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Abstract
This paper studies the infinite-width limit of deep linear
neural networks (NNs) initialized with random param-
eters. We obtain that, when the number of parameters
diverges, the training dynamics converge (in a precise
sense) to the dynamics obtained from a gradient descent
on an infinitely wide deterministic linear NN. Moreover,
even if the weights remain random, we get their precise
law along the training dynamics, and prove a quantitative
convergence result of the linear predictor in terms of the
number of parameters. We finally study the continuous-
time limit obtained for infinitely wide linear NNs and
show that the linear predictors of the NN converge at an
exponential rate to the minimal 𝓁2-norm minimizer of
the risk.
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1 INTRODUCTION

The description of the training dynamics of (artificial) neural networks (NNs) in the infinite-width
limit, has in recent years shed light on several aspects of deep learning theory, such as (i) the exis-
tence of well-posed limits, which suggests to interpret practical large scale models as approxima-
tions of those limits, (ii) the importance of the choice of scalings/parametrization1 when passing
to the limit—since several well-behaved but fundamentally different limits can be obtained, and
(iii) the characterization of the long-term behavior of the dynamics—such as global convergence
or algorithmic regularization—which in turn helps understanding the learning abilities of NNs.
These aspects are rather well understood for two-layer NNs, but the theory is lacunary for

deeper NNs. A description of the infinite-width dynamics is available for the Neural Tangent
(NTP) and Integrable (IP) parameterizations (discussed below), but both limits exhibit a form
of degeneracy such as a lack of feature learning. In [45], the Maximal Update Parameteriza-
tion (𝜇 P)—which is in a sense intermediate between (NTP) and (IP) in terms of scale—was
introduced and shown to preserve feature learning in the limit for certain architectures, such as
fully-connected NNs, which suggests that 𝜇 P is a natural case of study. However, the theoretical
understanding of this limit is so far very limited, because this limit involves large randommatrices
in an intricate way. In particular, the following fundamental questions are still open:

(i) Is the infinite-width limit of Gradient Descent (GD) a GD trajectory in some infinite-
dimensional space?

(ii) Does it admit a well-posed continuous-time limit?
(iii) Does it converge to minimizers? And when several minimizers exist, can we characterize

which particular solution it selects?

In this paper, we study the infinite-width limit of deep linear2 NNs under 𝜇P, and we answer
positively to all these questions. Throughout the paper, we focus on the three-layer case, although
our tools and analysis could be extended to more layers (the main conceptual gap happens when
going from two to three layers). The last section shows, without technical details, how our three-
layer results read in the case of deepNNswith an arbitrary number of layers. Our analysis of linear

1 That is, the choice, as a function of the width, of the variance of the random initialization and of the learning rates for
each layer.
2 Linear NNs are NNs without nonlinear maps between layers. Although they are linear in the input data, we note that
these models are non-linear in their parameters.
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 3

NN is intended as a step towards understanding the dynamics in the general non-linear case, for
which the three questions above are still unresolved.

1.1 Related work and other limits

The first analysis of wide NNs may be traced back to [7, 34]. The dynamics of wide NNs were
first studied in [2, 14, 17, 28] for the NTP (or related linear dynamics) and in [11, 33, 35, 39, 41] for
non-linear dynamics in two-layer NNs under 𝜇P, which is known asmean-field parameterization
in this case (see Remark 2.1 for a description of these various parameterizations). The importance
of the choice of parameterization when passing to the limit was first highlighted in [12, 32] and
systematically studied in [23, 45]. Parameterizations akin to 𝜇Pwere previously empirically stud-
ied in [21] as a natural extension of the two-layer mean-field parameterization and a fix to the
degeneracy of IP using large initial learning rates was proposed in [26].
Our work has strong connections to [45], which shows, essentially, that all the random vectors

that are generated when running a finite number of GD steps on a (non-linear) NN converge
jointly in law to a family of objects characterized by an abstract algorithm. Because of the intricate
dependency that arises between random matrices and random vectors, this limit “algorithm” is,
unfortunately, more complex than its finite-width counterpart and hard to study beyond a fewGD
steps (in particular, it is non Markovian, i.e., the state of the infinite width system at time 𝑡 is not
enough to determine the state at time 𝑡 + 1). One of our contributions is, for the particular case of
linear NNs, to exhibit a simple and theoretically tractable structure in this limit. From a technical
viewpoint, [45] relies on the technique of Gaussian conditioning, which originated in the field of
statistical physics to describe TAP equations [8, 9], while we use the method of moments which
is another classical technique of random matrix theory that allows to easily obtain universality
(i.e., our results apply for non-Gaussian initializations as well; note that the universality of the
technique of [45] was proved recently in [24]) and rates that are quantitative in the width. The
randommatrix statements of our work (in particular Proposition 3.3) have thus their counterpart
in the language of [45]; by proposing an independent proof with different techniques, our purpose
is to make the analysis self-contained as well as to shed a different light on the objects appearing
in the limit. See also [27] for more links between random matrix theory and NN theory.
Another closely related work is [10], which introduces a closed system of equations describing

the dynamics of infinite width (non-linear) NNs. These equations can be written in continuous-
time as well, thus giving an answer the question (ii). The aforementioned work, however, which
relies on tools from dynamical mean-field theory, is derived at a formal level with no explicit con-
trol of the error terms. For the linear case, [10] writes a more specific system of equations that
describes the same dynamics as ours, but our descriptions are of different nature: as in [45], the
systemderived in [10] is nonMarkovian. In contrast, our description is a gradient flowdynamics—
thus Markovian—and all the complexity that arises from the correlated random matrices is
encoded in the initial state of the dynamics. The simplicity of our limit system allows us in
particular to study the large time behavior of the dynamics to answer question (iii).
Finally, there is a rich literature on the training dynamics of linear NNs. Some works show that

the optimization landscape is benign [6, 15, 19] (the latter studies the NTP and thus a dynamics
that becomes linear in the large width case), other works study settings where the dynamics dis-
play a “saddle to saddle” behavior [22, 29, 31, 40], and finally, a line of works studies the implicit
bias of GD [4, 30]; that is, which solution is chosen when the problem is underdetermined. A
common assumption in this literature is that the matrices are balanced at initialization, that is,
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4 CHIZAT et al.

𝑊𝓁𝑊
⊤
𝓁

= 𝑊⊤
𝓁+1

𝑊𝓁+1 where 𝑊𝓁 and 𝑊𝓁+1 are the initial matrices in two consecutive layers of
the NN. This assumption leads to simple dynamics [3], which remain tractable even in the infi-
nite depth limit [13]. While the assumption covers the case of orthogonal initialization, it is not
satisfied for standard i.i.d. initializations, where𝑊𝓁𝑊

⊤
𝓁
and𝑊⊤

𝓁+1
𝑊𝓁+1 are independent random

matrices. The simplification that results from the “balancedness” assumption can be seen in our
analysis from the fact that in Proposition 3.3,most of the terms in the right hand sidewould vanish,
leading to a much simpler recursion.
Our analysis in the last section borrows ideas from [30] which shows a min-𝓁2 implicit bias for

linear NNs with the logistic loss. Note that linear NN do not always exhibit this type of implicit
bias: there are subtle results for architectures that are not fully connected [25, 37, 38, 44].

1.2 Organization of the paper

In Section 2, we present our main results and illustrate them with numerical experiments. Sec-
tion 3 studies the structure of iterated products of large random matrices with random vectors,
and we show that they can be expanded in a basis of random vectors. These objects are the build-
ing blocks of the GD iterations and these results are exploited in Section 4, which contains the
proof of the infinite-width limit. In Section 5 we study properties of the limit system. Finally, in
Section 6 we describe the analogous results for multi-layer NNs.

2 PRESENTATION OF THEMAIN RESULTS

This section presents a rigorous discussion of linear NNs under 𝜇P of width 𝑚, in the limit as
𝑚 → ∞. In the case of two-layer NNs, the analogous problem has been qualitatively understood
in [11, 33, 35, 39, 41, 43] (see also the reviews [5, 18, 20]). The first striking special feature of the
two layers case is that there is a natural choice of the parametrization—which mathematically is
represented by a suitable factor of𝑚 in front of the output weights—that allows the parameters to
remain nondegenerate and deterministic in the limit 𝑚 → ∞. Under this parametrization, two-
layer NNs can be interpreted as aWasserstein gradient flow for the weights (also in the limit), and
hence the problem as 𝑚 → ∞ is also a solution of a Wasserstein gradient flow (and in particular
it can be written as a family of parabolic equations).
For NNs of more than two layers, several aspects of the previous analysis change. Firstly, as dis-

cussed in the introduction, it is not possible to find a natural parametrization (that is, a consistent
rescaling of the three layers of weights) such that one expects them to remain nondegenerate or
deterministic in the limit 𝑚 → ∞. In fact, as we will also see a posteriori, with the right choice
of parametrization outlined in subsections 2.1 and 2.2 below, the evolution of the entries of the
intermediate layer is negligible with respect to their initialization size, but these small variations
change significantly the output. Due to this issue with parametrizations, it is essential in our anal-
ysis to consider randomized initial data, and to expect such random effect to survive in our limit
system with some averaging effects.
Our limit system is expressed in a basis of independent, identically distributed gaussian random

variables. In turn, its coefficients are obtained by solving an infinitely wide linear NN, which in
the continuous-time limit can be represented as an explicit collection of ODEs.
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 5

2.1 Setting

Let ℎ̃𝑚 be a single output three-layer linear NN with input 𝑥 ∈ ℝ𝑑, width 𝑚 ∈ ℕ, and weights
𝑼̃𝑚 ∈ ℝ𝑚×𝑑, 𝑾̃𝑚 ∈ ℝ𝑚×𝑚, and 𝑽̃𝑚 ∈ ℝ𝑚:

𝑦 = ℎ̃𝑚(𝑥, 𝑼̃𝑚, 𝑾̃𝑚, 𝑽̃𝑚) =

𝑚∑
𝑖=1

𝑽̃𝑚
𝑖

𝑚∑
𝑗=1

𝑾̃𝑚
𝑖𝑗

𝑑∑
𝓁=1

𝑼̃𝑚
𝑗𝓁

𝑥𝓁 = ⟨𝑽̃𝑚, 𝑾̃𝑚𝑼̃𝑚𝑥⟩.
Given a smooth loss function ∶ ℝ × ℝ → ℝ, we study the behavior ofGD starting froma random
initialization on the expected loss 𝐹̃ defined as

𝐹̃𝑚(𝑼̃𝑚, 𝑾̃𝑚, 𝑽̃𝑚) ∶= ∫
ℝ𝑑×ℝ

(ℎ̃𝑚(𝑥), 𝑦) 𝑑𝜌(𝑥, 𝑦).

where 𝜌 ∈ (ℝ𝑑 × ℝ) is a probability distribution that represents the input/output data.
Specifically, we consider the sequence initialized as

𝑈̃𝑚
𝑗𝓁

(0) ∼  (0, 1), 𝑊̃𝑚
𝑖𝑗

(0) ∼ 
(

0,
1

𝑚

)
, 𝑉̃𝑚

𝑖
(0) ∼ 

(
0,

1

𝑚2

)
, (2.1)

and, with a step-size/learning rate 𝜏, defined recursively as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑼̃𝑚(𝜅 + 1) = 𝑼̃𝑚(𝜅) − 𝜏𝑚 ∫ ′
(
ℎ̃𝑚

𝜅,𝜏(𝑥), 𝑦
)
∇𝑼̃𝑚ℎ̃𝑚

𝜅,𝜏(𝑥)𝑑𝜌𝜅(𝑥, 𝑦),

𝑾̃𝑚(𝜅 + 1) = 𝑾̃𝑚(𝜅) − 𝜏 ∫ ′
(
ℎ̃𝑚

𝜅,𝜏(𝑥), 𝑦
)
∇𝑾̃𝑚ℎ̃𝑚

𝜅,𝜏(𝑥)𝑑𝜌𝜅(𝑥, 𝑦),

𝑽̃𝑚(𝜅 + 1) = 𝑽̃𝑚(𝜅) − 𝜏𝑚−1 ∫ ′
(
ℎ̃𝑚

𝜅,𝜏(𝑥), 𝑦
)
∇𝑽̃𝑚ℎ̃𝑚

𝜅,𝜏(𝑥)𝑑𝜌𝜅(𝑥, 𝑦).

where for notational convenience we are denoting

ℎ̃𝑚
𝜅,𝜏(𝑥) = ℎ̃𝑚(𝑥, 𝑼̃𝑚(𝜅), 𝑾̃𝑚(𝜅), 𝑽̃𝑚(𝜅))

∇∙ℎ̃
𝑚
𝜅,𝜏(𝑥) =

(
∇∙ℎ̃

𝑚
)
(𝑥, 𝑼̃𝑚(𝜅), 𝑾̃𝑚(𝜅), 𝑽̃𝑚(𝜅)),

and ′ denotes the derivative of the loss function with respect to the first argument. For the sake
of generality, we are also considering 𝜌𝜅 depending on 𝜅, so that (mini-batch) stochastic gradient
descent (SGD) is covered by our analysis3. Our only assumption is that these probabilitymeasures
have uniformly bounded second moments in the first variable:

sup
𝜅 ∫ |𝑥|2𝜌𝜅(𝑥, 𝑦) < +∞. (2.2)

The factors in red (𝑚 and 𝑚−1) are layer-wise learning rates introduced so that each layer
contributes equally to the variations of the predictor in the limit, as the theory will verify.

3 For instance, mini-batch SGD is obtained by defining 𝜌𝜅 as the (random) empirical distribution of samples chosen in the
mini-batch at time step 𝜅.
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6 CHIZAT et al.

The randomness of the initialization—and in particular the large random matrix 𝑾̃(0)—play
a key role in our analysis. The choice of scalings is motivated as follows:

∙ The scaling of 𝑼̃ and 𝑾̃ is chosen so that 𝑼̃𝑚(0)𝑥 and 𝑾̃𝑚(0)𝑼̃𝑚(0)𝑥 have a nonzero variance
that does not depend on𝑚 for large𝑚 (by the CLT);

∙ The scaling of 𝑽̃ is of order 1∕𝑚 in order to avoid the lazy training phenomenon [12], that leads
to a linear dynamics described in [28].

Remark 2.1. This choice of scale for initialization is referred to asMaximalUpdate Parametrization
(𝜇P) in [45], where it is shown to lead to feature-learning for each layer4. In the introduction, we
mentioned NTP, which corresponds to the scales (2.1) but with 𝑉̃𝑖(0) ∼  (0, 1∕𝑚); and IP which
corresponds to (2.1) but with 𝑊̃𝑖𝑗(0) ∼ 𝑁(𝑐, 1∕𝑚2) which is degenerate unless one chooses 𝑐 ≠ 0

or time-dependent learning rates [26].

Computing the gradient using the chain rule, we get the following recursion

⎧⎪⎪⎨⎪⎪⎩
𝑼̃𝑚(𝜅 + 1) = 𝑼̃𝑚(𝜅) − 𝜏𝑚𝑾̃𝑚(𝜅)⊤𝑽̃𝑚(𝜅)

(
𝝃𝑚
𝜅

)⊤
,

𝑾̃𝑚(𝜅 + 1) = 𝑾̃𝑚(𝜅) − 𝜏𝑽̃𝑚(𝜅)
(
𝝃𝑚
𝜅

)⊤
𝑼̃𝑚(𝜅)⊤,

𝑽̃𝑚(𝜅 + 1) = 𝑽̃𝑚(𝜅) − 𝜏𝑚−1𝑾̃𝑚(𝜅)𝑼̃𝑚(𝜅)𝝃𝑚
𝜅 .

where we have denoted 𝝃𝑚
𝜅 ∶= ∫ ′

(
ℎ̃𝑚

𝜅,𝜏(𝑥), 𝑦
)
𝑥 𝑑𝜌𝜅(𝑥, 𝑦) ∈ ℝ𝑑,

2.2 Scale-free parameterization

In the theory, it will appear convenient to deal with objects with a scale that is independent of𝑚.
To this end, we let

𝒁𝑚 ∶=
√

𝑚𝑾̃𝑚(0)

(which is a𝑚 × 𝑚 matrix with independent (0, 1) entries) and we define:

𝑼𝑚(𝜅) ∶= 𝑼̃𝑚(𝜅),

𝑾𝑚(𝜅) ∶= 𝑚(𝑾̃𝑚(𝜅) − 𝑾̃𝑚(0)) = 𝑚𝑾̃𝑚(𝜅) −
√

𝑚𝒁𝑚,

𝑽𝑚(𝜅) ∶= 𝑚𝑽̃𝑚(𝜅)

(2.3)

where the scaling factors are adjusted so that these matrices/vectors have entries of order 1, as the
theory will verify. By definition, 𝑼𝑚(0) and 𝑽𝑚(0) are random arrays with entries  (0, 1) and
𝑾𝑚(0) is the zero matrix:

𝑈𝑚
𝑗𝓁

(0) ∼  (0, 1), 𝑊𝑚
𝑖𝑗 (0) = 0, 𝑉𝑚

𝑖 (0) ∼  (0, 1). (2.4)

4 In our context, there is no feature learning per se since the predictor is linear, but we will see that the dynamics remains
non-linear in the parameters in the limit (in contrast to NTP).
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 7

The NN in these new variables becomes

𝑦 = ℎ𝑚(𝑥,𝑼𝑚,𝑾𝑚,𝑽𝑚) =

⟨
1

𝑚
𝑽𝑚,

(
1√
𝑚

𝒁𝑚 +
1

𝑚
𝑾𝑚

)
𝑼𝑚𝑥

⟩
.

The evolution of (𝑼𝑚(𝜅),𝑾𝑚(𝜅), 𝑽𝑚(𝜅))𝜅∈ℕ can be also interpreted as GD (with layer-wise
learning rates) on the objective function

𝐹𝑚(𝑼𝑚,𝑾𝑚,𝑽𝑚) ∶= ∫
ℝ𝑑×ℝ

(ℎ𝑚(𝑥,𝑼𝑚,𝑾𝑚,𝑽𝑚), 𝑦) 𝑑𝜌(𝑥, 𝑦).

We do not explicitly include 𝒁 in the variables as it is fixed during the training (i.e., we interpret
𝐹𝑚 as a random function). All in all, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑼𝑚(𝜅 + 1) = 𝑼𝑚(𝜅) − 𝜏

[
1√
𝑚

𝒁𝑚 +
1

𝑚
𝑾𝑚(𝜅)

]⊤
𝑽𝑚(𝜅)(𝝃𝑚

𝜅,𝜏)
⊤,

𝑾𝑚(𝜅 + 1) = 𝑾𝑚(𝜅) − 𝜏𝑽𝑚(𝜅)(𝝃𝑚
𝜅,𝜏)

⊤(𝑼𝑚(𝜅))⊤,

𝑽𝑚(𝜅 + 1) = 𝑽𝑚(𝜅) − 𝜏

[
1√
𝑚

𝒁𝑚 +
1

𝑚
𝑾𝑚(𝜅)

]
𝑼𝑚(𝜅)𝝃𝑚

𝜅,𝜏,

(2.5)

where we have denoted 𝝃𝑚
𝜅,𝜏 = ∫ 𝑥′(ℎ𝑚

𝜅,𝜏(𝑥), 𝑦)𝑑𝜌𝜅(𝑥, 𝑦) ∈ ℝ𝑑 as above, with ℎ𝑚
𝜅,𝜏(𝑥) =

ℎ𝑚(𝑥,𝑼𝑚(𝜅),𝑾𝑚(𝜅), 𝑽𝑚(𝜅)).

