 can be written in matrix form as

cij = vec(Xi)
TQijvec(Xj), (6.4)

with vec(X) as a row-major vectorization of the corresponding assignment
matrices and Qij as the cost matrix of the frame-pair. The maximum frame
gap ∆ fmax that is modeled in our approach depends only on the density
of the cost matrix. To include a connection between frames i and j, the
matrix Qij needs to be filled with the corresponding similarity scores. The
cost matrix Qij is sparse, as it also represents all terms that correspond to
detection pairs matched to different tracks, which add no cost. Furthermore,
no cost is associated with the mapping of a frame to itself, which includes
the main diagonal of Q.

A complete sequence consisting of F frames, can be represented with the
stacked assignment matrix

z = [vec(X1)
T , ..., vec(XF)

T ]T . (6.5)

And the corresponding cost

c =
F

∑
i=1

F

∑
j=1

cij = zTQz, (6.6)

where Q is a block-matrix made from all Qij.

qubo form . To solve the proposed MOT assignment problem with an
adiabatic quantum computer it further needs to be represented as a QUBO
task with {−1,+1} spin states. This consists of two steps, firstly eliminating
the constraints and secondly substituting the variables.
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1) Constraints are represented using a Lagrangian multiplier λ. As our
formulation does not include inequalities, no additional slack variables with
corresponding qubits are required. Given the original quadratic program
with constraints

arg min
z

zTQz + bTz s.t. Gz = d, (6.7)

a QUBO can be formulated as

arg min
z

zTQ′z + b′Tz (6.8)

with

Q′ = Q + λGTG (6.9)

b′ = −2λGTb. (6.10)

2) Variables are substituted by replacing the optimization variables z ∈
{0, 1} with s ∈ {−1, 1} by using z = 1/2(s + 1) the resulting optimization
problem reads

arg min
s

sTQs + b′Ts with b′T = 2(bT + 1TQ). (6.11)

lagrangian optimization. Solving the Lagrangian would require
solving a problem in both discrete and continuous optimization variables
(assignment, and Lagrangian multipliers, respectively). To solve the problem
using AQC, we presented a constant penalty reformulation in the previous
paragraph, which fixes the Lagrangian multipliers λ. In such an approach,
if λ is large enough, constraint satisfaction is guaranteed. More precisely, a
quadratic equality constraint reformulation of the form

λ||Gz− d||22, (6.12)

is used in Equations 6.9 and 6.10, which allows to only consider positive
Lagrangian multipliers λ. Even though λ needs to be just large enough
from a theoretical perspective, in practice it should be as small as possible.
This is especially relevant for AQC, as with a high λ the conditioning of the
corresponding Hamiltonian in the AQC gets worse. This should be avoided
as it results in a lower probability of finding the correct solution in each
measurement.

Thus, in practice a problem dependent bound for the minimum penalty
term λmin should be used. One approach to reduce the spectral gap is to
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estimate an individual λi for each constraint Gix = di using upper bounds.
While such bounds can be computed, they are not tight in many cases. We,
therefore, propose a heuristic to estimate the Lagrangian multipliers λi that
closely match their minimal value λi,min. Each multiplier is modeled by

λi = λb + λ′i + λoff, (6.13)

where λb is a small base value that resolves the easy to fulfill constraints,
λ′i is estimated during the optimization procedure and λoff is an offset to
increase the spectral gap.

Starting with λ′i = 0 and λoff = 0 for all constraints, the QUBO is solved
using annealing. In general, this will result in a solution zλ that does not
fulfill the constraints. As in our formulation, only positive violations result
in a cost improvement, i.e. Gz ≥ d, the cost reduction of a constraint
violation can be estimated as

ai(zλ) = 2(zT
GQzλ −min

j
zT

GjQzλ)/v2
i , (6.14)

zT
G = (Gi ◦ zT

λ) (6.15)

vi(z
0
λ) = Gizλ − di, (6.16)

where zG are the variables masked with Gi and vi is the degree of violation.
To fulfill the corresponding constraint, we set

λ′i(zλ) = −ai(zλ)− λb + ϵ, (6.17)

with a small ϵ to assert that constraint i is fulfilled in the current setting.
While this can be evaluated for all constraints simultaneously, the full proce-
dure needs to be performed iteratively, as not all constraints may be violated
in the optimal solution. Nevertheless, the set of measurements returned by
the AQC can be used to reduce the number of required iterations. Instead
of taking a single best solution, all solutions zj that are close to the optimal
solution are evaluated and merged as λ′i = maxj λ′i(zj). In our formulation,
these can be solutions where the track order is permuted.

After estimating the Lagrangian multipliers, the total cost matrix scale
is small, nevertheless, the same also holds for the spectral gap, as the cost
of not fulfilling constraints is small. Therefore, the additional offset λoff is
added to the Lagrangian multipliers.

similarity cost. We use the same approach for cost generation as
AP-lift [96], where multi-layer Perceptrons are used to regress the similarity
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score between pairs of detections. Features used to compute this score
are the IoU of aligned boxes and the dot-product between DG-Net [258]
appearance features. DG-Net features are generated with the network
trained on the MOT15 dataset [134] together with [192, 226, 257]. To generate
the MLP input vector, the features are normalized with a global context [95],
which results in a total of 22 features [96]. Furthermore, assigning the
dummy-detection to a track incurs no cost and assigning a detection to
the dummy-track, i.e. labeling it as a false-positive, corresponds to a small
negative value β. This is required to prevent the assignment of single
detections to tracks.

post processing . Even in an offline setting, long sequences cannot be
represented as a single optimization problem and need to be split into a
set of overlapping subproblems. We set the overlap to the modeled frame
gap, and match tracks using the common frames. Matching is stated as a
linear sum problem that maximizes the number of detections that are jointly
assigned to tracks in both subproblems. As multiple subsequent tracks can
be modeled by a single track ID, tracks that are interrupted longer than the
maximum modeled frame gap ∆ fmax are separated.

problem scaling . One important aspect when designing algorithms
for current and near-future quantum computers is the required number of
qubits. Many current formulations of MOT grow quickly in size w.r.t. the
number of detections, tracks, frames and the length of the modeled frame
gap. In contrast to this, the number of qubits in our approach only grows
linearly in the number of detections, tracks and frames. Furthermore, by
using a quadratic optimization problem, longer frame gaps can be modeled
by additional entries in the cost matrix, which correspond to additional
couplings between qubits.

While on short sequences the number of possible tracks needs to be at
least as high as the total number of tracks, long sequences can profit from a
saturation of the required number of tracks. After a track has terminated,
there is no cost associated with assigning new detections if they have a
distance of more than the maximal frame gap ∆ fmax from the previous
track. Therefore, multiple subsequent real tracks can be modeled by a single
track ID and easily be separated in post-processing.
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6.3 traditional solvers

While our formulation is advantageous when solved on an adiabatic quan-
tum computer, publicly available real systems have not yet reached a scale
where large experiments can be performed. We, therefore, use classical
solvers to show the results of our approach on real-world tasks, even
though a quadratic problem formulation is known to be hard in this context.
A common requirement of solvers to perform quadratic binary optimization
via branch and bound is the convexity of the continuous relaxation of the
problem. This corresponds to a positive-definite cost matrix Q, i.e. a matrix
with only positive eigenvalues, which is not fulfilled for the given cost
matrix in most cases.

