
ETH Library

Breaking Cryptography in the Wild:
The Loose Ends of the Wire

Master Thesis

Author(s):
Tsouloupas, Andreas

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000673362

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000673362
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Breaking Cryptography in the Wild:
The Loose Ends of the Wire

Master Thesis

Andreas Tsouloupas

September 25, 2023

Advisors: Prof. Dr. Kenny Paterson, Matteo Scarlata, Kien Tuong Truong

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

In this thesis, we analyse the Wire secure messenger, focusing on the
security of the end-to-end (E2E) protocols it implements. Wire claims
that their messenger is used by governmental bodies of five of the seven
G7 member countries, and the Wire app counts millions of downloads
in mobile app stores. This makes it a valuable target for attackers.

To the best of our knowledge, Wire’s cryptographic design has not
undergone an extensive analysis, aside from an independent two-phase
audit that primarily emphasized secure programming practices.

Wire currently supports two E2E protocols: Proteus, based on Signal’s
Double Ratchet protocol and which is used by default, and MLS, the
newly standardized IETF “Messaging Layer Security protocol”, which
is still in active development.

We show that a combination of protocol-level and application-level vul-
nerabilities significantly undermine the confidentiality and authentica-
tion guarantees of Proteus E2E channels. These vulnerabilities allow
a malicious server to tamper with message order, redirect messages to
unintended groups, compromise group confidentiality, and even un-
dermine Forward Secrecy (FS).

Furthemore, we study Post-Compromise Security (PCS) of Proteus, and
find that Wire does not achieve PCS against strong adversaries with
access to the private keys of the compromised users, nor against weaker
adversaries with temporary oracle access to these keys.

Finally, we take a look at Wire’s MLS integration, and find several early
design flaws which negate many of the security benefits of MLS, lead-
ing to trivial confidentiality violations and not achieving PCS in the
presence of a malicious server.

To complement our findings, we provide mitigations and recommenda-
tions aimed at enhancing the overall security of the messaging system
subject of this study.

i

Contents

Contents iii

1 Introduction 1
1.1 Communication Abstraction . 4
1.2 Related Work . 5
1.3 Contribution and Outline . 9

2 Preliminaries 11
2.1 Notation . 11
2.2 Cryptographic Primitives . 12

2.2.1 ChaCha20 Encryption Algorithm 12
2.2.2 HMAC-SHA256 Authenticator 13
2.2.3 Curve25519 . 13
2.2.4 HKDF-SHA256 Key Derivation Function 14

2.3 Secure Messaging Advanced Properties 14
2.3.1 Forward Secrecy (FS) . 15
2.3.2 Post-Compromise Security (PCS) 15

2.4 Double Ratchet . 16

3 The Wire Messenger 19
3.1 Wire Ecosystem . 19
3.2 Client-to-Server Protocol . 21

3.2.1 Server Authentication 21
3.2.2 Higher Level User Authentication 22

3.3 Registration Protocol . 23
3.3.1 User Registration . 23
3.3.2 Client Registration and Multi-Device Support 24

3.4 Multi-End-to-End Protocol Support 26
3.4.1 Cryptographic Components Hierarchy 26

3.5 Message Types and Serialization 28

iii

Contents

3.6 End-to-End Protocol – Proteus 29
3.6.1 Notation - Proteus Session 29
3.6.2 Proteus Sessions . 30
3.6.3 Proteus Dialogues . 42
3.6.4 Group Messaging . 46

3.7 End-to-End Protocol - MLS . 50
3.7.1 Overview . 51
3.7.2 The Ratchet Tree . 54
3.7.3 Wire MLS Decisions . 59

4 Analysis of Wire - Proteus 63
4.1 Threat Model . 63
4.2 High-Level Description of the Vulnerabilities 64
4.3 Proteus Dialogue Attacks . 64

4.3.1 Attack 1 (Trivial Message Replay) 65
4.3.2 Attack 2 (Disguised Mallory 1) 68
4.3.3 Attack 3 (Disguised Mallory 2) 75
4.3.4 Attack 4 (Mallory-in-the-Middle) 77

4.4 Other Attacks and Findings . 78
4.4.1 Attack 5 (Trivial Confidentiality Violation) 78
4.4.2 Attack 6 (Degraded Forward Secrecy) 82
4.4.3 Attack 7 (Unauthenticated Metadata) 83
4.4.4 Attack 8 (Verified Impersonation) 85
4.4.5 Further Findings Affecting Session Independence and

PCS . 86
4.4.6 Discussion (Unraveling the Clone Attack Results) . . . 87

5 Analysis of Wire - MLS 91
5.1 Orchestrator Delivery Service 91
5.2 Out-of-Order Application Messages 92
5.3 Credentials . 93

5.3.1 Untrusted Entity . 93
5.3.2 ACME Key Selection . 94

6 Conclusion 95
6.1 Wire’s Security Status . 95
6.2 Lessons Learned . 96
6.3 Future Work . 96

Bibliography 99

iv

Chapter 1

Introduction

Instant messaging plays a key role in facilitating daily communication for
billions of individuals across the globe. There are hundreds of messag-
ing platforms/systems providing instant messaging services. Among these,
some have achieved widespread popularity on the international stage. Ex-
amples include WhatsApp, Facebook Messenger, and Telegram. In parallel,
there are messaging platforms whose prominence is mostly limited to spe-
cific nations, like WeChat and QQ in China [36]. Collectively, these messag-
ing platforms serve billions of users [52] on a daily basis.

Messaging platforms typically adopt an architecture that involves devices,
commonly referred to as clients, engaging in communication with one an-
other via a centralized server and over a network that inherently is un-
trusted: the Internet. The server plays an important role in routing mes-
sages to their intended recipients: the server has the potential to perform
Denial-of-Service (DoS) attacks by simply refusing to relay messages to de-
vices. In such cases, there are no measures available to prevent the server
from carrying out this form of attack.

Additionally, messages traversing through the server may contain sensitive
information: users of these platforms range from individuals exchanging
their private information to large-scale global organizations using them for
business-critical discussions. Therefore, securing the confidentiality and au-
thenticity of the information transmitted through the server is of significant
importance. As an initial layer of security, client-to-server (C2S) communi-
cation is commonly protected against network-based attacks using protocols
like TLS and QUIC. These protocols serve to hide the content and metadata
of messages from network adversaries but, crucially, not against a malicious
or compromised server.

Secure Messaging In messaging platforms that solely secure C2S commu-
nications, a crucial component of the system’s architecture, the server, is

1

1. Introduction

given ultimate trust. Such messaging servers could misbehave, or be a
tempting target for potential external attackers due to its inherent value,
and it can be exploited for unethical purposes like censorship, surveillance,
and targeted advertisement. Consequently, in secure messaging, it becomes
important to view the intermediate server as a potential malicious actor or a
compromised component operating with malicious intent. This realization
underscores the necessity for the existence of end-to-end (E2E) channels. Es-
sentially, the objective is to secure the communication between two devices
from device to device, ensuring that messages exchanged between them,
even if they are routed through an untrusted server, remain confidential
and authentic. Specifically, the basic security properties expected from E2E
channels are confidentiality, integrity, and authenticity. In other words, nei-
ther the server nor any other entity, except the endpoint devices, can read,
modify, or insert messages into an E2E channel between the devices.

While confidentiality, integrity, and authenticity might initially appear to be
an adequate set of prerequisites for E2E channels, the reality is more com-
plex. Unlike other short-lived E2E channels established through protocols
like TLS, the E2E channels in a secure messaging system persist for extended
periods, possibly spanning many years. This extended lifespan introduces
a realistic threat: an attacker gaining access to a device and corrupting all
the secrets currently in use for E2E communication. When combined with
the capability to store all previously exchanged messages, possibly due to
the attacker’s control over the server responsible for forwarding encrypted
messages, the consequences can be disastrous. In the scenario where all
past messages are encrypted with keys that the adversary can derive with
the corrupted secrets, the confidentiality of the entire communication, even
before the corruption occurred, is compromised. Furthermore, if the secrets
are never updated, the attacker can exploit the E2E channel to transmit en-
crypted messages using the compromised secrets, thereby undermining the
integrity and authenticity of future messages as well as their confidentiality.
Clearly, the need arises for advanced security properties that can guarantee
protection both before and after a corruption. These properties are Forward
Secrecy (FS) and Post-Compromise Security (PCS).

Forward Secrecy [24] is concerned with the confidentiality of messages sent
before the corruption occurs. On the other hand, Post-Compromise Secu-
rity [26] is concerned with the confidentiality, integrity, and authenticity of
messages exchanged after the corruption, which implies that the E2E chan-
nel can recover the above mentioned security properties under certain cir-
cumstances. Last, a mechanism enabling users to prevent (or detect) a ma-
licious server from impersonating others has to be provided. In this work,
a messenger is considered secure if and only if it can satisfy the above re-
quirements and properties, which is reasonable for our target messenger’s
high-risk users.

2

Many modern secure messaging applications, such as WhatsApp, Signal,
and Facebook Secret Conversations, use Signal’s protocol and its open-source
implementation libsignal [41]. This protocol is based on the Double Ratchet
algorithm, which offers the properties necessary for secure messaging. What-
sApp is currently the most popular messenger, with over 2 billion monthly
active users [52], and by default provides end-to-end encryption (E2EE) for
all communications.

Group Messaging Typically, users communicate with one or more other
users in conversations, possibly using multiple devices. Group messaging
allows the devices of all users in a conversation to simultaneously commu-
nicate in groups of many devices rather than just a single device. In the
context of the Double Ratchet algorithm, which many E2E channels use for
the communication between two devices, group messaging is realized by
combining pairwise channels among all N devices that take part in a group;
hence, each message in a group requires N − 1 encryptions: one for each
pairwise channel.

Recently, the Internet Engineering Task Force (IETF) standardized a new
protocol for E2E communication known as the Messaging Layer Security
(MLS) [13]. MLS targets efficient E2E encrypted group messaging, and has
been designed to provide Forward Secrecy and Post-Compromise Security.
It is widely anticipated that many instant messaging service providers will
adopt MLS in the future: the European Commission’s Digital Marketing Act
(DMA) [27] mandates that all major messaging platforms become interop-
erable starting in 2024, and MLS is set to play a central role in achieving
secure E2E communication interoperability, with industry giant Google al-
ready signaling its commitment by announcing plans to integrate MLS into
its communications services [35].

The Target In this thesis, we study the E2E communication protocols
employed in Wire. Wire, founded in 2012 by some of the original Skype
founders, offers its services to individuals, businesses, and governmental
organizations. Significantly, as claimed by Wire [33], their products are
adopted by organizations entrusted with mission-critical information, in-
cluding large corporations and governmental bodies, even extending to five
of the world’s G7 governments. Additionally Wire’s application in Google’s
play store counts over one million downloads [3]. This aspect makes the ex-
amination of Wire’s E2E communication particularly interesting, given that
any flaw discovered could have severe impact.

To this day, Proteus, Wire’s bespoke protocol utilized for E2E communi-
cation, is the main protocol Wire uses in E2E channels to enable secure
messaging. Proteus implements a variant of Signal’s protocol and Signal’s

3

1. Introduction

Sesame [44] session management. In our study, we conduct a comprehen-
sive examination of Proteus and reveal the security implications of its minor
deviations from the Signal protocol. Additionally, we place a significant
focus on session management and explore its implications on PCS.

Wire was also involved in the development of the MLS standard and they
aim to be the first to deliver the benefits of MLS to their end users, with
ongoing efforts to implement a stable MLS support in Wire’s applications.
MLS in Wire is an interesting area of study, particularly with regards to the
decisions made by Wire concerning choices that are left to the application
developer within the MLS standard. Wire indicates that Proteus is suitable
for one-to-one and small groups, while MLS is better for large groups [31]:
both protocols may coexist in Wire in the future, meaning that users’ con-
versations will be using either Proteus or MLS as the underlying protocol.

1.1 Communication Abstraction

A user, typically a human, engages in a messaging system, often using mul-
tiple devices like smartphones and laptops. Each device is equipped with a
platform-specific application that creates clients and where they reside with
cryptographic keys for E2E communication.

When studying a messaging system, we distinguish different levels of ab-
straction at which communication happens. For instance, when two or more
users have a conversation, the messaging clients in their devices maintain di-
alogues, which might be formed of many low-level session of a messaging
protocol, within a certain group. Below we list the different terms we use
to refer to communication at different abstraction levels, and give detailed
description of what they represent.

Conversation A conversation is the high-level communication between dif-
ferent users, regardless of the number of users, how their clients exchange
the actual messages and how the multiple clients of a user synchronize be-
tween each other. More concretely, from the point of view of a user, a con-
versation is represented by the chat visible on their device: the chat should
be consistent across the different devices of the user, and show messages as
originating from other users rather than from particular devices.

Group A group is the abstract many-to-many communication between clients.
We refer to each client as a group member. Group communication can be ob-
tained by combining pairwise dialogues between members of the group.
Every conversation is connected to a group, meaning that when users send
a message in a conversation using one of their clients, the client sends a

4

1.2. Related Work

message to the underlying group, which utilizes the pairwise dialogues to
communicate with the other group members.

Dialogue A dialogue is an abstract E2E (1-to-1) channel between two clients.
Clients use a dialogue with another client to communicate, while the inter-
nal details of the dialogue are opaque to them. A dialogue might be im-
plemented as a single session or a session management protocol. The latter is
a protocol that uses multiple sessions to communicate with details hidden
to the clients. In Signal, the Sesame protocol is used as a dialogue between
clients, while in this work, we present Proteus dialogues.

Session A session is the low-level concrete E2E channel between two clients,
and it is a single instance of the communication protocol. Clients employ
dialogues for E2E communication, which use sessions as a building block. In
Signal and Wire, (slightly different) Double Ratchet-based protocols realize
sessions.

1.2 Related Work

Many studies in recent years have focused on the security of messaging
platforms used by millions of people around the globe. More specifically, of
high interest are applications explicitly claiming strong security guarantees,
such as Telegram, Matrix, Threema, Signal and our target Wire.

Security Analysis of Wire As far as we know, there has been no extensive
analysis of Wire’s cryptographic design. Wire released a high-level descrip-
tion of their cryptographic components, various procedures for user and
client registration, and authentication in [34]. Furthermore, there is a two-
phase audit review of Wire [49, 48], mainly focusing on secure program-
ming rather than the cryptographic components and their usage in Wire’s
applications. The first phase [49] concentrates on the cryptography libraries
codebase, while the second phase [48] focuses on Wire’s applications. These
audits failed to uncover vulnerabilities that are responsible for the attacks
detailed in Chapter 4. The first phase of the audit revealed a vulnerability
enabling the use of degenerate (small order) Curve25519 points in Diffie-
Hellman computations, resulting in predictable derived shares. This vulner-
ability had the potential to lead to DoS attacks by exhausting all available
ephemeral values that clients upload to the server. This issue was addressed
starting from Proteus v0.6.0.

Security Analysis of Other “Secure” Messengers In [38], Jakobsen and
Orlandi show that an older version of the symmetric encryption scheme

5

1. Introduction

used in Telegram (MTProto 1.0 [54]) was not IND-CCA secure. A subse-
quent study conducted by Albrecht et al. in [5] investigates the security of
Telegram and, in particular, the updated version of their symmetric encryp-
tion scheme (MTProto 2.0 [53]). Despite the existence of standard and well-
studied cryptographic primitives, Telegram differentiates MTProto 2.0 from
other well-studied schemes by using unconventional constructions. For in-
stance, Telegram employs bespoke MAC and KDF schemes; they use an
Encrypt-and-Mac construction, and encryption operates in Infinite Garble
Extension (IGE) mode, which is not commonly used. In addition, client-
to-server and server-to-client keys are obtained from a raw Diffie-Hellman
shared secret and have overlapping bits. Several attacks were discovered due
to the protocol’s eccentric nature, some of which are more theoretical than
practical; however, this still indicates the fragility of a highly customized
protocol.

Albrecht, Celi, Dowling and Jones study Matrix and its Olm and Megolm
channels for secure messaging in [4]. The paper’s authors found several
practical attacks, most of them requiring the collaboration of an active ma-
licious homeserver. In Matrix, a homeserver is the intermediate server used
to forward the end-to-end encrypted messages from a user’s device to the
other room users’ devices, where a room is the equivalent of a conversation
between one or more users. The lack of encryption and authentication of
room management messages enabled a malicious homeserver to trivially vi-
olate the confidentiality of messages by adding new adversarially-controlled
users to a room or devices to existing users. Moreover, in another attack, the
malicious homeserver and an insecure implementation choice permitted by
the specification allowed an adversary to impersonate a target device. The
impersonation attack comes in two versions, the semi-trusted and trusted,
where the latter builds on the former to escalate the trust level of the im-
personation. The attacks above illustrate the importance of ensuring that an
untrusted component (according to our threat model) involved in our pro-
tocol cannot actively or passively violate the security properties we claim.

In [47], Paterson, Scarlata and Truong investigate Threema, another mes-
senger claiming strong security guarantees. Once more, a messaging appli-
cation yielded disappointing results. The authors presented many attacks,
including one that exploits the lack of integrity protection on metadata sent
with encrypted messages, allowing for manipulation by a malicious server.

As exploitable cryptography-related vulnerabilities are continually discov-
ered, we anticipate the emergence of many more in the future. In this
work, we present attacks inspired from and exploiting similar vulnerabil-
ities found in previous studies.

6

1.2. Related Work

Formalization Amongst the security properties of messengers offering end-
to-end encryption are FS and PCS. FS guarantees that messages already sent
in an E2E channel remain secure even in the presence of an adversary who
learns all the secrets and private long-term keys currently possessed by a
communicating party. Concretely, having forward secrecy means that an
adversary cannot run a “store now, decrypt later” attack: the long-term se-
crets do not help the attacker in decrypting old messages.

On the other hand, PCS (formalized in [26]) is concerned with the security of
the E2E channel after compromise. In particular, integrity, authenticity and
confidentiality are the most relevant security properties. In order to recover
security, an update event should occur where the communicating parties se-
curely exchange fresh secrets (e.g., using Diffie-Hellman key exchange) and
combine them with compromised secrets in a forward secure way, possibly
by using a one-way function. If the adversary is passive when the parties
exchange fresh secrets, meaning the adversary does not have access to the
latest secrets, then the new entropy introduced “heals” the E2E channel.

Cohn-Gordon et al. perform a formal security analysis of Signal in [25]. The
Signal messaging protocol consists of the extended triple Diffie-Hellman
(X3DH) for the initial key agreement and the Double Ratchet algorithm.
As opposed to the work conducted by Fischlin and Günther in [32] which
introduced for the first time a multi-stage key exchange model to address
the limitations of the single-stage key exchange models, Cohn-Gordon et al.
define a novel multi-stage key exchange model (highly inspired by the one
in [32]), which allows for a tree of stages rather than just a sequence.

PCS Experiment An experiment conducted by Cremers et al. in [28] gave
some very interesting results about the PCS of various messengers against
a so called Clone Attack where the full state of a user’s device is compro-
mised by an attacker who clones the device. The expectation is that, after
the original device exchanges a few messages with other peers, their E2E
channels heal according to the PCS guarantees of the underlying communi-
cation protocols. The experiment grouped the messaging applications into
three classes. The first category contains applications using the Signal Pro-
tocol and its open-source implementation [41], such as Signal, WhatsApp
and Facebook’s Secret Conversations (according to their respective security
whitepapers [51, 56, 45]). The second category considers applications based
on Signal’s protocol; however, they implement it from scratch with possibly
some variations. Some examples are Viber [55] and Wire [34]. Last, appli-
cations using protocols other than the Signal protocol or some variant are
included in the third class. In this class, we can find Threema and Telegram.
As per the experiment’s configuration, the clone device should not be able
to decrypt certain messages exchanged between the original devices after
cloning, violating PCS. Wire had the strangest and most difficult to explain

7

1. Introduction

behavior among the messengers using a protocol based on Double Ratchet.
More specifically, the Wire clone client successfully decrypted two messages
from the counterparty sent in the test phase, while the expectation was at
most one message. In Section 4.4.6, we delve into the underlying causes of
the unusual behavior observed in Wire.

Although many messaging applications use the same Double Ratchet proto-
col used in the Signal application, with some of them even sharing code with
Signal’s, the behavior seems to diverge as a result of some implementation
choices.

Session Management In a study by Cremers, Jacomme, and Naska [30],
which is independent of our work, they investigate Sesame [44], Signal’s
session management protocol. Before their study, security properties like FS
and PCS were exclusively examined at the per-session level, with Signal’s
eXtended Triple Diffie-Hellman and Double Ratchet protocols being notable
for formally proven strong FS and PCS guarantees.

However, Cremers et al. demonstrates that when multiple sessions are em-
ployed within a dialogue between two communicating clients, the way in
which they are handled becomes pivotal and can undermine PCS. Indeed,
they experimentally show that Sesame falls short of guaranteeing PCS, as-
suming an adversary with the capability to clone a device’s complete state,
and thereby gaining implicit access to its long-term identity key pair. Con-
sidering PCS at the dialogue level used by clients at the application level,
which utilizes a session management protocol rather than directly a session,
is necessary: a user of the application does not see PCS at the session level,
but can only interact with the conversation’s application interface.

Their discoveries share commonalities with our own findings regarding the
way Wire handles sessions, though their results have been discovered in-
dependently. Wire’s session management protocol is referred to as Proteus
dialogues, in this work.

While Wire’s session management takes inspiration from Sesame, it has sig-
nificant differences setting it apart. The differences, as we will see in our
analysis, require more changes to mitigate Proteus dialogues’ weaknesses
than the ones proposed in [30].

In our work, we extend the analysis to consider PCS from the standpoint of
a strong adversary capable of fully compromising a device’s long-term iden-
tity key pair. Additionally, we explain that discontinuing session manage-
ment is a requisite step to achieve PCS under this more stronger adversarial
setting.

8

1.3. Contribution and Outline

MLS The IETF Messaging Layer Security (MLS) working group recently
standardized MLS (under RFC 9420 [13]), a new asynchronous group mes-
saging protocol based on tree structures. MLS attempts to efficiently and
continuously derive group secrets while simultaneously providing advanced
security properties such as FS and PCS. During the development process of
MLS, many academic works analyzed the security guarantees that various
drafts or components were providing [7, 22, 6, 11, 9, 10, 23, 8, 29]. Many
of them presented practical and theoretical attacks as well as solutions that
future drafts gradually adopted until reaching an MLS stable version for
standardization.

Wire played a role in the standardization of MLS and are actively working
to integrate MLS groups into their messaging platform. In this work, we an-
alyze the specific choices made by Wire concerning open-to-the-application
designer aspects within the MLS standard.

1.3 Contribution and Outline

Our main contributions are the following:

• We uncover the impact of session management using Proteus dia-
logues for E2E communication. More specifically, we present three
attacks that defeat PCS guarantees at the application level despite the
usage of the Double Ratchet algorithm as a building block of the un-
derlying sessions. Additionally, we explain why E2E channels using
session handling cannot achieve the same PCS guarantees as the ones
provided by a single session.

• We propose a fix that improves PCS for Wire’s session management
using improved Proteus dialogues. Additionally, we suggest an alter-
native dialogue solution that achieves stronger PCS, which utilizes a
single session and a tiebreaker rule for resolving simultaneous session
initializations.

• We show that Wire does not enforce message ordering nor display of
messages within the intended Proteus group. A malicious server is
able to reorder messages and redirect messages to different Proteus
groups due to the lack of integrity protection of the fields carrying this
information.

• We highlight the inadequacy of the current client registration and
multi-device support in Wire, which essentially allows a malicious
server to add a new malicious client to any user’s client list, result-
ing in a trivial confidentiality violation.

• We show how a signature omission in information uploaded to the
server by the clients in order to enable Proteus E2E communication

9

1. Introduction

degrades FS.

• We discuss decisions made by Wire regarding MLS and their security
implications, especially when clients are removed from MLS groups
and for the root of trust for clients’ credentials. We explain why re-
moving a member from a group does not take immediate effect and
how Wire can trivially impersonate any client.

Chapter 2 provides the preliminaries for this work. Then, in Chapter 3,
we present an overview of the Wire messenger including both Proteus and
MLS E2E solutions. The Proteus E2E communication protocol is described in
more detail as it is implemented by Wire. For MLS, we only provide a high-
level description of its fundamental operations as defined in its standard and
we highlight important Wire-specific choices. For each of the attacks and
findings which resulted from our analysis of Proteus and MLS (as discussed
in Chapters 4 and 5, respectively), we describe mitigations that improve
the overall security of the messaging system. We conclude in Chapter 6 by
summarizing our results and providing guidance for potential future work.

10

Chapter 2

Preliminaries

This chapter begins with the notation used throughout the thesis for describ-
ing protocols and procedures (Section 2.1). Then, in Section 2.2, we provide
a high-level discussion of the cryptographic primitives used in Wire’s Pro-
teus protocol. Subsequently, in Section 2.3, we describe in more detail For-
ward Secrecy and Post-Compromise Security, the expected (in this work)
advanced security properties of a secure messenger. Finally, Section 2.4 pro-
vides a high-level explanation of the Double Ratchet algorithm. We refer to
Section 3.7 and [13] for an introduction to MLS

2.1 Notation

We use standard notation to describe protocols and procedures:

• {0, 1}n: the set of bit strings of length n.

• a∥b: the concatenation of the big-endian representation of the integer
values a and b, in that order.

• m1∥m2: the concatenation of the byte string m1 and m2, in that order.

• a⊕ b: bitwise XOR of the two bit strings.

• a← b: assign the value of b to a.

• a←$ S : sample an element from finite set S uniformly at random and
assign its value to a.

• a← F(): assign the output of the deterministic function F to a.

• a←$ F(): assign the output of the probabilistic function F to a.