2.3 Limit dynamics

Our main result is that, when𝑚 → ∞, the training dynamics converge, in a sense detailed below,
to some dynamics which are obtained by running the same gradient-based algorithm (i.e., GD or
SGD) on an infinitely wide three-layer linear NN

𝜒(𝑥, 𝑨, 𝑩, 𝑮) = 𝑩⊤(𝚲 + 𝑮)𝑨𝑥, (2.6)

where the variables

𝑨 ∈ 𝓁2(ℕ × {1, … , 𝑑}) ⊂ ℝ∞×𝑑, 𝑮 ∈ 𝓁2(ℕ × ℕ) ⊂ ℝ∞×∞, 𝑩 ∈ 𝓁2(ℕ) ⊂ ℝ∞

are initialized with

𝑨(0) =

⎛⎜⎜⎜⎜⎜⎝

Idd

𝟎𝑑×1

𝟎𝑑×1

⋮

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑨1(0)

⋮

𝑨𝑑(0)

𝑨𝑑+1(0)

𝑨𝑑+2(0)

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ ℝ∞×𝑑, 𝑩(0) =

⎛⎜⎜⎜⎜⎜⎝

1

0

0

⋮

⎞⎟⎟⎟⎟⎟⎠
∈ ℝ∞×1, (2.7)
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8 CHIZAT et al.

where 𝑨𝑖(0) ∈ ℝ1×𝑑 for 𝑖 ∈ ℕ and

(𝑮)𝑖𝑗(0) = 0 ∀(𝑖, 𝑗) ∈ ℕ2. (2.8)

Also 𝚲 is fixed (not trained) and represents the initialization of the intermediate layer. It is given
by

𝚲 =

⎛⎜⎜⎜⎜⎜⎝

𝑑
⏞⎴⎴⏞⎴⎴⏞

0 … 0

1 0 …

0 1 0

⋮ ⋱ ⋱

1 0 0 …

0 1 0 ⋱

… 0 1 ⋱

⋱ ⋱ ⋱ ⋱

⎞⎟⎟⎟⎟⎟⎠
∈ ℝ∞×∞, (2.9)

that is, 𝚲 = (Λ𝑖𝑗)𝑖𝑗 where

Λ𝑖𝑗 =

{
1 if 𝑖 + 𝑑 = 𝑗 or 𝑗 + 1 = 𝑖,

0 otherwise.

The dynamics are therefore given by the following recursion

⎧⎪⎨⎪⎩
𝑨(𝜅 + 1) = 𝑨(𝜅) − 𝜏[𝚲 + 𝑮(𝜅)]⊤𝑩(𝜅)𝝃⊤

𝜅,𝜏,

𝑮(𝜅 + 1) = 𝑮(𝜅) − 𝜏𝑩(𝜅)𝝃⊤
𝜅,𝜏(𝑨(𝜅))⊤,

𝑩(𝜅 + 1) = 𝑩(𝜅) − 𝜏[𝚲 + 𝑮(𝜅)]𝑨(𝜅)𝝃𝜅,𝜏,

(2.10)

with

𝜒𝜅,𝜏(𝑥) = 𝜒(𝑥, 𝑨(𝜅), 𝑮(𝜅), 𝑩(𝜅)) and 𝝃𝜅,𝜏 = ∫ 𝑥′(𝜒𝜅,𝜏(𝑥), 𝑦)𝑑𝜌𝜅(𝑥, 𝑦) ∈ ℝ𝑑.

When 𝜌𝜅 = 𝜌 for all 𝜅 ∈ ℕ, this recursion is exactly the GD on the (deterministic) objective
function  defined by

(𝑨, 𝑮, 𝑩) = ∫ (𝑩⊤(𝚲 + 𝑮)𝑨𝑥, 𝑦)𝑑𝜌(𝑥, 𝑦). (2.11)

2.4 Main statements

Let us consider two families of independent infinite Gaussian vectors

(𝚪1, 𝚪2, … ) and (𝚪̃1, 𝚪̃2, … ), (2.12)

where the entries of 𝚪𝑘, 𝚪̃𝑘 ∈ ℝℕ are all independent (0, 1) random vectors. We define

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑼∞(𝜅) =
∑
𝑖≥1

𝚪𝑖𝑨𝑖(𝜅),

𝑾∞(𝜅) =
∑
𝑖,𝑗≥1

𝚪̃𝑖𝚪𝑗
⊤𝐺𝑖𝑗(𝜅),

𝑽∞(𝜅) =
∑
𝑖≥1

𝚪̃𝑖𝐵𝑖(𝜅).

(2.13)
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 9

We shall prove the convergence in distribution, as 𝑚 → ∞, of the finite dimensional time-
discretized dynamics to the infinite one (see Definition 3.1 for the precise definition of
convergence that we use). The proof of convergence will rely on the method of moments: we
will prove that the moments of our random variables converge to the ones of the limit as𝑚 → ∞,
and this implies convergence in distribution. Our main theorem is the following:

Theorem 2.2 (Infinite-width limit). Let 𝜏 > 0 be fixed, let  be such that ′′ is bounded, and let us
suppose that (2.2) holds.
Let (𝑼𝑚(𝜅),𝑾𝑚(𝜅), 𝑽𝑚(𝜅))𝜅∈ℕ be the solution to (2.5) with initialization (2.4), and let

(𝑼∞(𝜅),𝑾∞(𝜅), 𝑽∞(𝜅))𝜅∈ℕ be given by (2.13) (see (2.7)-(2.8)-(2.10)). Then, for any stopping time
𝜅∗ ∈ ℕ,

((𝑼𝑚(0),𝑾𝑚(0), 𝑽𝑚(0)), … , (𝑼𝑚(𝜅∗),𝑾
𝑚(𝜅∗), 𝑽

𝑚(𝜅∗)))

↓ d.

((𝑼∞(0),𝑾∞(0), 𝑽∞(0)), … , (𝑼∞(𝜅∗),𝑾
∞(𝜅∗), 𝑽

∞(𝜅∗)))

as𝑚 → ∞. Moreover, the vectors inℝ𝑑 that represent the linear predictors of the NN,

𝜆𝑚(𝜅) = 𝑼𝑚(𝜅)⊤(𝑚−1∕2𝒁𝑚 + 𝑚−1𝑾𝑚(𝜅))⊤(𝑚−1𝑽𝑚(𝜅))

𝜆∞(𝜅) = 𝑨(𝜅)⊤(𝚲 + 𝑮(𝜅))⊤𝑩(𝜅),

satisfy 𝜆𝑚(𝜅)
𝑎.𝑠.
→ 𝜆∞(𝜅) for every 𝜅 ∈ ℕ (with the quantitative estimate (2.14) below).

We can make the following remarks:

(i) Since (𝑼∞
𝑗 (𝜅),𝑾∞

𝑖,𝑗(𝜅), 𝑽∞
𝑖 (𝜅))𝜅

∗

𝜅=1 is a separately exchangeableℝ3𝜅∗ -valued randomarray, the
dependency structure between its entries that we obtain in Theorem 2.2 is consistent, as it
should, with the Aldous-Hover representation of infinite exchangeable arrays [1, Thm. 1.4],
which is a generalization of De Finetti’s theorem. See [36] for a study of gradient flows with
a similar dependency structure.

(ii) A perhaps counter-intuitive consequence of this theorem is that, even if this parametrization
𝜇P preserves feature-learning in the limit, the evolution of the entries of the intermediate
layer 𝑾̃𝑚

𝑖,𝑗
(𝜅) − 𝑾̃𝑚

𝑖,𝑗
(0) (of order 1∕𝑚) is negligible in front of theirmagnitude at initialization

𝑾̃𝑚
𝑖,𝑗(0) (of order 1∕

√
𝑚). Still, these small variations collectively create a significant variation

of the output.
(iii) In the proof of this theorem, the convergence of the predictor is quantified as

𝔼
[‖𝜆𝑚(𝜅) − 𝜆∞(𝜅)‖2] ≤ 𝐶𝜀,𝜅𝑚

−1+𝜀, (2.14)

for any 𝜀 > 0 and for some 𝐶𝜀,𝜅 depending on 𝜀 > 0 and 𝜅, but independent of 𝑚. As can be
seen from numerical experiments (see Figure 1C) this convergence is expected to be (almost)
optimal, which is also consistent with the fact that it comes from a Central Limit Theorem.

(iv) Our proofs are based on universality properties and only use that 𝒁𝑚 has i.i.d. subgaussian
entries with zero mean and unit variance. In particular, the previous statement is also true
for these more general initializations of the 𝑾̃𝑚 weights.
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10 CHIZAT et al.

F IGURE 1 Convergence to the limit model (a) Trajectory of the predictor 𝜆𝑚(𝑡), projection on the two first
coordinates (bullets represent 𝜆𝑚(0)). (b) Rate of convergence of the predictor as a function of the width𝑚, at
initialization 𝜅 = 0 and large time 𝜅 = 1000 (shaded area represent standard deviation over 50 repetitions). (c)
Evolution of the average square of an entry of 𝑽𝑚 and in the limit.

(v) If we want to take more general subgaussian initializations𝑼𝑚(0) and𝑽𝑚(0)we can also do
it, provided that in the previous statement (more precisely, in (2.12)) we change 𝚪1 and 𝚪̃1 by
𝑼∞(0) and 𝑽∞(0); see Figure 3.

Our second statement studies the behavior of the limit model, which is an infinitely wide lin-
ear NN with a particular deterministic initialization. For the sake of simplicity, we consider the
continuous-time limit 𝜏 → 0 of the dynamics, that is, the gradient flow of the functional 𝐹∞ and
the corresponding linear predictor (𝜆∞(𝑡))𝑡≥0.

Theorem 2.3. Consider the square loss (𝑦̂, 𝑦) =
1

2
|𝑦 − 𝑦̂|2 and assume that 𝜌 has finite second

moments. Then 𝜆∞(𝑡) converges at an exponential rate to the minimal 𝓁2-norm minimizer of the
risk 𝜆 ↦

1

2
∫ |𝜆⊤𝑥 − 𝑦|2𝑑𝜌(𝑥, 𝑦).

Note that this implicit bias towards min-𝓁2 norm solutions is not a particularly impressive
property as such, since just the basic gradient flow on the square-loss initialized from 0, that is,

𝜆gf (0) = 0 𝜆′
gf

(𝑡) = −∫ 𝑥(𝜆gf (𝑡)
⊤𝑥 − 𝑦)𝑑𝜌(𝑥, 𝑦), (2.15)
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 11

F IGURE 2 Behavior of the limit model and effect of the scale parameter 𝑠. (left) Projection of 𝜆𝑚(𝑡) on the
two first coordinates. (right) Evolution of the loss.

satisfies the same statement (notice, however, that our dynamics are truly non-linear, see
Figure 2). This result is mostly intended to highlight the fact that our characterization of the
infinite-width dynamics is precise enough to obtain such properties.

2.5 Numerical illustrations

We consider GD for the finite-width and infinite-width models, with input dimension 𝑑 = 10, the
square loss, a data distribution given by 𝑥 ∼  (0, Id𝑑) and 𝑦 = 𝑥⊤𝜆∗ for some 𝜆∗ ∈ ℝ𝑑 that is
randomly drawn from (0, Id𝑑). The code to reproduce the experiments is available online5.
Figure 1 illustrates the convergence to the limitmodel as thewidth𝑚 → ∞, with a step-size 𝜏 =

0.2. In (A), we show the path of (𝜆𝑚(𝜅))𝜅≥0 projected on two first coordinates of ℝ𝑑. We observe
that, as the width increases, they follow a trajectory approaching that of the limit (𝜆∞(𝜅))𝜅≥0,
which starts at 𝜆∞(0) = 0 and converges to themin-𝓁2 normpredictor 𝜆∗ shown as a red diamond,
and computed via the pseudo-inverse formula. In (B) we represent the rate of convergence in 𝑚

of the predictor as a function of the width, at both initialisation and large time. As it can be seen,
it corresponds to (2.14) with 𝜀 = 0. Finally, in (C), we represent the mean square of the entries of
𝑽𝑚(𝜅), computed as 𝑣𝜅 =

1

𝑚

∑𝑚

𝑖=1 𝑽𝑗(𝜅)2 (which is also a proxy for the variance of 𝑽𝑚
𝑗

(𝜅) for 1 ≤
𝑗 ≤ 𝑚 since the entries of 𝑽𝑚(𝜅) are asymptotically independent) and its limit which is ‖𝑩(𝜅)‖22
by (2.13). This is just a simple example of a statistics described by our limit model.
In Figure 2, we take a small step-size to approximate the gradient flow 𝜏 = 0.001 and explore

the behavior of the limit model. It can be seen from the GD equations that at 𝜅 steps, only the
first 𝑑 ⋅ 𝜅 rows of 𝑨(𝜅) and of 𝑩(𝜅) are non-zero. Thus the infinite model can be trained exactly
for a bounded number of steps6. We also introduce a fixed scale parameter 𝑠 > 0 that multiplies
the predictor, which is equivalent to scaling the standard deviation of the initialization by 𝑠1∕3 at
each layer. By [12] and since 𝜆∞(0) = 0, we know that as 𝑠 → ∞, the dynamics converges to the

5 https://github.com/lchizat/2022-wide-linear-NN
6We also noticed that truncating the limit model (2.6) below this size introduces an error that decays exponentially in the
width, instead of the𝑚−1∕2 rate for the randomly initialized model.
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12 CHIZAT et al.

F IGURE 3 Illustration for a non-Gaussian initialization (centered uniform distribution with the same
variance as in the Gaussian case). (a) The distribution of parameters is non-Gaussian at all times, but its exact
shape can be computed using the limit model (see remark (v) after Theorem 2.2) (b) The convergence of the
predictor to the limit model happens at the same rate as in the Gaussian case.

linear dynamics (2.15). This illustration confirms that the dynamics of 𝜆∞ is non-linear (unless
𝑠 → ∞), although it has the same endpoints at 𝑡 = 0 and 𝑡 = ∞ as the linear dynamics. For small
scales, 𝑠 ≪ 1, we observe on the right plot that the objective function starts with a plateau; this
is reflected by our convergence analysis in Proposition 5.5, which is a two-phase analysis: a first
phase to escape from the initialization (which is close to a stationary point when 𝑠 ≪ 1) and a
second phase with exponential convergence. We note that the convergence speeds in this plot are
not directly comparable because we did not attempt to find the best step-size 𝜏 for various values
of 𝑠.
Finally, in Figure 3A we plot the distribution of the weights at large times with non-Gaussian

initialization (in blue). As discussed above (remark (v)) the weights are never Gaussian in this
case (not even in the large time limit) since in general the first coefficient in the basis (e.g., 𝑩1(𝜅))
does not necessarily vanish at 𝜅 = ∞. However, the analysis described in Theorem 2.2 still works
and the non-gaussianity of the weights is only due to the interference of this first element of the
basis: the other elements are still Gaussian. In the figure, this can be seen by subtracting the first
element from the distribution of weights, where we recover a Gaussian profile (in orange). In any
case, we still expect a rate of convergence to the minimizer given by the rate of the Central Limit
Theorem (Figure 3B).

3 AN INDEPENDENT FAMILY OF GAUSSIAN VECTORS

3.1 Notation

We denote vectors and matrices with bolded symbols (except for 𝑥 ∈ ℝ𝑑), and scalars with plain
symbols. Given an element𝑴 ∈ ℝ𝑚×𝑛 with𝑚, 𝑛 ∈ ℕ ∪ {∞}, we denote

‖𝑴‖2 ∶=

𝑚∑
𝑖=1

𝑛∑
𝑗=1

|𝑀𝑖𝑗|2.
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 13

More generally, for any 𝑝 ≥ 1, we denote

‖𝑴‖𝑝𝑝 ∶=

𝑚∑
𝑖=1

𝑛∑
𝑗=1

|𝑀𝑖𝑗|𝑝.

When 𝑴 is a random array in a probability space (Ω, , ℙ), we still denote 𝑴 ∈ ℝ𝑚×𝑛 where
now it is implicitly evaluated at an element of the sample space 𝜔 ∈ Ω. In particular, ‖𝑴‖2 =‖𝑴(𝜔)‖2 where the evaluation will be implicit whenever there is no ambiguity. It must not be
confused with 𝔼[‖𝑴‖2], which is given by

𝔼
[‖𝑴‖2] = ∫

Ω

‖𝑴(𝜔)‖2𝑑ℙ(𝜔).

Finally, let us give the following definition on the convergence in law/distribution for arrays of
increasing size:

Definition 3.1. Given a family of random vectors (𝑿𝑚
𝑖

)𝑖∈ℕ with 𝑿𝑚
𝑖

∈ ℝ𝑚, we say that they con-
verge in distribution to a family of infinite-dimensional randomvectors (𝑿∞

𝑖
)𝑖∈ℕ with𝑿∞

𝑖
∈ ℝ∞ if

for every fixed𝑀,𝑁 ∈ ℕ, the family ((𝑿𝑚
𝑖

)1..𝑁)1≤𝑖≤𝑀 converges in distribution to ((𝑿∞
𝑖

)1..𝑁)1≤𝑖≤𝑀

(where we have denoted, for 𝑿 ∈ ℝ𝑚, 𝑿1..𝑁 its first𝑁 components; which is always well defined,
for𝑚 large enough).

3.2 The Gaussian bases

For the sake of readability, we first construct the independent family that will act as a basis of our
evolution in the unidimensional input case. We refer to Section 3.5 below for the statements in
the multi-dimensional input case, where the proofs are essentially the same.
Let𝑼 and 𝑽 be two infinite random vectors,

𝑼 ∶=
⎛⎜⎜⎝
𝑈1

𝑈2

⋮

⎞⎟⎟⎠ , 𝑽 ∶=
⎛⎜⎜⎝
𝑉1

𝑉2

⋮

⎞⎟⎟⎠ , (3.1)

with entries (𝑈𝑖)𝑖∈ℕ and (𝑉𝑖)𝑖∈ℕ that are independent random variables with𝑈𝑖, 𝑉𝑖 ∼  (0, 1) for
𝑖 ∈ ℕ.
Let 𝒁 be an infinite random matrix,

𝒁 ∶=
⎛⎜⎜⎝
𝑍11 𝑍12 …

𝑍21 𝑍22 …

⋮ ⋮ ⋱

⎞⎟⎟⎠ ,
whose entries (𝑍𝑖𝑗)𝑖,𝑗∈ℕ are independent random variables 𝑍𝑖𝑗 ∼  (0, 1) for all 𝑖, 𝑗 ∈ ℕ, and also
independent from (𝑈𝑖)𝑖∈ℕ and (𝑉𝑖)𝑖∈ℕ.
Let us denote by 𝑼𝑚 the restriction of 𝑼 to the first 𝑚 entries, 𝑼𝑚 ∈ ℝ𝑚, with 𝑈𝑚

𝑖 = 𝑈𝑖 for
1 ≤ 𝑖 ≤ 𝑚 (respectively 𝑽𝑚). Similarly, we denote by 𝒁𝑚 the restriction of 𝒁 to the first 𝑚 × 𝑚

entries, 𝒁𝑚 ∈ ℝ𝑚×𝑚, with 𝑍𝑚
𝑖𝑗 = 𝑍𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚.
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14 CHIZAT et al.