6.3.1 Hessian Regularization

A common approach to enforce positive eigenvalues is adding an identity
matrix scaled by ϵ. As this changes the cost function and thus the optimal
solution, small values need to be used for ϵ, making this approach only
suitable for compensating small negative eigenvalues. Nevertheless, investi-
gating the constraints of our formulation leads to a sparse diagonal matrix
E that can be added to the cost matrix Q without changing the optimal
solution. With the same approach of grouping the total cost matrix into
blocks between frames as in Equation (6.6), the following definition of E is
provided in blocks between frames. As only diagonal elements are relevant,
blocks between different frames are zero matrices Eij = 0|i ̸= j. The blocks
on the diagonal, which represent the mapping of a frame i to itself Eii are
diagonal matrices defined by the diagonal elements

eidt =







e d ∈ {1, ..., D}, t ∈ {1, ..., T − 1}
0 t = T

. (6.18)

The indices refer to the position on the diagonal that correspond to detection
d and track t. Given a block’s assignment matrix Xi, the total cost of the
block after adding the diagonal term is

cii = vec(Xi)
T(Qii + Eii)vec(Xi) = e(T − 1), (6.19)

with Qii = 0 and T tracks in total. The intuition and proof behind the
definition is given in the following.
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Given a binary problem, any diagonal entry adds cost if a variable is
active. In the detection track assignment problem, this corresponds to
adding a constant if a detection is assigned to a track. As constraint 6.1
asserts that exactly one detection (real- or dummy-detection) is assigned
to every real track each time-step, having a cost e for the assignment adds
this cost for each of the T − 1 real tracks. As the constraint does not apply
for the dummy-track with index T and an arbitrary number of detections
may be assigned to it. Therefore, the same argument would not hold and
we can not add an additional cost to these entries (eikl = 0|t = T), without
influencing the total cost function. The proof for this is as follows and
holds given a binary optimization problem x ∈ {0, 1} and the constraints
in Equations (6.1) and (6.2).

cii = vct(XT
i )Eiivct(Xi) =

diag
T

∑
t=1

D

∑
d=1

x2
idit

edit =
bin

T

∑
t=1

D

∑
d=1

xiditedit

=
T−1

∑
t=1

D

∑
d=1

xiditedit +
D

∑
d=1

xidiTediT =(22)
T−1

∑
t=1

D

∑
d=1

xidite +
D

∑
d=1

xidiT0

= e
T−1

∑
t=1

D

∑
d=1

xidit =
(6) e

T−1

∑
t=1

1 = e(T − 1)

(6.20)

6.3.2 Post Processing

To allow the handling of long sequences that cannot be represented as a
single optimization problem, the sequence needs to be split into overlap-
ping subproblems. We split a long sequence in equally sized subproblems
with an overlap similar to the modeled frame gap. After tracking each
subproblem separately, tracks are matched between each pair of neigh-
boring subproblems by solving a linear sum problem that can be solved
in polynomial time. The optimization goal is to maximize the number of
detections that are jointly assigned to tracks matched in both subproblems.
The linear sum optimization problem for matching subproblems k and k + 1
is stated as

max
xij∈{0,1}

Tk

∑
i=1

Tk+1

∑
j=1

xij mij s.t.
∑

Tk
i=1 xij ≤ 1

∑
Tk+1
j=1 xij ≤ 1,

(6.21)

where xij are the optimization variables indicating an assignment of track i
in segment k to track j in segment k + 1, The considered tracks Tk and Tk+1
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are the tracks that have at least one detection assigned to them in the frames
overlapping between both subproblems. mij is the number of detections
shared by tracks i and j in the overlapping frames, which furthermore is
set to a small negative value if tracks i and j have no overlap.

6.4 experiments and results

AQC experiments are performed on a D-wave Advantage 4.1 [160]. The
system contains at least 5000 qubits and 35,000 couplers implemented
as superconducting qubits [29] and Josephson-junctions [86] respectively.
Every qubit of the D-wave Advantage is connected to 15 other qubits,
which needs to be reflected in the sparsity pattern of the cost matrix. If
a denser matrix is required, chains of qubits are formed that represent a
single state. The actual parameters can vary due to defective qubits and
couplers. All experiments are performed using an annealing time of 1600 µs
and an additional delay between measurements to reduce the inter-sample
correlation. In the following, a single measurement refers to the combination
of an annealing cycle and the subsequent measurement.
Simulated annealing is used to evaluate our approach in a noise-free
setting. We use the simulation provided by D-wave for this purpose.
Classical solvers are used to demonstrate the performance of the proposed
algorithm on the full MOT15 dataset. All experiments using classical solvers
are performed using Gurobi [83] with CVXPY [57] as a modeling language.

6.4.1 Lagrangian Multiplier

Fixed Lagrangian multipliers represent the basic approach to include con-
straints in the QUBO. We run experiments with synthetic tracking sequences
where object detections are in random order. The scenarios are defined
by their similarity scores, which we set to 0.8 for a match and -0.8 for
different objects. Furthermore, we add Gaussian noise with variance σ2

to the similarity scores and subsequently truncate them to [−1, 1]. In the
experiments 3 detections over 5 frames and a noise level between σ = 0.2 to
σ = 1.0 is used. The tracking parameters are set to 4 tracks and a maximal
frame-gap of ∆ fmax = 3 frames.

Results generated with simulated annealing are shown in Figure 6.2,
where the top plot shows the solution probability for different noise levels
over an increasing Lagrangian multiplier. For each λ, 4096 measurements
are performed. The lower plot shows the histogram over the energy of the
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Figure 6.2: Solution probability and energy levels using simulated
annealing for different noise levels and changing λ.

returned solutions for a noise level of σ = 0.6. The correct solution can be
seen at an energy level of −38.6.

With increasing noise level, the solution probability for the best value of
λ reduces considerably, which can be explained by the energy histogram.
As described in Section III.II, a low spectral gap, i.e. the difference between
the lowest and second-lowest energy level, reduces the probability of the
AQC staying in its ground state and thus, the probability of finding the
correct solution. In the energy plot, the spectral gap is visible as the distance
between the energy band of the correct solution and the next higher energy
band, given a sufficiently high λ, such that the correct solution has the
lowest energy.

Tracking with the D-wave advantage is performed on a problem with 3

detections over 4 frames and noise levels σ ∈ {0.0, 0.1, 0.2}. Results using
4000 measurements for each setting are shown in Figure 6.3. Solution
probabilities are lower compared to simulated annealing and high energy
solutions are returned more often. This can be explained by the high noise
of current AQCs.

optimized lagrangian multipliers are introduced to improve the
spectral gap of the normalized cost matrix. We perform the same tracking
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Figure 6.3: Solution probability and energy levels using quantum
annealing for different noise levels and changing λ.

tasks as for fixed Lagrangian multipliers, but evaluate the results w.r.t. the
offset term λoff. Results generated with simulated annealing are shown in
Figure 6.4. Optimization of the Lagrangian multipliers is initialized with
a base value of λb = 0.5. The probability of finding the right solution
is increased and stays high over a large range of λoff compared to only
using a single λ. Furthermore, the best solution probability for each of the
noise levels is better than the optimum for a fixed Lagrangian multiplier.
This has two advantages: first, fewer measurements are needed to find the
correct solution and secondly, less effort needs to be invested to find a
good setting for λ. Results for the problem with an optimized Lagrangian
multiplier with λb = 1.0 solved on the AQC are shown in Figure 6.5. When
optimally tuned for σ = 0, our method returns the best solution in 4.8%
of the measurements, compared to 3.5% when using a fixed multiplier.
Furthermore, even without an additional offset λoff = 0, the best solution is
returned in 0.8% of the measurements.
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Figure 6.4: Solution probability and energy levels using simulated
annealing and optimized λi for different noise levels over λoff.
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Figure 6.5: Solution probability and energy levels using quantum
annealing and optimized λi for different noise levels over λoff.
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Method MOTA IDF1 MT ML FP FN IDs

Te
st

Lif_T [95] 52.5 60.0 244 186 6837 21610 730

MPNTrack [28] 51.5 58.6 225 187 7260 21780 375

ApLift [96] 51.1 59.0 284 163 10070 19288 677

MFI_TST [242] 49.2 52.4 210 176 8707 21594 912

Tracktor [18] 44.1 46.7 130 189 6477 26577 1318

Ours 49.9 53.5 187 179 5924 24032 1689

X
-v

al AP lift 59.6 67.8 237 133 8897 10150 283

Ours 59.7 67.6 234 134 8720 10214 370

Table 6.1: Results on MOT15 [134]. X-val refers to results on the training set using
leave-one-out cross validation.

6.4.2 MOT15

We use the MOT15 dataset [134] to show that our method performs on par
with state-of-the-art tracking methods and present results in Table 6.1. For
this dataset, GUROBI [83] is used to find a solution for the optimization
problem. The sequence is evaluated in segments of 20 frames using a
maximum frame gap of ∆ fmax = 10. As binary quadratic problems are
very hard to solve with classical approaches, it is not possible to find an
optimum solution for segments that contain a high number of tracks. In
these cases, we terminate the optimization after 900 s on a single segment
and use the best solution found.

For comparisons, ApLift [96] is closest to our method, as it uses the same
set of similarity features. On the test set, we achieve a MOTA-score of 49.9%
and perform only 1.2% below ApLift, even though it models gaps up to 50
frames.

