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Abstract

In many experiments with quantum gases, the information about the final state of the system
is extracted by the density profile of the cloud. One of the most common techniques used
to image the cloud is absorption imaging, which is limited by various kinds of noise. One
of the main sources of noise is the presence of fringes that originates from vibrations in the
experiment. In our case, the problem is increased by the presence of an optical cavity around
the atoms which diffracts the imaging light. These fringes can be eliminated by appropriate
fringe-removal algorithms. We show that these algorithms reduce the noise down to being
close to the limit imposed by the CCD camera. We also analyse some patterns that persist in
the optical density after removing the fringes. We relate these patterns to shifts of the atomic
cloud or of the imaging system between different runs of the experiment and to diffraction by
the atoms and the cavity.
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Introduction

“Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”

— Richard Feynman

Predicting the behaviour of complex systems has always been an important goal of scientific
research, and many-body quantum mechanics offers us some of the most complex problems
known in physics. The possibility of solving the dynamics of many body systems computa-
tionally or analytically is very often limited by the size of the Hilbert space involved. Richard
Feynman was the first to propose to use a quantum system to handle this complexity, making
use of the laws of quantum mechanics itself to solve the problem of interest [1]. The problem
is then shifted to finding a system that can be easily tuned and controlled, such that it can be
used to simulate a wide range of problems. In the last years this has become possible, both
through digital quantum computation [2–4] and analogical quantum simulation, for which the
use of cold atoms has gained increasing popularity [5]. Many experiments were recently real-
ized to simulate the behaviour of different quantum systems. Among them, we cite the use
of optical lattices to investigate insulating and superfluid quantum phases [6], the observation
of quantized conductance in neutral matter [7] and the use of cavities to mediate long range
interactions [8].

In all of these experiments a fundamental role is played by the measuring of the final
state of the gas. The typical quantity that is measured at the end of the experiment is the
density profile of the cloud. If done after time of flight, this can give us information about the
momentum distribution of the gas, and therefore also its temperature, but in general there
are many observables that can be derived from the density distribution. For example, for the
experiments performed in our group where the atoms are placed inside a cavity, the density
profile can be used to detect phase transitions [8, 9] or the spin state of the atoms [10]. This
report will focus on this specific aspect of quantum gases experiments, with a special emphasis
on a particular technique used to detect the cloud density profile: absorption imaging.

Outline

The goal of this report is to provide a brief introduction to absorption imaging and its limi-
tations, with a specific focus on how fringes appear in the density profile and how they can
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be eliminated. In the first chapter we will introduce absorption imaging and fringe removal
algorithms, focusing on two algorithms that have been proved to be particularly useful for
our experiment: the optimized fringe removal algorithm [11] and the effective statistical fringe
removal algorithm [12]. These two algorithm will then be implemented, characterized and op-
timized in the second chapter. In the third chapter we will turn our attention to some residual
noise patterns in the optical density that cannot be removed by fringe removal algorithms.
Some of these patterns will be analysed using principal component analysis, while another
one will be investigated through optical simulations. The discussion on both fringe removal
algorithms and noise patterns identification will be based on experimental data obtained from
a cavity experiment. The results will be discussed with the goal of optimizing our specific
setup, but most of the conclusions drawn can be extended to more general experimental con-
figurations.



Chapter 1

Fringe removal in absorption imaging

“In every way, then, such prisoners would recognize as reality nothing but
the shadows of those artificial objects.”

— Plato, The Allegory of the Cave

In quantum-gases experiments, the information encoded in the system is often extracted
by looking at the density distribution of the atomic cloud. For example, the density can be
measured after releasing the atoms from the trap and letting the gas expand during time-of-
flight (TOF). After expansion, the density distribution contains the information on the original
momentum distribution of the trapped gas, from which quantities like the temperature can
be extracted. In order to measure the density, several optical imaging schemes have been
proposed, which usually rely either on the absorptive or dispersive properties of the atomic
cloud. The two most common techniques are absorption and phase-contrast imaging. In
absorption imaging a laser beam is sent to the atomic cloud, and the density of the cloud
is recovered from the shadow that the atoms produce absorbing part of the light. In phase-
contrast imaging, the light sent to the atoms is far detuned, such that the cloud only alters
the phase of the beam. Making the part of the beam altered by the atoms interfere with the
unaltered beam, this phase modulation can be translated into an intensity modulation and
detected [13]. In the following, we will focus on absorption imaging, which is the technique
used in our experiment to image the atomic cloud at the end of the experimental cycle.

1.1 Absorption imaging

In this section we want to offer a brief introduction to absorption imaging. We will start
by introducing some basic concepts, and then we will focus on the specific setup used in our
experiment. Finally, we will discuss the limitations of absorption imaging and how some of
them can be overcome. The content of this section is mostly adapted from the work of Tammuz
[14] and Kosucu [15].

3
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1.1.1 Absorption-imaging fundamentals

If a laser beam resonant with an atomic transition is sent to an atomic cloud, part of it is
absorbed. Placing a charge-coupled device (CCD) behind the cloud allows us to detect the
shadow generated by the atoms. The higher is density of the cloud, the darker the shadow will
be. The goal of this section is to translate this general idea into a procedure to quantitatively
recover the density of the cloud.

We start by calculating the amount of light absorbed by a single atom, modelled as a
simple two-level system with a single excited state. We can qauntify it with the scattering
rate Rscatt = Γρee, where Γ = τ−1 is the inverse of the transition lifetime τ and ρee is the
density matrix element for the excited state. ρee can be obtained solving the optical Bloch
equations (OBE) for the steady state. The resulting scattering rate is

Rscatt =
Γ

2

I/Is
1 + I/Is + (2δ/Γ)2

(1.1)

where I is the intensity of the beam, δ is the detuning and Is = πhc/3λ0τ is the saturation
intensity, with λ0 resonance wavelength. If the laser beam has intensity I(x, z), after travelling
through a gas of density n for a distance dy, it will be absorbed for an amount proportional
to the column density ndy and to the scattering rate Rscatt

dI

dy
= −ℏωRscattn = −σnI (1.2)

where ω is the angular frequency of the light, and we define σ to be the absorption cross-section.
From Eqs. (1.1) and (1.2) we find

σ =
3λ2

2π

1

1 + I/Is + (2δ/Γ)2
(1.3)