Let us denote by 𝚵𝑚
𝑖
(𝑘) the set of bipartite (directed) 𝑘-chains between two equal sets of indices

𝐼0 = 𝐼1 = {1, … ,𝑚} that start in 𝐼1 and end at 𝑖, where 𝑖 ∈ 𝐼0 if 𝑘 is odd, and 𝑖 ∈ 𝐼1 if 𝑘 is even.
Namely,

𝚵𝑚
𝑖
(𝑘) ∶= {((𝑖2, 𝑖1), (𝑖2, 𝑖3), (𝑖4, 𝑖3), (𝑖4, 𝑖5), … , (𝑖𝑘−1, 𝑖𝑘), (𝑖, 𝑖𝑘)) ∶

𝑖, 𝑖2𝑗 ∈ 𝐼0 for 1 ≤ 𝑗 ≤ (𝑘 − 1)∕2, 𝑖2𝑗−1 ∈ 𝐼1 for 1 ≤ 𝑗 ≤ (𝑘 + 1)∕2}

if 𝑘 ∈ ℕ is odd, and

𝚵𝑚
𝑖
(𝑘) ∶= {((𝑖2, 𝑖1), (𝑖2, 𝑖3), (𝑖4, 𝑖3), (𝑖4, 𝑖5), … , (𝑖𝑘, 𝑖𝑘−1), (𝑖𝑘, 𝑖)) ∶

𝑖2𝑗 ∈ 𝐼0 for 1 ≤ 𝑗 ≤ 𝑘∕2, 𝑖, 𝑖2𝑗−1 ∈ 𝐼1 for 1 ≤ 𝑗 ≤ 𝑘∕2}

if 𝑘 ∈ ℕ is even. In particular, an element Ξ ∈ 𝚵𝑚
𝑖
(𝑘) is of the form Ξ = (Ξ1, … , Ξ𝑘) where Ξ𝓁 =

((Ξ𝓁)1, (Ξ𝓁)2) with (Ξ𝓁)1 ∈ 𝐼0 and (Ξ𝓁)2 ∈ 𝐼1, for 1 ≤ 𝓁 ≤ 𝑘,

Ξ𝓁 = (𝑖𝓁, 𝑖𝓁+1) if 𝓁 is even, Ξ𝓁 = (𝑖𝓁+1, 𝑖𝓁) if 𝓁 is odd, and 𝑖𝑘+1 = 𝑖.

We think of each Ξ𝓁 for 1 ≤ 𝓁 ≤ 𝑘 as possible indices of a matrix 𝑚 × 𝑚. In this way, if
Ξ ∈ 𝚵𝑚

𝑖
(𝑘) we denote Ξ⊤ ∶= (Ξ⊤

1 , … , Ξ⊤
𝐾) where Ξ⊤

𝓁
∶= ((Ξ𝓁)2, (Ξ𝓁)1) (that is, transposing every

matrix; or alternatively, reflecting the bipartite chain).
We can use the previous definitions to compute iterative multiplications of (𝒁𝑚)⊤ and 𝒁𝑚

against𝑼𝑚. That is, (using (Ξ1)2 = 𝑖1 in the notation above)

(
𝒁𝑚[(𝒁𝑚)⊤(𝒁𝑚)]

𝑘−1

2 𝑼𝑚

)
𝑖

=

⎛⎜⎜⎜⎝
𝑘

⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞

𝒁𝑚(𝒁𝑚)⊤ …𝒁𝑚 𝑼𝑚

⎞⎟⎟⎟⎠𝑖
=

𝑚∑
𝑖1,…,𝑖𝑘=1

𝑍𝑖,𝑖𝑘 …𝑍𝑖2,𝑖3𝑍𝑖2,𝑖1𝑈𝑖1 =
∑

Ξ∈𝚵𝑚
𝑖

(𝑘)

(
𝑘∏

𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2

(3.2)

if 𝑘 ∈ ℕ is odd, and

(
[(𝒁𝑚)⊤(𝒁𝑚)]

𝑘

2 𝑼𝑚

)
𝑖

=

⎛⎜⎜⎜⎝
𝑘

⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞

(𝒁𝑚)⊤𝒁𝑚 …𝒁𝑚 𝑼𝑚

⎞⎟⎟⎟⎠𝑖
=

𝑚∑
𝑖1,…,𝑖𝑘=1

𝑍𝑖𝑘,𝑖 … 𝑍𝑖2,𝑖3𝑍𝑖2,𝑖1𝑈𝑖1 =
∑

Ξ∈𝚵𝑚
𝑖

(𝑘)

(
𝑘∏

𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2

(3.3)

if 𝑘 ∈ ℕ is even.
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 15

Let us denote by#𝑣(Ξ)withΞ ∈ 𝚵𝑚
𝑖
(𝑘) the number of vertices seen by the 𝑘-chainΞ, namely,7

#𝑣(Ξ) = |{𝑖2, 𝑖4, … , 𝑖𝑘−1, 𝑖}| + |{𝑖1, 𝑖3, … , 𝑖𝑘}|,
where Ξ = ((𝑖2, 𝑖1), (𝑖2, 𝑖3), … , (𝑖𝑘−1, 𝑖𝑘), (𝑖, 𝑖𝑘)) ∈ 𝚵𝑚

𝑖
(𝑘)

if 𝑘 ∈ ℕ is odd, and

#𝑣(Ξ) = |{𝑖2, 𝑖4, … , 𝑖𝑘}| + |{𝑖1, 𝑖3, … , 𝑖𝑘−1, 𝑖}|,
where Ξ = ((𝑖2, 𝑖1), (𝑖2, 𝑖3), … , (𝑖𝑘, 𝑖𝑘−1), (𝑖𝑘, 𝑖)) ∈ 𝚵𝑚

𝑖
(𝑘)

if 𝑘 ∈ ℕ is even.
Let us define 𝚵̃𝑚

𝑖
(𝑘) to be the subset of 𝚵𝑚

𝑖
(𝑘) with chains that contain no loops (alternatively,

chains that visit each vertex at most once),

𝚵̃
𝑚
𝑖 (𝑘) ∶=

{
Ξ ∈ 𝚵𝑚

𝑖 (𝑘) ∶ #𝑣(Ξ) = 𝑘 + 1
}

⊂ 𝚵𝑚
𝑖 (𝑘).

Finally, we define (cf. (3.2)–(3.3)),

𝐽𝑚
𝑘,𝑖

∶=
1

𝑚𝑘∕2

∑
Ξ∈𝚵̃

𝑚
𝑖 (𝑘)

(
𝑘∏

𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2 ,

𝐾𝑚
𝑘,𝑖

=
1

𝑚𝑘∕2

∑
Ξ∈𝚵̃

𝑚
𝑖 (𝑘)

(
𝑘∏

𝓁=1

𝑍Ξ⊤
𝓁

)
𝑉(Ξ1)2 ,

(3.4)

namely, we consider the product in (3.2)–(3.3) (both against 𝑼 and 𝑽) but we keep only those
elements of the sum that have no loops (and we rescale by the appropriate size, where the size-
preserving objects are 𝑚−1∕2𝒁𝑚). Notice that in the multiplication against 𝑽 we are considering
matrices 𝒁⊤ instead of 𝒁. In particular, we could alternatively think of 𝐾𝑚

𝑘,𝑖
as the (renormalized)

sum over loopless chains starting from the set 𝐼0 and ending at 𝑖 and with length 𝑘, where now
𝑖 ∈ 𝐼0 if 𝑘 is even and 𝑖 ∈ 𝐼1 if 𝑘 is odd (the opposite from before).
We define the vectors

𝑱𝑚
𝑘

∶=

⎛⎜⎜⎜⎜⎝
𝐽𝑚
𝑘,1

𝐽𝑚
𝑘,2

⋮

𝐽𝑚
𝑘,𝑚

⎞⎟⎟⎟⎟⎠
and 𝑲𝑚

𝑘
∶=

⎛⎜⎜⎜⎜⎝
𝐾𝑚

𝑘,1

𝐾𝑚
𝑘,2

⋮

𝐾𝑚
𝑘,𝑚

⎞⎟⎟⎟⎟⎠
, with 𝐽𝑚

𝑘,𝑖
and 𝐾𝑚

𝑘,𝑖
given by (3.4). (3.5)

(We denote 𝑱𝑚
0 = 𝑼𝑚 and𝑲𝑚

0 = 𝑽𝑚.) Let us also define, for 𝑘 ∈ ℕ, {𝑱𝑘}𝑘∈ℕ and {𝑲𝑘}𝑘∈ℕ families
of independent, identically distributed (infinite) random vectors

𝑱𝑘 ∶=
⎛⎜⎜⎝
𝐽𝑘,1

𝐽𝑘,2

⋮

⎞⎟⎟⎠ and 𝑲𝑘 ∶=
⎛⎜⎜⎝
𝐾𝑘,1

𝐾𝑘,2

⋮

⎞⎟⎟⎠ . (3.6)

7 Here and in the sequel, given a finite set 𝐴, we denote by |𝐴| its cardinality.
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16 CHIZAT et al.

with 𝐽𝑘,𝑖, 𝐾𝑘,𝑖 ∼  (0, 1) and all independent between them.

3.3 Convergence of the family

Let us now prove that the family of vectors {(𝑱𝑚
𝑘

,𝑲𝑚
𝑘

)}𝑘∈ℕ converges in distribution to the family
of i.i.d. Gaussian vectors. We will in fact prove convergence of all the moments.

Theorem 3.2. The family of vectors {(𝑱𝑚
𝑘

,𝑲𝑚
𝑘

)}𝑘∈ℕ defined in (3.5) converges, in distribution, to the
family {(𝑱𝑘, 𝑲𝑘)}𝑘∈ℕ (according to Definition 3.1).

This statement says that products of the form (3.2)–(3.3) have a simple asymptotic struc-
ture provided that we remove all the chains of indices with loops. The chains with loops add
correlations, which are described in the next proposition on the recursion property for this
family.

Proof. We will show that, for each 𝑁𝐽,𝑁𝐾 ∈ ℕ and every fixed families of pairs of indices
(𝑘1, 𝑖1), … , (𝑘𝑁𝐽

, 𝑖𝑁𝐽
) and (𝓁1, 𝑗1), … , (𝓁𝑁𝐾

, 𝑗𝑁𝐾
), we have

(
𝐽𝑚
𝑘1,𝑖1

, … 𝐽𝑚
𝑘𝑁𝐽

,𝑖𝑁𝐽
, 𝐾𝑚

𝓁1,𝑗1
, …𝐾𝑚

𝓁𝑁𝐾
,𝑗𝑁𝐾

) 𝑑.
qq→
(
𝐽𝑘1,𝑖1 , … 𝐽𝑘𝑁𝐽

,𝑖𝑁𝐽
, 𝐾𝓁1,𝑗1 , …𝐾𝓁𝑁𝐾

,𝑗𝑁𝐾

)
as𝑚 → ∞.
We use the method of moments. Let us fix the indices (𝑘1, 𝑖1), … , (𝑘𝑁𝐽

, 𝑖𝑁𝐽
) and

(𝓁1, 𝑗1), … , (𝓁𝑁𝐾
, 𝑗𝑁𝐾

), and the powers 𝑝1, … , 𝑝𝑁𝐽
, 𝑞1, … , 𝑞𝑁𝐾

∈ ℕ, and let

𝑚 ∶= 𝔼

[(
𝐽𝑚
𝑘1,𝑖1

)𝑝1

…
(
𝐽𝑚
𝑘𝑁𝐽

,𝑖𝑁𝐽

)𝑝𝑁𝐽
(
𝐾𝑚

𝓁1,𝑗1

)𝑞1

…
(
𝐾𝑚

𝓁𝑁𝐾
,𝑗𝑁𝐾

)𝑞𝑁𝐾
]

(3.7)

where we assume that 𝐽𝑚
𝑘1,𝑖1

, … , 𝐽𝑚
𝑘𝑁𝐽

,𝑖𝑁𝐽
, 𝐾𝑚

𝓁1,𝑗1
, … , 𝐾𝑚

𝓁𝑁𝐾
,𝑗𝑁𝐾

are all different. We will show that

𝑚

𝑚→∞
qqqqqq→ 𝜇𝑝1

…𝜇𝑝𝑁𝐽
𝜇𝑞1

…𝜇𝑞𝑁𝐾
,

where 𝜇𝑘 denotes the 𝑘-th plain moments of a normal distribution (0, 1),

𝜇𝑘 =

{
0 if 𝑘 ∈ ℕ is odd,
(𝑘 − 1)!! if 𝑘 ∈ ℕ is even,

with (𝑘 − 1)!! = (𝑘 − 1) ⋅ (𝑘 − 3)⋯ ⋅ 5 ⋅ 3 ⋅ 1 being the double factorial. This will directly give the
desired result.
Recall that each element 𝐽𝑚

𝑘1,𝑖1
, … , 𝐽𝑚

𝑘𝑁𝐽
,𝑖𝑁𝐽

, 𝐾𝑚
𝓁1,𝑗1

, … , 𝐾𝑚
𝓁𝑁𝐾

,𝑗𝑁𝐾
can be thought of as a sum over

bipartite loopless chains between 𝐼0 and 𝐼1, starting at 𝐼1 for 𝐽𝑚
𝑘𝛼,𝑖𝛼

, starting at 𝐼0 for 𝐾𝑚
𝑘𝛼′ ,𝑖𝛼′

, and
ending at 𝑖1, … , 𝑖𝑁𝐽

, 𝑗1, … , 𝑗𝑁𝑘
with length 𝑘1, … , 𝑘𝑁𝐽

, 𝓁1, … , 𝓁𝑁𝐾
, respectively; also, each ending

vertex belongs to either 𝐼0 or 𝐼1 depending on the parity of the length (𝑘𝛼 or 𝓁𝛼′). We denote by
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 17

#𝑣end the number of different such ending vertices,

#𝑣end ∶=

|||||||||
𝑁𝐽⋃
𝛼=1

𝑘𝛼≡1 mod 2

{𝑖𝛼} ∪

𝑁𝐾⋃
𝛼′=1

𝓁𝛼′≡0 mod 2

{𝑗𝛼′ }

|||||||||
+

|||||||||
𝑁𝐽⋃
𝛼=1

𝑘𝛼≡0 mod 2

{𝑖𝛼} ∪

𝑁𝐾⋃
𝛼′=1

𝓁𝛼′≡1 mod 2

{𝑗𝛼′ }

|||||||||
.

Let us define by𝔊 the family of bipartite graphs (each graph is seen as a disjoint union of edges)
connecting the sets of vertices 𝐼0 and 𝐼1 appearing in the expansion of the definition of𝑚. Namely,
any graph 𝐺 ∈ 𝔊 is a set of edges between 𝐼0 and 𝐼1 given by the (disjoint) union of 𝑝1 elements
in 𝚵̃𝑚

𝑖1
(𝑘1), 𝑝2 elements in 𝚵̃𝑚

𝑖2
(𝑘2), … , and 𝑞𝑁𝐾

elements in 𝚵̃𝑚
𝑗𝑁𝐾

(𝓁𝑁𝐾
):

𝔊 ∶=

{
𝐺 ∶ 𝐺 =

𝑁𝐽⨆
𝛼=1

𝑝𝛼⨆
𝛽=1

Ξ𝛽,𝛼 ⊔

𝑁𝐾⨆
𝛼′=1

𝑞𝛼′⨆
𝛽′=1

Θ𝛽′,𝛼′
, for some Ξ𝛽,𝛼 ∈ 𝚵̃𝑚

𝑖𝛼
(𝑘𝛼)

and Θ𝛽′,𝛼′
∈ 𝚵̃𝑚

𝑗𝛼′
(𝓁𝛼′) with 1 ≤ 𝛼 ≤ 𝑁𝐽, 1 ≤ 𝛼′ ≤ 𝑁𝐾

}
.

(3.8)

Observe that each element 𝐺 ∈ 𝔊 contains #𝑒(𝐺) edges (with multiplicity), where

#𝑒(𝐺) = 𝑘1𝑝1 + ⋯ + 𝑘𝑁𝐽
𝑝𝑁𝐽

+ 𝓁1𝑞1 + ⋯ + 𝓁𝑁𝐾
𝑞𝑁𝐾

=∶ 𝑁, (3.9)

which is independent of the element 𝐺 ∈ 𝔊 chosen.
Also, given a fixed element

𝔊 ∋ 𝐺 =

𝑁𝐽⨆
𝛼=1

𝑝𝛼⨆
𝛽=1

Ξ𝛽,𝛼 ⊔

𝑁𝐾⨆
𝛼′=1

𝑞𝛼′⨆
𝛽′=1

Θ𝛽′,𝛼′
,

we denote by

𝑈(𝐺) =

𝑁𝐽∏
𝛼=1

𝑝𝛼∏
𝛽=1

𝑈(
Ξ

𝛽,𝛼
1

)
2

and 𝑉(𝐺) =

𝑁𝐾∏
𝛼′=1

𝑞𝛼′∏
𝛽′=1

𝑉(
Θ

𝛽′,𝛼′

1

)
2

.

(Recall that
(
Ξ

𝛽,𝛼
1

)
2
and
(
Θ

𝛽′,𝛼′

1

)
2
denote the starting vertex of the chains Ξ𝛽,𝛼 and Θ𝛽′,𝛼′

respectively.) Then, we can rewrite (3.7) in terms of𝔊 by expanding the products as

𝑚 = 𝑚
−

𝑁

2 𝔼

[∑
𝐺∈𝔊

(∏
𝑒∈𝐺

𝑍𝑒

)
𝑈(𝐺)𝑉(𝐺)

]
.

(Recall (3.9).) By denoting mult𝐺(𝑒) the multiplicity of an edge 𝑒 in 𝐺, we can define

𝔊2 ∶= {𝐺 ∈ 𝔊 ∶ mult𝐺(𝑒) ≥ 2 for all 𝑒 ∈ 𝐺},

that is, the subset of𝔊whose graphs have edges all withmultiplicity 2 or higher. By linearity of the
expected value, and the fact that all 𝑍𝑖𝑗 , 𝑈𝑖 , 𝑉𝑗 are independent between them and with average
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18 CHIZAT et al.

zero, we immediately have that, in fact, we can sum only over𝔊2,

𝑚 = 𝑚
−

𝑁

2 𝔼

[ ∑
𝐺∈𝔊2

(∏
𝑒∈𝐺

𝑍𝑒

)
𝑈(𝐺)𝑉(𝐺)

]
.

