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Abstract

The application of robust control theory requires applicable
models containing unknown, bounded, perturbations and unknown,
bounded input signals. Model validation is a quantitative means of
assessing the applicability of a given model with respect to
experimental data.

This paper develops a theoretical framework, and a computational
solution, for the model validation problem in the case where the
model, including unknown perturbations and signals, is given in the
continuous time, yet the experimental datum is a finite, sampled,
signal. The continuous nature of the unknown components is treated
directly with a sampled data lifting theory. This gives results which
are valid for any sample period and any datum length. Explicit
calculation of whether sufficient data for invalidation has been
obtained arises naturally in this framework. A common class of
robust control models is treated in both open- and closed-loop and
yields a convex matrix optimization problem. A simulation, and an
experimental, example illustrate the approach.
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1 Introduction

The underlying motivation for this work comes from the problem of
designing a control system for a physical plant. Almost all design methods
require a model representing the plant behavior, and furthermore, the
model must be compatible with the design approach. The more recent
approaches, particularly robust control, require models which cannot be
provided by the standard identification techniques (meaning those
described by Ljung [1]). This mismatch has hindered the application of
robust control and has led to an increased interest in the problem of
modeling uncertain systems.

Robust control models contain, in addition to unknown additive noise,
bounded perturbations which can be used to describe unmodeled
dynamics. See for example, [2, 3, 4, 5, 6, 7] and the references therein.
This is a powerful formulation as such dynamics can be destabilizing under
feedback. Linear models in which all uncertainty is described by additive
noise do not have the ability to predict the destabilizing effects of
uncertainty. The model perturbations are not entirely arbitrary and are
described as unknown elements of a specified class. In the work presented
here we will concentrate on the H8/structured singular value framework.

Standard identification techniques currently do not lead to suitable bounds
on the perturbations, although some work is heading in this direction. The
work of Goodwin, Ninness and Salgado [8, 9, 10] or Hjalmarsson and
Ljung [11] begins to investigate this area. The resulting model
formulations do not match those used for the design methodology we are
considering here.

The area of identification in H8, developed by Parker and Bitmead [12]
and Helmicki, Jacobson and Nett [13, 14], with additional work by Mäkilä
and Partington [15, 16] and Gu and Khargonekar [17], focuses on
developing algorithms to provide a robust control model, in the H8
framework. In attempting to identify a model in this framework,
assumptions are usually required to provide a well posed problem. A priori
H8 perturbation bounds are often assumed and data is taken and
analyzed in order to provide a compatible model, meeting the bounds with
a small amount of additive noise. The full generality of the robust control
framework cannot yet be handled and the perturbation bound is not
derived from the experimental data.

Several research groups are investigating iterative identification/design
methodologies in a robust control framework. Such approaches do not yet
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have a rigorous theoretical backing. We note the work of Zang, Bitmead
and Gevers [18]; Lee et al. [19]; and, in the area of H8 based schemes,
Schrama and Van den Hof [20, 21]

Model validation is the converse side of the identification problem — given
a system model, which includes assumptions, we would like to assess
whether the model is consistent with experimental observations. No
assumptions are made about the nature of the physical system. Rather,
measurements are taken, and the assumption that the model describes the
system is directly tested. In a robust control context model validation is
equivalent to asking whether or not there exists an unknown vector valued
signal and an unknown perturbation, satisfying the specified assumptions
and accounting for the input-output datum. This is the question that we
address in this report.

Model validation for least squares/stochastic models has been applied for
some time and Ljung [1] gives an overview of model validation in the
standard identification framework. In the robust control framework there
is no identification methodology that generates models, guaranteed to be
consistent with the observed data. Robust control models are often
obtained from a combination of standard identification approaches and
ad-hoc estimates of perturbation bounds. We also note that validation is
with respect to a single experiment. It is not possible to validate a model
from a finite amount of data; however a single datum can invalidate a
model. We will maintain the customary practice of referring to this
procedure as model validation, although the term model invalidation is
clearly more descriptive. Our formal results will be presented in terms of
invalidation conditions.

The model validation problem was posed and solved for frequency domain
data and general H8{µ models by Smith and Doyle [22, 23]. Krause et
al. [24] studied a similarly motivated problem: the implications of test data
on determining stability margins. The frequency domain data requirement
is not the easiest to apply to experiments and Poolla et al. [25] considered
the model validation problem for discrete-time models with time-domain
experimental data. Their formulation applied to a more restricted,
although still common, class of perturbations. Zhou and Kimura [26] have
considered a similar problem and addressed the issue of identifying certain
system parameters in this framework.

In this paper we investigate a more experimentally motivated model
validation problem for H8{µ robust control models. The system, and the
given model, are in the continuous time domain. A known input is applied
and measurements of the system output are obtained by sampling. We
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explicitly account for the continuous nature of the model, unknown
perturbations, and unknown noise. This approach therefore gives a closer
connection to the physical model than we would obtain by discretizing the
model and attempting to validate a discrete time approximation of the
model. The consideration of the continuous time intersample effects also
allows us to consider the problem for any sample rate without requiring
bandlimited assumptions on the signals in the system. The chosen sample
rate clearly affects the validation experiment outcome and this is brought
out in the approach taken here; slow sample rates may not generate
enough data to invalidate a model.

We consider robust control models with the standard additive or
multiplicative perturbations both in open- and closed-loop experiments.
The paradigm we use here builds on the purely discrete-time work of
Poolla et al. [27] and Zhou and Kimura [26]. The continuous-time nature
of the unknown perturbations and unknown signals is handled by applying
the sampled data lifting framework developed by Bamieh, Pearson, Francis
and Tannenbaum [28, 29]. See also the related work of Yamamoto [30].
This allows us to characterize the effects of the infinite dimensional
continuous-time parts of the system in a finite dimensional manner. From
this we develop a matrix optimization formulation for the solution to the
model validation problem. In the perturbation framework considered here
this reduces to a convex optimization problem.

The outline of the paper is as follows. Section 2 gives the required
theoretical background. The lifting theory is outlined in this section and
the model framework is formally introduced. Section 3 presents the main
results of the paper. The experimental configuration is detailed and the
appropriate model validation problem is defined. A framework is
developed and applied to the solution of the model validation problem.
This leads to a convex optimization problem and the details of this are
outlined in Section 4. Section 5 presents a simulation based example which
is helpful in clarifying the application of the theory. An experimental
application, illustrating some of the engineering aspects, is presented in
Section 6. We conclude with a discussion of the results in Section 7.

Portions of this work have been submitted to the IEEE Transactions on
Automatic Control and the International Journal of Robust and Nonlinear
Control.
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2 Theoretical Background

This section provides the required background on robust control models,
the general model validation problem, and the sampled-data lifting theory.
All of these areas are detailed elsewhere so we only provide an outline and
introduce our notation.

2.1 Signal Spaces and Lifting

This section defines the basic mathematical objects we will use in the
sequel, and introduces a useful lifting operation. The lifting operation
presented is from [28, 29]. The symbol R will denote the real numbers, and
Z` the non-negative integers. Define the Hilbert space Lm2 r0,8q consisting
of functions, mapping the interval r0,8q to Rm, that have finite energy:

L2r0,8q :“

"

u : }u}22 :“

ż `8

0
|uptq|22 dt ă `8

*

,

where | ¨ |2 is the Euclidean norm. Usually, we will just write L2 when the
interval of definition and Euclidean dimension are clear.

We next define a particular class of sequence spaces. Suppose H is a
Hilbert space with norm } ¨ }H; we define the space l2pHq to be the
sequences mapping Z` to H that are square summable. Namely,

l2pHq :“

#

ψ : }ψ}22 :“
8
ÿ

k“0

}ψk}
2
H ă 8

+

.

Note from the above definitions that } ¨ }2 is context dependent. Also,
observe that when H “ Rm we have the usual space of square summable
sequences.

Given two Hilbert spaces H1 and H2, and a linear operator Q : H1 Ñ H2,
we define the induced norm of Q to be

}Q}H1ÑH2 :“ sup
uPH1,u“0

}Qu}H2

}u}H1

.

When the induced norm on Q is clear from the context we simply write
}Q}, suppressing the dependence on H1 and H2. This defines the norm
topology. We will also require the weak* (or weak operator) topology; a
sequence Qk of bounded operators H1 Ñ H2 converges to Q in this
topology if

xx, QkyyH2

kÑ8
ÝÑ xx, QyyH2 for all x P H1 and y P H2.
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Figure 1: Lifting Operation

We recall a useful property of this topology: if Qk is a uniformly bounded
sequence of operators, then there exists an operator Q, so that a
subsequence Qkj converges weak* to Q. See, for example, [31] for this
compactness result.

We now proceed to define a lifting operator that will be used extensively in
this work. To start, define L2r0, hq, for h ą 0, to be the space of square
integrable functions mapping r0, hq to Rn; the compression of L2r0, 8q.
Our goal is now to define an isomorphism between L2r0, 8q and
l2pL2r0, hq q. Define Λh : L2r0, 8q Ñ l2pL2r0, hq q to be the map that takes
d P L2r0,8q to the sequence d̃k “ pΛhdqk P L2r0, hq via,

pd̃kqpτq :“ dpτ ` khq for k ě 0, τ P r0, hq. (1)

The effect of this mapping is intuitively shown in Figure 1. Clearly Λ´1
h is

well-defined, and }Λh} “ }Λ
´1
h } “ 1, so Λh is an isometric isomorphism.

As a general rule, a signal d P L2r0,8q will be denoted in a standard math
script (e.g: d or dptq). Its associated lifted signal will be denoted by d̃, or
d̃k, or d̃kpτq depending upon context. In the following we will often
associate lifted signals, d̃, with vectors sequences in l2 and in this case the
vectors are denoted by d̄ or d̄k as is appropriate.
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2.2 Perturbation Types

This section is devoted to defining the perturbation classes we will be
dealing with in the paper. The two main dynamical properties we will be
focusing on are causality and time-variation.

To start, define the truncation operator Πτ : L2r0,8q Ñ L2r0, τq for each
τ ą 0 by pΠτuqptq “ uptq for t ď τ . An operator on L2r0,8q is causal if

Πτ∆Π˚τΠτ “ Πτ∆ for all τ ą 0.

Note that Π˚τ naturally inserts L2r0, τq into L2r0,8q, and that Π˚τΠτ is a
projection operator.

Also, define the shift operator Ξτ : L2r0,8q Ñ L2r0,8q for each τ ě 0 via
pΞτuqptq “ upt´ τq for t ě τ and zero otherwise. Then ∆ is defined to be
linear time-invariant (LTI) if

Ξτ∆ “ ∆Ξτ for all τ ą 0.

Related to these definitions we have h-anticipatory and h-periodicity:
given h ą 0, an operator ∆ is said to be h-anticipatory if,

Πkh∆Π˚khΠkh “ Πkh∆

for all integers k ě 1; the operator is h-periodic if,

Ξh∆ “ ∆Ξh.

The term h-anticipatory refers to the fact that the output of the operator
may depend upon the input by up to time h in advance. In other words, if
∆ is h-anticipatory Ξh∆ is causal.

Similarly, in discrete time we define the truncation operator πn, mapping

l2pHq to p
n

‘H
k“0

q, by pπψqk “ ψk if 0 ď k ď n and zero otherwise. The

discrete shift operator ζ : l2pHq Ñ l2pHq is defined by pζψqk “ ψk´1 for
k ě 1 and pζψq0 “ 0. An operator ∆ on l2pHq is defined to be causal if,

πk∆ “ πk∆π
˚
kπk for all k ě 0.

and LTI if,

ζ∆ “ ∆ζ.

In the sequel we will be particularly concerned with a special type of
existence problem for operators; we now describe the discrete time setup
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for this problem and present some preliminary results. Given two finite,
Hilbert space valued sequences,

pu0, . . . , unq and py0, . . . , ynq

in the orthogonal sum
n
‘
k“0

H, what is the operator ∆ of smallest norm

satisfying

ye “ ∆ue,

where ue and ye are any sequences in l2pHq that satisfy

ue “ pu0, . . . , un, un`1, . . .q

ye “ py0, . . . , yn, yn`1, . . .q.

That is, we want to specify the first n` 1 entries of an input-output pair.
Observe that if ∆ is causal the above condition is equivalent to
y “ πn∆π˚nu.

We now state two so-called extension theorems, which solve such existence
problems under different constraints on the time variation of ∆.

Proposition 1 Suppose that u and y are in
n
‘
k“0

H. Then there exists a

causal operator ∆ on l2pHq satisfying,

y “ πn∆π˚nu, with }∆} ď 1, (2)

if and only if,

l
ÿ

k“0

}yk}
2
H ď

l
ÿ

k“0

}uk}
2
H for all 0 ď l ď n.

In the proposition statement, (2) expresses the fact that we want to specify
n` 1 entries of the input-output pair. The result above is formally
equivalent to one found in [27], the only difference being that here H can
be infinite dimensional; we therefore omit the proof.