Let G represent a group, and let g serve as its generator. Throughout this
thesis, we will employ multiplicative notation for group operations, despite

11

2. Preliminaries

the operations being conducted on an elliptic curve where additive nota-
tion might be more fitting. We choose this approach because multiplicative
notation is more widely used in the literature. For instance, consider two
private keys x and y, then their corresponding public keys are X = gx and
Y = gy, respectively. Additionally, we omit the details of (elliptic curve)
Diffie-Hellman ((EC)DH) computation and we denote the derived secret by
gx·y = Xy = Yx.

2.2 Cryptographic Primitives

Wire reuses several standard cryptographic primitives in order to build its
bespoke Proteus E2E protocol. In the following Sections, we provide high-
level discussions and interfaces for the encryption algorithm (Section 2.2.1),
the message authentication code (Section 2.2.2), the elliptic curve employed
for Diffie-Hellman computations (Section 2.2.3), and the key derivation func-
tion (Section 2.2.4) used as underlying building blocks of Proteus.

2.2.1 ChaCha20 Encryption Algorithm

Encryption algorithms are responsible for providing confidentiality to mes-
sages at rest and exchanged over untrusted networks. ChaCha20 is a stream
cipher which Bernstein describes in [20]. It is an improvement in terms of
efficiency and cryptanalysis of the Salsa20 stream cipher, also described by
Bernstein in [19]. Additionally, it is considerably faster (around three times)
than AES on non-specialized hardware.

The ChaCha20 encryption algorithm repeatedly calls the ChaCha20 block
function, with the same key and nonce, and a counter that is incremented
on each call by one. The successive calls of the block function generate a
sufficiently long keystream, which is then XOR-ed with the given plaintext
or ciphertext. The ChaCha20 encryption algorithm is described in [46] Sec-
tion 2.4. The encryption algorithm provides the following interface:

• c ← ChaCha20.Enc(k, n, m): given a key k ∈ {0, 1}256, a nonce n ∈
{0, 1}96, and an arbitrary length plaintext m, output a ciphertext c. The
starting counter used in the sequential calls of the ChaCha20 block is
set to a constant value by the library Wire utilizes.

• m ← ChaCha20.Dec(k, n, c): given a key k ∈ {0, 1}256, a nonce n ∈
{0, 1}96, and an arbitrary length ciphertext c, output a plaintext m. The
starting counter used in the sequential calls of the ChaCha20 block is
set to a constant value by the library Wire utilizes.

Many papers [12, 37, 50] discuss the security of the ChaCha and Salsa fam-
ilies of stream ciphers. Notably, ChaCha20 has an unfortunate property
which it shares with other stream ciphers: reusing the same nonce n (and

12

2.2. Cryptographic Primitives

counter) with the same key k results in the same keystream, which then im-
plies an attack if two different ciphertexts c1 and c2 are encrypted using the
same keystream, with c1 ⊕ c2 = m1 ⊕ m2. Hence, nonces must be chosen
carefully, typically using sequence numbers incremented by one for each
encryption/decryption; otherwise, repetition can be exploited with crypt-
analysis or partial knowledge of one of the plaintexts.

2.2.2 HMAC-SHA256 Authenticator

A Message Authentication Code (MAC) scheme offers a method for veri-
fying the integrity of data sent over or kept within an unreliable medium.
Typically, a MAC scheme is used in a group of parties sharing a secret key
to verify that a message was sent from a group member. Notice that MAC
schemes do not provide non-repudiation, meaning that any member of the
group could have sent the message.

Wire uses the HMAC construction, which Bellare, Canetti, and Krawczyk
present and analyze in [17]. The HMAC construction uses a cryptographic
hash function (in Wire SHA256) with a secret key in order to generate an
authentication tag used for verification. The interface provided by HMAC
instantiated using SHA256 is the following:

• τ ← HMACSHA256.Tag(k, m): given a key k and a message m (size lim-
ited to the capabilities of the underlying hash function), output the
MAC tag τ ∈ {0, 1}256 for m.

• v ← HMACSHA256.Vfy(k, τ, m): given a key k, a MAC tag τ, and a
message m, output zero when verification fails; otherwise, one (v ∈
{0, 1}).

We highlight that Wire uses the Encrypt-then-MAC composition of ChaCha20
and HMAC.

2.2.3 Curve25519

Curve25519 is a Montgomery elliptic curve over the prime field defined by
the prime number 2255− 19. It was designed by Bernstein in [18] for efficient
elliptic curve Diffie-Hellman (ECDH) key exchange. Both public and private
keys are 32 bytes long because ECDH share computation operates only on
the X-coordinate, which allows efficient use of the Montgomery ladder al-
gorithm.

In [21], the twisted Edwards curve birationally equivalent to Curve25519 is
recommended for use in the EdDSA signature scheme. In this particular
choice of curve, the name Ed25519 is used for the signature scheme. On a
high level, the interface provided for the Ed25519 signature scheme is the
following:

13

2. Preliminaries

• (x, X) ←$ Ed25519.KeyGen(): generates a private key x and the corre-
sponding public key X. For simplicity, we use the generated public-
private key pair without transformation for both ECDH computation
and in the Ed25519 signature scheme.

• σ ← Ed25519.Sign(x, m): given a private key x and message m, output
the signature σ for m.

2.2.4 HKDF-SHA256 Key Derivation Function

A Key Derivation Function (KDF) is an important cryptographic component
that allows one to derive one or more cryptographically strong secret keys
from some initial keying material, which might also be unsuitable for direct
cryptographic use.

Wire uses HKDF, an HMAC-based Extract-then-Expand key derivation func-
tion. HKDF provides two functionalities. The first functionality takes an ini-
tial keying material of which not every bit might be distributed uniformly
at random and extracts a fixed-length pseudorandom key from it. The ex-
tracted pseudorandom key concentrates the possibly spread entropy of the
initial keying material, thus making the extracted key suitable for crypto-
graphic use (whitening transformation).

The second functionality expands a pseudorandom key, typically derived
from the extract functionality, to many other keys according to our needs
and the cryptographic algorithms we use.

In [40], Krawczyk presents and analyzes HKDF. The interface of HKDF in-
stantiated with HMAC-SHA256, as seen in Section 2.2.2, is the following:

• k← HKDFSHA256.Extract(s, kin): given a salt s ∈ {0, 1}256 and an initial
keying material kin of arbitrary length (limited by the capabilities of the
underlying hash function), output a pseudorandom key k ∈ {0, 1}256.

• kout ← HKDFSHA256.Expand(k, info, L): given a pseudorandom key k ∈
{0, 1}256, an arbitrary length label info (can be a zero-length string)
and the output keying material length L in bytes (≤ 255 · 256), output
keying material kout of L bytes.

• kout ← HKDFSHA256(s, kin, info, L): equivalent to applying extract and
then expand using the output of extract as the pseudorandom key k.

2.3 Secure Messaging Advanced Properties

The following discussion describes FS and PCS, two properties we expect
from a secure messenger. Signal’s Double Ratchet protocol achieves both of
these properties in their strongest form [25]. We highlight that in the follow-
ing discussions, we use the term E2E channel because it can be realized as

14

2.3. Secure Messaging Advanced Properties

a dialogue with a single session or a collection of sessions using a session
management protocol.

2.3.1 Forward Secrecy (FS)

FS is concerned with the security of communications that happened prior
to any corruption. In particular, it ensures the confidentiality of previous
communications between parties. This implies that, if an adversary com-
promises the current state of an E2E channel and has access to ciphertexts
of previously encrypted messages, they cannot decrypt those ciphertexts by
deriving their message keys.

More concretely, FS guarantees that an adversary who corrupts the complete
state of an E2E channel, including the long-term key pairs, cannot compro-
mise the security of messages exchanged within the E2E channel before the
corruption. This implies that the long-term key pairs alone do not allow
for the computation of any of the previous secrets used to derive previous
message keys (e.g., the initial key exchange depends on a DH share com-
puted using ephemeral key pairs). FS can be achieved by using a one-way
function, such as a KDF, to ensure that the same message key is never used
to encrypt more than one message, and knowledge of a message key does
not allow for the derivation of past message keys.

2.3.2 Post-Compromise Security (PCS)

PCS is concerned with E2E channel security after a corruption has occurred.
It ensures that the communicating parties’ channel will regain the security
properties of confidentiality, integrity, and authenticity. To achieve this, a
channel state update is required to happen periodically. This event of up-
dating the state of a channel is known as the healing step.

There are various forms of PCS that depend on the capabilities of the ad-
versary. In this study, we consider PCS in the presence of either a weak or
a strong adversary, referred to as PCS via weak or total compromise in [26],
respectively.

In weak-PCS, the adversary gains temporary access to the long-term key
pairs of the communicating parties through an oracle (along with the chan-
nel state). This scenario is particularly relevant when an adversary tem-
porarily accesses a hardware security module (HSM) that stores long-term
key pairs and can perform operations with the private keys without reveal-
ing them. Once the adversary loses access to the HSM, the parties can use
their long-term key pairs to compute a token that the adversary cannot pre-
compute when having access through the oracle to the private long-term
keys (e.g., with a Key Encapsulation Mechanism (KEM)). Then the parties

15

2. Preliminaries

can derive the new uncompromised secret using the corrupted secret of the
previous stage and the token mentioned above as input to a KDF.

In strong-PCS, the adversary gets access to the actual long-term key pairs of
the communicating parties. In this case, we require that the adversary re-
mains passive during the healing step, and the channel only regains security
after healing. Typically, this healing process involves asymmetric cryptog-
raphy, with the introduction of ephemeral key pairs and the computation
of a DH shared secret. Since the adversary is passive during the healing
step, only the communicating parties possess knowledge of the DH share,
effectively locking out the adversary. This derived share can then be used
as input to a KDF (possibly alongside a previously compromised secret) to
generate new uncompromised suitable for cryptographic usage secrets.

2.4 Double Ratchet

The Double Ratchet algorithm [42] is at the core of Signal’s protocol and is
responsible for encryption and decryption of messages within a session.
It ensures that the established session provides both FS and strong-PCS
through the use of two distinct ratchets: the asymmetric and the symmetric.
A ratchet is a key schedule, where new secrets are continuously generated
by KDF calls/steps. The asymmetric ratchet connects all symmetric ratchets
together as we explain below.

A prerequisite of the Double Ratchet algorithm is a shared secret between
the two communicating parties. Signal’s protocol satisfies the requirement
using the eXtended Triple Diffie-Hellman (X3DH) [43] authenticated key
exchange algorithm. In the following discussions, we provide high level
description of the asymmetric and symmetric steps.

Asymmetric Steps In a session, the two parties have an asymmetric ratchet
and two types of symmetric ratchets: the receiving and the sending (sym-
metric) ratchets. The asymmetric ratchet begins with a root key derived
from an initial key exchange (e.g. X3DH), and it strictly orders the symmet-
ric ratchets one after the other, with each party assigned a sending ratchet
exactly every two symmetric ratchets in the order specified by the asym-
metric ratchet while the rest are receiving ratchets. Whenever a party wants
to send a message after receiving messages on the latest symmetric ratchet,
which is a receiving ratchet, then an asymmetric step forward is required so
that it starts using its next sending ratchet. During the asymmetric step, the
party who wants to send a message generates an ephemeral key pair. This
ephemeral key pair, combined with the public ephemeral key of the peer
from the previous asymmetric step, is used to compute a DH secret. The
DH secret and a root key from the previous step are the inputs to a KDF to

16

2.4. Double Ratchet

derive the next root key and a chain key. The chain key is used in symmetric
steps to derive message keys. The peer is informed about the asymmetric
step through message metadata. The asymmetric steps provide both FS and
strong-PCS because of the usage of a KDF with fresh ephemeral secrets and
the previous root key.

Symmetric Steps At any given time, both parties hold chain keys for sym-
metric ratchets. A party uses a sending symmetric ratchet to send encrypted
messages in the session, while it uses a receiving symmetric ratchet to re-
ceive encrypted messages. Whenever a party sends or receives a message on
an existing symmetric ratchet, it performs a symmetric step. The symmetric
step involves a KDF that takes the current chain key of the symmetric ratchet
as input and outputs a new chain key and a message key for encryption or
decryption. The symmetric steps provide only FS because of the usage of a
KDF with the previous chain key but not an ephemeral secret.

17

Chapter 3

The Wire Messenger

This chapter presents Wire’s usage scenarios and protocols relevant for our
study, and it is followed by an analysis of findings in Chapters 4 and 5.

We begin with an overview of Wire’s ecosystem, introducing the applica-
tions, servers, and entities involved in the typical use of the messaging sys-
tem in Section 3.1. We then discuss Wire’s selection of the client-to-server
protocols in Section 3.2. Prior to introducing the end-to-end protocols, we
explain the registration protocol in Section 3.3, which essentially enables
multi-device support. In Section 3.4, we describe how Wire organizes cryp-
tographic components and libraries across different levels of abstraction to
support multiple end-to-end protocols and simplify compatibility across
platforms. Proteus, Wire’s own Double Ratchet protocol implementation,
is extensively examined in Section 3.6. More recently, MLS has been added
as a supported protocol together with Proteus. In Section 3.7, we briefly
describe MLS, with detailed information available in the publicly accessible
RFC [13].

3.1 Wire Ecosystem

Wire’s ecosystem is depicted in Figure 3.1. A user is a participant in the
messaging system. Users are denoted by A, B, U and V, each assigned a
distinct user identifier. For a user U, IDU ∈ {0, 1}128 denotes the user iden-
tifier given to the user, which is 16-bytes long. The presence of at least one
client bound to a user is a prerequisite for a user to be able to exchange mes-
sage in a conversation. In other words, a user can be envisaged as an entity
possessing the knowledge of login credentials for an account and that is not
bound to any cryptographic material. Further clarity on this distinction will
emerge as we delve into the discussions on the C2S and registration pro-
tocols, addressed in Sections 3.2 and 3.3, respectively. Furthermore, a user
is permitted to have a maximum of seven clients affiliated with them. The

19

3. The Wire Messenger

Distribution Server (SDS)

ACME Server (SACME)

E2E Channel

C2S Channel C2S Channel

C2S Channel C2S ChannelUser A User B

Client BjClient Ai

Figure 3.1: The different components and entities of the Wire service, highliting the different
protocols used in Wire to provide discovery, certification and secure messaging between a user
A with client Ai and B with client Bi.

clients of user U are denoted by Ui for i ∈ {0, 1}64, where i corresponds
to the 8-bytes long client identifier. It is important that the client identifier
remains distinct from those attributed to the user’s other clients, so that
each client is uniquely identified. Moreover, a client is bound to a single
user. Functionally, a client is situated within a device, i.e., a smartphone
or a laptop, that has installed one of the Wire applications; depending on
the operating system and architecture of the device, different versions of the
applications are available to the user. Unlike other secure messengers, in
Wire’s ecosystem, none of a user’s clients can be seen as the primary client
that brings the user’s clients together, e.g. Signal has a concept of a primary
client and secondary clients which a user can register with the involvement
of the main client.

As previously discussed, the Wire ecosystem consists of different applica-
tions tailored for distinct platforms, encompassing iOS, web, desktop, and
two Android applications: the legacy and the new. When conducting this
study, we mainly focused on the Android legacy1 and new2 applications
written in Scala and Kotlin, respectively. At the time of writing, both of the
applications are actively employed by end users as Wire is in a transitional
period. In the long term, it is expected that Wire will phase out the legacy
version of the application.

A critical entity of the ecosystem in study is the company that runs and
develops the Wire messenger which, by overload, we also call “Wire”. Wire
manages two crucial components; the distribution server, denoted by SDS,
and the ACME server, denoted by SACME. Communication between a client

1https://github.com/wireapp/wire-android
2https://github.com/wireapp/wire-android-reloaded

20

https://github.com/wireapp/wire-android
https://github.com/wireapp/wire-android-reloaded

3.2. Client-to-Server Protocol

and any of the servers is secured using a client-to-server protocol that we
specify in Section 3.2. The distribution server is mainly responsible for re-
laying E2E-encrypted messages from a user’s client to another user’s client.
Since MLS, the distribution server also acts as the orchestrator server, resolv-
ing conflicting MLS Commit messages, as discussed in Section 3.7.3. Other
responsibilities of this server will be unveiled as we proceed into this Chap-
ter. Note that we frequently use the term server as a shorthand reference to
the distribution server. The ACME server is a new addition to the ecosys-
tem and it is responsible for issuing x509 certificates to clients required the
MLS end-to-end protocol. This server is only useful for MLS and irrele-
vant to Proteus. A more in depth discussion about the ACME server can be
found in Section 3.7.3. When we refer to Wire as an entity, we refer to either
the company, the application, the distribution or the ACME servers. Which
entity we refer to will be clear from context.

3.2 Client-to-Server Protocol

A Wire client establishes a secure channel with the servers in order to pre-
vent potential network adversaries from tampering with the communica-
tion between them, while simultaneously protecting the exposed metadata
in E2EE messages. Recognizing the importance of this concern, Wire aligns
with established best practices for secure messaging platforms by choosing
Transport Layer Security (TLS) as its designated C2S protocol. TLS is an
extensively studied and formally analyzed protocol that is proven to deliver
strong security guarantees.

3.2.1 Server Authentication

During the TLS handshake, the server always authenticates to the client us-
ing a certificate that binds the server’s identity to its public key. The client
will then use the system-installed trusted certificates to verify that at least
one of them vouches for its legitimacy by verifying the received certificate
chain. Typically, there are hundreds of certificates installed on a system that
are trusted by default and owned by hundreds of Certificate Authorities
(CAs). A CA is an entity responsible for issuing certificates and perform-
ing the appropriate checks during the issuance of certificates, e.g., verifying
possession of the private key corresponding to the public key and control
of the domain in a certificate request. Hence, the ultimate trust is placed
in CAs. It is sufficient to lose all the guarantees provided by TLS when at
least one of them misbehaves. In practice, there were many incidents in the
past [2].

Wire employs certificate pinning to protect against a misbehaving CA who
issues a malicious certificate for Wire’s servers with the ultimate goal of per-

21

3. The Wire Messenger

forming a man-in-the-middle (MitM) attack. Certificate pinning is an ad-
ditional security check to the basic certificate validation, which assures the
server’s authenticity to the client. Certificate pinning consists in the valida-
tion of the server’s certificate by a client application, checking the certificate
provided by the server during the handshake against the certificate stored
(“pinned”) within the client application.

3.2.2 Higher Level User Authentication

In TLS, client authentication is optional. Wire does not authenticate clients
during the TLS handshake, which is common in many TLS applications. In
contrast, client applications are required to prove that they are acting on
behalf of a user on every protected RESTful API request. An example of
such a request is during the client registration described in Section 3.3.2. We
highlight that clients, as described in Section 3.1, never authenticate to the
server; instead, authenticating as a user U is sufficient to act as any of its
clients Ui at the C2S protocol level.

We now describe the details of user authentication on every request to the
server. The API authentication mentioned above is based on a combination
of the following:

1. Short-lived access tokens are used to authenticate to the protected API
resources. These tokens are included in every HTTP request’s autho-
rization header field. This type of authentication is called Bearer au-
thentication, also known as token authentication. An access token for
user U is denoted by tokenU .

2. Long-lived user cookies are used to continuously obtain new access to-
kens (sent from the server as HTTP cookies). A user cookie for user U
is denoted by cookieU .

Wire’s long-lived user cookies are obtained on successful user login or af-
ter the completion of user registration described in Section 3.3.1. On the
other hand, access tokens are refreshed in frequent time intervals using the
aforementioned user cookies. The high level intuition of this authentication
mechanism is that only the entity knowledgable of the user’s credentials can
obtain such tokens.

The content for both the user cookies and access tokens is almost identical.
Below we present the most important fields they share in common.

• signature: An Ed25519 signature protecting the rest of the token’s con-
tent using a server’s signature key. The signature prevents the forgery
of access tokens. Upon receiving a token, the server first verifies the
signature in it.

22

3.3. Registration Protocol

• timestamp: A POSIX timestamp indicating the expiration time of the
token.

• uuid: The 16-byte long user identifier of the user authenticated by this
token.

3.3 Registration Protocol

Registration to Wire’s messaging system enables end users to participate in
conversations, exchanging messages with other registered end users. The
registration protocol comprises two distinct processes: one for the registra-
tion of users and another for clients. It is important to reiterate the distinc-
tion between users and clients, as they serve distinct roles. A client is asso-
ciated with a sole user, whereas a user can possess as many as seven clients.
The integration of these two registration procedures, discussed in the subse-
quent sections, forms the foundation for multi-device support, which we be-
lieve to have strongly influenced Wire’s design decisions. Our presentation
begins with a description of user registration, followed by client registration.

3.3.1 User Registration

When an user U wishes to use Wire for the first time, they need to first
register to Wire’s messaging system. A diagram for the user registration
procedure is provided in Figure 3.2.

It is worth noting that Wire distinguishes itself by not mandating user regis-
tration from a specific platform, setting it apart from other secure messaging
services like WhatsApp, which necessitates registration through a mobile
phone.

User registration begins with user U sending an email address emailU to
server SDS.To validate ownership of the provided email address, SDS gen-
erates a random 6-digit verification code (CodeGen()) and transmits it via
email to the provided address. U fetches the verification code and sends it
alongside an account password3 (pwU) and the email. Subsequently, SDS ver-
ifies the match between the emailed and submitted verification codes (with a
tolerance of up to three attempts; after three unsuccessful attempts, the user
has to repeat registration). Upon successful validation, the server produces
a user identifier (using UUIDGen()) that functions as a distinct identifier in
the system. The server generates a user cookie (using CookieGen(·)), setting
the uuid field of the generated cookie to the newly generated user identifier
IDU . Last, the user identifier and cookie are returned to U.

3Wire’s password policy mandates a password of at least 8 characters long of which at
least 1 is lowercase, uppercase, digit and special characters.

23

3. The Wire Messenger

User U Server SDS

emailU

vcode ←$ CodeGen()

Email vcode to emailU

Fetch v′code from emailU

emailU , pwU , v′code

if vcode ̸= v′code then abort

(max 3 attempts)

IDU ←$ UUIDGen()

cookieU ←$ CookieGen(IDU)

IDU , cookieU

Figure 3.2: User Registration Protocol. We omit the specific details of how the server manages
and persistently stores the information received and generated for the newly created user.

Note that user registration does not involve the generation of any long-
term cryptographic key pairs. As a result, simply registering the user is not
sufficient for E2E communication and at least a client must be registered
alongside it. Wire’s responsible entities for E2E communication are clients
which can be registered at any later stage. To enable user interaction in
conversations, user registration is always followed by client registration.

3.3.2 Client Registration and Multi-Device Support

Multi-device support poses a notable challenge for secure messaging plat-
forms, a situation that persisted without comprehensive solutions for quite
some time within major secure messengers such as WhatsApp, which pre-
viously required that the primary client had to be online for the secondary
clients to send and receive messages. Wire presents a very simplistic ap-
proach as an attempt to solve this problem.

Wire’s proposed solution involves a client registration procedure, shown in
Figure 3.3. Unlike other secure messaging platforms, Wire does not feature
a primary client to whom other clients can be linked. To put it succinctly,
the access token tokenU for a user U, also allows modifying the set of client
identifiers associated with U. This set of clients is stored on the server SDS
and we denote it by CSDS

U .

We will see that, when a client Ai belonging to user A wants to send a mes-

24

3.3. Registration Protocol

sage to another user B, it needs to access an updated collection of clients
associated with another user B. This can be achieved through two distinct
approaches. The first involves including modifications to CSDS

U in the server’s
messages when dispatching encrypted messages to a group, as elaborated
in Section 3.6.4. In the second mechanism, Ai requests client identifiers for
user B directly from the server SDS, which returns an updated set in re-
sponse. Ai replaces its existing set with the updated version and undertakes
the requisite steps to integrate new clients within the underlying groups
of conversations both client’s users participate, as outlined in Section 3.6.4.
Note that the exact details of client addition in MLS remain uncertain at the
time of writing (either clients in a group will propose the addition, or the
new clients will add themselves with external commits). The set of clients
known to client Ai for user B is denoted by CAi

B .

Client U? Server SDS

tokenU (Obtained after Login or User Registration)

(idkU? , idpkU?)←$ Ed25519.KeyGen()

bundlelast ←$ BundleGen(idpkU? , 65535)

bundlepre,i ←$ BundleGen(idpkU? , i) for 0 ≤ i < 100

bundlelast, bundlepre,i (for 0 ≤ i < 100), tokenU , pwU

if not ValidToken(tokenU) then abort

IDU ← tokenU .uuid

if pwU hash ̸= stored hash for user with IDU then abort

cid← CIDGen(IDU)

cid

Client Ucid

Figure 3.3: Client Registration Protocol. The diagram does not show how the server uses,
manages and persistently stores the information received and generated for the newly created
client. Moreover, client information, such as the type of device the client resides on, sent during
registration is omitted.

Client registration is depicted in Figure 3.3. Notably, the client does not
yet possess an identifier, indicated by the question mark in our notation.
We assume that a client U? intending to register possesses an access token
for user U. Subsequently, the client generates a long-term Ed25519 identity

25

3. The Wire Messenger

key pair through the corresponding key generation algorithm. Afterwards,
the client generates a set of 100 pre-key bundles, as well as a last resort bundle
(both using BundleGen(., .)) (see Section 3.6.2 for more details). Conceptually,
these bundles encapsulate the long-term public identity key of the client and
pre-computed key pairs to be employed during session initialization; an in-
depth inspection of pre-key bundles and session establishment is provided
in Section 3.6. The client then forwards these bundles alongside the access
token and the password associated with user U. The last two are used to
validate that the registering entity corresponds to U. Initially, the access
token undergoes verification utilizing the public key associated with SDS’s
signing key (using the ValidToken(.) function). The server extracts the user
identifier from the token, uses the identifier to retrieve the corresponding
password hash from the database, and confirms whether the hash of the
provided password aligns with the stored hash. In the event of a match, the
server proceeds to generate a new client identifier (using CIDGen(.))., which
must be unique with respect to the user’s existing clients. The client identi-
fier is then returned to the client, officially establishing its status as a client
of user U. Note that details related to token validation, hash computation
and client identifier generation are omitted, as they are not needed. More-
over, we emphasize that clients of the same user are not required to interact
during client registration. Each client acts, in essence, independently.