For a comparison under similar settings, we evaluate our method and
ApLift [96] with the same frame gap of ∆ fmax = 10. As MOT15 does
not contain a validation set, we use leave one out cross-validation on all
samples of the training set for a fair comparison. In this scenario, our
method improves by 0.2% over ApLift in MOTA score. An explanation
for this is that the MOT15 test set contains more detections in each frame
on average (10.6 vs. 7.3) than the training set. In this case, there are more
sequences where the classical solver does not find a solution and thus,
generates a non-optimal result.

Further detailed results for our method on each sequence in the MOT15 [134]
training and test set are provided in Table 6.2. While the results on both sets
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are competitive with current state-of-the-art methods [96], the performance
on the training set with leave one out cross-validation is higher than on the
test set.

The difference can be explained by the harder examples represented
by it. While both splits contain a similar number of frames (5500 frames
and 5783 frames respectively), the number of tracks, detected boxes and
the corresponding density is approximately 45% higher in the test set
and thus, also the complexity and size of the optimization problem. As
our formulation is designed for AQC using an Ising model, the resulting
optimization problem is a quadratic binary program and thus, hard to solve
on classical hardware. This becomes apparent for two sequences in the
test set, AVG-TownCentre and PETS09-S2L2 with a high density of 15.9 and
22.1 and low frame rate of 2.5 fps and 7 fps respectively. The two sequences
account for only 27.3% of the total detections, but for 58.7% of the ID
switches. ID switches are a good measure for the tracker’s performance
in this case, as they are less influenced by the performance of the object
detector than FP and FN. Due to the larger size of these problems, the
optimization cannot finish for all segments within the given time frame and
thus, returns a sub-optimal solution.

Even though the problem size is a limitation when solving the prob-
lem on classical hardware, it can be resolved when future AQCs become
available. As the overall performance is similar to current state-of-the-art
methods on MOT15 [134], it can be expected that it scales up to larger
datasets accordingly and thus, provides the basis to develop AQC based
formulations of the MOT task.
MOT15 with AQC. To show that tracking with an AQC already scales
to small real-world examples, a part of the PETS09-S2L1 sequence is used.
As the problem size has to be limited, three tracks that contain two occlu-
sions, are extracted between frames 121 to 155. We execute our pipeline
on segments of 5 frames with 3 tracks, a maximum frame-gap of 3, and
optimized Lagrangian multipliers. The subproblems are solved on the D-
wave Advantage with 1600 µs annealing time and 500 measurements per
segment. The most relevant frames that highlight occlusions are shown in
Figure 6.6. The normalized energy E− E0 levels of the measurements for
each subproblem are shown at the top of Figure 6.7 and the corresponding
probabilities p of measuring the right solutions are plotted in the lower one.
The subproblems 5 and 10 correspond to the two occlusions highlighted in
Figure 6.6. These are harder to solve problems, as multiple solutions with
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seq MOTA IDF1 MT ML FP FN IDs Density Tracks Boxes FPS

X
-V

al

Venice-2 41.6 50.0 13 1 2178 1855 135 11.9 26 7141 30

KITTI-17 79.6 83.6 6 0 5 130 4 4.7 9 683 10

KITTI-13 33.5 57.8 13 11 197 293 17 2.2 42 762 10

ADL-Rundle-8 26.7 51.4 18 3 3587 1336 49 10.4 28 6783 30

ADL-Rundle-6 63.3 53.7 11 1 228 1570 40 9.5 24 5009 30

ETH-Pedcross2 46.2 59.9 28 74 127 3216 27 7.5 133 6263 14

ETH-Sunnyday 78.1 87.0 19 6 110 295 2 5.2 30 1858 14

ETH-Bahnhof 47.3 67.5 98 38 1933 895 24 5.4 171 5415 14

PETS09-S2L1 83.2 76.9 17 0 341 351 58 5.6 19 4476 7

TUD-Campus 75.5 75.4 4 0 9 72 7 5.1 8 359 25

TUD-Stadtmitte 81.6 80.8 7 0 5 201 7 6. 10 1156 25

OVERALL 59.7 67.6 234 134 8720 10214 370 7.3 500 39905 -

Te
st

Venice-1 44.4 49.0 6 3 656 1839 42 10.1 17 4563 30

KITTI-19 48.2 60.1 14 17 528 2191 49 5.0 62 5343 10

KITTI-16 52.7 67.1 3 1 120 666 19 8.1 17 1701 10

ADL-Rundle-3 50.0 47.4 10 7 653 4346 81 16.3 44 10166 30

ADL-Rundle-1 38.2 49.9 12 2 2365 3313 73 18.6 32 9306 30

AVG-TownCentre 52.7 57.0 58 35 363 2767 250 15.9 226 7148 2.5

ETH-Crossing 62.3 75.1 7 8 38 335 5 4.6 26 1003 14

ETH-Linthescher 56.5 62.3 45 89 342 3493 48 7.5 197 8930 14

ETH-Jelmoli 51.0 65.5 18 13 522 701 19 5.8 45 2537 14

PETS09-S2L2 50.1 38.7 2 4 312 4259 243 22.1 42 9641 7

TUD-Crossing 85.7 81.6 12 0 25 122 11 5.5 13 1102 25

OVERALL 49.9 53.5 187 179 5924 24032 840 10.6 721 61440 -

Table 6.2: Results of our method on the MOT15 [134] training and test set. Results
on the training set are generated using leave-one-out cross validation (X-Val).

small differences in their energy exist and thus, they have a lower solution
probability.

6.5 conclusion

In this chapter, we proposed the first quantum computing formulation
of MOT. We demonstrated that current AQCs can solve small real-world
tracking problems, and that our approach closely matches state-of-the-art
MOT methods. Current limitations stem from the proposed formulation
being optimized to run on an AQC. As QUBO is know to be hard using
classical approaches and as current AQCs are still at an experimental stage,
problems are limited to a small scale. Nevertheless, quantum computing
has the potential to make much larger problems feasible in the future.
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Figure 6.6: Frames from the extracted sequence tracked on the AQC.
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Figure 6.7: Energy of measurements returned by performing tracking of the
PETS09-S2L1 sequence on the D-wave Advantage. The bar-plot shows the proba-
bility of measuring the optimal solution.
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P R O B A B I L I S T I C S A M P L I N G O F B A L A N C E D K - M E A N S
U S I N G A D I A B AT I C Q UA N T U M C O M P U T I N G

AQC is a promising quantum computing approach for discrete and often
NP-hard optimization problems. Current AQCs allow to implement prob-
lems of research interest, which has sparked the development of quantum
representations for many computer vision tasks. Despite requiring multiple
measurements from the noisy AQC, current approaches only utilize the
best measurement, discarding information contained in the remaining ones.

To use the AQC more efficiently, we explore the potential of using this in-
formation for probabilistic balanced k-means clustering. Instead of discard-
ing non-optimal solutions, we propose to use them to compute calibrated
posterior probabilities with little additional compute cost. This allows us to
identify ambiguous solutions and data points, which we demonstrate on a
D-Wave AQC on synthetic and real data.
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Figure 7.1: The proposed approach uses an adiabatic quantum computer to sample
solutions of a balanced k-means problem. By using an energy-based formulation,
likely solutions are drawn from a Boltzmann distribution. By reparametrizing the
distribution, the calibrated posterior probability of each solution can be estimated.

7.1 introduction

Clustering is a fundamental problem in machine learning and computer
vision, extensively employed for the analysis and organization of large
volumes of unlabeled visual data. It involves grouping similar objects based

115
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on their features, facilitating efficient data processing and unsupervised
learning algorithms [238]. The information extracted from clusters plays a
vital role in various computer vision applications, including image classifica-
tion [33, 131], segmentation [46, 56], tracking [117], and network training [45,
241]. However, the often NP-hard computational complexity of solving clus-
tering problems often hinders their application to large-scale problems that
require fast processing times [238].

In addition to this, the ambiguity of the task itself contributes to the
absence of a unique definition for clustering [238], which arises from the
range of possible optimization objectives. An example of this are different
algorithms that can optimize for the most compact solution, an underlying
data-generating process or just use local distances. One way to address this
challenge is the use of confidence-based estimators and the sampling of
multiple likely solutions. This approach helps in identifying well-assigned
samples and uncovering ambiguities within the data [238].