The perturbation in the preceding proposition gives conditions for the
existence of a causal operator; the next result provides similar conditions,
but for causal, LTI perturbations; a more restrictive class.
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Proposition 2 Suppose that u and y are in
n
‘
k“0

H. Then there exists an

LTI, causal, operator ∆ on l2pHq satisfying,

y “ πn∆π˚nu, with }∆} ď 1, (3)

if and only if,

Y ˚Y ď U˚U on Rn

where U and Y map Rn`1 to
n
‘
k“0

H and are defined by

Y :“

»

—

—

—

—

–

y0 0 0 ¨ ¨ ¨ 0
... y0 0 ¨ ¨ ¨ 0

yn´1 ¨ ¨ ¨ y0 ¨ ¨ ¨ 0

yn yn´1 ¨ ¨ ¨
. . . y0

fi

ffi

ffi

ffi

ffi

fl

U :“

»

—

—

—

—

–

u0 0 0 ¨ ¨ ¨ 0
... u0 0 ¨ ¨ ¨ 0

un´1 ¨ ¨ ¨ u0 ¨ ¨ ¨ 0

un un´1 ¨ ¨ ¨
. . . u0

fi

ffi

ffi

ffi

ffi

fl

.

(4)

This proposition is an operator valued version of the classic Caratheodory
interpolation theorem; see, for example, [32, p. 195] for a proof of this
operator generalization.

2.3 H8{µ Robust Control Models

We now introduce, using the formalism of Doyle [3], the generic robust
control model. This is given by the input-output relationship,

y “ rP21∆pI ´ P11∆q´1P12 ` P22s

„

w
u



,

where ∆ is an unknown, bounded perturbation. The signal w is unknown
and assumed to belong to some specified signal set. In considering model
validation, both the input u and output y are known. Measurement noise
on either is modeled as a scaled component of w. Note that for some
perturbation ∆, the term pI ´ P11∆q may not be invertible. This feature
allows the framework to model perturbations that are potentially
destabilizing under feedback. This particular model formulation is referred
to as a linear fractional transformation (LFT) and will be abbreviated to,

y “ FupP,∆q

„

w
u



.

This is a useful framework as interconnections of LFTs are simply larger
LFTs.
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The uncertainty about the system is captured by the assumptions on w and
∆. As P can be scaled, ∆ is taken to be unity norm bounded. Additional
structure may also be imposed; multiple perturbations at various locations
within a complex system can be modeled as a block diagonal ∆. Refer to
Packard and Doyle [33] for detail on the more general representations.

In the H8{µ framework specific assumptions are applied to P , ∆ and w.
The model, P , is assumed to be linear, time-invariant (LTI). The unknown
signal, w, is of unity bounded energy (or power), i.e. w P BL2. For
vector-valued w, the spatial norm is assumed to be the Euclidean norm.
The perturbation, ∆, has an assumed bound: }∆}L2ÑL2

ď 1; and it is
usually also assumed that ∆ is LTI. Analysis and design is also possible for
∆ assumed to be linear time-varying (LTV) [34, 35, 36] and our results
address this case also.

2.4 Model Validation for H8{µ Models

It is assumed that an LTI model, P , is given and an experimental datum
(y,u) is under consideration. The robust control model validation problem
can be formulated as follows.

The Model Validation Problem: Given a robustly stable model P , and
an experimental datum pu, yq, does there exist (w,∆), w P BL2,
}∆}L2ÑL2

ď 1, such that

y “ FupP,∆q

„

w
u



. (5)

This simply asks the question “is there an element of the model set and an
element of the unknown input signal set such that the observed datum is
produced exactly”? Note that using the LFT framework makes this
formulation general. It can equally well apply to closed-loop and MIMO
systems.

Solving the model validation problem amounts to assessing whether or not
a given robust control model is consistent with a given experimental
datum. No assumptions are made about the physical system — rather, we
are assessing, with respect to a particular datum, the assumptions that we
will subsequently use for design. This procedure is applicable to the
identification of robust control models as it gives a means of rejecting
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inappropriate models. It is also useful in the evaluation of simplified
models and in the area of fault detection under closed-loop operation [37].

The initial work of Smith and Doyle [22, 23] considered the experimental
datum, (u,y), to be available in the frequency domain. The work of Poolla
et al. [25], and Zhou and Kimura [26] considers a discrete time datum,
(uk,yk) and a discrete-time model, P pzq. We now look at the more
experimentally motivated case where model, P , and the underlying system,
are in the continuous time domain and experimental datum consists of a
known input, uptq, and an output, yk, obtained by sampling.

The next section formulates the model validation problem in a sampled
data framework and gives our main results.

3 Sampled Data Model Validation

We will consider the model validation problem for continuous time models
and sampled measurements. This model assumes that the unknown
signals, w, are in BL2 and that the perturbation, ∆ : L2 Ñ L2, with
}∆}L2ÑL2

ď 1. The experimental datum is obtained by applying a known
input, uptq, to the system and sampling the output, yptq, via a sampler.
The datum therefore consists of a finite number of vector valued samples.

The framework we present has no restrictions on either the number of
samples taken or the sampling period. However, in practice we find that
using a long sample period, or taking too few samples, may give an
experimental datum that does not invalidate the model; whereas sampling
the same experiment at a higher rate would have invalidated the model.
These ideas will be explicitly detailed subsequently.

Significant computational issues arise depending on the manner in which
the perturbation enters the system. For additive or multiplicative
perturbations, with disturbances modeled at the output, a convex,
non-differentiable optimization problem results. This is also true for
additive and multiplicative models in a sampled-data feedback loop. While
the framework presented here can be applied to the most general LFT
models, the resulting optimization problem is not necessarily convex. The
discussion of the next section will explicitly clarify which cases lead to
convex optimization problems.

For notational simplicity, we will consider the case where there are n` 1
output samples, sampled with period h. Irregularly spaced samples,

13
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Figure 2: Schematic of the physical experimental configuration

input/output vectors of unequal length, and a variety of other input hold
functions, are handled by straightforward, if tedious, modifications of the
details provided here.

3.1 Experimental Configuration

The experiment, with the physical system, is illustrated conceptually in
Figure 2. The system F represents an anti-aliasing filter, preceding an
ideal sampler (of period h), Sh, which maps functions to sequences by

pSh yqk “ ypkhq, k “ 0, 1, . . . .

The input to the system, uptq, is assumed to be known, and is considered
as part of the datum. We assume that uptq “ 0 for t ă 0. The available
datum is (yk,uptq), k “ 0, 1, . . . , n, and t P r0, nhs.

This paper will focus on robust control models having the structure
illustrated in Figure 3, where Pw, Pv, Pz and Py are all finite dimensional,
stable, LTI operators; Pw and Pv are further assumed to be strictly causal.
The theory is trivially extended to the case where the perturbation, ∆, is
block structured.

The mapping, Py : L2r0,8q Ñ L2r0,8q, represents the nominal system,
and Pw : L2p´8,8q Ñ L2r0,8q models the effect of unknown (bounded)
model noises and disturbances. The system Pz : L2r0,8q Ñ L2r0,8q maps
the system input to the perturbation and Pv : L2r0,8q Ñ L2r0,8q maps
the output of the perturbation to the system output.

We elect to use the notationally simpler assumption that all parts of the
models are stable. The results consider a finite time experiment and we
can relax the stability assumptions on Pz, Pv, and Py, by considering the
space of locally square integrable signals, Lloc2 , in place of L2. Note that as

14
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Figure 3: Block diagram of the system model for the validation problem

the disturbance, w, will be considered on an infinite horizon, we will
always require Pw to be stable.

We will allow the noise and disturbance signals to be non-zero before the
start of the experiment. That is, Pw maps L2p´8,8q to L2r0,8q, and can
therefore be partitioned as a map
rP´w P`w s : L2p´8, 0q ‘ L2r0,8q Ñ L2r0,8q. The mapping P´w captures
the effect of signals having support on p´8, 0q on the future interval r0,8q
and is given by

yptq “ Cw

ż 0

´8

eAwpt´τqBwwpτq dτ (6)

where pAw, Bw, Cwq is a stable realization of Pw. The map P`w
corresponds to the usual LTI system at rest at time zero.

The problem formulation assumes that uptq is known and therefore that
zptq can be calculated. Typically, uptq might be formed by passing a
computer generated discrete-time signal through a zero-order hold. No
further assumptions are required on Pz or Py, save that their outputs can
be calculated from a knowledge of uptq.

The assumptions on Pv and Pw are necessary to apply the framework that
we will present. Knowledge of zptq, using the calculation zptq “ Pzuptq,
gives a convex optimization problem.

The framework illustrated in Figure 3 applies to a significant number of
typical robust control model configurations. One of the most commonly
used is the multiplicative perturbation model illustrated in Figure 4.
Additive perturbation models also fit the framework. What may not be
clear, is that the approach we give also applies to models of closed-loop

15



Sh F

Wd W∆ ∆

Pnom Hl̀ l̀ t ���

��

?
�

?

?
���

yk yf ptq

wptq

vptq zptq

uptq uk

Figure 4: Model validation configuration for a multiplicative perturbation
model with output disturbances
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Figure 5: Model validation configuration for a closed-loop experiment

sampled-data systems, such as the one illustrated in Figure 5. For our
approach to apply here we record the output of the controller, Cpzq, and
consider it as part of the datum.

Solution of the model validation problem involves finding the smallest
norm w and ∆ satisfying the equality constraint, (5). The next section
develops the theoretical results required to characterize the existence of a
perturbation ∆ in terms of its input and output signals.
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3.2 Extension Results for Perturbation Operators

This section contains results on extending operators in continuous-time.
We start with two results, which are essentially corollaries of Propositions
1 and 2.

Proposition 3 Suppose u and y are in L2r0,8q, T ą 0 and h “ T
n`1

where n is a non-negative integer. Then there exists an h-anticipatory
operator ∆ on L2r0, 8q satisfying,

ΠT y “ ΠT∆u, with }∆} ď 1, (7)

if and only if,

}Πkhy}2 ď }Πkhu}2 for 1 ď k ď n` 1. (8)

Proof From the definition of Λh in (1) it is easy to see that

ΛhΠ˚pk`1qhΠpk`1qh “ π˚kπkΛh,

where πk is the truncation operator acting on l2pL2r0, hq q. Now, given any
operator ∆ on L2r0, 8q, define ∆̃ “ Λh∆Λ´1

h ; then clearly for each k

Πpk`1qh∆Π˚pk`1qhΠpk`1qh “ Πpk`1qh∆ if and only if πk∆̃π
˚
kπk “ πk∆̃.

Therefore, the existence of a ∆ as specified in the proposition is equivalent
to the existence of a causal ∆̃ on l2pL2r0, hq q, with }∆̃} ď 1, that satisfies

ỹ “ πn∆̃π˚nũ,

where ỹ “ πnΛhy and ũ “ πnΛhu. By Proposition 1 such a ∆̃ exists if and
only if

řl
k“0 }ỹk}2 ď

řl
k“0 }ũk}2 for 0 ď l ď n. This latter condition is

easily seen to be equivalent to (8); using the identity
ΛhΠ˚

pk`1qhΠpk`1qh “ π˚kπkΛh.

The next proposition provides a result on the existence of periodic
operators.

Proposition 4 Suppose u and y are in L2r0,8q, T ą 0 and h “ T
n`1

where n is a non-negative integer. Then there exists a both h-anticipatory
and h-periodic operator ∆ on L2r0, 8q satisfying,

ΠT y “ ΠT∆u, with }∆} ď 1, (9)
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if and only if the matrix inequality,

Ỹ ˚h Ỹh ď Ũ˚h Ũh holds on Rn`1, (10)

where Ỹh and Ũh are defined as in (4) from the finite sequences ỹ “ πnΛhy
and ũ “ πnΛhu.

Proof To start observe from the definition of Λh in (1) that

ΛhΞh “ ζΛh.

Therefore, an operator ∆ on L2r0, 8q is h-periodic if and only if
∆̃ :“ Λh∆Λ´1

h is LTI on l2pL2r0, hq q.

Furthermore, from the proof of Proposition 3 we know ∆ is h-anticipatory
if and only if ∆̃ is causal; and that the extension condition in (9) holds if
and only if πnỹ “ πn∆̃π˚nũ. By Proposition 2 such a ∆̃ exists if and only if
inequality (10) holds.

The next lemma is key in allowing us to apply the above results to obtain
conditions for continuous-time causality and time-invariance.

Lemma 5 Suppose the following three conditions hold:

(i) The operator ∆ is the weak* limit of a uniformly bounded sequence
∆l on L2r0,8q.

(ii) That hl ą 0 is a strictly decreasing infinite sequence of real numbers
tending to zero.

(iii) The functions u and y are elements of L2r0, T q, where T ą 0.

Then

(a) If each ∆l satisfies ΠT∆lΠ
˚
Tu “ y, then ΠT∆Π˚Tu “ y.

(b) If each ∆l is hl-anticipatory, then ∆ is causal.

(c) If each ∆l is hl-periodic, then ∆ is LTI.

Proof
Part a: Without loss of generality we assume }Π˚T y}2 “ 1. By the weak*
convergence we have

xΠ˚TΠT∆Π˚Tu, ∆lΠ
˚
Tuy

lÑ8
ÝÑ xΠ˚TΠT∆Π˚Tu, ∆Π˚Tuy “ }ΠT∆Π˚Tu}

2
2,
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and since ΠT∆lΠ
˚
Tu “ y obviously

x∆Π˚Tu, Π˚T yy “ }ΠT∆Π˚Tu}
2
2.

Also, xΠ˚T y,∆lΠ
˚
Tuy

lÑ8
ÝÑ xΠ˚T y,∆Π˚Tuy. Because the LHS=1, we conclude

from the last equality that

1 “ xΠ˚T y, ∆Π˚Tuy “ }ΠT∆Π˚Tu}
2
2 “ }ΠT∆Π˚Tu}2 }Π

˚
T y}2.