3.4 Multi-End-to-End Protocol Support

Wire has long provided support for Proteus, enabling communication be-
tween users in conversations. However, in recent years, Wire has taken a
step forward by initiating the integration of MLS E2E group messaging pro-
tocol. This addition enables multi-protocol support and the coexistence of
groups operating with either MLS or Proteus. In this section, we describe
how Wire has organized various cryptographic components and libraries to
realize their vision.

3.4.1 Cryptographic Components Hierarchy

The cryptographic components and libraries used/developed by Wire are
organized into three levels, as shown in Figure 3.4. We list them starting
from the lower level and moving to the higher level.

1. The protocol level consists of the low-level protocol implementations.

a) The Proteus4 component is maintained and developed by Wire
using the Rust programming language. It is an implementa-
tion variant of Signal’s protocol and Sesame session management.

4https://github.com/wireapp/proteus

26

https://github.com/wireapp/proteus

3.4. Multi-End-to-End Protocol Support

MLS Central Proteus Central

OpenMLS Proteus

Core Crypto

Protocol Level
(Rust)

Client Level
(Rust)

CryptoBox
(only Proteus)

Swift Kotlin JavaScript Java

ffi ffi wasm ffi

Application Level

Figure 3.4: Cryptographic Components Hierarchy. Components in dashed box are not developed
by Wire.

Thus, it provides the functionalities for Proteus sessions and dia-
logues explained in Sections 3.6.2 and 3.6.3, respectively, without
persistent storage.

b) The OpenMLS5 component is an open-source implementation in
Rust of the MLS protocol. It is maintained and supported by
Phoenix R&D and Cryspen, and it provides an interface for ac-
cessing MLS groups’ operations while simultaneously hiding their
complexity. For instance, it handles any modifications to the
group’s state; the result of additions, removals, and updates for
clients, and performs any required validation steps.

2. The client level has components that utilize the interfaces provided by
the protocol-level components in order to provide higher-level APIs
with persistent storage.

a) The CryptoBox6 component supports only the Proteus protocol.
It provides a higher-level Rust API that enables accessing Proteus
dialogues (the session management protocol) but not sessions di-
rectly. It also provides persistent storage for all dialogues a client

5https://github.com/openmls/openmls
6https://github.com/wireapp/cryptobox

27

https://github.com/openmls/openmls
https://github.com/wireapp/cryptobox

3. The Wire Messenger

has and all necessary cryptographic keys, namely long-term and
pre-key pairs.

b) The Core Crypto7 component abstracts differences between MLS
and Proteus, implementing a common interface for the two com-
ponents. This allows to transparently use either Proteus or MLS
behind the same API. The MLS Central provides an MLS-specific
high-level API with persistent storage for MLS groups and other
related information, such as encryption and signature key pairs
and credentials. The Proteus Central is very similar to CryptoBox.
We highlight that MLS groups are managed at the Core Crypto
level, while Proteus groups are managed at the application level.

3. At the application level, we find the different programming languages
for which Wire generates bindings of the high-level APIs from the
client level. The legacy Android application uses the CryptoBox bind-
ings to Java. For iOS and the new Android applications, there are
Swift and Kotlin bindings of Core Crypto. Finally, Wire produces a
wasm binary of Core Crypto for support in JavaScript for the web and
desktop (based on Electron) applications.

3.5 Message Types and Serialization

Wire applications can comprehend and process only certain types of mes-
sages. These messages are what will eventually be encrypted using one of
the E2E protocols and decrypted by the recipients. The recipients of these
messages will then process and display them in a conversation visible to the
user. These messages are serialized and deserialized using Protocol Buffers
[1]. In general, every message has the following fields:

• A message identifier that can be used to reference the message in other
messages.

• A message type.

We now list the most relevant to this study message types:

• Text: A text message with some string content. The recipient displays
the content in a conversation.

• Confirmation: This can be either a delivery or read confirmation. The
former confirms the delivery of a message to a client (the receiver must
send a different Confirmation message to each of the user’s clients)
even if the user did not read the message displayed in a conversation;
this can happen when the application is running in the background.

7https://github.com/wireapp/core-crypto

28

https://github.com/wireapp/core-crypto

3.6. End-to-End Protocol – Proteus

The latter occurs exclusively when the user reads the message in a con-
versation; that is, it is visible on the screen. The confirmed messages
are referenced using their identifiers. The recipient visually marks the
referenced messages as delivered and/or read.

• ResetClientAction (only in Proteus): Informs the recipient client that
a new dialogue was initialized on the sender’s side, which will result
in the initialization of a new opaque Proteus session. The recipient
displays a message in a conversation informing the user about the
underlying Proteus session addition, but the client does not take any
further action.

• Ephemeral: A message with an expiration time. It can be a Text mes-
sage or any of the other supported types not specified here. The recip-
ient will display the message which will disappear after the specified
time interval.

Comprehensive details concerning all message types are documented within
Wire’s .proto specification file8.

3.6 End-to-End Protocol – Proteus

Developed internally by Wire, Proteus draws significant inspiration from
Signal’s X3DH key exchange and the Double Ratchet protocol for establish-
ing sessions among clients. Furthermore, Proteus adopts a session manage-
ment protocol closely resembling that of the Sesame algorithm [44], also de-
signed by Signal. In this section, we delve into the details of Proteus sessions
and dialogues and how their interaction is used to build group messaging.
Additionally, we look closely at the client applications, the communication
with the distribution server and the information the server manages. We
also highlight the exposed functionalities accessible at the application level,
as depicted in Figure 3.4, which is very important for our analysis in Chap-
ter 4 because E2E channels between clients are realized as Proteus dialogues,
which manage multiple sessions. Only dialogues’ functionality is exposed
to the application; hence, we study security properties such as FS and PCS
at the dialogue level of abstraction.

3.6.1 Notation - Proteus Session

The notation used in the context of Proteus sessions is summarized below:

• pstag
Ai↔Bj

: A Proteus session between clients Ai and Bj, where Ai is the

initiator. tag ∈ {0, 1}128 is a label (unique within a Proteus dialogue)

8https://github.com/wireapp/generic-message-proto/blob/master/proto/

messages.proto

29

https://github.com/wireapp/generic-message-proto/blob/master/proto/messages.proto
https://github.com/wireapp/generic-message-proto/blob/master/proto/messages.proto

3. The Wire Messenger

assigned to this Proteus session. The session maintained at client Ai

(resp. Bj) is denoted by pstag
Ai→Bj

(resp. pstag
Ai←Bj

).

• (idkUi , idpkUi): Ui’s Curve25519 long-term identity key pair.

• (ebkUi , ebpkUi): Ui’s Curve25519 ephemeral base key pair.

• (prekUi
x , prepkUi

x): Ui’s xth Curve25519 pre-key pair, where x ∈ {0, 1}16.
When x ̸= 65535 it is ephemeral otherwise short-term.

• (lrkUi , lrpkUi): Ui’s Curve25519 short-term last resort pre-key pair. It is
equivalent to the (prekUi

65535, prepkUi
65535) pre-key pair.

• (rchtkUi
x , rchtpkUi

x): Curve25519 ratchet key pair, used to asymmetri-
cally ratchet forward to Ui’s xth sending symmetric ratchet in a Pro-
teus session (which Proteus session is involved will be clear from the
context).

• ms: master secret derived from XPDH in a Proteus session (which
Proteus session is involved will be clear from the context).

• rkUi
x : root key used to asymmetrically ratchet forward to Ui’s xth send-

ing symmetric ratchet in a Proteus session (which Proteus session is
involved will be clear from the context).

• ckUi
x,y: chain key used to derive the yth message key and the (y + 1)th

chain key on Ui’s xth sending symmetric ratchet in a Proteus session
(which Proteus session is involved will be clear from the context).

• (enckUi
x,y, mackUi

x,y): message key (encryption and MAC keys) used to
encrypt the yth message sent on Ui’s xth sending symmetric ratchet in
a Proteus session (which Proteus session is involved will be clear from
the context).

3.6.2 Proteus Sessions

The establishment of a Proteus session between two clients is necessary for
E2E communication in Wire’s Proteus groups. Notably situated at the pro-
tocol level of abstraction within Wire’s cryptographic libraries, as illustrated
in Figure 3.4, Proteus sessions remain inaccessible directly to client’s high
level application interfaces. Wire applications only use Proteus sessions im-
plicitly, through the dialogue abstraction, as elaborated in Section 3.6.3.

Broadly, the lifecycle of Proteus sessions consists of four distinctive oper-
ations: registration, initialization, asymmetric ratcheting, and symmetric
ratcheting. During registration a client publishes to the server keying mate-
rial essential for other clients to initialize a session with them. This is done in
order to support key exchange when one of the communicating clients is of-
fline. Initialization is responsible for the establishment of a session between

30

3.6. End-to-End Protocol – Proteus

two participating clients by deriving a shared master secret. Subsequently,
the processes of asymmetric and symmetric ratcheting are employed to de-
rive new secrets within sessions, ensuring the sessions uphold advanced
security properties, namely Forward Secrecy and Post-Compromise Secu-
rity.

Proteus sessions offer the capability for asynchronous message exchange,
facilitated by the presence of the distribution server that permits offline
communication by caching messages destined for clients that are not con-
nected to the network at the moment the messages are sent. Consequently,
the Proteus session states at both communicating clients might not be syn-
chronized. Furthermore, in order to accommodate out-of-order message de-
livery, a Proteus session necessitates the retention of intermediate message
keys and other secrets for yet-to-be-received messages.

With this foundation in place, we begin to clarify the various elements that
make up a Proteus session. For the rest of this section, we assume two clients
denoted by I and R, representing the initiator and responder clients (of not
necessarily distinct users), respectively.

Pre-key Bundles and Registration

As detailed in Section 3.3.2, Wire’s client registration process is the oper-
ation of registering a client within the messaging system. This operation
transmits the keying material needed for session establishment to the dis-
tribution server, by aggregating all essential information for a single ses-
sion initialization into what is called a pre-key bundle. Precisely, a pre-key
bundle generated by a client R (using BundleGen(idpkR, pkid)), includes the
following fields:

• pkid ∈ {0, 1}16: The pre-key identifier. This attribute uniquely identifies
the pre-key bundle and serves to correctly retrieve the corresponding
pre-key pair from storage during the initiation of a session as the re-
sponder.

• idpkR: The public long-term identity key for R. Note that the server
will not complain in case a client uploads pre-key bundles with differ-
ent public identity keys.

• prepkR
pkid: The public pre-key of the newly generated pre-key pair

(prekR
pkid, prepkR

pkid) ←$ Ed25519.KeyGen(). Notably, the private key
is absent from the pre-key bundle.

• (Optional) σ ← Ed25519.Sign(idkR, prepkR
pkid): Representing a signa-

ture of prepkR
pkid present in the bundle signed with idkR, the private

key corresponding to the public long-term key in this bundle.

31

3. The Wire Messenger

The pre-key pair associated with each pre-key bundle is stored in the local
storage of R and is identifiable using the pre-key identifier.

After registration, the Wire client periodically uploads its bundles to the
distribution server, replenishing the set of bundles when their number is
below a certain threshold and are close to being exhausted. This frequent
uploading stems from the fact that pre-key bundles are designed for a single
use, with the special case of the last resort bundle. This particular last resort
bundle serves the function of key-exchange material when the distribution
server exhausted its ephemeral pre-key bundles for a particular user. The
pre-key identifier 65535 is reserved for the last resort bundle. Unlike the
standard ephemeral pre-key bundles, the last resort bundle can be used
on multiple session initializations, requiring periodic updates within short
intervals to achieve certain security goals, namely to limit the number of
sessions affected when corruption occurs. The versions of Wire for Android
do not update the last resort bundle; we discuss the security implications of
this omission in Section 4.4.5.

Moreover, as listed above, pre-key bundles have an optional signature the
presence of which is not enforced neither by the distribution server nor the
client applications. To be more precise, Wire’s server and applications do
not attempt to verify this signature, even if it is provided. In contrast, Signal
requires signature for the short-term key which is always used in the initial
key exchange as shown in Figure 3.5b. The implications arising from this
differentiation are explained in Section 4.4.2.

Initialization and eXtended Proteus Diffie-Hellman (XPDH)

We now describe how a Proteus session pstag
I↔R between the initiator client (I)

and the responder client (R) is initialized. The initiator and the responder
clients may belong to different users, or to the same user.

The clients execute a key exchange protocol to establish the initial shared
secret between the communicating clients. This key exchange protocol is
based on Signal’s X3DH protocol, with certain differences in how asymmet-
ric keys are combined in Diffie-Hellman computations to derive the initial
shared secret. We named the key exchange protocol involved in Proteus’s
session initialization the eXtended Proteus Diffie-Hellman (XPDH). X3DH
and XPDH are graphically depicted in Figure 3.5.

Initialization from the Initiator’s Perspective The initiator client (I), as-
sociated with a long-term identity key pair (idkI , idpkI), retrieves a pre-key
bundle for the responder client (R) from the server. This bundle can be an
ephemeral pre-key bundle or the last resort bundle. Let’s assume the re-
trieved bundle holds the pre-key identifier x ∈ {0, 1}16. Notably, the online

32

3.6. End-to-End Protocol – Proteus

dh1 = (prepkR
x)

idkI

dh2 = (idpkR)ebkI

dh3 = (prepkR
x)

ebkI

(idkR, idpkR)

(prekR
x , prepkR

x)

(idkI , idpkI)

(ebkI , ebpkI)

ms = dh1∥dh2∥dh3

KDFa

z

KDFa

rkI
1

(rchtkI
1, rchtpkI

1) (prepkR
x)

rchtkI
1

rkR
2ckI

1,1

eXtended Proteus DH
(XPDH)

Proteus Double Ratchet

ckR
1,1

(a) eXtended Proteus Diffie-Hellman (XPDH) initial key exchange and first (special) asymmetric
ratchet step.

dh1 = (sprepkR)idkI

dh2 = (idpkR)ebkI

dh3 = (sprepkR)ebkI

(idkR, idpkR)

(sprekR, sprepkR)

(idkI , idpkI)

(ebkI , ebpkI)

ms = dh1||dh2||dh3

(eprekR
x , eprepkR

x)

dh4 = (eprepkR
x)

ebkI

∥dh4

(b) eXtended Triple Diffie-Hellman (X3DH) initial key exchange

Figure 3.5: Initial key exchange between the Initiator client (I) and Responder client (R). The
DH computations are done from the point of view of the Initiator (I). Key pairs with boxes
colored — are ephemeral, — are sometimes ephemeral (pre-key other than last resort key)

and others short-term (last resort key), — are always short-term, — are long-term. The
last DH shared value dh4 in X3DH is optional indicated by dotted border. z is the all zero input.

33

3. The Wire Messenger

presence of the responder client is not needed; the server maintains pre-
computed bundles for clients to enable offline communication. This elimi-
nates the need for one client to wait for another’s online status in order to
initialize a session. Subsequently, the initiator calculates the value:

ms← (prepkR
x)

idkI∥(idpkR)ebkI∥(prepkR
x)

ebkI

where ebkI is the private key of a freshly generated key pair (ebkI , ebpkI)←$

Ed25519.KeyGen(). On a high level, the (prepkR
x)

idkI
value serves to authen-

ticate the initiator to the responder, (idpkR)ebkI
authenticates the responder

to the initiator, and (prepkR
x)

ebkI
guarantees Session Independence. XPDH

achieves FS immediately if the bundle used was ephemeral. In case the last
resort bundle was used then a client achieves FS only when it updates its
last resort bundle.

Following the derivation of the shared master secret, the initiator client
asymmetrically ratchets forward twice in order to derive the chain key for its
first sending symmetric ratchet. The resulting Proteus session for the initia-
tor is denoted by pstag

I→R, for a randomly chosen tag. The details of the XPDH
protocol from the perspective of the initiator are shown in Figure 3.5a.

Lastly, I will eventually use the established session to encrypt the first batch
of messages to R. Proteus sessions employ an AEAD scheme for encrypting
and decrypting messages. The associated data (AD) of the first encrypted
messages (the PreKeyMessage) of I will contain the pre-key identifier x, the
public ephemeral base key ebpkI , and the public long-term key idpkI that I
used during XPDH, as shown in Figure 3.8. This allows the responder to
also recover the master secret and, thus, complete session initialization on
both sides.

Initialization from the Responder’s Perspective The responder client (R)
associated with the long-term identity key pair (idkR, idpkR) gathers the nec-
essary information to derive the same shared secret. More specifically it
retrieves the pre-key identifier x, the public ephemeral base key ebpkI , and
the public long-term key idpkI from the associated data of the encrypted
messages (PreKeyMessage messages) sent by I. Using the pre-key identifier,
the responder recovers the pre-key pair from local storage and proceeds to
compute the shared secret as follows:

ms← (idpkI)prekR
x ∥(ebpkI)idkR∥(ebpkI)prekR

x

The resulting Proteus session for the responder is denoted by pstag
I←R.

Asymmetric and Symmetric Ratcheting/Steps

Two fundamental constituents within a Proteus session are the asymmetric
and symmetric ratcheting operations, which together constitute the Double

34

3.6. End-to-End Protocol – Proteus

Ratchet protocol illustrated in Figure 3.6, which is similar to Signal’s Dou-
ble Ratchet protocol with some minor differences on the KDFs used. On a
high level, the symmetric ratcheting operation in Proteus is performed when
a client receives encrypted messages sent on an already existing receiving
symmetric ratchet or when a client sends new messages in the session. On
the other hand, asymmetric ratcheting comes into play whenever a client re-
ceives an encrypted message from the other party within a new receiving
symmetric ratchet.

We describe, without loss of generality the asymmetric ratcheting mecha-
nism for I. I will either:

1. Generate a fresh key pair (rchtkI
x, rchtpkI

x)←$ Ed25519.KeyGen(). This
scenario arises when I needs to initialize a new sending symmetric
ratchet for sending a new message. The DH share (rchtpkR

x)
rchtkI

x com-
bines the newly generated key pair (rchtkI

x, rchtpkI
x) with the public

ratchet key rchtpkR
x of the responder utilized in the previous asym-

metric step.

2. Use the public ratchet key rchtpkR
x obtained through an encrypted mes-

sage of the new receiving symmetric ratchet. This scenario occurs
when I needs to initialize a new receiving symmetric ratchet in re-
sponse to a message from R. Here the DH share (rchtpkR

x)
rchtkI

x−1 com-
bines the received public ratchet key rchtpkR

x with the ratchet key pair
used in the preceding asymmetric step (rchtkI

x−1, rchtpkI
x−1), which the

initiator previously generated.

In both cases, these DH shares are subsequently used as inputs for KDFa,
alongside the root key rkI

x (in the first case) or rkR
x (in the second case)

derived from the preceding asymmetric step. The output of this asymmetric
step is a fresh root key (rkR

x+1 in the first case and rkI
x in the second case)

and chain key (ckI
x,1 in the first case and ckR

x,1 in the second case). The new
chain key marks the beginning of a new symmetric ratchet. In-depth details
into KDFa are provided in Figure 3.7a.

The aforementioned chain key serves as the cornerstone for starting a new
symmetric ratchet. The application of KDFm with chain key ckI

x,y, as shown
in Figure 3.7b, derives encryption key enckI

x,y and MAC key mackI
x,y required

for the AEAD scheme Proteus uses. We collectively refer to these keys as
the message key. At the same time, this application of KDFm advances the
symmetric ratchet forward by a single step as a new chain key ckI

x,y+1 is
simultaneously created.

35

3. The Wire Messenger

KDFa

rkI
x

(rchtkI
x, rchtpkI

x) (rchtpkR
x)

rchtkI
x

rkR
x+1ckI

x,1

KDFm

ckI
x,2

enckI
x,1

mackI
x,1

KDFa(rchtpkR
x+1)

rchtkI
x

rkI
x+1

enckR
x+1,1

mackR
x+1,1

ckR
x+1,1

ckR
x+1,2

KDFm

enckR
x+1,2

mackR
x+1,2

ckR
x+1,3

KDFm

(rchtpkR
x+1)

rchtkI
x+1 KDFa

rkR
x+2ckI

x+1,1

Asymmetric
Ratchet

Receiving
Symmetric Ratchets

Sending Symmetric
Ratchets

(rchtkR
x , rchtpkR

x)

(rchtkR
x+1, rchtpkR

x+1)

(rchtkI
x+1, rchtpkI

x+1)

Figure 3.6: Proteus Double Ratchet Protocol. The diagram is based on the point of view of
the Initiator client (I): DH computations and references to sending and receiving symmetric
ratchets. Key pairs with boxes colored — are ephemeral. Symmetric steps are colored — ,

while asymmetric are colored — .

36

3.6. End-to-End Protocol – Proteus

HKDFSHA256(rkI
x, dh, const, 64)

Firs
t 32

by
tes

Last 32 bytes

rkI
x

dh const

rkR
x+1 ckI

x,1

(a) KDFa, the KDF used for asymmetric
ratchet updates, dh is the shared DH value
computed from the ratchet keys designated
for this stage. The constant value const is one
of “handshake” or “dh ratchet”. The former
is used only for the first asymmetric ratchet
step after XPDH.

KDFa(z, tmp, consta)

Firs
t 32

by
tes

Last 32 bytes

z

tmp

enckI
x,y mackI

x,y

ckI
x,y

H
M
A
C
S
H
A
25
6
.T
ag
(c

kI x,
y,

”0
”)

H
M
A
C
S
H
A
25
6
.T
ag
(c

kI x,
y,

”1
”)

ckI
x,y+1

(b) KDFm, the KDF used for symmetric
ratchet updates, z is the all zero input and
consta is equal to “hash ratchet”.

Figure 3.7: Proteus Double Ratchet Key Derivation Functions (KDFs).

Proteus Session Encryption

Let’s consider a Proteus session pstag
I→R. We denote the encryption algorithm

applied within this session by pstag
I→R.enc(m), where m is the plaintext being

encrypted. The plaintext message m in the context of Wire conforms to the
types listed in Section 3.5, which Wire applications expect. We emphasize
that the Proteus session encryption is not directly accessible at the appli-
cation level shown in Figure 3.4, the protocol-level library will first select
which Proteus session to use in a dialogue. We discuss Proteus dialogues in
Section 3.6.3.

We now describe, without loss of generality, the Proteus session encryption
algorithm of the yth message within the most recent (assume xth) sending
symmetric ratchet of the initiator I. The algorithm starts with a step in
the symmetric ratchet of the client’s most recent sending ratchet: the only
sending ratchet maintained in a Proteus session (only the chain key ckI

x,y
result of the last symmetric advancement of the ratchet and the ratchet key
pair (rchtkI

x, rchtpkI
x) used for the asymmetric step that resulted into ckI

x,1
are stored) in order to achieve FS.

The symmetric advancement yields a fresh chain key ckI
x,y+1 maintained

for the next symmetric step, in addition to a message key employed for
AEAD encryption. The message key comprises of a 32-byte encryption key
enckI

x,y, utilized for ChaCha20 encryption of message m (with the nonce
equating the message number on the sending ratchet), and a 32-byte MAC
key mackI

x,y, to authenticate the associated data (sent in plaintext) as well

37

3. The Wire Messenger

as the resultant ciphertext from ChaCha20 encryption. After the symmetric
step on the sending ratchet of the client, the previous chain key ckI

x,y and the
message key (enckI

x,y, mackI
x,y) used for encryption are erased from storage

in order to provide FS. The AEAD encryption of the yth message within the
xth sending symmetric ratchet of client I, using the derived message key, is
visually represented in Figure 3.8. Below, we list the fields present in an
encrypted message:

• τ: The HMAC-SHA256 tag ensuring the integrity of associated data
and ciphertext.

• type ∈ {1, 2}: A one byte value indicating the presence of the optional
fields in the associated data. When type = 1 the optional fields are
present and the encrypted message is called a PreKeyMessage; other-
wise, a CipherMessage.

• (Optional) pkid: Pre-key identifier of the pre-key bundle used by the
initiator during XPDH.

• (Optional) ebpkI : The ephemeral public base key generated by the ini-
tiator during XPDH.

• (Optional) idpkI : The long-term public identity key of the initiator.

• tag: The Proteus session tag utilized for identifying a session managed
by a Proteus dialogue.

• y: The nonce given to the ChaCha20 encryption algorithm, equivalent
to the number of messages encrypted using the xth sending symmetric
ratchet of I thus far.

• ctrprev: The number of messages encrypted during the previous send-
ing symmetric ratchet of InitiatorClient, which can be used to signal
its “end”.

• rchtpkI
x: The public ratchet key used for asymmetric ratcheting for-

ward to the symmetric ratchet responsible for deriving the encryption
keys for this particular message.

• ctxt: The encrypted message content.

The optional fields are only included during the first sending symmetric
ratchet of the initiator client (I). A PreKeyMessage is the sole method to
disseminate the pre-key identifier pkid, the public ephemeral base key ebpkI ,
and the public long-term key idpkI necessary for performing XPDH on the
responder’s end, thereby enabling the derivation of the same initial shared
secret. We also highlight that Proteus session encryption does not perform
asymmetric steps.

38

3.6. End-to-End Protocol – Proteus

ptxt

pkid ebpkI idpkI rchtpkI
xtag y ctrprev

enckI
x,y

mackI
x,y HMACSHA256.Tag(., .)