Let us denote, for any 𝐺 ∈ 𝔊2, #𝑣(𝐺) the number of different vertices seen by the edges in 𝐺.
In particular, since each edge appears twice for 𝐺 ∈ 𝔊2, we have that

#𝑣(𝐺) ≤ #𝑣end +
𝑁

2
, (3.10)

where we are using that the last #𝑣end vertices are fixed, that we can add edges (from the end) in
such a way that they always see at most one new vertex (since𝐺 is connected), and that each edge
appears at least twice.
Notice thatwehave equality in (3.10) only if each edge in𝐺 hasmultiplicity exactly 2 (otherwise,

we would be seeing less vertices than the maximum possible; at some point adding one edge on
𝐺 would neither contribute to a new vertex nor be a first time repetition):

#𝑣(𝐺) = #𝑣end +
𝑁

2
⇒ for all 𝑒 ∈ 𝐺, mult𝐺(𝑒) = 2. (3.11)

Let us define𝔊𝑀 as the subset of graphs in𝔊2 that see the maximum number of vertices,

𝔊𝑀 ∶=

{
𝐺 ∈ 𝔊2 ∶ #𝑣(𝐺) = #𝑣end +

𝑁

2

}
,

and let us compute |𝔊2 ⧵ 𝔊𝑀|. The elements in 𝔊2 ⧵ 𝔊𝑀 are all bipartite graphs 𝐺 between 𝐼0
and 𝐼1 with#𝑣(𝐺) < #𝑣end +

𝑁

2
vertices. Since the last#𝑣end vertices are fixed, the number of ele-

ments in𝔊2 ⧵ 𝔊𝑀 will be upper bounded by the number ofways to choose the remaining#𝑣(𝐺) −

#𝑣end vertices (among 2𝑚, that is, (2𝑚 − #𝑣end) ⋅ (2𝑚 − #𝑣end − 1) ⋅ ⋯ ⋅ (2𝑚 − #𝑣(𝐺) + 1) ≤
𝐶𝑚#𝑣(𝐺)−#𝑣end).We are also using that, for each configuration of vertices, there is a bounded num-
ber of possible graphs with such vertices that is independent of 𝑚 (but may depend on 𝑁𝐽 , 𝑁𝐾 ,
etc.). In all, since #𝑣(𝐺) − #𝑣end ≤ 𝑁

2
− 1,

|𝔊2 ⧵ 𝔊𝑀| ≤ 𝐶𝑚
𝑁

2
−1

for some 𝐶 independent of 𝑚. Using that all the elements 𝑍𝑖𝑗 , 𝑈𝑖 , 𝑉𝑗 , have finite moments, we
obtain that ||||||𝑚 − 𝑚

−
𝑁

2 𝔼

[ ∑
𝐺∈𝔊𝑀

(∏
𝑒∈𝐺

𝑍𝑒

)
𝑈(𝐺)𝑉(𝐺)

]|||||| ≤
𝐶

𝑚
(3.12)

for some 𝐶 independent of𝑚.
Let now 𝐺 ∈ 𝔊𝑀 be fixed, a graph with maximal number of vertices, (3.11), with 𝑁 edges each

withmultiplicity two. Let us count the edges from the vertices to obtain a further characterization
of 𝐺:
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 19

The last #𝑣end vertices are the ending points of the 𝑝 + 𝑞 ∶= 𝑝1 + ⋯ + 𝑝𝑁𝐽
+ 𝑞1 + ⋯ + 𝑞𝑁𝐾

chains, and as such, they are connected to at least 𝑝 + 𝑞 edges. From the remaining 𝑁

2
vertices, let

us denote by #𝑣𝐸(𝐺) the ones that see exactly two edges (which must be the same edge, repeated
twice). Then, #𝑣𝐸(𝐺) ≤ 1

2
(𝑝 + 𝑞). Indeed, since chains have no loops, the same edge cannot be

repeated inside a chain, and elements of 𝑣𝐸(𝐺) are necessarily reached by two different chains
(and hence they are a starting point for each one). Thus, these starting points see 2#𝑣𝐸(𝐺) ≤ 𝑝 + 𝑞

edges (counting with multiplicity).
Finally, the remaining #𝑣(𝐺) − #𝑣end − #𝑣𝐸(𝐺) =

𝑁

2
− #𝑣𝐸(𝐺) vertices see at least four edges

each one, so that the total amount of edges as seen from the vertices (i.e., the sum over vertices of
the number of edges seen by each vertex) is:

2𝑁 = 2#𝑒(𝐺) ≥ 𝑝 + 𝑞 + 2#𝑣𝐸(𝐺) + 4(#𝑣(𝐺) − #𝑣end − #𝑣𝐸(𝐺))

= 𝑝 + 𝑞 − 2#𝑣𝐸(𝐺) + 2𝑁 ≥ 2𝑁,

where we are also using that each edge is seen from two vertices. In particular, all the previous
inequalities are, in fact, equalities, and there are exactly 𝑝 + 𝑞 edges connected to #𝑣end, exactly
1

2
(𝑝 + 𝑞) vertices that are starting points (seeing only two edges each), and all the remaining

vertices see four edges (two edges, each with multiplicity two).
At the level of 𝐺 ∈ 𝔊𝑀 this implies that each chain in its definition is repeated exactly identi-

cally twice, and that they never share vertices (except for the final ones). In particular, there is an
even number of chains ending at each vertex: if 𝔊𝑀 ≠ ∅ then all 𝑝1, … , 𝑝𝑁𝐽

, 𝑞1, … , 𝑞𝑁𝐾
are even.

Observe, also, that this implies that

𝔼

[(∏
𝑒∈𝐺

𝑍𝑒

)
𝑈(𝐺)𝑉(𝐺)

]
= 1 for all 𝐺 ∈ 𝔊𝑀,

where we are using 𝔼[𝑍2
𝑖𝑗
] = 𝔼[𝑈2

𝑖
] = 𝔼[𝑉2

𝑗
] = 1.

A short combinatorial argument combined with (3.12) now gives the desired result: we need to
count in howmanywayswe can produce graphs in𝐺 ∈ 𝔊𝑀 with the definition (3.8) in such away
that each chain is repeated identically twice and they never share non-ending vertices. We choose

first the chains, which can be done in 𝑚
𝑁

2 ways at leading order (for each chain we choose the
previous vertex starting from the end, so there is always𝑚 − 𝑟 possibilities, where 𝑟 is a bounded
number independent of𝑚; and we do so for each of the𝑁 edges, each of which is repeated twice).
For each family of 𝑝𝛼 chains ending at 𝑖𝛼 we now have multiple ways to produce the same graph
𝐺 ∈ 𝔊𝑀 : for each 𝑝𝛼 (and 𝑞𝛼′) we need to count the number of ways in which a family of 𝑝𝛼 (and
𝑞𝛼′) elements can be divided into couples, and then do the same for each 𝛼 and 𝛼′.
In all, given a family of 2𝑛 elements with 𝑛 ∈ ℕ, there are (2𝑛)!

2𝑛𝑛!
ways to split it into couples: there

are (2𝑛)! ways to arrange them in a line and we now split them in order into couples. Since we
can change the order within each pair, and we can change the order of the pairs, we are actually
generating each possible configuration 2𝑛𝑛! times. The number of ways to split 2𝑛 elements into
couples is then (2𝑛)!

2𝑛𝑛!
= (2𝑛 − 1)!!.

Thus, given a fixed graph 𝐺 ∈ 𝔊𝑀 , we have
∏𝑁𝐽

𝛼′ (𝑝𝛼 − 1)!!
∏𝑁𝐾

𝛼′ (𝑞𝛼′ − 1)!!ways to produce the

same graph with the previous constructions. Combined with (3.12) and the fact that there are𝑚
𝑁

2
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20 CHIZAT et al.

possible configurations (at leading order) we have

|||𝑚 − 𝜇𝑝1
…𝜇𝑝𝑁𝐽

𝜇𝑞1
…𝜇𝑞𝑁𝐾

||| ≤ 𝐶

𝑚

for some 𝐶 independent of𝑚. □

3.4 A recursion property

We next show a recursion property for the family (3.5) that will be crucial in the following
section (recall the notation from subsection 3.1).

Proposition 3.3. The random vectors 𝑱𝑚
𝑘
and𝑲𝑚

𝑘
satisfy,

𝑚
−

1

2 𝒁𝑚𝑱𝑚
𝑘

= 𝑱𝑚
𝑘+1

+ 𝑱𝑚
𝑘−1

+ 𝑹𝑚
𝑘
, if 𝑘 ∈ ℕ is even,

𝑚
−

1

2 (𝒁𝑚)⊤𝑱𝑚
𝑘

= 𝑱𝑚
𝑘+1

+ 𝑱𝑚
𝑘−1

+ 𝑹𝑚
𝑘
, if 𝑘 ∈ ℕ is odd,

𝑚
−

1

2 (𝒁𝑚)⊤𝑲𝑚
𝑘

= 𝑲𝑚
𝑘+1

+ 𝑲𝑚
𝑘−1

+ 𝑺𝑚
𝑘
, if 𝑘 ∈ ℕ is even,

𝑚
−

1

2 𝒁𝑚𝑲𝑚
𝑘

= 𝑲𝑚
𝑘+1

+ 𝑲𝑚
𝑘−1

+ 𝑺𝑚
𝑘
, if 𝑘 ∈ ℕ is odd,

for some random vectors 𝑹𝑚
𝑘
and 𝑺𝑚

𝑘
with

𝔼
[‖𝑹𝑚

𝑘
‖2𝑝2𝑝] + 𝔼

[‖𝑺𝑚
𝑘
‖2𝑝2𝑝] ≤ 𝐶𝑝 < +∞,

for any 𝑝 ∈ ℕ, and for some 𝐶 independent of𝑚 (but it might depend on 𝑘 and 𝑝).

Proof. Let us do the first equality, the others follow by analogy. Thus, we assume 𝑘 ∈ ℕ is even
and we deal with 𝑱𝑚

𝑘
.

(
𝑚

−
1

2 𝒁𝑚𝑱𝑚
𝑘

)
𝑗

= 𝑚
−

𝑘+1

2

𝑚∑
𝑖=1

𝑍𝑗,𝑖

∑
Ξ∈𝚵̃

𝑚
𝑖 (𝑘)

(
𝑘∏

𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2

= 𝑚
−

𝑘+1

2

∑
Ξ∈𝚵̊

𝑚
𝑗 (𝑘+1)

(
𝑘+1∏
𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2 ,

where we are denoting

𝚵̊
𝑚
𝑗 (𝑘 + 1) ∶=

{
Ξ ∪ {(𝑗, 𝑖)} ∶ Ξ ∈ 𝚵̃

𝑚
𝑖 (𝑘) for some 1 ≤ 𝑖 ≤ 𝑚

}
.

That is, we are taking loopless chains starting in 𝐼1 and with length 𝑘, and adding an extra edge
towards 𝑗 at the end. In particular, we can divide:

𝚵̊
𝑚
𝑗 (𝑘 + 1) = 𝚵̃

𝑚
𝑗 (𝑘 + 1) ∪ 𝚵̊

𝑚
𝑗,∗(𝑘 + 1) ∪ 𝚵̊

𝑚
𝑗,𝑟(𝑘 + 1),
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 21

where

𝚵̊
𝑚
𝑗,∗(𝑘 + 1) ∶=

{
Ξ ∈ 𝚵̊

𝑚
𝑗 (𝑘 + 1) such that Ξ𝑘+1 = Ξ𝑘

}
,

namely, the added edge was already part of the chain (and since we are adding it to a loopless
chain, it must be the last edge); and

𝚵̊
𝑚
𝑗,𝑟(𝑘 + 1) ∶= 𝚵̊

𝑚
𝑗 (𝑘 + 1) ⧵

(
𝚵̃

𝑚
𝑗 (𝑘 + 1) ∪ 𝚵̊

𝑚
𝑗,∗(𝑘 + 1)

)
those chains where the extra edge is not adding a new vertex, but is not a repeated edge either.
Thus, (

𝑚
−

1

2 𝒁𝑚𝑱𝑚
𝑘

)
𝑗

= 𝐽𝑚
𝑘+1,𝑗

+ 𝐴𝑚
𝑘+1,𝑗

+ 𝐵𝑚
𝑘+1,𝑗

, (3.13)

where, if we denote 𝑣1(Ξ) for Ξ ∈ 𝚵𝑚
𝑗 (𝑘 − 1) the set of vertices in Ξ from 𝐼1,

𝐴𝑚
𝑘+1,𝑗

= 𝑚
−

𝑘+1

2

∑
Ξ∈𝚵̊

𝑚
𝑗,∗(𝑘+1)

(
𝑘+1∏
𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2

= 𝑚
−

𝑘+1

2

∑
Ξ∈𝚵̃

𝑚
𝑗 (𝑘−1)

∑
𝑖∉𝑣1(Ξ)

𝑍2
𝑗,𝑖

(
𝑘−1∏
𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2 ,

𝐵𝑚
𝑘+1,𝑗

= 𝑚
−

𝑘+1

2

∑
Ξ∈𝚵̊

𝑚
𝑗,𝑟(𝑘+1)

(
𝑘+1∏
𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2 .

Observe now that, on the one hand, using the same arguments as in Theorem 3.2, we can
directly compute

𝔼

[(
𝐵𝑚

𝑘+1,𝑗

)2𝑝] ≤ 𝐶𝑝

𝑚
, (3.14)

for any 𝑝 ∈ ℕ, and for some 𝐶 independent of𝑚. (We are using here that in the sum we are only
considering elements that do not see the maximal number of vertices.)
On the other hand, we can rewrite

𝐴𝑚
𝑘+1,𝑗

= 𝐽𝑚
𝑘−1,𝑗

+ 𝐷𝑚
𝑘+1,𝑗

+ 𝐷̃𝑚
𝑘+1,𝑗

, (3.15)

with

𝐷𝑚
𝑘+1,𝑗

= 𝑚
−

𝑘+1

2

∑
Ξ∈𝚵̃

𝑚
𝑗 (𝑘−1)

∑
𝑖∉𝑣1(Ξ)

(𝑍2
𝑗,𝑖

− 1)

(
𝑘−1∏
𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2 ,

𝐷̃𝑚
𝑘+1,𝑗

= 𝑚
−

𝑘+1

2

∑
Ξ∈𝚵̃

𝑚
𝑗 (𝑘−1)

|𝑣1(Ξ)|(𝑘−1∏
𝓁=1

𝑍Ξ𝓁

)
𝑈(Ξ1)2 .
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22 CHIZAT et al.

From the same arguments as in Theorem 3.2 (since |𝑣1(Ξ)| is bounded independent of 𝑚) we
get on the one hand that

𝔼

[(
𝐷̃𝑚

𝑘+1,𝑗

)2𝑝] ≤ 𝐶𝑝

𝑚2
(3.16)

for any 𝑝 ∈ ℕ, and on the other hand, since 𝑍2
𝑗,𝑖

− 1 has average zero and is independent of all
the other elements in each term of the sum (since 𝑖 ∉ 𝑣1(Ξ)), the same type of reasoning done in
Theorem 3.2 also gives

𝔼
[
(𝐷𝑚

𝑘+1,𝑗
)2𝑝
] ≤ 𝐶𝑝

𝑚
(3.17)

for any 𝑝 ∈ ℕ.
In all, joining (3.13)-(3.14)-(3.15)-(3.16)-(3.17),(

𝑚
−

1

2 𝒁𝑚𝑱𝑚
𝑘

)
𝑗

= 𝐽𝑚
𝑘+1,𝑗

+ 𝐽𝑚
𝑘−1,𝑗

+ 𝑅𝑚
𝑘,𝑗

,

with 𝔼
[
(𝑅𝑚

𝑘,𝑗
)2𝑝
] ≤ 𝐶𝑝

𝑚
for any 𝑝 ∈ ℕ, and for some 𝐶 independent of 𝑚. Using the symmetry of

the problem, we get the desired result. □

3.5 Multi-dimensional input

More generally, we can take 𝑑 ∈ ℕ i.i.d. copies of𝑼, denoted𝑼(1), …𝑼(𝑑) (also independent of𝑽)
and define

𝑼(1…𝑑) ∶=
(
𝑼(1) … 𝑼(𝑑)

)
=

⎛⎜⎜⎜⎝
𝑈

(1)
1 … 𝑈

(𝑑)
1

𝑈
(1)
2 … 𝑈

(𝑑)
2

⋮ ⋱ ⋮

⎞⎟⎟⎟⎠ . (3.18)

Similarly, we denote𝑼(𝜁),𝑚 ∈ ℝ𝑚 for 1 ≤ 𝜁 ≤ 𝑑, and

𝑱
(𝜁),𝑚
𝑘

∶=

⎛⎜⎜⎜⎜⎜⎝

𝐽
(𝜁),𝑚
𝑘,1

𝐽
(𝜁),𝑚
𝑘,2

⋮

𝐽
(𝜁),𝑚
𝑘,𝑚

⎞⎟⎟⎟⎟⎟⎠
with 1 ≤ 𝜁 ≤ 𝑑, (3.19)

where

𝐽
(𝜁),𝑚
𝑘,𝑖

∶=
1

𝑚𝑘∕2

∑
Ξ∈𝚵̃

𝑚
𝑖 (𝑘)

(
𝑘∏

𝓁=1

𝑍Ξ𝓁

)
𝑈

(𝜁)

(Ξ1)2
, with 1 ≤ 𝜁 ≤ 𝑑 (3.20)
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 23

(cf. (3.5)). Finally, we also consider, for 𝑘 ∈ ℕ, families of independent, identically distributed
(infinite) random vectors {𝑱

(1)
𝑘

}𝑘∈ℕ, … , {𝑱
(𝑑)
𝑘

}𝑘∈ℕ and {𝑲𝑘}𝑘∈ℕ

𝑱
(1)
𝑘

∶=

⎛⎜⎜⎜⎜⎝
𝐽
(1)
𝑘,1

𝐽
(1)
𝑘,2

⋮

⎞⎟⎟⎟⎟⎠
, … , 𝑱

(𝑑)
𝑘

∶=

⎛⎜⎜⎜⎜⎝
𝐽
(𝑑)
𝑘,1

𝐽
(𝑑)
𝑘,2

⋮

⎞⎟⎟⎟⎟⎠
, and 𝑲𝑘 ∶=

⎛⎜⎜⎜⎝
𝐾𝑘,1

𝐾𝑘,2

⋮

⎞⎟⎟⎟⎠ . (3.21)

with 𝐽
(1)
𝑘,𝑖

, … , 𝐽
(𝑑)
𝑘,𝑖

, 𝐾𝑘,𝑖 ∼  (0, 1) and all independent between them.
Then, Theorem 3.2 also holds for this family as well. That is:

Proposition 3.4. The family of random vectors
{(

𝑱
(1),𝑚
𝑘

, … , 𝑱
(𝑑),𝑚
𝑘

, 𝑲𝑚
𝑘

)}
𝑘∈ℕ

defined by (3.21)

converges, in distribution, to the family
{(

𝑱
(1)
𝑘

, … , 𝑱
(𝑑)
𝑘

, 𝑲𝑘

)}
𝑘∈ℕ

(see Definition 3.1).

Proof. We can follow the same ideas as in the proof of Theorem 3.2, by interpreting (3.7) in this
context. We get again that each chain must be repeated twice, and we are only interested in con-
figurations that see a maximal amount of vertices. Now, however, chains can be repeated coming
from different elements of the family, namely, 𝐽(𝜁),𝑚

𝑘,𝑖
and 𝐽

(𝜁′),𝑚
𝑘,𝑖

might share a chain for 𝜁 ≠ 𝜁′,
and still see the maximum number of vertices. Those repetitions, however, do not contribute
to the expected value (3.7), since they contain a single term 𝑈

(𝜁)
𝑠 𝑈

(𝜁′)
𝑠 for some 1 ≤ 𝑠 ≤ 𝑚, and

𝔼
[
𝑈

(𝜁)
𝑠 𝑈

(𝜁′)
𝑠

]
= 0 for 𝜁 ≠ 𝜁′. □

We also see the recurrence in Proposition 3.3:

Proposition 3.5. The random vectors 𝑱
(𝜁),𝑚
𝑘

satisfy,

𝑚
−

1

2 𝒁𝑚𝑱
(𝜁),𝑚
𝑘

= 𝑱
(𝜁),𝑚
𝑘+1

+ 𝑱
(𝜁),𝑚
𝑘−1

+ 𝑹
(𝜁),𝑚
𝑘

, if 𝑘 ∈ ℕ is even,

𝑚
−

1

2 (𝒁𝑚)⊤𝑱
(𝜁),𝑚
𝑘

= 𝑱
(𝜁),𝑚
𝑘+1

+ 𝑱
(𝜁),𝑚
𝑘−1

+ 𝑹
(𝜁),𝑚
𝑘

, if 𝑘 ∈ ℕ is odd,

for some random vectors 𝑹
(𝜁),𝑚
𝑘

with

𝔼
[‖𝑹(𝜁),𝑚

𝑘
‖2𝑝2𝑝] ≤ 𝐶𝑝 < +∞,

for any 𝑝 ∈ ℕ, and for any 1 ≤ 𝜁 ≤ 𝑚, and for some 𝐶 independent of𝑚 (but it might depend on 𝑘

and 𝑝).