By the Cauchy-Schwartz inequality we immediately get

y “ ΠT∆Π˚Tu.

Part b: We must show that

Πt∆´Πt∆Π˚t Πt “ 0 for all t ě 0. (11)

It is sufficient to demonstrate that for every u, x P L2r0,8q and t0 P r0,8q
we have

xΠt0x, pΠt0∆´Πt0∆Π˚t0Πt0quy “ 0. (12)

Choose and fix such u, x and t0.

Next, let kl be a positive sequence of integers so that klhl
lÑ8
ÝÑ t0; this is

always possible since hl tends monotonically to zero. Hence, we see that

Π˚klhlΠklhlz
lÑ8
ÝÑ Π˚t0Πt0z for any z P L2.

Using the last limit and the weak* convergence of ∆l to ∆ it follows that

xx, Π˚klhlΠklhl∆luy
lÑ8
ÝÑ xx, Π˚t0Πt0∆uy

and

xx, Π˚klhlΠklhl∆lΠ
˚
klhl

Πklhluy
lÑ8
ÝÑ xx, Π˚t0Πt0∆Π˚t0Πt0uy.

The latter two limits immediately imply that

xΠklhlx, pΠklhl∆l´Πklhl∆lΠklhlquy
lÑ8
ÝÑ xΠt0x, pΠt0∆´Πt0∆Π˚t0Πt0quy.

Now, each ∆l is hl-causal; hence Πklhl∆l ´Πklhl∆Π˚klhlΠklhl “ 0.
Therefore, by the last limit (11) holds since u, x and t0 were arbitrary.
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Part c: We will show that for all u, x P L2 and t0 ą 0, that

xx, pΞt0∆´∆Ξt0quy “ 0. (13)

Fix three such elements, and select a sequence kl of positive integers so

that klhl
lÑ8
ÝÑ t0. Clearly, Ξklhlu

lÑ8
ÝÑ Ξt0u and Ξklhl∆u

lÑ8
ÝÑ Ξt0∆u; see,

e.g., [38, p. 134].

Because ∆ is a weak* limit

xx, Ξt0∆luy
lÑ8
ÝÑ xx, Ξt0∆uy and xx, ∆lΞt0uy

lÑ8
ÝÑ xx, ∆Ξt0uy.

From this and the former two limits we immediately arrive at

xx, Ξklhl∆luy
lÑ8
ÝÑ xx, Ξt0∆uy and xx, ∆lΞklhluy

lÑ8
ÝÑ xx, ∆Ξt0uy.

We know for each l that Ξklhl∆l ´∆lΞklhl “ 0. Therefore, adding the last
two limits, and noting t0, x and u were arbitrary we have (13).

The next two results give extension conditions for causal and LTI
perturbations. Although they are not explicitly used in the sequel we
present them because of their relevance to the continuous time model
validation problem. We can now prove the following theorem, which is the
continuous-time analogue of Proposition 3.

Theorem 6 Suppose z, v P L2r0, T q, where T ą 0. Then there exists a
causal operator, ∆, on L2r0,8q satisfying,

v “ ΠT∆Π˚T z, with }∆} ď 1,

if and only if,

}ΠtΠ
˚
T v}2 ď }ΠtΠ

˚
T z}2 for all t P r0, T s.

Proof (only if): Suppose the inequality is violated, then for some t0

}Πt0Π˚T v}2 ą }Πt0Π˚T z}2.

Therefore, if there exists a ∆ satisfying v “ ΠT∆Π˚T z we have

}Πt0∆Π˚T z}2 “ }Πt0Π˚T v}2 ą }Πt0} }∆} }Π
˚
t0Πt0Π˚T z}2 ě }Πt0∆Π˚t0Πt0Π˚T z}2.
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So, ∆ is not causal; this completes the contrapositive argument.

(if): Start by choosing a sequence hl ą 0 that tends monotonically to zero,
such that T {hl is an integer for every l. Now, by the hypothesis for each l
we have

}ΠhlkΠ
˚
T v}2 ď }ΠhlkΠ

˚
T z}2 for all 0 ď k ď p Thl q.

Invoking Proposition 3 we have that there exists a sequence operators ∆l,
with }∆l} ď 1, each being hl-causal, that satisfy

ΠT∆lΠ
˚
T z “ v.

Since the sequence ∆l is bounded by one, we may assume without loss of
generality that it converges weak* to some operator ∆; clearly }∆} ď 1.
By Lemma 5 (a) we have that ΠT∆Π˚T z “ v is satisfied; Part (b)
guarantees ∆ is causal.

To state the next set of results we require a new operator: given z in
Lm2 r0, T q, where T ą 0, define the integral operator
Z : L1

2r0, T q Ñ Lm2 r0, T q via the integral kernel

Zpt, τq :“

"

zpt´ τq 0 ď t´ τ ď T
0 otherwise.

Then the operator Z is defined by

pZwqptq :“

ż T

0
Zpt, τqwpτq dτ (14)

We remark that such an operator has an adjoint which we denote by Z˚.
The following result is a continuous time analogue to Proposition 4.

Theorem 7 Suppose z, v P L2r0, T q, where T ą 0. Then there exists an
LTI, causal, operator, ∆, satisfying,

v “ ΠT∆Π˚T z, with }∆} ď 1,

if and only if the operator inequality

V ˚V ď Z˚Z holds,

where V and Z are operators on L2r0, T q defined, as in (14), from v and z
respectively.
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The proof of this theorem requires the following technical lemma.

Lemma 8 Suppose z, v P L2r0, T q, where T ą 0. Define the operators Z
and V , from z and v as in (14), and, given h ą 0, define Z̃h and Ṽh from
ṽ “ Λhv and ũ “ Λhu as in (4). Then

(i) If V ˚V ď Z˚Z, then for each integer n ą 0 the inequality
Ṽ ˚h Ṽh ď Z̃˚h Z̃h holds, where h :“ T {n.

(ii) If the matrix inequalities Ṽ ˚h Ṽh ď Z̃˚h Z̃h hold for all integers n ą 0,
with h “ T {n, then the operator inequality V ˚V ď Z˚Z is satisfied.

The proof of this lemma can be found in Appendix A.

Proof of Theorem 7
(only if): If such a ∆ exists, it is clearly both h-anticipatory and h-periodic
for all h ą 0. Therefore, by Proposition 4 the inequality Ṽ ˚h Ṽh ď Z̃˚h Z̃h
holds for all h ą 0. Now, invoke Lemma 8 (ii) to conclude that
V ˚V ď Z˚Z.

(if): Begin by defining the sequence hl :“ T {l. Because V ˚V ď Z˚Z,
Lemma 8 Part (i) guarantees that Ṽ ˚hl Ṽhl ď Z̃˚hlZ̃hl for all l. Hence, by
Proposition 4 we have that there exists a sequence ∆l of operators, each
being both hl-periodic and hl-anticipatory, satisfying v “ ΠT∆lΠ

˚
T z with

}∆l} “ 1.

Since the sequence ∆l is uniformly bounded, we assume without loss of
generality that it converges weak* to an operator ∆. By Lemma 5 the
operator ∆ has the desired properties.

3.3 Model Validation Results

In this section we develop and present necessary and sufficient conditions
for an experimental datum to invalidate the model arrangement of
Figure 3. The conditions constructed can be evaluated as convex
programs, and the details of this are presented in Section 4.

Recall that h is the sampling period of Sh, and is assumed to be fixed
throughout. A key step to determining whether this model can produce
the observations yk is determining the set of signals that could have
produced yk. In the next subsection we consider this problem.
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3.3.1 Solution Framework

This subsection is devoted to examining the structure of the operators Pv
and Pw, and solving a particular type of equation associated with the
model of Figure 3.

We start by considering an alternative, and convenient, representation for
ShPv. Since ShPv maps L2r0,8q to l2pRmq, it has a representation as a
mapping from l2pL2r0, hq q to l2pRmq, which can be defined by
P̃v :“ ShPvΛ

´1
h . Specifically, given a realization pAv, Bv, Cvq for the

strictly causal system Pv, the relationship y “ P̃vṽ can be realized by the
equations

xk`1 “ Ãvxk ` B̃vṽk, x0 “ 0, (15)

yk “ Cvxk,

where Ãv “ eAvh is an av ˆ av matrix, and B̃v : L2r0, hq Ñ Rav is an
operator defined by

B̃vṽk “

ż h

0
eAvph´τqBvṽkpτq dτ.

This representation for P̃v is easily found by considering the evolution of
Pv over each time interval rkh, pk ` 1qhq. See [28] and Appendix B for a
detailed development.

We now state the main problem considered in this subsection: Given an

integer n ą 0 and a sequence q P t0u ‘
´ n
‘
k“1

Rm
¯

, find all solutions

v P L2r0,8q such that

q “ πnShPvv.

Observe that, since Pv is strictly causal, the first entry in q must be equal
to zero. Our approach to solving this function equation is by considering a
similar equation using the lifted system P̃v.

Lemma 9 Suppose q P t0u ‘
´ n
‘
k“1

Rm
¯

, where n ě 1, and v P L2r0,8q.

Then q “ πnShPvv if and only if

q “ πnP̃vπ
˚
n´1ṽ where ṽ “ πn´1Λhv. (16)

We use the following fact in the proof of the above lemma:
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Lemma 10 If n ě 1 is an integer, then πnShPv “ πnShPvΠ
˚
nhΠnh.

The preceding lemma can be easily proved from the definitions of πn and
Πnh, and the fact Pv is LTI and causal.

Proof of Lemma 9 (only if): From Lemma 10 we can substitute to get

q “ πnShPvv “ πnShPvΠ
˚
nhΠnhv “ πnShPvΠ

˚
nhΠnhΛ´1

h Λhv.

Using the property Π˚nhΠnhΛ´1
h “ Λ´1

h π˚n´1πn´1 the above yields

q “ πnShPvΛ
´1
h π˚n´1πn´1Λhv “ πnP̃vπ

˚
n´1ṽ.

(if): This part follows by reversing the above argument.

From the definition of πn and the representation of P̃v in (15) it is easy
that ṽ is a solution to (16) if and only if

»

—

—

—

–

q1

q2

...
qn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

CvB̃v 0 ¨ ¨ ¨ 0

CvÃvB̃v
. . . 0

...
. . .

...

CvÃ
n´1
v B̃v ¨ ¨ ¨ CvÃvB̃v CvB̃v

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

ṽ0

ṽ1

...
ṽn´1

fi

ffi

ffi

ffi

fl

. (17)

Hence to parametrize all solutions to (16) it is sufficient to find all
solutions to (17).

We accomplish this by examining the action of the operator B̃v. First, let
N pB̃vq denote the kernel of B̃v; since it is a closed subspace of L2r0, hq it
has an orthogonal complement NKpB̃vq so that

L2r0, hq “ N pB̃vq ‘NKpB̃vq.

Hence, all solutions ṽ “ pṽ0, . . . , ṽn´1q P
n´1
‘
k“0

L2r0, hq to (17) can be

decomposed into two parts

ṽ “ ṽ: ` ṽ; (18)

where for each 0 ď k ď n´ 1, we have ṽ:k P N
KpB̃vq and ṽ;k P N pB̃vq, and

ṽ: satisfies (17).

Now, it is well-known that the dimension of the image of an operator is
equal to the co-dimension of the kernel of the operator. So,

dimpNKpB̃vq q “ dimpImpB̃vq q “: bv
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which is necessarily finite since ImpB̃vq Ă Rav . Because NKpB̃vq is a finite
dimensional subspace of a Hilbert space, it is isometrically isomorphic to
Rbv . Namely, there exists a map Uv : Rbv Ñ NKpB̃vq so that
ImpUvq “ NKpB̃vq and

xUvx, Uvyy “ xx, yy for all x, y P Rbv .

At the moment we do not require an explicit representation for such a Uv;
but one is provided in Appendix B. For convenience define the matrix

B̄v :“ B̃vUv (19)

and the diagonal operator Ũv mapping
n´1
‘
k“0

Rbv to
n´1
‘
k“0

L2r0, hq by

Ũv :“ diagpUv, . . . , Uvq. (20)

Making use of the definitions so far, we have the following result.

Proposition 11 All solutions ṽ “ pṽ0, . . . , ṽn´1q P
n´1
‘
k“0

L2r0, hq to (17) are

given by

ṽ “ Ũvv̄ ` ṽ
;,

where ṽ; P
n´1
‘
k“0

N pB̃vq and v̄ is a vector in
n´1
‘
k“0

Rbv that satisfies

pq1, . . . , qnq “ P̄vv̄, (21)

where

P̄v :“

»

—

—

—

—

–

CvB̄v 0 ¨ ¨ ¨ 0

CvÃvB̄v
. . . 0

...
. . .

...

CvÃ
n´1
v B̄v ¨ ¨ ¨ CvÃvB̄v CvB̄v

fi

ffi

ffi

ffi

ffi

fl

. (22)

Proof Suppose that ṽ is a solution to (17). Then from the definitions
leading up to (18) we know that it can be decomposed as ṽ “ ṽ: ` ṽ;

where ṽ:k P N
KpB̃vq and ṽ;k P N pB̃vq for each 0 ď k ď n´ 1.

Since ImpUvq=NKpB̃vq there exist vectors v̄k P Rbv so that Uvv̄k “ ṽ:k, or

equivalently, ṽ: “ Ũvv̄.