ChaCha20.Enc(., ., .)

ctxtτ type

Figure 3.8: Encryption of yth message on the xth sending ratchet of the initiator and resulting
message content. The dashed fields are optional and required only when the initiator client
encrypts messages on its first sending ratchet (x = 1). The presence of the optional fields is
indicated by the type field.

Proteus Session Decryption

The asynchronous nature of the messaging system can lead to the reception
of encrypted messages from the counterpart client out of order. Wire’s pro-
posed solution to this challenge, which is implemented in Proteus sessions,
does not mandate synchronization (reception of messages in the expected
order) but allows multiple symmetric steps of the receiving symmetric ratch-
ets when the communicating clients desynchronize, i.e., when a message in
the far future is received. Additionally, the session can decrypt messages on
previous receiving ratchets.

The above-mentioned solution necessitates maintaining essential secrets, as
well as message keys, in the local storage for both previous and current
receiving ratchets. Indeed, Proteus sessions maintain the five most recent
receiving symmetric ratchets, each storing up to 1000 message keys, along
with the chain key from the ratchet’s last symmetric advancement and the
public ratchet key of the other client used for the asymmetric step that re-
sulted to the symmetric ratchet. In general, the decryption algorithm is
responsible for both asymmetric ratchet steps and symmetric steps on the
receiving symmetric ratchets. This differs from the encryption algorithm,
which only performs symmetric steps within the latest sending symmetric
ratchet. Note that decryption always prepares the ground for encryption
as it asymmetrically ratchets forward twice, aligning with the subsequent
sending symmetric ratchet as we explain below.

Let us consider a Proteus session pstag
I→R. We denote the decryption algo-

39

3. The Wire Messenger

rithm applied within this session by pstag
I→R.dec(c), where c is the encrypted

message. We emphasize that the Proteus session decryption, similarly to en-
cryption, is not directly accessible at the application level shown in Figure
3.4, but only through a Proteus dialogue.

The entirety of the decryption algorithm operates as a transaction, ensuring
that changes to the Double Ratchet are applied only in the absence of errors.
If an error occurs while processing a message, the ratchet state is reset to
the state before the message was processed. Additionally, when the genera-
tion of new message keys exceeds the available buffer space for a particular
receiving ratchet, the algorithm will automatically evict the oldest message
key in a first-in-first-out (FIFO) manner, making room for the new keys.
When an entire receiving ratchet is evicted, all message keys, the chain key,
and the public ratchet key stored for it are removed.

Let’s assume without loss of generality that pstag
I→R is currently at the xth

sending symmetric ratchet with ratchet key pair (rchtkI
x, rchtpkI

x). It follows
that the last five receiving symmetric ratchets stored in the session are the
xth, (x − 1)th, ..., (x − 4)th, accompanied by corresponding public ratchet
keys rchtpkR

x , ..., rchtpkR
x−4. The decryption algorithm has two steps.

First Step Upon receiving an encrypted message, the first step involves
determining whether an asymmetric ratchet step is necessary or if the re-
ceiving ratchet required for decryption is already available in the session’s
storage. This can be done by comparing the value of the received public
ratchet key rchtpkR

x′ , which is part of the associated data of the encrypted
message c, with the value of rchtpkR

r for x − 4 ≤ r ≤ x (the session’s lo-
cally stored public keys); here, the public ratchet key serves as an identifier
used for lookup in the stored receiving ratchets. If a match is found, the
corresponding receiving symmetric ratchet is chosen for decryption. If not,
the algorithm executes two asymmetric ratchet steps. The initial asymmetric
step invokes the KDFa function as follows:

rkI
x+1, ckR

x+1,1 ← KDFa(rkR
x+1, (rchtpkR

x′)
rchtkI

x , ”dh ratchet”)

This computation results in the first chain key ckR
x+1,1 of the receiving sym-

metric ratchet used for encrypting the received message. Subsequently, the
second asymmetric step invokes KDFa once again:

rkR
x+2, ckI

x+1,1 ← KDFa(rkI
x+1, (rchtpkR

x′)
rchtkI

x+1 , ”dh ratchet”)

In this context, rchtkI
x+1 denotes the private key of a newly generated key

pair (rchtkI
x+1, rchtpkI

x+1)←$ Ed25519.KeyGen(). This key pair and the chain
key ckI

x+1,1 characterize the new sending symmetric ratchet and are sufficient
for future symmetric steps. The previous sending symmetric ratchet of I
is effectively replaced by the new (x + 1)th ratchet (assuming decryption
terminates without errors).

40

3.6. End-to-End Protocol – Proteus

Second Step Upon completion of the first step, let us assume that its out-
put is the ith, where x − 4 ≤ i ≤ x + 1, receiving symmetric ratchet with
latest chain key ckR

i,j and a set of stored message keys denoted by mk storei.
Given this information, the decryption algorithm can proceed with the de-
cryption of the encrypted message using the AEAD scheme used by Wire.
However, prior to decryption, the appropriate message key must be ob-
tained for the task. This step is divided into two scenarios: either the mes-
sage key has already been derived from a previous decryption and resides
within mk storei, or a number of symmetric steps within the ith receiving
symmetric ratchet is required. In order to decide, we use the y field from
the associated data of c, which indicates the index of the message key in the
receiving symmetric ratchet used for encrypting the message.

When y < j (first scenario), the algorithm searches for the message key with
index y within mk storei. If the message key (enckR

i,y, mackR
i,y) is found, it

is subsequently used to verify the authenticity of the encrypted message
(HMACSHA256.Vfy(mackR

i,y, τ, ad∥ctxt), where τ∥ad∥ctxt = c and ad is the as-
sociated data of c), followed by its decryption (ChaCha20.Dec(enckR

i,y, y, ctxt)).
In case the verification process fails, an InvalidSignature error is returned.
Conversely, if the message key is not found, two potential error scenarios
arise: an Outdated error is the result if the oldest message key (enckR

i,k, mackR
i,k)

within mk storei is more recent than the targeted message key (j < k); other-
wise, a Duplicate error occurs.

When y ≥ j (second scenario), the algorithm advances the ith receiving sym-
metric ratchet the required number of times; specifically, the difference y− j
plus one step for the derivation of the message key, unless y − j > 1000
where a TooFarDistant error is raised. With each advancement, the de-
rived message keys, excluding the target key used for decryption, are stored
in mk storei. In contrast, only the last chain key ckR

i,y+1 is kept in storage
to strengthen Forward Secrecy. The target message key derived from this
process (enckR

i,y, mackR
i,y) is first used for decrypting the received message

(ChaCha20.Dec(enckR
i,y, y, ctxt)), subsequently validating the authenticity of

the encrypted message (HMACSHA256.Vfy(mackR
i,y, τ, ad∥ctxt)). Notice that,

decryption precedes verification in this scenario, whereas an AEAD encryp-
tion scheme following the Encrypt-then-MAC construction employes verifi-
cation first. Luckily for Wire, verification immediately follows decryption
and since ChaCha20 decryption seems not to offer any side channel, we be-
lieve that this construction cannot be exploited (e.g. mounting a padding
oracle attack).

We would also like to emphasize that the ctrprev field in the associated data
is not taken into account during decryption, thus, the end of the previous
receiving symmetric ratchet is not specified. Therefore, it can be extended

41

3. The Wire Messenger

even after ratcheting forward to the next receiving symmetric ratchet. The
PCS consequences of this omission are discussed in Section 4.4.5.

3.6.3 Proteus Dialogues

At a higher level, the communication among clients takes place through the
framework of Proteus dialogues. A dialogue is an abstraction that we in-
troduce to model application level behavior. Proteus dialogues and Signal’s
Sesame protocol both internally handle sessions at the protocol Level. The
main differences are that Sesame maintains sessions of the Signal protocol
and new sessions are periodically created/inserted every hour, while Pro-
teus dialogues manage Proteus sessions and only manual dialogue resets
create/insert sessions.

At its core, a Proteus dialogue, denoted by DAi
Bj

, takes the responsibility of
overseeing the 99 most recent Proteus sessions established at Ai (the local
client) in the context of communication with Bj (the remote client). If more
than 99 sessions are to be managed then the oldest will be removed, follow-
ing a FIFO policy. We say that a Proteus session belongs to a dialogue if and
only if it is managed by the dialogue and we denote it by pstag

Ai→Bj
∈ DAi

Bj
.

Conceptually, when Ai wish to dispatch an E2E message to Bj, it relies on the
encryption functionality provided by DAi

Bj
. This internal process effectively

selects one of the Proteus sessions it manages between the two parties to
encrypt the intended message. We call this Proteus session the active session
for the dialogue which we denote by DAi

Bj
.active. Similarly, when Ai wants to

decrypt an E2E message received from Bj, it again relies on the decryption
provided by dialogue DAi

Bj
. The dialogue, during decryption, either selects

an existing Proteus session or initiates a new one to perform the decryption
of a received encrypted message.

The details of Proteus dialogue initialization, encryption, and decryption
are given in the following discussions. Notably, it is important to remember
that only the dialogue functionality is exposed to the application level (as
illustrated in Figure 3.4). Consequently, this design makes Proteus sessions
completely opaque from the direct control of clients.

Dialogue Initialization

A dialogue is responsible for managing and utilizing sessions to enable mes-
sage encryption and decryption. As a basic requirement for E2E commu-
nication, at least one Proteus session is needed within a Proteus dialogue.
Consequently, when initializing a dialogue, a new Proteus session is created.

42

3.6. End-to-End Protocol – Proteus

More precisely, Proteus dialogues handle sessions between two clients, each
identified by their long-term identity key pairs. It is necessary that Pro-
teus dialogues maintain consistency by ensuring that all Proteus sessions
that they manage are initialized (as described in Section 3.6.2) using the
same identity keys for both the local client and the remote peer. This con-
sistency rule prevents an adversary from inserting a Proteus session with an
adversary-controlled identity key pair in the Proteus dialogue. In order to
respect the consistency rule, a Proteus dialogue maintains the identity keys
used during the XPDH initial key exchange of its first Proteus session (for
future validation and session setups).

We now describe the two options available for initializing a dialogue DAi
Bj

.

Initialization from a Pre-Key Bundle Given a pre-key bundle for client
Bj, a Proteus session pstag

Ai→Bj
is initialized as described in Section 3.6.2, with

initiator client Ai. The tag (tag) given to the session is randomly chosen from
{0, 1}128. A dialogue DAi

Bj
is returned with pstag

Ai→Bj
∈ DAi

Bj
and DAi

Bj
.active =

pstag
Ai→Bj

.

Initialization from a PreKeyMessage Given an encrypted message c orig-
inating from a client Bj, with whom we don’t have a Proteus dialogue yet,
the following procedure is followed. If the message c is a CipherMessage, an
InvalidMessage error is returned and Proteus dialogue initialization fails.
This result occurs due to the requirement of PreKeyMessage to provide the
necessary information (in the associated data) to initialize a session. Con-
versely, if c is a PreKeyMessage, fields from the associated data used for ini-
tialization are extracted, namely the pre-key identifier (pkid), the long-term
public identity key (idpkBj), and the ephemeral public base key (ebpkBj) used
by the remote client. The pkid is used to recover the pre-key pair from the
local storage. The absence of the requested pre-key pair (from the storage)
leads to a PreKeyNotFound error. However, in cases where the pre-key pair
is present, a Proteus session is initialized as described in Section 3.6.2, with
responder client Ai. Note that the tag (tag) associated with the new session
is determined by the remote client and is found in the associated data of c.

Having successfully initialized the session pstag
Bj←Ai

, the next step involves

decrypting the received PreKeyMessage c , m ← pstag
Bj←Ai

.dec(c). If decryp-
tion results into an error, the same error is returned, leading to the fail-
ure of dialogue initialization. Conversely, successful decryption to a non-
error message m indicates that both parties derived the same secrets, an im-
plicit form of authentication since the initiator demonstrates correct deriva-
tion of the DH shared secret, and initialization is deemed successful. If
pkid ̸= 65535 (different than the last resort key pair identifier), the pre-key

43

3. The Wire Messenger

employed for session initialization is removed from the local storage. Fi-
nally, the result is the first decrypted message m and a Proteus dialogue DAi

Bj

with pstag
Bj←Ai

∈ DAi
Bj

and DAi
Bj

.active = pstag
Bj←Ai

.

Dialogue Encryption

Given a Proteus dialogue DAi
Bj

, encrypting a message m to Bj is as simple
as encrypting using the Proteus dialogue’s active Proteus session. We de-
note Proteus dialogue encryption by DAi

Bj
.enc(m) = DAi

Bj
.active.enc(m). We

highlight that client applications can only encrypt messages using this func-
tionality.

Dialogue Decryption

The decryption functionality provided by Proteus dialogues, denoted by
DAi

Bj
.dec(c) for dialogue DAi

Bj
is responsible for determining the appropri-

ate Proteus session that should be used to decrypt a received encrypted
message c. Furthermore, it is responsible for the task of initializing new
Proteus sessions when the managed sessions are unable to decrypt the re-
ceived encrypted message, provided the message permits session initializa-
tion; specifically, if it is a PreKeyMessage. Once again, we highlight that
only the decryption functionality of Proteus dialogues is available at the
application level.

Given a Proteus dialogue DAi
Bj

, decrypting an encrypted message c originat-
ing from a client Bj, apply the procedure below. (In what follows, without
loss of generality, assume that Ai is the responder in all sessions)

• If c is a CipherMessage and ∄pstag′

Bj←Ai
∈ DAi

Bj
such that tag′ = tag, where

tag is the session tag extracted from the associated data of c, then the
dialogue issues an InvalidMessage error (a message was received but
its session tag does not match any session in the dialogue). Conversely
if such a session pstag

Bj←Ai
exists, it is employed for decryption, resulting

in m← pstag
Bj←Ai

.dec(c). If the decryption encounters an error, the error
is returned; otherwise, the decrypted message m is returned.

• If c is a PreKeyMessage, the dialogue performs the consistency rule
sanity check which compares the remote client long-term public iden-
tity key in the associated data of c with the one maintained in the dia-
logueDAi

Bj
. If these public keys fail to match, a RemoteIdentityChanged

error is returned. If there is no error and

– ∃pstag′

Bj←Ai
∈ DAi

Bj
such that tag′ = tag, where tag is the session tag

extracted from the associated data of c, it is used to decrypt c,

44

3.6. End-to-End Protocol – Proteus

resulting in m ← pstag
Bj←Ai

.dec(c). The result of the decryption is
returned, except when the InvalidSignature error occurs which
is treated differently as we see below.

– ∄pstag′

Bj←Ai
∈ DAi

Bj
such that tag′ = tag or the special case above

of InvalidSignature error when ∃pstag′

Bj←Ai
∈ DAi

Bj
are encoun-

tered, then the dialogue attempts to initialize a new Proteus ses-
sion pstag

Bj←Ai
. The session initialization and decryption procedure

is identical to what we described, in an earlier discussion, in the
dialogue initialization from a PreKeyMessage (Section 3.6.3). Suc-
cessful decryption using the freshly established session pstag

Bj←Ai

leads to its inclusion within the managed sessions of dialogue
DAi

Bj
(note that the oldest managed session is removed if the dia-

logue exits 99 sessions that it handles). We also highlight, since
this is relevant for the attack in Section 4.3.1, that in case the new
Proteus session has the same tag as any session already managed
by the dialogue, the previous session is replaced by the new one.
Finally, the result of the decryption is returned.

For both CipherMessage and PreKeyMessage, if decryption is succesful, the
Proteus session pstag

Bj←Ai
used for decryption becomes the new active Proteus

session of the dialogue (DAi
Bj

.active = pstag
Bj←Ai

). This minor detail introduces
notable security implications, which we will discuss in Section 4.3.

Dialogue Reset

Wire clients can reset Proteus dialogues. Users have to manually perform re-
sets on their clients, typically, when they observe decryption errors or other
error in conversations. When a client Ui, uses this feature on the Proteus
dialogue DUi

Vj
with another client, Vj, the following happens. First, Ui will

destroy the previous dialogue and initialize a fresh one from a pre-key bun-
dle of Vj. Note that destroying a Proteus dialogue only affects the dialogue

DUi
Vj

at Ui, not Vj; Vj will keep the dialogue DVj
Ui

with its state, and keep us-
ing it to manage the previously established Proteus sessions. Subsequently,
Ui encrypts a ResetClientAction message using the newly initialized dia-
logue, resulting in a PreKeyMessage. This PreKeyMessage, when received at
Vj, leads to the initialization of a new Proteus session managed by dialogue

DVj
Ui

. Moreover, the result of decrypting this message informs Vj about the
underlying changes, which otherwise are completely opaque, but the Wire
clients we analyze don’t react to this information. Only a message in one of
the user V’s conversations will indicate this change.

45

3. The Wire Messenger

We highlight that a Proteus dialogue DVj
Ui

at client Vj can contain both ses-
sions in which Vj is the initiator and sessions where Ui is the initiator. For

instance, if Vj initializes the Proteus dialogue DVj
Ui

from a pre-key bundle of

Ui and later Ui resets its Proteus dialogue, as described above, then DVj
Ui

will
contain two sessions where in the first Vj is the initiator and in the second
the responder (assuming now other actions where taken by the two clients).

3.6.4 Group Messaging

Until now, we have discussed the low-level details of Proteus sessions and
the higher-level details of Proteus dialogues, an abstraction for E2E channels
between two clients. However, in a messaging system like Wire, the need for
varied group interactions between clients arises, where clients communicate
simultaneously with many other clients (of possibly many users).

A Proteus group is an abstraction for a many-to-many clients E2E commu-
nication by combining pairwise Proteus dialogues between each client in
the group. Also, clients can be part of multiple groups in many different
combinations. Every communication in Wire is group communication using
group messaging, even if only two clients are involved. Moreover, a group is
always below a conversation, which is an abstraction for the communication
between users by ignoring their clients involved in the group. In essence, a
conversation is a chat accessible from a device’s application interface where
messages are displayed as messages sent from users, although clients sent
them.

In the Proteus world, a conversation between users is denoted by W gid
proteus,

where gid ∈ {0, 1}128 is a unique 16-byte identifier for the conversation
(inherited from the underlying group). We refer to the users in conversa-
tion W gid

proteus as the members of the conversation. The conversation membership
W

gid
proteus is the set containing all members of W gid

proteus. Similarly, the conver-

sation’s underlying group between clients is denoted by Ggid
proteus. We refer to

the clients in group Ggid
proteus as the members of the group. The group membership

G
gid
proteus is the set containing all members of Ggid

proteus. Remarkably, the size of
groups and conversations are not constrained; they could even consist of a
single member. In order to learn the conversation membership information,
clients send a request to the server, whose response includes the requested
information. The client has to be a client of a user who is a member of the
conversation in order to get access to the conversation membership. Recall
that the access tokens authorize a client to act on behalf of a user.

Thus far, we have studied conversation membership in relation to users and
how a client Ui can obtain this information from the server. However, users
alone do not suffice for E2E communication since Ui must learn the mem-

46

3.6. End-to-End Protocol – Proteus

bership of the conversation’s underlying group for group messaging. To
obtain the group membership G

gid
proteus, client Ui simply combines the clients

belonging to each member of W gid
proteus that Ui is aware of, given in the fol-

lowing expression:

G
gid
proteus = ∪V∈Wgid

proteus
CUi

V (3.1)

Once the client membership set Ggid
proteus is computed with Equation 3.1, the

subsequent step involves initializing a Proteus dialogue, if one does not
already exist, between the local client Ui and each client within this mem-
bership (pairwise dialogues are created between all the clients in a group).
More specifically, if client Ui and Vj are members of the same group Ggid

proteus,
Ui will first check if a dialogue with Vj exists in the persistent storage im-
plemented and managed at the client level (of Figure 3.4) with an interface
exposed at the application level, and only if such a Proteus dialogue does
not exists Ui initializes a new dialogue from a pre-key bundle as described
in Section 3.6.3.

The pairwise dialogues between all group members enable group messag-
ing. Notably, the same Proteus dialogue serves as the means of E2E com-
munication across all Proteus groups in which the participating clients share
membership.

In the following paragraphs, we discuss group messaging which is imple-
mented at the application level. We will examine the process of dispatching
encrypted messages to the server, including additional metadata required by
the server to forward messages to the intended clients. Furthermore, we ex-
plain how applications use the group/conversation identifier to ensure that
they correctly assign messages for decryption to the relative groups and that
messages are displayed in the correct conversation.

Encryption and Dispatch to Server

Let us consider a scenario where a user U, using client Ui, sends a message
m within a Proteus group Ggid

proteus. The group encryption process steps are
the following:

1. For each client Vj ∈ G
gid
proteus \ {Ui}:

a) If a Proteus dialogue DUi
Vj

already exists at Ui, then retrieve it. If
not, initialize the Proteus dialogue as elaborated in Section 3.6.3.

b) Use the obtained Proteus dialogue DUi
Vj

to encrypt the message m

intended for Vj, resulting in cVj ← D
Ui
Vj

.enc(m).

47

3. The Wire Messenger

c) Prepare additional metadata mdVj = IDV∥j, consisting of the user
identifier and the client identifier to uniquely specify the intended
recipient client of cVj .

2. After encrypting the message m for every client Vj ∈ G
gid
proteus \ {Ui},

send a request enclosing the mentioned additional metadata and the
encrypted messages. Note that the server will also keep a UTC times-
tamp of the time it received the request. This request must also in-
clude:

a) The identifier of the specific group to which the message is sent
(gid).

b) Sender information (IDU , part of the access token, and i the client
identifier) and access token for authorization checks.

3. After forwarding the request from step 2 to the distribution server SDS,
two potential responses may follow:

• The server successfully received the request, containing all en-
crypted messages for every member of the group. In this case,
the group encryption terminates.

• Some encrypted messages are absent due to updates in a user’s
client list or conversation membership. The server informs Ui in
the response about users (members of the conversation W gid

proteus)
whose certain clients lack encrypted messages. The server’s re-
sponse makes explicit the changes for both the conversation mem-
bership and the users’ clients sets. Therefore, client Ui updates
the sets of users’ clients CUi

V for all users V in the server response.
Then, Ui can update the conversation and group memberships by
adding and removing members. Repeat from step 1, but in step 1
encrypt only to the newly added members to the group Ggid

proteus

and use in the request of step 2 the already encrypted messages
and metadata from previous repetitions for the other members of
Ggid
proteus.

The group encryption procedure ensures that a message is encrypted to all
intended recipients, while also covering any dynamic changes to conversa-
tion membership and client lists of users.

Decryption and Message Rendering

After a client encrypts messages and dispatches them to the SDS, the server
takes the responsibility of relaying these encrypted messages to clients, pos-
sibly caching them until they are online and connect to the server.

48

3.6. End-to-End Protocol – Proteus

Let us consider a scenario where a user V, using client Vj is about to receive
an encrypted message c originating from Ui. Along with the encrypted data
c, the server will also forward the following information:

• The unique identifier of the group (gid)

• The UTC timestamp indicating when the server received c (timestamp)

• Details about the sender (user and client identifiers)

Using the sender information, client Vj will either:

• if a Proteus dialogue DVj
Ui

already exists, decrypt message c, yielding

m← DVj
Ui

.dec(c).

• if no Proteus dialogue exists, the client attempts to initialize one by
following the algorithm in Section 3.6.3. This initializes a new dialogue
DVj

Ui
and simultaneously, decrypts c to m.

Once decrypted, message m is displayed in the application interface of con-
versation W gid

proteus with identifier gid, with the display time determined by
timestamp. Any decryption failures are displayed in this conversation and
are visible to the end user (error message).

Group Verification Status

In order to prevent the distribution server from performing trivial imper-
sonation attacks, clients must verify the authenticity of Proteus dialogues
described in section 3.6.3. The verification procedure involves an out-of-
band verification of the long-term public key of the remote client seen in the
very first pre-key bundle or PreKeyMessage used to initialize the Proteus
dialogue. More precisely, the two users of the clients involved have to meet
each other in person and compare the fingerprints of the long-term public
keys the clients have used to initialize the dialogue between them with the
actual long-term public key fingerprints shown on the other user’s client.
The users must manually compare each of the 64 hex digits representing the
long-term public identity key of the peer and then again manually switch
the status of the dialogue to verified (Figure 3.9). The verification is essential
since no certificates and a PKI are used to bind the public keys to an identity.

Generalizing the above to Proteus groups, a group Ggid
proteus is deemed verified

from the point of view of client Ui (member of the group) if and only if Ui
verified all Proteus dialogues with the other client members of the group
(Vj ∈ G

gid
proteus), including other clients of user U.

49

3. The Wire Messenger

(a) Screen of client being verified.

(b) Screen of verifier client.

Figure 3.9: Wire’s desktop application screens for Proteus dialogue verification.

3.7 End-to-End Protocol - MLS

In addition to Proteus conversations, Wire is currently developing a new
feature of MLS conversations. MLS is a newly standardized protocol that
offers an efficient out-of-the-box protocol for asynchronous group messag-
ing (based on tree structures) with FS and PCS in mind.

A group of clients aiming to exchange encrypted messages requires a method
for deriving shared symmetric encryption keys. The challenge of enabling
this secure E2E communication has been extensively explored for two-party
scenarios, with the Double Ratchet emerging as a widely accepted solu-
tion. Channels that implement the Double Ratchet offer the benefits of
fine-grained FS and PCS, but they achieve low communication efficiency
in groups: the number of messages a client is required to encrypt (with dif-
ferent keys) is linear with the number of clients in the group. As described
in Section 3.6.4, Wire uses the Double Ratchet-based Proteus sessions as
a building block in Proteus dialogues between two clients to enable group
messaging. Conversely, MLS groups achieve high communication efficiency:
the number of messages a client is required to encrypt for group member-
ship changes is logarithmic with the number of clients in the group, and for
application messages it is one encryption.