Quantum algorithms that promise a considerable speedup over their
classical counterparts and are inherently probabilistic have the potential to
enable a new family of machine learning algorithms. By now, quantum ma-
chine learning algorithms approach tasks such as optimization of quadratic
problems [111], training of restricted Boltzmann machines [58], and learning
with quantum neural networks [1]. While the current quantum computers
can only solve small-scale problems, they provide the basis to develop and
test algorithms that can considerably increase the size of feasible problems
in the future.

In our framework, we propose to exploit the probabilistic nature of a
quantum computer to sample multiple high-probability solutions of the
balanced k-means problem at little additional cost. By formulating the
k-means objective as a quadratic energy function, we embed the clustering
task into the quantum-physical system of an AQC. By repeatedly measuring
the quantum system, we sample high-probability solutions according to
the Boltzmann distribution. Unlike previous approaches that only use the
best solution and discard all other measurements, we utilize all samples
to generate probabilistic solutions for the k-means problem, as shown
in Figure 7.1. We recalibrate the samples of the clustering problem to
address temperature mismatch [183], estimating the posterior probability for
each solution, which allows us to identify ambiguous points and provides
alternative solutions. We demonstrate the algorithm on a D-Wave quantum
computer and perform extensive experiments in simulation. However, our
primary objective is to explore the potential and efficient utilization of
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quantum computing for machine learning. Our primary contributions are
as follows:

• We propose a quantum computing formulation of balanced k-means
clustering that predicts well-calibrated confidence values and provides
a set of alternative clustering solutions.

• A reparametrization approach is used to compute posterior proba-
bilities from samples that avoids exact tuning of the AQC sampling
temperature.

• Extensive experiments on synthetic and real data show the calibration
of our approach using simulation as well as the D-Wave Advantage 2

AQC prototype.

7.2 theory

In this section, the theory on energy-based models as well as the corre-
sponding clustering background are introduced. For an overview of the
quantum computing background required for the remainder of this chapter
the reader is referred to Section III.II

7.2.1 Energy-Based Models

Energy-based models are probabilistic models that use an energy function
E(x) to describe the probability of each system state. By assigning an energy
value to each system state, the probabilities are Boltzmann distributed

p(x) =
1
A

exp[E(x)/T], (7.1)

with the temperature T as a free parameter in this model and the normal-
ization constant A ensuring that the values are valid probabilities. Our
model follows this approach and represents the clustering problem as an
energy-based formulation.

One challenging task to use energy-based models remains in sampling the
system according to the Boltzmann distribution as this is NP-hard for the
quadratic Ising-model formulation [183]. While this is usually approximated
on classical hardware with the corresponding computational overhead,
AQC provides a direct way to sample from a physical system that follows
the Boltzmann distribution [183].
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7.2.2 Clustering

Clustering is one core task required in many unsupervised machine learning
algorithms. It has the objective to group a set of points X into disjoint
clusters {c1, ..., cK}, where each cluster contains points that are similar in
the feature space. A design parameter is the definition of the similarity
metric, which leads to a wide range of clustering algorithms available. The
popular and simple k-means algorithm [71, 148] optimizes the quadratic
distance to a centroid. Such distance-based metrics assume clusters to be
compact, while other approaches such as dbscan [65] define features as
similar if they come from a contiguous region of high density.

In our formulation, balanced clustering is investigated, where a defined
target cluster size sk is required. This approach forms the basis of many
AQC-based algorithms [17, 23, 250] and has a wide range of further appli-
cations such as secret key generation in cryptography [93], energy-efficient
data aggregation in wireless sensor networks [142], or data cleaning [69].

Uncertainty estimation in clustering and machine learning aims at
quantifying the confidence that predictions made by a model correspond to
the underlying ground-truth. The confidence scores can be used to eliminate
uncertain samples from the solution, to select a set of possible hypotheses
or to find the right parameters of the algorithm itself [36].

Uncertainty estimates can be generated separately for each data-point by
evaluating the likelihood function p(X|Ẑ), or by computing the posterior
probability p(Ẑ|X) that describes the probability of the whole clustering
solution. As the former can be evaluated if the data generating model is
defined, it can be combined with most clustering approaches. Nevertheless,
as the likelihood function is not a probability distribution of the cluster
assignments, it does not provide a calibrated prediction. In contrast to
this, the posterior probability p(Z|X) directly represents the probability
that the estimated assignment Z corresponds to the ground-truth. While
this provides an interpretable result, it is often infeasible to compute as all
possible assignments need to be evaluated in order to find the normalizing
constant.

The set of possible clustering solutions together with their posterior prob-
abilities provides valuable information that can be utilized for a range of
low- as well as high-level reasoning tasks. On a low level, the probability of
the best solutions can be used to identify the right number of clusters. If a
number different than the number of the data-generating process is chosen,
additional ambiguity is introduced. For a larger number during clustering
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than present in the data, the strong overlap between the corresponding dis-
tributions induces high ambiguity, while an insufficient number of clusters
spreads points inside a single cluster far apart, which reduces the associated
probability.

For high-level applications, calibrated samples of possible clustering so-
lutions can provide additional information in multi-object tracking [42].
Following the AQC framework, tracking can be implemented as a clustering
problem with additional constraints that represent the temporal relation be-
tween points [250]. Each cluster then corresponds to one object in the video,
with each point representing it at a different timestep. The feature used to
define clusters can either be visual similarity from re-identification [90, 176,
258] features or spatial similarity [20]. Different solutions thus represent
different tracks through time, where ambiguities can be generated by occlu-
sions or crossing paths. In a larger system such as an autonomous vehicle,
knowing all likely candidate solutions can allow for predicting multimodal
candidates for future trajectories [55, 108] and can help to evaluate the
risk of taking any action. In a similar approach, feature matching can be
formulated [23] and ambiguous candidates can be discarded during 3d
reconstruction or camera pose estimation.

7.2.3 Clustering as QUBO

To solve the clustering problem using AQC, a QUBO formulation is required.
We use a variation of the one-hot encoding approach [11, 50] that uses a
matrix Z ∈ {0, 1}K×I to encode the cluster assignment of I samples to K
clusters. Each row corresponds to one of K clusters and each column to
one of I samples. An entry Zki = 1 indicates that the sample xi belongs to
cluster ck.

As each sample needs to be assigned to a single cluster, the sum of
each column of Z needs to satisfy the constraint ∑k Zki = 1 ∀i. The imple-
mentation of constrained clustering, where each cluster has a fixed size sk

furthermore requires the row constraints ∑i Zki = sk ∀k on Z.
With the cost q(i, j, k) for assigning the pair of samples xi and xj to the

same cluster ck, the optimization problem reads

Ẑ = arg min
Z

∑
k

∑
i

∑
j

ZkiZkjq(i, j, k)

s.t. ∑
k

Zki = 1 ∀i ∧ ∑
i

Zki = sk ∀k.
(7.2)
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By vectorizing Z in row-major order as z = vec(Z), the optimization
problem can be rewritten in matrix form as

ẑ = arg min
z

z⊺ Q z s.t. Gz = d, (7.3)

where Q is a block diagonal matrix with blocks Q0, ..., QK and Gz = d

corresponds to the matrix formulation of the constraints. Each block Qk of
the cost matrix is a square matrix that contains the costs q(i, j, k) at Qk,ij.

While the constraints are not directly covered by the QUBO problem, they
can be modeled using Lagrangian multipliers. To avoid a mixed discrete
and continuous optimization problem, a quadratic penalty reformulation
λ||Gx− d||22 is chosen, leading to the minimization problem

ẑ = arg min
z

z⊺Q′z + b′⊺z (7.4)

with

Q′ = Q + λG⊺G (7.5)

b′ = −2λG⊺b. (7.6)

In contrast to a linear penalty approach, where the multiplier λ needs
to be optimized, our selection only requires a sufficiently high λ, as all
constraint violations result in an increased penalty term. With such selection,
the penalty term evaluates to zero λ||Gx− d||22 = 0 if all constraints are
fulfilled, and thus, the minimizer ẑ of the modified optimization problem
is a minimizer of the original optimization problem in Equation (7.3).

Besides modeling balanced clustering, further constraints can be intro-
duced using Lagrangian multipliers. This allows to represent a wide range
of tasks as QUBO clustering problems solvable with AQC.