Equation (1.2) can be integrated, resulting in an exponential decay of the form

I(x, z) = I0(x, z) exp

[
−σ

∫
n(x, y, z)dy

]
= I0(x, z)e

−OD (1.4)

where I0 is the intensity distribution before the absorption and OD is the optical density,
defined as

OD = σ

∫
n(x, y, z)dy = σn2D = − ln

(
I(x, z)

I0(x, z)

)
(1.5)

From Equation (1.5) we see how the column density n2D(x, z) is related to the optical density
through n2D(x, z) = OD/σ. Knowing the optical density is therefore sufficient to recover the
momentum distribution of the expanding cloud, and from that quantities like the temperature
or the total number of atoms N . For example, the total number of atoms can be found
integrating the column density over the whole area

N =

∫
ndxdydz =

∫
n2Ddxdz (1.6)



CHAPTER 1. FRINGE REMOVAL IN ABSORPTION IMAGING 5

To find the OD, it is sufficient to compare the intensity distribution of the beam before
and after passing the cloud (respectively I0 and I in Eq. (1.5)). Since taking an image of the
beam before the cloud is not experimentally feasible, in practice the two images are taken at
different times. After having acquired the image with the atoms (atoms image A), a second
image is acquired with the laser propagating freely in space (bright image B). To avoid the
presence of background light in the lab to affect the result, a third image is also taken with the
laser off. This image is usually called dark image D. The three images are finally combined
to find the optical density

OD = − ln

(
A−D

B −D

)
(1.7)

1.1.2 Absorption imaging in our experiment

In our experiment, when imaged, the atoms are contained inside a cavity. The cavity is formed
by two mirrors with a diameter of 3mm placed at a central distance of 178 µm. Because of the
curvature of the mirror, their edges are separated by just 150 µm. The cavity itself is placed
inside a vacuum chamber, and light can be sent inside and detected through two viewports.
After exiting the vacuum chamber from the second viewport, the laser beam is magnified with
a telescope composed of three lenses of 300, 400 and −100mm. The result is then imaged
with a CCD camera. A sketch of this setup is given in Fig. 1.1.

The configuration described above presents an important limitation. Since it is beneficial
to illuminate the atoms with a uniform intensity, the waist of the incoming laser beam must
be large. In her precedent work [15], Kosucu reports a predicted beam waist of 700 µm,
obtained through ray-tracing calculations. Since the beam is bigger than the distance between
the mirrors, the cavity acts like a thick slit, producing diffractive patterns. An example is
provided in Fig. 1.2. In principle these patterns should not be visible in the optical density,
since they are present both in the atoms and bright pictures. In practice, if we calculate the
optical density as suggested by Eq. (1.7), we observe some residual fringes (cfr. Fig. 1.2).
This can be explained by assuming that some components of the setup, which determine the
direction of the imaging beam, move in the time between when the two pictures are taken. As
a result, the two pictures are not perfectly aligned and the diffraction patterns do not cancel
out completely.

Reducing these fringes was the first goal of this project. In the rest of the chapter, we will
present two algorithms that try to mitigate this effect.

1.2 Fringe-removal algorithms

Reducing the fringes generated by the vibrations in the imaging system is an essential task
to improve the ability to count atoms in our experiment. Researchers have proposed different
post-processing algorithms to achieve this result [17]. Many of them share the same basic idea:
generate an ideal bright reference image that plugged into Eq. (1.7) produces the correct OD
without additional fringes. The methods to generate this ideal reference image vary and include
the use of singular value decomposition (SVD) [18], principal component analysis (PCA) [11]
and deep learning methods [19]. In this report we will focus on PCA-based methods. In
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Figure 1.1: Cavity inside the vacuum chamber and imaging system. A laser beam is sent to the
atoms inside the cavity through the first viewport, it is partially absorbed by the atoms, and, after
being magnified, it is imaged by a CCD camera. Figure taken from Ref. [16]

.
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Figure 1.2: In order: atoms (A), bright (B) and dark (D) image and optical density (OD). The
intensity of the first four images is given in an arbitrary scale, whereas OD has the right dimensionless
units. The scale of ODsat is adjusted to increase the visibility of the fringes. The vertical fringes
generated by the cavity are clearly visible in A and B. In OD most of these fringes cancel out, but
some vertical and diagonal fringes can still be observed in ODsat.
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the next section we will present the optimized fringe removal algorithm (OFRA) proposed by
Niu et al. [11], and in the following we will discuss an extension of it, namely the effective
statistical fringe removal algorithm (ESFRA) proposed by Song et al. [12]. During the project,
the enhanced principal component analysis (EPCA) proposed by Xiong et. al. [20] was also
tested. Since we could not achieve results of comparable quality with this algorithm, we
decided not to include further details into this report.

1.2.1 The optimized fringe-removal algorithm (OFRA)

In the optimized fringe-removal algorithm (OFRA), the basic idea is to construct a set of
bright images that can serve as a basis to generate the best ideal bright image B′

R for each
atoms image AR. Once the ideal bright image has been generated, the OD can be found as

OD = − ln

(
AR

B′
R

)
(1.8)

The subscript R denotes real images, in contrast to centred images A and B. In fact, in order
to generate the basis, it is useful to have the data centred at zero intensity. Therefore, after
subtracting the corresponding dark images DR, we calculate the pixel-wise mean image B̄
from the bright pictures and centre each picture as A = AR−DR− B̄ and B = BR−DR− B̄.

As anticipated, the first step is to decompose the bright images Bn into a set of orthogonal
basis images Pm, with n being the index of the original bright images and m the index of the
basis images. To do so, we first define an area where we are sure not to find any atom in
any image, which we call edge area. In this way, we can find a basis set that only depends on
the fringes pattern and not on the density distribution of the atoms. For example, looking at
Fig. 1.2, we can use the bottom part of the picture. We then crop the bright images to only
include this area, and we reshape each cropped 2D vector Bn in a 1D vector bn. Therefore, in
total we have N vectors bn of length L, where N is the number of bright pictures we are using
to construct the basis and L is the number of pixels in the edge area. Typically, L ∼ 104 is
much larger than N ∼ 102.

Keeping in mind that the expectation value of each pixel in the vectors b, ⟨bn⟩n, is zero,
it is possible to define the covariance matrix between two pixels (i, j) as Sij =

∑
n(bi)n(bj)n,

where (bi)n is the ith pixel of the nth image. Since Sij is a symmetric matrix, it can be
diagonalized using singular value decomposition (SVD). The resulting eigenvectors vn form
a set of N − 1 independent orthogonal basis vectors. The missing independent vector is the
result of fixing the mean of the data set.