In the following sections, we will provide an overview of MLS, followed
by a more detailed exploration of key membership modification operations
and its underlying tree structures. Additionally, we will delve into certain

50

3.7. End-to-End Protocol - MLS

decisions made by Wire that are left open in the MLS standard, decisions
that are crucial for our analysis in Chapter 5. The details of the MLS protocol
are documented in its standard [13].

Please note that the following sections do not aim to provide an exhaustive
description of MLS. Instead, they offer a high-level overview to help us
understand the fundamental concepts of MLS.

3.7.1 Overview

In MLS, clients are organized in groups, denoted by Ggid
mls, where gid ∈

{0, 1}∗ is a unique arbitrarily long identifier for the group. The group’s
state in which a well-defined set of authenticated clients (the group mem-
bers) hold shared cryptographic state is called epoch. Similarly to Proteus
groups, we refer to the clients in group Ggid

mls at a specific epoch e ∈ {0, 1}64

as the members of the group at e, and the membership G
gid,e
mls of group Ggid

mls
is the set containing all its members at epoch e. Each group is currently at a
specific epoch, and all the epochs of the group are linearly connected, form-
ing a sequence of its history. Clients within a group at a given epoch share
an epoch secret. This secret is used to derive keying material used in encrypt-
ing and authenticating messages. Importantly, the membership of a group
can change from epoch to epoch, and the protocol guarantees that clients
who are not members of the group at epoch e cannot access the epoch secret
at epoch e, even if they were members of the group in a previous epoch
e′ < e.

The three main components of MLS are:

• The ratchet tree specifies the group membership by maintaining at its
leaves information for each group member. It serves to authenticate
group members to each other and efficiently encrypt messages related
to changes in the tree content for subsets of the group. Notably, each
epoch has its distinct ratchet tree, which can vary in content (at tree
nodes) and structure. Additionally, the protocol use the ratchet tree at
a specific epoch to derive a commit secret, contributing to the derivation
of the epoch secret.

• The key schedule defines the sequence of key derivations needed for
advancing through epochs and deriving various other secrets. At each
epoch, a fresh encryption secret is derived. This encryption secret is
necessary for initializing the secret tree for that epoch.

• The secret tree uses the encryption secret from the key schedule to de-
rive shared secrets for an epoch. These shared secrets enable group
members to derive further keying material used in message encryp-
tion and authentication. Each member of the group is assigned two

51

3. The Wire Messenger

symmetric ratchets, similar to what was described in Proteus sym-
metric ratchets. One ratchet is designated for Handshake messages
(group state changes), while the other is for Application messages,
such as text messages. All symmetric ratchets within the secret tree
are accessible to all group members; hence, encrypting a Handshake or
Application message to a group requires only one encryption. Note
that each client signs every Handshake and Application message, al-
lowing other client members to verify that the sender is authorized to
use a particular symmetric ratchet for sending a message. The private
signing key of each member is specified at the leaves of the ratchet
tree, as seen in Figure 3.10. Ratchet trees are described in detail in
Section 3.7.2

The connection between these three components is depicted in a high-level
manner in Figure 3.10, which visually depicts the ratchet tree and the secret
key of a group with four members at a certain epoch.

Changes to the ratchet tree are initiated by group members through Proposal

messages that group members send to the group. There are three major
types of proposals: (1) adding a client, (2) updating a client, and (3) re-
moving a client. Detailed explanations of Proposal messages, the available
types and their effect on the ratchet tree content (when applied in a Commit)
are provided in Section 3.7.2. However, note that a Proposal message alone
is not adequate to modify the ratchet tree. For a proposal to take effect, it
must be included in a Commit message, which is then sent to the group by a
group member. Once a group member receives and verifies a Commit mes-
sage, all contained proposals are implemented and changes are reflected to
the ratchet tree of the next epoch. Further details on Commit messages are
provided in Section 3.7.2. These Proposal and Commit messages are jointly
referred to as Handshake messages. Specific optional use cases exist that
allow external clients (not members of the group) to propose changes or
add themselves (through an external commit) to a group in the next epoch.
These cases are not critical for understanding the main concepts of the MLS
protocol and are therefore omitted.

Encryption and Authentication Handshake and Application messages can
fall into two categories when sent as MLS messages:

• PublicMessage: This type of message exclusively includes a single
Handshake message, which is not encrypted but is authenticated as
being sent by a group member using a secret derived from the epoch
secret of the current epoch.

• PrivateMessage: This type of message can contain both Handshake

and Application messages (exactly one message). It is always en-
crypted and authenticated using message keys derived from the secret

52

3.7. End-to-End Protocol - MLS

1

2

3

Ai

An

Bj

Bm

epoch secret
previous

epoch secret

encryption secret

commit secret

Handshake
Ratchet

Application
Ratchet

R
at

ch
et

Tr
ee

Se
cr

et
Tr

ee

K
ey

Sc
he

du
le

..
.

..
.

Current epochPrevious epoch

2 epk2

()

An epkAn

spkAn

credAn

Ai epkAi

spkAi

credAi

Bj epkBj

spkBj

credBj

Bm epkBm

spkBm

credBm3 epk3

()

1 epk1

()

Figure 3.10: High-level view of the MLS components and their interactions in a group of four
members: Ai, An, Bj and Bm.

tree either using a handshake symmetric chain or an application sym-
metric chain.

We note that both PublicMessage and PrivateMessage are additionally
signed with the signing key of the sender client, as specified in the ratchet
tree, making all messages non-repudiable. The specific cryptographic algo-

53

3. The Wire Messenger

rithms used for key derivation, encryption, authentication, and signatures
are given in the ciphersuite employed by the group. For simplicity, details
of algorithms and how the ciphersuite is agreed are omitted here as we aim
to only describe the core concepts of the MLS protocol rather than discuss
the concrete instantiations.

MLS Services MLS assumes a trusted Authentication Service (AS) but a
highly untrusted Delivery Service (DS). The AS allows group members to
authenticate the credentials presented by other group members and, sub-
sequently, their public signature key and identity. The DS is expected to
reliably deliver messages to the clients participating in the MLS-enabled
messaging system. In Wire, the distribution server SDS takes the role of the
delivery service while the ACME server SACME is the authentication service.
Both these servers are depicted in Figure 3.1, showing the components of
Wire’s service.

3.7.2 The Ratchet Tree

The protocol uses the ratchet tree to describe the membership of a group in
an epoch. Group modifications require only log(N) encryptions (exploiting
the tree structure) using the stored key pairs at the nodes of the tree, instead
of N − 1 that would be needed to encrypt to every member (where N is the
number of members in the group).

A ratchet tree is, in essence, a perfect binary tree, meaning it is a complete
balanced binary tree. This type of tree has the property that if it has a depth
d, then the number of leaves in the tree is exactly 2d, which is the maximum
number of leaves a binary tree of that depth can have. The leftmost leaf is
assigned the index 0, while the rightmost leaf is assigned the index 2d − 1.
The knowledge of a leaf’s position is needed for removing a member from
the group.

MLS assigns each group member to a leaf within the ratchet tree by in-
cluding information of the member in the leaf node as we describe below.
We note that not all leaves must be assigned a member; hence, they can be
empty. Leaves, when assigned to a member, contain the following informa-
tion:

• Public Encryption Key (epkUi): This key is used in hybrid public key
encryption (HPKE) [14] to encrypt secrets associated with modifica-
tions in the tree’s content, specifically to the member Ui assigned to
the leaf. The corresponding private key (ekUi) is solely known to the
client Ui.

• Public Signature Key (spkUi): This key is utilized for authenticating the
member Ui to other group members. The corresponding private key

54

3.7. End-to-End Protocol - MLS

(skUi) is known only to the client Ui.

• Credential (credUi) – The credential can be employed to verify that the
public signature key is bound to the identity of the member. MLS de-
fines two types of credentials: x509 certificates, which bind an identity
to the public signature key and can be verified using a root of trust,
and basic credentials, which can represent an identity, with the public
key being verifiable through out-of-band means.

Intermediate nodes, on the other hand, are all nodes in the tree that are not
leaves. These nodes may have the following information:

• Public Encryption Key (epkx) – Similar to leaves, this key is employed
in HPKE to encrypt secrets related to changes in the tree’s content.
These secrets are intended for members who know the corresponding
private key. A tree invariant ensures that the corresponding private
key (ekx) is exclusively known to members at leaves that are descen-
dants of the intermediate node x. Here, x is the node’s breadth-first
(left to right) position, which is used solely for representation pur-
poses. We emphasize that a leaf may not know a predecessor’s private
key.

• List of “Unmerged” Leaves – This list specifies the descendant leaves
that do not know the private key ekx associated with the intermediate
node x.

Both leaf nodes (when not assigned a member) and intermediate nodes have
the potential to be empty, and these empty nodes are referred to as blank
nodes.

Update Proposal

A client Bj ∈ G
gid,e
mls of group Ggid

mls can request to modify the information
stored at its assigned leaf within the ratchet tree using Update proposals.
This Proposal message contains a fresh instance of the leaf node’s contents,

containing a new public encryption key (ẽpk
Bj), public signature key (s̃pk

Bj)

and credentials (c̃red
Bj). The processing of an Update (in a Commit) results

in the following changes to the ratchet tree:

1. The content of the sender’s (Bj’s) leaf is substituted with the content
provided in the Update.

2. All intermediate nodes encountered along the path from the sender’s
(Bj’s) leaf (excluding the sender’s leaf) to the root of the tree are blanked,
meaning that the information they previously stored is emptied.

To illustrate this process, consider an initial ratchet tree as depicted in Fig-
ure 3.10. The modified ratchet tree after an Update is shown in Figure 3.11a.

55

3. The Wire Messenger

2 epk2

()

An epkAn

spkAn

credAn

Ai epkAi

spkAi

credAi

Bj ẽpk
Bj

s̃pk
Bj

c̃red
Bj

Bm epkBm

spkBm

credBm3

1

(a) Implementation of Bj’s Update proposal.

2

Ai epkAi

spkAi

credAi

Bj ẽpk
Bj

s̃pk
Bj

c̃red
Bj

Bm epkBm

spkBm

credBm3

1

(b) Implementation of Ai’s Remove proposal
removing An.

2

Uw epkUw

spkUw

credUw

Ai epkAi

spkAi

credAi

Bj ẽpk
Bj

s̃pk
Bj

c̃red
Bj

Bm epkBm

spkBm

credBm3

1

(c) Implementation of Bj’s Add proposal
adding Uw.

2 ẽpk
2

()

Uw epkUw

spkUw

credUw

Ai ẽpk
Ai

s̃pk
Ai

c̃red
Ai

Bj ẽpk
Bj

s̃pk
Bj

c̃red
Bj

Bm epkBm

spkBm

credBm3

1 ẽpk
1

()

(d) Implementation of updated path in the
commit. New epoch’s ratchet tree.

Figure 3.11: Changes of a Commit to an MLS ratchet tree. The committer is Ai and the
commit contains an Update, a Remove and an Add proposals. The starting ratchet tree is the
one presented in Figure 3.10.

56

3.7. End-to-End Protocol - MLS

The changes to the ratchet key offer FS and PCS with regard to the sender
(of the Update) member of the group. The changes guarantee PCS because
after the Update is applied, the key pairs utilized by the member will change,
hence, secrets in the next epoch, necessary for the derivation of the epoch
secret, will be encrypted to the member with the fresh key pairs. Addition-
ally, the changes provide FS since knowledge of the new encryption key pair
will not give access to secrets encrypted to the member in previous epochs.

Remove Proposal

A client Ai ∈ G
gid,e
mls of group Ggid

mls can request to remove a client An ∈ G
gid,e
mls

(can be any member of the group) assigned to a leaf of the ratchet tree using
a Remove proposal. The content of a Remove is just An’s leaf index l to be
removed. The processing of a Remove (in a Commit) results in the following
changes to the ratchet tree:

1. Blank the leaf node l specified in the proposal.

2. All intermediate nodes encountered along the path from the removed
member’s (An’s) leaf to the root of the tree are blanked.

3. If the root node’s right subtree does not have non-blank leaves, then
the new ratchet tree’s root becomes the left subtree of the old root.
Repeat this rule until the right subtree has at least one non-blank leaf.
In other words, if the rightmost non-blank leaf has index l′, then the
ratchet tree has 2d leaves, where d is the smallest number that satisfies
2d > l′.

To illustrate this process, consider the current ratchet tree depicted in Fig-
ure 3.11a. The modified ratchet tree after a remove is shown in Figure 3.11b,
where in that example, rule three does not result in any changes.

The removal of the leaf node of the member and the erasure of all infor-
mation from intermediate nodes results in a new ratchet tree for which the
removed client An possesses no information. This enhances PCS with regard
to compromized clients removed from a group.

Add Proposal

A client Bj ∈ G
gid,e
mls of group Ggid

mls can request to add a client Uw /∈ G
gid,e
mls to

the group using an Add proposal. In order to support clients being added to
a group while they are offline, a similar concept to pre-key bundles used in
Proteus exists in MLS. Clients upload regularly KeyPackage information to
the distribution server, containing:

• Public Initialization Key (ipkUw) – This key is used in HPKE to encrypt
secrets necessary to initialize the current epoch of the MLS group at

57

3. The Wire Messenger

client Uw (to be added). The corresponding private key (ikUw) is exclu-
sively known to client Uw.

• Leaf node information as specified above.

A copy of a KeyPackage of the client being added to a group is the content
of an Add proposal. The processing of an Add proposal (in a Commit) results
in the following changes to the ratchet tree:

1. If there are blank leaves in the tree, then the index l of the new member
is the leftmost empty leaf. Otherwise, the tree is extended by creating
a new tree of the same depth d as the current ratchet tree. All nodes in
the new tree are blank. Then, the current ratchet tree becomes the left
subtree of a new blank node, the root of the new ratchet tree, and the
new tree becomes the right subtree. The new ratchet tree has 2(d+1)

leaves. The index l is the leftmost empty leaf of the new ratchet tree.

2. For all non-blank intermediate nodes encountered along the path from
leaf l to the root, add the new member Uw to the node’s list of “Un-
merged” leaves.

3. The leaf node with index l is assigned the leaf node information from
the KeyPackage in the Add proposal.

To illustrate this process, consider the current ratchet tree depicted in Fig-
ure 3.11b. The modified ratchet tree after an Add is shown in Figure 3.11c.

Commit Proposed Changes

As already discussed, proposed changes through Proposal messages are
only applied to a group once a group member receives a Commit message
sent by another group member. The Commit is the last message of an epoch
and indicates the beginning of the next epoch. A Commit contains a list of
Proposal messages that members of the group proposed during the epoch
and that must take effect (starting from next epoch). The Proposal messages
must be applied in the order: (1) all Update proposals, (2) all Remove pro-
posals, (3) all Add proposals, as shown in Figure 3.11. Optionally, a Commit

contains an updated path. The updated path is the (non-filtered) path from
the leaf node of the member who commits to the root node of the new
ratchet tree, but it filters (excludes) all intermediate nodes of which the sub-
tree rooted at their child that is not in the (non-filtered) path does not have
non-blank leaves. The updated path is necessary when a commit contains
at least one Update or Remove. The member who commits (the committer)
generates the new HPKE encryption key pairs for the aforementioned inter-
mediate nodes on the updated path as follows:

1. All intermediate nodes encountered along the path from the commit-
ter’s leaf to the root of the tree are blanked.

58

3.7. End-to-End Protocol - MLS

2. Generate a fresh HPKE key pair for the committer’s leaf node.

3. Generate a sequence of path secrets, one for each intermediate node
in the updated path. path secret[0] refers to the secret of the first
node in the path, while path secret[r] where r >= 0 refers to the
secret of the root node. We do not present the details, but we state that
knowledge of path secret[i] implies knowledge of path secret[j]

where j ≥ i.

4. From each path secret[i], derive an HPKE key pair that replaces the
encryption key pair of the ith node in the updated path. (Derivation
details omitted).

Furthermore, for each other member of the group (excluding removed clients
and newly added clients), the committer will encrypt using the HPKE pub-
lic encryption keys already available in the ratchet tree before filling the tree
with the new path encryption key pairs, the path secret of the first com-
mon predecessor of both the committer and the member. For more details
on how the committer achieves only logarithmic number of encryptions is
described in Section 7.5 of [13]. This encrypted information, alongside the
HPKE public key for each node in the updated path, will be part of the
Commit such that other members can update their view of the ratchet tree.
Finally, if the updated path is present, the commit secret for the next epoch
is the path secret[r+1], that is, the secret derived from the path secret of
the root, which is known to everyone. Otherwise, the commit secret is the
all-zero byte string.

Regarding added members, each will learn its corresponding path secret
through a Welcome message, which also contains a secret available to only
existing members of the group from the previous epoch, required to de-
rive the next epoch secret. This information of a Welcome is encrypted to
the added client using the HPKE public initialization key available in the
KeyPackage of the Add proposal that added the client to the group. As op-
posed to Handshake and Application a Welcome message is sent exclusively
to the client being added and not the group.

We highlight that when an updated path exists in a Commit, the commit-
ter gains the advantages of PCS since an adversary loses access to possibly
corrupted key pairs known at the committer. Figure 3.11d, shows the modi-
fications to the ratchet tree, as a result of the updated path.

3.7.3 Wire MLS Decisions

The MLS standard leaves many decisions open to the application designer.
In this section, we list the choices made by Wire that are most relevant to
our analysis.

59

3. The Wire Messenger

Orchestrator Delivery Service

Handshake messages propose and commit changes on a specific epoch’s
ratchet tree. All Handshake messages in Wire MLS are sent by default as
PublicMessage, meaning they are not encrypted but only authenticated.
The reasoning behind this decision is that the distribution server SDS or-
chestrates clients belonging to a group, meaning SDS decides which Commit

and Proposal are accepted and routes them to clients. Therefore, knowledge
of the content of Handshake messages is essential for maintaining the most
recent view of groups’ memberships at the most recent epochs. Addition-
ally, when the server receives a Proposal or a Commit from a group member,
authorization checks based on application-specific rules can be performed
to decide whether the member is allowed to execute these actions. If the
server returns an error indicating not authorized activity to the client, then
the Proposal or Commit is removed as if it had never happened.

Moreover, the orchestrator server SDS is responsible for resolving conflicting
Commit messages for the same epoch. Due to the asynchronous nature of the
messaging system, two or more group members may simultaneously com-
mit changes on the same epoch. However, Commit messages from different
members will result in diverse MLS group states for the next epoch (if some
of the members follow one and the rest the other). Therefore, it is required
that all members of a group agree on the same Commit message either by
preventing conflicting messages from occurring or by developing tiebreak-
ing rules for deciding which is the definite Commit. The orchestrator server
SDS ensures that only one Commit is delivered to the members of the group
for each epoch. In case many authorized members attempt to commit, only
one of them will receive a successful response, while the rest are informed
about the conflict and that they have to wait for the selected Commit to be
delivered to them.

Out-of-Order Application Messages

Every Application message is enclosed in a PrivateMessage encrypted
using keys derived from the application symmetric ratchets in the current
epoch’s secret tree. However, due to the asynchronicity of message delivery,
a PrivateMessage encrypted using keying material from an older epoch can
be delivered to other group members when they are already in a later epoch.
Consequently, members of the group who do not maintain secrets and the
state of groups in previous epochs cannot decrypt them. Wire clients are
configured to store the last three epochs’ states of groups in addition to the
current epoch state to enable out-of-order Application message decryption.

60

3.7. End-to-End Protocol - MLS

Credentials

As already discussed in the Proteus E2E protocol, verifying the identity of
the other communicating parties out-of-band is essential; otherwise, the dis-
tribution server SDS can trivially perform impersonation attacks. The same
security considerations apply to MLS and the KeyPackage that the server
maintains and sends to other clients to enable the addition of members to
groups. Each KeyPackage and leaf of the ratchet tree contain credential in-
formation and a public signature key.

In Wire MLS, the credentials are planned to be x509 certificates issued by
the ACME server SACME. The clients follow the standard ACME procedure
for obtaining a certificate from the ACME server as described by the ACME
standard [15]. Wire defines some custom challenges in their E2E identity
solution9, not part of the ACME standard, that the client has to fulfill to
get authorization for obtaining a certificate for a specific identity. We omit
details of the custom challenges as they are not important for our analy-
sis. These certificates will become the credentials used in KeyPackage and
part of the leaf nodes of the ratchet tree of a group when the creator of
the KeyPackage becomes a member of the group. Importantly, the root of
trust is the ACME server, and clients can automatically verify the identity
of other clients because they trust the CA at the ACME server. The MLS
group’s status will then be automatically determined by verifying the cer-
tificates presented in the credentials. If all members of an MLS group have
valid credential then the group is automatically verified. Thus, out-of-band
verification will no longer be required.

9https://github.com/wireapp/rusty-jwt-tools/blob/main/e2e-identity/README.

md

61

https://github.com/wireapp/rusty-jwt-tools/blob/main/e2e-identity/README.md
https://github.com/wireapp/rusty-jwt-tools/blob/main/e2e-identity/README.md

Chapter 4

Analysis of Wire - Proteus

In this chapter, we dive into the analysis of the Proteus E2E protocol which
we extensively described in Section 3.6. We first present the threat model
we are considering in Section 4.1. Then, in Section 4.2, we provide a high-
level discussion of the vulnerabilities, followed by detailed descriptions of
the attacks and the proposed mitigations. For each attack presented in this
chapter, we propose a mitigation in order to limit or completely alleviate
its impact. Moreover, we confirmed all attacks on Android legacy version
3.82.38 and Android new version 4.2.4 applications. For this task, we imple-
mented a malicious distribution server capable of performing the attacks,
instructed through a web interface, to which the clients connected instead
of Wire’s production distribution servers.

4.1 Threat Model

Wire does not directly list the security goals they aim for nor the threat
model they are considering. Due to its nature of being an E2E messaging
system used by high-risk organizations, the following is a realistic threat
model that we consider throughout our analysis:

• A malicious actor M who controls the Wire distribution server SDS,
gaining the power of a mediator between group communications and
read-write access to the server’s contents and data structures. The
malicious actor can reorder and drop messages in a Proteus dialogue,
send new arbitrary messages to a client (this is not a capability to send
encrypted messages), and bypass the high-level API user authentica-
tion mechanisms. We refer to this model as the Malicious Wire Server.

Our analysis does not consider network adversaries since we view the usage
of TLS as a secure solution for the C2S protocol.

63

4. Analysis of Wire - Proteus

4.2 High-Level Description of the Vulnerabilities

The vulnerabilities found in Wire Proteus E2E communication, exploited in
our attacks, revolve around two mistakes.

• First, as studied by Cremers et al. for Signal in [30], improper session
handling can severely weaken PCS guarantees for a Double Ratchet
implementation. The realization of dialogues between clients as a ses-
sion management protocol such as the Proteus dialogues, where mul-
tiple parallel sessions opaque to clients can coexist, can cause several
issues. Although the underlying Double Ratchet protocol provides FS
and strong-PCS, more is needed to prove that the dialogues as a whole
maintain the same level of security. Indeed, in the following attacks,
we show that Proteus dialogues never heal after corruption.

• Second, the absence of cryptographic means for securing the authen-
ticity and integrity of information relayed through or maintained at
the distribution server and the ultimate trust given to the server can
result in many unwanted outcomes. An example is the client’s inde-
pendence from the other clients of a user and the lack of signatures on
users’ client lists, leading to trivial confidentiality violations. Another
example is the optional signature in pre-key bundles; its optionality
degrades FS. Last, metadata not protected by MAC tags: manipula-
tion can result in displaying messages in an improper way, for example
out-of-order or in the wrong conversation.

4.3 Proteus Dialogue Attacks

In Section 3.6, we thoroughly described how E2E channels between clients
are realized in the context of Proteus, using Proteus dialogues. In this sec-
tion, we illustrate a family of attacks exploiting the weaknesses of Proteus di-
alogues, a consequence of the improper and opaque to clients session man-
agement. In contrast to Cremers et al.’s study on Signal’s Sesame session
management, Wire’s session management through Proteus dialogues com-
pletely voids PCS guarantees, even in a weak adversary model with limited
compromise capabilities (weak-PCS), unless clients manually reset the af-
fected dialogues. The main difference is that new sessions are initialized
only during dialogue initialization while in Sesame this is done automat-
ically every one hour which eventually leads to eviction of the malicious
session. For the PCS violation attacks of Sections 4.3.2, 4.3.3 and 4.3.4, we
can reasonably assume that a manual reset never occurs. This assumption
is based on the absence of decryption errors or any other errors in the con-
versation’s application interface, which would typically trigger the user’s
suspicion that something is wrong. We also see that, in the presence of a

64

4.3. Proteus Dialogue Attacks

strong adversary and even if manual resets occur, PCS guarantees are still
violated.

In what follows, we consider the Malicious Wire Server threat model as
a starting point and gradually increase the adversary’s capabilities. Each
attack explicitly specifies the assumptions made. Moreover, for simplicity,
in this section we assume that each user has a single client and as an abuse
of notation we omit the subscript client identifier thus conflating the user
identifier with the client identifier, e.g., for Alice, A also denotes her client.

4.3.1 Attack 1 (Trivial Message Replay)

Let A and B be communicating clients with Proteus dialogue DA
B and DB

A,
respectively. Let pstag

A↔B be a Proteus session managed by the dialogue be-
tween them. We show a flaw that allows the malicious actor M to replay in
Proteus dialogue DB

A all the messages which were encrypted using the first
sending symmetric ratchet of client A originating from the chain key ckA

1,1

of any Proteus session pstag
A↔B (managed by the dialogue) between A and B

where A is the initiator. A requirement for this attack to be successful is that
A used the last resort bundle of B during the XPDH key exchange, which
contains a short-term key pair that multiple session initializations can reuse.
We exploit this fact to employ our attack.