Proof. Follows by Proposition 3.3 applied to each 𝜁 ∈ {1, … , 𝑑}. □

For notational convenience, we will denote

𝑱𝑚
𝑘

=
(
𝑱

(1),𝑚
𝑘

, … , 𝑱
(𝑑),𝑚
𝑘

)
∈ ℝ𝑚×𝑑. (3.22)
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24 CHIZAT et al.

Proposition 3.6 (Almost-Orthonormality property). The family of random vectors {(𝑱𝑚
𝑘

,𝑲𝑚
𝑘

)}𝑘∈ℕ

defined by (3.21)-(3.22) satisfies

𝔼

[‖‖‖𝑶𝑚
𝐽𝐽(𝑘1, 𝑘2)

‖‖‖2𝑝2𝑝 +
‖‖‖𝑶𝑚

𝐽𝐾(𝑘1, 𝑘2)
‖‖‖2𝑝2𝑝 +
‖‖‖𝑂𝑚

𝐾𝐾(𝑘1, 𝑘2)
‖‖‖2𝑝2𝑝
]
≤ 𝐶𝑝

𝑚
,

for any 𝑝 ∈ ℕ, and for some 𝐶 depending only onmax{𝑘1, 𝑘2}, 𝑑, and 𝑝, where8

ℝ𝑑×𝑑 ∋ 𝑶𝑚
𝐽𝐽(𝑘1, 𝑘2) =

1

𝑚
(𝑱𝑚

𝑘1
)⊤𝑱𝑚

𝑘2
− 𝛿𝑘1,𝑘2

Id𝑑

ℝ𝑑×1 ∋ 𝑶𝑚
𝐽𝐾(𝑘1, 𝑘2) =

1

𝑚
(𝑱𝑚

𝑘1
)⊤𝑲𝑚

𝑘2

ℝ ∋ 𝑂𝑚
𝐾𝐾(𝑘1, 𝑘2) =

1

𝑚
𝑲𝑚

𝑘1
⋅ 𝑲𝑚

𝑘2
− 𝛿𝑘1,𝑘2

,

for all 𝑘1, 𝑘2 ∈ {1, … ,𝑚}.

Proof. Let us show

𝔼

[(
1

𝑚
𝑲𝑚

𝑘
⋅ 𝑲𝑚

𝑘
− 1

)2
]
≤ 𝐶

𝑚
,

and the rest follow by analogy. We develop the square to obtain

𝔼

[(
1

𝑚
𝑲𝑚

𝑘
⋅ 𝑲𝑚

𝑘
− 1

)2
]

=
1

𝑚2

𝑚∑
𝑖,𝑗=1

𝔼
[
(𝐾𝑚

𝑘,𝑖
)2(𝐾𝑚

𝑘,𝑗
)2
]
+ 1 −

2

𝑚

𝑚∑
𝑖=1

𝔼
[
(𝐾𝑚

𝑘,𝑖
)2
]

=
𝑚(𝑚 − 1)

𝑚2

(
𝔼
[
(𝐾𝑚

𝑘,1
)2
])2

+
1

𝑚
𝔼
[
(𝐾𝑚

𝑘,1
)4
]

+ 1 − 2𝔼
[
(𝐾𝑚

𝑘,1
)2
]
,

where we are using the symmetry in the definition of 𝐾𝑘,𝑖 .
From the proof of Theorem 3.2 we have that if 𝑘 > 0

||||𝔼[(𝐾𝑚
𝑘,1

)2
]
− 1
|||| ≤ 𝐶

𝑚
, and

||||𝔼[(𝐾𝑚
𝑘,1

)4
]
− 3
|||| ≤ 𝐶

𝑚
,

fromwhich the first result now follows. In general, again using the proof of Theorem 3.2 we have

𝔼

[(
1

𝑚
𝑲𝑚

𝑘
⋅ 𝑲𝑚

𝑘
− 1

)2𝑝
]
≤ 𝐶𝑝

𝑚
,

for any 𝑝 ∈ ℕ, which gives the desired result. □

8 Here, 𝛿𝑘1,𝑘2
is the Kronecker delta: 𝛿𝑘1,𝑘2

= 1 if 𝑘1 = 𝑘2, and 𝛿𝑘1,𝑘2
= 0 if 𝑘1 ≠ 𝑘2.
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 25

4 PROOF OF THEMAIN RESULT

Let us now proceed with the proof of our main result. Before doing so, we show an intermediary
lemma on the possible growth of exchangeable vectors after multiplication by a random matrix.
For that, we need the following result on random matrices with Gaussian entries, which can

be found, for example, in [42, Theorem 4.4.5].

Theorem 4.1. Let 𝑨 be a random𝑚 × 𝑚 matrix with subgaussian independent entries with mean
zero. Then there exists a universal constant 𝐶 > 0 such that, for any 𝑡 > 0,

‖𝑨‖𝑀 ∶= sup
𝑥∈𝕊𝑚−1

⟨𝑨𝑥, 𝑥⟩ ≤ 𝐶𝐾(
√

𝑚 + 𝑡)

with probability at least 1 − 2𝑒−𝑡2 . Here 𝐾 = max𝑖,𝑗 ‖𝐴𝑖,𝑗‖𝜓2
, where ‖𝑋‖𝜓2

=

inf
{

𝑡 > 0 ∶ 𝔼
(
𝑒𝑋2∕𝑡2
) ≤ 2
}
.

Thanks to Theorem 4.1 we can prove the following, where we recall that 𝒁 denotes a random
matrix with i.i.d. entries of (0, 1) (in this case, of size𝑚 × 𝑚).

Lemma 4.2. Suppose that𝔘 ∈ ℝ𝑚×𝑑 is a random exchangeable array that satisfies

𝔼
[‖𝔘‖2] ≤ 𝐶◦𝑚

𝛼, and 𝔼[‖𝔘‖𝜚] ≤ 𝐶◦𝑚
𝛽,

for some 𝜚 > 2, 𝐶◦ ≥ 1, and some 𝛼, 𝛽 > 0. We define

𝔘′ ∶=
1√
𝑚

𝒁𝔘.

Then, if we let 𝛿 > 0 such that 𝜚 > 2 + 𝛿, we have

𝔼
[‖𝔘′‖2] ≤ 𝐶◦𝐶𝜚𝑚

𝛼, and 𝔼
[‖𝔘′‖𝜚−𝛿

] ≤ 𝐶

𝜌−𝛿

𝜌
◦ 𝐶𝜚,𝛿𝑚

𝛽
𝜚−𝛿

𝜚 ,

for some constants 𝐶𝜚, 𝐶𝜚,𝛿 > 0 independent of𝑚, but that might depend on 𝜚, 𝛼, and 𝛽 (and also on
𝛿 in the case of 𝐶𝜚,𝛿).

Proof. We implicitly consider the random elements in a probability space (Ω, , ℙ). We define,
for any 𝑖 ∈ ℕ ∪ {0},

Ω𝑖 ∶=
{

𝜔 ∈ Ω ∶ (𝑖 + 1)‖𝔘(𝜔)‖22 ≥ ‖‖𝔘′(𝜔)‖‖22 ≥ 𝑖‖𝔘(𝜔)‖22}.
By Theorem 4.1, for some 𝐶 independent of𝑚 and 𝑖,

ℙ(Ω𝑖) ≤ ℙ
(‖𝒁‖2𝑀 ≥ 𝑖𝑚

)
= ℙ
(‖𝒁‖𝑀 ≥ 𝐶𝐾

(√
𝑚 +
(√

𝑖(𝐶𝐾)−1 − 1
)√

𝑚
)) ≤ 𝐶𝑒−𝑐𝑖𝑚,

(4.1)
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26 CHIZAT et al.

for some universal constants 𝐶 and 𝑐. Now observe that, by Hölder’s inequality,

𝔼
[‖‖𝔘′‖‖2] = ∫

Ω

‖‖𝔘′(𝜔)‖‖2𝑑ℙ(𝜔) ≤∑
𝑖≥0

(𝑖 + 1)∫
Ω𝑖

‖𝔘(𝜔)‖2𝑑ℙ(𝜔)

≤ ∫
Ω0

‖𝔘(𝜔)‖2𝑑ℙ(𝜔) +
∑
𝑖≥1

(𝑖 + 1)

(
∫

Ω𝑖

‖𝔘(𝜔)‖𝜚𝑑ℙ(𝜔)

) 2

𝜚

(ℙ(Ω𝑖))
𝜚−2

𝜚 .

Using the previous estimate, (4.1),

𝔼
[‖‖𝔘′‖‖2] ≤ 𝔼

[‖𝔘‖2] + 𝐶
∑
𝑖≥1

(𝑖 + 1)𝔼
[‖𝔘‖𝜚] 2𝜚 𝑒−𝑐𝑖𝑚

𝜚−2

𝜚 .

From our assumptions, and for some 𝐶𝜚 that depends on 𝜚,

𝔼
[‖‖𝔘′‖‖2] ≤ 𝐶◦𝑚

𝛼 + 𝐶(𝐶◦𝑚
𝛽)

2

𝜚
∑
𝑖≥1

(𝑖 + 1)𝑒
−𝑐𝑖𝑚

𝜚−2

𝜚 = 𝐶◦

(
𝑚𝛼 + 𝐶𝜚𝑚

2𝛽

𝜚 𝑒
−𝑐𝑚

𝜚−2

𝜚

)
,

and hence

𝔼
[‖‖𝔘′‖‖2] ≤ 𝐶◦𝐶𝜚𝑚

𝛼,

for some possibly different 𝐶𝜚.
On the other hand, following the same strategy we get:

𝔼
[‖‖𝔘′‖‖𝜚−𝛿

] ≤ 𝐶
∑
𝑖≥0

(𝑖 + 1)𝔼
[‖‖𝔘′‖‖𝜚] 𝜚−𝛿

𝜚
𝑒
−𝑐𝑖𝑚

𝛿

𝜚 .

From the assumptions again,

𝔼
[‖‖𝔘′‖‖𝜚−𝛿

] ≤ 𝐶

𝜌−𝛿

𝜌
◦ 𝐶𝜚,𝛿𝑚

𝛽
𝜚−𝛿

𝜚
∑
𝑖≥0

(𝑖 + 1)𝑒
−𝑐𝑖𝑚

𝛿

𝜚 ≤ 𝐶

𝜌−𝛿

𝜌
◦ 𝐶𝜚,𝛿𝑚

𝛽
𝜚−𝛿

𝜚 ,

so we get the desired result. □

We can now prove the main result, Theorem 2.2:

Proof of Theorem 2.2. We use the notation from Section 3.2, in particular, the random arrays
(𝑱

(1),𝑚
𝑘

, … , 𝑱
(𝑑),𝑚
𝑘

) and𝑲𝑚
𝑘
, defined by (3.1)-(3.4)-(3.5)-(3.18)-(3.19)-(3.20), with𝑼(1…𝑑) and𝑽 taken

to be𝑼(0) and 𝑽(0).
We divide the proof into seven steps.
Step 1: The structure. For notational convenience, we drop the subscript 𝜏 > 0 and

the superscript 𝑚, which will be implicit in the following variables; also, we denote by
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 27

𝑱𝑘 = (𝑱
(1),𝑚
𝑘

, … , 𝑱
(𝑑),𝑚
𝑘

) ∈ ℝ𝑚×𝑑. We show by induction that we can write

𝑼(𝜅) = 𝑼̊(𝜅) + 𝔘(𝜅)

𝑾(𝜅) = 𝑾̊(𝜅) + 𝔚(𝜅)

𝑽(𝜅) = 𝑽̊(𝜅) + 𝔙(𝜅),

(4.2)

with

(4.3)

and where

𝔘(𝜅) ∈ ℝ𝑚×𝑑,𝔚(𝜅) ∈ ℝ𝑚×𝑚,𝔙(𝜅) ∈ ℝ𝑚 (4.4)

satisfy

𝔼

[‖𝔘(𝜅)‖2 +
1

𝑚
‖𝔚(𝜅)‖2 + ‖𝔙(𝜅)‖2] ≤ 𝐶𝑚

1

2 , (4.5)

for some 𝐶 depending on 𝜅 but independent of𝑚 ∈ ℕ. Moreover,

(4.6)

Step 2: Computing the update. Let us compute (𝑼(𝜅 + 1),𝑾(𝜅 + 1), 𝑽(𝜅 + 1)) in terms of
(4.2)-(4.3), by using (2.5). By the inductive assumption, we will assume that (4.6) holds at time 𝜅.
We compute first ℎ𝜅(𝑥), by expanding:

𝒑(𝜅) ∶=

[
1√
𝑚

𝒁 +
1

𝑚
𝑾(𝜅)

]
𝑼(𝜅).

On the one hand, thanks to (4.2)-(4.3)-(4.6) and the recursion property in Proposition 3.5, we
have

1√
𝑚

𝒁𝑼(𝜅) =
∑
𝑘≥0

(
[𝑱𝑘+1 + 𝑱𝑘−1]𝜶𝑘(𝜅) + [𝑲𝑘+1 + 𝑲𝑘−1]𝜶𝑘(𝜅)

)
+ 𝔈1(𝜅),
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28 CHIZAT et al.

where

𝔈1(𝜅) =
∑
𝑘≥0

(
𝑹𝑘𝜶𝑘(𝜅) + 𝑺𝑘𝜶𝑘(𝜅)

)
+

1√
𝑚

𝒁𝔘(𝜅),

and where from now on we assume that whenever an index is negative, the corresponding object
is identically zero (e.g. 𝑱−1 ≡ 0 and 𝑲−1 ≡ 0), and we have denoted (from Proposition 3.5), 𝑹𝑘 =(
𝑹

(1),𝑚
𝑘

, … , 𝑹
(𝑑),𝑚
𝑘

)
.

On the other hand, also from (4.2)-(4.3), we can compute the other term in 𝒑 by using the
orthonormality property in Proposition 3.6,

where

and thus

𝒑(𝜅) = 𝒑̊(𝜅) + 𝔈𝑝(𝜅) ∶= 𝒑̊(𝜅) + 𝔈1(𝜅) + 𝔈2(𝜅),

where

From here, using again the orthonormality property in Proposition 3.6, we can compute:

ℎ𝜅(𝑥) =
1

𝑚
(𝑽(𝜅))⊤𝒑(𝜅)𝑥 = ℎ̊𝜅(𝑥) + 𝔈ℎ(𝜅)𝑥

with
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 29

and

At this point it is important to notice that the expression for ℎ̊𝜅(𝑥) is independent of the basis,
and thus, if𝑚 is large enough and 𝜅 is fixed, it is independent of𝑚.
We can also write an expression for 𝑽(𝜅 + 1) using (2.5) directly, where it is easy to check that

𝑽(𝜅 + 1) can be written in the form (4.2)-(4.3) with coefficients satisfying (4.6) by induction.
Using a similar procedure (thanks to Propositions 3.6 and 3.5) we find the expression for

𝒒(𝜅) ∶=

[
1√
𝑚

𝒁 +
1

𝑚
𝑾(𝜅)

]⊤
𝑽(𝜅) = 𝒒̊(𝜅) + 𝔈𝑞(𝜅) ∶= 𝒒̊(𝜅) + 𝔈3(𝜅) + 𝔈4(𝜅),

where

and, as before, we have

𝔈3(𝜅) =
∑
𝑘≥0

(
𝑹𝑘𝜷𝑘(𝜅) + 𝑺𝑘𝛽𝑘(𝜅)

)
+

1√
𝑚

𝒁⊤𝔙(𝜅),

and

Step 3: The evolution. We can now use the expressions for 𝒑(𝜅), 𝒒(𝜅), and 𝑽(𝜅)𝑥⊤(𝑼(𝜅))⊤ to
derive an evolution for the coefficients (4.6) from (2.5). In order to do that, let us observe that we
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30 CHIZAT et al.

can denote

ℝ𝑑 ∋ 𝝃𝜅 = ∫ 𝑥′(ℎ𝜅(𝑥), 𝑦)𝑑𝜌𝜅(𝑥, 𝑦) = 𝝃𝜅 + 𝔈𝜉(𝜅),

with

𝝃𝜅 ∶= ∫ 𝑥′(ℎ̊𝜅(𝑥), 𝑦)𝑑𝜌𝜅(𝑥, 𝑦)

and

𝔈𝜉(𝜅) ∶= ∫ 𝑥
(′(ℎ𝜅(𝑥), 𝑦) − ′(ℎ̊𝜅(𝑥), 𝑦))

)
𝑑𝜌𝜅(𝑥, 𝑦),

so that, since ′ is Lipschitz and (2.2) holds,

|𝔈𝜉(𝜅)| ≤ 𝐶‖𝔈ℎ(𝜅)‖∫ |𝑥|2 𝑑𝜌𝜅(𝑥, 𝑦) ≤ 𝐶‖𝔈ℎ(𝜅)‖.
If we now denote

𝛿𝜶𝑘(𝜅) ∶=
1

𝜏
(𝜶𝑘(𝜅 + 1) − 𝜶𝑘(𝜅))

(analogously for ) we get, on the one hand,9

(4.7)

and on the other hand, from (2.5) and (4.2)-(4.3) we immediately have

(4.8)

9 Observe that the evolution of the system is “mostly” independent of𝑚, and hence for𝑚 very large we have a trivial limit:
the only problem is when all the elements in the corresponding arrays are non-zero, due to a boundary effect at 𝑘 = 𝑚,
but this is avoided for𝑚 large enough and after a fixed number of iterations thanks to the initialization (4.10).
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 31

and

𝛿𝔘(𝜅) = −𝔈𝑞(𝜅)𝝃⊤
𝜅 − 𝒒̊(𝜅)𝔈⊤

𝜉
(𝜅) − 𝔈𝑞(𝜅)𝔈⊤

𝜉
(𝜅)

𝛿𝔚(𝜅) = −𝑽(𝜅)𝝃⊤
𝜅 (𝑼(𝜅))⊤ + 𝑽̊(𝜅)𝝃⊤

𝜅 (𝑼̊(𝜅))⊤

𝛿𝔙(𝜅) = −𝔈𝑝(𝜅)𝝃𝜅 − 𝒑̊(𝜅)𝔈𝜉(𝜅) − 𝔈𝑝(𝜅)𝔈𝜉(𝜅).