The decomposition of vectors in a set of orthogonal vectors that diagonalize the covariance
matrix is usually known as principal value analysis (PCA) [21]. The key advantage of PCA is
that the resulting eigenvectors are the directions in the feature space (i.e. the space spanned
by the vectors bn) of maximal variance. In other words, they can explain the variance in the
original data, with the most important components being the ones with higher eigenvalues.
In our situation this corresponds to the ability of explaining the fringe patterns, with the
components with higher eigenvalues showing the main fringes and the ones with lower eigen-
values being mostly noise. An example of some components with their eigenvalues is shown
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in Fig. 2.1a. Since most of the components do not contribute to the fringe pattern, it can be
convenient to reduce the basis and keep only the first M < N components.

After having found a set of M basis vectors for the edge area {vm}m<M , we need to use
it to find a suitable basis of images that also include the area with the atoms. Using the
orthogonality of the basis vectors, we can find a coefficient matrix Cnm = bn · vm such that

bn = Cnmvm (1.9)

where we have used Einstein’s notation of repeated indices. We will keep using this notation in
the rest of the report unless differently specified. Equation (1.9) can be seen as L systems (one
for each pixel) of N×M linear equations with M unknowns vm. Since we have more equations
than unknowns, the system is over-determined, and it must be solved using a least-squares
method. This means finding the matrix C̃ such that

ṽm = C̃mnbn (1.10)

minimizes the error
∑

m(ṽm − vm)2 for each element (pixel) of v. The matrix C̃ is called the
pseudo-inverse of C, and it can be calculated numerically. The matrix C̃ can be finally used
to construct a basis of bright images Vm. For each edge vector bn there is a corresponding full
image Bn. So we can use Eq. (1.10) to find a basis of images Vm = C̃mnBn. Note that here V
and B are again 2D vectors.

The final goal is to generate an ideal bright image B′
n for each atoms image An. To do so,

we crop the atoms image An in the same edge area defined above and we convert the result in
a 1D vector an. Now we want to express an as a linear combination of the basis vectors vm.

an = Knmvm (1.11)

Since the basis vectors are orthogonal, the coefficients Knm can be found as Knm = an · vm,
and the ideal bright image is given by a linear combination of the basis bright images Vm with
the same coefficients Knm

B′
n = KnmVm (1.12)

In practice, in the implementation algorithm, we use a more general method to find the
coefficients Knm in Eq. (1.11) that also works for non-orthonormal basis, which will be useful
when discussing the ESFRA (see section below). We start by multiplying Eq. (1.11) by vp on
both sides, and we define the autocorrelation matrix Gmp = vm ·vp and the projection matrix
Pnp = an · vp. Equation (1.11) becomes

Pnp = KnmGmp (1.13)

Note that when the vectors are orthonormal, Gmp = δmp, and Pnp = Knp. In general,
Eq. (1.13) can be solved for Knm minimizing the least-square error as explained above, and
used to reconstruct the ideal bright image

B′
n = KnmVm (1.14)

We can then recentre the result adding B̄ and use Eq. (1.8) to find the optical density.
For better clarity, we also show a pictorial representation of the algorithm in Fig. 1.3a and

a summary in pseudocode in Alg. (1.1). The real code can be found in the Quantum Optics
group archive.
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Algorithm 1.1: OFRA
1 Input: "array of real atoms images" ARn

2 Input: "array of real bright images" BRn

3 Input: "array of real dark images" DRn

4 Input: numberComponents
5
6 Output: "optical density" ODn

7
8 ARn -= DRn

9 BRn -= DRn

10
11 B̄ = mean(BRn)
12 An = ARn − B̄
13 Bn = BRn − B̄
14
15 edgeArea = "area without atoms"
16
17 bn = toVector(crop(Bn, edgeArea ))
18
19 # construction of the basis
20 Sij =

∑
n(bi)n(bj)n

21 vn, λn = SVD(S) # eigenvectors , eigenvalues
22 keep only vm with m < numberComponents
23 Cnm = bn · vm

24 C̃ = pinv(C) # pseudo -inverse
25 Vm = C̃mnBn

26
27 # construction of the ideal bright image
28 Pnp = an · vp

29 Gmp = vm · vp

30 Knm = [linearSolve(GT , PT )]T # solve P=KG for K
31 B′

n = KnmVm

32
33 B′

Rn = B′
n + B̄

34 ODn = -log(ARn / B′
Rn)

35
36 return ODn
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Figure 1.3: Graphical description of the (a) OFRA and (b) ESFRA. The OFRA uses a set of bright
images to find a basis that can be used to generate the ideal bright image for each atoms image. The
ESFRA extends the OFRA basis by shifting the images by a couple of pixels in the two directions.

1.2.2 The effective statistical fringe-removal algorithm (ESFRA)

The main origin of the fringes are believed to be vibrations of the acquisition system, for
example of the optics that shapes the imaging beam. The OFRA is an effective way to reduce
the noise introduced by these effects, but it may require a big dataset to find a good basis.
This means longer acquisition times, since each run of the experiment takes around 45 s. To
tackle this inconvenience, the effective statistical fringe-removal algorithm (ESFRA) developed
by Song et al. [12] proposes a method to increase the number of elements of the basis without
taking more data. Since the fringes originate from displacements of the camera, they propose
to increase the size of the basis by shifting the images by a couple of pixels in the two directions.
We will indicate the maximum displacement, measured in pixels by d. After performing the
translation, the basis is increased by a factor (2d + 1)2. For example for d = 1 we have 4
additional images, two for each direction of translation. After enhancing the dataset, the basis
is not orthonormal any more, and to reconstruct the bright image we need to use the general
method described above. The rest of the algorithm is completely analogous to the OFRA. A
pictorial representation of the ESFRA is shown in Fig. 1.3b.



Chapter 2

Optimization and characterization of
fringe removal algorithms

“You know that children are growing up when they start asking questions
that have answers.”

— John J. Plomp

Now that we have introduced the principles of fringe removal algorithms, we want to
characterize and optimize them. The algorithms presented in the previous chapter, namely
the OFRA and ESFRA, were implemented in Python and tested on different datasets to try
to characterize their behaviour and efficiency. In this chapter we will present the tests that
we made and their results. The chapter is divided in three parts. In the first, we optimize the
parameters of the OFRA and ESFRA, and we compare their efficiencies on pictures without
atoms. In the second, we try to understand what is the limit to the residual noise that is
left after running the algorithms, focusing on the noise generated by the camera. In the last
section we test the algorithms on pictures with atoms, and evaluate their performance with a
particular focus on counting the number of atoms.