7.3 probabilistic quantum clustering

7.3.1 Motivation

Our clustering formulation employs a mixture of Gaussians to explain
the observations, where the cluster assignments are latent variables. Each
sample in a cluster ck is modeled as a sample drawn from a Gaussian
distribution N (¯k, I) with mean ¯k and identity covariance according to
the k-means setting. Following a Bayesian approach, the best clustering
solution can be found by maximizing the posterior probability over possible
assignments Z of points to clusters.
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p(Z|X) = p(X|Z)p(Z)

∑Z′ p(X|Z′) =
p(X|Z)p(Z)

A
. (7.7)

While this approach provides a probabilistic estimate by jointly modeling
information about the possible cluster configurations and the distribution
of data points, it is often intractable to evaluate due to the partitioning
function A = ∑Z′ p(X|Z′). Computing A requires to sum over all possible
solutions Z, which grows exponentially with the number of samples in
the clustering problem. To overcome this, we utilize an AQC that samples
directly from a Boltzmann distribution, which we parameterize according
to the probabilistic clustering problem.

7.3.2 Data Model

Determining the cost function of the optimization problem is a design
choice of the algorithm. For our probabilistic approach, a well-defined data
distribution, that forms the basis of the cost function is required. While
many tasks approached in quantum computer vision, such as tracking [250]
or synchronization [16, 23], costs are based on learned metrics or heuristics,
they can also be trained to reflect the properties required in our approach.

We therefore, follow the mixture of Gaussian model, where each cluster
generates samples from a normal distribution. With the independence of
observations and clusters, given the distribution parameters, the likelihood
of the joint observations for an assignment Z is given as the product of the
individual likelihods

f (X|Z) =
K

∏
k=1

f (X|Zk) =
K

∏
k=1

∏
i∈Zk

f (xi|Zk) = (7.8)

K

∏
k=1

∏
i∈Zk

1√
2πd

exp
[

−1
2
(xi − ¯k)

⊺I(xi − ¯k)

]

= (7.9)

1√
2πd

exp

[

−
K

∑
k=1

∑
i∈Zk

1
2
(xi − ¯k)

⊺I(xi − ¯k)

]

(7.10)

where the likelihood f (xi|Zk) corresponds to a Gaussian distribution that
follows N (¯k, I) and d is the dimensionality of the space. This result can be
used to formulate the energy-based model with the energy function

E(X|Z) =
K

∑
k=1

∑
i∈Zk

1
2
(xi − ¯k)

⊺I(xi − ¯k). (7.11)
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Using the energy function to rewrite the posterior distribution leads to the
Boltzmann distribution from Equation 5.14

p(Z|X) = exp [−(E(X|Z) + E(Z))]

∑Z′ exp [−E(X|Z′)] . (7.12)

In this formulation, the energy of the assignment E(Z) corresponds to the
prior p(Z), which models feasible and infeasible solutions by an indicator
function. In the case of balanced clustering, this corresponds to allowing
assignments that have each point assigned to exactly one cluster and a
cluster size according to sk.

Searching the most likely clustering solution corresponds to finding
lowest energy solution on on the AQC, as well as to the Maximum-a-
Posteriori Ẑmap estimate of the assignment

Ẑmap = arg max
Z

p(Z|X)p(Z) = arg min
Z

E(X|Z) + E(Z). (7.13)

As the AQC qubit system is an Ising model, it requires formulating
E(X|Z) and E(Z) quadratic in the optimization variables Z, enabling the
joint discovery of assignments and cluster means. This is achieved by using
the maximum likelihood estimator of the mean, resulting in a quadratic
energy formulation that fits the Ising model in Equation 7.4

Ek(X|Z) =
1
sk

∑
i

∑
j

ZkiZkj (xi − xj)
⊺(xi − xj). (7.14)

The second energy term E(Z) in Equation 7.12, modeling the prior distri-
bution over possible assignments cannot exactly be embedded in the Ising
model. We therefore use the quadratic penalty method as shows in Equa-
tion (7.4) to approximate the energy of an indicator function. Importantly,
this does not influence the energy of feasible solutions, as λ||Gx − d||22
evaluates to zero for all solutions that fulfill the clustering constraints.

7.3.3 Boltzmann Reparametrization

While ideally the measurements on AQC are direct samples from the
Boltzmann distribution [47, 58], it requires solving a range of challenges
that prohibit a direct use in our scenario [183]: Mapping between the cost
function and the physical system implemented on the AQC requires Hamil-
tonian scaling [183]. Estimating the scaling factor is nontrivial [171] and
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prohibitive for using samples directly in many cases. Additionally, hard-
ware limitations including imperfection of the processor and the spin-bath
polarization effect [183] prevent the AQC to sample the Boltzmann distri-
bution exactly. Finally, as the energy term E(Z) can only be implemented
using the penalty method, the sampling density is influenced by solutions
not fulfilling the constraints.

We compensate for these limitations by evaluating the energy of all
measured feasible solutions Z′ and recompute p(Z|X) by evaluating the
partitioning function over these, which only requires sampling solutions at
a sufficiently high temperature.

7.3.4 Maximum Pointsets

Having the set of the most likely clustering solutions Z available together
with their posterior probability P(Z|X) allows to find an assignment Z∗

of a subset of points that solves the clustering problem with increased
probability P(Z∗|X). Such a set can be found by using Algorithm 1, which
implements a greedy approach that disregards points that disagree between
different clustering solutions.

Algorithm 1 MaxsetSearch
1: Z∗ ← Z0
2: p← P(Z0|X)
3: i← 1
4: while p ≤ pmin do

5: Z′i ← align(Zi, Z∗)
▷ Find the cluster permutation that minimizes the number of points
assigned to different clusters in Zi and Z∗.

6: Z∗ ← Z∗ ∩ Z′i
▷ Remove points assigned to different clusters.

7: p← p + P(Zi|X)
8: i← i + 1
9: end while

10: return Z∗

In the case of a sufficiently well sampled Boltzmann distribution, the re-
sulting maxset assignment Z∗ with the corresponding probabilistic estimate
P(Z∗|X) is still calibrated.
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7.3.5 Inference Parameter Optimization

Using the quadratic penalty method to implement the constraints requires
finding suitable Lagrangian multipliers λ. Even though a very high mul-
tiplier theoretically guarantees finding a feasible solution, it also deterio-
rates the conditioning of the optimization problem. Therefore, a suitable
Lagrangian multiplier lifts the cost of any constraint violation above all rele-
vant solutions of the clustering problem, while keeping them low enough to
avoid scaling the total energy of the problem up considerably. To estimate
the multipliers, we follow an iterative procedure as also proposed in [250].

In an initial step, balanced k-means [154] is used to find a feasible cluster-
ing solution. This solution is used to estimate Lagrangian multipliers that
avoid any first-order violation of the constraints. In subsequent iterative
optimization steps, the problem is solved in simulation, to find multipliers
that result in a well conditioned problem.

Such optimization procedure is crucial due to the low fidelity of the
current generation of AQCs, which requires careful engineering of the
problem energy. Therefore, we expect this procedure to become of reduced
importance with the progress of quantum computing.

7.4 experiments and results

We perform experiments on synthetic data as well as real data to verify the
efficacy of our method in finding the set of high-probability solutions and
in estimating calibrated confidence scores. The experimental scenarios are
solved with QA, Simulated Annealing (SIM), and exact exhaustive search
using the presented energy formulation and with k-means as a baseline
method, which all optimize for the same cost objective. This further allows
us to understand the limitations and required work when deploying the
approach to real quantum computers.

7.4.1 Solver Methods

Quantum annealing (QA) experiments are performed on the D-Wave
Advantage 2 Prototype 1.1 [159]. The system offers 563 working qubits,
each connected with up to 20 neighbors. For each clustering problem 5000

measurements are performed, each with 50µs annealing time.
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Due to the strong compute-time limitations on an AQC, all Lagrangian
optimization steps are performed with SIM, before measuring the final
results on the AQC.
Simulated annealing (SIM) provided by D-Wave is used for larger scale
comparisons. Similar to QA, we perform 5000 runs for each clustering
problem. We reduce the number of sweeps performed in each run to 30,
which allows us to sample the Boltzmann distribution at a sufficiently high
temperature in most scenarios, making it comparable to QA.
Exact exhaustive search is used as a reference method to validate the energy-
based formulation on small problems. By iterating all feasible solutions,
the lowest energy solution is guaranteed to be found and the partitioning
function is computed exactly.
K-Means clustering with a balanced cluster constraint [154] forms the
baseline for our approach. We run the algorithm until convergence for a
maximum of 1000 iterations. While this solution does not provide a proba-
bilistic estimate, it is useful to assess the relative clustering performance.