(4.9)

It is now a simple check that (4.7)-(4.8) imply that, if the relations in (4.6) hold at time 𝜅, they
also hold at time 𝜅 + 1.
Step 4: Initial conditions and boundedness of coefficients.We are considering the vectors

𝑱𝑘 and𝑲𝑘 to be the ones constructed in subsection 3.2 where𝑼 and𝑽 are the initializations𝑼(0)

and 𝑽(0). Thus, by construction,

𝜶0(0) = Id𝑑, 𝜶𝑘(0) = 𝟎𝑑×𝑑 for 𝑘 ≥ 1,

𝜶𝑘(0) = 𝟎1×𝑑, for 𝑘 ≥ 0,

𝜷𝑘(0) = 𝟎𝑑×1, for 𝑘 ≥ 0,

𝛽0(0) = 1, 𝛽𝑘(0) = 0 for 𝑘 ≥ 1,

(4.10)

and all 𝜸 , 𝛾, 𝜸̂ , and are initialized at 0. From the update (4.7), we immediately get that

‖𝜶𝑘(𝜅)‖ = ‖𝜶𝑘(𝜅)‖ = ‖𝜷𝑘(𝜅)‖ = ‖𝛽𝑘(𝜅)‖ = 0 if 𝑘 ≥ 𝜅 + 1, (4.11)

and

(4.12)

and in particular, if 𝑚 is large enough, the coefficients are all independent of 𝑚. This is because
in the evolution (4.7)-(4.8) each element in a position 𝑘 is only affected by elements in the
surrounding positions (either for 𝛼, 𝛽, or 𝛾).
Observe that, again by construction, the evolution of the coefficients (4.6) given by (4.7)-(4.8)

is deterministic, and in particular all the coefficients are always bounded after finitely many time
steps by a universal constant depending only on 𝜅∗ by (4.11)-(4.12) (and 𝜏, but independent of𝑚),
and the same holds for 𝝃 and ℎ̊:

(4.13)

for all 𝑘, 𝑖, 𝑗 ∈ ℕ, and 1 ≤ 𝜅 ≤ 𝜅∗.
Hence, from (4.3) and by the proof of Theorem 3.2, we also have that

𝔼[|𝑈̊𝑖,𝓁(𝜅)|Υ + |𝑊̊𝑖,𝑗(𝜅)|Υ + |𝑉̊𝑖(𝜅)|Υ + |𝑝̊𝑖,𝓁(𝜅)|Υ + |𝑞̊𝑖(𝜅)|Υ] ≤ 𝐶𝜅∗,Υ < +∞, (4.14)

for any Υ ≥ 2, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 1 ≤ 𝓁 ≤ 𝑚, and for some 𝐶𝜅∗,Υ independent of𝑚.
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32 CHIZAT et al.

In particular, we have that

𝔼[‖𝑼̊(𝜅)‖Υ + ‖𝑽̊(𝜅)‖Υ + ‖𝒑̊(𝜅)‖Υ + ‖𝒒̊(𝜅)‖Υ] ≤ 𝐶𝜅∗,Υ𝑚
Υ

2 ,

𝔼[‖𝑾̊(𝜅)‖Υ] ≤ 𝐶𝜅∗,Υ𝑚Υ.

(4.15)

Let us now bound the error terms. Let us assume that we have for some 𝛼 ≥ 0 that will be small,
and for any 𝜚 ≥ 2,

𝔼[‖𝔘(𝜅)‖𝜚 + ‖𝔙(𝜅)‖𝜚] ≤ 𝐶𝜚𝑚
𝜚

2
−1+𝛼

𝔼[‖𝔚(𝜅)‖𝜚] ≤ 𝐶𝜚𝑚
𝜚−1+𝛼.

(4.16)

Then we will show that for any 𝛿 > 0

𝔼[‖𝔘(𝜅 + 1)‖𝜚 + ‖𝔙(𝜅 + 1)‖𝜚] ≤ 𝐶′
𝜚,𝛿

𝑚
𝜚

2
−1+𝛼+𝛿

𝔼[‖𝔚(𝜅 + 1)‖𝜚] ≤ 𝐶′
𝜚,𝛿

𝑚𝜚−1+𝛼+𝛿,

(4.17)

for some new constant 𝐶′
𝜚,𝛿

that might depend on everything, but it is independent of𝑚.
In order to do that, we look at the different terms in the errors. We can always apply the same

strategy to bound them, using our hypotheses (4.16) and that we know explicitly how the errors
are being updated, (4.9). Let us for example showhow to bound a representative case that includes
all possible behaviors, to obtain a bound like (4.17) for the term 𝔈𝑝(𝜅 + 1). Namely, we will show
that

𝔼[‖𝔈𝑝(𝜅 + 1)‖𝜚] ≤ 𝐶′𝑚
𝜚

2
−1+𝛼+𝛿 (4.18)

for some 𝛿 arbitrarily small.
We know that 𝔈𝑝(𝜅 + 1) = 𝔈1(𝜅 + 1) + 𝔈2(𝜅 + 1), let us control them separately.
Step 5: Bound on 𝔈1(𝜅 + 1). The term 𝔈1(𝜅 + 1) has two parts. The first part is∑

𝑘≥0

(
𝑹𝑘𝜶𝑘(𝜅) + 𝑺𝑘𝜶𝑘(𝜅)

)
.

In this case, we use the boundedness of coefficients (4.13) together with the fact that, from
Proposition 3.5, we also have that for 𝑘 ≤ 𝜅∗ + 1 and any Υ ≥ 2,

𝔼[‖𝑹𝑘‖Υ + ‖𝑺𝑘‖Υ] ≤ 𝐶𝜅∗,Υ𝑚
Υ

2
−1

,

(using the equivalence between Euclidean norms, ‖𝑥‖𝑝 ≤ 𝑚
1

𝑝
−

1

𝑞 ‖𝑥‖𝑞 for any 𝑥 ∈ ℝ𝑚 and𝑝 < 𝑞).
This gives the desired result without losing any power.
For the second term in 𝔈1(𝜅 + 1),

1√
𝑚

𝒁𝔘(𝜅),
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 33

we can apply Lemma 4.2 to obtain, on the one hand,

𝔼
⎡⎢⎢⎣
‖‖‖‖‖‖

1√
𝑚

𝒁𝔘(𝜅)

‖‖‖‖‖‖
2⎤⎥⎥⎦ ≤ 𝐶𝑚𝛼

and on the other hand, for any 𝑟 > 2 and 𝛿 > 0,

𝔼
⎡⎢⎢⎣
‖‖‖‖‖‖

1√
𝑚

𝒁𝔘(𝜅)

‖‖‖‖‖‖
𝑟⎤⎥⎥⎦ ≤ 𝐶𝑚

𝑟

2
−1+

𝛿

𝑟
+

𝑟

𝑟+𝛿
𝛼 ≤ 𝐶𝑚

𝑟

2
−1+𝛿+𝛼

where 𝐶 now might depend also on 𝛿.
Step 6: Bound on 𝔈2(𝜅 + 1). The term 𝔈2(𝜅 + 1) also has two parts. Regarding all the terms

involving the orthonormal errors coming from Proposition 3.6, we treat them as in the previ-
ous step but using Proposition 3.6 instead of Proposition 3.5. Let us then show how to bound the
remaining term,

1

𝑚

(
𝔚(𝜅)𝑼̊(𝜅) + 𝑾̊(𝜅)𝔘(𝜅) + 𝔚(𝜅)𝔘(𝜅)

)
.

We do so separately, for each of the three elements. Let us start with the first term:, by means
of Cauchy–Schwarz and Hölder:

𝔼

[‖‖‖‖ 1

𝑚
𝔚(𝜅)𝑼̊(𝜅)

‖‖‖‖
𝜚]

≤ 1

𝑚𝜚 𝔼
[‖𝔚(𝜅)‖𝜚‖‖‖𝑼̊(𝜅)

‖‖‖𝜚]
≤ 1

𝑚𝜚

(
𝔼
[‖𝔚(𝜅)‖(1+𝜀)𝜚

]) 1

1+𝜀
(
𝔼
[‖‖‖𝑼̊(𝜅)

‖‖‖𝜂𝜚]) 1

𝜂
,

with 𝜀

1+𝜀
=

1

𝜂
. By hypothesis (4.16) and using (4.15) we obtain

𝔼

[‖‖‖‖ 1

𝑚
𝔚(𝜅)𝑼̊(𝜅)

‖‖‖‖
𝜚]

≤ 𝐶
1

𝑚𝜚 𝑚
𝜚−1+

𝜀+𝛼

1+𝜀 𝑚
𝜚

2 = 𝐶𝑚
𝜚

2
−1+

𝜀+𝛼

1+𝜀 .

A similar computation works for the term 1

𝑚
𝑾̊(𝜅)𝔘(𝜅). Finally,

𝔼

[‖‖‖‖ 1

𝑚
𝔚(𝜅)𝔘(𝜅)

‖‖‖‖
𝜚]

≤ 1

𝑚𝜚 𝔼
[‖𝔚(𝜅)‖𝜚‖𝔘(𝜅)‖𝜚]

≤ 1

𝑚𝜚

(
𝔼
[‖𝔚(𝜅)‖2𝜚]) 1

2
(
𝔼
[‖𝔘(𝜅)‖2𝜚]) 1

2
.

Using our hypotheses in (4.16) we have

𝔼

[‖‖‖‖ 1

𝑚
𝔚(𝜅)𝔘(𝜅)

‖‖‖‖
𝜚]

≤ 𝐶
1

𝑚𝜚 𝑚
𝜚+

−1+𝛼

2 𝑚
𝜚

2
+

−1+𝛼

2 ≤ 𝐶𝑚
𝜚

2
−1+𝛼

.
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34 CHIZAT et al.

Thus, assuming 𝜀 < 𝛿, we have shown that (4.18) holds.
We can do the same with all other terms in𝔘(𝜅 + 1) and𝔙(𝜅 + 1) to obtain the desired result,

and a completely analogous argument also works on𝔚(𝜅 + 1).
Step 7: Conclusion. For 𝜅 = 0, there are no error terms, and in particular (4.16) holds with

𝛼 = 0 (recall 𝛼 ≥ 0). We fix 𝛿 universally as 𝛿 =
1

2𝜅∗
, in such a way that, from (4.16)–(4.17) with

𝜚 = 2,

𝔼[‖𝔘(𝜅)‖2 + ‖𝔙(𝜅)‖2] ≤ 𝐶𝑚
1

2 and 𝔼[‖𝔚(𝜅)‖2] ≤ 𝐶𝑚
3

2 ,

for all 𝜅 ≤ 𝜅∗ (notice that taking 𝛿 smaller, we can make the powers of𝑚 arbitrarily close to 1 and
2 respectively). In particular, by exchangeability of𝔘,𝔙, and𝔚, we have that

𝔘𝑖,𝓁(𝜅),𝔙𝑗(𝜅),𝔚𝑖𝑗(𝜅) → 0 in 𝐿2 as𝑚 → ∞,

with

𝔼[|𝔘𝑖,𝓁(𝜅)|2 + |𝔙𝑗(𝜅)|2 + |𝔚𝑖𝑗(𝜅)|2] ≤ 𝐶𝑚
−

1

2 → 0 as𝑚 → ∞, (4.19)

for all 𝑖, 𝑗 ∈ ℕ, 1 ≤ 𝓁 ≤ 𝑑 fixed.
The same analysis also yields that, for every 𝜀 > 0 there exists some 𝐶𝜀 such that

𝔼[‖𝔈ℎ(𝜅)‖2] ≤ 𝐶𝜀𝑚
−1+𝜀 → 0 as𝑚 → ∞,

so that ℎ𝜅(𝑥) → ℎ̊𝜅(𝑥) almost surely for every 𝑥 ∈ ℝ𝑑, as 𝑚 → ∞. This gives the almost optimal
quantitative convergence of the linear predictor, (2.14).
We finish by taking, on the one hand

𝑨(𝜅) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜶0(𝜅)

𝜶1(𝜅)

𝜶2(𝜅)

𝜶3(𝜅)

⋮

⎞⎟⎟⎟⎟⎟⎟⎠
∈ ℝ∞×𝑑, 𝑩(𝜅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛽0(𝜅)

𝜷1(𝜅)

𝛽2(𝜅)

𝜷3(𝜅)

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ ℝ∞,

and

which are well defined independently of𝑚, if𝑚 is large enough for a fixed 𝜅. On the other hand,
recovering the superscripts 𝑚 in the notation, we know rom Theorem 3.2 (more precisely, from
Proposition 3.4), that the family of vectors (𝑱𝑚

𝑘
,𝑲𝑚

𝑘
) converges, in distribution, to a family of inde-

pendent, identically distributed (infinite) random vectors (3.6), that we denote (𝑱∞
𝑘

,𝑲∞
𝑘

). Hence,
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 35

we can take in (2.12)

(𝚪1, 𝚪2, … ) = (𝑱∞
0 ,𝑲∞

1 , 𝑱∞
2 , … ),

(𝚪̃1, 𝚪̃2, … ) = (𝑲∞
0 , 𝑱∞

1 ,𝑲∞
2 , … ),

(notice that these equalities are not elementwise, but rather as matrices; that is, 𝚪2 = 𝑱
(2),∞
0 if

𝑑 ≥ 2). Thanks to Proposition 3.4 and (4.19), we are done. □

5 PROPERTIES OF THE INFINITE-WIDTH DYNAMICS

In this section, we study the behavior of the time-continuous (𝜏 → 0) version of the limit
system (2.13)–(2.10), as 𝜏 ↓ 0, namely the gradient flow of  (2.11) with initialization (2.7).

5.1 A gradient flow

We start by showing that the time-continuous version of (2.13), (5.1) below, is a gradient flow of the
energy with respect to the Euclidean norm of the parameters (in particular, in the limiting case
𝑚 → ∞, it is a gradient flow in 𝓁2), and that the variation of the squared 𝓁2-norm of each layer
is the same; a property that follows from the 1-homogeneity of the output w.r.t. each layer, which
is often used in the analysis of linear NNs [4, 16]. This property is often used in conjunction with
a balanced initialization assumption [4, Eq. (7)], which does not hold here, in particular because
the middle layer has infinite 𝓁2-norm at initialization.

Proposition 5.1. Let𝑚 ∈ ℕ ∪ {∞}. Let (𝑨(𝑡), 𝑮(𝑡), 𝑩(𝑡))with𝑨(𝑡) ∶ [0,∞) → ℝ𝑚×𝑑,𝑮 ∶ [0,∞) →

ℝ𝑚×𝑚, and 𝑩(𝑡) ∶ [0,∞) → ℝ𝑚 be a solution to the following ODE system

⎧⎪⎨⎪⎩
𝑨̇(𝑡) = −[𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡)𝝃⊤

𝑡 ,

𝑮̇(𝑡) = −𝑩(𝑡)𝝃⊤
𝑡 𝑨(𝑡)⊤,

𝑩̇(𝑡) = −[𝚲 + 𝑮(𝑡)]𝑨(𝑡)𝝃𝑡,

(5.1)

with

𝝃𝑡 = ∫ 𝑥′(ℎ𝑡(𝑥), 𝑦)𝑑𝜌(𝑥, 𝑦) ∈ ℝ𝑑, ℎ𝑡(𝑥) = 𝑩(𝑡)⊤[𝚲 + 𝑮(𝑡)]𝑨(𝑡)𝑥. (5.2)

and 𝚲 ∈ ℝ𝑚×𝑚 is a fixed matrix, equal to:

ℝ𝑚×𝑚 ∋ 𝚲 = (Λ𝑖𝑗)𝑖𝑗 =

{
1 if 𝑖 + 𝑑 = 𝑗 or 𝑗 + 1 = 𝑖

0 otherwise.

Then, (5.1) is the gradient flow in the 𝓁2-norm of the energy functional

(𝑨, 𝑮, 𝑩) ∶= ∫ (𝑩⊤[𝚲 + 𝑮]𝑨𝑥, 𝑦)𝑑𝜌(𝑥, 𝑦).
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36 CHIZAT et al.

In particular, we have

𝑑

𝑑𝑡 ∫ (ℎ𝑡(𝑥), 𝑦)𝑑𝜌(𝑥, 𝑦) ≤ 0,

and

𝑑

𝑑𝑡
‖𝑨(𝑡)‖2 =

𝑑

𝑑𝑡
‖𝑩(𝑡)‖2 =

𝑑

𝑑𝑡
‖𝚲 + 𝑮(𝑡)‖2 = −2∫ ℎ𝑡(𝑥)′(ℎ𝑡(𝑥), 𝑦)𝑑𝜌(𝑥, 𝑦). (5.3)

Proof. Let us formally compute, using (5.1)

𝑑

𝑑𝑡
‖𝑨(𝑡)‖2 =

𝑑

𝑑𝑡
tr

{
𝑨(𝑡)⊤𝑨(𝑡)

}
= 2tr

{
̇𝑨(𝑡)

⊤
𝑨(𝑡)

}
= −2𝑩(𝑡)⊤[𝚲 + 𝑮(𝑡)]𝑨(𝑡)𝝃𝑡.

We can proceed similarly with 𝚲 + 𝑮(𝑡) and 𝑩(𝑡) to get (5.3).
The fact that (5.1) is the gradient flow in the 2-norm of  is a direct check. For future

convenience, we explicitly compute the dissipation by first obtaining the evolution of ℎ𝑡(𝑥)

−
𝑑

𝑑𝑡
ℎ𝑡(𝑥) = 𝝃⊤

𝑡 𝑨(𝑡)⊤[𝚲 + 𝑮(𝑡)]⊤[𝚲 + 𝑮(𝑡)]𝑨(𝑡)𝑥 + 𝑩(𝑡)⊤𝑩(𝑡)𝝃⊤
𝑡 𝑨(𝑡)⊤𝑨(𝑡)𝑥

+ 𝑩(𝑡)⊤[𝚲 + 𝑮(𝑡)][𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡)𝝃⊤
𝑡 𝑥,

(5.4)

so that denoting (𝑡) ∶= (𝑨(𝑡), 𝑮(𝑡), 𝑩(𝑡)),

𝑑

𝑑𝑡
(𝑡) = ∫

𝑑

𝑑𝑡
ℎ𝑡(𝑥)′(ℎ𝑡(𝑥), 𝑦)𝑑𝜌(𝑥, 𝑦)

= −‖[𝚲 + 𝑮(𝑡)]𝑨(𝑡)𝝃𝑡‖2 − ‖𝑩(𝑡)‖2‖𝑨(𝑡)𝝃𝑡‖2 − ‖𝝃𝑡‖2‖[𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡)‖2.
All the above computations also work if 𝑚 = ∞, in which case we consider the 𝓁2 norms of the
parameters. □

Remark 5.2. When 𝑚 = ∞, (5.3) should be paired with some initial conditions that ensure its
finiteness, and since ‖𝚲‖ = +∞, the third term should be interpreted as

𝑑

𝑑𝑡

(‖𝚲 + 𝑮(𝑡)‖2 − ‖𝚲‖2) = 𝑑

𝑑𝑡
tr
(
𝚲⊤𝑮(𝑡) + 𝑮⊤(𝑡)𝑮(𝑡)

)
.

5.2 Selection principle

Recall that we initialize our system (5.1) with

𝑨(0) =

⎛⎜⎜⎜⎜⎜⎝

Idd

𝟎𝑑×1

𝟎𝑑×1

⋮

⎞⎟⎟⎟⎟⎟⎠
∈ ℝ𝑚×𝑑, 𝑩(0) =

⎛⎜⎜⎜⎜⎜⎝

1

0

0

⋮

⎞⎟⎟⎟⎟⎟⎠
∈ ℝ𝑚, (5.5)
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 37

and

(𝑮)𝑖𝑗(0) = 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. (5.6)

If we denote

𝝀𝑡 ∶= 𝑨(𝑡)⊤[𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡) ∈ ℝ𝑑,

so that ℎ𝑡(𝑥) = 𝝀
⊤
𝑡 𝑥, we next show that 𝝀⊤

𝑡 never leaves the span of our data. That is,

𝝀
⊤
𝑡 𝒗 = 0 for all 𝒗 ∈ span(supp((𝜋𝑥)#𝜌))

⟂
, (5.7)

where 𝜋𝑥 ∶ ℝ𝑑 × ℝ → ℝ𝑑 is the projection operator (𝑥, 𝑦) ↦ 𝑥, and (𝜋𝑥)#𝜌 denotes the pushfor-
ward of 𝜌 through 𝜋𝑥.