2.1 Optimization and comparison

In order to use the algorithms we introduced before, it is important to understand how to im-
plement them to achieve the best results. This means finding the best set of parameters, like
the size of the training set or the number of principal components kept after the diagonaliza-
tion, and evaluating the effectiveness of the different algorithms in removing the fringes. In the
next sections, we will explain the benchmarking method we used to evaluate the performance
of the algorithms, and we will apply it to the study of the OFRA and the ESFRA.

2.1.1 Benchmarking strategy

In order to characterize, optimize and confront different algorithms, we need to develop a
benchmarking strategy to evaluate quantitively how “good” an algorithm is performing. We

12
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(a) PCA components
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Figure 2.1: (a) PCA components of the OFRA algorithm. The basis is generated from 200 bright
images, resulting in a basis of 199 independent vectors. The eigenvalues suggest that only less than 10%
of the vectors (20) are relevant. This is confirmed qualitatively looking at the images corresponding
to the respective eigenvectors. Note that the eigenvectors are centred at zero. (b) The training and
test areas are shown on the bright picture. Next to it, we show the OD in the corresponding region.
The training area is used to find the basis of bright images, whereas the test area is used to evaluate
the performance of the algorithm.

can then change the input parameters, the training data and the experimental conditions to
judge which configuration works better.

For this first part of the work, until differently specified, we used the data collected on
21.10.2022 in the main run of the experiment. On that day, the experiment was run 590 times,
producing 590 atoms, bright and dark pictures. In most of the analysis we do not use the full
590 pictures, but only a subset. When doing so, we use the most recent pictures. So when we
say we train the algorithm on 200 pictures, we mean we train it on the last 200 pictures taken
on that day. As customary, we usually split this dataset in two parts with different pictures:
a training set and a test set. The training set is used to train the algorithm and produce the
basis set of bright images. The test set is used to evaluate how good the algorithm performs
on new data. If not differently specified, to extract the training and test sets, we shuffle the
bright images, and we extract two random subsets with the desired sizes. In addition to a
training and a test set, we also define a training and a test area. The training area correspond
to the edge area discussed in the previous section, and it is used to find the basis of images.
The test area is where the result of the algorithms is evaluated, and it usually corresponds to
the area in the picture where the atoms are located. In Fig. 2.1b we show the training and test
areas used in the following analysis. The training area is at the bottom part of the picture,
whereas the test area is at the top.

To simplify the analysis of the quality of the algorithm, we initially neglect the atoms
images. The idea is to use bright images in place of atoms images because we know the
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expected optical density: zero everywhere, since there are no atoms. Any deviation from zero
is purely noise. So we use the root-mean-square (RMS) optical density RMSOD =

√
⟨OD2⟩

as a benchmarking parameter. The lower the RMS, the lower the noise. Since we are dealing
with multiple pictures with multiples pixels, we first calculate the RMSOD for each picture,
and then we average the result over the different pictures. To be precise we should then talk
about average RMS, but in the following we will simply say RMS.

In a typical benchmarking session we therefore proceed in the following way.

1. We define a training and a test set of bright pictures Btrain and Btest, and a training and
test area.

2. We use the training set and the training area to find a basis of bright pictures V .

3. We construct the ideal bright pictures B′
test corresponding to the test set Btest using the

basis V .

4. We calculate the OD between B′
test and Btest

5. We compute RMSOD and use it as a benchmarking parameter

2.1.2 Optimization of the OFRA

We begin by characterizing the optimized fringe removal algorithm. In particular, we focus on
how the RMSOD is affected by the number of components that is kept from the diagonalization
of the covariance matrix, the size of the training set and the size of the edge area.

Number of components

While introducing the OFRA in Section 1.2.1 we have anticipated that not all the components
resulting from the diagonalization of the covariance matrix are necessary. We have already
noticed in Fig. 2.1a that most of the components have small eigenvalues. We can identify a
clear turning point in Fig. 2.1a, where the slope of the plot changes drastically, at around
5% of the images (10 components). It is therefore interesting to analyse if including more
components benefits or worsens the final result.

The dataset was divided as explained above in 200 training images and 100 test images.
The training set was used to create a basis of which only a fraction f was kept. The 200 · f
images of the basis were than used to reconstruct the images of the test set. Finally, the
corresponding OD and RMSOD were calculated. The result is shown in Fig. 2.2a. We can
see that at around f = 5% the RMSOD suddenly drops from around 0.055 to 0.051. Despite
this drop being relatively small, it happens at the same point of the drop in the eigenvalues
shown in Fig. 2.1a. It is therefore reasonable to limit the components to about 10% of the
size of the original training set. This allows us to only consider the most important principal
components, reducing the execution time, while keeping some margin from the turning point.
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(a) Fraction of components (b) Training set size

Figure 2.2: (a) RMSOD for different number of components kept from the diagonalization of the
covariance matrix. We observe a sudden drop in RMSOD at around 5%, in agreement with what
observed from the eigenvalues in Fig. 2.1a. (b) RMSOD for different training set sizes. We observe
a decrease in RMSOD until a training set size of 100 images. After that, it stabilizes between 0.0051
and 0.0052. The insets show the OD calculated from the test set for specific points in the plots.

Training set size

We now focus on the size of the training set. It is reasonable to expect that the more images
we use to construct the basis, the better the result will be. However, we also expect that there
is a point where adding more images does not improve the result any more. In Fig. 2.2b we
show the RMSOD for different training set sizes N . We observe a decrease in RMSOD until
N = 100. After that, it stabilizes between 0.051 and 0.052. This suggests that the optimal
training set size is around 100 images. After that, adding more images would require more
acquisition time without improving the result.

Edge area

Another element that could affect the performance of the algorithm is the edge area. We
therefore want to test if changing its size affects the result. In Section 2.1.2 we show the
RMSOD for different training areas. The training area is taken as a rectangle with the same
width of the whole picture and a variable height, and the size is expressed as a fraction of
area of the whole image. We observe that the RMSOD decreases until a training area of 10%
of the total area. After that, it stabilizes below 0.051. However, since taking bigger areas
does not require more acquisition time, and the computational time to run the algorithm on
100-500 bright images is already in the order of seconds or minutes on a standard computer,
it is reasonable to use an area as big as possible, verifying that there are no atoms.
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Figure 2.3: RMSOD for different training area sizes. The size of the training area is expressed as a
fraction of the total (test+training) area. The RMS seems to reach a stable point at a training area
fraction of 20%.