7.4.2 Dataset and Metrics

Data for the quantitative evaluation of our method is synthetically gen-
erated. For each clustering problem a total of I points are sampled from
a separate normal distribution for each of K clusters. The cluster centers
are randomly drawn, such that the distance between each pair of clusters
lies within a predefined range [dmin, dmax]. For each experiment a total of
L clustering tasks is generated. This allows us to evaluate the calibration
metrics over a large value range. For all experiments that directly compare
methods, identical clustering tasks are used.

Further qualitative examples are provided for the IRIS dataset [70], which
contains 50 samples of 4 features in 3 classes. We randomly subsample
the points and dimensions to generate the parameters required for our
experiments.
Clustering metrics are computed using the available ground-truth clusters.
We evaluate 4 standard metrics: The accuracy, which measures the ratio
of clustering solutions that are identical to the ground-truth. Complete-
ness [194] measures the ratio of points from a single cluster being grouped
together. The adjusted Rand score [102] compares all pairs of points in the
ground truth and prediction and the Fowlkes-Mallows index [72] combines
precision and recall into a single score.
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15 Points, 3 Clusters, 2 Dim 30 Points, 3 Clusters, 2 Dim 45 Points, 3 Clusters, 2 Dim

SIM 56.4±1.6 79.5±0.8 74.7±1.0 81.9±0.7 38.6±1.5 74.2±0.8 73.3±0.9 81.6±0.6 50.8±1.6 86.2±0.5 87.3±0.5 91.4±0.3

K-means 51.3±1.6 75.0±0.9 68.8±1.1 77.7±0.8 37.0±1.5 71.9±0.8 70.2±0.9 79.4±0.6 52.8±1.1 85.9±0.4 86.6±0.4 90.9±0.3

15 Points, 3 Clusters, 2 Dim 10 Points, 2 Clusters, 2 Dim 20 Points, 4 Clusters, 4 Dim

QA 56.1±1.6 79.4±0.8 74.6±1.0 81.9±0.7 74.3±1.4 80.2±1.1 79.6±1.1 88.7±0.6 12.4±1.0 51.2±0.8 34.0±1.0 47.9±0.8

SIM 56.4±1.6 79.5±0.8 74.7±1.0 81.9±0.7 74.1±1.4 80.0±1.1 79.5±1.1 88.6±0.6 32.4±1.5 70.4±0.8 59.2±1.1 67.8±0.8

K-means 51.3±1.6 75.0±0.9 68.8±1.1 77.7±0.8 70.1±1.4 76.3±1.2 75.4±1.2 86.3±0.7 20.9±1.3 61.9±0.8 47.4±1.0 58.5±0.8

Exhaustive 56.4±1.6 79.5±0.8 74.7±1.0 81.9±0.7 74.3±1.4 80.2±1.1 79.6±1.1 88.7±0.6 - - - -

Table 7.1: Synthetic data results for our approach (QA, SIM, exhaustive) and
k-means. All numbers in % with standard error of the mean.
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Figure 7.2: Evaluation of the calibration for QA, SIM and exhaustive search in a
clustering scenario with 15 points and 3 clusters. Evaluation of the calibration
for quantum annealing, simulated annealing and exhaustive search in clustering
scenarios with 2, 3, and 4 clusters and 5 points in each cluster. All results are
generated with 1,000 problems in each scenario and 5,000 measurements for each
clustering problem.

7.4.3 Calibration Performance

We evaluate the calibration of our method on a synthetic clustering scenario
with 3 clusters and 15 points using QA, SIM and exhaustive search on 1000

tasks. First all clustering solutions Z are accumulated in bins according
to their estimated posterior probability P(Z|X). This process also includes
all sampled non-optimal but feasible solutions. The resulting histogram of
solutions is shown in Figure 7.2a. After accumulation, the ratio of correct
solutions in each bin is evaluated in Figures 7.2b,7.2c, and 7.2d, which for a
calibrated method should be close to the mean predicted probability repre-
sented by the diagonal. We find our approach to generate well-calibrated
probabilities in both simulation and when using QA.
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Figure 7.3: Sparsification plots of clustering metrics.

7.4.4 Clustering Performance

We evaluate the performance of our clustering formulation using synthetic
data in Table 7.1. The upper rows show results for 3 clusters with an
increasing number of points and 1000 tasks/setting for SIM and k-means.
Due to the problem size, results cannot be found using QA and exhaustive
search. Comparing results shows that most clustering metrics are better
when using our formulation with SIM, however, the difference decreases
with increasing problem size. This can be attributed to the globally optimal
solution our approach is optimizing for. While in an ideal the global solution
is at least as good as the k-means solution, an increasing problem size also
increases the complexity of the corresponding QUBO. This makes it harder
to solve exactly and the noisy approach using annealing is not capable of
solving the problem correctly.

For the largest clustering problem with 3 clusters and 45 points, k-means
provides the best accuracy and thus, a larger number of correct solutions
compared to SIM. However, the metrics indicating clustering quality are
higher for SIM. This indicates that our formulation is able to find a better
solution in cases where the problem is not solved correctly by SIM and
k-means.

The lower rows in Table 7.1 show settings with 2,3, and 4 clusters, each
containing 5 points, again with 1000 tasks/setting. For the two smaller
scenarios QA on the D-wave Advantage 2 provides results close or identical
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to SIM and exhaustive search. For the largest scenario with 20 points in 4

clusters, QA loses performance.
The quality of predicted posterior probabilities can be further evaluated

by linking them to the clustering metrics and sparsifying the set of tasks.
Starting with metrics over the whole set of clustering tasks, we remove tasks
according to increasing predicted probability and evaluate the metric over
the remaining set. In an ideal predictor, this removes the lowest performing
tasks first. In Figures 7.3a and 7.3b this is done for the adjusted Rand
index with different solvers and for QA with different metrics respectively.
The solid lines show the sparsification-plots using the predicted probabil-
ities and the dashed lines show the same plots for an oracle method that
generates the best possible ordering based on the metrics themselves.

In Figure 7.3a it becomes apparent that QA, SIM and exhaustive search
perform close to each other over most of the value range. Nevertheless, for
a high sparsification with more than 80% of the tasks removed, QA shows a
drop in performance compared to the other methods. This is caused by tasks
where only a single, but incorrect solution is found, which gets assigned
a posterior probability of P(Z|X) = 1.0. In such cases the Boltzmann
distribution has not been sampled sufficiently well, either because of too
few measurements or because of a low effective sampling temperature. As
SIM does not show this behavior the source can likely be traced back to
current limitation of the quantum computer.

7.4.5 Maximum Pointsets

Qualitative examples for the maximum pointsets generated with Algo-
rithm 1 are depicted in Figure 7.4. The shape of each point represents
the ground truth class and the color the assigned cluster. Starting with
the most likely solution having a predicted probability of p(Y|X) = 0.61
on the left, each plot shows one additional step of the algorithm, which
successively removes points from the solution, indicated by plotting them
in Grey. The illustration demonstrates that the MaxsetSearch algorithm is
able to generate well-separated clusters from the probabilistic predictions.

7.4.6 IRIS Dataset

While our method assumes an identity covariance in the data, it can be
applied to other distributions, which we evaluate on the widely used IRIS
dataset. Clustering metrics for experiments using 3 clusters with 5 points
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Figure 7.4: Visualization of max pointsets for synthetic data with the probability
for each of the determined pointsets.

(a) 24 points, solved us-
ing QA.

(b) 60 points, solved
using SIM.

Figure 7.5: Qualitative results on the IRIS
dataset.
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QA 47.2 81.7 76.8 83.4

SIM 47.1 81.7 76.7 83.4

K-means 47.0 80.6 75.5 82.5

Exhaustive 47.1 81.8 76.8 83.5

Table 7.2: Clustering metrics gen-
erated on IRIS subsets using 3 clus-
ters with 15 points in total.

each are provided in Table 7.2 and show that our formulation using QA and
SIM is competitive with k-means. Figures 7.5a and 7.5b show differently
sized qualitative examples from the dataset solved using our formulation
with QA and SIM respectively.

Though the value of the predicted probability cannot be interpreted easily
with the mismatch between the assumed and the actual data-generating
process, it can be used to find maximum pointsets. The results from Al-
gorithm 1 using results from SIM are provided in Figure 7.6 and show
that even for a distribution mismatch the maximum pointsets can provide
meaningful results for removing ambiguous samples.