Proposition 5.3. Under the assumptions of Proposition 5.1, let us further assume that′′ is bounded
and that (𝑨(𝑡), 𝑮(𝑡), 𝑩(𝑡)) are initialized at (5.5) and (5.6). Then (5.7) holds for all 𝑡 ≥ 0.

Proof. Since ′ is Lipschitz we know that the evolution is globally defined in time. Moreover,
since 𝝀0 = 0 we only need to show

𝑑

𝑑𝑡
𝝀

⊤
𝑡 𝒗 = 0 for all 𝑡 > 0,

where 𝒗 ∈ span (supp((𝜋𝑥)#𝜌))
⟂ will be fixed throughout the proof.

We can compute, using (5.1),

𝑑

𝑑𝑡
𝝀

⊤
𝑡 = −𝑩⊤[𝚲 + 𝑮][𝚲 + 𝑮]⊤𝑩𝝃⊤ − 𝑩⊤𝑩𝝃⊤𝑨⊤𝑨 − 𝝃⊤𝑨⊤[𝚲 + 𝑮]⊤[𝚲 + 𝑮]𝑨,

where we have omitted the time dependence for the sake of readability, that will be made only
explicit at time 0. Observe now that, since 𝒗 ∈ span (supp((𝜋𝑥)#𝜌))

⟂,

𝝃⊤𝒗 = 0 for all 𝑡 ≥ 0.

Hence, 𝑨̇𝒗 = 0 for all 𝑡 ≥ 0, which implies that 𝑨𝒗 = 𝑨0𝒗 (where𝑨0 = 𝑨(0), given by (5.5)). In
all, we have

𝑑

𝑑𝑡
𝝀

⊤
𝑡 𝒗 = −𝑩⊤𝑩𝝃⊤𝑨⊤𝑨0𝒗 − 𝝃⊤𝑨⊤[𝚲 + 𝑮]⊤[𝚲 + 𝑮]𝑨0𝒗. (5.8)

Let us now define the following quantities:

𝑀𝑡 ∶= 𝑩⊤𝚲𝑨0𝒗 ∈ ℝ, 𝑵𝑡 ∶= 𝑮⊤𝚲𝑨0𝒗 ∈ ℝ𝑚,

𝑶𝑡 ∶= 𝚷⊤𝑨⊤𝑨0𝒗 ∈ ℝ𝑑, 𝑷𝑡 ∶= 𝑮𝑨0𝒗 ∈ ℝ𝑚,

where we have denoted by𝚷 ∈ ℝ𝑑×𝑑 the projection matrix to span (supp((𝜋𝑥)#𝜌)), so that

𝚷𝒘 = 𝒘 for all 𝒘 ∈ span(supp((𝜋𝑥)#𝜌)).
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38 CHIZAT et al.

In particular, we always have that 𝝃⊤𝚷⊤ = 𝝃⊤. In the following, we will use that

𝑨0𝒗 =

(
𝒗

𝟎𝑚−𝑑

)
,

and hence, since the first 𝑑 × 𝑑 submatrix of 𝚲⊤𝚲 is the identity (which is a simple check) we
have

𝚲⊤𝚲𝑨0𝒗 = 𝑨0𝒗. (5.9)

A computation using (5.1) and (5.9) gives then the following system of ODEs:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑀̇𝑡 = −𝝃⊤𝑨⊤[𝚲 + 𝑮]⊤𝚲𝑨0𝒗 = −𝝃⊤𝑶𝑡 − 𝝃⊤𝑨⊤𝑵𝑡

𝑵̇𝑡 = −𝑨⊤𝝃𝑩⊤𝚲𝑨0𝒗 = −𝑨⊤𝝃𝑀𝑡

𝑶̇𝑡 = −𝚷⊤𝝃𝑩⊤[𝚲 + 𝑮]𝑨0𝒗 = −𝚷⊤𝝃𝑀𝑡 − 𝚷⊤𝝃𝑩⊤𝑷𝑡

𝑷̇𝑡 = −𝑩𝝃⊤𝑨⊤𝑨0𝒗 = −𝑩𝝃⊤𝑶𝑡,

(5.10)

which is initialized at

𝑀0 = 0, 𝑵0 = 𝟎𝑚, 𝑶0 = 𝟎𝑑, 𝑷0 = 𝟎𝑚. (5.11)

Here, we used that 𝑮(0) = 0, that the first element of 𝚲𝑨0𝒗 is zero (and hence, 𝑀0 = 0), that
𝝃⊤𝚷⊤ = 𝝃⊤, and that 𝑨⊤

0 𝑨0 = Id𝑑 so 𝑶0 = 𝚷⊤𝒗 = 𝟎𝑑. The system (5.10) is Lipschitz in its vari-
ables, coupled with locally bounded coefficients (thanks to (5.3)), and therefore it has a unique
solution. Since the initial conditions (5.11) all vanish, the unique solution is (𝑀𝑡,𝑵𝑡, 𝑶𝑡, 𝑷𝑡) =

(0, 𝟎𝑚, 𝟎𝑑, 𝟎𝑚) for 𝑡 ≥ 0.
Finally, we can rewrite (5.8) in terms of (𝑀𝑡,𝑵𝑡, 𝑶𝑡, 𝑷𝑡) (recalling (5.9)) as

𝑑

𝑑𝑡
𝝀

⊤
𝑡 𝒗 = −𝑩⊤𝑩𝝃⊤𝑶𝑡 − 𝝃⊤𝑶𝑡 − 𝝃⊤𝑨⊤𝑵𝑡 − 𝝃⊤𝑨⊤[𝚲 + 𝑮]⊤𝑷𝑡 = 0,

which is our desired result. □

Remark 5.4. We highlight that the selection principle in Proposition 5.3 is not a consequence
of a general abstract result on gradient flows with this particular structure, but rather follows
from the precise initialization that arises from the infinite width limit, as illustrated by the
following example.
By denoting 𝒆1 =

(
1 0
)⊤
, let us define

(𝑨, 𝒛) ∶=
1

2
⟨𝑨𝒛, 𝒆1⟩2, with ℝ2×2 ∋ 𝑨 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
, ℝ2 ∋ 𝒛 =

(
𝑧1

𝑧2

)
,
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 39

which is the empirical risk of a two-layer linear NN with a single sample (𝑥1, 𝑦1) = (𝒆1, 0) in the
training set. Consider its gradient flow:

𝑨̇ = −𝜕𝑨(𝑨, 𝒛) = −⟨𝑨𝒛, 𝒆1⟩𝒆1𝒛
⊤ = −(𝐴11𝑧1 + 𝐴12𝑧2)

(
𝑧1 𝑧2

0 0

)
,

𝒛̇ = −𝜕𝒛 = −⟨𝑨𝒛, 𝒆1⟩𝑨⊤𝒆1 − (𝐴11𝑧1 + 𝐴12𝑧2)

(
𝐴11

𝐴12

)
.

Then, if we denote 𝝀 ∶= 𝑨𝒛 =
(
𝜆1 𝜆2

)⊤
, we can express the energy as

(𝑨, 𝒛) =
1

2
⟨𝑨𝒛, 𝒆1⟩2 =

1

2
𝜆2

1. (5.12)

It is however not true that the evolution of 𝝀must be such that it always moves along the span of
𝒆1. Indeed, using the previous gradient flow, we know that

𝝀̇ = 𝑨̇𝒛 + 𝑨𝑧̇ = −(𝐴11𝑧1 + 𝐴12𝑧2)

((
𝑧2
1 + 𝑧2

2
0

)
+

(
𝐴2

11 + 𝐴2
12

𝐴21𝐴11 + 𝐴22𝐴12

))
.

Hence,when (𝐴11𝑧1 + 𝐴12𝑧2)(𝐴21𝐴11 + 𝐴22𝐴12) ≠ 0, the second coordinate𝝀 ismoving. This can
happen by choosing at time 𝑡 = 0

𝑨(0) ∶=

(
1 1

1 0

)
, 𝒛(0) ∶=

(
0

1

)
, so that 𝝀(0) =

(
1

0

)
and, since 𝜆2(0) ≠ 0, we have that 𝜆2(𝑡) ≠ 0 for some time 𝑡 > 0, despite the fact that the energy
in (5.12) depends only on 𝜆1.

5.3 Quantitative convergence and implicit bias

Whenever the loss function is uniformly convex (we take the quadratic case for convenience) then
we expect exponential rate of convergence towards a minimizer.
In the following, given a measure 𝜌, we denote by𝑴 the covariance matrix,

𝑴 ∶= ∫ 𝑥𝑥⊤𝑑𝜌(𝑥, 𝑦) ∈ ℝ𝑑×𝑑. (5.13)

Note that 𝑴 is symmetric and positive semi-definite. In particular, if 𝑴 is non-degenerate
(det(𝑴) > 0), then there is a unique minimizer 𝝀 ∈ ℝ𝑑 of the quadratic energy

 = ∫ (𝝀 ⋅ 𝑥 − 𝑦)2𝑑𝜌(𝑥, 𝑦).

Otherwise, and as we have seen in Proposition 5.3, our systemwill converge to a minimizer in the
span of supp((𝜋𝑥)#𝜌) (alternatively, in ker(𝑴)⟂ or in the row space of 𝑴), which is unique. We
prove that it will do so at an exponential rate, depending on the lowest non-zero eigenvalue of𝑴.
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40 CHIZAT et al.

Proposition 5.5. Under the assumptions of Proposition 5.1, let us further assume that  is the
quadratic loss function and that 𝑴 has 𝑑′ non-zero eigenvalues, with 1 ≤ 𝑑′ ≤ 𝑑, that we denote
0 < 𝑧1 ≤ 𝑧2 ≤ ⋯ ≤ 𝑧𝑑′ .
Let (𝑨(𝑡), 𝑮(𝑡), 𝑩(𝑡)) denote the evolution (5.1) initialized at (5.5) and (5.6). Then 𝝀𝑡 converges to

the unique minimizer 𝝀 ∈ ℝ𝑑 of the energy functional,

𝑡 ∶= ∫ (ℎ𝑡(𝑥) − 𝑦)2𝑑𝜌(𝑥, 𝑦) = ∫ (𝝀𝑡 ⋅ 𝑥 − 𝑦)2𝑑𝜌(𝑥, 𝑦)

such that 𝝀 ∈ span (supp((𝜋𝑥)#𝜌)) (alternatively, 𝝀 ∈ ker(𝑴)⟂), and

𝑡 − ∞ ≤ (0 − ∞)𝑒−𝑐𝜆𝑡 for 𝑡 ≥ 0

for some constant 𝑐𝜆 depending only on ‖𝝀‖, 𝑑, 𝑧1, and 𝑧𝑑′ (and independent of𝑚).

Proof. We divide the proof into four steps.
Step 1: The setting. We use the same notation as in Proposition 5.1 and Proposition 5.3. We

recall that we had denoted

𝝀𝑡 ∶= 𝑨(𝑡)⊤[𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡) ∈ ℝ𝑑.

(In particular, 𝝀0 = 𝟎d×1.) The condition on𝑴 can then be re-written as

0 < 𝑧1|𝒘|2 ≤ 𝒘 ⋅ 𝑴𝒘 ≤ 𝑧𝑑′ |𝒘|2 for all 𝒘 ∈ ker(𝑴)⟂. (5.14)

The energy is given by

𝑡 ∶= (𝑨(𝑡), 𝑮(𝑡), 𝑩(𝑡)) = ∫ (ℎ𝑡(𝑥) − 𝑦)2 𝑑𝜌(𝑥, 𝑦),

wherewe recall that ℎ𝑡(𝑥) = 𝝀𝑡 ⋅ 𝑥. In particular, we can explicitly compute theminimizer 𝝀 (with
𝝀 ∈ ker(𝑴)⟂) and the evolution of 𝑡 in terms of 𝝀,

𝝀 ∶= ∫ 𝑦 𝑴−1𝑥 𝜌(𝑥, 𝑦) ∈ ℝ𝑑, 𝑡 = (𝝀𝑡 − 𝝀) ⋅ 𝑴(𝝀𝑡 − 𝝀) + ∞, (5.15)

where, by an abuse of notation, we denoted by 𝑴−1𝑥 the inverse restricted to ker(𝑴)⟂ of 𝑥 ∈

supp(𝜋𝑥)#𝜌, so that 𝝀 ∈ ker(𝑴)⟂ as well. From (5.14) and the fact that 𝝀𝑡 ∈ ker(𝑴)⟂ for all 𝑡 ≥ 0

(see Proposition 5.3), we have

𝑧1‖𝝀𝑡 − 𝝀‖2 ≤ 𝑡 − ∞ ≤ 𝑧𝑑′‖𝝀𝑡 − 𝝀‖2. (5.16)

We also have (cf. (5.4))

𝝃𝑡 = 2𝑴(𝝀𝑡 − 𝝀) and 𝝀̇𝑡 = −2𝑹𝑡𝑴(𝝀𝑡 − 𝝀)
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 41

where 𝑹𝑡 is a symmetric matrix, 𝑹𝑡 ≥ 0, defined by

𝑹𝑡 = 𝑨(𝑡)⊤[𝚲 + 𝑮(𝑡)]⊤[𝚲 + 𝑮(𝑡)]𝑨(𝑡) + 𝑩(𝑡)⊤𝑩(𝑡)𝑨(𝑡)⊤𝑨(𝑡)

+ 𝑩(𝑡)⊤[𝚲 + 𝑮(𝑡)][𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡)Id𝑑×𝑑 ∈ ℝ𝑑×𝑑.
(5.17)

Thus,

̇𝑡 = −4(𝝀𝑡 − 𝝀) ⋅ 𝑴𝑹𝑡𝑴(𝝀𝑡 − 𝝀). (5.18)

Observe also that (see the proof of Proposition 5.1)

𝑑

𝑑𝑡
‖𝑨(𝑡)‖2 =

𝑑

𝑑𝑡
‖𝑩(𝑡)‖2 = −4𝝀𝑡 ⋅ 𝑴(𝝀𝑡 − 𝝀)

= −4(𝑡 − ∞) − 4𝝀 ⋅ 𝑴(𝝀𝑡 − 𝝀)

≤ 4𝑧
1

2

𝑑′‖𝝀‖√𝑡 − ∞ ≤ 4𝑧𝑑′‖𝝀‖2,
(5.19)

where we used that the energy is decreasing, Cauchy-Schwarz, and (5.14). Similarly, for any 𝒆 ∈

𝕊𝑑−1,

𝑑

𝑑𝑡
‖𝑨(𝑡)𝒆‖2 = −4(𝝀𝑡 ⋅ 𝒆) 𝒆𝑴(𝝀𝑡 − 𝝀)

≤ 𝐶‖𝝀𝑡 − 𝝀‖2 + ‖𝝀‖ ‖𝝀𝑡 − 𝝀‖ ≤ 𝐶‖𝝀‖2 (5.20)

for some constant 𝐶 depending only on 𝑧1 and 𝑧𝑑′ .
Step 2: Small times.We have 𝑹𝑡 ≥ ‖𝑩(𝑡)‖2𝑨(𝑡)⊤𝑨(𝑡) and 𝑹0 ≥ Id𝑑×𝑑. In particular, thanks to

(5.19)-(5.20),

𝑹𝑡 ≥ 1

2
Id𝑑×𝑑 for 𝑡 ≤ 𝑡◦, (5.21)

where 𝑡◦ = 𝑐◦‖𝝀‖−2 for some 𝑐◦ > 0 depending only on 𝑧1 and 𝑧𝑑′ . Hence,

̇𝑡 ≤ −𝑐(𝑡 − ∞) for 0 ≤ 𝑡 < 𝑡◦,

for some 𝑐 depending only on 𝑧1 and 𝑧𝑑′ , thanks to (5.15)-(5.16)-(5.18)-(5.21) (we use that if𝑴 and

𝑹𝑡 are symmetric positive semi-definitematrices, then𝑴
1

2 𝑹𝑡𝑴
1

2 is positive semi-definite aswell).
In particular,

𝑡 − ∞ ≤ (0 − ∞)𝑒−𝑐𝑡 for 0 ≤ 𝑡 < 𝑡◦. (5.22)

Step 3: An ODE for all times. From the previous inequality and the dissipation of energy, we
have

‖𝑴 1

2 𝝀‖𝑒−
𝑐𝑡◦
2 ≥ ‖𝑴 1

2 (𝝀𝑡 − 𝝀)‖ ≥ ‖𝑴 1

2 𝝀‖ − ‖𝑴 1

2 𝝀𝑡‖ for 𝑡 ≥ 𝑡◦,
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42 CHIZAT et al.

so that

‖𝝀𝑡‖2 ≥ 𝐶−1
𝜌 ‖𝑴 1

2 𝝀𝑡‖2 ≥ 𝐶−1
𝜌

(
1 − 𝑒

−
𝑐𝑡◦
2

)2‖𝑴 1

2 𝝀‖2 ≥ 𝐶−2
𝜌 ‖𝝀‖2(1 − 𝑒

−
𝑐𝑡◦
2

)2

=∶ 𝑐𝜆

with 𝑐𝜆 > 0, for 𝑡 ≥ 𝑡◦. In particular, by Cauchy-Schwarz and up to a dimensional constant, from
the definition of 𝝀𝑡,

𝑐𝜆 ≤ ‖𝝀𝑡‖2 ≤ 𝐶‖𝑨(𝑡)‖2‖[𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡)‖2 for 𝑡 ≥ 𝑡◦.

From (5.17) we know that for some dimensional 𝑐 > 0,

𝑹𝑡 ≥ ‖[𝚲 + 𝑮(𝑡)]⊤𝑩(𝑡)‖2 Id𝑑×𝑑 ≥ 𝑐𝑐𝜆‖𝑨(𝑡)‖−2 Id𝑑×𝑑 for 𝑡 ≥ 𝑡◦.

On the other hand, from (5.19), and since ‖𝑨(0)‖2 = 𝑑,

‖𝑨(𝑡)‖2 ≤ 𝑑 + 𝐶‖𝝀‖∫ 𝑡

0

√𝜏 − ∞ 𝑑𝜏,

and hence

𝑹𝑡 ≥ 𝑐𝑐𝜆

𝑑 + 𝐶‖𝝀‖ ∫ 𝑡

0

√𝜏 − ∞ 𝑑𝜏
Id𝑑×𝑑 for 𝑡 ≥ 𝑡◦.

Combined again with (5.14)-(5.16)-(5.18) we obtain the inequality

̇𝑡 ≤ −
𝑐𝑐𝜆(𝑡 − ∞)

1 + ‖𝝀‖ ∫ 𝑡

0

√𝜏 − ∞ 𝑑𝜏
for 𝑡 ≥ 𝑡◦. (5.23)

Step 4: Bootstrap argument. Observe that

∫
𝑡

0

√𝜏 − ∞ 𝑑𝜏 ≤ 𝐶‖𝝀‖𝑡, (5.24)

since we have dissipation of the energy. Hence, from (5.23) we get

̇𝑡 ≤ −
𝑐𝑐𝜆(𝑡 − ∞)

1 + ‖𝝀‖𝑡 for 𝑡 ≥ 𝑡◦,

which implies (also using that 𝑐𝜆 ≤ 𝐶‖𝝀‖2 and 𝑡◦ = 𝑐‖𝝀‖−2)

𝑡 − ∞ ≤ (𝑡◦ − ∞

)(1 + ‖𝝀‖𝑡◦
1 + ‖𝝀‖𝑡

) 𝑐𝑐𝜆‖𝝀‖ ≤ 𝐶‖𝝀‖2(1 + ‖𝝀‖𝑡)− 𝑐𝑐𝜆‖𝝀‖ , for 𝑡 ≥ 𝑡◦.
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 43

Plugging it back into (5.23), we now have that instead of (5.24) (also using (5.22)),

∫
𝑡

0

√𝜏 − ∞ 𝑑𝜏 ≤ 𝐶
‖𝝀‖

1 + ‖𝝀‖2 + 𝐶‖𝝀‖(1 + ‖𝝀‖𝑡)1−𝜀𝜆

where we have denoted 𝜀𝜆 ∶=
𝑐𝑐𝜆‖𝝀‖ <

1

2
(if 𝑐 is sufficiently small). Again from (5.23),

̇𝑡𝑡 − ∞
≤ −

𝑐𝑐𝜆

1 + ‖𝝀‖2(1 + ‖𝝀‖2)−2
+ ‖𝝀‖2(1 + ‖𝝀‖𝑡)1−𝜀𝜆

for 𝑡 ≥ 𝑡◦.