Summary

In conclusion, we have proved that the OFRA is an effective way to reduce noise in absorption
imaging data. We have seen how only around the first 10% of the components seem to be
relevant for the reconstruction of the ideal bright image. However, using more does not worsen
the result, so the decision of how many to consider should take into account the performance of
the available hardware. The size of the training area has also an influence on the quality of the
result, but except for a minimum threshold to obtain good results, there does not seem to be an
upper bound, if not the one given by computational requirements. The parameter that seem
to influence the result the most is the size of the training set. In fact, if for different training
areas and principal components fraction the RMSOD showed variations between 0.055 and
0.050, using small training set sizes (N < 10) results in RMSOD higher than 0.060. Reducing
this number to the limit of 0.051 requires more than 100 images. This has drawbacks not only
on the computational time, which remains contained, but especially on the acquisition time,
which is the most important limitation. In the next section we will try to see if the use of the
ESFRA can overcome these limitations.

2.1.3 Comparison between the OFRA and the ESFRA

In the previous section we have seen how the OFRA is limited to an RMSOD of around 0.051.
We have also seen how this level of noise is reached using sets of at least 100 images. In this
section we want to compare the OFRA to the ESFRA, and see if the latter can improve this
result, either by reducing the noise or by requiring smaller training sets.

To characterize the ESFRA, we use the same procedure described in Sections 2.1.1 and 2.1.2.
We train the algorithm on different dataset sizes, and, keeping only 10% of the principal com-
ponents, we observe the behaviour of RMSOD. The result is shown in Fig. 2.4 for shifts
d = 0, 1, 2 pixels. The ESFRA with a translation of zero pixels is equivalent to the OFRA.
The first thing we notice is that the performance with a translation of one or two pixels is
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Figure 2.4: RMSOD for different training set sizes for the OFRA and the ESFRA with different
shifts d. The ESFRA with d = 1 is able to reduce the noise to 0.050 using 100 images. Shifts d > 1
do not seem to improve the result.

equivalent. This suggests that the vibrations of the imaging system cause translations smaller
than one pixel. Therefore, we can limit ourselves to d = 1 when using the algorithm to reduce
the computational resources. We also observe that the ESFRA is able to reduce the RMSOD to
0.050, using 100 images. At the same time, to have the same noise level of the OFRA (0.051),
we only need 50 images. It is also interesting to observe that for larger training sets, the noise
increase again to 0.051. This behaviour is unexpected and can probably be attributed to some
overfitting or minimization failure of the numerical algorithm. If we take into account the
statistical significance of the result, we see from the error bars that we cannot claim that the
difference in performance of the three algorithm is significant. Nevertheless, since the ESFRA
consistently outperforms the OFRA on average, it is still reasonable to choose the former
algorithm to post process the data.

In conclusion, the ESFRA seems to be able to improve the results of the OFRA. Using
it, it is possible to achieve smaller RMSOD using smaller training set sizes. Increasing the
maximum displacement d over one does not seem to further improve the result. This is in
agreement with what described by Song et. al. in their paper [12].

2.2 Origin of the residual noise

In the previous sections we have seen how we could reduce the noise in the optical density
down to RMSOD ≈ 0.050. It is natural to ask ourselves if there is an intrinsic limitation to
this value, and what it is limited by. We know that the pictures captured by the camera
have some noise given both by the functioning of a CCD camera, like the readout noise,
the clock-induced-charge (CIC) noise and the dark noise, and by the quantum nature of the
detection process, i.e. the shot noise. For more details about the functioning and noise of
CCD cameras one can refer to Mohan’s thesis [22]. Recently, we substituted the old camera
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Point Grey CMLN-13S2M-CS with a new iKon-M 934. As previously discussed by Kosucu in
her thesis, the new camera has a very low CIC and dark noise, so that we can only consider
the contribution of the shot and readout noise [15].

2.2.1 Introduction to CCD noise

Shot noise

Shot noise is an intrinsic phenomenon arising from the quantum nature of light and of the
detection process. Since the electromagnetic field is quantized in photons, when detecting the
intensity we are effectively counting the number of photons. A process of this kind follows a
poissonian statistics, where the variance of the photon count σ2

P is equal to the average number
of photons ⟨P ⟩. In a CCD camera, the photons are converted into electrons with an efficiency,
called quantum efficiency, ηQE . The quantum efficiency of the iKon camera at 780 nm is 93.8%.
For comparison, the Point Grey camera has an efficiency of ∼ 25%. The poissonian statistics
of the photon distribution is therefore inherited by the electrons distribution. The variance of
the electrons produced in the process is then

σ2
E = ⟨E⟩ = ηQE⟨P ⟩ (2.1)

Finally, the electrons are counted, and the signal is digitized with an analog-to-digital converted
(ADC). The number of electrons needed to generate a count in the ADC (one analog-to-digital
unit, or ADU) is called sensitivity s, so the number of counts is

⟨C⟩ = ⟨E⟩/s (2.2)

with a variance
σ2
SN = σ2

C = σ2
E/s

2 = ⟨E⟩/s2 = ⟨C⟩/s (2.3)

Equation (2.3) is often used to measure the sensitivity of a camera. This is possible by looking
at the variance of counts at different intensities and fitting ⟨C⟩ over σ2

C . For the iKon camera
used with a pre-amplification gain of 4, the sensitivity reported by the manufacturer is 1.4
electrons/ADU. This was also confirmed experimentally by Kosucu in her work [15].

Readout noise

Another important source of noise is the readout noise. It is introduced by the ADC, and it
has the characteristic of being Gaussian and independently distributed (white noise). From
the manual of the iKon camera, we find that the readout noise for the camera operated under
our conditions is σRD = 11.0 electrons / pixel, or 7.86 ADU / pixel.