To see that (21) holds, note that ṽ: satisfies (17); therefore the
substitution ṽ: “ pUvv̄0, . . . , Uvv̄n´1q yields (21) using the definition of B̄v.
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Reversing the argument, it is routine to verify that any ṽ “ Ũvv̄ ` ṽ
;

satisfies (17).

Our next step is to examine a similar equation associated with the
operator Pw. Recall that Pw maps L2p´8,8q to L2r0,8q, and can be
decomposed into the Hankel operator P´w realized in (6), and the LTI
system at rest, P`w : L2r0,8q Ñ L2r0,8q. We define an associated lifted
system P̃w mapping L2p´8, 0q ‘ l2pL2r0, hq q to l2pRmq, by
P̃w :“ ShrP

´
w P`w Λ´1

h s, which is analogous to P̃v above. The map
ShP

`
w Λ´1

h has a realization of the form in (15). Thus, using (6) we can

realize y “ P̃w

„

w̃´

w̃`



by the difference equations,

xk`1 “ Ãwxk ` B̃
`
w w̃

`
k , x0 “ B̃´w w̃

´ (23)

yk “ Cwxk

where the matrix Ãw “ eAwh has dimension aw ˆ aw, and
B̃`w : L2r0, hq Ñ Raw and B̃´w : L2p´8, 0q Ñ Raw and are defined by

B̃`w w̃
`
k “

ż h

0
eAwph´τqBww̃

`
k pτq dτ, B̃´w w̃

´ “

ż 0

´8

e´AwpτqBww̃
´pτq dτ.

(24)

Similar to the preceding analysis on P̃v, here we aim to characterize all
solutions w P L2p´8,8q that satisfy q “ πnShPww:

Lemma 12 Suppose q P
n
‘
k“0

Rcv , where n ě 0, and

w “ pw´, w`q P L2p´8, 0q ‘ L2r0,8q. Then q “ πnShPww if and only if

q “ πnP̃wπ
˚
nw̃, (25)

where w̃ “ pw´, w̃`0 , w̃
`
1 , . . . , w̃

`
n´1q and w̃` “ πn´1Λhw

`.

Since the proof is largely the same as that of Lemma 9, and therefore it is
not included. Note however that here, unlike in (16), q is not constrained
to have zero as its first entry; this is because w can have support on the
entire interval p´8,8q.

26



As with (17), pw̃´, w̃`q is a solution to (25) if and only if

»

—

—

—

—

—

–

q0

q1

...
qn´1

qn

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

CwB̃
´
w 0 ¨ ¨ ¨ 0

CwÃwB̃
´
w CwB̃

`
w 0 ¨ ¨ ¨ 0

... CwÃwB̃
`
w

. . . 0
...

. . .
...

CwÃ
n
wB̃

´
w CwÃ

n´1
w B̃`w ¨ ¨ ¨ CwÃwB̃

`
w CwB̃

`
w

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

w̃´

w̃`0
w̃`1
...

w̃`n´1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

(26)

Observe that B̃´w and B̃`w are both finite rank operators; in fact using (24)
and a state space reachability argument, it is routine to show that these
operators have equal rank. We therefore employ the same reasoning used
above to define Uw, to obtain the existence of isometries
U´w : Rbw Ñ NKpB̃´w q and U´w : Rbw Ñ NKpB̃`w q. With these define
further,

B̄´w :“ B̃´wU
´
w ,

B̄`w :“ B̃`wU
`
w ,

Ũw :“ diagpU´w , U
`
w , . . . , U

`
w q.

Using these definitions we have the following result.

Proposition 13 All solutions

w̃ “ pw̃´, w̃`0 , . . . , w̃
`
n´1q P L2p´8, 0q ‘

´ n´1
‘
k“0

L2r0, hq
¯

to (26) are given by

w̃ “ Ũww̄ ` w̃
;,

where w̃; P N pB̃´w q ‘
´ n´1
‘
k“0

N pB̃`w q
¯

and w̄ is a vector in
n
‘
k“0

Rbw that

satisfies

q “ P̄ww̄, (27)

where

P̄w :“

»

—

—

—

—

—

—

–

CwB̄
´
w 0 ¨ ¨ ¨ 0

CwÃwB̄
´
w CwB̄

`
w 0 ¨ ¨ ¨ 0

... CwÃwB̄
`
w

. . . 0
...

. . .
...

CwÃ
n
wB̄

´
w CwÃ

n´1
w B̄`w ¨ ¨ ¨ CwÃwB̄

`
w CwB̄

`
w

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (28)

Since this proof is not significantly different from that of Proposition 11 it
is omitted.
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3.3.2 Invalidation Conditions: Basic Case

We now apply the result of the last section to deriving conditions which
answer the model validation question posed in Section 2.4. Our results
provide conditions, given an input u and an finite observed sequence yk,
under which there exists an appropriate perturbation ∆ and noise signal w
that make Figure 3 consistent with the observed datum (yk,uptq). For
convenience in stating our model validation results we have the following
formal definition.

Definition 14 Given u P L2r0,8q and y P
n
‘
k“0

Rcv . The model in Figure 3

is not invalidated with respect to the perturbation set X if there exists a
perturbation ∆ P X , with }∆}L2ÑL2 ď 1 and a signal w P BL2p´8,8q,
such that

y “ πnShpPww ` pPv∆Pz ` Pyqu q.

We now prove the first model validation result; the theorem statement uses
the matrices P̄v and P̄w defined in Propositions 11 and 13.

Theorem 15 Suppose u P L2r0,8q, y P
n
‘
k“0

Rcv , and define z “ Pzu.

Then the model in Figure 3 is not invalidated with respect to

h-anticipatory perturbations if and only if there exist vectors v̄ P
n´1
‘
k“0

Rbv

and w̄ P
n
‘
k“0

Rbw , with |w̄|2 ď 1, satisfying

y ´ πnShPyu “ rP̄v P̄ws

„

v̄
w̄



and

l´1
ÿ

k“0

|v̄k|
2
2 ď }Πlhz}2 for 1 ď l ď n` 1. (29)

Proof (only if): Suppose that ∆ and w satisfy the hypothesis. Define

v :“ ∆Pzu.

Since ∆ is h-anticipatory we have that

}Πlhv}2 ď }Πlhz}2 for all 1 ď l ď n` 1. (30)
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Also by assumption the following equation holds:

y ´ πnShPyu “ πnShrPw Pvs

„

w
v



. (31)

Applying Lemmas 9 and 12 the above implies

y ´ πnShPyu “ πnrP̃w P̃vs

„

π˚nw̃
π˚n´1ṽ



.

Now, invoking Propositions 11 and 13 we can decompose w̃ “ Ũww̄ ` w̃
;

and ṽ “ Ũvv̄ ` ṽ
; to get

y ´ πnShPyu “ πnrP̃w P̃vs

„

π˚npŨww̄ ` w̃
;q

π˚n´1pŨvv̄ ` ṽ
;q



“ rP̄w P̄vs

„

w̄
v̄



.

So, to complete the proof we must show that v̄ and w̄ satisfy the norm
constraints. Using the orthogonality properties of the above decomposition,

}w̃}2 “
n
ÿ

k“0

|w̄k|
2
2 `

n
ÿ

k“0

}w̃;k}
2
2 and }ṽ}2 “

n´1
ÿ

k“0

|v̄k|
2
2 `

n´1
ÿ

k“0

}ṽ;k}
2
2.

Therefore the required norm conditions follow using the assumption
}w}2 ď 1 and (30).

(if): Start by setting ṽ “ Ũvv̄ and w̃ “ Ũww̄, and reversing the above
argument to get (31) and (30). The norm condition required on w is
clearly met.

Now using πnShPv “ πnShPvΠ
˚
nhΠnh, from Lemma 10, in (31) yields

y ´ πnShPyu “ πnShrPw Pvs

„

w
Π˚nhΠnhv



. (32)

Also, from (30) and Proposition 3 there exists an h-anticipatory operator,
∆, such that }∆}L2ÑL2

ď 1 and

Π˚nhΠnhv “ Π˚nhΠnh∆Π˚nhΠnhz “ Π˚nhΠnh∆z.

Substituting this into (32), and again using Lemma 10, we get

y ´ πnShPyu “ πnShrPw Pvs

„

w
∆z



, (33)

and so the model is not invalidated.

The above result provides exact conditions for invalidation with respect to
h-anticipatory perturbations. The next theorem is its counterpart which
further limits the perturbations to be h-periodic.
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Theorem 16 Suppose u P L2r0,8q, y P
n
‘
k“0

Rcv , and define z “ Pzu and

z̃ “ πn´1Λhz. Then the model in Figure 3 is not invalidated with respect to
h-anticipatory, h-periodic, perturbations if and only if there exist vectors

v̄ P
n´1
‘
k“0

Rbv and w̄ P
n
‘
k“0

Rbw , with |w̄|2 ď 1, such that

y ´ πnShPyu “ rP̄v P̄ws

„

v̄
w̄



and

V̄ ˚V̄ ď Z̃˚h Z̃h, (34)

where V̄ and Z̃h are defined from v̄ and z̃ respectively, as in (4).

Proof (only if): Suppose that ∆ and w satisfy the hypothesis: set
v “ ∆Pzz, and by Proposition 4 we have

Ṽ ˚h Ṽh ď Z̃˚h Z̃h,

where Ṽh is defined by ṽ “ πn´1Λhv and (4). From Proposition 11 we can
decompose ṽ “ Ũvv̄ ` ṽ

;. The orthogonality of Uvv̄k and ṽ;l for every k and
l gives,

Ṽ ˚h Ṽh “ V̄ ˚V̄ ` pṼ ;h q
˚Ṽ ;h ,

where V̄ and Ṽ ;h are defined from v̄ and ṽ; as in (4). Hence, V̄ ˚V̄ ď Z̃˚h Z̃h.
The other properties of v̄ and w̄ are proved exactly as in Theorem 15.

(if): Set ṽ “ Ũvv̄ and w̃ “ pw̃´, w̃`0 , . . . , w̃
`
n´1q “ Ũww̄, and note that

Ṽ ˚h Ṽh “ V̄ ˚V̄ ď Z̃˚h Z̃h.

With v “ Λ´1
h π˚nṽ we invoke Proposition 4 to get that there exists an

h-anticipatory and h-periodic operator, ∆, satisfying

Πnhv “ Πnh∆z.

We then define w “ pw̃´,Λ´1
h π˚n´1w̃

`q P L2p´8, 0q ‘ L2r0,8q and follow
the same steps as in the ‘if’ part of Theorem 15 to get (33).

3.3.3 Invalidation Conditions: General Case

In the preceding subsection exact conditions for invalidation with respect
to h-periodic and h-anticipatory perturbations were constructed, where h
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Figure 6: Framework for applying fast lifting operators to the perturbation

is the sampling interval of our data. While these results may be useful in
many model validation scenarios, we now derive conditions for invalidation
where the periodicity and degree of approximation to causality can be
further specified. Namely, we extend the results of the last section so that
we can invalidate a model, given observations y, to h

k -periodic and
h
k -anticipatory perturbations, where h

k can be chosen as small as desired by
choosing the integer k ą 0 to be large.

The procedure is illustrated conceptually in Figure 6. The lifting and
inverse lifting operators are considered over an integer fraction of the
sample time interval. By making h

k smaller, the h
k -periodicity and

h
k -anticipatory perturbation results approximate linear time-invariance and
causality as closely as desired. This approach does not require additional
experimental data as the formulation preserves the sampling period, h, on
the output of Pv. However, the dimension of the characterization of the
perturbation (as given in (29) and (34) ), increases. The following details
this approach.

To derive the conditions in Theorems 15 and 16 we used the structure of
the solutions to (16) given in Proposition 11. The key was to separate the
solutions, as in (18), into two components, one from a finite dimensional
subspace and the other from an infinite dimensional one. We then found
when proving the invalidation results that it was sufficient to consider
solutions solely in the finite dimensional subspace. We now perform a
similar decomposition on the equation,

y “ πnShPvΛ
´1
h
k

π˚nk´1ṽ, (35)

where ṽ P
nk´1
‘
l“0

L2r0,
h
k q.
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To start, it is convenient to introduce a decimation operator, Γk : l2 Ñ l2,
by defining, for each integer k ą 0,

pΓk y ql “ ypklq for each integer l ě 0,

where y P l2. In words, it is the mapping that selects every kth member of
the sequence. Using this definition it is routine to verify that

ΓkSh
k
“ Sh and πnΓkπ

˚
knπkn “ πnΓk, (36)

for all integers n ě 0, k ą 0.

To state the next result we require some new definitions: define the
matrices and operator,

Ãpkqv :“ eÃv
h
k ,

B̄pkqv :“ B̃pkqv U pkqv ,

Ũ pkqv :“ diagpU pkqv , . . . , U pkqv q,

where B̃
pkq
v ψ :“

ş

h
k
0 e

Avp
h
k
´τqBvψpτq dτ and U

pkq
v is any fixed isometry

mapping Rbv to NKpB̃
pkq
v q. Observe that these new objects are simply B̄v,

Ãv and Ũv defined in (15) and (19), only h has been replaced by h
k .

Making use of these definitions we have the following generalization of
Proposition 11.