Attack Description and Impact

Setting Let A and B be communicating clients and assume a Proteus di-
alogue DA

B at A managing a single Proteus session pstag
A→B, where A is the

initiator, and the pairing dialogue DB
A at B managing a single Proteus ses-

sion pstag
A←B, where B is the responder. Furthermore, assume that the Pro-

teus session was initialized with the last resort bundle of B obtained from
the server. We emphasize that the malicious actor M controlling the server
can deliberately provide the last resort bundle on every client’s request for
a bundle.

Description With these dialogues in place, the two clients, A and B, can
send E2E encrypted messages to each other through the adversary-controlled
server. Although adversary M cannot read these messages, M can collect
them. The attacker’s goal is to force B’s Proteus dialogue DB

A to accept
replayed PreKeyMessages that A sent to B, using pstag

A→B through DA
B , by

initializing a new Proteus session pstag′

A←B in DB
A with the same session tag

(tag′ = tag). Note that the attacker M cannot simply replay a message be-
cause of the Proteus sessions’ duplication detection (each key is used only
once). The goal is achievable only when A used the last resort bundle to
initialize pstag

A→B because many session initializations can reuse the same

65

4. Analysis of Wire - Proteus

bundle. Furthermore, since a PreKeyMessage carries the information for
the pre-key bundle identifier, and the public long-term identity and base
ephemeral keys in the associated data then the XPDH performed at the re-
sponder B will result into the same master secret in the new Proteus session
pstag′

A←B. Last, the first public ratchet key of the initiator is also part of the
associated data of the PreKeyMessage. Consequently, the same chain key
ckA

1,1 is derived, which leads to the first sending symmetric ratchet of A to
be the same, meaning that all the message keys used for PreKeyMessages

of pstag
A←B are the same in pstag′

A←B. Hence, all these PreKeyMessage can be
replayed in the new Proteus session. We highlight that the MAC tag in
a replayed PreKeyMessage is correct since the adversary didn’t modify the
messages and that the adverary cannot send new messages since M is un-
able to derive the master secret. Below, we explicitly specify the conditions
under which the attacker can replay PreKeyMessages.

Replay Limitations A subtle restriction mandates that pstag
A←B managed by

DB
A at B advanced at least to the sixth receiving symmetric ratchet before

replaying the messages. Therefore, M has to wait until it observes from
the associated data of encrypted messages that there were enough asym-
metric steps by observing the public ratchet keys and the session tag. In
more detail, according to the Proteus dialogue decryption algorithm de-
scribed in Section 3.6.3, when a PreKeyMessage c is decrypted, it can po-
tentially lead to the initialization of a new Proteus session either when no
session in DB

A has the tag in the associated data of the PreKeyMessage or
when an InvalidSignature error is encountered. However, a Proteus ses-
sion always retains the five previous receiving ratchets. Thus, if the first
receiving ratchet of B in pstag

A←B is still present (the first sending ratchet
of A) and a PreKeyMessage is replayed, it will trigger an error different
than the InvalidSignature caused by a MAC tag failure (most probably a
Duplicate error). The InvalidSignature error is necessary for the Proteus
dialogue decryption algorithm to initialize a new Proteus session pstag′

A←B
(and replace the previous), with tag′ = tag when it already manages a ses-
sion with the same tag (see Section 3.6.3 for details). Hence, the new Proteus
session pstag′

A←B which is now managed by DB
A becomes the active session

DB
A.active = pstag′

A←B and DB
A will successfully decrypt the PreKeyMessage, as

long as the same last resort key pair is still in use by B.

After obtaining the decrypted/replayed message m ← DB
A.dec(c), it is for-

warded to the application which decides how to display it according to its
type. Recall from Section 3.5, that every message has a message identifier.
Since the message is replayed, the identifier will be the same. The two An-
droid applications demonstrated different behaviors.

66

4.3. Proteus Dialogue Attacks

• In the legacy Android application, we couldn’t observe anything in the
conversation’s interface by replaying messages (of any type) because
the application checks the message identifier of previously received
messages and ignores duplicates.

• Replaying a PreKeyMessage succesfully displayed Ephemeral and Text

messages on the new Android application conversations. For the latter
type, the message was displayed if and only if the message with that
particular identifier was edited or deleted. This happens because the
behavior of the new application changed compared to the legacy ver-
sion and the identifiers are not considered when the previous version
of the message is removed from the conversation.

Notice that M cannot replay messages for the second sending ratchet of A
because the randomly chosen ratchet key pair of B will differ, with high
probability, from the corresponding ratchet key pair chosen the first time.
An additional observation is that, since the replayed PreKeyMessage had the
same tag as the previous time they were sent, then pstag

A←B will be overwritten

in DB
A by the new Proteus session state pstag′

A←B. Consequently, client A can
no longer send encrypted messages using pstag

A→B which is currently active
for dialogue DA

B . Similarly, neither can B send encrypted messages to A.
If any such message is delivered then a decryption failure will be detected
on the receiving side. Users will eventually realize that something has gone
wrong and to resolve the issue at least one of the Proteus dialogues should
be reset, described in Section 3.6.3. It is essential to highlight that M cannot
read the content of the replayed messages, but only replay old messages.

Mitigations

The replay attack can be completely mitigated if the last resort bundles are
discontinued at the cost that when the server exhausts all pre-key bundles,
offline initialization of sessions is no longer supported. However, there are
two suggestions for improving security against such an attack while last
resort bundles are kept.

First, we suggest that the behavior of the legacy Android application is im-
plemented across all supported Wire applications. This includes the new
Android application, which turned out to accept replayed messages. Previ-
ous message identifiers must be stored in a database, and when a new mes-
sage is decrypted and forwarded to the application, the application must
check against this database for duplicates. A message is rejected when it
is marked as duplicate. The intuition behind this suggestion is that the ad-
versary cannot change the message identifier in a replayed message since
it is encrypted and authenticated. Additionally, in order to prevent storing
all message identifiers for the entire lifetime of a client, we can safely reset

67

4. Analysis of Wire - Proteus

the database responsible for duplicate checks after the last resort bundle is
updated since the problem persists as longs as the same last resort key pair
is in use by a client.

Second, we suggest a change in the Proteus dialogue decryption algorithm
presented in Section 3.6.3. We noticed that when a Proteus dialogue de-
crypts a PreKeyMessage with a session tag in its associated data of a session
already managed by the dialogue, and if an InvalidSignature error oc-
curs, the dialogue gives a second chance and attempts to initialize a new
session which replaces the previous existing one, if initialization is suc-
cessful. In order to avoid having messages replayed in Proteus dialogues
that already manage a session with the same tag as the one contained in
the replayed message, we propose to remove this special treatment of the
InvalidSignature error. Instead, the Proteus dialogue must treat the er-
ror as a decryption failure, meaning that a new Proteus session will not be
created to decrypt the replayed PreKeyMessage. This suggestion protects
a Proteus dialogue from a replay as long as the dialogue still manages the
targeted Proteus session.

4.3.2 Attack 2 (Disguised Mallory 1)

For the rest of the attacks in this section, we present more powerful attacks
requiring additional adversarial capabilities. In this attack, we show how the
malicious actor M can violate the PCS guarantees of a Proteus dialogue DB

A
that B uses to communicate with A. The idea of the attack is that the attacker
M, by exploiting session management, tricks B into exchanging messages
with M, while B believes that it exchanges messages with A, because Proteus
dialogue DB

A is still employed for encryption and decryption.

Adversarial capabilities We consider two possible adversarial models un-
der which the attack is analyzed.

• A weak adversary M can temporarily perform (via an oracle) DH com-
putations using the private long-term identity key of one of the com-
municating clients without revealing it (limited corruption).

• A strong adversary M can reveal the private long-term identity key of
one of the communicating clients (full corruption).

We present the attack in the context of the weak adversary model in order to
highlight some important aspects, noting that the strong adversary model
attack is identical. The reason for distinguishing between the adversaries
is that we propose mitigations for both models, with the mitigations for
the weak adversary being less invasive to the current philosophy of Proteus
dialogues.

68

4.3. Proteus Dialogue Attacks

Attack Description and Impact

Setting We start the attack description by assuming a Proteus dialogue
DA

B at A managing a single Proteus session pstag
A→B, and the pairing dialogue

DB
A at B managing a single Proteus session pstag

A←B, as shown in Figure 4.1a.
Without loss of generality, we assume that A is the initiator and B is the
responder for the single session managed by the Proteus dialogues. Fur-
thermore, it is irrelevant to the attack for how long the two parties were
communicating.

Description After M obtains temporary access to an oracle that performs
DH computations using the private long-term identity key idkA of A (Fig-
ure 4.1b), the attack proceeds as follows. First, M initializes a Proteus session
pstag′

M→B from a pre-key bundle of B, as described in Section 3.6.2, with the
difference that the computation of the (prepkB

x)
idkA

DH share is done using
the temporary access to the corruption oracle. We highlight that M is not
restricted to the cryptographic libraries provided by Wire; consequently, M
can alter the algorithms and directly access Proteus sessions without a wrap-
per Proteus dialogue. Now, M can use directly pstag′

M→B, where tag′ ̸= tag, to

encrypt a message m, resulting in c ← pstag′
M→B.enc(m), and send c to B with

A’s sender information. When B receives c, it attempts to decrypt it using
dialogue DB

A. However, since c is a PreKeyMessage (since it is the first mes-
sage sent by the initiator in the Proteus session) with a session tag different
than any other session managed by DB

A, it will result in the initialization of

a new session pstag′
M←B. Additionally, this session becomes the active session

for DB
A and coexists with pstag

A←B in DB
A. Therefore, any subsequent messages

B encrypts using DB
A are “destined” to M; hence, special care on message

delivery is required so that A does not notice the attack. The adversary can
easily prevent this by observing the session tags in the associated data of
encrypted messages. The current state of the Proteus dialogues is shown in
Figure 4.1c.

Notice that when A sends a message to B using DA
B , session pstag

A→B is em-
ployed. This can reactivate the original communication session pstag

A←B ma-
maged by DB

A at B, as depicted in Figure 4.1d. Most interestingly, when M
loses access to the corruption oracle, it can still use session pstag′

M→B to ex-
change messages with B, while disguised as A (Figure 4.1e). Additionally,
M can precompute before losing access to the corruption oracle, the DH
shares (lrpkB)idkA

and (prepkB
x)

idkA
for all ephemeral pre-key bundles that

B already uploaded to the server. Consequently, M can perform the attack
even after losing access to the corruption oracle, and as long as B uses the
same short-term key pair or the ephemeral pre-key bundles of B available

69

4. Analysis of Wire - Proteus

during corruption are not employed in session initializations at B.

Last, we want to stress that adversary M can perform the attack even against
client A when corrupting A because clients can have a Proteus dialogue
with themselves. Therefore, in a conversation where only users A and B are
participating, we can make both users A and B have the same conversation
transcript; hence, the attack is not detectable by comparing the messages
shown in a conversation’s application interface. This attack generalizes to
more than two users.

Impact The attack is highly robust since the initial communicating clients
A and B can still communicate using the session managed by their Pro-
teus dialogues before the intervention of M. We emphasize that M cannot
read encrypted messages that A sends to B nor messages that A can de-
crypt (sent by B). The attack highlights a severe weakness in the session
management employed by Wire, which allows constant switching between
sessions unbeknownst to B. The Proteus dialogue internal changes from
one Proteus session to another are entirely opaque to the Wire client appli-
cation; therefore, client B cannot notice the transitions. As a naive attempt
to notify the receiving client about new Proteus session initializations in a
Proteus dialogue, Wire’s applications currently use the ResetClientAction

special message type, described in Section 3.5. However, an attacker M is
not forced to send that type of message. Most importantly, dialogue DB

A at
B used for communication with A never heals as promised by PCS because
M has the potential to continue adversarial behavior any time in the future
with an already established malicious session that DB

A never evicts under
the assumption of no manual resets.

Fine-Grained Reactivation of Communication Between A and B Addi-
tionally, we show that attackers can withdraw from their position at will
and restore the E2E communication between A and B without them notic-
ing, therefore completely shattering the robustness of PCS (as defined in
Cohn-Gordon et al. [26]). In general, B will encrypt messages with the cur-
rently active Proteus session of dialogue DB

A, the last session used to decrypt
a message. Instead of forwarding every message to its destination, M can
devise a different strategy so that an encrypted message always exist that
M can later use to reactivate the original communication session at B. The
idea is that before reactivating or creating for the first time the malicious
session, M withholds one message A sends to B using the original session.
Then, whenever A sends another message using the original session to B, M
can safely forward the previously withheld message and retain the newly
received one. Discerning the session from which a message comes from can
be done by looking at the associated data of the message. A more invasive
solution can delay all messages from A. This strategy gives more control

70

4.3. Proteus Dialogue Attacks

to adversary M since it decides when to restore the original E2E commu-
nication. We refer to this improvement that transforms at the will of the
adversary the Proteus dialogues’ states to that in Figure 4.1d as the reactiva-
tion trick and reuse it in the following attacks.

Inactive Active

(idkAi, idpkAi) (idkBj, idpkBj)

(a) Initial Proteus dialogue between clients of
Alice and Bob, before corruption.

(idkAi, idpkAi)
Inactive Active

(idkAi, idpkAi) (idkBj, idpkBj)

(b) After limited corruption of Alice client’s
long-term identity key pair.

(idkAi, idpkAi)
Inactive Active

(idkAi, idpkAi) (idkBj, idpkBj)

(c) After initialization of malicious Proteus
session.

Inactive Active

(idkAi, idpkAi) (idkBj, idpkBj)

(d) After reactivation trick. Also assume
Mallory loses access to corrupted private keys.

Inactive Active

(idkAi, idpkAi) (idkBj, idpkBj)

(e) After usage of existing inactive malicious
Proteus session.

Figure 4.1: Proteus dialogue’s state between clients of Alice (A) and Bob (B) during the
Disguised Mallory 1 attack (without loss of generality, we present the attack when Alice’s client
is corrupted). With green color we represent the Proteus dialogue. The Proteus sessions it
manages are colored purple. The direction of Proteus sessions arrows is interpreted as follows:
the client’s Proteus dialogue that handles the Proteus session is the opposite to where the arrow
head ends up.

71

4. Analysis of Wire - Proteus

Mitigations (Weak Adversary)

In the weak adversary model, we suggest three improvements in order to
achieve three goals:

1. We want to make the reactivation trick and, in general, reactivation of
old sessions in a Proteus dialogue infeasible so that an adversary can
no longer reactivate malicious sessions.

2. We want to fix the new problems introduced by fulfilling the first
goal. In particular, the first fix breaks the solution for simultaneous
Proteus dialogue initializations at both communicating parties. Previ-
ously, when two clients were initializing simultaneously their Proteus
dialogues for communication with each other, there were two distinct
Proteus sessions; therefore, they had to agree on one. Session reac-
tivation on successful decryption was the solution to this challenge
because eventually, both clients in a dialogue will use the same under-
lying session to encrypt a message when no other message reactivating
another session is yet to be delivered to them.

3. We want to eventually evict the malicious session from the victim’s
Proteus dialogue so that the dialogue heals and PCS is achieved.

We now list our suggestions to address all the goals listed above:

1. In order to remove the reactivation trick from the equation, we pro-
pose a modification to the Proteus dialogue decryption algorithm. In
particular, we adopt the solution proposed by Cremers et al. in [30]
for Signal’s Sesame session management. The solution advises that the
active session must be the most recently initialized, and reactivation of
existing sessions managed by a Proteus dialogue is forbidden. Note
that decryption using previous sessions will still return the decrypted
message without reactivating the session.

2. Sessions managed by a Proteus dialogue, after applying our first sug-
gestion, cannot be reactivated once a new session is initialized. This
causes problems, in particular, with simultaneous dialogue initializa-
tions from pre-key bundles. As an example, assume that both A and
B initialized their dialogues DA

B and DB
A simultaneously. DA

B at A
will have a single session pstag

A→B, while DB
A at B will have a differ-

ent session pstag′

B→A. Suppose both of them simultaneously encrypt
two messages using DA

B and DB
A, resulting in cA ← DA

B .enc(mA) and
cB ← DB

A.enc(mB), respectively. Then, the encrypted messages are si-
multaneously delivered to the recipients. In that case, both DA

B and DB
A

will initialize and switch to the other session (because both cA and cB
are PreKeyMessage). Communicating using two different sessions will
result in losing PCS because no asymmetric steps will be performed.

72

4.3. Proteus Dialogue Attacks

To resolve this problem, we propose that Proteus dialogues automati-
cally initialize a new session when both:

a) the session is not active in the Proteus dialogue.

b) and exactly a constant number of messages were successfully de-
crypted using that session after it became inactive.

Consequently, only a bounded number (specified by a constant) of
messages will be affected and then a new session initialization will
be triggered, eventually leading to consensus on the session that the
Proteus dialogues will use. Note that we allow a non-active session to
decrypt messages as long as it is managed by the Proteus dialogue.

3. Finally, in order to eventually evict a malicious session (recall that ses-
sions are removed in a FIFO fashion) from a Proteus dialogue, we
suggest that a Proteus dialogue initializes a new session automatically
every hour, which is similar to Signal’s Sesame session management.
Note that as long as a Proteus dialogue manages a malicious session,
the adversary can use it to send encrypted messages, however, the
first suggestion prevents its reactivation on the recipients side, mean-
ing that the victim will no longer send messages to the adversary.
Furthermore, implementing this proposal is necessary (assuming fix
one is implemented) to recover from the attack of Section 4.3.4. No-
tice that either this suggestion or the previous one will first initialize a
new session, with each being more appropriate in different scenarios.
For instance, the previous suggestion restricts the number of affected
messages on simultaneous initializations instead of waiting one hour
where the number of messages exchanged is unbounded.

Recall from the attack decription that the adversary M can precompute DH
shares when it has access to the corruption oracle. In Section 4.4.5, we
uncover that clients do not update the short-term last resort key pair. Con-
sequently, weak-PCS is not achieved even if the above countermeasures are
implemented, until Wire’s clients start updating last resort key pairs.

The above-presented mitigations also apply to the attacks of Sections 4.3.3
and 4.3.4.

Mitigations (Strong Adversary)

In the face of a strong adversary, the mitigations against a weak adversary
do not recover PCS because a strong adversary can initialize new sessions in
a Proteus dialogue any time in the future. Therefore, there is no hope when
a session management solution is employed. However, at the current state
of Wire, Proteus dialogues are useful only for scenarios where simultaneous
initializations occur. Hence, no real incentive exists for utilizing such a solu-
tion just to resolve concurrent initializations at the cost of losing PCS against

73

4. Analysis of Wire - Proteus

a strong adversary. We suggest that the Proteus dialogue session manage-
ment solution is abandoned and replaced by a single Proteus session with a
tiebreaker rule. Our suggestion is more invasive to the current philosophy
of Proteus dialogues and would require more changes.

My session
(1st sending ratchet)

No session with
peer

Init sessio
n

Send

My session
(xth > 1 sending ratchet)

Receive from my
session

Receive

Send

Peer’s session
Receive

Receive from peer’s
session and peer’s user

ID > my user ID

Send

Receive

Figure 4.2: State machine for the proposed dialogue between clients using a single Proteus
session with a tiebreaker. When a message is received and decryption fails the transition is not
taken.

Let’s consider client A of Alice with user identifier IDA and B of Bob with
user identifier IDB are about to establish a dialogue. If no simultaneous
initialization of Proteus sessions is taking place, then consensus is reached
without a tiebreaker. In particular, when one of the clients initializes a Pro-
teus session using a pre-key bundle of its peer and sends an encrypted mes-
sage, which is delivered to the peer before it attempts to initialize a Proteus
session, the peer accepts and marks as definitive the session in the dialogue.
Otherwise, if simultaneous initializations occur, then consensus is reached
using a tiebreaker. In more detail, when both clients simultaneously initial-
ize a Proteus session using a pre-key bundle of their peers, an agreement
must be reached. The proposed tiebreaker rule instructs the client whose
user has the smaller identifier to adopt its peer Proteus session and mark it
as definitive in the dialogue. For instance, when IDA > IDB, client B will
adopt the Proteus session initialized by A in the case of concurrent initial-
ization, according to the tiebreaker. Notice that B might have sent multiple
messages before noticing the simultaneous initialization. In such case, B is
required to re-encrypt them using the definitive Proteus session in the dia-
logue. Therefore, all dialogues should maintain a buffer of all messages sent
using a Proteus session before it is marked definitive so that they can re-
encrypt them later using the final Proteus session (if it changes). Figure 4.2

74

4.3. Proteus Dialogue Attacks

shows the state machine for the proposed dialogue using a single session.

The above-presented mitigations also apply to the attacks of Sections 4.3.3
and 4.3.4.

4.3.3 Attack 3 (Disguised Mallory 2)

This attack shows how the malicious actor M can violate the PCS guarantees
of a Proteus dialogue DA

B that A uses to communicate with B by using the
short-term last resort key of A. The attacker M, by exploiting session man-
agement, tricks A into exchanging messages with M, while A believes that
it exchanges messages with B because Proteus dialogue DA

B is still employed
for encryption and decryption. The attack in this section is similar to the at-
tack in Section 4.3.2, with small differences. First, the adversarial capabilities
differ from what was previously presented: the adversary corrupts a short-
term last resort key instead of a long-term identity key. Second, this attack
has characteristics of a Key Compromise Impersonation (KCI) attack, where
corrupting one party (A) allows for the impersonation of arbitrary parties
(B) to the corrupted party (A). Last, the derivation of the malicious session’s
master secret that M uses to perform the attack slightly differs from what is
presented in Section 3.6.2.

Adversarial capabilities We consider two possible adversarial models un-
der which the attack is analyzed.

• A weak adversary M can temporarily perform (via an oracle) DH com-
putations using the private short-term last resort key of one of the
communicating clients without revealing it (limited corruption).

• A strong adversary M can reveal the private short-term last resort key
of one of the communicating clients (full corruption).

We present the attack in the context of the weak adversary model.

Attack Description and Impact

The attack proceeds exactly as in Section 4.3.2, with a small difference in de-
riving the malicious session’s master secret. Thus, all observations, remarks,
comments, and mitigations presented in that section also apply to the attack
under discussion. In order to clear all ambiguities, we present the details of
the master secret derivation.

After M obtains temporary access to an oracle that performs DH computa-
tions using the private short-term last resort key lrkA of A (Figure 4.3b), the
master secret is derived as follows:

ms← (idpkB)lrkA∥(idpkA)ebkM∥(lrkA)ebkM

75

4. Analysis of Wire - Proteus

Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(a) Initial Proteus dialogue between clients of
Alice and Bob, before corruption.

(?, idpkBj)

(lrkAi, lrpkAi) Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(b) After limited corruption of Alice client’s
short-term last resort key pair.

(?, idpkBj)

(lrkAi, lrpkAi) Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(c) After initialization of malicious Proteus
session.

Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(d) After reactivation trick. Also assume
Mallory loses access to corrupted private keys.

Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(e) After usage of existing inactive malicious
Proteus session.

Figure 4.3: Proteus dialogue’s state between clients of Alice (A) and Bob (B) during the
Disguised Mallory 2 attack (without loss of generality, we present the attack when Alice’s client
is corrupted). With green color we represent the Proteus dialogue. The Proteus sessions it
manages are colored purple. The direction of Proteus sessions arrows is interpreted as follows:
the client’s Proteus dialogue that owns the Proteus session is the opposite to where the arrow
head ends up. Notice the differences to the malicious session compared to Figure 4.1. This
attack has characteristics of a Key Compromise Impersonation (KCI) attack.

The computation of the (idpkB)lrkA
DH share is done using the temporary

access to the corruption oracle. Note that M can precompute this DH share
and use it after losing access to the corruption oracle. The DH share is equiv-
alent to the DH value (lrpkA)idkB

B would have computed for initializing a
session with A. Furthermore, notice that idpkB is present in every pre-key
bundle B uploads to the server; thus, it is available to M, and the ephemeral

76

4.3. Proteus Dialogue Attacks

base key pair is of M’s choice.

The Proteus dialogue states as the attack proceeds are illustrated in Fig-
ure 4.3. We highlight that corrupting A allows for compromising the secu-
rity of Proteus dialogues A has with other clients.

4.3.4 Attack 4 (Mallory-in-the-Middle)

In this attack, we combine the previous two attacks in a way such that M
can read, modify, and insert messages in the Proteus dialogue that clients A
and B use to communicate. Our goal as M will be to establish two Proteus
sessions, one disguised as A and the other as B. The rest of this section
covers the combination that assumes an adversary who corrupts the smaller
number of communication parties. This attack can clearly be executed if the
adversary manages to execute exactly one of the Disguised Mallory 1 or 2
attacks against both A and B. However, we will instead combine the two
attacks to obtain a MitM position while only compromising a single client.

Adversarial capabilities We consider two possible adversarial models un-
der which the attack is analyzed.

• A weak adversary M can temporarily perform (via two oracles) DH
computations using the private long-term and short-term last resort
keys of one of the communicating clients without revealing them (lim-
ited corruption).

• A strong adversary M can reveal the private long-term and short-term
last resort keys of one of the communicating clients (full corruption).

We present the attack in the context of the weak adversary model.

Attack Description and Impact

We now present a generic attack which can be instantiated using an adver-
sary with different capabilities and combinations of the Disguised Mallory
attacks. In our context, the instantiation is done by respecting our previous
assumptions about the adversary’s capabilities.