7.5 conclusion

In this chapter, we described a probabilistic clustering approach based on
sampling k-means solutions using AQC. By using all valid measurements,
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Figure 7.6: Max pointsets generated using simulated annealing on the IRIS
dataset with 60 points.

calibrated confidence scores are computed at little cost and solutions are
competitive to an iterative balanced k-means approach. We evaluated our
method on synthetic as well as real data using simulation, exhaustive search
as well as the D-Wave Advantage 2 prototype AQC to explore the potential
of quantum computing in machine learning and computer vision.



8
C O N C L U S I O N

8.1 summary of contributions

In this thesis, computer vision for autonomous systems has been investi-
gated on three levels of abstraction. In Part I high-level scene understanding
was discussed with applications in autonomous driving and robot fleets.

In Chapter 2, a method to extract high-level driving actions from a dataset
containing vehicle trajectories together with semantic map information for
autonomous driving applications was proposed. Based on an HMM for-
mulation of an agent’s activity, we were able to decode the underlying
sequence of states and thus, were able to understand the corresponding
driving actions. As the state-decoding relies on the map information, man-
ual work is only required for annotating the map, rather than each agent’s
trajectory, which makes the method scalable for large datasets. Using the ex-
tracted actions a prediction module that used the rendered agent trajectory
together with map views has been trained. With the human-interpretable
action classes being available, we were able to evaluate the prediction model
together with the properties of the underlying data.

In Chapter 3, we developed a full action recognition pipeline that has
been deployed on a humanoid autonomous robot. The major contributions
of the work were 1) the collection of a multi-domain dataset for referee
action recognition that is easily adaptable to changes in the environment
and rules. It contains three distinct domains, from fully synthetic images
that can easily be adapted to rule changes, to a fully manually annotated
real domain that was used to test the method in a competition scenario.
2) The development of a highly efficient action recognition model and the
deployment of it on the NAO robot. Embeded into the full autonomous
software framework, we showed that it can perform real-time inference with
a strongly limited compute budget. 3) An in-depth evaluation of the dataset
design based on the developed model. It showed that using simulated and
real data together yields the best model and that combining orthogonal
domain gaps can provide a considerable performance improvement.

In Part II, we were diving deeper into tracking, one of the prerequisites
for action detection and recognition in autonomous vehicles.

131
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In Chapter 4, predictive models for the state of a track were combined
with a graph NMP framework for object matching. This allowed us to
extend a previous NMP approach [28] to online tracking of objects in 3D.
The graph structure implemented two matching problems in parallel, the
matching of detections across multiple frames as well as the matching
of active tracks to detections. The active tracks are parameterized by a
predictive model and thus, allow the interpolation of occlusions, as well as
provide a strong signal for matching. By performing experiments on the
nuScenes dataset [31], we showed that our approach considerably improves
track stability and thus, the overall tracking performance. During the AI
Driving Olympics Tracking Challenge at the IEEE International Conference
on Robotics and Automation 2021, we were able to achieve the second place
for 3D trackers and the best LIDAR-only method.

In Chapter 5, the challenge of long-term tracking was approached in the
context of RoboCup. This was an application that came with the challenges
also encountered in any real-world scenario where a fleet of autonomous
robots has to be tracked from an uncalibrated camera. These included long
and strong occlusions, identically looking robots with labels that are too
small to read from an external view and intersecting robots that can easily
induce ID-switches. To solve the task we built a tracking pipeline that com-
bined information acquired on each robot with a deep-learning short-term
tracker [18]. The fusion of multi-platform information has been achieved by
a discrete optimization problem mapping tracklets to robot IDs. To solve
the non-trivial and multi-dimensional cost weighting, we employed PSO
to find the optimal weights. We evaluated the importance of the different
features and found that redundant information is available in different
signals, which can be used to make the method more robust. Finally, we
matched the cost-weighting to different sequences, which allowed us to
qualitatively understand the shortcomings of each team’s algorithms in
each of the videos.

Like most methods in computer vision, also our approaches come at a
high computational cost, at least during model training. Thus, we inves-
tigated quantum computing in computer vision and machine learning in
Part III of this thesis, which provides a way to unlock large amounts of
computational power.

In Chapter 6, we applied this paradigm to MOT, where we derived a
formulation of the tracking assignment problem suitable for an AQC. As
the solution probability and thus, the number of measurements required
to solve the optimization problem is strongly related to the spectral gap of
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the cost function, we investigated the influence of the constraints on the
cost matrix. Based on the results, we proposed an iterative optimization
scheme as well as an initialization method for the constraint weighting.
We demonstrated that our formulation is competitive on a common MOT
benchmark [134] by using a classical solver, even though the task is much
harder in this context. In simulation and on a D-Wave QA we analyzed
the properties of the measurement results and demonstrated that small
real-world examples of MOT can already be solved on a real quantum
computer.

Finally, we approached the efficient use of an AQC for clustering tasks
in Chapter 7. From the observation that previous approaches in quantum
computer vision used the QA purely as an optimizer, we derived a quantum
k-means clustering formulation that utilizes all measurements performed
on an AQC during the optimization process. The derived approach provides
a set of alternative solutions to the clustering task, together with calibrated
confidence scores, while only incurring little additional compute cost. We
furthermore proposed an algorithm that merges the set of found clustering
solutions, to remove ambiguous points. Our experiments demonstrated
the valid calibration of the approach in simulation and for small problem
sizes also with a D-Wave QA. Finally, using the IRIS dataset, we showed
that our algorithm was able to remove ambiguous points and can be ap-
plied to distributions that do not fully follow the initial assumption of the
distribution.

8.2 discussion, limitations and future work

In this thesis, we proposed approaches for the computer vision pipeline
of an autonomous system that is used to understand its surroundings and
environment, with a special focus on MOT and prediction tasks. Further-
more, we investigated the efficient use of quantum computing for these
applications. We believe that there are several ways to extend and improve
our proposed approaches which are discussed in the following.

8.2.1 Action Sequence Predictions of Vehicles in Urban Environments

In this chapter we explored the task of predicting high-level actions of vehi-
cles in urban environments. To make data annotation for this task tractable,
we proposed an algorithm to automatically extract action sequences with a
semantic map and used it to annotate the public Argoverse [39] dataset.
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A fundamental design choice was the use of a CNN model with late
fusion to perform action prediction. As the late-fusion approach uses a fea-
ture extractor on each frame, it allows us to easily adapt the architecture to
new models proposed for feature extraction. Thus, one promising direction
is the integration of a transformer backbone network like VIT [61]. Such a
design change can be motivated from two perspectives. First, transform-
ers have recently shown a considerable performance boost compared to
CNNs and thus, the quality of extracted features can be considered to be
better. Secondly, transformers are designed to learn the relation between
different parts of the image. For a driving and prediction scenario, this is
information that needs to be modeled i.e. the relation of the ego-vehicle to
the road layout as well as to the other traffic participants strongly influences
the probability of future actions, which would make VIT a well-grounded
choice as a feature extractor.

While the selection of the architecture provides flexibility in adapting
the model to new progress, it requires to be run for each agent separately
to perform predictions. This is especially challenging with a computation-
ally heavy feature extractor in dense traffic. One possible solution to this
problem is the extraction of a global feature map for a large scene that
contains all traffic participants, and the extraction of relevant local features
from the global feature map during late fusion. This allows to only run
the lightweight part of the model for each participant separately while
sharing the backbone. One challenge, especially for CNNs, is the large
receptive field that is required in this approach. However, the combination
with transformers and thus an explicit model of relations could potentially
alleviate this drawback.

Finally, high-level action predictions are well interpretable by humans
and can be used well together with HD-map data, however, the combi-
nation with trajectory prediction in an autonomous driving framework
provides great potential to get the best of both worlds. While the trajectories
themselves are important for path planning, high-level actions can help to
quantify the confidence of trajectories. This can support the sampling of
diverse futures, which can enable explicitly risk-aware planning.

8.2.2 Recognition of Referee Signals on Robotic Platforms

Our approach towards recognizing referee actions on the humanoid NAO
robot included the collection and annotation of a dataset as well as the
development of a computationally efficient detection model on the robot.



8.2 discussion, limitations and future work 135

The dataset contains four domains, from a fully simulated one to a real
domain that resembles the scenarios also encountered during World Cup
matches.