Lemma 17 Suppose k ą 0 is an integer and q P t0u ‘
´ nk
‘
l“1

Rcv
¯

. Then all

solutions ṽ P
nk´1
‘
l“0

L2r0,
h
k q to

q “ πnkSh
k
PvΛ

´1
h
k

π˚nk´1ṽ

are given by ṽ “ Ũ
pkq
v v̄ ` ṽ;, with ṽ; P

nk´1
‘
l“0

N pB̃pkqv q and v̄ P
nk´1
‘
l“0

Rbv

satisfying,

pq1, . . . , qnkq “ P̄ pkqv v̄,

where

P̄ pkqv :“

»

—

—

—

—

—

–

CvB̄
pkq
v 0 ¨ ¨ ¨ 0

CvÃ
pkq
v B̄

pkq
v

. . . 0
...

. . .
...

CvpÃ
pkq
v q

nk´1B̄
pkq
v ¨ ¨ ¨ CvÃ

pkq
v B̄

pkq
v CvB̄

pkq
v

fi

ffi

ffi

ffi

ffi

ffi

fl

. (37)
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Proof This result follows immediately from the proof of Proposition 11
simply replacing h with h

k and n with nk.

Using this lemma we can now prove the following key result, which allows
us to generalize the invalidation results of the preceding section. For
convenience define the matrix

J pkqv :“ rI 0 ¨ ¨ ¨ 0s

which is in Rcvˆcvk.

Proposition 18 Suppose k ą 0 is an integer and q P t0u ‘
´ n
‘
l“1

Rcv
¯

.

Then all solutions ṽ P
nk´1
‘
l“0

L2r0,
h
k q to

q “ πnShPvΛ
´1
h
k

π˚nk´1ṽ,

are given by ṽ “ Ũ
pkq
v v̄ ` ṽ;, where ṽ; P

nk´1
‘
l“0

N pB̃pkqv q, and v̄ P
nk´1
‘
l“0

Rbv

satisfying

pq1, . . . , qnq “ J̄ pkqv P̄ pkqv v̄.

The matrix P̄
pkq
v is defined in (37) and the matrix

J̄
pkq
v :“ diagpJ

pkq
v , . . . , J

pkq
v q P Rncvˆncvk.

Proof We start with the following equalities which follow from (36):

q “ πnShPvΛh
k
π˚nk´1ṽ “ πnΓkSh

k
PvΛh

k
π˚nk´1ṽ

“ πnΓkπ
˚
nk´1πnk´1Sh

k
PvΛh

k
π˚nk´1ṽ.

We now rewrite the latter equation as a condition in two equations: ṽ is a
solution to the above equation if and only if there exists r P Rnk so that

r “ πnk´1Sh
k
PvΛh

k
π˚nk´1ṽ and (38)

q “ πnΓkπ
˚
nk´1r

are both satisfied. From Lemma 17 we know ṽ is a solution to the first
equation exactly when it can be written as ṽ “ Ũ

pkq
v v̄ ` ṽ;, with

ṽ; P
n´1
‘
l“0

N pB̃pkqv q and v̄ P
nk´1
‘
l“0

Rbv such that r “ P̄
pkq
v v̄. It is routine to
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verify that πnΓkπ
˚
nk “ diagpJ

pkq
v , J̄

pkq
v q. Using these two facts, and the

constraint that r0 “ 0, it is straightforward to convert the conditions in
(38) to those in the claim.

The following result is a version of Theorem 15 where the degree of
anticipation of the perturbation can be chosen as close to zero as desired.

Theorem 19 Suppose u P L2r0,8q, y P
n
‘
l“0

Rcv , k ą 0 is an integer, and

define z “ Pzu. Then the model in Figure 3 is not invalidated with respect
to h

k -anticipatory perturbations if and only if there exist vectors

v̄ P
nk´1
‘
l“0

Rbv and w̄ P
n
‘
l“0

Rbw , with |w̄|2 ď 1, satisfying,

y´πnShPyu “ rP̄w J̄ pkqv P̄ pkqv s

„

w̄
v̄



and
l´1
ÿ

k“0

|v̄k|
2
2 ď }Πlh

k
z}2 for 1 ď l ď nk.

The proof of this theorem essentially follows that of Theorem 15 using
Proposition 18 in place of Proposition 11, and is therefore not included.
Also, we can modify proof of Theorem 16 in a similar way to get the
following result.

Theorem 20 Suppose u P L2r0,8q, y P
n
‘
l“0

Rcv , k ą 0 is an integer, and

define z “ Pzu and z̃ “ πnk´1Λh
k
z. Then the model in Figure 3 is not

invalidated with respect to h
k -anticipatory, h

k -periodic, perturbations if and

only if there exist vectors, v̄ P
nk´1
‘
l“0

Rbv and w̄ P
n
‘
l“0

Rbw , with |w̄|2 ď 1,

satisfying,

y ´ πnShPyu “ rP̄w J̄ pkqv P̄ pkqv s

„

w̄
v̄



and V̄ ˚V̄ ď Z̃˚h
k

Z̃h
k
,

where V̄ and Z̃h
k

are defined from v̄ and z̃ respectively, as in (4).

The last two results provide a method by which to invalidate with respect
to perturbation sets that can be varied by choosing the parameter k. The
next result states that if k gets large, the above conditions closely
approximate the conditions for invalidation to causal and LTI uncertainty
sets.

Theorem 21 Suppose u P L2r0,8q, y P
n
‘
l“0

Rcv .
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(i) If the model in Figure 3 can be invalidated with respect to causal
perturbations, then for k sufficiently large it can be invalidated with
respect to h

k -anticipatory perturbations.

(i) If the model in Figure 3 can be invalidated with respect to causal,
LTI, perturbations, then for k sufficiently large it can be invalidated
with respect to h

k -anticipatory, h
k -periodic, perturbations.

Proof

Part (i): Suppose the model is not invalidated to h
k -anticipatory

perturbations for every k ě 1. Then there exists a sequence of operators
∆k, each being h

k -anticipatory with }∆k} ď 1, and a sequence
wk P L2p´8,8q, norm bounded by one, that satisfy,

y ´ πnShPyu “ πnShPwwk ` πnShPv∆kPzu. (39)

By Lemma 12 and Proposition 13, without loss of generality, we may
assume that the sequence wk lies in a finite dimensional subspace of
L2p´8,8q; thus by compactness we can further assume it converges to
some element w in L2p´8,8q. Using this convergence and (39) the
following limit is therefore well-defined;

lim
kÑ8

πnShPv∆kz “: r (40)

where z :“ Pzu.

Now the sequence ∆k is uniformly bounded and therefore we assume,
without losing generality, that it converges weak* to some operator ∆.
Using the basic definition of weak* convergence and (40) it is routine to
show that ∆ satisfies r “ πnShPv∆z. Therefore, using (40) and (39) we
conclude

y ´ πnShPyu “ πnShPww ` πnShPv∆Pzu.

But by Lemma 5 (b) the operator ∆ is causal. Therefore the model is not
invalidated with respect to causal perturbations.

Part (ii): This has a nearly identical proof, only we take a sequence ∆k of

elements that are both h
k -anticipatory and h

k -periodic. By Lemma 5 the
weak* limit constructed, ∆, is both causal and LTI.

The results of this section clearly illustrate that, in the limit as k Ñ8 we
are heading towards an infinite dimensional characterization of invalidation
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with respect to causal and causal, LTI, perturbations. We will not
elaborate further on the resulting infinite dimensional optimization
problem here, except to say that it is convex. The finite dimensional
approximations given here are of interest as they lead to the computable
algorithms in the next section.

It is of interest to quantify the rate of convergence of these finite
dimensional problems to the infinite dimensional one. We leave a more
formal study of this area to future research.

4 Computational Model Validation Algorithm

4.1 Formulation of the Optimization Problem

We now formulate the model validation matrix optimization problem that
enables us to make use of the conditions constructed in Theorem 16. From
this point on we concentrate on the h-anticipatory, h-periodic, case, and its
relation to LTI model validation. The purely h-anticipatory case can be
formulated in a similar manner. Here we explicitly include the variable γ
to formulate a search for the smallest perturbation and noise accounting
for the datum.

In the following the matrices P̄w, P̄v are those defined in (28) and (22).
The matrices Z̃˚h Z̃h and V̄ ˚V̄ are calculated from zptq and v̄ as in (4). For
simplicity we define r̄ as the residual, calculated at the sample instants
over the interval r0, nhs by,

r̄ “ y ´ πnShPyΠ
˚
nhu.

The following optimization problem is therefore over Rnbv ‘Rpn`1qbw ‘R.

Problem 22 (Minimum Norm Optimization)

γ̂ :“ min
v̄,w̄,γ

γ,

subject to,

r̄ “
“

P̄w P̄v
‰

„

w̄
v̄



, (41)

V̄ ˚V̄ ď γ2Z̃˚h Z̃h, (42)

and

w̄˚w̄ ď γ2. (43)
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This is a convex, non-differentiable optimization problem which can be
solved with a number of algorithms. The convexity arises from the fact
that the problem formulation results in Z̃˚h Z̃h being a fixed matrix. A
variety of methods are available for solving such problems. For example;
ellipsoidal algorithms, cutting plane algorithms, and linear matrix
inequality (LMI) approaches [39, 40, 41]. Appendix C provides additional
details on an LMI based approach.

We now formally state the relationship between the above optimization
problem and the model validation problem. This is a simple extension of
Theorem 16 and we therefore omit the proof.

Proposition 23 Given γ̂, the solution to Problem 22: If γ̂ ą 1, then the
model given in Figure 3 is invalidated with respect to h-anticipatory,
h-periodic, perturbations, ∆, and wptq P L2p´8,8q, satisfying
}∆}L2ÑL2

ď 1 and }wptq}2 ď 1.

Note that we could use the results of Section 3.3.3 to state the same result
for h

k -anticipatory and h
k -periodic perturbations. Instead we will state the

result which is applicable to most of the models of interest.

Proposition 24 Given γ̂, the solution to Problem 22: If γ̂ ą 1, then the
model given in Figure 3 is invalidated with respect to causal, LTI,
perturbations, ∆, and wptq P L2p´8,8q, satisfying }∆}L2ÑL2

ď 1 and
}wptq}2 ď 1.

This follows simply from the fact that the class of h-anticipatory,
h-periodic, perturbations includes all causal, LTI, perturbations.
Proposition 24 forms the basis of the algorithm in the following section.

4.2 A Practical Model Invalidation Algorithm

We can now apply the above optimization techniques to give an algorithm
for model invalidation. The approach involves undersampling the datum to
give smaller optimization problems. For notational simplicity we assume
that the number of points in the output datum is a power of two. Here we
have chosen to form an algorithm based on subsets of the available datum.
The datum is further sampled to reduce the number of points and the
lifting operation is applied to test the existence of an h-anticipatory ∆,
where h is also the period of the selected data subset. We further have the
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option of applying successively faster lifting operators around the
perturbation (using the theory in Section 3.3.3) to more closely
approximate the causal, LTI, test. Note that we present only the LTI case
— the LTV case can be similarly formulated, using Theorem 15 rather
than Theorem 16.

Algorithm 25 (Invalidation with respect to LTI, causal, perturbations)

Given: an experimental datum, (yk,uptq), k “ 0, . . . , 2q ´ 1, on the interval
r0, T s, and a perturbation model, P .

1. Set an integer l “ 1 and select decimation factor, ql ă q, such that
2ql represents a small optimization problem.

2. Decimate the datum to give a new datum of length 2ql: (ykl,uptq),
where kl “ 0, p, 2p, 3p, . . . , p2q ´ 1qp and p “ 2q´ql. This gives
hl “ T {p2ql ´ 1q.

3. Calculate γ̂l for the datum (ykl,uptq) via the optimization given in
Problem 22.

4. If γ̂l ą 1 then the datum invalidates the model. (stop).

5. (optional) Select an integer k ą 0.

5a. Solve the optimization problem arising from Theorem 20 and
denote the result by γ̂kl . The output sample period remains

hl “ T {p2ql ´ 1q. The lifting is performed using hl
k in place of hl.

5b. If γ̂kl ą 1 the datum invalidates the model (stop).

5c. Increase k and go to step 5a or continue with step 6.

6. If ql “ q then the datum does not invalidate the model (stop).

7. Increment l and ql and go to step 2.

Note that at each iteration, the new decimated datum, (ykl ,uptq), contains
all previously tested decimated data as a subset. Therefore γ̂l, l “ 1, . . . is
non-decreasing. The algorithm will therefore find a particular l̂ such that
γ̂l̂ ą 1, or will exhaust all of the available data. Proposition 24 implies that

if we find such a l̂ then the model is invalidated by the datum. Note that
we also have the option of using a faster lifting operation (hk instead of h)
around the perturbation in order to more closely approximate the test for
LTI, causal, perturbations. The choice of whether to use the optional step
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5 and the decision at step 5c is based whether or not improving the
approximation to the LTI, causal, case is likely to result in γ̂kl ą 1. There
will be problem dependent computational consequences in selecting
between increasing k or increasing l and resampling the datum.

The most significant feature of this approach (with or without the optional
step 5 ) is that it begins with small optimization problems. If only a small
amount of data is required to invalidate the model, the algorithm will
return this result quickly.

5 A Simulation Example

We give a simulation based example to illustrate the approach on practical
problems. The “experimental” datum has been generated by the “true”
system,

Ptrue “

ˆ

10.5

0.22s` 1

˙ˆ

´0.075s` 2

0.075s` 2

˙ˆ

1000

s2 ` 10s` 1000

˙

.