In particular, there exists some 𝑐𝜆 depending on ‖𝝀‖, 𝑧1, and 𝑧𝑑′ , such that

𝑡 − ∞ ≤ (0 − ∞)𝑒−𝑐𝜆𝑡
𝜀𝜆 for 𝑡 ≥ 0.

Iterating again the procedure, now ∫ ∞

0

√𝜏 − ∞ 𝑑𝜏 < +∞, and hence

𝑡 − ∞ ≤ (0 − ∞)𝑒−𝑐𝜆𝑡 for 𝑡 ≥ 0

for some (possibly different) 𝑐𝜆 depending only on ‖𝝀‖, 𝑑, 𝑧1, and 𝑧𝑑′ □

Finally, we have:

Proof of Theorem 2.3. If follows from Proposition 5.5. □

6 MULTI-LAYER CASE

Let us now consider the multi-layer case, that is, the evolution of a NN with 𝐿 + 1 hidden layers
(being the previous case, 𝐿 = 1). For the sake of readability, we do it in the case 𝑑 = 1, but the
same holds for 𝑑 > 1. The aim of this section is to introduce and justify all the objects, notably
the limit evolution equation and the basis in which such evolution is expressed, for the analogous
of Theorem 2.2 to hold with 𝐿 + 1 hidden layers. We remark that the following arguments are
formal, and that their rigorous justifications can be obtained by the same methods developed in
the core of the paper.
Using the notation in subsection 2.2, and dropping the superscript 𝑚, we now have 𝑼 ∈ ℝ𝑚,

𝑾(𝓁) ∈ ℝ𝑚×𝑚 for 1 ≤ 𝓁 ≤ 𝐿, and 𝑽 ∈ ℝ𝑚, initialized as

𝑈𝑗(0) ∼  (0, 1), 𝑊
(𝓁)
𝑖𝑗 (0) = 0, 𝑉𝑖(0) ∼  (0, 1).

We also fix 𝐿 ∈ ℕ independent randommatrices of size𝑚 × 𝑚 with independent entries (0, 1),
(𝒁(𝓁))1≤𝓁≤𝐿. The NN is (recall 𝑥 ∈ ℝ):

𝑦 = ℎ(𝑥,𝑼, (𝑾(𝓁))1≤𝓁≤𝐿, 𝑽) =

⟨
1

𝑚
𝑽,

𝐿∏
𝓁=1

(
1√
𝑚

𝒁(𝓁) +
1

𝑚
𝑾(𝓁)

)
𝑼𝑥

⟩
.
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44 CHIZAT et al.

And the evolution (𝑼(𝜅), (𝑾(𝓁)(𝜅))1≤𝓁≤𝐿, 𝑽(𝜅))𝜅∈ℕ is a GD (with layer-wise learning rates) on the
objective function

𝐹(𝑼, (𝑾(𝓁))1≤𝓁≤𝐿, 𝑽) ∶= ∫
ℝ𝑑×ℝ

(ℎ(𝑥,𝑼, (𝑾(𝓁))1≤𝓁≤𝐿, 𝑽), 𝑦
)
𝑑𝜌(𝑥, 𝑦),

given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑼(𝜅 + 1) = 𝑼(𝜅) − 𝜏

𝐿∏
𝓁=1

[
1√
𝑚

𝒁(𝓁) +
1

𝑚
𝑾(𝓁)(𝜅)

]⊤
𝑽(𝜅)(𝝃𝜅,𝜏)

⊤,

𝑾(𝓁)(𝜅 + 1) = 𝑾(𝓁)(𝜅) − 𝜏

𝐿∏
𝑖=𝓁+1

[
1√
𝑚

𝒁(𝑖) +
1

𝑚
𝑾(𝑖)(𝜅)

]⊤
𝑽(𝜅)(𝝃𝜅,𝜏)

⊤

(𝑼(𝜅))⊤
𝓁−1∏
𝑖=1

[
1√
𝑚

𝒁(𝑖) +
1

𝑚
𝑾(𝑖)(𝜅)

]⊤
, 1 ≤ 𝓁 ≤ 𝐿,

𝑽(𝜅 + 1) = 𝑽(𝜅) − 𝜏

1∏
𝓁=𝐿

[
1√
𝑚

𝒁(𝓁) +
1

𝑚
𝑾(𝓁)(𝜅)

]
𝑼(𝜅)𝝃𝜅,𝜏,

(6.1)

with 𝝃𝜅,𝜏 = ∫ 𝑥′(ℎ𝜅,𝜏(𝑥), 𝑦)𝑑𝜌𝜅(𝑥, 𝑦) ∈ ℝ, where we have also denoted ℎ𝜅,𝜏(𝑥) =

ℎ(𝑥,𝑼(𝜅), (𝑾(𝓁)(𝜅))1≤𝓁≤𝐿, 𝑽(𝜅)), and we always assume uniformly finite second moments,
(2.2).
In analogy with the three-layer case, we expect the dynamics to be expressed, up to errors

which vanish as 𝑚 gets large, in a suitable Gaussian basis with certain orthogonality proper-
ties, and with an explicit behavior with respect to multiplication by 𝒁(𝓁). The construction of
such a basis (and more precisely, of one basis for each layer 𝓁) is a nontrivial generalization of
Theorem 3.2 and it is defined in subection 6.1 below. We describe now how to obtain the limit
dynamics, assuming the existence of such a basis, whose properties are detailed in (6.2) and (6.4)
below.
We assume therefore the existence of 𝐿 + 1 appropriate orthonormal bases, that we denote

𝚿0,𝚿1, … ,𝚿𝐿, with 𝚿𝓁 = (𝚿𝓁
1 ,𝚿

𝓁
2 ,𝚿

𝓁
3 , … ) for any 0 ≤ 𝓁 ≤ 𝐿,

such that 𝚿𝓁 ∈ ℝ𝑚×∞ is a matrix formed of independent 𝑚-dimensional Gaussian vectors (as
columns),𝚿𝓁

𝑖
∈ ℝ𝑚 for all 𝑖 ∈ ℕ, with entries (0, 1), and that are going to act as the approximate

bases for𝑚 < ∞, satisfying

1

𝑚
(𝚿𝓁)⊤𝚿𝓁 = Id∞,

1

𝑚
(𝚿𝓁)⊤𝚿𝓁′

= 0∞×∞, 0 ≤ 𝓁 ≠ 𝓁′ ≤ 𝐿 (6.2)
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INFINITE-WIDTH LIMIT OF DEEP LINEAR NEURAL NETWORKS 45

up to errors that vanish as𝑚 → ∞ (cf. Theorem 3.2). Namely, we assume that we can write, up to

errors that are of order 𝑂(𝑚
−

1

2
+𝛿

) for any 𝛿 > 0,

⎧⎪⎪⎨⎪⎪⎩
𝑼(𝜅) = 𝚿0𝑨(𝜅),

𝑾𝓁(𝜅) = 𝚿𝓁𝑮𝓁(𝜅)(𝚿𝓁−1)⊤, 1 ≤ 𝓁 ≤ 𝐿,

𝑽(𝜅) = 𝚿𝐿𝑩(𝜅),

(6.3)

for some coefficients𝑨,𝑩 ∈ ℝ∞,𝑮𝓁 ∈ ℝ∞×∞ for 1 ≤ 𝓁 ≤ 𝐿, initialized as (2.7)-(2.8) for 𝑑 = 1 and
all 1 ≤ 𝓁 ≤ 𝐿. Finally, we also assume the following recurrence relationship between bases under
multiplication by 𝒁(𝓁) (cf. subsection 3.4),

1√
𝑚

𝒁(𝓁)𝚿𝓁−1 = 𝚿𝓁𝚲𝓁,

1√
𝑚

(𝒁(𝓁))⊤𝚿𝓁 = 𝚿𝓁−1𝚲⊤
𝓁
, 1 ≤ 𝓁 ≤ 𝐿,

(6.4)

for some fixed matrices 𝚲𝓁 ∈ ℝ∞×∞ (cf. Equation 2.9). We can then write an evolution for the
coefficients 𝑨,𝑩, and 𝑮𝓁, using (6.1)-(6.2)-(6.4) and the representation (6.3):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑨(𝜅 + 1) = 𝑨(𝜅) − 𝜏

𝐿∏
𝓁=1

(
𝚲⊤

𝓁
+ 𝑮⊤

𝓁
(𝜅)
)
𝑩(𝜅),

𝑮𝓁(𝜅 + 1) = 𝑮𝓁(𝜅) − 𝜏

𝐿∏
𝑖=𝓁+1

(
𝚲⊤

𝑖 + 𝑮⊤
𝑖 (𝜅)
)
𝑩(𝜅)𝝃⊤

𝜅,𝜏𝑨
⊤(𝜅)

𝓁−1∏
𝑖=1

(𝚲⊤
𝑖 + 𝑮⊤

𝑖 (𝜅)),

𝑩(𝜅 + 1) = 𝑩(𝜅) − 𝜏

1∏
𝓁=𝐿

(𝚲𝓁 + 𝑮𝓁(𝜅))𝑨(𝜅)𝝃𝜅,𝜏,

(6.5)

for 1 ≤ 𝓁 ≤ 𝐿, with

𝜒𝜅,𝜏(𝑥) = 𝜒(𝑥, 𝑨(𝜅), (𝑮𝓁(𝜅))1≤𝓁≤𝐿, 𝑩(𝜅)),

𝝃𝜅,𝜏 = ∫ 𝑥′(𝜒𝜅,𝜏(𝑥), 𝑦)𝑑𝜌𝜅(𝑥, 𝑦) ∈ ℝ.

When 𝜌𝜅 = 𝜌 for all 𝜅 ∈ ℕ, this recursion is exactly the GD on the (deterministic) objective
function  defined by

(𝑨, (𝑮𝓁)1≤𝓁≤𝐿, 𝑩) = ∫ 
(

𝑩⊤
1∏

𝓁=𝐿

(𝚲𝓁 + 𝑮𝓁)𝑨𝑥), 𝑦

)
𝑑𝜌(𝑥, 𝑦), (6.6)
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and the linear predictor of the NN is given by

𝑨⊤
𝐿∏

𝓁=1

(
𝚲⊤

𝓁
+ 𝑮⊤

𝓁

)
𝑩,

up to errors that disappear as𝑚 → ∞. Thus, the description of the linear NN in the general multi-
layered case, (6.5), is reduced to finding bases such that (6.2) and (6.4) hold, up to errors (which
is precisely what we did in Section 3 above).

6.1 The choice of the bases

Given 𝐿 ∈ ℕ and 0 ≤ 𝓁 ≤ 𝐿, let us define the following set of finite sequences:

𝐿(𝓁) ∶= {(𝑠0, 𝑠1, 𝑠2, … , 𝑠𝑀) ∶ 𝑠0 ∈ {0, 𝐿}, 𝑠𝑀 = 𝓁, 𝑠𝑖 ∈ {0, … , 𝐿}, |𝑠𝑖 − 𝑠𝑖−1| = 1},

that is, 𝐿(𝓁) is the set of finite sequences of numbers belonging to {0, … , 𝐿}, starting at 0 or 𝐿,
finishing at 𝓁, and such that each element of the sequence is obtained by adding or subtracting 1
to the previous element (in particular, if 𝑠0 = 0, 𝑠1 = 1 necessarily). This set is going to be, for each
0 ≤ 𝓁 ≤ 𝐿, our index set for the basis 𝚿𝓁. For example, when 𝐿 = 1, the sequences in 1(0) (and
analogously in 1(1)) are just of the form 0101. . .0 or 1010. . .0, and can be identified with their
length. This is the reason why the index set in the case 𝐿 = 1 is just given by the natural numbers,
which was the case in Section 3.
We therefore consider 𝚿𝓁 to have as columns the elements 𝚿𝓁

𝑠 for 𝑠 ∈ 𝐿(𝓁), and we denote
it,

𝚿𝓁 = (𝚿𝓁
𝑠 )𝑠∈𝐿(𝓁), 0 ≤ 𝓁 ≤ 𝐿,

where we still need to define what 𝚿𝓁
𝑠 is for a given 𝑠 ∈ 𝐿(𝓁). To do so, for notational

convenience, given the matrices 𝒁(𝓁) for 1 ≤ 𝓁 ≤ 𝐿, we denote

𝒁𝓁−1,𝓁 ∶= (𝒁(𝓁))⊤ and 𝒁𝓁,𝓁−1 ∶= 𝒁(𝓁).

Moreover, we let 𝚿0
0 and 𝚿𝐿

𝐿 be two fixed independent Gaussian vectors of size 𝑚 (that is, those
associated to the sequences {0} and {𝐿}).
Then, given 𝑠 ∈ 𝐿(𝓁) of length𝑀 + 1, 𝑠 = (𝑠0, … , 𝑠𝑀), we define

𝚿𝓁
𝑠 ∶= 𝑚−𝑀∕2

∑
(𝑖0,…,𝑖𝑀)∈(𝑠,𝑚)

(
𝑀∏

𝑗=1

𝒁
𝑠𝑗,𝑠𝑗−1

𝑖𝑗 ,𝑖𝑗−1

)
(𝚿

𝑠0
𝑠0
)𝑖0 , (6.7)

where (𝑠,𝑚) is the set of indices (𝑖0, … , 𝑖𝑀) with 𝑖𝑗 ∈ {0, … ,𝑚} such that (𝑖𝑗, 𝑠𝑗) ≠ (𝑖𝑘, 𝑠𝑘) for all
1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑀. In other words, the main novelty of the current definition with respect to the
corresponding definition (3.4) for 𝐿 = 1 lies in the fact that the basis is parametrized by an element
𝑠 ∈ 𝐿(𝓁), which identifies a fixed sequence of consecutive layers. Once the sequence is fixed, the
sum in (6.7) runs over all possible loopless choices of one element between 1, … ,𝑚 in each of the
layers signposted by 𝑠.
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Formally, we obtain orthonormal bases in the sense (6.2) (as in Proposition 3.6), and the
relationships in (6.4) are of the form

1√
𝑚

𝒁(𝓁)𝚿𝓁−1
𝑠 =

⎧⎪⎨⎪⎩
𝚿𝓁

(𝑠,𝓁)
if 𝑠 = (𝑠′, 𝓁 − 2, 𝓁 − 1),

𝚿𝓁
(𝑠′,𝓁)

+ 𝚿𝓁
(𝑠,𝓁)

if 𝑠 = (𝑠′, 𝓁, 𝓁 − 1),
(6.8)

and

1√
𝑚

(
𝒁(𝓁)
)⊤

𝚿𝓁
𝑠 =

⎧⎪⎨⎪⎩
𝚿𝓁−1

(𝑠,𝓁−1)
if 𝑠 = (𝑠′, 𝓁 + 1, 𝓁),

𝚿𝓁−1
(𝑠′,𝓁−1)

+ 𝚿𝓁−1
(𝑠,𝓁−1)

if 𝑠 = (𝑠′, 𝓁 − 1, 𝓁),
(6.9)

for 1 ≤ 𝓁 ≤ 𝐿.

6.2 The case 𝑳 = 𝟐

In the case 𝐿 = 2 (that is, a four layers NN, or a NN with three hidden layers) we have a more
explicit expression. In this case, any element 𝑠 ∈ 2(𝓁) is of the form

(𝑠0, 1, 𝑠2, 1, 𝑠4, 1, 𝑠6, 1, 𝑠8, 1, … ), … 𝑠2𝑖 ∈ {0, 2},

and therefore, we can identify any element 𝑠 in 2(0), 2(1), or 2(2), with a natural number
𝑁(𝑠), seeing it as a binary representation. Thus, we associate

2(0) ∋ 𝑠 ↦ 𝑁0(𝑠) ∶= 2𝜎 +

𝜎∑
𝑖=1

2𝑖−2𝑠2(𝜎−𝑖)

2(1) ∋ 𝑠 ↦ 𝑁1(𝑠) ∶= 2𝜎+1 +

𝜎∑
𝑖=0

2𝑖−1𝑠2(𝜎−𝑖)

2(2) ∋ 𝑠 ↦ 𝑁2(𝑠) ∶= 2𝜎 +

𝜎∑
𝑖=1

2𝑖−2𝑠2(𝜎−𝑖)

where we have denoted 𝜎 = ⌊𝑀∕2⌋ for 𝑠 = (𝑠0, … , 𝑠𝑀). With this indexing, we can obtain more
explicit relations (6.8)-(6.9), since we now have that𝚿0,𝚿1, and𝚿2 can be indexed by the natural
numbers. That is, as an abuse of notation we denote

𝚿𝑖
𝑗
= 𝚿𝑖

𝑠 if 𝑁𝑖(𝑠) = 𝑗, for 𝑖 = 0, 1, 2,

which is well-defined for any 𝑗 ≥ 2.
The relations (6.8)-(6.9) correspond to

1√
𝑚

𝒁(1)𝚿0
𝑗

= 𝚿1
𝑗
+ 𝚿1

2𝑗
, (6.10)
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1√
𝑚

(
𝒁(2)
)⊤

𝚿2
𝑗

= 𝚿1
𝑗
+ 𝚿1

2𝑗+1
, (6.11)

and

1√
𝑚

(
𝒁(1)
)⊤

𝚿1
𝑗

=

⎧⎪⎨⎪⎩
𝚿0

𝑗
if 𝑗 is odd,

𝚿0
𝑗
+ 𝚿0

𝑗∕2
if 𝑗 is even,

(6.12)

1√
𝑚

𝒁(2)𝚿1
𝑗

=

⎧⎪⎨⎪⎩
𝚿2

𝑗
if 𝑗 is even,

𝚿2
𝑗
+ 𝚿2

(𝑗−1)∕2
if 𝑗 is odd.

(6.13)

Thanks to (6.10)-(6.11)-(6.12)-(6.13), the matrices 𝚲1 and 𝚲2 in (6.5) can be determined, which
are the only missing unknowns to be able to obtain an evolution of the system (6.5):

(Λ1)𝑖𝑗 =

{
1 if 𝑖 = 𝑗 or 2𝑖 = 𝑗,

0 otherwise,
and (Λ2)𝑖𝑗 =

{
1 if 𝑖 = 𝑗 or 2𝑗 + 1 = 𝑖,

0 otherwise,

that is,

𝚲1 =

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 …

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0

⋮ ⋱

⎞⎟⎟⎟⎟⎟⎠
,

and

𝚲⊤
2 =

⎛⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 …

0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1

⋮ ⋱

⎞⎟⎟⎟⎟⎟⎠
.
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