One important aspect to improve our approach is the estimation of a
confidence score for the robot’s prediction. The evaluation shows that there
is a considerable performance difference between predictions from images
that show a frontal and clear view of the referee and images that are taken
under deteriorated conditions. These images are either taken from the side
of the field, too close to the referee, or under bad lighting conditions, e.g.
with strong illumination changes in the background. Knowing if a robot has
been able to make a reliable prediction can be used as a factor to decide on
the next step in the game strategy. We believe that this problem should be
approached using two kinds of signals; First, with the position on the field
from self-localization, which directly provides information about the quality
of the viewing angle. Second, with the image itself as this is the only way
to get information about the lighting conditions, or possible localization
errors that move the referee out of the image.

Based on this, another promising direction to extend our action detection
method is to fuse information from multiple robots that play in one team.
While the model currently only considers a single robot for recognizing the
referee’s action, there are always multiple robots deployed during a match.
Therefore, fusing the information acquired on each of the robots to make a
global decision could improve the performance considerably. This could be
studied under different constraints, from full Wi-Fi communication where
rich information can be shared to limited protocols where only sparse
messages can be transmitted between robots.

Finally, domain adaptation can be studied in our dataset. The combination
of different domains was already investigated in the respective chapter and
was primarily aimed at demonstrating how data collection and annotation
cost can be reduced. However, another aspect is the adaptation to rule
changes in RoboCup where e.g. new actions are introduced. In this case,
the adaptation from a fully synthetic domain, which can easily be changed
to reflect the new rules, to the real domain is crucial. An important aspect
that needs to be considered for this scenario is that real data would only be
available for a subset of the relevant actions.



136 conclusion

8.2.3 Learnable Online Graph Representations for 3D MOT

For 3D MOT, we proposed an NMP-based tracking method that combined
predictive models with fully learnable object matching. Possible improve-
ments of this framework can be found by starting with typical failure cases
that we observed. Typical scenarios where our tracker failed are as follows:

1. Long frame gaps cause scenarios where the time a track is kept active
without observations is shorter than the observed occlusion time.
While extending this timeframe may further reduce the number of
ID-switches, it also increases the number of false positives, harming
the overall tracking performance.

2. Consistent false positive detections are a general problem for any
tracker following the tracking-by-detection paradigm. While our
tracker can easily handle isolated false positives due to noise in
the detector, cases where e.g. physical structures or reflections are
detected cannot be recognized.

3. Double objects are generated if the same object is detected multiple
times as different types. This behavior can mostly be observed for
trucks in our results and should be approached at the detector level
e. g. with non-maximum suppression [97].

It is important to note that all of these scenarios are also failure cases for
existing trackers and are not newly introduced by our pipeline.

While the first type of error needs to be addressed primarily by improving
evaluation metrics, which often do not cover occluded scenarios, it also
provides valuable impulses for extending our tracker. Covering long frame
gaps is especially important in autonomous driving, where knowledge
about traffic participants that are currently unobserved, but can reappear is
needed for planning. A possible solution to this is the use of an occupancy
map that also represents unobserved areas and thus allows one to model
long occlusions without adding additional false positives.

Closely related to this is the integration of a semantic map, which can be
used to improve tracking in two aspects. First, a large fraction of encoun-
tered failure cases can be attributed to consistent false positives generated
by the object detector. As these stem from static objects or reflections, they
do not follow valid trajectories on a map and thus, can be eliminated. Sec-
ondly, map data can be used in the predictive moded, which forms a core
component of our approach, to provide improved trajectory estimates that
follow the rules of the road.
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8.2.4 Long-Term Robot Tracking with Multi-Platform Sensor Fusion

Following the goal of performing stable long-term tracking, this chapter
presented a method for tracking multiple similar humanoid robots using
sensor fusion. It utilized information from the robots’ sensors together with
an external camera view by combining them in a quadratic problem.

One open challenge in our approach is the adaptation of the cost weight-
ing to the different algorithms running on the robots. As robots play for
different teams, their respective methods are deployed during the games
performing all relevant tasks and thus, different teams exhibit different
performance levels on these. This includes self-localization and fall detec-
tion which are used as cost terms in our optimization framework. The
weighting of the costs is currently optimized over the complete training set,
however, given sufficient data, a possible extension can adapt them to the
performance of the playing teams.

Another important aspect with a large potential for improvement is the
detection of the IDs printed on the robots, as they uniquely identify them.
While detecting the ID is an easy task in a high-resolution video, it becomes
much harder to solve with a wide-angle camera, as used in our target
application to cover a large space efficiently. A possible approach is based
on the current improvements in video-superresolution. As the robots are
moving, slightly different views are available in each frame. Together with
short-term tracking, this can be used as the input to such a method and
possibly provide images that are sufficient for detecting robot numbers. In
this case, the advantage over directly training a number detector on a frame
sequence is the utilization of existing superresolution-datasets without
additional annotation effort.

8.2.5 Adiabatic Quantum Computing for Multi-Object Tracking

In this chapter, a quantum computing formulation of MOT suitable for an
AQC has been proposed. It was based on stating the matching problem
as QUBO and further investigated suitable formulations of the clustering
constraints.

Some limitations of the proposed formulation arise from it being op-
timized to run on current AQCs. As QUBO is a hard problem to solve
with classical approaches and as current AQCs are still at a small scale,
problem sizes are also limited. Nevertheless, the increasing size of quantum
computers promises to make much larger problems feasible in the future.
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One important extension of the algorithm is the introduction of sparsity
in the Hamiltonian function. In our current formulation, a dense form is
used as it provides the scope to encode all information available into a
single representation. However, as the qubits on an AQC are only locally
connected to their neighbors, the scaling of this approach to larger problems
is limited by the required mapping function. Sparse representations that
solve this problem could use information only about pairs of objects that are
strongly similar or strongly different. However, they also need to consider
the encoding of constraints, as these also require dense connections in their
current form.

Another aspect aimed at increasing the feasible problem size is the
development of an iterative solver that first solves for easy to generate tracks,
and uses the AQC to solve the optimization problem of hard decisions. Such
an approach has been considered in Q-match [16], where it increased the
scale of feasible problems by one magnitude and could also be transferred
to a multi-object tracking formulation similar to ours.

8.2.6 Probabilistic Sampling of Balanced K-Means using AQC

In the last chapter, we described a method to perform sampling of prob-
abilistic k-means on an AQC. Using our formulation, we were able to
computer calibrate confidence scores by using all valid measurements on
the AQC, which were unused and discarded in previous approaches.

Similar to the previous chapter, sparse formulations of the task should
be investigated are they are important to allow the problem size to scale up
further. In this case, a special focus needs to be put on not removing any
relations that are decisive for switching cluster assignments.

While our method and experiments were aimed at k-means clustering as
a fundamental machine-learning problem and the basis of unsupervised
algorithms in computer vision, the formulation can readily be transferred
to other applications in computer vision. E.g. our MOT approach as well as
Birdal et al. [23] and Benkner et al. [17] can be cast to a balanced clustering
problem with additional constraints. Implementing these constraints can
be performed by adapting the prior distribution that influences the energy
formulation, however, more work would be needed to achieve a sufficiently
high solution probability on the current noisy AQCs.

Further approaching the constraints, our formulation can be extended
to non-balanced k-means clustering. Similarly to the implementation of
problem-specific constraints, this would be approached through the adap-
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tion of the prior distribution. In this case, additional states need to be
allowed which increases the scope of feasible solutions and thus, likely also
the number of measurements required to sample the distribution sufficiently
well.

Following the k-means formulation and thus, assuming Gaussian clusters
is a well-justified choice and results in the use of the quadratic Euclidean
distance for the energy function. Nevertheless, in the QUBO formulation,
using a quadratic distance metric introduces large differences in the com-
ponents of the cost matrix. As the cost matrix needs to be scaled to fit
the range that can be represented by the Ising model implemented on the
AQC, smaller components are compressed. However, these terms are the
most relevant ones as they are included in the most likely solutions that
we aim to sample. An important aspect to study is thus the extension of
our algorithm to distance measures that better represent the connection of
similar points and reduce the influence of outliers.

Overall, while the approach is still limited in the problem size, quantum
computing enables a fundamentally different approach to clustering that
can provide additional information that is costly to compute otherwise.
With the current progress and potential to scale to real-world problems,
more work is required to adapt existing problem formulations, such that
the full capability of quantum computing can be used efficiently.
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