For the model validation problem we will consider the following perturbed
model,

yptq “ pI `W∆∆qPnom uptq `Wd wptq,

where, }∆}L2ÑL2
ď 1 and wptq P BL2. The nominal model is given by,

Pnom “
10

0.2s` 1
.

Note that the model has errors in the gain and pole positions and does not
account for some additional phase or a higher frequency resonant pole pair.
The multiplicative perturbation weight is,

W∆ “
0.075p1` 1.5sq

1` 0.025s
,

and is intended to cover the dynamic errors between Ptrue and Pnom. The
output disturbance weight, Wd, reflects the size and frequency dependency
of the noise and disturbances, and is given by,

Wd “
0.025p1` 0.01sq

1` s
.

As this is a simulation, it is possible to calculate the actual relative error
between Ptrue and Pnom and compare it to W∆. This is done in Figure 7.
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Figure 7: Weighting functions in example robust control model: pertur-
bation weight, W∆, and disturbance/noise weight, Wd. Also shown is the
actual relative error between Ptrue and Pnom

Note that W∆ does not overbound the actual relative error meaning that
this model cannot account for every system behavior. The issue here is
whether or not it will account for a given experiment.

To conduct the simulation “experiment”, a series of steps were introduced
to the system via a zero-order hold. An anti-aliasing filter,

F “
20π

s` 20π
,

prefiltered the data before it was sampled with period, h “ 0.01. The
experimental datum consisted of 512 points and is shown if Figure 8. The
nominal system response, Pnom uptq, is also shown (smooth curve).

Algorithm 25 was applied without using the faster lifting approach (step
5 ), and the datum was undersampled at periods: h1 “ 0.64, h2 “ 0.32, and
h3 “ 0.16 seconds. In the notation of Algorithm 25 this corresponds to
q “ 9 and q1 “ 3, q2 “ 4, q3 “ 5. For each set of undersampled data, the
minimum norm ∆ and minimum norm wptq generating that sampled data
were calculated. The results for each case, are shown in Table 1. The
number of sample points being considered in each case was very small
compared to the original datum, leading to optimization problems of
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manageable size.

l # datum subsampled subsampled γ̂l
points period (sec.) freq. (rad/sec)

1 8 0.64 9.82 0.021
2 16 0.32 19.64 0.690
3 32 0.16 39.27 1.293

Table 1: Simulation example validation analysis results

Note that for h3 “ 0.16, γ̂3 is greater than one, meaning that there is no
perturbation ∆ : L2 Ñ L2, and wptq P L2 of norm less than one going
through the same sample points. This experiment therefore invalidates the
model. Note that only a small subset of the experimental datum was
required to invalidate the model. Consequently the convex optimization
problems required were small (of dimension comparable to the size of each
undersampled datum). The observant reader will also note that the
sampling frequency required to invalidate the datum is very close to the
frequency range where the perturbation weight is unable to cover the
actual relative model error. It is possible to calculate the signals in the
model that correspond to γ̂ although these apply to the model, rather than
the physical system and do not necessarily have any interpretation as
signals within the physical system.

6 An Experimental Example

In this section we apply the model validation procedure of Algorithm 25,
and the LMI algorithm of the preceding section, to assess the quality of a
perturbation model for a laboratory thermal heating experiment.

Figure 9 illustrates the experimental configuration. The system consists of
a 300 Watt lamp suspended 2 inches above a thin metal plate. A
thermocouple, mounted on the underside of the plate, and interfaced via
an A/D board, provides a measurement of the surface temperature. A
thyristor based power amplifier, driven by a D/A board, is used to effect
computer control of the lamp. A Macintosh, running LabView, is used for
control and data acquisition.
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Figure 9: Heat experiment configuration

The full uncertainty model used for this experimental setup is illustrated
in Figure 11, which has a multiplicative uncertainty structure, and clearly
fits the model of Figure 3. The block, NL, denotes a static nonlinearity,
due mostly to the power amplifier. The output of NL is approximately
10 sinpp2π{40quq, although a more precise look-up table is used below. The
LTI part of the nominal model is,

P psq “
2.15

80s` 1
.

This has been obtained by a combination of ARX methods and matching
step response data. A weighted multiplicative perturbation, ∆, and an
output disturbance signal, dptq, provide a model of our uncertainty about
the true system. The associated weights are,

W∆psq “
0.1p150s` 1q

10s` 1
, and Wd “ 0.6.

The noise weight, Wd, has been determined by measuring the 2-norm of an
identical thermocouple at constant temperature, over the same experiment
duration. The perturbation weight, W∆, is a normalization factor has been
obtained from ad-hoc estimates of the model accuracy. Figure 10 shows
the nominal plant model and the perturbation and noise weights.

The filter, F psq, is a cascade of our model for the thermocouple interface
and a data filter:

F psq “
1

15.92s` 1
.

In the experiments described here, the sampling period used for data
acquisition was 2 seconds. Applying the subsampling algorithm
(Algorithm 25) leads to sampling periods hl that are significantly larger.
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The objective is to assess the quality of this model with respect to an
experiment. In particular, we would like to determine, based on observed
data, whether }∆}L2ÑL2 ď 1 is a valid assumption for control design. The
assumed bound on the disturbance, }wptq}2 ď γ “ 1, is applied as a
constraint. Recall that Wd weights the effect of wptq on the output.

The experimental input, uptq, consists of a series of voltage steps.
Figure 12 shows the sampled input signal, uk; the sampled output
measurements, yk; the response of the nominal model; and the residual, r.
The residual is the difference between the experimentally observed data yk,
and the output of the nominal model ShFPnomNLu, with ∆ “ w “ 0. It is
significant and, in fact, }r}2 “ 24.21. This input signal was not used in the
original identification, which is why there is such an large model error.

Note that if F psq is a low-pass filter, with a high bandwidth, then there is
almost no penalty applied to }wptq}2. The disturbance, w, can be used to
generate spikes at the appropriate sample times. In such cases, subsampled
optimization problems would yield very low values of γ̂l. A large portion of
the data set, leading to a high dimensional optimization problem, would
have to be examined to obtain a realistic estimate of γ̂. For this reason we
have selected F psq to have a lower bandwidth than is actually the case for
the experiment. It is still higher than the bandwidth of the plant and does
not appreciably affect the responses.
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Figure 12: Measured datum and residual
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l # datum subsampled γ̂l }rl}
points period (sec.)

1 9 200 0.228 22.76
2 17 100 0.420 20.73
3 24 68 0.780 16.29
4 33 50 0.945 12.41
5 41 40 1.07 9.85
6 64 25 1.20 6.56

Table 2: Experimental example validation analysis results

The subsampling approach in Algorithm 25, was applied and the results
for various subsampling frequencies are shown in Table 2. To facilitate the
discussion, each subsampled problem is indexed by l.

Two quantities are useful in assessing the model validation question. The
first is γ̂l, the size of the minimum }∆}L2ÑL2 , accounting for the datum at
the subsampled points. This is a lower bound on the minimum }∆}L2ÑL2

required to account for the observation over the entire data set, since we
are using the partial data record pykl, uklq.

The quantity, }rl}, is the component of the residual, still unaccounted for
by wl, and ∆l, the smallest noise and perturbation matching the lth datum
subset. More formally,

rl “ y ´ ShpPwwl ` pPv∆lPz ` Puquq.

Note that to do this it is necessary, at each step, l, to explicitly calculate
the effect of wl and ∆l on the output. Initially, l “ 0, wl “ 0, ∆l “ 0, and
}rl} “ }r}. As l increments, wl and ∆l account for progressively more of
the residual, to the point where if hl “ h, rl “ 0. The quantity }rl}
therefore gives an estimate of how close each subproblem is to accounting
for the entire data set. It is a particularly useful quantity, because it is
typically not computationally feasible to perform the exact LMI
calculation, corresponding to Theorem 16, for the entire datum; however rl
is easily computed.

We want to determine whether the assumption that }∆}L2ÑL2 ď 1 is valid,
and, from Table 2 (l “ 5), we can see that this datum has invalidated the
model. Note that we need only examine 41 of the 800 points in the datum
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to make this determination; furthermore 800 points would be an infeasibly
expensive computation with our current LMI implementation. The
calculations illustrate more than just a yes/no determination of the model
validation question. Note that the residual is of size, }r} “ 24.21, and that,
at most, the disturbance input, wptq P BL2, can account for
}F psqWdwptq} ď 0.6 of this residual. Therefore the perturbation, ∆,
accounts for a significant component of the residual, and although
}∆}L2ÑL2 ą 1, we may deduce from its growth rate of γ̂l (and the decay
rate of }rl}) in the subsampled problems, that it is could reasonably be
within a factor of two of being correct for the datum.

7 Conclusions

We have developed a theoretical and computational framework for treating
a practically motivated robust control model validation problem —
continuous time models with discrete-time measurement data. The effects
of the continuous-time unknown model elements, ∆ and w, are observed
through LTI systems. This enables the problem of finding the smallest
norm ∆, and w, accounting for the datum to be considered as a finite
dimensional problem.

Applying the lifting theory allows the calculation of the smallest h-periodic
and h-anticipatory ∆ accounting for the datum. This gives a lower bound
on the smallest norm LTI, causal, ∆ accounting for the datum which can
be used for invalidation of the model. The lifting operators applied around
∆ are not constrained to be at the same period as the output sampler, Sh.
By using successively faster lifting operators (as given in Section 3.3.3) the
bound can be made arbitrarily close to the LTI, causal, case. There is a
computational penalty in doing this as the resulting matrix
characterization increases in dimension.

This approach differs significantly from that of discretizing the model and
applying a discrete-time model validation test. We provide a means of
calculating (or bounding) the size of the smallest continuous ∆ and
continuous w accounting for the discrete-time datum. Therefore we require
no assumptions about the sample period in considering the
continuous-time model.

The framework presented here assumed that the samples were regularly
spaced. This is by far the most common case although it is not essential;
irregular sample spacing would require a recalculation of the finite
dimensional subspace representations for each time step. It should also be
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noted that for a closed-loop validation problem, the framework can be
modified to deal with the case where the sampled-data controller is not
using the same period as the output sampler, Sh.

Convexity of the resulting optimization problem relies on knowing the
input zptq, to the perturbation ∆. Unknown signals, wptq are constrained
to act upon the output of ∆. This model structure is relatively common
although not the most general. The general perturbation structure
problem is of practical and theoretical interest and will be the subject of
future research.

This work provides a framework for experimentally assessing perturbation
models. For mathematical precision, the problem is formulated as a yes/no
hypothesis test. The real value of the approach comes from the engineering
interpretation given to the intermediate subsampled solutions and the size
of the remaining residual. In the above we have mentioned applying these
techniques to system identification. They can also be applied to fault
detection, where the gradual increase of γ̂ may be interpreted as a
deterioration process, and a step change in γ̂ may be interpreted as a
component failure. In a changing environment, the model validation
approach can be used to indicate the necessity of reidentifying the system.
The practical applications of such schemes are currently under
investigation.
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A Proof of Technical Lemmas

To prove Lemma 8 we require a number of technical lemmas. Throughout
let T ą 0 be some fixed real number. The first lemma defines a family of
functions which have impulsive action.

Lemma 26 Suppose w P L2r0, T q, and

δεptq :“

"

1{ε for t P r0, εq
0 otherwise

(44)

for ε ą 0. Define wεptq :“
şt
0 δ

εpτqwpt´ τq dτ . Then limεÑ0 }w ´ w
ε}2 “ 0.

The above result is a particular instance of a more general result on
kernels; see, for example, [38, p. 148].

For convenience in the sequel we define two new operators mapping
L2r0, T q to L2r0, T q. Define Ĥh by

pĤhwqptq :“

ż t

0
δhpt´ τqwpτq dτ, (45)

where the function δh is defined in (44). Also using this function, define
the operator pSεh via

ppSεhwqptq :“ h

tT {hu
ÿ

k“0

δεpt´ khqwptq,

where tT {hu denotes the largest integer that is not greater than T {h.

As ε and h get small it is easy to see that the induced norm of pSεh becomes

large. However, Ĥh has better properties in this regard.

Lemma 27 For each h ą 0 the norm }Ĥh} ď 1.

Proof Select any w P L2r0, T q. Then using (45) we have by a standard
inequality for convolutions (see, e.g., [38, p. 145]) that

}Ĥhw}2 ď p
şT
0 δ

εpτq dτq}w}2 “ }w}2.

Lemma 28 Suppose w P L2r0, T q and U is the related convolution operator
defined in (14). Then for each h ą 0 the equality UĤh “ ĤhU holds.
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Proof Since both U and Ĥh are convolution operators it is routine to
verify that they commute.

Before continuing we define the following notation: given w P L2r0, T q
define wpτq for each τ P R by

wpτqptq :“

"

upt´ τq τ ď t ă T
0 otherwise.

Lemma 29 Suppose u P L2r0, T q and define

eh :“ supτPr0,T q }Ĥhupτq ´ upτq}2. Then eh
hÑ0
ÝÑ 0.

Proof Suppose the contrary: there exist infinite sequences τk P r0, T q
and hk tending to zero, and ε ą 0 so that

}Ĥhkupτkq ´ upτkq}2 ą ε for all k ě 1. (46)

Without loss of generality we assume that τk converges to some τ0 in
r0, T s. If τ0 “ T then limkÑ8 }upτkq}2 “ 0 and therefore (46) is violated.
Hence, we assume τ0 in r0, T q.