Noise propagation in the OD

When measuring the RMSOD for pictures without atoms as we did in the previous sections,
the CCD noise provides a lower bound for the result, which can be found propagating the
uncertainties in the calculation of the OD. When calculating the OD as

OD = − log

(
A

B′

)
(2.4)

https://www.avsupply.com/images/items/point-grey-camera/resources/cmln-13s2c-cs-spec-avs.pdf
https://andor.oxinst.com/products/ikon-xl-and-ikon-large-ccd-series/ikon-m-934
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we have an uncertainty

σ2
OD =

B′2

A2

[
σ2
A

B′2 +
A2

B′2
σ2
B′

B′2

]
≃ σ2

A

A2
+

σ2
B′

B′2 ≥ σ2
A

A2
(2.5)

where in the second step we have used the fact that the atoms and the reconstructed bright
images should be on average the same, since there are no atoms. In the last step we also
limited out attention to the uncertainty in the atoms image, since for an ideal fringe-removal
algorithm the reconstructed bright image would be noise-free. If we only consider shot noise
and readout noise, the variance in the OD is therefore limited by

σ2
OD ≥ σ2

A

A2
≥ σ2

SN + σ2
RD

A2
=

1

As
+

σ2
RD

A2
(2.6)

The previous relation holds for each pixel in the OD. We can find the limit of the RMSOD by
summing over all the pixel of the image

RMSOD =
√
⟨OD2⟩pixels =

√
⟨σ2

OD⟩pixels ≥
√〈

1

As
+

σ2
RD

A2

〉
pixels

(2.7)

Note that if we did not apply a fringe-removal algorithm, but we calculated the optical density
with the simple method, we should also include the noise of the bright image, which would
result in an extra factor of

√
2.

2.2.2 Results

In order to verify how our algorithms are performing in comparison to the shot and CCD noise
limit, we collected data at different powers for the imaging beam. The data was collected with
the new iKon camera, so it should not be compared directly to the previous results. The power
was modulated with an acusto-optic modulator (AOM). The data was collected on 18.12.2023,
running the experiment 42 times for each imaging power. 35 images were used for training
and 7 for testing. The results are shown in Fig. 2.5, where we displayed the RMSOD obtained
after applying the ESFRA (d = 1) with the CCD noise limit calculated as explained above.
We include both the CCD noise limit neglecting the noise in the bright picture and including
it. The two simply differ by a factor

√
2. For comparison, we also show the RMSOD for the

same test images with the corresponding bright images taken randomly from the dataset.
The data seems to agree well with the assumption that the RMSOD is limited by the CCD

noise of the atoms picture, at least for high imaging powers. For the lowest imaging power,
the power is too low to give a reasonable result, so we will exclude it from the rest of the
discussion. The noise in the RMSOD is higher than the CCD noise limit (readout + shot
noise) of the single atoms picture, but lower than the noise of the atoms and bright pictures
together. This confirms that the fringe-removal algorithms we are employing not only remove
the fringes from the image, but create an ideal bright image with lower noise. This could be
attributed to neglecting the higher components in the PCA decomposition, which contain most
of the shot noise. On the other hand, when calculating the optical density with random bright
images, the resulting RMSOD is higher than the atoms + bright picture CCD noise limit, as
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Figure 2.5: Root-mean-square optical density for images without atoms after applying the ESFRA
(d = 1) compared to the CCD noise limit. For the atoms image (A), we show the shot noise (SN) and
the shot noise + readout noise (SN + RD) separately. We also include the estimation of SN+RD for
the case where the CCD noise of the bright image cannot be neglected (A+B). The error bars of the
last four data points are smaller than the marker. The orange dots show the RMSOD for the same
test images with the corresponding bright images taken randomly from the dataset.

expected. It is also worth noticing that the scale on which the RMSOD varies on the plot is
much larger than what we observed when charachterizing and optimizing the fringe removal
algorithms in the previous sections (e.g. cfr. Fig. 2.4). On this scale, the performances of the
OFRA and ESFRA look identical.

2.3 Effectiveness of the algorithms on real data

In the previous sections we have focused on the description and implementation of algorithms
to reduce fringes in the optical density. To simplify the benchmarking, we decided to use
pictures with a known optical density, namely zero. Despite this method having proved to
be useful to optimize and compare the algorithms, the final goal is to use them on atoms.
Similarly to what was done before, we will start by quickly explaining a new benchmarking
method valid for non-zero optical densities, and then we will use it to characterize and compare
the OFRA and the ESFRA with new data.

2.3.1 Benchmarking strategy

In the next sections we will assume to have collected a set of atoms, bright and dark images of
sufficient size. The data will be processed with the fringe-removal algorithms described above,
and the resulting images used to calculate the optical density. Now we need a way to measure
the quality of the result.

The first benchmarking parameter is similar to what we defined before, namely the stan-
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dard deviation of the optical density in a region of interest. The region of interest is defined as
a square centred on the cloud of atoms. The key difference is that before we were calculating
the RMS optical density RMS(i)

OD for each image i, and then we were averaging over all the
images in the test set

RMSOD = ⟨RMS(i)
OD⟩i (2.8)

Now we are not interested in the variation inside a single image, but in the variation in the
optical density among different images. The most convenient quantity to use is therefore the
total variance [

σtot
OD

]2
=

∑
x,y

[
σ
(x,y)
OD

]2
(2.9)

where σ
(x,y)
OD is the standard deviation of each pixel (x, y) calculated over the different test

images. We will usually express the results in terms of the square root of the above expression
σtot
OD. This quantity gives us an idea of how different the optical densities are between each

other. Since each of them comes from different runs of the experiment, we do not expect to
have zero standard deviation. However, the more the fringe removal algorithm is effective, the
more noise generated by fringes will be suppressed, reducing the total standard deviation.

Another interesting quantity to consider is the total number of atoms N , which is directly
related to the integrated optical density

N =

∫
OD(x, z)dxdz (2.10)

by N = N/σ, where σ is the absorption cross-section. When running the experiment multiple
times, we are therefore interested in the mean ⟨N⟩ and standard deviation σN , which are
proportional to the average number of atoms and its variation during different runs. We will
also use the standard deviation of the mean

σ⟨N⟩ =
σN√

# test images
(2.11)

We expect the presence of fringes in the optical density to be able to affect both the average
number of atoms and its standard deviation.