We assume a Proteus dialogue DA
B at A managing a single Proteus session

pstag
A→B, and the pairing Proteus dialogue DB

A at B managing a single Pro-
teus session pstag

A←B, as shown in Figure 4.4a. Without loss of generality, we
assume that A is the initiator and B is the responder for the single session
managed by the Proteus dialogues. Furthermore, it is irrelevant to the attack
for how long the two parties were communicating.

The adversary’s goal is to obtain two Proteus sessions, pstag′

M→A and pstag′′
M→B,

such that pstag′

M→A (resp. pstag′′
M→B) can be used to send encrypted messages to

77

4. Analysis of Wire - Proteus

A (resp. B) disguised as B (resp. A) and A (resp. B) will use its Proteus
dialogue DA

B (resp. DB
A) to decrypt them by internally using pstag′

M←A (resp.

pstag′′
M←B). By fulfilling this requirement, M can now decrypt all messages,

read, even modify them or add new messages and then encrypt and send
them to the other client’s Proteus dialogue, as a full MitM.

Moreover, we want to be able to perform the reactivation trick in order to
withdraw M from the MitM position. Hence, the Proteus session pstag

A→B,
where tag ̸= tag′ (resp. pstag

A←B, where tag ̸= tag′′), must still be managed
by dialogue DA

B (resp. DB
A).

The obvious instantiation that satisfies the requirements is to employ Dis-
guised Mallory 1 to impersonate A to B and Disguised Mallory 2 to imper-
sonate B to A, as shown in Figure 4.4.

4.4 Other Attacks and Findings

In this section, we mainly investigate attacks related to the absence of cryp-
tographic means for authenticating and integrity protecting information re-
layed through the distribution server SDS, which inadvertently results in
needing to put full trust in the server. Moreover, we discuss some inter-
esting findings about the number of asymmetric ratchet steps required in
a Proteus session to heal after a full state corruption. Last, we discuss the
findings of the Clone Attack experiment in [28].

For the attacks in this section, we consider the Malicious Wire Server threat
model without any additional assumptions regarding the capabilities of the
adversary M.

4.4.1 Attack 5 (Trivial Confidentiality Violation)

In Section 3.3.2, we studied the procedure users follow to register clients
under their control. In essence, there is no mechanism for cryptographically
binding clients of a user together. Additionally, as discussed in Sections 3.3.2
and 3.6.4, a client readily accepts the list of clients of users provided by
the server in response to the client’s requests. Consequently, an adversary
can trivially violate the confidentiality of a conversation W gid

proteus and its

underlying group Ggid
proteus by inserting an adversary-controlled client in the

list of a user’s clients.

Attack Description and Impact

Setting For simplicity, let us assume that users A and B are the only mem-
bers of conversation W gid

proteus, and that both A and B are aware of the same

78

4.4. Other Attacks and Findings

Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(a) Initial Proteus dialogue between clients of
Alice and Bob, before corruption.

(?, idpkBj)
(idkAi, idpkAi)
(lrkAi, lrpkAi) Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(b) After limited corruption of Alice client’s
long-term identity and short-term last resort
key pairs.

(?, idpkBj)
(idkAi, idpkAi)
(lrkAi, lrpkAi) Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(c) After Disguised Mallory 1 attack mali-
cious session initialization.

(?, idpkBj)
(idkAi, idpkAi)
(lrkAi, lrpkAi) Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(d) After Disguised Mallory 2 attack mali-
cious session initialization.

Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(e) After reactivation trick. Also assume Mal-
lory loses access to corrupted private keys.

Inactive Active

(idkAi, idpkAi)
(lrkAi, lrpkAi) (idkBj, idpkBj)

(f) After usage of existing inactive malicious
Proteus sessions.

Figure 4.4: Proteus dialogue’s state between clients of Alice (A) and Bob (B) during the Mallory
in the Middle attack (without loss of generality, we present the attack when only Alice’s client
is corrupted). With green color we represent the Proteus dialogue. The Proteus sessions it
manages are colored purple. The direction of Proteus sessions arrows is interpreted as follows:
the client’s Proteus dialogue that owns the Proteus session is the opposite to where the arrow
head ends up.

membership W
gid
proteus. Moreover, every client Ai of A is aware of a list CAi

B

of B’s “honest” clients. Similarly, every client Bj of B is aware of a list CBj
A of

A’s “honest” clients. We refer to clients that are not adversarially-controlled
as “honest”.

79

4. Analysis of Wire - Proteus

Description and Impact Without loss of generality, we describe the attack
targeting user A. The adversary M, who controls the server, can inform the
clients of A about the addition of a new adversary-controlled client B̃, either
during encryption to a group, as seen in Section 3.6.4, or when clients of
A request the list of clients of B, as described in Section 3.3.2. Hence, the
list of clients at a client Ai of A will be updated to CAi

B ← C
Ai
B ∪ {B̃}. We

highlight that Ai unquestioningly trusts the information the server sends
without performing any verification through a cryptographic mechanism.
Consequently, Ai will establish a Proteus dialogue with the new client B̃ be-
fore sending an encrypted message to group Ggid

proteus: the underlying group

of conversation W gid
proteus. The result of this behavior of A’s “honest” clients

enables adversary M to read all messages sent from user A to user B in
conversation W gid

proteus (more precisely, in all conversations both A and B are
members), thus violating confidentiality by half. In order to enable bidirec-
tional confidentiality violation, M can do the same to “honest” clients of B,
but with a new adversary-controlled client Ã.

Furthermore, we note that M does not inform the “honest” clients of A
about the addition of the adversary-controlled client Ã; otherwise, user A
would notice the adversarial activity via a notification pop up in the appli-
cation of A’s clients who are informed about the new addition. The same
applies to clients of B for B̃. Additionally, we see that two different clients
are allowed to have an inconsistent view of the group’s client membership
G

gid
proteus, which is only possible to solve with significant changes to how Pro-

teus groups are handled (addressed directly by MLS).

Thus far, we have observed that the attack is not detectable from the point
of view of the “honest” clients of the user whose messages confidential-
ity is attacked. We now study the behavior of the “honest” clients (of the
other user) who are informed about the adversary-controlled client. In Sec-
tion 3.6.4, we delved into group verification status. If group Ggid

proteus is not
verified at a client, then the addition of the new adversary-controlled client
does not trigger any notification or warning message that the user can see in
the W gid

proteus’s application interface. On the other hand, when group Ggid
proteus

is verified, we distinguish two different behaviors.

• If the legacy Android client application is in use, a warning pops up in
the conversation and informs the user about the new addition. Then,
two options are given to the user: (1) to verify the new client’s finger-
print or (2) to acknowledge the risk.

• On the contrary, at the time of writing, if the new Android client ap-
plication is in use, the addition of the new adversary-controlled client
does not trigger any notification or warning message in the conver-
sation. This has catastrophic consequences because the user will not

80

4.4. Other Attacks and Findings

notice the malicious intervention even if the underlying group was
verified.

Mitigations

Our main goal is to prevent adversary M from adding a malicious client to
a user’s list of clients by going unnoticed, especially in a verified group.

The obvious solution is to at least implement the same behavior in the new
Android application as in the legacy Android application. Therefore, the
addition of the adversary-controlled client will come to the user’s attention.

Alternatively, we recommend a major change in the client registration pro-
cedure, which follows WhatsApp’s footsteps for device linking. The details
are available in WhatsApp’s security whitepaper [56]. We now summarize
the most important aspects of the solution.

Every user must have a primary client with a long-term identity key pair
(idkprim, idpkprim), which can link other secondary clients to the user’s ac-
count. The primary client is responsible for uploading a signed list of clients
(client identifiers tied to long-term identity public keys) linked to the user
account. The signatures must be generated using idkprim. In addition, the
signed client list should contain a timestamp representing the time at which
the list was created. The primary device sends the timestamp in the as-
sociated data of its encrypted messages to inform other clients (of other
users and secondary clients of the same user) about the most recent list they
should expect from the server. This is a measure against inconsistent lists of
clients and ensures that the server cannot lie about the most recent list.

Moreover, during the client registration procedure, the secondary client gen-
erates a long-term identity key pair (idksec, idpksec) and a secret value slink.
The primary client is involved in registration and scans a QR code displayed
on the secondary client’s screen containing idpksec, and slink. The secret slink
is used to integrity protect non-confidential information, e.g., the assigned
client identifier, exchanged through the untrusted server (details are omit-
ted). Additionally, the primary client generates the client identifier cidsec for
the secondary client. In the current Wire’s registration procedure, long-term
identity keys are not bound to client identifiers. As a result, pre-key bundles
uploaded to the server may have different long-term identity public keys.

In conclusion, the above solution offer many benefits. First, it prevents an
adversarial server from responding with arbitrary lists of clients. The signed
lists of clients enables only the primary client to generate them. Further-
more, the complexity of group verification is now reduced to simply veri-
fying the primary client’s long-term public identity key, which is the root
of trust. Undoubtedly, this is a better approach compared to the fragile
group verification that Wire currently employes (Section 3.6.4). Last, clients

81

4. Analysis of Wire - Proteus

are no longer independent, which sacrifices usability since client registra-
tion is more complicated. Still, it is beneficial since a close, tight bond exists
between each user and its clients offering the abovementioned benefits.

4.4.2 Attack 6 (Degraded Forward Secrecy)

In this attack, we look closely at the optional signatures in the pre-key bun-
dles that clients send to the server SDS. In particular, the lack of these sig-
natures, and the absence of mandatory verification by clients and server
degrade FS guarantees. The lack of signatures enables an adversary to be
actively involved with the choice of the ephemeral/short-term pre-key pair
during Proteus session initialization at the initiator. Hence, the key exchange
in Proteus can only guarantee weak-Perfect Forward Secrecy (weak-PFS) as
defined in [39], Section 6.2.

Attack Description and Impact

An important omission in the pre-key bundles sent to the server is the ab-
sence of signatures of the public pre-key. Furthermore, even if these sig-
natures were to be provided, the server and client would not verify them
regardless. As outlined in Section 3.6.2, the pre-key bundle is crucial for the
XPDH key exchange, which establishes a master secret. This master secret,
the public pre-key from the bundle, and a fresh ephemeral ratchet key pair
chosen by the initiator are used by the initiator to derive message keys for
encryption during its first sending symmetric ratchet, starting from chain
key ckI

1,1.

The attack undermining Forward Secrecy unfolds as follows: Consider an
initiator client I of one user and a responder client R of another user. Due to
the lack of signatures on the public pre-key in R’s pre-key bundles, an adver-
sary M can forge pre-key bundles for R. These forged bundles include R’s
long-term public key idpkR and a public pre-key chosen by M. The attacker
only lacks R’s long-term private key idkR for these bundles. When I requests
R’s pre-key bundle, M forwards one of the forged bundles instead of a legit-
imate one. I considers the forged bundle valid, without any verification, and
proceeds with the XPDH key exchange to establish a new Proteus session
via in a Proteus dialogue. Consequently, I can encrypt messages to R with
this Proteus session using the Proteus dialogue that manages it. However,
as the pre-key bundle is forged, M cannot forward encrypted messages to
R; doing so would fail initialization from PreKeyMessage at R and the ma-
licious intervention is noticed. Instead, M stores the encrypted messages
for potential decryption in the future. If M compromises R’s long-term key
later, it can decrypt these stored messages. Consequently, when Proteus is
used in Wire, only a weaker form of Forward Secrecy, that is, weak-PFS is
guaranteed.

82

4.4. Other Attacks and Findings

Mitigations

We propose the obvious mitigation, which mandates other clients (and the
distribution server) to verify the pre-key signatures in pre-key bundles.
Thus, these signatures must be present in a pre-key bundle and not op-
tional.

4.4.3 Attack 7 (Unauthenticated Metadata)

Figure 3.8 illustrates the contents of an encrypted message using a Proteus
session. Notably, certain metadata, including the group identifier and the
message timestamp, are not included in the authenticated associated data.
However, this information is required by the recipient to correctly display
the message within the appropriate conversation and in chronological or-
der, as elaborated in Section 3.6.4. A malicious server can exploit this by
tampering with such information, causing confusion for the recipient client
regarding the message’s order and group/conversation assignment.

Attack Description and Impact

Setting Let us consider a scenario involving two clients: a sender and a
recipient. The sender encrypts a message intended for the recipient using
a Proteus dialogue, and the sender specifies the group identifier gid for the
group Ggid

proteus to which the message is destined. We denote the encrypted
message along with its unauthenticated metadata as c1, while the under-
lying plaintext message will be denoted by m1. Later, the sender sends a
second message to the same recipient within the same group Ggid

proteus. This
second encrypted message, along with its unauthenticated metadata, is de-
noted by c2, and its corresponding plaintext message is m2.

Description In the intended secure behavior, when the recipient receives
c1 and c2 in any order and successfully decrypts them, the outcome is that
messages m1 and m2 should be displayed in the conversation W gid

proteus’s ap-
plication interface in the order they were sent within the underlying group
Ggid
proteus. Furthermore, in a secure E2E communication system, the untrusted

server should not have the capability to alter the message order or manipu-
late the conversation in which they are displayed. Unfortunately, this secure
behavior is not guaranteed in Wire.

An adversarial server M possesses the capability to modify both the times-
tamps and group identifiers of messages since they are not included in the
authenticated associated data. Specifically, M can change gid to gid′ in both
c1 and c2, where Ggid′

proteus is a group both clients participate and gid′ ̸= gid.
Consequently, the recipient will wrongly display these messages within con-

83

4. Analysis of Wire - Proteus

versationW gid′
proteus instead of their intended conversationW gid

proteus. Recall that
the same Proteus dialogue is shared across all groups in which both clients
participate, enabling group “re-assignment”.

Furthermore, M can also tamper with the timestamps. If M modifies times-
tamp t1 of c1 such that t2 < t1, then m1 will be displayed after m2, since Wire
applications are ordering messages in conversations based on timestamps.
This manipulation compromises the correct ordering of messages.

Mitigations

To address the vulnerabilities related to unauthenticated information, we
propose two mitigations for each of the concerns. The mitigations for times-
tamp manipulation are:

1. Timestamp as Authenticated Data: We suggest that the timestamp of a
message should be included as part of the authenticated associated
data, which is protected by the MAC tag of the encrypted message.
This approach ensures that only the sender can determine the time at
which the message was sent. However, it is important to note that this
solution still allows an adversary who later compromises a client to
send messages with modified timestamps in the past. This can lead to
incorrect message ordering and modification of the message transcript
for messages exchanged before the client was compromised.

2. Double Ratchet Ordering: If the mitigation strategy against a strong
adversary, as described in Section 4.3.2, is implemented, where the
dialogue between clients relies on a single Proteus session, then the
Double Ratchet algorithm inherently enforces total message ordering
in the dialogue. Messages are ordered based on specific rules: (1) mes-
sages with a chain key ckR

x,y happen before messages with ckI
x′,y′ where

x ≤ x′, (2) messages with ckR
x,y happen before messages with ckR

x,y′ ,
where y < y′, and (3) messages with ckR

x,y happen before messages
with ckR

x′,y′ where x < x′. The last two rules also apply for the initia-
tor I’s symmetric ratchets. This mitigation can be implemented as an
additional measure in groups to, at least, provide correct ordering of
messages to the clients that are in a dialogue.

The mitigations for group identifier manipulation are:

1. Group Identifier as Authenticated Data: We propose that the group iden-
tifier to which a message belongs must be part of the authenticated
associated data, protected by the MAC tag of the encrypted message.
This approach ensures that only the sender can assign the message to
a group. By protecting the group identifier, we prevent unauthorized
changes to the destination group.

84

4.4. Other Attacks and Findings

2. Distinct Dialogues for Each Group: Another suggested mitigation is to
maintain separate dialogues for each group in which both clients are
participating. However, PCS concerning all groups is recovered when
all dialogues perform the healing step, in contrast to the current im-
plementation, which has a single Proteus dialogue for all groups.

These proposed mitigations aim to enhance the security and integrity of
message timestamps and group identifiers, addressing the vulnerabilities
associated with their manipulation.

4.4.4 Attack 8 (Verified Impersonation)

In Section 3.6.3, we described the feature of Proteus dialogue resets, which
involve removing the existing Proteus dialogue and initializing a new one.
It is essential to note that the attack described below is specific to the Web
application. In this attack, an adversary can potentially impersonate one
client to another, with their Proteus dialogue used for E2E communication
shown as verified.

Attack Description and Impact

Setting Consider a scenario where client Ai of Alice, maintains a verified
dialogue DAi

Bj
with client Bj of Bob. The verification process involves Alice

confirming out-of-band that Bob’s client, Bj, matches the fingerprint of the
long-term public key observed during the initialization of dialogue DAi

Bj
at

Ai.

Description Now, suppose Alice decides to manually reset the dialogue
DAi

Bj
at Ai with Bj. This reset action triggers the initialization of a new dia-

logue, which requires a pre-key bundle sent by the server. The adversarial
server M can exploit this situation by responding to the pre-key bundle
request with a malicious bundle. This rogue bundle includes a long-term
identity key controlled by M, effectively allowing M to impersonate Bob
(Bj) to Alice (Ai). Due to an implementation bug in the Web application,
the client does not check whether the same long-term public key was used
and, in addition, the verification status of the new Proteus dialogue remains
unchanged from the previous one. Consequently, M can impersonate Bob
(Bj) to Alice (Ai) in a seemingly legitimate manner, as if the dialogue had
been verified. This bypasses the requirement for out-of-band verification of
the counterparties identity, which would prevent trivial impersonation by a
malicious server.

85

4. Analysis of Wire - Proteus

Mitigations

When a user manually resets a Proteus dialogue, we mandate that the ap-
plication checks whether the long-term public identity key has changed. If a
change is observed, an informative message indicating the change appears
in all conversations of the underlying groups the two clients in the Proteus
dialogue are members, and the Proteus dialogue status becomes unverified;
otherwise, the Proteus dialogue status can be preserved.

4.4.5 Further Findings Affecting Session Independence and PCS

This section highlights two implementation errors that undermine and Post-
Compromise Security.

Session Independence

Let us start with the issue related to Session Independence. In both the
legacy and new Android applications, the last resort bundle is uploaded
only once during the initial client registration and remains unchanged there-
after. As a result, the same short-term last resort key pair is involved in all
XPDH key exchanges where the last resort bundle was used to initialize the
Proteus sessions throughout a client’s lifetime. Essentially, the last resort
key functions as another long-term key pair.

This implementation mistake has significant implications. The corruption of
both the long-term identity and last resort key pairs allows for decryption of
all PreKeyMessages of past Proteus sessions initialized from the last resort
bundle.

Post-Compromise Security

In the context of Double Ratchet protocols, including Proteus Double Ratchet,
recovering security in an E2E communication channel typically occurs when
a client, whose full state has been compromised, asymmetrically ratchets
forward to its next sending symmetric ratchet. This step involves a new
ephemeral ratchet key pair at the compromised client, effectively locking
out the adversary. In general, recovering the security of the communication
channel means that the adversary can no longer read or insert new messages
in the E2E channel.

However, a mistake in the current implementation of Proteus sessions allows
an adversary to insert new messages using old sending symmetric ratchets.
As previously discussed in Section 3.6.2, a counter indicating the number of
messages sent on the previous sending symmetric ratchet is included in the
associated data of each encrypted message. Surprisingly, this information is

86

4.4. Other Attacks and Findings

not utilized during decryption on the receiving end to verify whether a mes-
sage was encrypted using an older receiving symmetric ratchet, even after
transitioning to the next receiving symmetric ratchet (the older symmetric
ratchet was used to encrypt a message after it was marked as “terminated”).
Consequently, the previous symmetric ratchets can be arbitrarily extended.

This oversight implies that an adversary who gains full access to a client’s
state can exploit this flaw. By revealing the complete state of a client, the
adversary gains access to the chain key for the latest sending symmetric
ratchet and can extend it indefinitely. The healing event only occurs once
the compromised client has asymmetrically ratcheted forward through five
sending symmetric ratchets. At this point, the corrupted receiving sym-
metric ratchet is finally removed from the last five stored receiving ratchets
at the counterparty’s session, making the adversary incapable of inserting
further messages.

PCS Improvement We propose utilizing the information in the aforemen-
tioned counter to effectively “terminate” previous symmetric ratchets. The
counter informs the receiver that the previous receiving symmetric ratchet
was used to send a specific number of messages; hence, do not decrypt
messages that require more symmetric steps of that previous receiving sym-
metric ratchets than required to derive the message keys of the number of
messages specified by the counter. For instance, if ctrprev = k in the asso-
ciated data of messages encrypted with the (x + 1)th sending ratchet of a
user Ui in a Proteus session, then the receiver must not derive message keys
(enckUi

x,y, enckUi
x,y) with y > k. We highlight that the receiver can only perform

this check after receiving a message on the next receiving symmetric ratchet.

4.4.6 Discussion (Unraveling the Clone Attack Results)

In the study presented in [28], an experiment was conducted to assess the
PCS guarantees of various messaging applications, including Wire. This ex-
periment, known as the Clone Attack, aimed to determine whether a clone
device could decrypt messages sent after compromise, thus potentially de-
grading PCS. The comparison of the expected and the actual (in Wire) ex-
perimental setups are shown in Figure 4.5.

The Clone Attack proceeds as follows: Two users, Alice and Bob, commu-
nicate exclusively through one device each, which we denote by A and B,
respectively (as an abuse of our notation for clients and users). The ex-
periment consists of three phases: pre-test, test, and post-test. During the
pre-test phase, A and B exchange the same sequence of two Text messages
five times: a Text message from A to B followed by a Text message from
B to A. After the pre-test phase, a clone of B, denoted by B̃, is created
and disconnected from the internet. The test phase replicates the pre-test

87

4. Analysis of Wire - Proteus

phase, with the same sequence of Text message exchanges occurring five
times. At the end of the test phase, the original device B is powered off. B̃ is
then reconnected to the internet, initiating the post-test phase. The expected
experimental setup is illustrated in Figure 4.5a.

The expectation in an application offering PCS is that B̃ should be unable to
decrypt messages exchanged between A and B during the test phase unless
B̃ has access to the necessary keying material at the time B was cloned. That
is, B̃ should only be able to decrypt messages exchanged between A and B
that occurred strictly before the so-called healing step (after cloning). From
the analysis of the almost identical Signal Double Ratchet protocol in [25],
we know that a requirement for the message keys of a symmetric ratchet to
be secure is that either the root key or both parties’ ratchet private keys (used
for the asymmetric step that results to the symmetric ratchet) are unknown
to the adversary. In the Clone Attack, B̃ is aware of the state of B at the
end of the pre-test phase, which contains at least the root key for the next
asymmetric ratchet step and the latest ratchet private key of B. Hence, in the
Clone Attack, the healing step happens when B selects its next ratchet key
pair. Therefore, since B is the last party who sends a message during the
pre-test phase (according to the experiment setup), we expect the healing
event to occur in two asymmetric ratchet steps from the time B was cloned.
As a consequence, B̃ should be able to decrypt, at most, the messages sent
from A in B’s next receiving symmetric ratchet, which corresponds to the
first Text message A sends to B in the test phase of the Clone Attack.

Analyzing the behavior of Wire during the Clone Attack, it was observed
that B̃ successfully received and decrypted the first two Text messages sent
by A to B during the test phase, thus, including a message after the moment
when we would expect the healing step to happen. This behavior seemed to
challenge the PCS guarantees of the Proteus Double Ratchet-based sessions
used by Wire.

We set out to investigate the underlying causes behind this unusual be-
haviour observed in the Clone Attack on Wire. Upon studying the Proteus
protocol, as discussed in Section 3.6, it was rapidly concluded that B̃ already
possessed the ratchet key pair of B’s next sending symmetric ratchet. In the
Proteus protocol, when an encrypted message is received, and a Proteus
session is utilized for decryption through a Proteus dialogue, the session
precomputes the subsequent ratchet key pair when the decryption involves
an asymmetric ratchet step forward due to the received message belonging
to a new receiving symmetric ratchet. With this knowledge, it becomes clear
that if the sequence of message exchanges during the pre-test phase was
altered, such that A was the device sending the last message during the pre-
test phase and also the first message of the test phase, then B would have
precomputed its next ratchet key pair at the end of the pre-test phase. This

88

4.4. Other Attacks and Findings

would enable B̃ to decrypt A’s first two Text messages of the test phase.
However, this explanation still didn’t align with the expected behavior of
the experiment, which assumed that B would be the last party to send a
message during the pre-test phase. Additionally, it’s worth noting that the
experiment disabled typing indications and read receipts (known as read-
Confirmation in Wire) to prevent hidden messages from affecting the re-
sults.

The missing piece of the puzzle was the existence of a third type of hidden
message sent within Wire groups known as delivery-Confirmation, as de-
scribed in Section 3.5. While read-Confirmation messages were disabled,
delivery-Confirmation messages remained enabled, without an option for
turning them off. Hence, the pre-test and test phases for Wire were effec-
tively altered and satisfied the requirements for enabling B̃ to decrypt the
first two Text messages of A during the test phase. Instead of the previ-
ous sequence of two messages, a new sequence of four messages was re-
peated five times: A Text message from A to B was followed by a delivery-
Confirmation message and another Text message from B to A, and finally,
a delivery-Confirmation message from A to B. The actual (in Wire) experi-
mental setup is illustrated in Figure 4.5b.

89

4. Analysis of Wire - Proteus

A

B

rch
tk
Ax

rch
tk
B x

rch
tk
A

x+
1

rch
tk
A

x+
4

rch
tk
A

x+
2

rch
tk
A

x+
3

rch
tk
B

x+
1

rch
tk
B

x+
2

rch
tk
B

x+
3

rch
tk
B

x+
4

B̃

rch
tk
A

x+
5

rch
tk
A

x+
6

rch
tk
A

x+
9

rch
tk
A

x+
7

rch
tk
A

x+
8

rch
tk
B

x+
5

rch
tk
B

x+
6

rch
tk
B

x+
7

rch
tk
B

x+
8

rch
tk
B

x+
9

Pre-test phase Test phase Post-test phase

(a) Expected experiment setup.