Now, invoking the triangle inequality, Lemma 27 and the submultiplicative
inequality we have

}upτkq ´ upτ0q}2 ` }upτ0q ´ upτkq}2 ` }Ĥhkupτ0q ´ upτ0q}2

ě }Ĥhkpupτkq ´ upτ0qq}2 ` }upτ0q ´ upτkq}2 ` }Ĥhkupτ0q ´ upτ0q}2

ě }Ĥhkupτkq ´ upτkq}2.

By continuity in L2 (see, e.g., [38, p. 134]) it follows that
limkÑ8 }upτ0q ´ upτkq}2 “ 0; from Lemma 26 we have

limkÑ8 }Ĥhkupτ0q´ upτ0q}2 “ 0. So, the LHS above tends to zero as k tends
to infinity. But then the RHS contradicts (46).

Lemma 30 Suppose u P L2r0, T q, wptq is a uniformly continuous function
on the interval r0, T q, and h “ T

n where n is a positive integer. Then

lim
εÑ0

}U pSεhw ´ΠTΛ´1
h π˚n´1Ũhw̄

n}2 “ 0,

where Ũhis defined from ũ “ πn´1Λ´1
h Π˚Tu as in (4), and

w̄n “ h ¨ pwp0q, . . . , wp pn´ 1qhq q.
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Proof From the definitions we have

ppSεhwqptq “ h
n´1
ÿ

k“0

δεpt´ khqwptq on r0, T q.

Hence,

pU pSεhwqptq “
n´1
ÿ

k“0

ż t

0
upt´ τqδεpτ ´ khqwpτq dτ.

So, by applying Lemma 26 and a routine argument based on the continuity
of wptq we have

U pSεhw
εÑ0
ÝÑ h

n´1
ÿ

k“0

wpkhqupkhq in L2r0, T q. (47)

It is straightforward to verify that the RHS=ΠTΛ´1
h π˚n´1Ũhw̄

n

Lemma 31 Suppose w is a uniformly continuous function on the interval
r0, T q. Then

lim
hÑ0

lim
εÑ0

}pI ´ Ĥh
pSεhqw}2 “ 0.

Proof For 0 ă ε ă h we have

pĤh
pSεhwqptq “ h

tT {hu
ÿ

k“0

ż t

0
δhpt´ τqδεpτ ´ khqwpτq dτ.

We proceed with the assumption that t P rlh, pl ` 1qhq where l ě 1; we
deal with the t P r0, hq case later. Now, the function δhpt´ τqδεpτ ´ khq is
zero outside the interval rpl ´ 1qh, pl ` 1qh q X rkh, kh` εq.

So,

pĤh
pSεhwqptq “ h

l
ÿ

k“l´1

ż t

0
δhpt´ τqδεpτ ´ khqwpτq dτ

“

ż t

t´h
δhpt´ τqδεpτ ´ pl ´ 1qhqwpτq dτ

`

ż lh`ε

lh
δhpt´ τqδεpτ ´ lhqwpτq dτ.

For sufficiently small ε the first term is zero because δεpτ ´ pl ´ 1qhq
becomes zero on the interval rt´ h, tq; also for sufficiently small ε we have
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δhpt´ τq “ 1{h on the interval rkh, kh` εq. Therefore, the definition of δε

yields from above

lim
εÑ0
pĤh

pSεhwqptq “ lim
εÑ0

1{ε

ż lh`ε

lh
wpτq dτ “ wplhq,

where the RHS follows because w is continuous. We can use the same
argument, with only cosmetic modifications, to also show that for t P r0, hq
we get limεÑ0pĤh

pSεhwqptq “ wp0q.

Define the function w0
hptq :“ limεÑ0pĤh

pSεhwqptq for each 0 ď t ă T , which
we have shown is constant and equal to wpkhq on each interval
rkh, pk ` 1qh q. Clearly, since wptq is uniformly continuous on r0, T q we
have limhÑ0 }w ´ w

0
h}2 “ 0, which is the limit required.

Lemma 32 Suppose u P L2r0, T q and wptq is a uniformly continuous
function on the interval r0, T q. Then

lim
nÑ8

lim
εÑ0

}UĤT
n

pSεT
n

w ´ΠTΛ´1
T
n

π˚n´1ŨT
n
w̄n}2 “ 0,

where Ũhis defined from ũ “ πn´1Λ´1
T
n

Π˚Tu as in (4), and

w̄n “ h ¨ pwp0q, . . . , wp pn´ 1qTn q q.

Proof First apply Lemma 27 to get

UĤT
n

pSεT
n

w “ ĤT
n
U pSεT

n

w.

Hence, from the same steps that showed (47) in the proof of Lemma 30 we
have

lim
εÑ0

U pSεT
n

w “ h
n´1
ÿ

k“0

wpk T
n
qĤT

n
u
pk T

n
q

“ h
n´1
ÿ

k“0

wpk T
n
qu
pk T

n
q
` h

n´1
ÿ

k“0

wpk T
n
qtĤT

n
u
pk T

n
q
´ u

pk T
n
q
u

“ ΠTΛ´1
T
n

π˚n´1ŨT
n
w̄n ` h

n´1
ÿ

k“0

wpk T
n
qtĤT

n
u
pk T

n
q
´ u

pk T
n
q
u

(48)
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Now, concentrating on the second RHS term we see that

}h
n´1
ÿ

k“0

wpk T
n
qtĤT

n
u
pk T

n
q
´ u

pk T
n
q
u}2 ď h

n´1
ÿ

k“0

|wpk T
n
q| }ĤT

n
u
pk T

n
q
´ u

pk T
n
q
}2

ď h eT
n

n´1
ÿ

k“0

wpk T
n
q,

where eT
n

is defined as in Lemma 29. Hence, above we have

lim
nÑ8

LHS ď p lim
nÑ8

eT
n
q

ż T

0
|wpτq| dτ “ 0.

Applying this fact to (48) proves the claim.

Lemma 33 Suppose u P L2r0, T q and wptq is a uniformly continuous
function on the interval r0, T q. Then

lim
nÑ8

}Uw ´ΠTΛ´1
T
n

π˚n´1ŨT
n
w̄n}2 “ 0,

where Ũhis defined from ũ “ πn´1Λ´1
T
n

Π˚Tu as in (4), and

w̄n “ h ¨ pwp0q, . . . , wp pn´ 1qTn q q.

Proof Given ε ą 0 the following inequality holds for each n:

}U} }pI ´ ĤT
n

pSεT
n

qw}2 ` }UĤT
n

pSεT
n

w ´ΠTΛ´1
T
n

π˚n´1ŨT
n
w̄n} ě

}Uw ´ΠTΛ´1
T
n

π˚n´1ŨT
n
w̄n}2.

Invoking Lemmas 31 and 32 we have limnÑ8 limεÑ0LHS=0, and so
limnÑ8RHS“ 0.

At last we can prove Lemma 8:

Proof of Lemma 8

Part (i): Suppose that w̄n P Rn, and let wptq be a uniformly continuous
function on the interval r0, T q that satisfies wpkhq “ w̄nk for 0 ď k ă n´ 1.
Then by Lemma 30 we have that

lim
εÑ0
t xU pSεhw, U

pSεhwy´xV
pSεhw, V

pSεhwy u “ xŨhw̄
n, Ũhw̄

ny´xṼhw̄
n, Ṽhw̄

ny,
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where we have used the fact that πn´1pΛ
´1
h q

˚Π˚TΠTΛ´1
h π˚n´1 “ I. For each

ε, by assumption, xU pSεhw, U
pSεhwy ´ xV

pSεhw, V
pSεhwy u ě 0, and therefore

above the RHSě 0.

Part (ii): Suppose that V ˚V ď U˚U is not satisfied: then there exists a
function w P L2r0, T q so that

xV w, V wy ą xUw, Uwy.

Without loss of generality we may assume that w is a uniformly continuous
function, since the uniformly continuous functions are dense in L2r0, T q.
Applying Lemma 33 we therefore have that for sufficiently large n,

xṼT
n
w̄n, ṼT

n
w̄ny ě xŨT

n
w̄n, ŨT

n
w̄ny,

where we have again used the fact πn´1pΛ
´1
h q

˚Π˚TΠTΛ´1
h π˚n´1 “ I. So,

Ṽ ˚T
n

ṼT
n
ď Ũ˚T

n

ŨT
n

does not hold for all n, which completes the contrapositive

argument.

B Operator Calculations

This appendix presents the calculations required to derive the component
parts of the representations of P̄w and P̄v given in (28) and (22). It is not
required that Pz has a state-space representation. However, if this is the
case, then the matrix Z̃˚Z̃ can be calculated via state-space techniques
and we present the approach required. The matrix optimization problems
arise via isomorphisms between NKpB̃q and Rb, for each of the operators.
We give the means of explicitly calculating the operators which map the
signals between these spaces. These are not required for the formulation of
the optimization problem, however they are useful if one wishes to
calculate the time-domain representations of the internal signals in the
system. The calculation methods are similar to those presented by Bamieh
and Pearson [29] and we have therefore kept the notation similar.

Consider the positive time operator of interest, ShP
`
w : L2r0,8q Ñ l2 as an

LTI system (with state-space realization Aw P Rawˆaw , Bw P Rawˆbw ,
Cw P Rcwˆaw), followed by a sampler, Sh.

The lifted system, ShP
`
w Λ´1

h : l2pL2r0, hqq Ñ l2, has the state space
representation given in (15),

xk`1 “ Ãwxk ` B̃
`
w w̃

`
k ptq,

yk “ Cwxk,
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where xk P Raw , w̃`k ptq P L2r0, hq, and yk P Rcw . The operators Ãw and

B̃`w are given by, Ãw “ eAwh, and

B̃`w w̃
`
k ptq “

ż h

0
eAwph´τqBww̃

`
k pτq dτ.

Formulation of the model validation problem requires finding a matrix,
B̄`w P Rawˆbw , satisfying,

B̃`w pB̃
`
w q
˚ “ B̄`w pB̄

`
w q
˚.

To calculate B̄`w , define X`w “ B̃`w pB̃
`
w q
˚, and note that

X`w “

ż h

0
eAwph´τqBwB

˚
we

A˚
wph´τq dτ.

It is a simple matter to verify that X`w “ pX
`
w q
˚ is the solution to the

Lyapunov equation,

AwX
`
w `X

`
wA

˚
w “ ´pBwB

˚
w ´ e

AwhBwB
˚
we

A˚
whq.

We note that X`w P Rawˆaw and is of rank bw (in the case where (Aw,Bw)
is controllable). Following the approach of Bamieh and Pearson [29], define
Σ`w and T`w by,

X`w “ pT
`
w q
˚

„

Σ`w 0
0 0



T`w ,

where T`w pT
`
w q
˚ “ pT`w q

˚T`w “ I. Then

B̄`w “ pT
`
w q
˚

„

pΣ`wq
1{2

0



.

We can also explicitly consider the operator mapping Rbw to NKpB̃`w q.
Define this as U`w and note that B̄`w “ B̃`wU

`
w . Therefore,

U`w “ pB̃
`
w q
˚pT`w q

˚

„

pΣ`wq
´1{2

0



“ B˚we
A˚

wph´tqpT`w q
˚

„

pΣ`wq
´1{2

0



.

It is a simple matter to verify that pU`w q
˚U`w “ I. This operator can be

used to calculate w`ptq (the part of wptq on L2r0,8q ), via,

w`ptq “ U`w w̄
`
k , kh ď t ă pk ` 1qh,

where w̄` arises from the optimization problem (Problem 22). The
minimum norm wptq is, in general, discontinuous.
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The structure of the ShPv operator is identical to the ShP
`
w operator and

the above procedure can be used to obtain an analogous representation for
Ãv, B̄v, and, if necessary, Uv and vptq.

In the case of the negative time operator, P´w , U´w is defined as mapping
Rbw to L2p´8, 0q. This in effect omits the lifting operation, as no sampled
data is obtained in negative time. The approach is similar to that for
ShP

`
w illustrated above. Recall the representation for

P´w : L2p´8, 0q Ñ l2, presented in (6) and (23) as,

xk`1 “ Ãwxk, x0 “ B̃´w w̃
´,

yk “ Cwxk,

where, Ãw “ eAwh and B̃´w : L2p´8, 0q Ñ Raw via,

B̃´w̃´ “

ż 0

´8

e´AwτBww
´pτq dτ.

We are required to calculate B̄´w satisfying, B̄´w pB̄
´
w q
˚ “ B̃´w pB̃

´
w q
˚.

Analogously to the case for ShP
`
w ,

X´w :“ B̃´w pB̃
´
w q
˚ “

ż 0

´8

e´AwτBwB
˚
we
´A˚

wτ dτ,

and note that X´w satisfies the Lyapunov equation,

AwX
´
w `X

´
wA

˚
w “ ´BwB

˚
w.

This can be factorized as,

X´w “ pT
´
w q
˚

„

Σ´w 0
0 0



T´w ,

with pT´w q
˚T´w “ T´w pT

´
w q
˚ “ I, giving

B̄´w “ pT
´
w q
˚

„

pΣ´wq
1{2

0



.

We can again consider the operator defining the isomorphism between Rbw

and NKpB̃´w q. In this case U´w : Rbw Ñ L2p´8, 0q and B̄´w “ B̃´wU
´
w .