2.3.2 Results

To evaluate the performance of the algorithms, we used the data collected on 02.12.2022 and
04.12.2022, for a total of 320 atoms, bright and dark images. The test area was chosen as
a square of side 120 pixels centred on the atoms, and the training area was a rectangle of
120 × 520 pixels just below the test area. The pictures were aquired with the Point Grey
camera. The OFRA and ESFRA were run on this data with the parameters obtained in
Section 2.1.2 and Section 2.1.3 for different training set sizes. For a given training set size
k, the 320 bright images were divided in 320/k groups of k images. For each group, a basis
was constructed and used to reconstruct the ideal bright images of the corresponding atoms
images. After this process, for each value of k, we had 320 optical densities. For each of
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Figure 2.6: Benchmarking of the OFRA and the ESFRA on images with non-zero optical densi-
ties. The performance are compared to what would be obtained without running any fringe removal
correction. In (a) we show the standard deviation of the optical density between different runs σtot

OD,
in (b) the average integrated optical density ⟨N⟩ and its standard deviation σ⟨N⟩. The standard
deviation is indicated with error bars for the OFRA end ESFRA and with the grey shaded region for
the non-corrected data. Both plots suggest better performances for the ESFRA with bigger shifts d
and bigger training set sizes k.

this set of 320 optical densities, we calculated σtot
OD, ⟨N⟩ and σ⟨N⟩. The results are shown in

Fig. 2.6.
The plot in Fig. 2.6a is very similar to the one in Fig. 2.4, where we were showing the

RMSOD for pictures without atoms. Here we also observe an improvement of the standard
deviation σtot

OD for the ESFRA compared to the OFRA for smaller training set sizes. In any
case, both algorithm perform better than the non-corrected data. The results for the integrated
OD shown in Fig. 2.6b are also interesting. From the plot, it seems that running the fringe-
removal algorithm affects the average number of atoms ⟨N⟩. In particular, the bigger the
training set size and the more efficient the algorithm (bigger d), the less the number of atoms.
This suggests that the fringes artificially increase the density. For big training sets, all three
algorithms converge to the same average ⟨N⟩, corroborating this hypothesis. The standard
deviation σ⟨N⟩ is also smaller for higher k and d, hinting again at a better performance of the
ESFRA algorithm for higher d and bigger training set sizes.



Chapter 3

Identification of noise patterns in the
optical density

“In the symphony of life, even noise has its own unique pattern, weaving
unexpected melodies into the tapestry of existence.”

— ChatGPT

In this chapter we try to address the question of how to identify and reduce the noise in
the optical density. The goal is to understand how some patterns in the optical density emerge
even after the data has been processed with the fringe-removal algorithms. In the first section
we will present a technique based on PCA proposed by Cao et al. [23] to isolate different
noise components. In the second section we will try to explain the origin of a particular noise
pattern, generated by the interference of the light diffracted by the cavity and by the atoms.

3.1 PCA for identification of noise patterns

In the previous chapter we have seen how to use PCA to generate a basis useful to implement
fringe-removal algorithms. Now we want to use PCA to better understand the noise in the
resulting optical densities. The basic idea is to perform PCA on a set of optical density images
that have been calculated and corrected with the methods explained in the previous chapter.
As already mentioned, PCA allows to decompose a set of data into components that capture
its principal variations. The idea of Cao et al. [23] was to calculate these components for
the optical density images and try to give a physical interpretation of them. This can help
understand their origin, and therefore also suggest a way to limit their influence.

Analysis without corrections

To perform the analysis, we used the data of Section 2.3.2. We generated the ideal bright
images with the ESFRA (d = 1) and calculated the optical density. This left us with a set
of 320 optical densities. The optical densities were then cropped to squares of 100× 100 px
centred approximately around the atoms. The question was now how the different pictures

23
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differed from each other. To address this question, we performed PCA on this set of images.
In Fig. 3.1a we show the first four components with the corresponding explained variance.
The explained variances of all the components add up to the total variance [σtot

OD]
2 as defined

in Eq. (2.9). In the same plot we also show the explained variance fraction, defined as the
explained variance of a single component divided by the total.

The first thing we notice is that only the first few components look relevant, with the first
component explaining alone more than 15% of the total variance and the fourth less than 1%.
While it is easy to give a physical interpretation of the first three components, the fourth one is
a bit less intuitive. The first noise pattern is identical to the original density. This means that
this component represents a deviation from the mean image where the density is rescaled by a
constant factor. In other words, it represents a variation of the total number of atoms, which
makes the cloud more or less dense. The second and the third components both represent
a displacement of the centre of the cloud on two orthogonal directions. Any displacement
in the 2D plane from the mean position can therefore be described in terms of these two
components. It is important to emphasize that this displacement can be caused either by
a movement of the camera or of the atoms themselves, and that it cannot be eliminated by
the fringe-removal algorithms that we have seen in the previous chapter. Another possibility,
investigated in Ref [24], is that these componts indicate dipole excitations. In this case this
would mean that the cloud oscillates back and forth excited by fluctuations of the trapping
potential. We consider this interpretation less likely, since we are not deliberately exciting the
BEC. The fourth component shows a variation of the density in the horizontal direction, where
an increment (decrement) in the central region is compensated by a decrement (increment)
on the left and on the right of the cloud. Similarly to what discussed for the second and third
components, this component could also indicate a quadratic excitation of the system. Another
possible physical origin of this pattern will be better explained in Section 3.2.

Analysis after corrections

Now that we know the main components that contribute to the variation of the optical density
between different runs of the experiment, we can use this information to correct out data. The
shift of the atoms can be easily corrected by translating the images. Following the work
presented in Ref [23], the centre of each optical density is calculated as a weighted mean of
the pixel intensities, with weights corresponding to the pixel positions. The image is then
cropped to a 100×100 px square centred around the centre. In order to deal with non-integer
centres, the intensity is linearly interpolated to estimate the correct value for each pixel. After
centring the image a first time, the procedure is repeated three more times to let the process
reach a stable point.

The result is shown in Fig. 3.1b, where we show the explained variance of the first four
components and the total variance [σtot

OD]
2 before and after applying the correction. We notice

that after two iterations, the shift correction decreases the total variance from 20 to almost
5. The main reduction is seen in the second component, the one representing a vertical
displacement. More iterations of the correcting algorithm do not seem to further improve the
result. We also notice that the other components are only slightly affected by this operation.