A

B

rch
tk
Ax

rch
tk
B x

rch
tk
A

x+
1

rch
tk
A

x+
4

rch
tk
A

x+
2

rch
tk
A

x+
3

rch
tk
B

x+
1

rch
tk
B

x+
2

rch
tk
B

x+
3

rch
tk
B

x+
4

B̃

rch
tk
A

x+
5

rch
tk
A

x+
6

rch
tk
A

x+
7

rch
tk
B

x+
5

rch
tk
B

x+
6

Pre-test phase Test phase Post-test phase

rch
tk
B

x+
7

· · ·

(b) Actual (Wire) experiment setup.

Figure 4.5: Experiment setup comparison between the expected and the actual (in Wire). The
black arrows are Text messages, while the grey arrows are delivery-Confirmation messages.
Moreover, the red arrows shows which Text messages of the test-phase the clone B̃ can decrypt
(if they are sent to B̃ in the post-test phase), while the green are the Text messages that are
secure after PCS recovery. The purple -colored ratchet key indicates the “healing” step, which
recovers PCS from the next sending symmetric ratchet of B and onwards. The horizontal black
line shows that the client is online, while the grey that it is offline. Last, the dotted lines show
which message triggers the generation of each ratchet key pair.

90

Chapter 5

Analysis of Wire - MLS

In this chapter, we discuss the security implications related to Wire’s deci-
sions on MLS usage studied in Section 3.7.3.

5.1 Orchestrator Delivery Service

The orchestrator server SDS is responsible for delivering Handshake mes-
sages to the group members and resolving conflicting Commit messages. Ad-
ditionally, it has access to all Handshake messages content since they are sent
in PublicMessages. The implication of this choice is that the delivery ser-
vice SDS can decide which Commit is applied by the group members, even
to the extent that SDS prevents any of the Update proposals and Commit

messages of a specific member from being implemented. This is because
SDS can see the type of a Proposal, the content of a Commit, and the sender
information when clients send Handshake messages in PublicMessage. Con-
sequently, the SDS can deliberately delay all available mechanisms (Update
and Commit) offering PCS to a particular member of the group. In Wire’s
MLS implementation, SDS can reject an Update proposal and a Commit by
returning an error indicating to the client that no authorization is granted
for this action. The client will then abort the attempt to update (or commit)
its information stored in the leaves of the ratchet tree. This shortcoming
that defeats PCS when a malicious server suppresses Update and Commit

messages is well known and documented in the MLS standard.

Suggestions A potential mitigation could be to use PrivateMessages for
the Handshake messages, which are confidential between the group mem-
bers. Recall that Proposal and Commit messages will use the handshake
ratchet, while Application messages will use the application ratchet for en-
cryption and decryption. Hence, a PrivateMessage still leaks in the associ-
ated data the type of the encrypted content, that is, whether it is a Proposal,

91

5. Analysis of Wire - MLS

a Commit or an Application message. This enables the receiver to decide
which ratchet to use for decryption. However, we emphasize that the exact
type of the Proposal is not leaked through the PrivateMessage. Conse-
quently, the server cannot decide whether the content of a PrivateMessage

is an Add, a Remove, or an Update proposal. Also, the sender’s information
is encrypted in PrivateMessage. Therefore, a malicious server that does not
want to block all clients’ Proposal messages cannot defeat PCS unless a side
channel leaks the sender and the exact type.

Moreover, if this mitigation is applied, the server can still resolve conflicting
Commit messages since the group identifier, the epoch of the group, and the
information that the MLS message is a Commit are part of the associated data
in the PrivateMessage, which are not encrypted. Additionally, the server
loses access to the content of Proposal and Commit messages; therefore,
authorization checks must be outsourced to the clients. Last, in order to
help the server with message delivery, the senders of a PrivateMessage can
specify the recipients in the associated data because the server will no longer
know the group members.

5.2 Out-of-Order Application Messages

In Wire’s MLS implementation, clients are configured to maintain secrets
from the current epoch as well as the past three epochs. This design de-
cision has implications for the handling of Application messages. Specif-
ically, if an Application message arrives out of order and falls within one
of the past three epochs while the group has transitioned to a new epoch,
the application will automatically decrypt and accept it without additional
careful examination.

However, this scenario poses a challenge to PCS. In this discussion, we are
targeting a PCS form that guarantees that in a group Ggid

mls, where the state
of the group is maintained for more than one epoch and a client Ui ∈ G

gid,e
mls ,

but Ui /∈ G
gid,e+1
mls (the client is removed starting from epoch e + 1), then

messages of client Ui received after the group advanced to epoch e + 1 must
not be accepted even if they are valid messages from epoch e.

In more detail, if an Application message encrypted using one of the past
three epochs is received from a client who was a group member during that
epoch but is no longer part of the group, the application will decrypt and
accept the message. Consequently, a removed client, even after being offi-
cially removed from the group, can continue to send Application messages
using the past epoch, since nothing can distinguish delayed messages from
messages encrypted after the epoch advancement. These messages will be
decrypted and accepted by the application (and therefore, displayed in a

92

5.3. Credentials

conversation of the underlying group) until the epoch is no longer within
the past three epochs. This observation highlights a critical security concern,
as the removal of a member does not take immediate effect.

Suggestions We propose that for Application messages of one of the three
previous epochs, the application has the responsibility of filtering messages
sent from old members of the group. This can be achieved efficiently by
comparing the client’s identity specified in the credential presented at the
leaf node of the ratchet tree in the old epoch (indicated in the Application

message) with the corresponding leaf node in the current epoch. If the
identities match, the message is accepted; otherwise, it is rejected.

Additionally, if we want to ensure that all clients in the group will accept
the exact same messages of a removed member in the last three epochs, the
committer of the epoch, who removes a client with a Commit, can include
in the associated data of the PublicMessage (or PrivateMessage, if sugges-
tion in Section 5.1 is implemented) that contains the Commit the number
of Application messages expected on the removed member’s application
ratchet (for the last three epochs). This must be done for all members re-
moved. Therefore, the committer resolves the ambiguity about whether an
Application message of a removed member was late or encrypted after the
epoch has advanced.

5.3 Credentials

5.3.1 Untrusted Entity

The proposed certificate infrastructure is not resilient enough with Wire’s
architecture for producing client certificates. The ultimate trust is placed in
Wire (controlling both the ACME server SACME and the distribution server
SDS), which should rather be treated as an untrusted entity. Thus, Wire
can issue certificates by itself for any client participating in the messaging
system and, additionally, for new malicious clients for existing users. These
certificates can be used to add arbitrary clients to MLS groups for users with
at least one client already member of the group. In Section 3.7, we omitted
the details of external commits; here, we specify that clients are allowed to
add themselves to the group using the so-called external commits. In Wire’s
MLS implementation, if a client’s user already has at least one client in a
group then the client is allowed to perform the external commit.

Moreover, we emphasize that this solution is even worse than the current
out-of-band verification because the verification of the certificates will be
done automatically using the root of trust: Wire itself. Hence, the MLS
groups will be shown verified while, at the same time, Wire can inject an
arbitrary number of adversarial clients. However, in contrast to Proteus

93

5. Analysis of Wire - MLS

groups, the advantage of MLS groups is that all members have a consistent
view of the group membership; thus, Wire could not add clients without
being noticed by all members.

Suggestions We suggest to implement the countermeasures we propose
in Section 4.4.1: users should have a primary client, whose the (long term)
signature key pair is used to sign the public (long term) signature key of sec-
ondary clients. In the MLS context, the long-term identity key pair will serve
as the signature key pair whose public key is present in KeyPackages of the
client. However, if the signature key pair of the primary client changes, it
is required to “re-link” secondary clients and for other users to re-verify
the fingerprint of the new public signature key. Another solution could
be the additional MLS credentials described in [16], which allow clients to
present credentials that associate attributes from OpenID Connect or multi-
ple sources to a signature key pair.

5.3.2 ACME Key Selection

In ACME, an account is used for issuing certificates. Each account is as-
sociated with an account key pair whose private key signs each request to
the ACME server in order to authenticate the account holders. To issue a
certificate, an account holder generates a certificate key pair and sends a
Certificate Signing Request (CSR), which requests a certificate binding the
public key of the certificate key pair to an identity.

According to the ACME RFC [15] Section 11.1, the account public key and
the certificate public key in a CSR must not be the same; otherwise, the re-
peated use of the same key pair can provide signing oracles to an adversary,
which can result in compromise of the ACME account. Wire fails to comply
with this requirement as the account key pair is also used as the certificate
key pair associated with a CSR1. However, despite the inconsistency with
the ACME standard, we deem this not to be fully exploitable since both the
ACME requests, where the account key pair is used, and the MLS messages,
where the certificate key pair is used, have well-defined structures incom-
patible with each other and therefore achieve a form of domain separation.

1https://github.com/wireapp/rusty-jwt-tools/blob///

443933cea4a984c410b16f90702621c39c4a0bad/acme/src/finalize.rs#L15C25-L15C25

94

https://github.com/wireapp/rusty-jwt-tools/blob///443933cea4a984c410b16f90702621c39c4a0bad/acme/src/finalize.rs#L15C25-L15C25
https://github.com/wireapp/rusty-jwt-tools/blob///443933cea4a984c410b16f90702621c39c4a0bad/acme/src/finalize.rs#L15C25-L15C25

Chapter 6

Conclusion

We conclude by first discussing in Section 6.1 the security status of Wire’s
E2E protocols in consideration of our analysis of Proteus and MLS in Wire.
We then present in Section 6.2 the main lessons learned from the discovered
vulnerabilities. Finally, in Section 6.3, we lead the reader to directions for
future work.

6.1 Wire’s Security Status

In this work, we have analyzed the Wire messenger, particularly its sup-
ported E2E protocols. For each of our findings, we provided mitigations
that improve the overall security of Wire.

Proteus Proteus is currently the main E2E protocol used for group mes-
saging in Wire. In Chapter 4, we presented attacks on Proteus dialogues
undermining Post-Compromise Security despite the fact that Proteus uses
the formally analyzed Double Ratchet algorithm with strong-PCS guaran-
tees as a building block. Additionally, we showed that the communication
protocol does not guarantee correct ordering and display of messages in
conversations. In fact, a malicious server can reorder or even redirect mes-
sages to conversations other than the intended destination. Furthermore, we
demonstrated that a malicious server can trivially violate the confidentiality
of groups due to a naive multi-device solution that treats clients indepen-
dently rather than collectively. Moreover, we discussed more attacks and
findings degrading FS related to ephemeral and short-term values uploaded
to the server for the initial authenticated key exchange.

MLS At the time of writing, MLS support in Wire is in an unstable state,
but in active development. MLS is a standardized E2E communication pro-
tocol that supports out-of-the-box group messaging. The absence of the

95

6. Conclusion

requirement for managing groups at the application level and the fact that
MLS has undergone extensive security analysis during its standardization
process offers a huge improvement to Wire’s messaging system. MLS di-
rectly addresses most of the security issues of Wire’s Proteus E2E commu-
nication, including those related to FS and PCS degradation and message
redirection to other conversations. However, it also comes with its pitfalls.
In Chapter 5, we studied Wire’s choices on open decisions in the MLS stan-
dard. For instance, we showed that, by maintaining past group state, remov-
ing a member from a group does not take immediate effect. Additionally,
we discussed how a malicious orchestrator server can delay PCS guarantees,
which is not feasible in Proteus. Finally, we argued that client authentication
and multi-device support allow the server to trivially violate confidentiality
of groups in a way that is even worse than in Proteus groups.

6.2 Lessons Learned

The main lessons learned in this work are twofold.

• Improper session management can severely impact PCS guarantees: When
dialogues are realized using a session management solution such as
the Proteus dialogues, the security guarantees of the underlying build-
ing block may not be inherited. In fact, we presented attacks against
weak-PCS on Proteus dialogues while the underlying Double Ratchet-
based sessions offer strong-PCS. Our findings align with the results
presented in [30] for Singla’s dialogues, which are implemented us-
ing the Sesame session management protocol, functioning similarly to
Proteus dialogues. The lesson is that, formally proven secure building
blocks do not inherently transfer their security properties when used
and interacting with other components at a higher level. Consequently,
security needs to be studied at this higher level before deployment.

• Unreasonable trust to an untrusted component: The servers controlled by
the entity Wire are given ultimate trust. Most of our attacks exploit the
absence of cryptographic means for securing the integrity and authen-
ticity of information relayed through or maintained at the untrusted
servers. The general rule is that metadata processed at the receiver
must be protected from the untrusted intermediate component using
a signature scheme or a MAC scheme.

6.3 Future Work

As far as we know, we are the first to study MLS integration in a messaging
application. MLS standard leaves many decisions to the application design-
ers. Although the Wire MLS implementation was not stable at the time of

96

6.3. Future Work

writing this work, we highlighted several decisions and their security im-
plications. In the future, we expect many messengers to adopt MLS, and
analyzing their applications will be an exciting area of research. Moreover,
when Wire achieves a stable MLS implementation that clients will be using
for MLS groups, it will be interesting to revisit and analyze their decisions.

97

Bibliography

[1] Protocol buffers documentation. https://protobuf.dev/. (Accessed
on 08/27/2023).

[2] Timeline of certificate authority failures - sslmate. https://sslmate.

com/resources/certificate_authority_failures. (Accessed on
08/27/2023).

[3] Wire - secure messenger - apps on google play. https://play.google.
com/store/apps/details?id=com.wire. (Accessed on 09/23/2023).

[4] M. R. Albrecht, S. Celi, B. Dowling, and D. Jones. Practically-exploitable
cryptographic vulnerabilities in matrix. In 2023 2023 IEEE Symposium
on Security and Privacy (SP) (SP), pages 1419–1436, Los Alamitos, CA,
USA, may 2023. IEEE Computer Society.

[5] Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Ig-
ors Stepanovs. Four attacks and a proof for telegram. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 87–106, 2022.

[6] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath,
Karen Klein, Ilia Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak,
Michael Walter, and Michelle Yeo. Keep the dirt: Tainted treekem,
adaptively and actively secure continuous group key agreement. Cryp-
tology ePrint Archive, Paper 2019/1489, 2019. https://eprint.iacr.

org/2019/1489.

[7] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Security analysis and improvements for the ietf mls standard for group
messaging. Cryptology ePrint Archive, Paper 2019/1189, 2019. https:
//eprint.iacr.org/2019/1189.

99

https://protobuf.dev/
https://sslmate.com/resources/certificate_authority_failures
https://sslmate.com/resources/certificate_authority_failures
https://play.google.com/store/apps/details?id=com.wire
https://play.google.com/store/apps/details?id=com.wire
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2019/1189

Bibliography

[8] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Modular design of secure group messaging protocols and the security
of mls. Cryptology ePrint Archive, Paper 2021/1083, 2021. https:

//eprint.iacr.org/2021/1083.

[9] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Con-
tinuous group key agreement with active security. Cryptology ePrint
Archive, Paper 2020/752, 2020. https://eprint.iacr.org/2020/752.

[10] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk.
Server-aided continuous group key agreement. Cryptology ePrint
Archive, Paper 2021/1456, 2021. https://eprint.iacr.org/2021/

1456.

[11] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security
of mls. Cryptology ePrint Archive, Paper 2020/1327, 2020. https:

//eprint.iacr.org/2020/1327.

[12] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New features of latin dances: Analysis of
salsa, chacha, and rumba. Cryptology ePrint Archive, Paper 2007/472,
2007. https://eprint.iacr.org/2007/472.

[13] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican,
Emad Omara, and Katriel Cohn-Gordon. The Messaging Layer Security
(MLS) Protocol. RFC 9420, July 2023.

[14] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christo-
pher A. Wood. Hybrid Public Key Encryption. RFC 9180, February
2022.

[15] Richard Barnes, Jacob Hoffman-Andrews, Daniel McCarney, and James
Kasten. Automatic Certificate Management Environment (ACME). RFC
8555, March 2019.

[16] Richard Barnes and Suhas Nandakumar. Additional MLS Creden-
tials. Internet-Draft draft-barnes-mls-addl-creds-00, Internet Engineer-
ing Task Force, July 2023. Work in Progress.

[17] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash func-
tions for message authentication. In Neal Koblitz, editor, Advances
in Cryptology — CRYPTO ’96, pages 1–15, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[18] Daniel J. Bernstein. Curve25519: new diffie-hellman speed records.
https://cr.yp.to/ecdh/curve25519-20060209.pdf, Feb. 09 2006.

100

https://eprint.iacr.org/2021/1083
https://eprint.iacr.org/2021/1083
https://eprint.iacr.org/2020/752
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2020/1327
https://eprint.iacr.org/2020/1327
https://eprint.iacr.org/2007/472
https://cr.yp.to/ecdh/curve25519-20060209.pdf

Bibliography

[19] Daniel J. Bernstein. The salsa20 family of stream ciphers. http://cr.

yp.to/snuffle/salsafamily-20071225.pdf, Dec. 25 2007.

[20] Daniel J. Bernstein. Chacha, a variant of salsa20. http://cr.yp.to/

chacha/chacha-20080128.pdf, Jan. 2008.

[21] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Cryptology ePrint Archive,
Paper 2011/368, 2011. https://eprint.iacr.org/2011/368.

[22] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic
Groups A protocol proposal for Messaging Layer Security (MLS). Re-
search report, Inria Paris, May 2018.

[23] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg.
Formal Models and Verified Protocols for Group Messaging: Attacks
and Proofs for IETF MLS. Research report, Inria Paris, December 2019.

[24] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for
authentication and key establishment. https://doi.org/10.1007/

978-3-662-58146-9, 2020.

[25] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messaging
protocol. Cryptology ePrint Archive, Paper 2016/1013, 2016. https:

//eprint.iacr.org/2016/1013.

[26] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. Post-
compromise security. Cryptology ePrint Archive, Paper 2016/221, 2016.
https://eprint.iacr.org/2016/221.

[27] European Commission. Digital markets act. https://ec.europa.eu/

commission/presscorner/detail/en/ip_22_6423, Oct. 31 2022. (Ac-
cessed on 09/09/2023).

[28] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Aurora Naska. Clone
detection in secure messaging: Improving post-compromise security
in practice. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page 1481–1495,
New York, NY, USA, 2020. Association for Computing Machinery.

[29] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of
healing in secure group messaging: Why cross-group effects matter.
Cryptology ePrint Archive, Paper 2019/477, 2019. https://eprint.

iacr.org/2019/477.

101

http://cr.yp.to/snuffle/salsafamily-20071225.pdf
http://cr.yp.to/snuffle/salsafamily-20071225.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
https://eprint.iacr.org/2011/368
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1007/978-3-662-58146-9
https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2016/221
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6423
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6423
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477

Bibliography

[30] Cas Cremers, Charlie Jacomme, and Aurora Naska. Formal analysis
of session-handling in secure messaging: Lifting security from sessions
to conversations. Cryptology ePrint Archive, Paper 2022/1710, 2022.
https://eprint.iacr.org/2022/1710.

[31] Said Ahmed El-Safadi. Proteus and mls - how will secure
communication change? - wire. https://wire.com/en/blog/

proteus-and-mls-how-will-secure-communication-change/, Jul. 27
2023. (Accessed on 09/09/2023).

[32] Marc Fischlin and Felix Günther. Multi-stage key exchange and the
case of google’s quic protocol. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, page
1193–1204, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[33] Wire Swiss GmbH. Wire: About us - who we are, our mission, the
team, work with us. https://wire.com/en/about/. (Accessed on
09/09/2023).

[34] Wire Swiss GmbH. Wire security whitepaper. https://wire-docs.

wire.com/download/Wire+Security+Whitepaper.pdf. (Accessed on
04/10/2023).

[35] Giles Hogben. Google online security blog: An important step towards
secure and interoperable messaging. https://security.googleblog.

com/2023/07/an-important-step-towards-secure-and.html, Jul. 19
2023. (Accessed on 09/09/2023).

[36] iiMedia Research. China: Mau of leading messaging apps
2022 — statista. https://www.statista.com/statistics/1062449/

china-leading-messaging-apps-monthly-active-users/, Feb. 2023.
(Accessed on 09/09/2023).

[37] Tsukasa Ishiguro. Modified version of “latin dances revisited: New
analytic results of salsa20 and chacha”. Cryptology ePrint Archive,
Paper 2012/065, 2012. https://eprint.iacr.org/2012/065.

[38] Jakob Jakobsen and Claudio Orlandi. On the cca (in)security of mt-
proto. Cryptology ePrint Archive, Paper 2015/1177, 2015. https:

//eprint.iacr.org/2015/1177.

[39] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman
protocol. Cryptology ePrint Archive, Paper 2005/176, 2005. https:

//eprint.iacr.org/2005/176.

102

https://eprint.iacr.org/2022/1710
https://wire.com/en/blog/proteus-and-mls-how-will-secure-communication-change/
https://wire.com/en/blog/proteus-and-mls-how-will-secure-communication-change/
https://wire.com/en/about/
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://security.googleblog.com/2023/07/an-important-step-towards-secure-and.html
https://security.googleblog.com/2023/07/an-important-step-towards-secure-and.html
https://www.statista.com/statistics/1062449/china-leading-messaging-apps-monthly-active-users/
https://www.statista.com/statistics/1062449/china-leading-messaging-apps-monthly-active-users/
https://eprint.iacr.org/2012/065
https://eprint.iacr.org/2015/1177
https://eprint.iacr.org/2015/1177
https://eprint.iacr.org/2005/176
https://eprint.iacr.org/2005/176

Bibliography

[40] Hugo Krawczyk. Cryptographic extraction and key derivation: The
hkdf scheme. Cryptology ePrint Archive, Paper 2010/264, 2010. https:
//eprint.iacr.org/2010/264.

[41] Signal Messenger LLC. libsignal. https://github.com/signalapp/

libsignal. (Accessed on 04/10/2023).

[42] Moxie Marlinspike and Trevor Perrin. The double ratchet algo-
rithm. https://signal.org/docs/specifications/doubleratchet/,
Nov. 20 2016. (Accessed on 09/11/2023).

[43] Moxie Marlinspike and Trevor Perrin. The x3dh key agreement proto-
col. https://signal.org/docs/specifications/x3dh/, Nov. 04 2016.
(Accessed on 09/11/2023).

[44] Moxie Marlinspike and Trevor Perrin. The sesame algorithm: Ses-
sion management for asynchronous message encryption. https://

signal.org/docs/specifications/sesame/, April 2017. (Accessed on
08/23/2023).

[45] Meta. Messenger secret conversations: Technical whitepa-
per. https://about.fb.com/wp-content/uploads/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf.
(Accessed on 04/10/2023).

[46] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Proto-
cols. RFC 7539, May 2015.

[47] Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong Truong. Three
lessons from threema: Analysis of a secure messenger. https:

//breakingthe3ma.app/files/Threema-PST22.pdf. (Accessed on
03/17/2023).

[48] Kudelski Security and X-41 D-Sec. Wire application level au-
dit (with kudelski security) — x41 d-sec. https://x41-dsec.

de/security/report/2018/03/06/projects-x41-wire-phase2/. (Ac-
cessed on 09/07/2023).

[49] Kudelski Security and X-41 D-Sec. Wire cryptogra-
phy audit (with x41 d-sec) - kudelski security research.
https://research.kudelskisecurity.com/2017/02/09/

wire-cryptography-audit-with-x41-d-sec/. (Accessed on
09/07/2023).

[50] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Im-
proved key recovery attacks on reduced-round salsa20 and chacha.

103

https://eprint.iacr.org/2010/264
https://eprint.iacr.org/2010/264
https://github.com/signalapp/libsignal
https://github.com/signalapp/libsignal
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/sesame/
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://breakingthe3ma.app/files/Threema-PST22.pdf
https://breakingthe3ma.app/files/Threema-PST22.pdf
https://x41-dsec.de/security/report/2018/03/06/projects-x41-wire-phase2/
https://x41-dsec.de/security/report/2018/03/06/projects-x41-wire-phase2/
https://research.kudelskisecurity.com/2017/02/09/wire-cryptography-audit-with-x41-d-sec/
https://research.kudelskisecurity.com/2017/02/09/wire-cryptography-audit-with-x41-d-sec/

Bibliography

In Proceedings of the 15th International Conference on Information
Security and Cryptology, ICISC’12, page 337–351, Berlin, Heidelberg,
2012. Springer-Verlag.

[51] Signal. Technical information. https://signal.org/docs/. (Accessed
on 04/10/2023).

[52] We Are Social, DataReportal, and Meltwater. Most popular messag-
ing apps 2023 — statista. https://www.statista.com/statistics/

258749/most-popular-global-mobile-messenger-apps/, Jan. 2023.
(Accessed on 09/09/2023).

[53] Telegram. Mtproto mobile protocol. https://core.telegram.org/

mtproto. (Accessed on 09/07/2023).

[54] Telegram. Mtproto mobile protocol v.1.0 (deprecated). https://core.
telegram.org/mtproto_v1. (Accessed on 09/07/2023).

[55] Viber. Viber encryption overview. https://www.viber.com/

app/uploads/viber-encryption-overview.pdf. (Accessed on
04/10/2023).

[56] WhatsApp. Whatsapp encryption overview: Techni-
cal white paper. https://www.whatsapp.com/security/

WhatsApp-Security-Whitepaper.pdf. (Accessed on 04/10/2023).

104

https://signal.org/docs/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://core.telegram.org/mtproto
https://core.telegram.org/mtproto
https://core.telegram.org/mtproto_v1
https://core.telegram.org/mtproto_v1
https://www.viber.com/app/uploads/viber-encryption-overview.pdf
https://www.viber.com/app/uploads/viber-encryption-overview.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