Therefore,

U´w “ pB̃
´
w q
˚pT´w q

˚

„

pΣ´wq
´1{2

0



“ B˚we
´A˚

wtpT´w q
˚

„

pΣ´wq
´1{2

0



.
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This operator can be used to calculate the negative time portion of wptq
via,

wptq “ U´w w̄
´, ´8 ď t ă 0,

where w̄´ arises from the optimization problem (Problem 22).

The matrix optimization problem (Problem 22) required that Z̃˚Z̃ be
calculated from the known (or calculated) signal zptq. In many cases we
can use a state-space approach, similar to that given above, to facilitate
this calculation. We present the details when Pz has the form of a
state-space system following a zero-order hold. The methods given here
also give a means of extending the model validation procedure to the case
where components of zptq are unknown. This does not give a convex
optimization problem and were therefore do not pursue this any further in
this paper.

Applying the lifting operation to output of Pz gives, P̃z :“ ΛhPz, as having
the representation,

xk`1 “ eAzhxk `

ż h

0
eAzτBzuk dτ,

z̃kptq “ C̃zxk ` D̃zuk,

where uk P Rbz and z̃kptq P L
cz
2 r0, hq. The operators C̃z and D̃z are given

by,

C̃z “ Cze
Azt,

and

D̃z “ Dz ` Cz

ż t

0
eAzη dηBz.

Note that we do not require Dz “ 0. The presence of a hold at the input
gives a finite-dimensional range for P̃z.

This time we note that z̃kptq lies the range of the operator
“

C̃z D̃z

‰

which
is a finite-dimensional subspace of L2r0, hq. We now establish an isometric
isomorphism between this space and Rcz . Define Vz : Rcz Ñ L2r0, hq, with
V ˚z Vz “ I. Now P̄z : l2 Ñ l2, can be defined as,

P̄z :“ ṼzP̃z,

where,

Ṽz “ diagpVz, Vz, . . . q.
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The discrete time system, P̄z has following representation.

xk`1 “ eAzhxk `

ż h

0
eAzτBzuk dτ,

ẑk “ V ˚z C̃zxk ` V
˚
z D̃zuk.

Now Vz : Rcz Ñ Im
`“

C̃z D̃z

‰˘

and satisfies, V ˚z Vz “ I. Analogously to
the U`w case, define Tz and Σz by,

„

C̃˚z
D̃˚z



“

C̃z D̃z

‰

“ T ˚z

„

Σz 0
0 0



Tz.

Defining Vz by,

Vz “
“

C̃z D̃z

‰

T ˚z

«

Σ
´1{2
z

0

ff

,

gives V ˚z Vz “ I as required and allows us to calculate

“

V ˚z C̃z V ˚z D̃z

‰

“

”

Σ
1{2
z 0

ı

Tz.

To calculate Tz and Σz we proceed as follows. Observe that,

“

C̃z D̃z

‰

“
“

Cz Dz

‰

e

”

AzBz
0 0

ı

t
,

and therefore,

„

C̃˚z
D̃˚z



“

C̃z D̃z

‰

“

ż h

0
e

„

A˚
z 0

B˚
z 0



τ
„

C˚z
D˚z



“

Cz Dz

‰

e

”

AzBz
0 0

ı

τ
dτ

The following useful matrix exponential result is given by Van Loan [43];

e

”

A1B1
0 A2

ı

t
“

„

eA1t
şt
0 e

A1pt´sqB1e
A2s ds

0 eA2t



. (49)

To apply this result, define

Q “

„

C˚z
D˚z



“

Cz Dz

‰

,

and

A3 “

„

Az Bz
0 0



.

62



Now define A4 from the following calculation;

e

„

´A˚
3 Q

0 A3



h
“

„

A4p1, 1q A4p1, 2q
A4p2, 1q A4p2, 2q



.

It is simple to show, using (49), that

„

C̃˚z
D̃˚z



“

C̃z D̃z

‰

“ A4p2, 2q
˚A4p1, 2q,

and factorizing this gives the required matrices.

Now z̄ can be calculated as z̄ “ P̄zuk, and Z̃˚Z̃ is formed from z̄k as in (4).

C Linear Matrix Inequality Based Optimization
Approach

The calculation approach taken here is based on a modified method of
centers, described by Boyd and El Ghaoui [44], with additional
modifications by Fan and Nekooie [45]. Applying these methods to
experimental data leads to large optimization problems. Exploitation of
the problem structure is an essential step in making these computations
feasible. In this section we outline the algorithmic methods for our
particular LMI optimization problem.

Other methods exist for solving such problems, and examples of these are
described in [46, 47]. We have chosen to base our approach on the method
of centers because of the significant computational advantage arising from
the structural form of our problem. A more complete assessment of the
relative merits of the various approaches is beyond the scope of this report.

The following optimization problem is considered, which is based on the
conditions in Theorem 16. For notational simplicity we will express this in
terms of β, where β “ γ2. Furthermore, the notation T pvq will denote the
block Toeplitz matrix formed from the vector, v, as in (4). The
optimization problem to be considered is:

β̂ :“ inf
vPRv ,wPRw

β, (50)

subject to the constraints,
«

β Z˚ Z T pvq˚

T pvq I

ff

ą 0,

«

β w˚

w I

ff

ą 0, and r “ R

«

v

w

ff

.
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It is routine to show, using the Schur complement, that the above
conditions, with r “ y ´ ShPyu, are equivalent to conditions a)–c) in
Theorem16. The norm of the smallest h-periodic and h-anticipatory
perturbation, and unknown disturbance signal, accounting for the datum is
b

β̂ (“ γ̂). We can trivially modify this approach to consider either }∆} or
}w} fixed.

C.1 Modified Method of Centers Algorithm

In this section we outline the general LMI algorithm that we intend to
customize for efficiently solving the above problem. This method based on
one that is by now well documented in the literature (see [44] and
references therein), and is presented here for easy reference and tutorial
value. All solutions to the equality constraint can be expressed as,

«

v

w

ff

“

«

v0

w0

ff

`

«

Nv

Nw

ff

x, x P Rnx , (51)

where rv˚0 w
˚
0 s
˚ is any particular solution and rN˚v N

˚
ws
˚ spans the kernel of

R. The constraints can now be expressed as an LMI in the variable x;

F pβ, xq “ F0pβq `
nx
ÿ

i“1

xi Fi,

where xi denotes the ith component of x. The matrix F0pβq is affine in β
and is given by,

F0pβq “ diagpFv0, Fw0q “ diag

˜«

βZ˚Z T pv0q

T pv0q I

ff

,

«

β w˚0
w0 I

ff¸

. (52)

The matrices Fi are constant,

Fi “ diagpFvi, Fwiq “ diag

˜«

0 T pNviq
˚

T pNviq 0

ff

,

«

0 N˚wi
Nwi 0

ff¸

, (53)

where Nvi and Nwi are the ith columns of Nv and Nw respectively. We will
denote the set of (β,x) such that F pβ, xq ą 0, by X . The boundary of this
set is denoted by BX .

We now consider the following, relatively standard, barrier function,

φpβ, xq :“

"

´ log detF px, βq if pβ, xq P X
8 otherwise

.
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For β ą β̂, φpx, βq is analytic and strictly convex in x [44]. The analytic
center of the set X is denoted here by xpβq and is the unique minimizer for
the optimization problem,

xpβq :“ arg min
xPRnx

φpβ, xq.

Calculation of the analytic center is accomplished via Newton’s method.

Algorithm 34 (Newton’s method, Nesterov & Nemirovskii step size)

Initialize with x0 such that pβ, x0q P X .

i) Calculate gpβ, xjq, the gradient of φpβ, xq with respect to x, at x “ xj.

ii) Calculate Hpβ, xjq, the Hessian of φpβ, xq.

iii) Calculate the Newton step, xjs, as the solution to
Hpβ, xjqxjs “ ´gpβ, xjq.

iii) Calculate the Newton decrement, δj “

b

gpxjq˚xjs.

iv) Update x by xj`1 “ xj ´ αj xjs, where the step size, αj, is given by,

αj “

"

1 if δj ď 0.25
1{p1` δjq otherwise

v) Go to step i).

The convergence of this algorithm is proven in Nesterov and
Nemirovskii [40]. The computation time is dominated by the calculation of
gpx, βq and Hpx, βq. In Section C.2 we outline efficient calculation
methods for the particular structures arising in (53).

We now give the algorithm to minimize β. In our case this is simpler than
that presented in [45].

Algorithm 35 (Modified method of centers)
Select θ P p0, 1q. Initialize with pβ0, x0q P X .

i) Calculate the analytic center, xpβjq, via Algorithm 34.

ii) Calculate x1pβjq, the derivative of the center, xpβjq, with respect to β.
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iii) Find, via bisection, µ such that px̂, βj ´ µq P BX , where
x̂ “ xpβjq ´ µx1pβjq.

iv) Update x by xj`1 “ θ xj ` p1´ θqx̂.

v) Update β by βj`1 “ θβj ` p1´ θqpβj ´ µq.

vi) Go to step i).

The inclusion of the µx˚pxjq term is due to Fan and Nekooie. The choice
of θ ą 0 ensures that pβj`1, xj`1q P X . If θ is very small pβj`1, xj`1q is
very close to BX . Although this reduces the total number of steps in the
Algorithm 35, it increases the number of Newton steps required to find
xpβj`1q. In the example presented here, θ “ 0.05.

C.2 Exploiting Structure in the Calculations

In this section we tailor the above algorithm to solve the optimization in
(50), and outline the computational advantages that are gained.

Note that,

φpβ, xq “ ´ log detpFvpβ, xqq ´ logpβ ´ w˚wq,

which allows us to consider the gradient and Hessian of the two matrix
inequality constraints independently. Define the gradient and Hessian of
each of the above two terms by gvpβ, xq, Hvpβ, xq, and gwpβ, xq, Hwpβ, xq.
Note that

gpβ, xq “ gvpβ, xq ` gwpβ, xq, and Hpβ, xq “ Hvpβ, xq `Hwpβ, xq.

Now consider the second terms in the above. It is simple to show that,

gwpβ, xq “
2

β ´ w˚w
N˚ww,

and

Hwpβ, xq “
2

β ´ w˚w
N˚wNw ` g2pβ, xqg2pβ, xq

˚,

where w “ w0 `Nw x.

The general, component-wise, formulation for gvpβ, xq (see [44]) is,

gvipβ, xq “ ´trace
´

L´1Fvi
`

L´1
˘˚
¯

, i “ 1, . . . , n,
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where L is a lower triangular Cholesky factorization satisfying,
LL˚ “ Fvpβ, xq. In this case Fvi P Rpbv`1qnˆpbv`1qn and generally has n bv
non-zero elements. However, this can reformulated as,

gvpβ, xq “ N˚v ĝv,

where, each component of ĝv is given by,

ĝvj “ ´trace

˜

L´1

«

0 T pejq˚

T pejq 0

ff

`

L´1
˘˚

¸

, j “ 1, . . . , bv,

and where ej denotes a vector with a 1 in the jth position and zeros
elsewhere. The computational saving arises from the fact that T pejq has
only between one and n non-zero components and this sparsity can be
exploited in calculating the trace.

An analogous approach can be employed for the Hessian. Denote the
Hessian of ´ log detpFvpβ, xqq, with respect to v by Ĥvpβ, xq. The i, jth
component of this is given by,

Ĥvij “ trace

˜

L´1

«

0 T peiq˚

T peiq 0

ff

`

L´1
˘˚
L´1

«

0 T pejq˚

T pejq 0

ff

`

L´1
˘˚

¸

.

The Hessian, with respect to x, is given by,

Hvpβ, xq “ N˚v Ĥvpβ, xqNv.

The calculation of the Cholesky factor of Fvpβ, xq, and its inverse, can be
further simplified by noting that,

Fvpβ, xq
´1 “

«

I 0

´T pvq I

ff«

pβZ˚Z ´ T pvq˚ T pvqq´1 0

0 I

ff«

I ´T pvq˚

0 I

ff

.

For completeness, we outline how to calculate the additional quantities
required to implement Algorithm 35. To find x1pβq, note that,

d gpβ, xpβqq

d β
“ Hpβ, xpβqq x1pβq ` gpβ, xpβqq.

As xpβq is the analytic center, gpβ, xpβqq “ 0. Note that

d gpβ, xpβqq

d β
“
d gvpβ, xpβqq

d β
`

d gwpβ, xpβqq

d β
,

and it is simple to verify that,

d gwpβ, xpβqq

d β
“

´1

β ´ w˚w
gwpβ, xpβqq.
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Using the gradient calculation techniques given above, we can again take
advantage of a sparse calculation method for the remaining term. Note
that,

d gvpβ, xpβqq

d β
“ N˚v

d ĝvpβ, xpβqq

d β
.

The ith component is given by,

d ĝvipβ, xpβqq

d β
“ trace

˜

L´1

«

Z˚Z 0

0 0

ff

`

L´1
˘˚
L´1

«

0 T peiq˚

T peiq 0

ff

`

L´1
˘˚

¸

.

The fact that both Fvpβ, xq and Fwpβ, xq contain no matrices which are a
function of both x and β leads to very simple and efficient gradient
calculations.

We now discuss the calculation of µ in Algorithm 35. This can be done
separately for Fvpβ, xq and Fwpβ, xq, and the minimum value used in the
algorithm. Finding the maximum value of µ for Fwpβ, xq involves finding
the positive root of a scalar quadratic equation. The Fvpβ, xq case involves
solving a generalized eigenvalue problem. In principle bisection is not
required although we have found it more numerically stable to use
bisection with a eigenvalue positivity test.
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