After performing the first correction, the remaining variance is completely dominated by
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(a) Not corrected (b) Corrected

Figure 3.1: Principal component analysis of the optical density obtained from different runs of the
experiment. In (a) we show the principal components with their explained variance for the uncorrected
images. In (b) we analyse how the variance is decreased by applying successive corrections. In
particular, the yellow area shows the result of correcting for the displacement of the atoms for different
number of iterations of the centring algorithm. The green area shows the variance after renormalizing
the density profile.

the first component, which can now explain around half of the total variance. In order to
confirm the interpretation of this component that we offered before, i.e. a rescaling of the
total density, we normalize each image by dividing for the integrated optical density, and
we repeat the analysis. The result is also shown in Fig. 3.1b. After normalizing, the first
component disappears completely, confirming the interpretation we gave. The total variance is
also reduced by an amount equal to the contribution of this component (around 3.5). However,
even if normalizing the data decreases the variance, a variation of the density is likely due to a
real variation of the number of atoms in the experiment. This effect cannot be simply regarded
as noise, and it should not be eliminated when processing the data.

In conclusion, simply centring the images, we were able to reduce the variance [σtot
OD]

2 by
75%. To achieve such a result we suggest iterating the centring algorithm twice, since it seems
to be enough to reach a stable point. This correction has no influence on the total number N .
This is in agreement with the expectations, since a shift of the atoms region of the order of one
pixel should not change the sum of the optical density contained into it by any considerable
amount. This means that the correction we have presented cannot improve the resolution
when counting the number of atoms in the cloud, but it can still be useful when we have to
extract data from the shape of the cloud, for example when measuring the temperature or the
condensate fraction, or if we are interested in investigating correlations in the density with a
single-pixel resolution.



CHAPTER 3. IDENTIFICATION OF NOISE PATTERNS 26

0.0

0.2

0.4

0.6

(a) Experimental OD

0.0

0.5

1.0

(b) Simulated OD

Figure 3.2: (a) Optical density averaged over 320 runs of the experiment. (b) Result of a simulation
based on Fresnel propagation of a light beam passing through the cavity with a Gaussian absorber
inside. The simulation is able to capture the rise of fringes at the edges of the atomic cloud. The scale
of the simulated OD is arbitrary.

3.2 Cavity diffraction artefacts

Even after removing the fringes with the fringe removal algorithms and the aberrations in the
optical density generated by a shift of the cloud, an interesting artefact remains visible in the
optical density. This pattern appears when averaging over many images, such that the noise
fluctuations cancel out. An example is shown in Fig. 3.2a, where we see the result of averaging
the 320 optical densities centred with the algorithm presented above. We notice the presence
of a periodic modulation of the optical density at the edges of the cloud in the horizontal
direction. This pattern reminds us of the fourth component given by PCA in the previous
section. We mentioned before how that component corresponds to an increase of the density
at the centre of the cloud associated to a drop at the edges. This would be compatible with
some diffraction mechanism originated by the atomic cloud, whose effect is also expected to
scale with the density.

To further investigate this possibility, we performed a numerical simulation of our system.
The simulation was performed applying Fourier propagation in the Fresnel approximation.
More details about this computational method can be found in Ref [25]. Since the diffraction
pattern was expected to be generated by the interference of the light scattered by the cavity
and by the atoms, we tried to reproduce this experimental configuration numerically. The
cavity acts like a thick slit that cuts the light both before and after the atoms (cfr. Fig. 1.1).
To simulate this effect, we modelled it with two thin slits of width equal to the distance
between the mirrors of the cavity. The atomic cloud was modelled as a partial Gaussian filter
at the centre of the cavity. After the cavity, we reproduced the imaging system as a set of
three lenses of focal length 300mm, 400mm and −100mm as previously shown in Fig. 1.1.
The distance between the lenses was measured directly. We measured a distance of 230mm
between the first two lenses, 320mm between the second the third and 270mm between the
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third and the camera. We also measured a distance of 70mm between the viewport on the
vacuum chamber and the first lens. Knowing that the atoms are approximately at a distance
of 250mm from the viewport, we expected the distance between the atomic cloud and the
first lens to be around 320mm. Mathematical calculations with ray tracing methods suggest
a distance of 304mm to have a focused image.

The light of Gaussian beam of waist 300 µm was propagated through this setup and the
intensity at the end was recorded. Then, the same operation was done without the atoms
Gaussian filter. The two resulting images are the equivalent of the atoms and bright images
described in Chapter 1. The two images were then used to calculate the optical density
shown in Fig. 3.2b. We can see how this simulation is able to capture the basic pattern of
drops in the density that we observe in Fig. 3.2a. In some preliminary calculations, from the
simulated results, we noticed that the diffraction pattern can affect the observed total number
of atoms when integrating over a region around the atomic cloud. Moreover, given the non-
uniformity of the variation in the OD, the choice of the exact dimension and shape of the
region influences the result, since it might include or exclude more or less fringes. We were not
able to understand neither theoretically nor numerically the exact influence of diffraction on
the observed number of atoms, but this might be an interesting challenge for future work. It
could also be possible to find a way to deconvolve the diffraction contribution to the density
from the rest of the signal, either physically or with post-processing techniques, to clear the
final image from these fringes. Possible solutions could be to image a slit on the cavity at the
position of the atoms or to use spatially incoherent light.



Chapter 4

Conclusions

“I may not have gone where I intended to go, but I think I have ended up
where I needed to be.”

— Douglas Adams, The Long Dark Tea-Time of the Soul

The OFRA and ESFRA have proved to be good fringe-removal algorithms candidates to
be used in our experiment. We have shown how the ESFRA with a d = 1 shift seems to
give the best compromise between acquisition time, execution time and residual noise. We
also highlight the importance of using training set of sufficient sizes, at least greater than 50
and possibly above 100 images. At the same time, we observed how the residual noise in the
optical density seems to be limited by the CCD camera noise, even after the camera has been
upgraded with a new model to reduce it. Another interesting finding was that, when counting
the number of atoms in the cloud, the presence of fringes does not only increase the variation
of the count but also its average value. Since in our experiment counting how many atoms are
in each momentum state is essential, a careful implementation of fringe-removal algorithms is
important not only to decrease the error in the result, but also to get a result closer to the
real value.

Some time was also spent in investigating the residual noise patterns in the optical density.
We have identified the principal noise components and interpreted them as a variation of the
number of atoms and a shift of the position of the cloud in the images. Although the former
cannot be eliminated with post-processing method, the latter can be fixed by choosing an area
centred around the atoms when analysing the data. We have also identified a noise pattern
produced by the diffraction of the cavity and of the atoms, which results in a drop of the
optical density at the horizontal edges of the cloud. Finding a way to remove or reduce this
effect could be the subject of future work.
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